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OVERVIEW 

One of the fundamental endeavors of social science research is to advance explanations 

of human behavior. Beyond mere description, scientific explanation attempts to open the black 

box and answer questions about how or why things are related, or an effect occurs. Quantitative 

methods play an important role in fostering explanatory understandings of the social world. Such 

methods involve statistical models that are used as inferential tools to evaluate uncertainty in 

quantitative data. These models are abstract, mathematical approximations of real-world systems 

and are designed to reliably make inferences about the events, or constructs, they represent. Just 

as the kinds of phenomena that concern the social sciences are highly complex and variable, 

there is an equally complex and variable array of approaches to statistical modeling. Within this 

methodological pluralism, mediation analysis is a key statistical method used by social scientists 

to evaluate explanatory theories about relations between independent and dependent variables. 

For example, when a bivariate association between an independent variable (X) and a dependent 

variable (Y) is observed, mediation analysis can be used to test hypotheses about the process or 

mechanism by which the two variables are related. Mediation analysis attempts to model the 

underlying process in terms of its component parts by specifying the indirect pathways between 

one or more intervening variables that link X to Y.  

In recent years, applications of mediation models have become ubiquitous across the 

social sciences. The popularity of these models is attributable in part to their utility in facilitating 

judgements about explanatory theories. For example, in educational research, understanding the 

process by which an intervention affects student outcomes has significant implications for policy 

and practice. Of course, there are various design features that researchers must consider when 

conducting any statistical analysis, including mediation. Features such as multiple groups, small 
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sample sizes, nested data structures, and latent variables are commonly encountered in 

educational and behavioral studies and can pose additional challenges for applied researchers in 

terms of model estimation and interpretation. Advanced methodological tools are needed to 

construct more sophisticated mediation models that are required to accommodate these complex 

design features.  

This dissertation is a compilation of three papers that address such methodological issues 

in mediation analysis. The three papers, each of which constitute a chapter in this dissertation, 

examine different concerns related to mediation analysis that arise in applied settings. Each 

chapter considers a particular methodological issue through the lens of statistical theory. Monte 

Carlo simulations are used to evaluate the methods under a variety of design conditions. 

Moreover, given that the ultimate purpose of statistics is its application to real-world data, 

empirical examples are provided as guidance to substantive researchers. Data for these examples 

come from educational research on school climate; however, the methods considered here are 

effectively applicable to many areas of social science research.  

Chapter 1 addresses how to include tests of moderation effects in mediation analysis. It 

begins by reviewing key elements of mediation and moderation and then discusses methods for 

integrating the two into a single moderated mediation model. The chapter provides a historical 

perspective on methodological trends in mediation analysis, setting the stage for subsequent 

chapters that consider more advanced topics.  

Chapter 2 extends mediation analysis to the case of nested data structures with small 

sample sizes and latent variables. It considers multilevel mediation models within the context of 

the structural equation modeling (SEM) framework and compares the performance of Bayesian 
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and frequentist estimation approaches. Results from a Monte Carlo simulation study are 

presented which demonstrate the impact of Bayesian priors on indirect effect estimates.  

Chapter 3 addresses the issue of model selection. Establishing a well-fitting measurement 

model is a necessary first step in testing mediation in any structural model that includes latent 

variables. Methods for evaluating model fit are well established in the frequentist framework; 

however, less work has focused on developing model fit criteria in Bayesian SEM. Applied 

researchers who wish to conduct mediation analysis with latent variables in the Bayesian 

framework may find the process of first selecting a measurement model challenging. Chapter 3 

discusses recent advances in Bayesian model selection and presents a simulation study that 

rigorously investigates the performance of various Bayesian model fit indices under different 

model and data conditions. 

Taken together, the papers presented in this dissertation synthesize developments in 

mediation analysis and contribute new understandings to methodological issues that researchers 

often encounter in applied settings. Extensions and applications of mediation models to 

moderated mediation, multilevel designs, small sample sizes, SEM, and Bayesian approaches are 

explored. Although the range of topics is broad and covers both established and emerging 

methods, each chapter investigates a clearly defined research problem that motivates the 

subsequent inquiry of later chapters. Overall, the aim is to provide an account of advanced 

methodological issues that are relevant for mediation analysis and broadly applicable to 

substantive researchers.  
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CHAPTER 1 

Moderated Mediation Analysis: A Review and Application to  

School Climate Research1 

 

Abstract 

Moderated mediation analysis is a valuable technique for assessing whether an 

indirect effect is conditional on values of a moderating variable. We review the 

basis of moderation and mediation and their integration into a combined model of 

moderated mediation within a regression framework. Thereafter, an analytic and 

interpretive illustration of the technique is provided in the context of a substantive 

school climate research question. The illustration is based on a sample of 318 high 

schools that examines whether school-wide student engagement mediates the 

association between the prevalence of teasing and bullying (PTB) and academic 

achievement on a state-mandated reading exam; and whether this indirect effect 

was moderated by student perceptions of teacher support. 

  

 
1Reprinted, with permission, from Edwards, K. D., & Konold, T. R. (2020). Moderated mediation analysis: A 

review and application to school climate research. Practical Assessment, Research & Evaluation, 25(5), 1-17. 

PARE © 2021.  
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Introduction 

Contemporary research questions in the social sciences increasingly involve complex 

relationships among multiple variables that operate in concert. Some of these complexities arise 

when variable associations are conditional on other variables. For example, when the relationship 

between social support and adolescent mental health changes across levels of academic 

achievement (Stewart & Suldo, 2011); or when the association between pre-kindergarten school-

readiness skills and later academic achievement among low-income Black children differs 

between immigrant and non-immigrant status (Calzada et al., 2015). 

In other instances, variable associations might be best understood in the presence of an 

intervening, or mediating, variable that illuminates how or why other variables are related. For 

example, Fredrick and Demaray (2018) demonstrated that peer victimization led to depressive 

symptoms, which in turn resulted in suicidal ideation. Inclusion of depression as a mediating 

variable in this work allowed for a more complete understanding of ‘how’ peer victimization was 

related to suicidal ideation. Other substantive examples of mediation analysis can be found in 

Fantuzzo et al. (2012); Mittleman (2018); Purpura et al. (2013); Raver et al. (2011); and Ruzek et 

al. (2016). 

Moderation and mediation analyses are two commonly used techniques to address 

questions of when and why variables are related, respectively. Moderation occurs when the 

magnitude and/or direction of a relationship between variables is conditional on a third variable, 

and tests of moderation can be useful for evaluating the boundary conditions under which 

associations between two (or more) variables occur (Aguinis, 2004). In other words, whether 

variable associations hold across different situations or for different groups of people. By 

contrast, mediation analysis provides a means to test how or why two or more variables might be 
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related. A mediating variable can be conceptualized as a third variable that intervenes in the 

relationship between two or more other variables, acting as a mechanism, through which one 

variable’s effect is transmitted to another (Baron & Kenny, 1986).  

Although moderation and mediation are each useful on their own, integrating both into a 

single model enables researchers to examine even more nuanced relationships among variables. 

These combined forms are commonly referred to as moderated mediation or conditional process 

models (Hayes & Preacher, 2013), and allow for evaluations of whether an indirect effect is 

moderated by another variable. Moderated mediation models are particularly useful when there 

is interest in understanding both why and under what conditions variables are related to one 

another. This combined model provides an opportunity to simultaneously investigate contingent 

and indirect effects. For example, one recent study examined the moderating effect of certain 

genetic markers on the indirect effect of parenting behavior on children’s ADHD symptoms 

through neurocognitive functioning (Morgan et al., 2018). Results indicated that positive parental 

praise actually impaired children’s neurocognitive functioning during a battery of tasks, which 

then resulted in more pronounced ADHD symptoms. However, this indirect effect was 

moderated by two genetic polymorphisms, such that the strength of the mediating effect varied 

across children with different genotypes. As this example illustrates, the use of moderated 

mediation allowed for an evaluation of how neurocognitive functioning mediated the relationship 

between parenting behavior and ADHD symptoms, and for whom this occurred (i.e., different 

genetic marker groups).  

While other recent applications of moderated mediation can be found in Dicke et al. 

(2014); Guo et al. (2018); and O’Neal et al. (2018), the use of these models is far less prevalent 

in the social sciences than are uses of moderation or mediation by themselves. In the sections 
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below we briefly review methods for conducting moderation and mediation, and describe their 

integration for testing moderated mediating effects. Thereafter, we illustrate the usefulness and 

application of the approach in the context of education research. Given continued interest in 

providing students with healthy learning environments and its importance in national policy 

(e.g., the 2015 Every Student Succeeds Act, Public Law 114-95), we examine the role of student 

engagement in mediating the association between the prevalence of bullying in schools and 

academic achievement, and we test whether these relationships are moderated by levels of 

supportive school climate. In doing so, we describe the interpretable elements of the model to 

motivate more widespread use of this analytic approach and provide the PROCESS code used to 

estimate the model in SPSS. 

Moderation Analysis 

A linear model that evaluates the relationship between two continuous regressors (X and 

W) and a single outcome (Y) can be expressed as 

 Y = iY + b1X + b2W (1) 

where the unstandardized form of b1 represents the expected change in Y for a unit increase in X, 

b2 represents the expected change in Y for a unit change in W, and iY is an estimate of the 

expected value of Y when X and W are equal to zero. Importantly, the relationship (bj) between a 

regressor (e.g., X) and Y holds across all values of the other regressor (e.g., W) in this additive 

form of the equation. The viability of bj representing the amount of Y change for a unit change in 

its associated regressor, across all points of the other regressor in the model, can be evaluated 

through inclusion of a product term of the two regressors (XW) into Equation 1: 

 Y = iY + b1X + b2W + b3XW (2) 
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Equation 2 is graphically represented in Figure 1A. Here, b3 estimates the amount of change in b1 

for a unit increase in W, or conversely, how b2 changes across values of X. A non-zero b3 term 

indicates that the Y,X or Y,W relationships are not constant across levels of the other regressor. A 

non-zero b3 coefficient signals the presence of a moderating effect (Saunders, 1956), or interaction 

(Cohen, 1968), where the relationship between two variables is conditional on a third variable. 

Establishing a significant relationship between two variables is not a necessary pre-condition to 

testing for moderation, as evidence of an association between two variables may sometimes only 

be found when considered in the context of a third moderating variable (Aguinis, 2004). Tests of 

moderation can be particularly useful for evaluating whether relationships hold across situations, 

settings, and people.  

Mediation Analysis 

Although the concept of intervening variables pre-dates the seminal works of Kenny and 

colleagues (Baron & Kenny, 1986; Judd & Kenny, 1981), their contributions helped to establish 

statistical mediation analysis in the methods literature as well as promote its use by applied 

researchers. Judd and Kenny (1981) recommended evaluating mediation hypotheses through a 

series of regression equations, an approach they termed process analysis. They outlined three 

conditions that must hold in order to validate a proposed mediation effect: (1) the treatment 

affects the outcome, (2) the treatment affects the mediator, and (3) the treatment does not affect 

the outcome when controlling for the mediator. These conditions were tested by three regression 

equations: regressing the outcome on the treatment variable, regressing the mediator on the 

treatment variable, and regressing the outcome on both the mediator and treatment variable. 
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Baron and Kenny (1986) restated and expanded upon Judd and Kenny’s guidelines, 

further popularizing the so-called causal steps approach to mediation. As outlined in Baron and 

Kenny, the first step was to estimate the total effect of X on Y, 

 Y = iY + cX (3) 

where iY is the intercept, and the coefficient c is the slope. The upper model in Figure 1B 

illustrates the total effect of X on Y (path c). After estimating a statistically significant total 

effect, the second step was to establish that X was related to M, as depicted by path a in the lower 

model in Figure 1B: 

 M = iM + aX (4) 

The third step was to show that M was associated with Y when controlling for X, as represented 

by path b in Figure 1B: 

 Y = iY + cʹX + bM (5) 

The final step required estimation of the direct effect of X on Y, holding M constant (path cʹ in 

Figure 1B, and coefficient cʹ in Equation 5). 

In school psychology research, for example, Fairchild and McQuillin (2010) found that 

the majority of mediation studies in three of the field’s top journals followed the causal steps 

approach. However, the methodological field has moved away from this approach as more recent 

advances in mediation analysis have been developed (e.g., Hayes, 2009; MacKinnon et al., 2002; 

Rucker et al., 2011; Shrout & Bolger, 2002; Zhao et al., 2010). While Baron and Kenny’s (1986) 

method used a series of hypothesis tests to assess mediation, contemporary approaches focus 

directly on quantifying the indirect effect of X on Y through the mediator. This indirect effect is 

estimated as the product of the effect of X on M and the effect of M on Y, represented by paths a 
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and b in Figure 1B. By substituting Equation 4 into Equation 5, the mediation model can be 

expressed as a single equation: 

 Y = iY + cʹX + biM + abX (6) 

The ab product term quantifies the estimated change in the outcome that results from a one-unit 

change in the independent variable through the mediator.  

Through OLS regression, the indirect effect is equal to the total effect minus the direct 

effect, ab = c − cʹ (MacKinnon et al., 1995). This equivalence is noteworthy because it highlights 

an important flaw in the assumptions underlying the causal steps logic. According to the causal 

steps approach, if there is no significant association between the independent and dependent 

variables, the analysis stops, and mediation is said to be non-existent. Although intuition may 

suggest that there must be a total effect of X on Y in order for an indirect effect to exist, 

mathematically it is not the case. When a significant indirect effect ab and a significant direct 

effect cʹ have opposite signs, they can cancel each other out, such that their sum (the total effect 

c) is not significantly different from zero (MacKinnon et al., 2002). Thus, researchers following 

the causal steps approach could mistakenly dismiss the presence of mediation. In light of this, 

methodologists today no longer require evidence of an association between X and Y as a pre-

condition for evaluating the presence of a mediating effect. 

Another requirement for mediation using the causal steps approach that is no longer 

considered necessary today is the notion of full mediation. In the methodological literature, a 

distinction is made between fully and partially mediated models. When the direct effect cʹ of X 

on Y, controlling for M, is zero, and the indirect effect is statistically greater than zero, the 

combined results could be said to support full mediation (Baron & Kenny, 1986; Judd & Kenny, 

1981). Justification for full mediation requires that all mediating pathways between X and Y have 
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been identified and that they completely account for the X-Y association. By contrast, when both 

the direct and indirect effects are statistically significant, the results are said to support partial 

mediation because the mediating variable only accounts for part of the relationship between X 

and Y.   

Evaluating the statistical significance of a mediating effect has been an active area of 

research in recent years. Historically, researchers have relied on the Sobel test (i.e., delta method 

or normal theory approach; Sobel, 1982). This procedure generates a standard error from the ab 

indirect effect sampling distribution that is, in turn, used as the basis for a test statistic or 

confidence interval. An assumption of the Sobel test is that the sampling distribution of ab is 

normal; however, the sampling distribution of a product of two normally distributed variables is 

not necessarily normally distributed (Aroian, 1947). Simulation studies have demonstrated that 

the Sobel test is less powerful than alternative methods when the indirect effect is nonzero and 

has a skewed distribution, particularly for small sample sizes of less than 100 (Hayes & 

Scharkow, 2013; MacKinnon et al., 2004; Preacher & Selig, 2012; Shrout & Bolger, 2002).  

By contrast, bootstrap confidence intervals (Preacher & Hayes, 2004, 2008; Shrout & 

Bolger, 2002) and Monte Carlo confidence intervals (MacKinnon et al., 2004; Preacher & Selig, 

2012) avoid this problem by not assuming a normal sampling distribution. Introduced by Bollen 

and Stine (1990), and further discussed in Lockwood and MacKinnon (1998), the bootstrap 

approach for inferences regarding indirect effects has become one of the more popular 

techniques in the mediation methods literature. Here, a random sample is repeatedly drawn with 

replacement from the analytic sample, and estimates of ab are obtained for each bootstrap 

sample with the goal of developing a confidence interval for the indirect effect. Resampling is 

typically done thousands of times, resulting in k estimates of ab, which are used as an empirical 
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sampling distribution of the statistic. A (1 − ) percentile confidence interval for the indirect 

effect is calculated using the limits of the 100(1 − )% of the bootstrap distribution (Bollen & 

Stine, 1990). Confidence intervals that do not contain zero support the claim that M mediates X’s 

effect on Y. As discussed in Preacher and Selig (2012), more complex variations of the 

bootstrap-based technique include bias-corrected, bias-corrected and accelerated, residual based, 

and parametric based procedures. The advantage of the bootstrap procedure over the Sobel test is 

that it does not assume normality, it can accommodate small sample sizes, and is adaptable to 

more complex models (Hayes, 2009).  

Monte Carlo methods for creating confidence intervals for indirect effects involve using 

the sample estimates, 𝑎̂ and 𝑏̂, and their asymptotic variances and covariances to simulate a 

sampling distribution of ab based on repeated random draws from a defined multinormal 

distribution, rather than from resampling (MacKinnon et al., 2004). A confidence interval for ab 

is then calculated, as described previously for the bootstrap method. Like bootstrap procedures, 

the Monte Carlo method makes no parametric assumptions about the distribution of ab. 

Theoretically, both approaches provide a useful pathway for evaluating indirect effects. 

Currently, however, only the Monte Carlo approach has been developed for applications in 

multilevel contexts (Bauer et al., 2006; Preacher & Selig, 2012). 

Mediation analysis in a regression-based framework relies upon the same model 

assumptions that are typical of OLS general linear models. It is assumed that the residuals are 

normally distributed, independent, and that homoscedasticity holds (Williams et al., 2013). In 

addition, it is worth noting that when conducting mediation analysis there is an implied 

assumption of temporal precedence. That is, the assumption that X precedes M, which precedes 

Y. This strong assumption cannot be met when mediation analysis is conducted with cross-
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sectional data. As a result, causal inferences about mediation should not be made with cross-

sectional data. In fact, some methodologists reserve the term mediation for causal interpretations 

based exclusively on longitudinal designs (Little, 2013; Maxwell & Cole, 2007). 

Moderated Mediation Analysis 

The term moderated mediation is used to convey instances when the mechanism through 

which X affects Y is moderated by a fourth variable W, such that the indirect effect is different at 

different values of W. When one or both of the component paths (X → M, M → Y) through the 

mediator is moderated, X’s effect on Y is described as a conditional indirect effect. The simplest 

conceptualization of conditional indirect effects involves evaluating whether the moderating 

variable (W) influences the X → M relationship (first stage moderated mediation) or the M → Y 

relationships (second stage moderated mediation; Edwards & Lambert, 2007), see Figure 1. The 

first and second stages refer to the particular path (i.e., path a or b, respectively) of the indirect 

effect that is believed to be moderated by another variable. A first stage model is estimated with 

two equations: 

 M = iM + a1X + a2W + a3XW (7) 

 Y = iY + cʹX + bM (8) 

By including the moderator (W) and the product term (XW) in Equation 7, the effect of the 

independent variable on the mediator can vary as a function of the moderator. Similar to a 

general mediation model, the indirect effect of X on Y is calculated as the product of the effects 

of X on M and M on Y. However, in moderated mediation, the product term must also allow for 

the indirect effect to be conditional on W. By substituting Equation 7 into Equation 8, the first 

stage moderated mediation model can be estimated as 

 Y = iY + cʹX + biM + a1bX + a2bW + a3bXW (9) 
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Here, X’s effect on M is expressed as (a1 + a3W), and M’s effect on Y is b. The conditional 

indirect effect (ω) of X on Y is then expressed as ω = (a1 + a3W)b, which when rearranged is ω = 

a1b + a3bW. Thus, the coefficient a3b is the estimated effect of W on the indirect effect of X on Y 

through M. 

In a second stage model, W moderates the path between the mediator and the dependent 

variable, see Figure 1D. This model is similarly estimated with two equations: 

 M = iM + aX (10) 

 Y = iY + cʹX + b1M + b2W + b3MW (11) 

Here, the moderator (W) and the product term (MW) are included in Equation 11, and Equations 

10 and 11 can be rewritten as: 

 Y = iY + cʹX + b1iM + ab1X + b2W + b3iMW + ab3XW (12) 

The conditional indirect effect (ω) of a second stage model is quantified as ω = a(b1 + b3W), 

where a is the effect of X on M, and (b1 + b3W) is the effect of M on Y. The expression a(b1 + 

b3W) can be rewritten as ab1 + ab3W, where the coefficient ab3 quantifies the effect of W on the 

indirect effect of X on Y through M. 

Hypothesis testing to determine whether the a3b (or ab3) coefficient, known as the index 

of moderated mediation, is statistically different from zero can be carried out through bootstrap 

confidence interval evaluations (Hayes, 2015). A confidence interval that does not contain zero 

is evidence that the indirect effect is moderated. The index approach to testing moderated 

mediation is useful because it relies on only one inferential test and directly assesses the 

statistical significance of the relationship between the moderator and the indirect effect. An 

alternative method, referred to as the piecemeal approach (Edwards & Lambert, 2007), involves 

separately testing moderation and mediation and then jointly interpreting the results. While the 
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piecemeal approach should not be used in place of the index test, it can be useful to conduct 

separate analyses of moderation and mediation prior to or following the integrated method in 

order to better understand the nature of the conditional indirect effect (Hayes, 2018a). The index 

approach is well suited for instances in which the indirect effect is a linear function of W, as in a 

simple first or second stage model. However, it cannot be used when X’s effect on M and M’s 

effect on Y are both moderated by the same continuous variable. In this case, the indirect effect 

takes on a non-linear, quadratic, form as a function of W (Edwards & Lambert, 2007; Hayes, 

2015). 

A statistically significant index of moderated mediation provides evidence that the 

indirect effect is conditional on values of the moderator; however, this does not imply that the 

indirect effect is statistically different from zero at all points of W. In order to ascertain at which 

points of W the indirect effect is significant, formal testing of the indirect effect at various values 

of W is required. When the moderator is categorical, the indirect effect is simply tested at the 

coded values of W. For continuous variables, the choice of W values at which to test the indirect 

effect is less straightforward. Researchers often rely on commonly used conventions to select 

points that represent low, medium, and high values on the moderator. One convention is to plot 

the mean and one standard deviation both above and below the mean. Another common choice is 

to select values representing various percentiles of the variable’s distribution, such as the 25th, 

50th, and 75th percentiles. In other situations, the choice of values may be guided by theory, 

such that specific values are most relevant to the research question or clinical practice. Once 

values of the moderator are selected, the indirect effect is estimated and tested at each selected 

value of W with the construction of confidence intervals.  
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After estimating a statistically significant index of moderated mediation, practical 

significance is assessed with measures of effect size. A common method for obtaining effect 

sizes is to standardize the direct and indirect effects, thereby expressing the effects in terms of 

standard deviations. When X and Y are both continuous, the completely standardized direct and 

indirect effects quantify the amount of standard deviation change in Y that is associated with a 

one standard deviation increase in X. In moderated mediation analysis, standardized effect size 

measures are obtained by standardizing the conditional indirect effects of X on Y at various 

values of the moderator. For example, in a second-stage model where W moderates the path 

between M and Y, the completely standardized conditional indirect effect is expressed as  

 ωcs = [sX (ab1 + ab3W)]/sY (13) 

where sX and sY are the standard deviations of X and Y. When X is dichotomous (e.g., 

representing group membership) and Y is continuous, standardization by the scale of only Y 

provides partially standardized direct and indirect effects. The partially standardized conditional 

indirect effect in a second-stage model is  

 ωps = (ab1 + ab3W)/sY (14) 

For mediation models without moderation, standardized effect sizes have been shown to 

perform better than other effect size measures in terms of bias, power and Type I error rates 

(Miočević et al., 2018). In addition, Lachowicz et al. (2018) recently proposed a novel effect size 

measure for quantifying the explained variance in mediation models. Further research is needed 

to develop effect size measures for moderated mediation analysis.  

The review of moderated mediation analysis presented in this paper is relevant for 

estimating conditional indirect effects using ordinary least squares (OLS) regression. Moderated 

mediation can be implemented in many statistical software programs (e.g., Mplus, R, SAS, 
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SPSS, Stata) through specification of a number of regression equations. However, the PROCESS 

macro (Hayes, 2018a) is specifically tailored for conducting regression-based moderated 

mediation analyses in SPSS and SAS with minimal programming required. With a single line of 

syntax, the PROCESS macro estimates all model coefficients, standard errors, test statistics, and 

bootstrap confidence intervals, including those for the index of moderated mediation. 

Alternatively, conditional indirect effects can be estimated using a structural equation modelling 

(SEM) framework. Rather than estimate each equation separately as is done in OLS regression, 

SEM estimates all model parameters simultaneously, using an iterative process such as 

maximum likelihood. Moreover, SEM allows for the analysis of latent variable models, whereas 

OLS regression can accommodate only observed variables.   

Illustration 

While examples of moderation and mediation are abundant in social science research, 

fewer studies integrate the two analyses in a single model. We illustrate the usefulness of 

moderated mediation analysis to education research in the context of evaluating whether school-

wide student engagement mediates the association between the prevalence of teasing and 

bullying (PTB) and school-level performance on a standardized reading exam, and whether this 

association is moderated by supportive school climate. Prior research at the middle-school level 

has demonstrated that student engagement partially mediates the association between perceptions 

of PTB and passing rates on standardized exams (Lacey et al., 2017). We extend this work by 

investigating whether the indirect effect of PTB through student engagement at the high-school 

level is contingent upon levels of supportive school climate. We hypothesize that support 

moderates the proposed indirect effect of PTB, such that when a school has a less supportive 

climate, PTB has a stronger negative association with standardized exam performance through 
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student engagement. To control for school composition effects, two school demographic 

variables were included as covariates: the percentage of racial minority students and the 

percentage of students eligible for free or reduced price meals (FRPM).  

Figure 2 provides a graphic representation of our path model. PTB was the focal 

predictor (X), engagement was the mediator (M), support was the moderator (W), and reading 

achievement was the dependent variable (Y). The percentage of students eligible for FRPM and 

the percentage of racial minority students were included as covariates. As illustrated in Figure 2, 

we hypothesized a first-stage moderated mediation model, in which support was allowed to 

moderate the first-stage indirect path (a) through engagement. A direct effect of X on Y in 

mediation analysis can also be moderated, producing a conditional direct effect. To illustrate this, 

support was also allowed to moderate the direct path (c') between PTB and reading achievement. 

Although the present study uses school climate survey data from a state-wide sample of 

students in high schools, we estimate a series of single-level regression models using schools as 

the unit of analysis. We chose this modelling approach for two reasons. First, school climate is 

broadly defined as a multidimensional construct that encompasses the “quality and character of 

school life” and is “based on patterns of people’s experiences of school life” (Cohen et al., 2009, 

p. 182). By this definition, school climate is a characteristic of the school, not individual 

students. Therefore, in school climate research, student ratings of the school environment are 

aggregated to the school level, reflecting the collective perspective of students (Lüdtke et al., 

2009; Marsh et al., 2012). Accordingly, in the present study, the substantive predictors are 

conceptualized as school-level constructs that represent students’ shared perceptions of the 

school. Second, in order to present an introductory tutorial of moderated mediation analysis, we 

restrict our analysis to the school level, using single-level models with manifest variables. 
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Methods for assessing multilevel moderated mediation with latent variable interactions have only 

recently been developed (Zyphur et al., 2019) and are beyond the scope of this article. 

Methods 

Sample 

Data came from the 2018 Virginia Secondary School Climate Survey. The sample 

consisted of 318 public high schools. The total school enrollment for Grades 9 to 12 ranged 

between 58 and 3,963 students (M = 1,214.30, SD = 720.76). Across schools, the percentage of 

students eligible for free or reduced-priced meals varied between 2.0% and 100% (M = 42.8%, 

SD = 22.8%). The percentage of racial minority students in each school ranged from 0.0% to 

99.2% (M = 42.0%, SD = 26.6%). 

Procedure 

The survey was administered to students in grades 9-12 as part of the state’s mandatory 

annual School Safety Audit. The participation rate was 99.4% for schools and 82.0% for 

students. Parental passive consent and student assent were obtained for all participants. The 

survey was administered anonymously through a secure online platform. Students completed the 

survey during normal school hours under the supervision of school staff. Of the 324 schools 

eligible for participation in the survey, the analytic sample consisted of 318 schools that 

completed the survey. Alternative schools for special populations, such as students transitioning 

from juvenile correctional centers, were excluded from the analytic sample. 

Measures 

The 108-item survey assessed student perceptions of school climate and safety 

conditions. Three survey scales relevant to this study included the prevalence of teasing and 

bullying, student engagement, and support. Scale items were measured using a 4-point response 
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format (1 = strongly disagree, 2 = disagree, 3 = agree, 4 = strongly agree). To assess the 

reliability of the aggregated student ratings of each scale, we used the intraclass correlations 

ICC(1) and ICC(2) (Lüdtke et al., 2009).1 The ICC(1) is an indicator of the amount of variation 

in a variable that can be attributed to differences between clusters (i.e., schools). The ICC(2) 

estimates the reliability of cluster-mean ratings, where values closer to 1 indicate greater 

reliability. 

Prevalence of teasing and bullying. PTB was measured with five items that assessed 

student perceptions of the extent of teasing and bullying at school. Previous studies using the 

PTB scale have found good overall model fit for the factor structure in samples of high school 

students (Bandyopadhyay et al., 2009; Klein et al., 2012). In contrast to other measures in this 

study, higher PTB scores are reflective of more adverse conditions (i.e., higher levels of teasing 

and bullying). Cronbach’s alpha was .86 in the current sample. The ICC(1) was .08, indicating 

that 8% of the total variation in student ratings of PTB was attributable to the nesting of students 

within schools. The ICC(2) was .98, indicating a high degree of reliability of the school-mean 

ratings. 

Student engagement. The student engagement scale consisted of six items that assessed 

both cognitive (e.g., Getting good grades is very important to me) and affective (e.g., I feel like I 

belong at this school) aspects of engagement that combine into a single measure of student 

engagement (Konold et al., 2014). The scale was adapted from the Commitment to School scale 

(Thornberry et al., 1991). In the current study, Cronbach’s alpha was .77, ICC(1) was .06, and 

ICC(2) was .98. 

 
1 The ICC(1) =  2 / [ 2 +  2], where  2 is the variance between clusters and  2 is the variance within clusters. The 

ICC(2) = 
𝑘 × 𝐼𝐶𝐶(1)

1+(𝑘−1) × 𝐼𝐶𝐶(1)
, where k is the average number of units within a cluster. In the present study, k = 671. 
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Support. Student perceptions of their teachers as being supportive was measured with an 

eight-item scale that demonstrated good psychometric properties when evaluated through 

multilevel confirmatory factor models (Konold et al., 2014). Questions asked students to rate 

how strongly they agreed or disagreed that teachers at their school care about students (e.g., Most 

teachers listen to what students have to say; If I tell a teacher about a problem I am having, the 

teacher will do something to help). Cronbach’s alpha was .87 in this sample. The ICC(1) was 

.05, and ICC(2) was .97. 

Reading achievement. Reading achievement was measured using school-mean scaled 

scores on the Virginia Standards of Learning (SOL) End of Course (EOC) English Reading 

exam. SOL exams assess student proficiency in meeting the state’s minimum expectations for 

end-of-year competency in various subjects. School-level SOL data were obtained from the 

Virginia Department of Education. We chose to measure academic achievement using 11th-

grade reading scores because the majority of Virginia public high school students take the 

English Reading exam at the end of grade 11. 

Analytic Plan 

To evaluate whether student engagement mediates the association between PTB and 

reading scores, and whether the indirect effect is further conditional on levels of support, a 

moderated mediation model was tested using the PROCESS macro (V3.3; Hayes, 2018a) for 

SPSS. PROCESS is preprogrammed with 92 models and numerous options for model 

specification. The present study used Model 8 that specifies a first-stage moderated mediation 

model in which W is allowed to moderate the direct path from X to Y and the first-stage indirect 

path from X to M. Support and PTB were mean centered prior to creating product terms, and the 

index of moderated mediation was tested with a 95% bias-corrected bootstrap confidence 
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interval based on 10,000 replications. Moderation was further probed by estimating and plotting 

the conditional direct and indirect effects of PTB at values of support corresponding to the 16th, 

50th, and 84th percentile points. These three points represented low (W = 2.94), moderate (W = 

3.07), and high (W = 3.19) values of support in the current sample. Using PROCESS, hypothesis 

tests were conducted to determine whether the conditional indirect effect of PTB was statistically 

different from zero at these values of support. SPSS output from the PROCESS macro is 

provided in the Appendix.   

Results 

Descriptive statistics for all variables in the current analysis are presented in Table 1. As 

expected, PTB was negatively associated with student engagement (r = –.60, p < .001), support 

(r = –.52, p < .001), and reading scores (r = –.36, p < .001). In addition, engagement was 

positively associated with support (r = .77, p < .001) and reading scores (r = .44, p < .001). 

Finally, support was positively associated with reading scores (r = .15, p < .01). 

Results of the moderated mediation analysis are provided in Table 2. The direct 

association between PTB and readings scores was found to be moderated by support (c'3 = 36.69, 

p = .01). The association between PTB and the mediator (i.e., student engagement) was also 

conditional on levels of support (a3 = 0.74, p < .001). In addition to estimating model parameters, 

it is helpful to visualize the results. Figure 3 presents a visual depiction of the interaction 

between X and W on Y (plot A) and on M (plot B). Plot A was constructed by estimating the 

simple effect of PTB on reading scores for low, moderate, and high values of support. Similarly, 

plot B was constructed by estimating the simple effect of PTB on student engagement for the 

three levels of support. 
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As shown in Figure 3 plot A, PTB was negatively associated with reading scores for all 

levels of support, such that as PTB increased, reading scores decreased. However, as depicted by 

the steepness of the slopes, the negative relation between PTB and reading scores was largest in 

magnitude among schools characterized by low levels of support. Likewise, Figure 3 plot B 

illustrates that support moderated the association between PTB and student engagement, such 

that the magnitude of the association was strongest for schools with low support. 

Most notably, a formal test of moderated mediation based on the index term (Hayes, 

2015) revealed that support moderated the indirect effect of PTB on reading scores (a3b1 = 25.66, 

95% CI = 6.69, 43.40). Further hypothesis tests were conducted to determine whether the 

conditional indirect effect (ω = a1b1 + a3b1W) was statistically significant at values 

corresponding to low (W = 2.94), moderate (W = 3.07), and high (W = 3.19) values of support as 

noted above. This was accomplished through PROCESS as the default, in that PROCESS 

automatically generates these conditional indirect effects at moderator values corresponding to 

the 16th, 50th, and 84th percentile points in the sample data. Results revealed that student 

engagement mediated the association between PTB and reading scores for schools with low 

support (ωLow = –8.66, CI = –13.30, –4.09) and moderate support (ωModerate = –5.37, CI = –8.74, 

–2.40), but there was no evidence of an indirect effect for schools with high levels of support 

(ωHigh = –3.77, CI = –9.89, 2.35). The magnitude of the indirect effect was more negative among 

schools with relatively low levels of perceived support. As support decreased, PTB was 

associated with less student engagement, which, in turn, was associated with lower reading 

achievement. 

The conditional direct and indirect effects of PTB on reading scores are depicted in 

Figure 4. The graph was constructed by plotting the estimated direct and indirect effects as 
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functions of support. The horizontal axis shows the support scale centered around the sample 

mean of 3.07. The conditional direct effect is c'1 + c'3W, where c'1 indicates the level of the direct 

effect at W = 0, and c'3 is the slope. The conditional indirect effect is a1b1 + a3b1W, where a1b1 

indicates the level of the indirect effect when W = 0, and a3b1 is the slope. Figure 4 shows that 

the indirect effect of PTB through engagement is stronger in magnitude (i.e., further away from 

zero) for schools with lower levels of support. The same trend is depicted for the conditional 

direct effect of PTB. Moreover, the graph illustrates that as support increases, both the direct 

effect and indirect effect diminish, meaning the effects approach zero. 

Discussion 

Both moderation and mediation allow researchers to address questions concerning 

contingencies and mechanisms that can better reveal the complexities of how a set of variables is 

interrelated. In recent years, applications of statistical mediation have become more prevalent in 

social science research for testing assumptions about why or how an independent variable is 

associated with an outcome of interest. However, mediation may not hold in all conditions or for 

all groups of people. In this paper, we reviewed and illustrated how moderated mediation 

analysis can be used to test whether an indirect effect is conditional on values of a proposed 

moderating variable. Despite its advantages for modeling complex relationships among 

variables, moderated mediation is under-utilized in the substantive literatures. Instead, 

researchers typically analyze interactions and mechanisms separately, or rely on other outdated 

methods for testing moderated mediation. 

In our applied example, we found that student engagement mediated associations 

between PTB and readings scores, and this indirect effect differed among schools with varying 

degrees of supportive school climate. We used the index of moderated mediation (Hayes, 2015) 



 25 

to formally test our hypothesis. Unfortunately, some applied researchers continue to evaluate the 

presence of moderated mediation using subgroup analysis, in which mediation analyses are 

conducted separately for different groups of the sample based on values of the moderator. For 

instance, using our example, subgroup analysis would involve creating a priori subsamples of 

schools based on levels of support (e.g., low, moderate, and high), estimating indirect effects 

separately for each group, and then evaluating moderated mediation based on a descriptive 

comparison of the indirect effects. This approach is problematic because it (1) requires the 

categorization of a continuous moderator, which results in loss of information, and (2) does not 

formally test whether differences between indirect effects across subgroups are statistically 

significant (Hayes, 2018a).   

Alternatively, other researchers more appropriately use the entire sample to estimate the 

indirect effect, but evaluate moderated mediation based solely on the conditional direct effect of 

X on M in a first-stage model, or M on Y in a second-stage model. In this case, no formal test of 

the product term, or index of moderated mediation, is conducted. The problem here is that the 

presence of a statistically significant interaction between two regressors on a mediator (e.g., path 

a3, in Figure 2) is not sufficient evidence of a conditional indirect effect (Hayes, 2015). In our 

example, although support moderated the association between PTB and engagement, we would 

have concluded that the indirect effect was not moderated if the index term was not statistically 

significant.  

Substantively, we illustrated the application of moderated mediation analysis within the 

context of school climate research. Given that school climate is widely considered a key factor in 

promoting positive student outcomes, it is important to understand both the mechanisms 

underlying school climate effects as well as the conditions that may constrain these processes. 
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Prior research has established that the prevalence of teasing and bullying is indirectly linked to 

academic achievement through student engagement in school (Lacey et al., 2017). The results 

presented here extend this work by demonstrating that the indirect effect of PTB through 

engagement is different for schools with different levels of supportive school climate. These 

findings are consistent with literature positing that supportive teacher-student relationships are 

important for fostering a school climate characterized by high student engagement (Pianta et al., 

2012).  

In answering our substantive research questions, a moderation focus alone would have 

allowed for examination of how the association between PTB and achievement was conditional 

on levels of supportive school climate. However, it would not have provided a test of the 

underlying process model linking PTB to achievement. Conversely, a focus on only the extent to 

which student engagement mediated the association between PTB and achievement would have 

tested the indirect effect, but a simple mediation analysis would not have revealed that the 

process model differed between schools with varying degrees of supportive climate. Moderated 

mediation analysis allowed for a simultaneous test of the mediating effect of engagement and the 

moderating effect of support.  

Our application of moderated mediation within a linear regression framework was based 

on a relatively simple model with a single mediator and a single continuous moderator. 

Furthermore, we do not make inferences regarding causality. The methodological approaches 

discussed here can be extended to more complex models, such as those with multiple mediators 

(Preacher & Hayes, 2008), multiple moderators (Hayes, 2018b), multicategorical variables 

(Hayes & Preacher, 2014), latent variables (Lau & Cheung, 2012), longitudinal data (Cole & 

Maxwell, 2003), multilevel designs (Preacher et al., 2010), and Bayesian methods (Wang & 
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Preacher, 2015). Readers interested in moderation and mediation within the context of causal 

inference are encouraged to see VanderWeele (2015). More generally, Hayes (2018a) provides a 

comprehensive treatment of regression-based methods and is an excellent resource for readers 

interested in learning more about the models discussed here. 

The following limitations of our applied illustration should be kept in mind when 

conducting moderated mediation. First, the use of cross-sectional data limits interpretations to 

non-causal inferences. Researchers are encouraged to use longitudinal data, or prior state 

covariates, to establish temporal precedence and better inform understanding of the causal 

processes linking predictors (e.g., bullying) and outcomes (e.g., academic achievement). Second, 

although the measures of PTB, support, and engagement used in this illustration were based on 

Likert scales with four response categories; rating scales with more than four response categories 

have been shown to have better psychometric properties (i.e., less skewness and kurtosis) and are 

more likely to better approximate interval scales (Leung, 2011). Third, our moderated mediation 

model used schools as the unit of analysis by aggregating student ratings to the school level. 

Given clustered data structures, researchers are encouraged to consider recently developed 

methods for multilevel moderated mediation analysis (Zyphur et al., 2019) that account for 

measurement error and the sampling of students within schools. 
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Tables 

Table 1 

Descriptive Statistics and Correlations Among Variables 

 Mean SD Min Max 2 3 4 5 6 

1. Reading scores 440.04 12.93 371 497 –.29** –.72** –.36**   .44**   .15** 

2. % Minority 41.95 26.61 0.00 99.18 —   .34** –.07 –.20** –.29** 

3. % FRPM 42.75 22.82 2.00 100  —   .35** –.34** –.13* 

4. PTB 2.43 0.22 1.72 2.96   — –.61** –.52** 

5. Engagement 3.10 0.14 2.58 3.50    —   .77** 

6. Support 3.07 0.13 2.68 3.48     — 

Note. *p < .05; **p < .01 
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Table 2 

Moderated Mediation Results 

Predictor 

Student Engagement (M) Reading Scores (Y) 

Coeff. (SE) Coeff. (SE) 

Control variables   

% FRPM –0.10 (0.02)** a4 –29.44 (2.57)** b2 

% Minority 0.01 (0.02) a5 –7.55 (2.29)** b3 

Independent variables   

PTB (X) –0.15 (0.03)** a1 –8.15 (3.07)** c'1 

Support (W)  0.71 (0.04)** a2 –31.79 (6.47)** c'2 

Student engagement (M) — 34.80 (6.17)** b1 

Interaction term   

PTB X Support 0.74 (0.13)** a3 36.69 (14.56)* c'3 

R2 0.72 0.60 

Conditional indirect effects  Coeff. (SE) 95% CI 

Low support –8.66 (2.37)* –13.25, –4.06 

Moderate support –5.37 (1.63)* –8.70, –2.38 

High support –2.30 (1.57) –5.63,  0.49 

Index of moderated mediation 25.66 (9.30)* 6.87, 43.16 

Note. Regression coefficients are unstandardized; standard errors are in parentheses. Bootstrap 

sample size = 10,000. CI, confidence interval. Path labels (e.g., a1) correspond to Figure 2. *p < 

.05; **p < .01. 
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Figures 

Figure 1 

Statistical diagrams of moderation, mediation (total effect model on top and mediation model on 

bottom), first-stage moderated mediation, and second-stage moderated mediation  
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Figure 2 

Moderated mediation model of associations between prevalence of teasing and bullying and 

reading achievement scores, with student engagement as the mediator, and support as the 

moderator 
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Figure 3 

Conditional direct effects of PTB on reading scores (plot A) and student engagement (plot B) 
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Figure 4 

Direct and indirect effects of PTB on reading scores conditional on support  
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CHAPTER 2 

Bayesian Multilevel Mediation: Evaluation of Inaccurate Priors in  

Latent 1-1-1 Designs1 

 

Abstract 

When latent constructs are measured by observed indicators from individuals 

nested within groups, multilevel structural equation modeling (MSEM) for 1-1-1 

mediation designs allows researchers to simultaneously test indirect effects at each 

level of the data structure. However, with small samples (i.e., few clusters and/or 

small cluster sizes), such complex mediation models often run into estimation 

problems like nonconvergence, biased estimates, and insufficient power. Although 

Bayesian estimation with accurate informative priors can help alleviate these 

problems, it is unrealistic in practice to assume priors are correctly specified at the 

true population value. This study evaluates the performance of inaccurate 

(informative) priors in 1-1-1 MSEM mediation under varying sample sizes, ICCs, 

and effect sizes. Results indicate that while within-level indirect effect estimates 

are somewhat robust to inaccurate priors, between-level estimates are severely 

impacted, especially at small sample sizes. Implications and recommendations for 

conducting 1-1-1 MSEM mediation with Bayesian methods are discussed.  

 
1Reprinted, with permission, from Edwards, K. D., & Konold, T. R. (2022). Bayesian multilevel mediation: 

Evaluation of inaccurate priors in latent 1-1-1 designs. Structural Equation Modeling. 
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Introduction 

Mediation analysis is used to evaluate possible mechanisms by which an 

intervention/exposure affects an outcome. Here, the total effect of a predictor on an outcome can 

be decomposed into a direct effect and an indirect effect through a mediating variable(s). When 

data are nested and research questions exist at multiple levels, multilevel structural equation 

modeling (MSEM) is a useful approach that can be extended to accommodate indirect effects 

(Preacher et al., 2010, 2011). MSEM fully separates between- and within-cluster effects, 

allowing for simultaneous tests of indirect effects at both within- and between-levels of a 

multilevel mediation model. This analytic technique has many applications in fields like 

education and psychology when ratings from individual informants are used to measure 

multilevel constructs that reflect: (1) characteristics of individuals and (2) shared characteristics 

of the group to which the individuals are nested. For example, in organizational psychology, 

survey responses from employees nested within departments are used to measure constructs like 

occupational wellbeing that operate at both the employee and department levels (Mauno et al., 

2014). In education, ratings from students nested within classrooms are used to measure 

constructs such as motivation and engagement, which can be conceptualized as having both 

student- and classroom-level latent components (Arens et al., 2015).  

In these examples, MSEM is leveraged to test mediating relations among a set of latent 

variables at both levels of the data structure. Such models are referred to as 1-1-1 mediation 

designs because the predictor, mediator, and outcome variables are all measured at the lowest 

level (i.e., level one) of a multilevel data structure (Krull & MacKinnon, 2001). Other multilevel 

mediation designs may include variables that are measured at higher levels. For example, in 2-1-
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1 designs, the predictor is measured at level two, and the mediator and outcome variables are 

measured at level one. However, unlike the 1-1-1 design, the 2-1-1 model cannot include within-

level indirect effects because the predictor variable only exists at level two.    

Although MSEM provides a flexible modeling strategy for mediation analysis with 

multilevel data and latent variables, a notable drawback of this technique is the large sample size 

requirement at both levels. With maximum likelihood (ML) estimation, the optimal minimum 

number of clusters for MSEM is around 100 (Hox & Maas, 2001). For mediation analysis in the 

MSEM framework, estimation problems such as nonconvergent cases, biased estimates, and 

inflated Type I error rates are encountered when dealing with small numbers of clusters, small 

cluster sizes, and low intraclass correlations (ICCs; Li & Beretvas, 2013; McNeish, 2017; 

Preacher et al., 2010; Zigler & Ye, 2019). However, in practice, it can be difficult for researchers 

to obtain large sample sizes, particularly large numbers of clusters (e.g., schools). Indeed, 

McNeish’s (2017) literature review of empirical MSEM mediation studies found that the 

majority of studies (89%) used samples with less than 100 clusters. This finding reflects the fact 

that applied researchers are conducting MSEM mediation studies with far fewer numbers of 

clusters than are recommended to obtain trustworthy results, and underscores the need to provide 

researchers with guidance and techniques for conducting multilevel mediation analyses with the 

smaller samples they are likely to encounter in practice.   

In an effort to address this need, recent work has examined how a Bayesian approach to 

MSEM can be used to overcome problems associated with small sample sizes (Depaoli & 

Clifton, 2015; Helm, 2018; Zitzmann et al., 2016), and this work has been extended to MSEM 

for mediation models more specifically (Fang et al., 2019; McNeish, 2017). However, these 

simulation studies show that when sample sizes are small, the choice of priors can have a serious 
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impact on model results. When applied to MSEM models under conditions of few clusters and 

small cluster sizes, Bayesian methods using default uninformative (i.e., diffuse) prior 

specifications will result in biased estimates. Instead, informative priors that provide some 

degree of information to the construction of the posterior are needed to offset the detrimental 

impact of small sample sizes. Yet, in practice, this presents a formidable challenge to applied 

researchers who cannot know with certainty whether informative priors are correctly centered on 

the population value. Further, relatively little research provides insights about the robustness of 

MSEM mediation with inaccurate priors. Hence, prior specifications remain an area of 

unresolved concern. In the current study, we provide additional clarity to the conversation on the 

impact of prior specifications in Bayesian latent variable modeling. Our investigation is situated 

in 1-1-1 MSEM mediation given the model’s usefulness in applied studies when there is interest 

in testing both within- and between-level components of the indirect effect. Specifically, we seek 

to identify the design conditions in which results may be robust to prior misspecifications, and to 

provide guidance on the degree of informativeness that might be needed to mitigate the effects of 

inaccurate priors. 

MSEM for 1-1-1 Designs 

MSEM partitions the variance of observed within-level variables into two orthogonal 

latent components (Muthén, 1989, 1994). Individual observations Yij are decomposed into cluster 

means (μj) and individuals’ deviations from the cluster means (ηij),   

 Y
ij
 = μ

j
 + η

ij
. (1) 

where i indicates individual units, j indicates clusters, and Yij is a vector of observed indicators. 

Because μj and ηij are independent, the total variance-covariance matrix of Yij is partitioned into 

separate within-cluster and between-cluster covariance matrices, 
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 Σ
T
 = Σ

B
 + Σ

W
, (2) 

where ΣB is the between covariance matrix representing variation across clusters, and ΣW is the 

within covariance matrix representing variation within clusters. The measurement model at the 

within level is specified as: 

 Y
kij

 = μ
kj
 + λ

kW
 η

ijW
 + ε

kijW  (3) 

Here, μ
kj
 is the intercept for item k in cluster j, λ

kW
 is the within-level factor loading for item k, 

η
ijW

 is the factor score for individual i in cluster j, and ε
kijW

 is the within-level residual on item k 

for individual i in cluster j. Then the measurement model at the between level is expressed as: 

 μ
kj
 = μ

k
 + λ

kB
 η

jB
 + ε

kjB 
 (4) 

where μ
k
 is the intercept for item k, λ

kB
 is the between-level factor loading for item k, η

jB
 is the 

factor score for cluster j, and ε
kjB

 is the between-level residual on item k for cluster j. 

Applying the MSEM framework to the 1-1-1 mediation model (as depicted in Figure 1), 

in which the predictor X, mediator M, and outcome Y are measured with p observed indicators, 

indirect effects can be estimated at both levels. Following the notation in Figure 1, the within-

level indirect effect is computed as the product of the a
W

 and b
W

 paths, and the between-level 

indirect effect is the product of the a
B
 and b

B
 paths. When the within- and between-level latent 

factors represent the level-specific components of the same construct (Stapleton et al., 2016), 

cross-level invariance constraints can be imposed on factor loadings, thereby setting the metric 

of the latent factors to be equal across levels (Mehta & Neale, 2005) and reducing the number of 

estimated model parameters (Jak, 2019). The covariance matrix 
B
 for the cluster-level factor 

scores η
jB

 is then:  

 
B
 = (I − 

B
)−1 

B 
(I − 

B
)−1T  (5) 
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where 
B
 is a 3  3 matrix of the structural regression coefficients (a

B
, b

B
, and c

B
) between 

factors, I is a 3  3 identity matrix, and 
B
 is a symmetric matrix of the between-level 

(co)variances. The within-level covariance matrix 
W

 is 

 
W

 =  
W

 T + 
W

  (6) 

where  is a p  3 matrix of factor loadings that are constrained to be equal across levels, 
W

 is a 

3  3 matrix of structural regression coefficients at the within level, and 
W

 is a p  p matrix of 

within-level residual (co)variances.  

Estimation of MSEM Mediation Models 

MSEM mediation models are traditionally evaluated using a frequentist approach through 

maximum likelihood (ML) estimation, which assumes asymptotic normality. This assumption 

poses challenges when evaluating the statistical significance of the indirect effect (ab) because 

the sampling distribution of the product of two normally distributed variables is not necessarily 

normal (Aroian, 1947). In many statistical software programs (e.g., Mplus, Stata), the delta 

method is implemented by default for computing the ab confidence interval (CI) when the 

indirect effect is specified as the product of two regression coefficients. Based on the Sobel test 

(Sobel, 1982), the delta method computes the asymptotic CI for the indirect effect by 

approximating the product of a and b as a normal distribution. However, this approximation is 

problematic because the indirect effect may not follow a normal distribution (MacKinnon et al., 

2004). Within the frequentist framework, several alternative methods for constructing CIs for 

indirect effects have been developed that do not rely on the assumption of normality. These 

alternatives include the distribution of the product method (MacKinnon et al., 2004), 

bootstrapping (Preacher & Hayes, 2008), and the Monte Carlo method (Preacher & Selig, 2012). 
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Among these approaches, the Monte Carlo procedure is particularly well-suited to clustered data 

because it does not require resampling from the data, which can be computationally demanding. 

Instead, the Monte Carlo method constructs confidence intervals for the indirect effect by using 

the sample estimates of a and b and their asymptotic variances and covariances.  

However, a remaining problem is the large sample sizes required for ML numerical 

integration. With few clusters and small cluster sizes, ML estimation for MSEM will lead to 

downwardly biased variance components and standard errors, resulting in inflated Type I error 

rates (Hox & Maas, 2001). Low values of the intraclass correlation (ICC), which measures the 

amount of variability explained at the between-cluster level, can also downwardly bias estimates 

(Goldstein, 1995). These issues are further exacerbated in more complex MSEM mediation 

models. For example, several simulation studies have evaluated the performance of ML 

estimation for MSEM mediation models with small samples. Using a 2-1-1 mediation design, 

Preacher et al. (2011) found that power for the between-level indirect effect decreased as ICC, 

number of clusters, and cluster size decreased. With a relatively small ICC of .10, a minimum of 

100 clusters of size 20 was necessary to reach the minimum optimal threshold for power of .80 

(Preacher et al., 2011). Similarly, Fang et al. (2019) and McNeish (2017) showed that CI 

coverage and power of the between-level indirect effect declined as within- and between-level 

sample sizes decreased. Li and Beretvas (2013) found comparable results using a 2-2-1 

mediation model and reported poor convergence with fewer than 80 clusters. Zigler and Ye 

(2019) evaluated the performance of ML estimation for MSEM using a 1-1-1 design with 

random slopes under varying sample size conditions. Simulation results indicated that MSEM 

with ML estimation had insufficient power to detect the between-level indirect effect in 

conditions with small sample sizes and low ICC (e.g., 60 clusters of size 20 and ICC = .10; 
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Zigler & Ye, 2019). Taken together, these studies demonstrate that ML estimation for MSEM 

mediation is limited with small sample sizes. 

Bayesian Estimation Methods 

Bayesian methods provide an alternative estimation approach for MSEM mediation that 

does not rely on large sample theory. In the Bayesian framework, parameters are treated as 

random variables, and prior information about the parameters is used to construct a prior 

distribution of the model parameters. Using the Markov chain Monte Carlo (MCMC) method, 

the observed data are then combined with the prior distribution to approximate the posterior 

distribution. In mediation analysis, an empirical distribution of the indirect effect is obtained by 

computing ab for each MCMC iteration. Statistical significance of the indirect effect is assessed 

using a 95% credible interval that is calculated from the empirical distribution, which does not 

assume asymptotic normality. In the Bayesian framework, a 95% credible interval indicates a 

95% probability that the interval contains the parameter value.  

A critical step of Bayesian analysis is the specification of priors. Uninformative, or 

diffuse, priors can be used when relevant prior information about the model parameters is 

unknown. These priors can be implemented using the default prior distributions provided in 

many statistical software packages without requiring any substantive prior specification on the 

part of the researcher. For example, the default priors in Mplus for intercepts, factor loadings, 

and regression coefficients are specified using a normal distribution with a mean of zero and a 

large variance of 1010, thereby providing very little prior information about the parameter values. 

Conversely, informative priors, which are selected by the researcher, provide some degree of 

certainty in the estimation process. Depending on the magnitude of the variance hyperparameter 
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relative to the scale of the model parameter, informative priors are classified on a continuum of 

informativeness that ranges from weak to strong.  

The choice of priors can have a substantial impact on point estimates and credibility 

intervals obtained from Bayesian estimation, especially when data are clustered and sample sizes 

at each level are small. For example, diffuse priors have been found to perform worse than ML 

estimation methods with small samples. This has been shown in MSEM mediation models with 

single-level designs (van Erp et al., 2018) and 2-1-1 multilevel designs (McNeish, 2017). 

Moreover, in the context of 2-1-1 mediation, Fang et al. (2019) showed that Bayesian methods 

with accurate informative priors outperformed ML methods in the point and interval estimation 

of indirect effects when sample sizes were small. Of course, upper-bound performance of 

Bayesian priors may not be all that helpful for applied researchers who cannot know with 

certainty how accurately their priors reflect the true population values. Although there is a 

growing number of resources to help researchers construct thoughtful priors for Bayesian latent 

variable models (e.g., Miočević & Golchi, 2021; Smid et al., 2020; Smid & Winter, 2020, 

Zondervan-Zwijnenburg et al., 2017), there is still work to be done to fully understand the extent 

to which priors can be robust to misspecification.  

The Current Study 

The application of Bayesian methods to latent variable modeling has gained considerable 

attention in recent years as a solution to problems encountered with small samples in the 

frequentist framework. However, small samples have also been shown to be problematic with 

Bayesian methods in that they require accurate informative priors. To date, Bayesian methods 

have been examined in additive multilevel models without testing for mediation effects (Depaoli 

& Clifton, 2015; Zitzmann et al., 2016) and in mediation models that result from 2-1-1 designs 
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(Fang et al., 2019; McNeish, 2017). In the current study, we extend this work through 

consideration of the common instances in which all clustered data are collected at level 1 

(Huang, 2016; McNeish et al., 2017), and substantive questions of mediation are of interest at 

both level 1 and level 2 of a 1-1-1 design. Currently, there are no clear recommendations for 

applied researchers looking to estimate 1-1-1 models with Bayesian methods. Because it is 

unrealistic to expect that priors are centered on the true population value, we examine the extent 

to which Bayesian 1-1-1 MSEM mediation models yield results that are robust to misspecified 

priors across a variety of design conditions (i.e., different sample sizes, ICCs, and effect sizes). 

In doing so, we expand the design framework to include a more comprehensive examination of 

prior specifications than those from previous studies. On the basis of results from the current 

simulation study, we provide recommendations for testing multilevel mediation given various 

methodological considerations and point readers to additional resources for current “best 

practices” in Bayesian mediation analysis.  

Methods 

Data were generated in Mplus version 8.4 (Muthén & Muthén, 1998-2017) using a two-

level (1-1-1) mediation model with random intercepts and fixed slopes. The latent predictor (X), 

latent mediator (M), and latent outcome (Y) were each measured with three observed indicators, 

each with standardized factor loadings of 0.7 at both the within- and between-cluster levels. 

Figure 1 shows the population values for one of the simulation conditions.  

The conditions manipulated in this study were ICC values (.05, .20), the numbers of 

clusters (10, 20, 50, 100, 200), cluster sizes (5, 10, 20, 50), and between-level indirect effect 

sizes (0, .02, .16), leading to 120 design conditions. ICCs were selected to reflect small (.05) and 

large (.20) values that have been evaluated in previous MSEM simulation studies (Helm, 2018; 
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Lüdtke et al., 2011; Preacher et al., 2011; Zitzmann et al., 2016). Sample sizes at the within- and 

between-cluster levels were generated to be representative of the range typically reported in 

empirical multilevel mediation studies (McNeish, 2017). Between-level indirect effect sizes were 

chosen to reflect small (.02) and medium (.16) effect sizes similar to those used in previous 

simulation studies (Fang et al., 2019; McNeish, 2017; Preacher et al., 2011; Zigler & Ye, 2019). 

In addition, a null between-level indirect effect condition (abB = 0) was simulated by setting the 

population regression parameters at the between level to zero (a
B
, b

B
, c

B
 = 0). The within-level 

indirect effect was equal to .09 and did not vary across conditions, following Zigler and Ye 

(2019). For each simulation condition, 1,000 data sets were generated.  

The 1-1-1 mediation model was estimated in Mplus using the following estimation/prior 

specification approaches: (1) maximum likelihood (ML) with robust standard errors, and 

Bayesian MCMC with (2) diffuse, (3) accurate informative, (4) and inaccurate informative 

priors. Although the primary focus of the study was on Bayesian estimation with informative 

priors, ML and Bayesian diffuse methods were included for comparison. Diffuse priors were 

specified using the Mplus defaults of N(0, 1010) for intercepts, factor loadings, and regression 

coefficients, and −1(−1, 0) for variance parameters.1 For accurate and inaccurate regression 

priors, three levels of informativeness were evaluated based on variance hyperparameters equal 

to 1.0, 0.10, and 0.01. Mean hyperparameters for accurate regression priors were equal to the 

population values, and inaccurate (informative) priors were constructed by specifying mean 

hyperparameters that deviated from the population values by one and two standard deviations, 

 
1 Priors for all parameters were specified as univariate priors. Although the multivariate inverse Wishart prior is the 

default prior for the covariance matrix in Mplus, the covariance matrix can be decomposed into individual univariate 

elements, which are then assigned univariate separation strategy priors (Liu et al., 2016). 
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following methods described in Depaoli (2014) and Miočević et al. (2021). Diffuse priors were 

used for all other model parameters in the informative prior conditions.  

The informative accurate and inaccurate prior specifications for all regression parameters 

are shown in Table 1. For example, when the population value of the regression coefficient aB 

was 0.40 and the variance hyperparameter was 0.01, the accurate prior was specified as aB 

~N(0.40, 0.01). The corresponding inaccurate prior that deviated from the true value by one 

standard deviation was specified as aB ~N(0.30, 0.01), where the mean hyperparameter was 

computed as 0.40 – √(0.01) = 0.30. Figure 2 depicts the informative accurate and inaccurate prior 

distributions for the between-level regression parameters aB and bB at each level of 

informativeness, as specified with variance hyperparameters values of 1.0, 0.10, and 0.01. The 

priors presented in Figure 2 correspond to the population values for the simulation cell 

represented in Figure 1 (i.e., when abB = 0.16). For example, as shown in the leftmost plot in 

Figure 2, the distributions for the accurate priors are correctly centered on the true value of 0.40. 

In each plot, the variance hyperparameter is equal to 1.0 for the prior represented by the solid 

black line, 0.1 for the dashed black line, and 0.01 for the dotted gray line.   

The first indicator of each latent variable was fixed to an unstandardized value of 1.0 

across all conditions for purposes of identification. In addition, cross-level equality constraints 

were imposed on all factor loadings to avoid overparameterized models (Jak, 2019). For the ML 

models, 95% confidence intervals for the indirect effect were computed in R (R Core Team, 

2018) using the Monte Carlo method with 20,000 random draws based on code adapted from 

Selig and Preacher (2008). Bayesian MCMC models were estimated using the Gibbs sampler 

algorithm (Geman & Geman, 1984) and featured two chains and a maximum of 50,000 

iterations, with the first half of iterations discarded as burn-in.  
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Evaluation Criteria 

Performance of the estimation approaches was evaluated using five outcome measures: 

convergence rate, relative percentage bias, root mean square error (RMSE), confidence (or 

credible) interval coverage rate, and non-null detection rate for the indirect effect estimates at 

both the within- and between-cluster levels. Convergence rates were computed as the percentage 

of replications with admissible solutions for each design condition. For replications estimated 

with ML, solutions with negative between-level variance estimates were considered non-

admissible and removed from subsequent analyses. For models estimated with MCMC, 

convergence was evaluated using the potential scale reduction (PSR) factor (Gelman and Rubin, 

1992), with PSR < 1.05 as the criterion for convergence. Relative percentage bias was computed 

as [(ab̂̅̅ ̅ − ab)/ab]×100, where ab was the population value of the indirect effect, and ab̂̅̅ ̅ was the 

average indirect effect estimate across replications. Values of relative percentage bias ±10% were 

considered extreme (Kaplan, 1988). RMSE was used as an index of overall accuracy that 

combines both bias and variability, and was computed as the square root of the mean square error 

(MSE): 

 ∑ (ab̂ − ab̂̅̅ ̅)
2

R
r = 1 / R + (ab̂̅̅ ̅ − ab)

2

 (7) 

where R denotes the number of replications for each design condition. In MCMC analyses, 

relative percentage bias and RMSE were computed using the posterior median of the indirect 

effect. The coverage of the 95% confidence (or credible) interval (CI) was computed as the 

percentage of replications in which the population value for the indirect effect was within the 

estimated CI. Approximately 95% of replications should contain the population value, and values 

below 92.5% or above 97.5% indicate CI coverage is too low or high, respectively (Bradley, 

1978). Non-null detection rates were computed as the proportion of replications in which the 
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estimated CI did not contain zero. In the frequentist framework, non-null detection rates are 

equivalent to power, which is defined as the probability of correctly rejecting the null hypothesis 

when it is false. Power of at least .80 is typically considered adequate (Casella & Berger, 2002). 

For the condition in which the population between-level indirect effect was zero (i.e., abB = 0), 

Type I Error rates are reported.  

Results 

This section is organized as follows. First, nonconvergence results are described for all 

estimation approaches. Then, given our primary interest in evaluating informative priors, we 

limit the remaining results section to MCMC conditions with informative (accurate and 

inaccurate) priors. For brevity, within-level results are presented only in text because estimation 

issues were encountered more often at the between-cluster level. Full tables of results across all 

simulated conditions are provided in Appendix B (Tables B1-B10). 

Nonconvergence  

As expected, Bayesian estimation resulted in higher convergence rates compared to ML 

estimation. Informative priors yielded 100% convergence across replications, and diffuse priors 

yielded consistently high (≥ 98.5%) rates of convergence. ML estimation resulted in convergence 

rates ranging from 1.2% to 100%, with lower rates occurring in conditions with smaller sample 

sizes. With small numbers of clusters (e.g., J ≤ 20) and small cluster sizes (e.g., Nj ≤ 10) 

convergence rates for ML were less than 35%. However, ML convergence rates were generally 

higher in the ICC = .20 condition compared to the ICC = .05 condition.2  

 

 
2 Table B1 in Appendix B provides convergence rates for ML and diffuse Bayesian conditions. 
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Within-Cluster Level 

Relative Bias and RMSE 

Unbiased estimates of the within-level indirect effect were recovered for nearly all 

conditions with accurate informative priors. The only exception to this trend was in the smallest 

sample size combination: 10 clusters (J = 10) each of size 5 units (Nj = 5). Specifically, when J = 

10 and Nj = 5, accurate informative priors with a variance hyperparameter of 0.10 yielded values 

of relative percent bias greater than ±10%. Results with inaccurate priors showed that within-

level indirect effect estimates became more biased as priors became more inaccurate and more 

informative, especially as sample sizes decreased. For example, when priors were centered 2 

standard deviations below the population value and specified with a tight variance 

hyperparameter of 0.01, estimates were downwardly biased in conditions with 20 or fewer 

clusters. However, when priors were centered only 1 standard deviation away from the true value 

and given a wider variance hyperparameter of 1.0, unbiased estimates were recovered with as 

few as 10 clusters of size 20 units or more (i.e., J ≥ 10 and Nj ≥ 20). Finally, when the number of 

clusters was as large as 200, unbiased estimates were adequately recovered across all prior 

specifications.  

RMSE of the within-level indirect effect was less than 0.20 across all informative priors 

and generally decreased as the number of clusters and cluster size increased. In the largest 

sample size condition of 200 clusters each of size 50 (J = 200 and Nj = 50), RMSE values were 

equal to zero across all prior specifications. As priors became more informative (meaning smaller 

variance hyperparameters), RMSE values became smaller. Comparisons between accurate and 

inaccurate prior specifications revealed that RMSE decreased as the amount of inaccuracy 
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increased. Larger differences in RMSE across levels of prior inaccuracy were observed as (a) 

variance hyperparameters decreased and (b) sample sizes decreased.  

Coverage Rate 

Coverage rates of the within-level indirect effect were generally close to the nominal 0.95 

value when priors were specified as weakly informative with a variance hyperparameter equal to 

1.0. As priors became more informative, coverage tended to fall outside of Bradley’s (1978) 

robustness criterion. Patterns of coverage were different for accurate and inaccurate priors as 

sample sizes decreased. Whereas accurate priors yielded coverage rates above 0.95 in small 

samples, inaccurate priors resulted in coverage well below 0.95 in small samples. For inaccurate 

priors, coverage rates decreased as priors were centered further below the true value, and this 

pattern was most pronounced for the strongly informative inaccurate prior N(2sd, 0.01).  

Non-Null Detection Rate 

Non-null detection rates were ≥ 0.99 in conditions with strongly informative accurate 

priors N(μ, 0.01). This indicated the upper-bound performance of Bayesian estimation at the 

within-level. The other, slightly wider accurate prior specifications of N(μ, 0.10) and N(μ, 1.0) 

yielded similarly high detection rates at large sample sizes. However, as the number of clusters 

and cluster size decreased, detection rates decreased for these less informative accurate priors. 

Likewise, for inaccurate priors, non-null detection rates decreased as sample sizes decreased. 

Interestingly, for weakly informative priors, there were negligible differences in detection rates 

between accurate and inaccurate prior specifications, and this pattern held across sample sizes. 

On the other hand, strongly informative priors with different amounts of accuracy resulted in 

highly divergent detection rates, particularly at small sample sizes.  
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Between-Cluster Level 

Relative Bias and RMSE 

As shown in Table 2, results indicated that all MCMC replications failed to recover 

unbiased parameter estimates when the effect size of the between-level indirect effect was small 

(abB = .02). At the medium effect-size level (abB = .16), results of relative bias improved; 

however, unbiased estimates were recovered mostly with accurate priors. Inaccurate priors 

yielded unbiased results only under conditions with wide variance hyperparameters and large 

sample sizes. For example, the weakly informative inaccurate priors N(1sd, 1.0) and N(2sd, 1.0) 

adequately recovered parameters with 100 and 200 clusters, respectively. For RMSE, lower 

values were typically associated with larger sample sizes and accurate priors with tighter 

variance hyperparameters (Table 3). In addition, although estimates were more biased in the 

small effect size condition, RMSE values that additionally capture variability, generally were 

higher in the medium effect size condition.  

Coverage Rate 

Accurate informative priors resulted in coverage rates that were higher than expected 

(near 1.0) across most conditions, particularly in the small effect size condition (Figure 3). 

However, coverage rates for inaccurate priors ranged widely from 0.0 to 1.0. Consistent with 

previous literature on Bayesian mediation (Miočević et al., 2021), coverage of the small indirect 

effect was low in small sample size conditions when priors were specified with 2sd inaccuracy 

and a wide variance equal to 1.0 (Figure 3). For the medium effect size, larger deviations in the 

mean hyperparameter were generally associated with under-coverage, especially as priors 

became more strongly informative. For example, at abB = .16, the strongly informative inaccurate 

prior N(2sd, 0.01) resulted in under-coverage across all levels of ICC and sample sizes (Figure 
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4). Coverage rates for the null indirect effect (abB = 0) at ICC = 0.20 are presented in Figure 5. 

When the population indirect effect was zero, coverage for accurate and 1sd inaccurate priors 

were > 0.98, whereas coverage for 2sd inaccurate priors ranged widely from 0.55 to 1.0.    

Non-Null Detection Rate 

Non-null rates across all MCMC conditions showed that it was not possible to detect a 

small non-zero indirect-effect size at the between level (Figure 6). Even with 200 clusters each of 

size 50 at ICC = .20, the strongly informative accurate prior N(μ, 0.01) only yielded a detection 

rate of 0.28. However, in the medium effect size condition, the same prior N(μ, 0.01) consistently 

detected the indirect effect across all levels of ICC and sample sizes (Figure 7). For the other 

prior specifications, although detection rates increased from zero as sample size and ICC 

increased, rates were usually well below the optimal threshold of 0.80 in non-null effect size 

conditions. Type I Error rates are presented in Figure 8 for the null indirect effect (abB = 0) 

condition. As shown in Figure 8, rates were near zero for accurate and 1sd inaccurate priors, 

across all levels of informativeness when the population between-level indirect effect was equal 

to zero. However, inaccurate priors that were centered two standard deviations (2sd) away from 

the true value yielded higher error rates, particularly when the number of clusters and cluster size 

were low.    

Discussion 

As Bayesian methods continue to become increasingly utilized in applied contexts (van 

de Schoot et al., 2017), there is a growing need to understand how these methods can best be 

implemented in various statistical models, such as mediation analysis. Previous research has 

evaluated Bayesian methods in single level mediation (e.g., Chen et al., 2014; Miočević et al., 

2017; Yuan & MacKinnon, 2009) as well as 2-1-1 multilevel mediation designs (Fang et al., 
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2019; McNeish, 2017). The current study extends this work by evaluating the performance of 

Bayesian methods in 1-1-1 multilevel mediation with latent variables, with particular focus on 

the degree of prior accuracy and informativeness needed to estimate models with smaller sample 

sizes. As expected, results indicated that non-convergence was a problem for ML estimation with 

small samples. With respect to the conditions evaluated in this study, at least 50 clusters of size 

50 units at small ICCs were required for ML convergence rates to rise above 80%, and 50 

clusters of size 10 units were needed for larger ICC values. By contrast, the current study found 

that Bayesian estimation achieved more optimal rates of convergence, suggesting that a Bayesian 

approach to MSEM mediation can be a viable alternative to frequentist methods when ML 

estimation fails to converge. However, results confirmed that simply relying on diffuse prior 

specifications is not always advisable. When sample sizes are small relative to the model’s 

complexity (e.g., fewer than 100 clusters for MSEM), the amount of information carried by the 

priors can have large impacts on the performance of Bayesian estimation (as shown by McNeish, 

2016; Miočević et al., 2017; Smid et al., 2020). This was particularly true for between-level 

indirect effect estimates in instances of few clusters, small cluster sizes, low ICC values, and 

small effect sizes. Hence, our 1-1-1 model results are consistent with those for 2-1-1 designs 

(Fang et al., 2019; McNeish, 2017) in that caution must be applied when selecting priors for 

MSEM mediation analysis.  

In line with previous research on single-level mediation with observed (Miočević et al., 

2017; Yuan & MacKinnon, 2009) and latent variables (Miočević et al., 2021), the current study 

found that accurate informative priors increase power and decrease bias when sample sizes are 

small. However, the results reported here show that inaccuracy in the priors of structural 

coefficients in 1-1-1 mediation is more problematic for the statistical properties of the between-
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level indirect effect compared to those of the within-level. At the within-cluster level, the impact 

of prior misspecification was more pronounced for bias than for power. Although unbiased point 

estimates of the within-level indirect effect were recovered with accurate priors in nearly all 

sample size conditions, estimates became increasingly biased with inaccurate priors as sample 

sizes decreased. However, non-null detection rates at the within level were more invariant to 

inaccuracies in prior specifications and instead were impacted more by sample size. Moving to 

the between-cluster level, simulation results showed that when the indirect effect size was small 

(i.e., abB = .02), all estimation methods were underpowered and unable to recover unbiased 

estimates. Even at the largest sample sizes included in this study (i.e., 200 clusters each of size 

50 units), MCMC with accurate informative priors had negligible power to detect the small 

indirect effect. These results are consistent with findings reported in previous simulation studies. 

For 1-1-1 models with latent variables and maximum likelihood estimation, Zigler and Ye (2019) 

reported low power (< .2) with 500 clusters and a small between-level indirect effect size (abB 

= .01). For 2-1-1 models with observed variables and Bayesian methods, Fang et al. (2019) 

found that detection rates never exceeded .38 with 100 clusters and a small effect size (abB 

= .02), even when informative accurate priors were specified. In the current study, non-null 

detection rates reached more optimal levels only when the between-level indirect effect size was 

increased to abB = .16. However, in the larger effect size condition, strongly informative priors 

with tight variance hyperparameters were required to adequately detect non-null effects, 

particularly in small sample conditions. When the value of the variance hyperparameter was 

increased, thereby making the prior less informative, power was below the optimal threshold 

of .80 in all but the largest sample size condition of 200 clusters. In addition, 1sd inaccuracy in 
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the mean hyperparameter generally resulted in biased between-level estimates in small sample 

conditions.  

Based on these findings, applied researchers are advised against conducting 1-1-1 

mediation analysis within an MSEM framework if the number of clusters is less than 100. Our 

simulation results indicate that when sample sizes are small, the model requires strongly 

informative accurate priors that are correctly specified at the true population value. Because the 

assumption of correct prior specification is unlikely to be met in practice, inferences made about 

indirect effects in the 1-1-1 MSEM model may be misguided when informative priors are used 

with small samples. When the number of clusters is small, researchers should instead consider 

testing the 1-1-1 model within the more traditional regression-based multilevel modeling (MLM) 

framework, which can leverage small sample methods such as restricted maximum likelihood 

and the Kenward-Roger correction. Similar recommendations were provided by McNeish (2017) 

for 2-1-1 designs and by Zigler and Ye (2019) for 1-1-1 mediation. Although MLM mediation 

models cannot accommodate latent variables, the “simplicity” of MLM can afford researchers 

the ability to test level-specific indirect effects with much smaller sample sizes. On the other 

hand, when the larger sample size requirements are met, researchers are encouraged to use the 

MSEM approach to multilevel mediation and to consider Bayesian estimation. The current study 

found that as the amount of information provided by the data increases (i.e., larger samples sizes, 

ICCs, and effect sizes), results may be robust to small prior misspecifications, particularly if the 

priors are weakly informative. For example, with 200 clusters, regression priors specified with a 

mean hyperparameter centered 1sd away from the population value and a relatively large 

variance hyperparameter can recover unbiased and efficient estimates of the indirect effect at 

both levels. However, it is worth noting that as sample sizes increase, results obtained with 
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informative priors are comparable to those obtained with diffuse priors. Hence, if researchers 

lack prior information about the model parameters, completely diffuse (default) priors may be 

sufficient to obtain trustworthy results with large samples.  

For researchers interested in using Bayesian methods for 1-1-1 MSEM mediation with 

appropriately sized samples, several resources are available to help inform the elicitation of prior 

information (see e.g., Zondervan-Zwijnenburg et al., 2017). In addition, we refer readers to Smid 

et al. (2020) for their discussion of how to construct thoughtful priors, as well as Miočević and 

Golchi (2021) for specifying informative priors for mediation analysis using a historical data set. 

The selection of appropriate priors is further facilitated through the process of prior predictive 

checks, which allow researchers to evaluate how well the chosen priors reflect their prior beliefs. 

Gabry et al. (2019) provide an accessible introduction to prior predictive checks, and van 

Zundert et al. (2021) present a user-friendly Shiny app for implementing this process in Bayesian 

mediation analysis. We also emphasize the importance of conducting a prior sensitivity analysis 

as a follow-up procedure to testing MSEM mediation. Sensitivity analysis allows researchers to 

evaluate the robustness of results given a particular choice of priors. The analysis involves 

estimating the model with different prior specifications based on adjustments to the prior 

hyperparameters. Thereafter, researchers can evaluate subsequent changes in the posterior 

distributions to determine the extent to which model results are sensitive to different prior 

settings. Interested readers are encouraged to consult Depaoli et al. (2020) for detailed 

descriptions of conducting prior sensitivity.   

The findings reported here are limited to 1-1-1 mediation models with three latent factors, 

continuous indicators, and random intercepts. Estimation of more complex models, such as those 

with additional covariates or random slopes, are likely to require even larger sample sizes to 
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perform well in terms of both convergence and model estimates (Preacher et al., 2010; McNeish, 

2017). Although more research is needed to understand how Bayesian methods perform in 1-1-1 

mediation designs in situations with random slopes, we would expect such models to result in 

poorer recovery (McNeish, 2017). In addition, we did not vary the within-level indirect effect 

because we were more focused on how model performance was affected at the between-cluster 

level. Previous studies that examined the performance of Bayesian methods for MSEM with 

latent variables demonstrated that parameter estimates are generally well recovered at the within 

level (e.g., Depaoli & Clifton, 2015; Zitzmann et al., 2016). It is also important to note that the 

inaccurate priors used in this study were designed to be inaccurate with respect to the simulated 

population parameter values. However, the degree of inaccuracy in these priors was also 

dependent upon the level of informativeness. Therefore, more informative priors (i.e., those with 

smaller variance hyperparameters) were less inaccurate compared to priors with higher variance 

hyperparameters. Previous studies have also noted this limitation (Miočević et al., 2021); 

nevertheless, care must be taken when interpreting the combined effects of prior inaccuracy and 

informativeness. Finally, in consideration of the current study’s findings that reveal the 

limitations of Bayesian estimation for 1-1-1 MSEM mediation with small sample sizes, an 

important area for future research is the development of methods for constructing accurate 

informative priors. These innovations would offer the needed support for researchers applying 

Bayesian methods to multilevel mediation with small samples.  
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Tables 

Table 1 

Prior Specifications with Informative Accurate and Inaccurate Priors for Structural Regression 

Parameters 

Variance 

hyperparameter 

Regression 

parameter Accurate Inaccurate 1sd Inaccurate 2sd 

Small between-level indirect effect (abB = .02) 

1.00 aW, bW ~ N (0.30, 1.00) ~ N (-0.70, 1.00) ~ N (-1.70, 1.00) 

 cʹW, cʹB ~ N (0.20, 1.00) ~ N (-0.80, 1.00) ~ N (-1.80, 1.00) 

 aB, bB ~ N (0.14, 1.00) ~ N (-0.86, 1.00) ~ N (-1.86, 1.00) 

0.10 aW, bW ~ N (0.30, 0.10) ~ N (-0.02, 0.10) ~ N (-0.33, 0.10) 

 cʹW, cʹB ~ N (0.20, 0.10) ~ N (-0.12, 0.10) ~ N (-0.43, 0.10) 

 aB, bB ~ N (0.14, 0.10) ~ N (-0.18, 0.10) ~ N (-0.49, 0.10) 

0.01 aW, bW ~ N (0.30, 0.01) ~ N (0.20, 0.01) ~ N (0.10, 0.01) 

 cʹW, cʹB ~ N (0.20, 0.01) ~ N (0.10, 0.01) ~ N (0.00, 0.01) 

 aB, bB ~ N (0.14, 0.01) ~ N (0.04, 0.01) ~ N (-0.06, 0.01) 

Medium between-level indirect effect (abB = .16) 

1.00 aW, bW ~ N (0.30, 1.00) ~ N (-0.70, 1.00) ~ N (-1.70, 1.00) 

 cʹW, cʹB ~ N (0.20, 1.00) ~ N (-0.80, 1.00) ~ N (-1.80, 1.00) 

 aB, bB ~ N (0.40, 1.00) ~ N (-0.60, 1.00) ~ N (-1.60, 1.00) 

0.10 aW, bW ~ N (0.30, 0.10) ~ N (-0.02, 0.10) ~ N (-0.33, 0.10) 

 cʹW, cʹB ~ N (0.20, 0.10) ~ N (-0.12, 0.10) ~ N (-0.43, 0.10) 

 aB, bB ~ N (0.40, 0.10) ~ N (0.08, 0.10) ~ N (-0.23, 0.10) 

0.01 aW, bW ~ N (0.30, 0.01) ~ N (0.20, 0.01) ~ N (0.10, 0.01) 

 cʹW, cʹB ~ N (0.20, 0.01) ~ N (0.10, 0.01) ~ N (0.00, 0.01) 

 aB, bB ~ N (0.40, 0.01) ~ N (0.30, 0.01) ~ N (0.20, 0.01) 

Null between-level indirect effect (abB = 0) 

1.00 aW, bW ~ N (0.30, 1.00) ~ N (-0.70, 1.00) ~ N (-1.70, 1.00) 

 cʹW ~ N (0.20, 1.00) ~ N (-0.80, 1.00) ~ N (-1.80, 1.00) 

 aB, bB, cʹB ~ N (0.00, 1.00) ~ N (-1.00, 1.00) ~ N (-2.00, 1.00) 

0.10 aW, bW ~ N (0.30, 0.10) ~ N (-0.02, 0.10) ~ N (-0.33, 0.10) 

 cʹW ~ N (0.20, 0.10) ~ N (-0.12, 0.10) ~ N (-0.43, 0.10) 

 aB, bB, cʹB ~ N (0.00, 0.10) ~ N (-0.32, 0.10) ~ N (-0.63, 0.10) 

0.01 aW, bW ~ N (0.30, 0.01) ~ N (0.20, 0.01) ~ N (0.10, 0.01) 

 cʹW ~ N (0.20, 0.01) ~ N (0.10, 0.01) ~ N (0.00, 0.01) 

 aB, bB, cʹB ~ N (0.00, 0.01) ~ N (-0.10, 0.01) ~ N (-0.20, 0.01) 
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Table 2 

Relative Percentage Bias for Between-Level Indirect Effects in Informative Prior Conditions 

Nj J μ,1.0 1sd,1.0 2sd,1.0 μ,.10 1sd,.10 2sd,.10 μ,.01 1sd,.01 2sd,.01 

abB = .02, ICC = .05 

5 10 -46.0 1049.0 9515.5 -66.0 -57.0 790.0 -23.0 -97.5 -94.0 

 20 -57.5 975.5 8468.5 -63.5 -58.0 762.5 -23.0 -97.5 -94.5 

 50 -37.0 910.5 7619.5 -58.0 -57.0 737.0 -22.5 -97.5 -94.5 

 100 -59.5 879.5 7193.5 -59.0 -52.5 725.5 -23.0 -97.0 -95.0 

 200 -48.0 832.0 6663.0 -53.0 -54.0 689.0 -24.0 -97.0 -95.0 

10 10 -59.0 1048.0 8909.0 -67.0 -56.0 774.0 -23.0 -97.5 -94.0 

 20 -50.0 955.0 7708.5 -61.5 -54.0 746.0 -23.5 -97.5 -94.0 

 50 -43.5 844.5 6759.5 -52.5 -50.5 706.5 -23.0 -97.0 -94.5 

 100 -51.5 613.0 5812.5 -45.5 -57.5 597.0 -22.0 -96.0 -95.0 

 200 -47.5 363.5 4256.5 -37.5 -65.5 413.5 -21.5 -93.5 -96.0 

20 10 -44.0 962.5 8228.5 -60.5 -55.0 756.5 -22.5 -97.5 -94.5 

 20 -11.0 796.0 6959.5 -49.0 -53.5 679.5 -22.5 -97.0 -94.5 

 50 -31.5 494.5 5062.5 -39.5 -62.5 496.5 -22.0 -95.5 -95.0 

 100 -24.0 157.0 2723.0 -29.0 -76.5 220.5 -20.0 -92.5 -97.0 

 200 -30.5 -30.0 343.5 -27.0 -75.0 -7.5 -18.5 -86.0 -98.5 

50 10 -21.5 810.0 7228.0 -48.0 -55.0 688.5 -22.0 -97.5 -94.5 

 20 -60.0 402.0 4787.5 -43.5 -69.0 476.0 -21.5 -96.0 -95.0 

 50 -59.5 15.0 1270.0 -34.0 -86.0 103.0 -20.0 -92.5 -97.0 

 100 -33.5 -48.5 -14.5 -25.5 -76.5 -70.0 -17.0 -85.5 -99.0 

 200 -23.5 -37.0 -49.0 -20.0 -57.0 -80.5 -14.0 -73.5 -97.0 

abB = .02, ICC = .20 

5 10 -26.5 1129.5 9710.0 -60.0 -56.0 764.5 -23.0 -97.5 -94.5 

 20 -30.5 946.0 8286.5 -53.5 -55.5 696.5 -23.0 -97.0 -95.0 

 50 -55.0 512.5 5777.5 -43.0 -65.5 476.5 -22.5 -94.5 -96.5 

 100 -61.5 117.5 2824.5 -40.5 -81.0 179.0 -22.5 -91.0 -98.0 

 200 -36.5 -38.5 268.5 -31.5 -73.0 -46.0 -19.5 -83.0 -99.0 

10 10 -58.5 969.0 8674.5 -59.0 -52.5 729.0 -23.5 -97.5 -94.0 

 20 -22.0 685.0 6097.0 -41.0 -58.0 524.5 -23.0 -96.0 -95.0 

 50 -45.0 60.5 1846.5 -28.0 -82.5 107.0 -20.0 -91.5 -97.5 

 100 -24.0 -46.5 44.5 -23.0 -75.5 -68.0 -17.0 -84.5 -99.0 

 200 -15.5 -29.5 -42.0 -16.0 -52.5 -77.0 -12.5 -71.0 -96.5 

20 10 -12.0 713.0 7463.0 -42.0 -62.0 620.5 -21.0 -96.5 -94.5 

 20 -14.5 235.5 3504.5 -27.0 -74.0 285.5 -19.5 -94.5 -96.0 

 50 -37.5 -59.0 154.0 -26.5 -86.0 -47.5 -18.0 -89.0 -98.5 

 100 -19.0 -40.0 -56.0 -19.0 -66.5 -88.0 -14.5 -79.5 -99.0 

 200 -18.0 -28.5 -38.5 -17.0 -47.0 -69.0 -13.0 -65.5 -93.0 

50 10 -16.5 547.5 6234.0 -38.5 -63.5 515.5 -21.0 -96.5 -94.5 

 20 -61.5 25.5 1819.5 -39.0 -91.0 143.0 -20.5 -94.5 -96.5 

 50 -29.0 -57.0 -53.0 -23.5 -82.5 -81.0 -17.0 -86.5 -99.0 

 100 -18.0 -35.0 -49.0 -18.0 -59.5 -84.5 -13.5 -75.0 -98.0 

 200 -14.5 -24.0 -32.5 -14.5 -40.5 -60.5 -11.0 -59.5 -88.0 
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Table 2 (continued) 

Nj J μ,1.0 1sd,1.0 2sd,1.0 μ,.10 1sd,.10 2sd,.10 μ,.01 1sd,.01 2sd,.01 

abB = .16, ICC = .05 

5 10 -63.2 -45.8 757.4 -26.8 -98.1 -87.9 -3.4 -46.6 -77.5 

 20 -60.9 -51.1 669.5 -26.1 -97.6 -88.3 -3.3 -46.2 -76.9 

 50 -46.3 -54.2 579.2 -22.4 -95.3 -89.4 -3.0 -45.3 -76.1 

 100 -37.6 -57.1 507.0 -20.4 -93.3 -89.9 -2.8 -44.5 -75.4 

 200 -14.4 -55.9 411.4 -14.3 -87.2 -92.1 -2.5 -43.2 -73.9 

10 10 -61.9 -52.0 691.6 -26.9 -97.8 -88.1 -3.5 -46.4 -77.4 

 20 -47.6 -51.8 572.9 -23.3 -95.9 -88.7 -3.1 -45.7 -76.6 

 50 -17.2 -55.9 448.3 -14.7 -89.6 -91.3 -2.3 -44.0 -75.0 

 100 4.5 -49.0 277.1 -6.6 -76.8 -93.4 -1.3 -41.6 -72.4 

 200 21.9 -19.5 84.1 0.3 -53.9 -88.4 -0.5 -37.8 -67.7 

20 10 -39.7 -58.0 602.9 -21.1 -96.1 -89.6 -2.8 -45.9 -76.8 

 20 -16.2 -57.5 417.3 -13.8 -90.3 -92.2 -2.0 -44.4 -75.4 

 50 12.3 -40.9 154.9 -3.8 -71.6 -95.1 -1.3 -41.4 -71.9 

 100 23.2 -7.5 8.1 2.0 -47.3 -82.9 -0.5 -37.0 -66.4 

 200 10.2 -0.9 -13.8 1.8 -26.4 -52.7 -0.9 -31.3 -57.8 

50 10 -19.9 -62.9 438.4 -15.1 -91.4 -92.2 -2.1 -44.8 -75.9 

 20 -2.5 -56.8 136.7 -6.9 -78.8 -96.6 -1.1 -42.7 -73.4 

 50 8.3 -18.8 -31.1 -1.8 -49.5 -83.1 -1.0 -37.8 -67.0 

 100 4.4 -7.4 -18.2 -0.5 -28.1 -52.9 -1.0 -31.9 -58.1 

 200 1.9 -3.8 -9.0 0.2 -14.5 -28.6 -0.8 -24.3 -45.4 

abB = .16, ICC = .20 

5 10 -34.3 -50.2 699.4 -18.7 -95.6 -90.3 -2.5 -45.5 -76.6 

 20 -3.3 -57.9 520.9 -10.9 -89.1 -93.3 -1.9 -43.8 -74.6 

 50 24.2 -35.0 186.6 -0.9 -65.8 -93.1 -0.9 -39.6 -69.5 

 100 19.3 -8.8 2.1 -0.1 -43.0 -77.3 -1.4 -35.8 -63.4 

 200 7.8 -2.1 -11.6 0.3 -22.8 -44.4 -1.6 -29.3 -53.3 

10 10 -12.8 -59.3 564.4 -12.9 -92.4 -91.8 -2.1 -44.6 -75.8 

 20 14.1 -47.6 241.0 -6.3 -77.7 -95.1 -1.3 -42.3 -72.9 

 50 18.8 -14.8 -30.1 1.1 -47.3 -81.3 -0.8 -37.3 -65.9 

 100 8.1 -2.4 -16.3 1.4 -26.6 -50.8 -0.6 -31.3 -56.9 

 200 3.6 -1.8 -6.5 1.7 -12.6 -26.4 -0.3 -23.6 -44.1 

20 10 8.3 -64.9 349.0 -7.0 -86.2 -95.4 -1.0 -43.6 -74.7 

 20 23.3 -34.7 22.3 -1.0 -66.4 -94.6 -0.6 -40.9 -71.3 

 50 9.8 -8.8 -26.8 -0.4 -37.9 -67.6 -1.1 -35.5 -63.2 

 100 2.9 -5.1 -12.6 0.4 -20.6 -39.8 -0.8 -28.6 -52.6 

 200 0.0 -3.8 -7.4 -0.4 -11.3 -21.8 -0.9 -20.9 -39.2 

50 10 9.9 -58.6 217.2 -5.8 -80.5 -96.3 -1.0 -43.1 -74.3 

 20 9.6 -35.4 -43.0 -3.6 -63.1 -94.6 -1.1 -40.4 -70.4 

 50 2.9 -10.4 -24.2 -1.4 -33.4 -60.6 -0.9 -33.9 -60.9 

 100 0.0 -6.2 -12.5 -0.8 -18.1 -34.2 -0.9 -26.6 -49.1 

 200 -0.4 -3.3 -6.4 -0.5 -9.6 -18.2 -0.6 -18.6 -35.3 

Note. μ denotes mean hyperparameter equal to population value (i.e., accurate prior). 1sd and 2sd 

denote mean hyperparameters equal to 1 and 2 standard deviations from population value (i.e., 

inaccurate prior). Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 

Values in bold indicate bias < ±10%.  
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Table 3 

Root Mean Square Error (RMSE) for Between-Level Indirect Effects in Informative Prior 

Conditions 

Nj J μ,1.0 1sd,1.0 2sd,1.0 μ,.10 1sd,.10 2sd,.10 μ,.01 1sd,.01 2sd,.01 

abB = .02, ICC = .05 

5 10 0.04 0.26 1.95 0.01 0.01 0.16 0.00 0.02 0.02 

 20 0.05 0.27 1.76 0.01 0.01 0.16 0.00 0.02 0.02 

 50 0.08 0.27 1.62 0.02 0.01 0.15 0.00 0.02 0.02 

 100 0.08 0.29 1.56 0.02 0.02 0.16 0.00 0.02 0.02 

 200 0.09 0.29 1.46 0.02 0.02 0.15 0.00 0.02 0.02 

10 10 0.04 0.27 1.84 0.01 0.01 0.16 0.00 0.02 0.02 

 20 0.06 0.29 1.63 0.01 0.01 0.16 0.00 0.02 0.02 

 50 0.09 0.28 1.48 0.02 0.02 0.16 0.00 0.02 0.02 

 100 0.10 0.24 1.33 0.02 0.02 0.14 0.00 0.02 0.02 

 200 0.09 0.20 1.08 0.03 0.02 0.12 0.01 0.02 0.02 

20 10 0.06 0.28 1.73 0.01 0.01 0.16 0.00 0.02 0.02 

 20 0.09 0.28 1.52 0.02 0.02 0.15 0.00 0.02 0.02 

 50 0.10 0.23 1.22 0.03 0.02 0.13 0.00 0.02 0.02 

 100 0.09 0.15 0.83 0.03 0.02 0.09 0.01 0.02 0.02 

 200 0.04 0.06 0.28 0.03 0.02 0.04 0.01 0.02 0.02 

50 10 0.10 0.30 1.58 0.02 0.02 0.15 0.00 0.02 0.02 

 20 0.11 0.23 1.20 0.02 0.02 0.13 0.00 0.02 0.02 

 50 0.09 0.11 0.57 0.03 0.03 0.07 0.01 0.02 0.02 

 100 0.05 0.04 0.10 0.03 0.02 0.03 0.01 0.02 0.02 

 200 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 

abB = .02, ICC = .20 

5 10 0.07 0.31 2.03 0.01 0.01 0.16 0.00 0.02 0.02 

 20 0.09 0.32 1.80 0.02 0.02 0.15 0.00 0.02 0.02 

 50 0.11 0.25 1.39 0.03 0.02 0.13 0.01 0.02 0.02 

 100 0.07 0.14 0.89 0.03 0.02 0.08 0.01 0.02 0.02 

 200 0.04 0.04 0.29 0.03 0.02 0.03 0.01 0.02 0.02 

10 10 0.09 0.33 1.87 0.02 0.02 0.16 0.00 0.02 0.02 

 20 0.12 0.29 1.47 0.03 0.02 0.14 0.00 0.02 0.02 

 50 0.09 0.11 0.72 0.03 0.02 0.07 0.01 0.02 0.02 

 100 0.05 0.04 0.15 0.03 0.02 0.02 0.01 0.02 0.02 

 200 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 

20 10 0.11 0.29 1.71 0.02 0.02 0.15 0.00 0.02 0.02 

 20 0.12 0.19 1.05 0.03 0.03 0.10 0.01 0.02 0.02 

 50 0.07 0.06 0.24 0.03 0.02 0.03 0.01 0.02 0.02 

 100 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.02 0.02 

 200 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 

50 10 0.11 0.28 1.51 0.02 0.02 0.13 0.00 0.02 0.02 

 20 0.11 0.15 0.75 0.03 0.03 0.07 0.01 0.02 0.02 

 50 0.05 0.05 0.08 0.03 0.03 0.03 0.01 0.02 0.02 

 100 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.02 0.02 

 200 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 
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Table 3 (continued)  

Nj J μ,1.0 1sd,1.0 2sd,1.0 μ,.10 1sd,.10 2sd,.10 μ,.01 1sd,.01 2sd,.01 

abB = .16, ICC = .05 

5 10 0.13 0.11 1.26 0.05 0.16 0.14 0.00 0.07 0.12 

 20 0.14 0.13 1.15 0.05 0.16 0.14 0.01 0.07 0.12 

 50 0.16 0.15 1.04 0.06 0.15 0.14 0.01 0.07 0.12 

 100 0.17 0.16 0.96 0.07 0.15 0.14 0.01 0.07 0.12 

 200 0.20 0.17 0.86 0.08 0.14 0.15 0.01 0.07 0.12 

10 10 0.13 0.12 1.17 0.05 0.16 0.14 0.01 0.07 0.12 

 20 0.15 0.15 1.03 0.06 0.15 0.14 0.01 0.07 0.12 

 50 0.18 0.16 0.91 0.07 0.15 0.15 0.01 0.07 0.12 

 100 0.22 0.17 0.71 0.08 0.13 0.15 0.01 0.07 0.12 

 200 0.21 0.18 0.44 0.09 0.11 0.15 0.02 0.06 0.11 

20 10 0.16 0.14 1.07 0.06 0.15 0.14 0.01 0.07 0.12 

 20 0.20 0.16 0.87 0.07 0.15 0.15 0.01 0.07 0.12 

 50 0.22 0.18 0.58 0.09 0.13 0.15 0.02 0.07 0.12 

 100 0.21 0.19 0.31 0.09 0.10 0.14 0.02 0.06 0.11 

 200 0.14 0.13 0.13 0.08 0.08 0.10 0.03 0.05 0.09 

50 10 0.19 0.16 0.92 0.07 0.15 0.15 0.01 0.07 0.12 

 20 0.22 0.18 0.58 0.08 0.13 0.16 0.01 0.07 0.12 

 50 0.19 0.18 0.22 0.09 0.11 0.14 0.02 0.06 0.11 

 100 0.13 0.12 0.12 0.08 0.08 0.10 0.03 0.06 0.09 

 200 0.08 0.07 0.07 0.06 0.06 0.07 0.03 0.05 0.08 

abB = .16, ICC = .20 

5 10 0.16 0.14 1.23 0.05 0.15 0.14 0.01 0.07 0.12 

 20 0.20 0.18 1.06 0.07 0.14 0.15 0.01 0.07 0.12 

 50 0.23 0.19 0.68 0.09 0.12 0.15 0.02 0.06 0.11 

 100 0.19 0.18 0.33 0.09 0.10 0.13 0.02 0.06 0.10 

 200 0.12 0.11 0.12 0.07 0.08 0.09 0.03 0.05 0.09 

10 10 0.21 0.17 1.11 0.06 0.15 0.15 0.01 0.07 0.12 

 20 0.24 0.20 0.77 0.09 0.13 0.15 0.02 0.07 0.12 

 50 0.20 0.18 0.26 0.09 0.10 0.14 0.02 0.06 0.11 

 100 0.13 0.12 0.12 0.08 0.08 0.10 0.03 0.05 0.09 

 200 0.08 0.08 0.08 0.06 0.06 0.07 0.03 0.05 0.07 

20 10 0.24 0.19 0.90 0.08 0.14 0.15 0.01 0.07 0.12 

 20 0.24 0.20 0.46 0.09 0.12 0.15 0.02 0.07 0.11 

 50 0.16 0.15 0.15 0.09 0.09 0.12 0.02 0.06 0.10 

 100 0.10 0.09 0.09 0.07 0.07 0.09 0.03 0.05 0.09 

 200 0.06 0.06 0.06 0.05 0.05 0.06 0.03 0.04 0.07 

50 10 0.24 0.19 0.77 0.08 0.14 0.16 0.01 0.07 0.12 

 20 0.22 0.19 0.32 0.09 0.12 0.15 0.02 0.07 0.11 

 50 0.13 0.13 0.13 0.08 0.09 0.11 0.02 0.06 0.10 

 100 0.08 0.08 0.08 0.07 0.07 0.08 0.03 0.05 0.08 

 200 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.04 0.06 

Note. μ denotes mean hyperparameter equal to population value (i.e., accurate prior). 1sd and 2sd 

denote mean hyperparameters equal to 1 and 2 standard deviations from population value (i.e., 

inaccurate prior). Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 
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Figures 

Figure 1 

Population 1-1-1 mediation model with parameter values from which the data were generated in 

the ICC = .05 and between-level indirect effect = .16 condition 
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Figure 2 

Informative accurate and inaccurate priors for the between-level structural regression parameters (a and b) in the between-level 

indirect effect size abB = .16 condition. 
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Figure 3 

95% CI coverage rates for the 0.02 between-level indirect effect at ICC of 0.20 in informative 

prior conditions 

 

Note. n = cluster size. Area in grey depicts Bradley’s (1978) criteria.  
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Figure 4 

95% CI coverage rates for the 0.16 between-level indirect effect at ICC of 0.20 in informative 

prior conditions 

 

Note. n = cluster size. Area in grey depicts Bradley’s (1978) criteria.  
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Figure 5 

95% CI coverage rates for the null between-level indirect effect at ICC of 0.20 in informative 

prior conditions 

 
Note. n = cluster size. Area in grey depicts Bradley’s (1978) criteria.  
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Figure 6 

Non-null detection rates for the 0.02 between-level indirect effect at ICC of 0.20 in informative 

prior conditions 

 

Note. n = cluster size.   
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Figure 7 

Non-null detection rates for the 0.16 between-level indirect effect at ICC of 0.20 in informative 

prior conditions 

 

Note. n = cluster size. 
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Figure 8 

Type I error rates for the null between-level indirect effect at ICC of 0.20 in informative prior 

conditions 

 
Note. n = cluster size. 
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CHAPTER 3 

Performance of Model Fit Indices in Bayesian  

Confirmatory Factor Analysis 

 

Abstract 

Assessing model fit is a key component of structural equation modeling (SEM); 

however, measures of fit in Bayesian SEM remain limited. Recently, versions of 

frequentist fit indices have been adapted for use in Bayesian models, but the impact 

of prior information on these fit indices remains unknown. This simulation study 

investigates the performance of three fit indices (RMSEA, CFI, and TLI) in 

Bayesian confirmatory factor analysis (CFA) across a variety of model conditions 

and prior specifications. Priors with different degrees of informativeness and 

inaccuracy are evaluated. Results show that Bayesian fit indices are impacted less 

by prior choice than by other model characteristics. We discuss implications of 

assessing model fit with Bayesian fit indices and provide recommendations for 

applied researchers.  
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Introduction 

Confirmatory factor analysis (CFA) is a useful tool for evaluating the quality of 

measurement models that form the basis for examining relationships among latent variables in a 

structural equation modeling (SEM) framework. In practice, CFA is commonly conducted using 

frequentist methods that include maximum likelihood estimation; however, in the last decade, 

Bayesian estimation for CFA has gained attention as a tractable alternative (e.g., Kaplan & 

Depaoli, 2012; Muthén & Asparouhov, 2012; van de Schoot et al., 2017). Applications of 

Bayesian CFA are increasingly found in behavioral and educational research (e.g., de Beer & 

Bianchi, 2019; Dombrowski et al., 2018; Falkenstrom et al., 2015; Modrowski et al., 2021; 

Murray et al., 2019; Reis, 2019; Taylor, 2019). Yet, as the Bayesian approach continues to grow 

in popularity among methodologists and applied researchers alike, more research is needed to 

fully develop these methods. Much of the extant methodological literature has focused on 

parameter estimate bias in Bayesian SEM, but there are a number of other considerations that 

remain understudied. One issue that deserves greater attention is the development of methods for 

model selection within the Bayesian context.  

A key aspect of CFA is assessing model fit to determine how well a proposed 

measurement model is consistent with the observed data. In the frequentist framework, model fit 

is traditionally evaluated with multiple measures that address different aspects of (mis)fit, 

including the chi-square test statistic and a variety of descriptive indices (e.g., RMSEA, CFI, 

TLI). Descriptive fit indices are useful because they are less sensitive to sample size compared to 

the chi-square test statistic, which tends to reject approximately well-fitting models with large 

samples (Bentler & Bonett, 1980). In Bayesian analysis, model evaluation typically involves 
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using the posterior predictive p-value (PPP); however, the PPP method has a number of 

limitations, most notable of which is its sensitivity to sample size. With large sample sizes, PPP 

will also reject models with even the slightest amount of misspecification, essentially rendering 

PPP useless for evaluating approximately well-fitting models in large samples (Asparouhov & 

Muthén, 2010; Cain & Zhang, 2019). In an effort to develop alternative methods of model 

evaluation for Bayesian SEM models, versions of RMSEA, CFI, and TLI were recently extended 

to the Bayesian context (Garnier-Villarreal & Jorgensen, 2020; Hoofs et al., 2018). These 

Bayesian approximate fit indices have been shown to be less sensitive to large sample sizes 

compared to PPP (Garnier-Villarreal & Jorgensen, 2020).  

Although the extension of these measures to the Bayesian framework represents 

significant progress for the field, questions remain around their utility in applied settings. 

Specifically, it is unclear how the proposed fit indices perform under different prior 

specifications. It is well established that prior choice can severely impact parameter estimation in 

Bayesian models (e.g., Gelman, 2006). Uninformative and (informative) inaccurate priors result 

in biased estimates and insufficient power, particularly when sample sizes are small (Depaoli et 

al., 2021; van Erp et al., 2018). Recent work shows that PPP is also influenced by prior 

specification in Bayesian CFA models, suggesting that model fit evaluation is prior dependent 

(Cain & Zhang, 2019). With respect to Bayesian approximate fit indices (e.g., RMSEA, CFI, and 

TLI), previous simulation research has only evaluated these indices in the context of diffuse (i.e., 

uninformative) prior specifications, using default prior settings readily available in statistical 

software packages such as Mplus (Muthén & Muthén, 2021) and the R package blavaan (Merkle 

& Rosseel, 2018). With uninformative priors, Bayesian fit indices are shown to behave similarly 

to frequentist fit indices (Garnier-Villarreal & Jorgensen, 2020); however, their behavior in the 



 87 

context of informative or inaccurate priors remains unknown. Understanding the influence of 

different prior specifications on Bayesian fit indices is important given that priors play a critical 

role in Bayesian analysis. Building on previous work (Asparouhov & Muthén, 2021; Garnier-

Villarreal & Jorgensen, 2020; Hoofs et al., 2018), this paper presents a simulation study that 

evaluates the performance of Bayesian fit indices under various design conditions, with 

particular focus on the impact of different prior specifications not previously examined. In the 

following sections we describe frequently used methods of model evaluation in frequentist and 

Bayesian CFA, with attention to their similarities and differences; and discuss factors, such as 

sample size, that are known to impact model fit in both traditions. We then present our study 

design and results, and conclude with a discussion of our findings, in which we outline 

recommendations for using fit indices in applications of Bayesian CFA.  

Frequentist Methods  

Measurement models within an SEM framework are used to quantify various aspects of 

relationships among a set of observed variables and their underlying latent construct(s). CFA is 

often conducted to evaluate the quality of these models. Thereafter, relationships among the 

resulting latent variables can be examined in a variety of SEM applications (e.g., multilevel, 

mediation, mixture, etc.). For model evaluation in the frequentist tradition, the likelihood ratio 

test, which is distributed as chi-square (χ2), evaluates the discrepancy between the observed 

covariance matrix and the model implied covariance matrix. The χ2 statistic provides a test of 

exact model fit, such that any statistically significant discrepancy (beyond random sampling 

error) leads to the conclusion that the model is misspecified. Non-statistically significant results 

are often taken to imply that the model provides a reasonable approximation to the data. 

However, this test is somewhat controversial given that it is based on a number of assumptions 
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that are unlikely to be met in applied work (Bollen, 1989), it tends to be over-powered in 

rejecting reasonable models (Kaplan, 1990), and the χ2 approximation may not hold in a variety 

of circumstances (Chen et al., 2020). In light of these limitations, several fit indices have been 

developed as alternative measures of model fit. Among the more popular approaches that have 

been adapted to the Bayesian framework are the root mean square error of approximation 

(RMSEA; Steiger & Lind, 1980), comparative fit index (CFI; Bentler, 1990), and Tucker-Lewis 

Index (TLI; Tucker & Lewis, 1973).  

Root Mean Square Error of Approximation (RMSEA) 

RMSEA is an absolute fit measure of the average discrepancy between the model-implied 

covariance matrix and that of the observed data per degrees of freedom. Unlike the χ2 test of 

exact model-data fit, RMSEA is used to evaluate how well a model approximates the observed 

data. Based on the notion that some misspecification is inherent in all models, RMSEA assumes 

a noncentral χ2 distribution that is defined by discrepancies attributable to both sampling error 

and specification error (Browne & Cudeck, 1992). When estimated using maximum likelihood, 

RMSEA is computed as a function of the hypothesized model’s χ2 statistic (χ
H
2 ), degrees of 

freedom (df
H

), and sample size (N): 

 RMSEA = √max [0,
𝜒𝐻

2 −𝑑𝑓𝐻

𝑑𝑓𝐻×𝑁
] . (1) 

The degree of model misspecification is measured by the noncentrality parameter, which is equal 

to χ
H
2  – df

H
. As shown in Equation 1, the noncentrality parameter is then divided by the product 

of df
H

 and N. In effect, RMSEA accounts for model complexity (i.e., the number of model 

parameters) and sample size. The lower bound of RMSEA is zero, with higher values indicating 

increasingly poorer fit.  

Comparative Fit Index (CFI) 
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CFI is an incremental fit index that compares the hypothesized model to a more restricted 

baseline model (i.e., a null, or independence, model) to measure the improvement of model fit 

(Bentler, 1990). The baseline model is assumed to be nested under a theoretically best-fitting 

model that imposes no constraints on the covariance structure (i.e., a saturated model). The 

hypothesized model then lies somewhere on a continuum between the baseline and saturated 

models. CFI is normed to a scale of 0 to 1, such that values near 0 indicate the hypothesized 

model more closely resembles the baseline model and therefore provides poor fit. At the other 

end of the scale, CFI values near 1 indicate that the hypothesized model fits the data nearly as 

well as the saturated model. CFI is expressed as 

 CFI = 1 – 
max[0,(𝜒𝐻

2 −𝑑𝑓𝐻)]

max[0,(𝜒𝐵
2 −𝑑𝑓𝐵)]

 , (2) 

where χ
H
2  – df

H
 and χ

B
2  – df

B
 correspond to the noncentrality parameters of the hypothesized and 

baseline models, respectively. Thus, CFI can be interpreted as a normed ratio, or comparison, of 

the degree of misspecification in the nested models. 

Tucker-Lewis Index (TLI) 

TLI is also an incremental fit index that evaluates a hypothesized model’s fit relative to 

the fit of the baseline model (Bentler & Bonett, 1980; Tucker & Lewis, 1973); however, unlike 

CFI, values of TLI can exceed the range of 0 to 1, and TLI is not based on the noncentral χ2 

distribution. The formula for TLI is 

 TLI = 
(𝜒𝐵

2 𝑑𝑓𝐵⁄ )−(𝜒𝐻
2 𝑑𝑓𝐻⁄ )

(𝜒𝐵
2 𝑑𝑓𝐵⁄ )−1

 . (3) 

where the ratio χ2/df imposes a penalty for model complexity. Like CFI, higher values of TLI 

indicate better fit.  
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Findings from previous studies demonstrate that RMSEA, CFI, and TLI are largely 

robust to the effects of large sample sizes (Bentler, 1990; Fan et al., 1999; Marsh et al., 1988; 

Tanguma, 2001). When correctly specified models are fit to large-sample data, fit indices tend to 

appropriately characterize model fit, even when the chi-square test statistic is inflated. However, 

factors other than sample size have been shown to impact the performance of fit indices. Such 

factors include non-normality (Jobst et al., 2021), missing data (Zhang & Savalei, 2020), factor 

loading magnitude (Gagne & Hancock, 2006), and model size (Kenny & McCoach, 2003; Shi et 

al., 2019). Due to the influence of these factors, it is difficult to establish fixed cutoff values of 

RMSEA, CFI, and TLI that can be universally applied to different modeling contexts. Although 

fixed values of CFI and TLI > .95 and RMSEA < .06 are often cited as indicative of good model 

fit following the seminal work of Hu and Bentler (1999), an alternative method of dynamic fit 

indices was recently introduced by McNeish and Wolf (2021). This method allows researchers to 

determine appropriate cutoff values of RMSEA, CFI, and TLI that account for specific model 

characteristics. Notwithstanding the oft-cited ambiguity of fixed cutoffs (e.g., Shi et al., 2019; 

Ximénez et al., 2022; Yuan et al., 2016), fit indices continue to provide empirical researchers 

with a practical method of model evaluation that is otherwise not available with large sample 

sizes. In the next section we review Bayesian methods and describe extensions of frequentist fit 

indices to Bayesian models.  

Bayesian Methods 

Although confirmatory factor analysis (and SEM, more generally) has a long tradition in 

the frequentist framework, applications of Bayesian SEM in the social and behavioral sciences 

have become more prevalent in recent years (van de Schoot et al., 2017). One advantage of the 

Bayesian approach is that it does not rely on strict assumptions of multivariate normality and 
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asymptotic theory, which are assumed with frequentist estimators, such as maximum likelihood. 

As a result, Bayesian estimation has been shown to outperform frequentist estimation with small 

sample sizes and more complex models (Muthén & Asparouhov, 2012). Whereas frequentist 

inference treats model parameters as fixed and uses null hypothesis testing, Bayesian inference 

treats parameters as random and can incorporate prior beliefs about the parameters into the 

model. Prior information is combined with the observed data to construct the posterior 

distribution 

 p(θ |x) ∝ p(x |θ)p(θ),  (4) 

where θ is a vector of unknown parameters, x is the observed data, p(x|θ) is the conditional data 

likelihood function, and p(θ) is the prior distribution. Markov chain Monte Carlo (MCMC) 

methods are often used to compute an empirical approximation of the posterior distribution.  

One of the main components of Bayesian analysis is the prior distribution, which allows 

researchers to incorporate their domain knowledge into the statistical model. In Bayesian CFA, 

priors are specified for factor loadings, indicator residual variances, and latent factor variances 

and covariances. For example, the prior distribution for factor loadings is typically specified as 

the normal distribution, ~N(µ, σ2), with mean (µ) and variance (σ2) hyperparameters. The 

variance hyperparameter determines the amount of information that the prior distribution 

contributes to the posteriors. When relevant prior information about the model parameters is 

unknown, uninformative (i.e., diffuse) priors can be specified using large variances, so less 

information is contributed to the posterior distribution. Alternatively, informative priors can be 

specified using smaller variances, such that the prior contributes more information to the 

posterior, thereby reflecting more certainty about the parameters. The mean hyperparameter 

determines the accuracy of the prior distribution. As the value of the mean hyperparameter 
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approaches the true value of the population parameter, the prior is said to be increasingly 

accurate.  

Extensive research shows that the choice of priors can have a substantial impact on 

results in Bayesian analysis. Relying on default diffuse priors is not always appropriate and can 

result in biased estimates, especially when sample sizes are small (e.g., McNeish, 2016; Smid & 

Winter, 2020; van Erp et al., 2018). Because the prior distribution is combined with the data 

(Equation 4), sample size plays a non-trivial role in the formation of the posterior. With large 

samples, the information contributed to the posterior distribution by the likelihood function 

p(x|θ) outweighs the amount of information contributed by the prior. However, with small 

samples, the likelihood function contributes less information from the data, so the prior 

distribution has a greater impact on the posterior. As a result, in small sample contexts, priors 

would ideally be specified as strongly informative with small variance hyperparameters, 

assuming the prior is accurately centered on the population parameter value. Yet, in empirical 

settings, researchers cannot know with certainty how accurate (or inaccurate) a prior is with 

respect to the true value, and inaccurate informative priors coupled with small samples will result 

in biased parameter estimates (Depaoli, 2014; van de Schoot et al., 2018). Hence, careful 

consideration must be given to the choice of priors. 

Posterior Predictive Model Checking 

Evaluation of model fit in Bayesian analysis is typically conducted with posterior 

predictive model checking (PPMC; Gelman et al., 1996). PPMC assesses whether the model 

adequately summarizes the data by comparing the observed data to replicated data that is 

predicted by the model. Draws from the posterior distribution are simulated to empirically 

construct the posterior predictive distribution, which is the conditional distribution of the 
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replicated data given the observed data and the model. Discrepancy measures are then used to 

assess any significant difference between the replicated and observed data. The realized 

discrepancy measure (Dobs) is obtained from the observed data, and the predictive discrepancy 

measure (Drep) is obtained from the replicate data. The proportion of iterations in which Dobs is 

greater than Drep is called the posterior predictive p-value (PPP). Values of PPP near 0.5 indicate 

good data-model fit, and PPP < 0.05 is generally the recommended criterion for model 

misspecification (Asparouhov & Muthén, 2010).  

Although PPMC is a common procedure for model-fit evaluation in Bayesian SEM 

(Levy, 2011; Zhang et al., 2022), PPP is known to be sensitive to sample size (Asparouhov & 

Muthén, 2010; Hoijtink & van de Schoot, 2017; Lee & Song, 2004; Rindskopf, 2012; Rupp et 

al., 2004). In large samples, PPP values tend to reject models with negligible misspecification. In 

addition, research shows that PPP is sensitive to other factors, including prior specification, 

model misspecification, and model size (Cain & Zhang, 2019). This work has demonstrated that 

factor-loading priors with one standard deviation of inaccuracy will result in high PPP false 

rejection rates (Cain & Zhang, 2019). Thus, conclusions about Bayesian model fit based on PPP 

values may be misguided depending on characteristics of the model and data. 

Bayesian Fit Indices 

Recently, versions of RMSEA, CFI, and TLI have been adapted for use in Bayesian SEM 

as alternatives to PPP (Garnier-Villarreal & Jorgensen, 2020; Hoofs et al., 2018), and are readily 

available in popular software packages (e.g., Mplus; Asparouhov & Muthén, 2021). These fit 

indices are formulated by replacing frequentist measures of model complexity and 

misspecification in Equations 1-3 with analogous forms from the Bayesian framework. 

Specifically, p*– pD is used in place of df as a measure of model complexity, where p* is the 
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number of model parameters and pD is the estimated number of parameters in the null model. In 

addition, 𝐷𝑖
obs – pD is used in place of χ

H
2  as a measure of model misspecification, where 𝐷𝑖

obs is 

the discrepancy function for the observed data.  

The Bayesian form of RMSEA, initially introduced by Hoofs et al. (2018) and later 

modified by Garnier-Villarreal and Jorgensen (2020), is computed for each MCMC iteration (i) 

as: 

 𝑅𝑀𝑆𝐸𝐴𝑖 =  √max [0,
𝐷𝑖

obs−𝑝∗

(𝑝∗−𝑝𝐷)𝑁
] . (5) 

Using the values of RMSEAi, the posterior distribution of RMSEA is constructed. Compared to 

the frequentist formulation of RMSEA in Equation 1, the Bayesian version in Equation 5 

replaces the noncentrality parameter (χ
H
2  – df

H
) in the numerator with 𝐷𝑖

obs – p*, and replaces df
H

 

in the denominator with  p*– pD. CFI is computed for Bayesian models as: 

 𝐶𝐹𝐼𝑖 = 1 −
𝐷𝑖

obs−𝑝∗

𝐷𝐵𝑖
obs−𝑝∗

 , (6) 

where 𝐷𝐵𝑖
obs is the discrepancy function for the observed data in the baseline model. Then CFIi 

from each MCMC iteration is combined to obtain the posterior distribution of CFI. In Equation 

6, 𝐷𝑖
obs and 𝐷𝐵𝑖

obs are used in place of χ
H
2  and χ

B
2 , respectively, and p* is used in place of the 

frequentist df. The formula for Bayesian TLI is: 

 𝑇𝐿𝐼𝑖 =  
(

𝐷𝐵𝑖
𝑜𝑏𝑠 − 𝑝𝐷𝐵

𝑝∗− 𝑝𝐷𝐵
⁄ ) − (

𝐷𝑖
𝑜𝑏𝑠 − 𝑝𝐷

𝑝∗− 𝑝𝐷
⁄ )

(
𝐷𝐵𝑖

𝑜𝑏𝑠 − 𝑝𝐷𝐵
𝑝∗− 𝑝𝐷𝐵

⁄ ) − 1

 . (7) 

Similarly, values of TLIi for all iterations are used to construct the posterior distribution of TLI. 

Point estimates and credibility intervals of Bayesian RMSEA, CFI, and TLI can be obtained 

using summary statistics of the respective posteriors.  
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Bayesian versions of the fit indices appear to perform well under the simulation 

conditions examined thus far. Point estimates of Bayesian RMSEA, CFI, and TLI based on 

posterior means are consistent with values of the frequentist fit indices across a variety of model 

types (CFA and SEM), sample sizes, and misspecification levels (Garnier-Villarreal & Jorgensen, 

2020). In addition, the Bayesian framework provides credibility intervals for fit indices, which 

allow researchers to summarize uncertainty around the point estimates. As noted by Asparouhov 

and Muthén (2021), credibility intervals of the Bayesian fit indices are particularly useful when 

determining whether sample sizes are large enough to conclusively evaluate model fit. If the 

sample is too small, credibility intervals for fit indices will be too wide such that they will 

contain the cutoff value. In that case, model fit is said to be inconclusive based on fit indices, and 

PPP values should be used instead (Asparouhov and Muthén, 2021).  

Bayesian versions of RMSEA, CFI, and TLI provide researchers with additional methods 

of model fit evaluation beyond the traditional PPMC. However, the methodological literature on 

the applicability of these fit indices across a range of modeling conditions is limited. Thus far, 

research on Bayesian fit indices has considered performance with default diffuse priors. As a 

result, a systematic understanding of how the choice of priors influences Bayesian fit indices 

remains incomplete. This simulation study aims to address this gap by examining the 

performance of fit indices across priors with different degrees of (in)accuracy and 

informativeness. Based on previous work that documented the effect of prior specifications on 

PPP (Cain & Zhang, 2019), we expect priors to also impact Bayesian approximate fit indices. In 

addition, we expect sample size to play a role, such that priors with higher levels of 

informativeness and inaccuracy will have a larger impact on results obtained with smaller sample 
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sizes. Finally, our investigation considers how these modeling factors may differentially impact 

fit assessment when using credibility intervals instead of point estimates of the fit indices.  

Method 

The primary focus of the current study was on the performance of three Bayesian model 

fit indices (i.e., RMSEA, CFI, and TLI) in models estimated with MCMC under conditions of 

varying prior distributions. ML estimation was also included as a design facet for purposes of 

comparison. The behavior of these fit indices was further evaluated by varying the following 

additional conditions: (a) model complexity (simple structure and cross-loadings); (b) model 

specification (misspecified and correctly specified); (c) number of observed indicators (6 and 

12); (d) magnitude of factor loadings (0.5 and 0.7); (e) degree of correlation between latent 

factors (0.3 and 0.5); and (f) sample size (50, 100, 250, 500, and 1,000). Two population CFA 

models were used for data generation (Models A and B; Figure 1), based on the two-factor 

reference model used in Hoofs et al. (2018) to contrast Bayesian and frequentist versions of 

RMSEA. Model A was a simple structure (no cross-loadings) two-factor model with a non-zero 

covariance between factors and was misspecified by constraining the non-zero covariance 

between factors to zero. The second reference model (Model B) included the addition of a non-

zero cross-loading and was misspecified by constraining both the latent factor covariance and 

non-zero cross-loading to zero. Population parameter values for both models included factor 

variances set to 1.0 and intercepts and latent means set to zero. 

For each design condition (2 reference models × 2 numbers of indicators × 2 factor 

loading values × 2 latent factor correlations × 5 sample sizes), 1,000 datasets were generated, 

and all models were estimated in Mplus version 8.5 (Muthén & Muthén, 1998-2021). The study 

compared two different estimation methods: maximum likelihood (ML) and Bayesian MCMC. 
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In addition, different prior specifications were examined for Bayesian models: diffuse, weakly 

informative, and inaccurate priors. MCMC diffuse (i.e., uninformative) priors were specified 

using the Mplus default prior specifications, which include N(0, 1010) for factor loadings and 

−1(−1, 0) for variance parameters. For MCMC weak, informative priors were specified for 

factor loadings using the normal prior distribution with a mean hyperparameter equal to the 

population value (i.e., 0.5 or 0.7) and a variance hyperparameter equal to 0.05 (SD = 0.22). This 

specification was considered weakly informative because although the prior was centered on the 

population value, 95% of loadings would fall within a range of ±0.44 from the true value, 

reflecting some uncertainty about the parameters. For MCMC inaccurate, two levels of 

inaccuracy were investigated. In the first condition, inaccurate priors were specified with a mean 

hyperparameter equal to 1 standard deviation above the population value (+1SD), and in the 

second condition, 1 standard deviation below the true value (-1SD). In both inaccurate prior 

conditions, the variance hyperparameter was set equal to 0.05, to be the same degree of 

informativeness as the weakly informative condition. Diffuse priors using the Mplus defaults 

were specified for all other model parameters in the MCMC conditions. Bayesian estimation was 

conducted using the Gibbs sampler, two chains, and 50,000 iterations per chain with the first half 

discarded as burn-in.  

Fit measures (RMSEA, CFI, TLI, and p-value/PPP) for all models were obtained during 

the estimation process in Mplus. In addition, 90% credibility intervals for RMSEA, CFI, and TLI 

were computed for MCMC models. To evaluate the applicability of common cut-off values for 

the fit indices in Bayesian CFA, model fit for each replication was classified based on 

recommendations provided in Hu and Bentler (1999): 0.06 for RMSEA, and 0.95 for CFI and 

TLI. In addition, PPP cutoff values were set at 0.05 for comparison with p-values for ML models 
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(Asparouhov & Muthén, 2010). Two different methods were used to classify model fit, following 

the approach described in Asparouhov and Muthén (2021). In the first method, model fit was 

classified as either “good” or “poor” based on point estimates of fit indices. That is, model fit 

was determined to be good when the point estimate met the cutoff criterion, and poor otherwise. 

The second method involved using 90% credibility intervals (CIs) of the Bayesian fit indices 

instead of point estimates. Model fit was classified as good when the entire CI met the cutoff 

criterion, and poor when the entire CI was beyond the threshold. When the CI contained the 

cutoff value, model fit was classified as “inconclusive.” Finally, analysis of variance (ANOVA) 

was conducted to evaluate the strength of association between the simulation design conditions 

and model fit indices. Effect sizes were evaluated based on partial eta-squared with a cutoff 

criterion of η2
p ≥ 0.14, indicating a large effect size (Cohen, 1988).  

Results 

 We first present ANOVA results to show the effect of each design condition on RMSEA, 

CFI, TLI, and p-value/PPP. Partial eta-squared values are provided in Table 1 for each measure 

of model fit as a function of simulation conditions. As expected, model (mis)specification 

generally explained the largest amount of variance in fit measures, and this effect was greater for 

the model with cross loadings (Model B) relative to the simple-structure model (Model A). Large 

effects (η2
p ≥ 0.14) were observed for the number of items in Model B, while only small to 

moderate effects were observed in Model A (η2
p ≤ 0.08). For MCMC models, sample size was 

shown to have large effects on CFI (η2
p = 0.17) and TLI (η2

p = 0.14) in Model A; however, these 

effects were smaller in Model B. Finally, small to moderate effects were observed for latent 

factor correlation (η2
p ≤ 0.06) and factor loading magnitude (η2

p ≤ 0.11) across estimation 

methods and model types. These results are consistent with those reported in previous simulation 
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studies (Gagne & Hancock, 2006; Garnier-Villarreal & Jorgensen, 2020; Kenny & McCoach, 

2003; Shi et al., 2019). That is, the fit indices are affected by model conditions, including model 

(mis)specification, complexity, and size. Notably, ANOVA results for MCMC estimation 

revealed that the effect of priors on fit measures was negligible (η2
p = 0.01), holding constant all 

other factors included in the analysis. For both Models A and B, different priors accounted for 

only 1% of the variance in each fit measure, after accounting for the variance explained by the 

other design facets. 

Table 2 shows the mean and standard deviation of point estimates for all fit indices and P-

value/PPP across model type, number of items, level of model misspecification, and estimation 

method. For brevity, these results are aggregated across levels of sample size, latent factor 

correlation, and factor loading magnitude; full tables of disaggregated results are provided in 

Appendix C (Tables C1-C32). Overall, ML and MCMC results were consistent across design 

conditions, demonstrating that the Bayesian fit indices perform similarly to their frequentist 

analogues. Correctly specified models tended to yield fit indices that met cutoff values for good 

model fit, while misspecified models produced fit indices that indicated poor fit. However, there 

were two notable exceptions to this pattern of results. First, RMSEA indicated acceptable fit 

(RMSEA < 0.06) when Model A with 12 items was misspecified. However, this finding is 

consistent with other research that shows RMSEA improves as the number of items increases, 

particularly when the degree of model misspecification is minimal (Kenny & McCoach, 2003; 

Shi et al., 2019). Second, MCMC -1SD estimation of correctly specified models with 6 items 

resulted in poor model fit for Model A (TLI = 0.93) and Model B (TLI = 0.94), whereas all other 

MCMC prior specifications resulted in TLI > 0.95 when models were correctly specified. 

Furthermore, for correctly specified models, +1SD priors consistently resulted in better fit 
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compared to -1SD priors, suggesting that centering priors 1SD below population values was more 

detrimental to model fit than centering priors 1SD above population values. However, this 

pattern was not observed for misspecified models, indicating that the effect of inaccurate priors 

depended on the type of model (mis)specification. As expected, weakly informative accurate 

priors (i.e., MCMC weak) outperformed all other prior specifications.  

To provide a more nuanced understanding of how Bayesian fit indices varied across the 

different design conditions, point estimates and credibility intervals (CIs) of the fit indices were 

further evaluated across levels of sample size. Figures 2-4 present plots of point estimates and 

90% CIs for the Bayesian fit indices across levels of sample size and prior specification for 

RMSEA, CFI, and TLI, respectively. These results are also presented in full in Tables D1-D8 

(Appendix D). As shown in Figures 2-4, point estimates varied between different priors in small 

sample sizes but tended to converge on the same value as sample size increased, such that 

negligible differences in point estimates were observed across priors in the largest sample size 

condition (N = 1,000). In addition, larger differences between priors were observed for CFI and 

TLI compared to RMSEA, suggesting that CFI and TLI are more sensitive to the choice of priors 

compared to RMSEA in small samples. In addition, across all fit measures, differences between 

priors at small sample sizes tended to be larger for correctly specified models compared to 

misspecified models.  

Looking at the 90% CIs in Figures 2-4, we found that when sample sizes were small, CIs 

consistently contained the fixed cutoff values for all Bayesian fit indices. In other words, CIs 

were too wide in small samples to provide conclusive model fit evaluation. Even when priors 

were accurately specified (MCMC weak), CIs for RMSEA, CFI, and TLI generally indicated 

inconclusive fit at small sample sizes. However, as sample size increased, CIs became narrower 
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and no longer contained cutoff values. Comparing results across point estimates and CIs revealed 

that evaluation of Bayesian model fit as either good or poor (based on fixed cutoff values) was 

dependent on whether point estimates or CIs were used. Figures 5-7 present stacked bar charts of 

model fit for point estimates (left panel) and 90% CIs (right panel) across the different prior 

specifications and sample sizes, where each bar depicts the proportion of replications that 

resulted in good, poor, and inconclusive (for CIs) model fit. Results showed that when CIs were 

used for model evaluation, fit was largely inconclusive for MCMC models at small sample sizes 

(N ≤ 100), contradicting conclusions about model fit that would otherwise be drawn from point 

estimates under the same conditions. For example, as shown in Figure 5, when Model A was 

correctly specified at N = 100, more than 75% of replications resulted in good model fit based on 

point estimates of RMSEA. However, under the same model/data conditions, when CIs were 

used to assess model fit, most replications (> 60%) yielded inconclusive fit. Similar results were 

observed for CFI and TLI (Figures 6-7).  

Discussion 

The present simulation study was designed to evaluate the effect of different model 

characteristics and prior specifications on the performance of fit indices in Bayesian CFA. 

Although there has been increasing interest in Bayesian applications of latent variable modeling 

to educational and behavioral research (König & van de Schoot, 2018; Levy, 2016; van de 

Schoot et al., 2017), methodological guidance on model fit evaluation within the Bayesian SEM 

framework is still limited (Cain & Zhang, 2019; Fife et al., 2022; Levy, 2011; Muthén & 

Asparouhov, 2012). The recent development of Bayesian approximate fit indices (Garnier-

Villarreal & Jorgensen, 2020; Hoofs et al., 2018) has prompted some additional work on this 

topic (Asparouhov & Muthén, 2021; Winter & Depaoli, 2022); however, the utility of these fit 
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indices for model fit assessment in Bayesian contexts remains understudied. In the 

methodological literature, questions have long been raised about the use of approximate fit 

indices in the frequentist framework (Marsh et al., 2004). Specifically, extensive research has 

shown that fit indices are impacted by various model characteristics (e.g., Gagne & Hancock, 

2006; Jobst et al., 2021; Kenny & McCoach, 2003; Shi et al., 2019; Zhang & Savalei, 2020), 

which undermines the applicability of commonly used fixed cutoff values (McNeish & Wolf, 

2021). Hence, if Bayesian fit indices are to hold any adjudicative value, factors that may affect 

their performance should be well understood. Importantly, the current study focused on how 

different prior specifications impact model fit. Considerable attention has been paid to the 

influence of prior choice on parameter estimation in Bayesian latent variable models (e.g., 

Depaoli, 2014; McNeish, 2016; Smid & Winter, 2020; van Erp et al., 2018). Collectively, these 

previous studies show that uninformative and inaccurate priors can yield biased estimates, 

especially in the context of small samples. We add to this corpus of work by documenting the 

performance of Bayesian fit indices under different prior specifications.   

Consistent with previous literature on frequentist fit indices, the results of this study show 

that Bayesian versions of RMSEA, CFI, and TLI are influenced by several model characteristics, 

including model (mis)specification type, model complexity, and model size. Our findings extend 

the work of others who found that, for frequentist CFA, increasing the number of observed 

indicators improves fit indices (Kenny & McCoach, 2003; Shi et al., 2019). The results for 

Bayesian CFA reported here show that by increasing the number of items from 6 to 12 in a two-

factor misspecified model, RMSEA decreases and CFI/TLI increases, indicating an improvement 

in model fit. Notably, these results provide further support that fit indices perform similarly 

across frequentist and Bayesian contexts (Garnier-Villarreal & Jorgensen, 2020).  
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In addition, this study builds upon the extant literature on Bayesian fit indices by 

providing additional insight into how the choice of priors impacts model fit. While previous 

work has evaluated Bayesian fit indices using diffuse priors (Asparouhov & Muthén, 2021; 

Garnier-Villarreal & Jorgensen, 2020; Hoofs et al., 2018; Winter & Depaoli, 2022), results of the 

current study show how different prior specifications influence Bayesian versions of RMSEA, 

CFI, and TLI. Although ANOVA main-effect results revealed negligible effects of prior 

specification, differences between priors were observed at small sample sizes. In general, these 

differences diminished as sample size increased, such that at large sample sizes, results were 

largely the same for all priors. This finding is consistent with Bayes theory, as we would expect 

to see the priors contribute less information to the posterior distribution when the data 

contributes more information in the form of larger N. Additionally, our results for RMSEA, CFI, 

and TLI are in line with those reported by Cain and Zhang (2019), who showed that prior 

specification had a larger impact on PPP at smaller sample sizes. We extend their work by 

showing that PPP and Bayesian approximate fit indices perform similarly with respect to slight 

inaccuracies in priors for factor loadings. Finally, in evaluating the impact of different prior 

specifications on fit indices, we found that for correctly specified models with small samples, -

1SD inaccurate priors performed consistently worse than +1SD inaccurate priors. That is, point 

estimates of RMSEA, CFI, and TLI indicated worse model fit when priors for factor loadings 

were inaccurately centered one standard deviation (1SD) below the population value, compared 

to 1SD above. These results suggest that the direction of inaccuracy (i.e., above/below) in the 

mean hyperparameter plays a role in the behavior of the fit indices. However, future research is 

needed to fully examine the impact that different directions of prior inaccuracy for factor 

loadings have on model fit.  
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One issue that emerged from this study was how the different posterior summary 

statistics of the fit indices can have implications for evaluating model fit. In the Bayesian 

framework, posterior distributions are computed for RMSEA, CFI, and TLI. As a result of this 

distributional property, the posterior can be summarized using a point estimate, such as the 

posterior median, and a 90% credibility interval (CI). Although evaluating model fit with point 

estimates of Bayesian fit indices is more comparable to the frequentist tradition, the results of the 

current study demonstrate the advantages of using CIs. At small sample sizes, CIs for the fit 

indices had large interval widths that spanned the fixed cutoff values, indicating that model fit 

was inconclusive. As sample size increased, CIs became narrower such that models could be 

conclusively characterized as having either “good” or “poor” fit. These results were largely 

consistent across different prior specifications, and in line those reported in previous 

investigations that focused on diffuse priors (Asparouhov & Muthén, 2021; Hoofs et al., 2018; 

Winter & Depaoli, 2022). As noted in Asparouhov and Muthén (2021), the use of CIs in this 

context can thus help researchers identify whether their sample size is more conducive to the use 

of fit indices or PPP values. When model fit is inconclusive based on the CI, the sample size is 

likely to be too small, and researchers should instead use PPP values to evaluate model fit. On 

the other hand, when the CI provides conclusive model fit, the sample size is likely large enough 

that PPP values will no longer be useful (Cain & Zhang, 2019).  

It is important to note that these findings are limited to the model characteristics we 

evaluated. Our simulation study considered the two-factor CFA model; however, results may not 

generalize to models with more latent factors. One area for future research, then, is the 

investigation of Bayesian fit indices with larger factor structures. In addition, we only evaluated 

four different prior specifications and focused on priors for factor loadings. Although the priors 
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used in the current study represent a range of informative and (in)accurate priors, a logical next 

step for this work would be to consider additional levels of informativeness and inaccuracy in 

prior settings. Moreover, additional research is needed to understand how priors for other 

parameters (i.e., residual variances and latent factor covariance matrix) impact fit indices in 

Bayesian CFA. Finally, the use of fixed cutoff values in the current study poses additional 

limitations. As we highlight above, fixed cutoff values are known to be inappropriate beyond the 

modeling conditions for which they were originally recommended (Hu & Bentler, 1999). 

Recently, McNeish and Wolf (2021) introduced a method for constructing dynamic fit cutoffs for 

use in frequentist SEM. An interesting extension of this work would be the development of 

dynamic fit cutoffs for the Bayesian framework that applied researchers could easily implement 

in their own work.  
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Tables 

Table 1 

Partial Eta-Squared Values for ANOVA Results 

Estimation Model Effect RMSEA CFI TLI P-value/PPP 

ML A  Model (mis)specification 0.33 0.20 0.20 0.34 

  Number of items 0.08 0.02 0.06 0.01 

  Latent factor correlation 0.06 0.05 0.05 0.01 

  Factor loading magnitude 0.03 0.07 0.07 0.00 

  Sample size 0.07 0.10 0.08 0.01 

       

 B Model (mis)specification 0.65 0.62 0.58 0.52 

  Number of items 0.25 0.14 0.24 0.00 

  Latent factor correlation 0.03 0.03 0.03 0.00 

  Factor loading magnitude 0.09 0.11 0.09 0.00 

  Sample size 0.04 0.04 0.03 0.00 

       

MCMC A Model (mis)specification 0.27 0.12 0.13 0.35 

  Number of items 0.07 0.02 0.05 0.00 

  Latent factor correlation 0.06 0.03 0.04 0.02 

  Factor loading magnitude 0.03 0.08 0.08 0.01 

  Sample size 0.12 0.17 0.14 0.08 

  Priors 0.01 0.01 0.01 0.00 

       

 B Model (mis)specification 0.61 0.56 0.53 0.60 

  Number of items 0.24 0.13 0.20 0.00 

  Latent factor correlation 0.04 0.03 0.02 0.00 

  Factor loading magnitude 0.09 0.11 0.09 0.01 

  Sample size 0.07 0.11 0.05 0.02 

  Priors 0.01 0.01 0.01 0.01 

Note. All values were statistically significant at p < .001. Values in bold indicate large effect 

sizes (η2
p ≥ 0.14). Model A = model with simple structure. Model B = model with cross-loading. 
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Table 2 

Mean and (SD) of Fit Measures Across Conditions of Model Complexity, Number of Items, and Estimation Method for Correctly 

Specified and Misspecified Models 

 Correctly Specified Models  Misspecified Models 

Estimation RMSEA (SD) CFI (SD) TLI (SD) 
P-value/ PPP 

(SD) 
 RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ PPP 

(SD) 

 Model A, 6 Items 

ML .020 (.033) .985 (.041) .972 (.075) .504 (.291)  .084 (.047) .899 (.096) .833 (.152) .111 (.209) 

MCMC Diffuse .026 (.038) .973 (.074) .953 (.118) .479 (.176)  .083 (.046) .894 (.107) .831 (.160) .163 (.205) 

MCMC Weak .020 (.032) .979 (.061) .970 (.084) .507 (.183)  .074 (.044) .906 (.096) .865 (.125) .184 (.228) 

MCMC -1SD .035 (.048) .951 (.101) .933 (.129) .437 (.204)  .079 (.044) .896 (.102) .851 (.133) .166 (.212) 

MCMC +1SD .025 (.035) .968 (.095) .957 (.109) .477 (.181)  .079 (.043) .890 (.121) .847 (.144) .163 (.207) 

 Model A, 12 Items 

ML .020 (.026) .976 (.053) .970 (.066) .432 (.293)  .047 (.025) .939 (.064) .925 (.078) .113 (.197) 

MCMC Diffuse .023 (.028) .970 (.064) .963 (.078) .476 (.235)  .049 (.025) .932 (.072) .918 (.087) .173 (.225) 

MCMC Weak .019 (.025) .976 (.053) .973 (.060) .507 (.239)  .045 (.024) .940 (.063) .931 (.070) .195 (.248) 

MCMC -1SD .024 (.031) .962 (.080) .956 (.090) .460 (.244)  .047 (.025) .935 (.068) .925 (.075) .180 (.234) 

MCMC +1SD .023 (.027) .967 (.068) .963 (.076) .461 (.235)  .049 (.024) .929 (.076) .919 (.084) .167 (.221) 

 Model B, 6 Items 

ML .021 (.034) .989 (.029) .977 (.062) .493 (.289)  .170 (.052) .758 (.100) .599 (.161) .017 (.075) 

MCMC Diffuse .031 (.046) .979 (.054) .955 (.116) .471 (.164)  .166 (.051) .753 (.106) .609 (.167) .039 (.102) 

MCMC Weak .020 (.033) .986 (.042) .979 (.058) .507 (.173)  .156 (.052) .764 (.102) .658 (.143) .046 (.117) 

MCMC -1SD .041 (.053) .960 (.078) .943 (.104) .414 (.204)  .160 (.050) .752 (.105) .644 (.143) .038 (.102) 

MCMC +1SD .026 (.036) .977 (.064) .968 (.081) .469 (.171)  .159 (.050) .753 (.112) .645 (.149) .039 (.103) 

 Model B, 12 Items 

ML .020 (.027) .979 (.046) .974 (.058) .430 (.292)  .082 (.024) .872 (.064) .844 (.079) .025 (.087) 

MCMC Diffuse .023 (.029) .974 (.056) .967 (.070) .475 (.230)  .083 (.024) .866 (.071) .838 (.085) .058 (.134) 

MCMC Weak .019 (.025) .980 (.045) .977 (.051) .508 (.234)  .079 (.024) .874 (.064) .853 (.072) .070 (.156) 

MCMC -1SD .025 (.032) .965 (.072) .960 (.081) .452 (.242)  .081 (.024) .868 (.068) .846 (.076) .061 (.143) 

MCMC +1SD .023 (.028) .972 (.060) .968 (.067) .457 (.231)  .082 (.023) .864 (.073) .843 (.080) .056 (.133) 

Note. Bolded values indicate results that did not meet the fixed cutoff criteria.   



 114 

Figures 

Figure 1 

Reference models from which the population data were generated. Model A is simple structure with no cross-loadings. Model B 

includes cross-loadings. Dotted lines indicate non-zero paths that were fixed to zero for misspecified model conditions.   
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Figure 2 

RMSEA point estimates and 90% credible intervals for MCMC prior specifications. Point 

estimates are depicted with solid black points along the CIs. The dotted horizontal line 

represents the fixed cutoff value of .06.  
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Figure 3 

CFI point estimates and 90% credible intervals for MCMC prior specifications. Point estimates 

are depicted with solid black points along the CIs. The dotted horizontal line represents the fixed 

cutoff value of .95. 
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Figure 4 

TLI point estimates and 90% credible intervals for MCMC prior specifications. Point estimates 

are depicted with solid black points along the CIs. The dotted horizontal line represents the fixed 

cutoff value of .95. 
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Figure 5 

RMSEA fit results based on point estimates (left) and 90% CIs (right) for MCMC models across different prior specifications and 

sample sizes. Stacked bar charts illustrate the proportion of replications with good/poor (or inconclusive, for CIs) model fit, based on 

RMSEA < .06. 

 

  



 119 

Figure 6 

CFI fit results based on point estimates (left) and 90% CIs (right) for MCMC models across different prior specifications and sample 

sizes. Stacked bar charts illustrate the proportion of replications with good/poor (or inconclusive, for CIs) model fit, based on CFI 

> .95.
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Figure 7 

TLI fit results based on point estimates (left) and 90% CIs (right) for MCMC models across different prior specifications and sample 

sizes. Stacked bar charts illustrate the proportion of replications with good/poor (or inconclusive, for CIs) model fit, based on TLI > 

.95.

 



 121 

Appendix A 

Process macro documentation 

process y=READING/x=PTB/m=ENGAGE/w=SUPPORT/cov=MINORITY FRPM/model=8/plot=1/ 

boot=10000/center=1/seed=1245. 

Matrix 

Run MATRIX procedure: 

*************** PROCESS Procedure for SPSS Version 3.3 ****************** 

          Written by Andrew F. Hayes, Ph.D.       www.afhayes.com 

    Documentation available in Hayes (2018). www.guilford.com/p/hayes3 

************************************************************************** 

Model  : 8 

    Y  : READING 

    X  : PTB 

    M  : ENGAGE 

    W  : SUPPORT 

Covariates: 

 MINORITY FRPM 

Sample 

Size:  318 

Custom 

Seed:     1245 

************************************************************************** 

OUTCOME VARIABLE: 

 ENGAGE 

Model Summary 

          R       R-sq        MSE          F        df1        df2          p 

      .8463      .7162      .0057   157.4365     5.0000   312.0000      .0000 

Model 

              coeff         se          t          p       LLCI       ULCI 

constant     3.1472      .0108   291.6162      .0000     3.1260     3.1684 

PTB          -.1542      .0267    -5.7655      .0000     -.2069     -.1016 

SUPPORT       .7109      .0436    16.2976      .0000      .6251      .7968 

Int_1         .7373      .1268     5.8141      .0000      .4878      .9868 

MINORITY      .0059      .0210      .2822      .7779     -.0354      .0472 

FRPM         -.1016      .0229    -4.4385      .0000     -.1467     -.0566 

Product terms key: 

 Int_1    :        PTB      x        SUPPORT 

Test(s) of highest order unconditional interaction(s): 

       R2-chng          F        df1        df2          p 

X*W      .0308    33.8041     1.0000   312.0000      .0000 

---------- 

    Focal predict: PTB      (X) 

          Mod var: SUPPORT  (W) 

Conditional effects of the focal predictor at values of the moderator(s): 

    SUPPORT     Effect         se          t          p       LLCI       ULCI 

     -.1285     -.2489      .0337    -7.3818      .0000     -.3153     -.1826 

      .0000     -.1542      .0267    -5.7658      .0000     -.2069     -.1016 

      .1195     -.0661      .0283    -2.3370      .0201     -.1217     -.0104 

Data for visualizing the conditional effect of the focal predictor: 

Paste text below into a SPSS syntax window and execute to produce plot. 

DATA LIST FREE/ 

   PTB        SUPPORT    ENGAGE     . 

BEGIN DATA. 

     -.2304     -.1285     3.0726 

      .0213     -.1285     3.0099 
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      .2181     -.1285     2.9609 

     -.2304      .0000     3.1421 

      .0213      .0000     3.1033 

      .2181      .0000     3.0729 

     -.2304      .1195     3.2068 

      .0213      .1195     3.1901 

      .2181      .1195     3.1771 

END DATA. 

GRAPH/SCATTERPLOT= 

 PTB      WITH     ENGAGE   BY       SUPPORT  . 

************************************************************************** 

OUTCOME VARIABLE: 

 READING 

Model Summary 

          R       R-sq        MSE          F        df1        df2          p 

      .7774      .6044    67.4556    79.1775     6.0000   311.0000      .0000 

Model 

              coeff         se          t          p       LLCI       ULCI 

constant   348.9978    19.4619    17.9324      .0000   310.7042   387.2913 

PTB         -8.1538     3.0679    -2.6578      .0083   -14.1902    -2.1173 

ENGAGE      34.7987     6.1725     5.6377      .0000    22.6535    46.9440 

SUPPORT    -31.7937     6.4712    -4.9131      .0000   -44.5267   -19.0608 

Int_1       36.6864    14.5552     2.5205      .0122     8.0472    65.3256 

MINORITY    -7.5531     2.2879    -3.3013      .0011   -12.0549    -3.0513 

FRPM       -29.4441     2.5735   -11.4412      .0000   -34.5078   -24.3804 

Product terms key: 

 Int_1    :        PTB      x        SUPPORT 

Test(s) of highest order unconditional interaction(s): 

       R2-chng          F        df1        df2          p 

X*W      .0081     6.3529     1.0000   311.0000      .0122 

---------- 

    Focal predict: PTB      (X) 

          Mod var: SUPPORT  (W) 

Conditional effects of the focal predictor at values of the moderator(s): 

    SUPPORT     Effect         se          t          p       LLCI       ULCI 

     -.1285   -12.8670     3.9850    -3.2288      .0014   -20.7081    -5.0260 

      .0000    -8.1542     3.0679    -2.6579      .0083   -14.1907    -2.1177 

      .1195    -3.7684     3.1103    -1.2116      .2266    -9.8883     2.3515 

Data for visualizing the conditional effect of the focal predictor: 

Paste text below into a SPSS syntax window and execute to produce plot. 

DATA LIST FREE/ 

   PTB        SUPPORT    READING    . 

BEGIN DATA. 

     -.2304     -.1285   447.6300 

      .0213     -.1285   444.3918 

      .2181     -.1285   441.8595 

     -.2304      .0000   442.4599 

      .0213      .0000   440.4078 

      .2181      .0000   438.8030 

     -.2304      .1195   437.6487 

      .0213      .1195   436.7003 

      .2181      .1195   435.9587 

END DATA. 

GRAPH/SCATTERPLOT= 

 PTB      WITH     READING  BY       SUPPORT  . 

****************** DIRECT AND INDIRECT EFFECTS OF X ON Y ***************** 

Conditional direct effect(s) of X on Y: 

    SUPPORT     Effect         se          t          p       LLCI       ULCI 
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     -.1285   -12.8670     3.9850    -3.2288      .0014   -20.7081    -5.0260 

      .0000    -8.1542     3.0679    -2.6579      .0083   -14.1907    -2.1177 

      .1195    -3.7684     3.1103    -1.2116      .2266    -9.8883     2.3515 

Conditional indirect effects of X on Y: 

INDIRECT EFFECT: 

 PTB         ->    ENGAGE      ->    READING 

    SUPPORT     Effect     BootSE   BootLLCI   BootULCI 

     -.1285    -8.6629     2.3673   -13.2484    -4.0573 

      .0000    -5.3671     1.6272    -8.7016    -2.3828 

      .1195    -2.3000     1.5687    -5.6288      .4869 

      Index of moderated mediation: 

             Index     BootSE   BootLLCI   BootULCI 

SUPPORT    25.6560     9.2996     6.8690    43.1603 

--- 

*********************** ANALYSIS NOTES AND ERRORS ************************ 

Level of confidence for all confidence intervals in output: 95.0000 

Number of bootstrap samples for percentile bootstrap confidence intervals: 10000 

W values in conditional tables are the 16th, 50th, and 84th percentiles. 

NOTE: The following variables were mean centered prior to analysis: SUPPORT  PTB 

------ END MATRIX ----- 
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Appendix B 

Table B1 

Percentage of Converged Replications for Frequentist and Diffuse Bayesian Estimation Methods 

   abB = .02  abB = .16  Null abB 

ICC Nj J ML Diffuse  ML Diffuse  ML Diffuse 

.05 5 10 5.2 99.7  5.0 99.2  6.0 99.7 

  20 6.2 99.9  6.1 99.6  6.2 99.6 

  50 13.0 100.0  13.5 100.0  13.9 100.0 

  100 30.8 99.7  30.6 99.5  32.2 99.7 

  200 55.3 98.7  57.0 98.5  57.9 98.5 

 10 10 5.0 99.9  4.8 99.6  4.9 99.7 

  20 6.0 100.0  5.6 100.0  5.7 100.0 

  50 28.0 99.9  28.3 99.8  28.3 100.0 

  100 64.3 99.6  61.1 99.4  67.8 99.7 

  200 89.3 99.5  87.4 99.3  87.3 99.3 

 20 10 1.8 100.0  1.4 100.0  2.1 100.0 

  20 11.8 100.0  11.9 100.0  12.2 100.0 

  50 65.8 99.9  68.4 100.0  65.5 99.9 

  100 95.2 99.7  94.0 99.7  93.9 99.7 

  200 100.0 99.9  100.0 100.0  100.0 99.9 

 50 10 4.8 100.0  4.7 100.0  4.7 100.0 

  20 44.4 100.0  41.9 100.0  44.0 100.0 

  50 97.9 100.0  97.0 99.9  97.7 100.0 

  100 100.0 100.0  100.0 100.0  100.0 100.0 

  200 100.0 100.0  100.0 100.0  100.0 100.0 

.20 5 10 1.7 99.4  1.2 99.6  1.6 99.3 

  20 11.2 99.8  11.7 99.5  12.1 99.7 

  50 60.6 99.9  57.0 100.0  55.4 99.9 

  100 93.4 99.9  93.8 99.8  92.4 99.9 

  200 99.9 100.0  99.9 100.0  99.8 100.0 

 10 10 1.9 99.5  2.4 99.8  2.4 99.5 

  20 32.7 100.0  34.6 100.0  31.2 100.0 

  50 94.3 99.9  94.4 100.0  93.3 100.0 

  100 99.9 100.0  99.9 100.0  99.9 100.0 

  200 100.0 100.0  100.0 100.0  100.0 100.0 

 20 10 8.8 100.0  8.9 100.0  8.7 100.0 

  20 68.1 100.0  67.1 99.9  67.9 100.0 

  50 99.5 99.9  99.7 100.0  99.4 100.0 

  100 100.0 100.0  100.0 100.0  100.0 100.0 

  200 100.0 100.0  100.0 100.0  100.0 100.0 

 50 10 27.8 100.0  25.9 100.0  26.7 100.0 

  20 89.4 100.0  88.1 99.9  89.6 100.0 

  50 99.9 100.0  99.9 100.0  99.9 100.0 

  100 100.0 100.0  100.0 100.0  100.0 100.0 

  200 100.0 100.0  100.0 100.0  100.0 100.0 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect.  
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Table B2 

Relative Percentage Bias for Within-Level Indirect Effects 

Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

abB = .02, ICC = .05 

5 10 -1.6 302593.1 -0.2 -30.3 -64.9 -16.8 -63.0 -89.2 -9.1 -52.8 -82.1 

 20 5.8 5936.2 -1.8 -11.0 -20.7 -7.8 -35.6 -57.9 -7.3 -43.3 -70.2 

 50 -2.3 -2.8 -3.8 -4.1 -6.0 -4.4 -14.3 -24.3 -4.6 -28.2 -48.0 

 100 -1.0 -1.9 -2.3 -0.7 -0.4 -2.0 -5.6 -9.9 -2.4 -17.1 -30.4 

 200 -0.6 -0.1 -0.3 1.9 3.0 -0.1 -0.3 -1.6 -0.4 -8.3 -16.0 

10 10 4.6 7124.8 -3.9 -15.2 -25.3 -9.3 -37.2 -59.7 -7.7 -43.6 -70.4 

 20 1.3 -0.8 -2.7 -5.7 -9.4 -4.2 -18.2 -31.1 -4.8 -31.6 -53.6 

 50 -0.9 -1.4 -1.9 -1.2 -1.7 -1.8 -6.2 -10.9 -2.4 -17.1 -30.4 

 100 -0.7 -0.2 -0.3 0.9 1.8 -0.2 -1.2 -2.6 -0.6 -8.7 -16.3 

 200 0.1 -0.2 -0.2 0.9 2.3 -0.1 0.1 0.6 -0.3 -4.1 -7.9 

20 10 -11.4 0.4 -1.4 -5.6 -10.1 -3.0 -18.3 -31.6 -4.4 -31.4 -53.6 

 20 7.6 -0.7 -1.3 -2.2 -3.6 -2.0 -8.8 -15.2 -2.8 -20.4 -35.8 

 50 -0.6 -0.6 -0.7 -0.2 0.2 -0.7 -2.7 -4.3 -1.0 -9.6 -17.2 

 100 -0.1 -0.4 -0.4 -0.1 0.7 -0.4 -1.1 -1.2 -0.6 -4.9 -8.9 

 200 0.1 0.0 0.0 0.0 0.2 -0.1 -0.2 -0.1 -0.1 -2.2 -3.9 

50 10 3.4 0.0 -2.3 -2.0 -3.8 -2.1 -7.1 -12.8 -1.9 -17.1 -30.7 

 20 -0.3 0.1 0.0 -0.8 -1.0 -0.4 -3.0 -5.6 -0.7 -9.3 -17.6 

 50 -0.3 0.2 0.0 -0.1 -0.1 -0.1 -1.0 -1.7 -0.2 -3.9 -7.4 

 100 0.1 -0.2 -0.3 -0.3 -0.4 -0.3 -0.8 -1.1 -0.3 -2.2 -4.0 

 200 0.0 -0.2 -0.2 -0.3 -0.3 -0.2 -0.4 -0.7 -0.2 -1.1 -2.0 

abB = .02, ICC = .20 

5 10 16.6 175548.2 -1.3 -30.8 -69.4 -18.6 -64.8 -91.0 -9.4 -53.3 -82.7 

 20 6.7 18940.7 -2.2 -8.1 -16.1 -9.3 -35.9 -57.6 -7.6 -44.2 -71.3 

 50 -2.2 -3.2 -3.6 -2.7 -0.2 -4.8 -13.1 -19.8 -4.9 -29.0 -49.1 

 100 0.0 -0.4 -0.3 0.6 3.8 -1.0 -4.1 -5.1 -1.9 -17.0 -30.1 

 200 -1.3 1.6 1.6 1.4 2.0 1.4 0.0 -0.2 0.3 -7.8 -14.9 

10 10 -8.0 113.8 -2.7 -10.9 -23.1 -9.1 -37.3 -59.8 -7.9 -44.2 -71.1 

 20 -0.6 -0.1 -1.4 -3.9 -5.9 -3.8 -17.4 -29.6 -4.6 -32.1 -54.2 

 50 1.0 -0.4 -0.7 -1.4 -1.0 -1.3 -6.3 -9.9 -2.0 -17.6 -31.0 

 100 -0.6 0.7 0.7 -0.1 -0.6 0.4 -2.2 -4.2 -0.2 -9.0 -16.9 

 200 -0.2 0.2 0.4 -0.2 -0.6 0.2 -1.1 -2.2 0.0 -4.7 -8.8 

20 10 -1.9 1.0 -0.4 -5.7 -9.9 -3.0 -18.8 -32.0 -4.7 -31.9 -54.3 

 20 0.6 -0.3 -1.0 -2.8 -4.0 -1.7 -9.3 -15.8 -3.0 -21.0 -36.8 

 50 -0.4 0.0 -0.1 -1.1 -1.7 -0.3 -3.6 -5.9 -1.0 -9.9 -18.2 

 100 -0.3 -0.2 -0.3 -0.7 -1.2 -0.3 -1.9 -3.3 -0.6 -5.2 -9.9 

 200 0.2 0.1 0.0 -0.1 -0.4 0.0 -0.8 -1.6 0.0 -2.6 -4.9 

50 10 -1.1 0.3 -0.3 -2.3 -4.3 -0.9 -7.3 -13.3 -2.0 -17.6 -31.2 

 20 -0.3 0.2 0.1 -0.9 -1.9 -0.3 -3.4 -6.2 -0.7 -9.8 -18.1 

 50 -0.4 0.1 0.1 -0.3 -0.7 0.0 -1.3 -2.4 -0.2 -4.2 -8.0 

 100 0.1 -0.2 -0.2 -0.4 -0.7 -0.2 -1.0 -1.6 -0.3 -2.4 -4.3 

 200 0.0 -0.1 -0.1 -0.3 -0.3 -0.2 -0.6 -0.9 -0.2 -1.3 -2.3 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect.  
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Table B2 (continued) 

Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

abB = .16, ICC = .05 

5 10 15.1 116091.3 2.0 -26.7 -65.0 -15.2 -61.9 -89.0 -8.7 -52.3 -81.8 

 20 17.9 761.9 2.4 -7.1 -16.2 -6.3 -34.0 -56.2 -6.7 -42.9 -70.0 

 50 -0.2 1.3 -0.2 0.2 -0.9 -2.4 -12.0 -21.1 -3.7 -27.4 -47.2 

 100 1.4 2.3 1.1 3.2 4.7 0.0 -3.0 -6.2 -1.2 -15.9 -28.8 

 200 0.9 2.9 2.2 4.9 7.7 1.8 2.0 2.1 0.9 -6.9 -14.1 

10 10 4.6 17392.2 -2.0 -12.7 -23.0 -8.2 -36.1 -58.4 -7.2 -43.1 -70.1 

 20 2.1 1.7 -0.1 -3.1 -5.8 -2.2 -16.6 -28.9 -4.1 -31.1 -53.0 

 50 0.4 0.9 0.0 0.8 1.9 -0.8 -4.8 -8.4 -1.7 -16.4 -29.7 

 100 0.1 1.3 0.8 1.8 3.9 0.6 -0.4 -0.8 0.0 -8.1 -15.4 

 200 0.3 0.2 -0.2 0.6 2.2 0.2 0.1 1.0 0.1 -3.8 -7.3 

20 10 -0.9 1.7 -0.4 -4.6 -8.8 -2.3 -17.7 -30.7 -4.0 -31.1 -53.3 

 20 8.7 0.6 -0.3 -1.2 -2.0 -1.3 -8.1 -13.9 -2.4 -20.2 -35.6 

 50 0.2 0.1 -0.2 -0.2 0.9 -0.4 -2.3 -4.0 -0.8 -9.2 -17.0 

 100 -0.1 -0.3 -0.7 -0.6 -0.2 -0.3 -1.3 -1.6 -0.6 -4.9 -8.9 

 200 0.1 -0.1 -0.2 -0.3 -0.4 -0.1 -0.6 -0.8 -0.1 -2.2 -4.1 

50 10 1.6 0.6 -0.3 -3.3 -3.2 -0.8 -6.9 -12.6 -1.7 -17.0 -30.7 

 20 0.3 0.3 0.1 -0.8 -0.9 -0.3 -3.1 -5.6 -0.7 -9.3 -17.6 

 50 -0.4 0.1 -0.1 -0.3 -0.7 0.0 -1.2 -2.1 -0.2 -4.0 -7.6 

 100 0.1 -0.2 -0.3 -0.6 -0.7 -0.3 -1.0 -1.4 -0.4 -2.3 -4.1 

 200 0.0 -0.2 -0.2 -0.3 -0.3 -0.2 -0.6 -0.8 -0.2 -1.2 -2.1 

abB = .16, ICC = .20 

5 10 34.6 167852.7 7.1 -23.0 -60.2 -15.1 -62.2 -89.3 -8.6 -52.6 -82.3 

 20 10.8 5422.4 3.8 -2.8 -6.3 -5.9 -33.3 -53.8 -6.4 -43.4 -70.8 

 50 -1.2 -0.9 -3.2 -3.3 1.6 -4.0 -13.6 -19.2 -4.6 -29.0 -48.9 

 100 -0.1 -0.7 -2.3 -2.7 -1.0 -1.3 -5.9 -8.2 -1.9 -17.3 -30.7 

 200 -1.2 1.2 0.3 -0.2 -0.6 0.8 -1.2 -3.1 0.4 -8.1 -15.8 

10 10 2.1 2689.4 -0.9 -11.3 -19.6 -8.3 -37.1 -58.6 -7.4 -43.8 -70.9 

 20 1.6 1.0 -0.7 -4.1 -4.9 -3.4 -17.8 -29.4 -4.4 -32.1 -54.3 

 50 0.9 -0.7 -1.3 -3.0 -3.9 -1.3 -7.2 -12.0 -2.1 -17.9 -31.6 

 100 -0.6 0.4 0.2 -0.7 -1.7 0.2 -2.9 -5.4 -0.2 -9.3 -17.6 

 200 -0.1 0.1 0.0 -0.4 -1.0 0.0 -1.6 -3.0 0.0 -4.9 -9.4 

20 10 -7.0 1.7 -0.7 -5.6 -9.9 -2.9 -18.8 -32.3 -4.6 -32.2 -54.4 

 20 1.0 -0.1 -0.8 -3.4 -4.9 -1.9 -9.7 -16.6 -2.8 -21.2 -37.1 

 50 -0.4 -0.1 -0.4 -1.6 -2.3 -0.6 -3.9 -6.8 -1.1 -10.2 -18.6 

 100 -0.3 -0.2 -0.3 -0.8 -1.3 -0.2 -2.1 -3.8 -0.6 -5.6 -10.2 

 200 0.1 0.0 0.0 -0.3 -0.7 0.0 -0.9 -1.8 -0.1 -2.8 -5.3 

50 10 0.3 0.3 -0.3 -2.4 -4.4 -1.0 -8.9 -13.6 -2.0 -17.4 -31.4 

 20 -0.3 0.1 0.0 -1.0 -2.0 -0.1 -3.8 -6.8 -0.7 -9.8 -18.1 

 50 -0.4 0.0 0.1 -0.3 -0.8 -0.1 -1.4 -2.7 -0.2 -4.3 -8.2 

 100 0.1 -0.2 -0.3 -0.6 -0.8 -0.3 -1.0 -1.8 -0.3 -2.6 -4.7 

 200 0.0 -0.2 -0.2 -0.3 -0.4 -0.2 -0.6 -1.0 -0.2 -1.3 -2.4 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 
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Table B2 (continued) 

Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

Null abB, ICC = .05 

5 10 -22.9 289271.3 -2.1 -30.2 -65.0 -17.4 -63.0 -89.8 -9.3 -52.8 -82.1 

 20 13.6 167.7 -3.4 -12.9 -22.8 -8.9 -36.4 -59.0 -7.3 -43.6 -70.4 

 50 -7.4 -4.6 -5.4 -6.1 -8.6 -5.2 -15.8 -25.9 -5.0 -28.8 -48.7 

 100 -2.7 -3.4 -3.8 -2.7 -3.0 -3.1 -7.2 -12.1 -3.1 -17.9 -31.4 

 200 -1.3 -1.8 -1.7 0.1 0.6 -0.9 -1.9 -3.7 -1.0 -9.3 -17.2 

10 10 1.7 -2008.0 -4.7 -15.9 -26.3 -9.1 -37.9 -60.1 -8.0 -43.8 -70.4 

 20 -5.3 -1.8 -3.2 -6.9 -11.2 -4.8 -19.2 -32.4 -5.1 -32.0 -54.0 

 50 -0.7 -2.7 -2.9 -2.8 -3.7 -2.7 -7.2 -12.4 -2.9 -17.8 -31.1 

 100 -1.0 -1.0 -1.0 0.0 0.1 -0.8 -2.1 -4.0 -0.9 -9.1 -17.1 

 200 -0.1 -0.6 -0.4 0.7 1.2 -0.3 -0.3 -0.6 -0.4 -4.6 -8.4 

20 10 -8.7 0.0 -2.0 -6.3 -11.2 -3.4 -18.7 -32.6 -4.7 -31.6 -53.7 

 20 4.2 -1.1 -1.9 -3.1 -5.1 -2.2 -9.3 -16.0 -3.0 -20.7 -36.2 

 50 -0.7 -0.8 -0.8 -0.7 -0.7 -0.8 -2.9 -5.0 -1.2 -9.7 -17.4 

 100 -0.2 -0.3 -0.3 0.0 0.4 -0.4 -1.0 -1.4 -0.6 -4.9 -9.0 

 200 0.1 0.0 0.1 0.3 0.7 -0.1 -0.1 0.1 -0.2 -2.1 -4.1 

50 10 4.2 -0.1 -0.6 -2.2 -4.0 -1.1 -7.3 -13.0 -2.0 -17.1 -30.7 

 20 -0.6 0.1 -0.2 -0.7 -1.1 -0.4 -3.2 -5.7 -0.7 -9.6 -17.4 

 50 -0.4 0.0 0.0 0.0 0.0 0.0 -0.9 -1.7 -0.1 -3.9 -7.4 

 100 0.1 -0.2 -0.2 -0.3 -0.2 -0.3 -0.7 -0.9 -0.3 -2.1 -3.9 

 200 0.0 -0.2 -0.1 -0.2 -0.3 -0.2 -0.3 -0.6 -0.2 -1.1 -1.9 

Null abB, ICC = .20 

5 10 48.6 56418.9 -5.2 -36.0 -75.9 -20.9 -66.0 -91.7 -9.9 -53.7 -82.9 

 20 1.6 12580.9 -5.3 -13.1 -22.0 -9.3 -38.6 -60.8 -8.2 -45.0 -71.9 

 50 -3.8 -4.6 -4.7 -3.9 -4.2 -5.0 -14.1 -22.6 -5.3 -29.6 -49.6 

 100 -0.3 -0.7 -0.1 1.6 3.7 -1.1 -3.7 -5.6 -2.2 -17.1 -30.3 

 200 -1.3 1.8 2.2 2.8 4.4 1.4 0.8 1.4 0.2 -7.6 -14.8 

10 10 -23.6 123.6 -4.2 -15.0 -24.9 -9.6 -38.3 -60.9 -8.3 -44.4 -71.2 

 20 1.1 -1.1 -1.6 -5.0 -8.1 -4.0 -18.1 -30.3 -4.9 -32.1 -54.6 

 50 1.1 -0.8 -0.1 -0.6 -0.2 -1.0 -5.8 -9.4 -2.1 -17.3 -30.9 

 100 -0.6 0.8 1.0 0.4 0.7 0.3 -1.7 -2.9 -0.2 -8.8 -16.6 

 200 -0.2 0.2 0.3 0.1 -0.1 0.3 -0.8 -1.6 0.0 -4.4 -8.3 

20 10 -5.7 0.7 -0.9 -5.9 -10.4 -3.0 -18.6 -32.6 -4.6 -31.9 -54.3 

 20 0.4 -0.4 -0.7 -2.4 -4.0 -1.7 -9.0 -15.6 -2.8 -20.9 -36.8 

 50 -0.4 0.0 -0.1 -0.7 -1.1 -0.3 -3.0 -5.2 -1.0 -9.8 -17.8 

 100 -0.3 -0.2 -0.1 -0.6 -0.9 -0.2 -1.7 -2.7 -0.6 -5.1 -9.6 

 200 0.2 0.0 0.1 -0.1 -0.3 0.1 -0.6 -1.2 -0.1 -2.4 -4.6 

50 10 -0.6 0.1 -0.4 -2.2 -4.3 -0.8 -7.2 -13.4 -2.0 -17.4 -31.2 

 20 -0.2 0.1 0.0 -0.8 -1.6 -0.2 -3.3 -6.0 -0.7 -9.6 -18.0 

 50 -0.4 0.1 0.2 -0.2 -0.6 0.0 -1.1 -2.2 -0.2 -4.1 -7.8 

 100 0.1 -0.2 -0.2 -0.4 -0.7 -0.3 -0.9 -1.4 -0.3 -2.3 -4.2 

 200 0.0 -0.2 -0.2 -0.2 -0.3 -0.2 -0.4 -0.8 -0.2 -1.2 -2.1 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect.  
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Table B3 

Relative Percentage Bias for Between-Level Indirect Effects 

Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

abB = .02, ICC = .05 

5 10 153.5 -11690.0 -46.0 1049.0 9515.5 -66.0 -57.0 790.0 -23.0 -97.5 -94.0 

 20 -192.0 -7457.0 -57.5 975.5 8468.5 -63.5 -58.0 762.5 -23.0 -97.5 -94.5 

 50 -218.0 -684.0 -37.0 910.5 7619.5 -58.0 -57.0 737.0 -22.5 -97.5 -94.5 

 100 11.5 294.5 -59.5 879.5 7193.5 -59.0 -52.5 725.5 -23.0 -97.0 -95.0 

 200 -144.5 312.5 -48.0 832.0 6663.0 -53.0 -54.0 689.0 -24.0 -97.0 -95.0 

10 10 -107.0 -10587.5 -59.0 1048.0 8909.0 -67.0 -56.0 774.0 -23.0 -97.5 -94.0 

 20 25.5 1019.5 -50.0 955.0 7708.5 -61.5 -54.0 746.0 -23.5 -97.5 -94.0 

 50 -150.5 -833.0 -43.5 844.5 6759.5 -52.5 -50.5 706.5 -23.0 -97.0 -94.5 

 100 -47.0 -284.0 -51.5 613.0 5812.5 -45.5 -57.5 597.0 -22.0 -96.0 -95.0 

 200 -56.5 -57.0 -47.5 363.5 4256.5 -37.5 -65.5 413.5 -21.5 -93.5 -96.0 

20 10 571.5 5590.5 -44.0 962.5 8228.5 -60.5 -55.0 756.5 -22.5 -97.5 -94.5 

 20 174.0 -1027.5 -11.0 796.0 6959.5 -49.0 -53.5 679.5 -22.5 -97.0 -94.5 

 50 -61.5 546.5 -31.5 494.5 5062.5 -39.5 -62.5 496.5 -22.0 -95.5 -95.0 

 100 -40.5 12.5 -24.0 157.0 2723.0 -29.0 -76.5 220.5 -20.0 -92.5 -97.0 

 200 -23.0 -28.0 -30.5 -30.0 343.5 -27.0 -75.0 -7.5 -18.5 -86.0 -98.5 

50 10 352.0 141.0 -21.5 810.0 7228.0 -48.0 -55.0 688.5 -22.0 -97.5 -94.5 

 20 -74.5 2941.5 -60.0 402.0 4787.5 -43.5 -69.0 476.0 -21.5 -96.0 -95.0 

 50 -70.0 -89.5 -59.5 15.0 1270.0 -34.0 -86.0 103.0 -20.0 -92.5 -97.0 

 100 -26.0 -33.0 -33.5 -48.5 -14.5 -25.5 -76.5 -70.0 -17.0 -85.5 -99.0 

 200 -9.5 -21.5 -23.5 -37.0 -49.0 -20.0 -57.0 -80.5 -14.0 -73.5 -97.0 

abB = .02, ICC = .20 

5 10 121.0 13819.5 -26.5 1129.5 9710.0 -60.0 -56.0 764.5 -23.0 -97.5 -94.5 

 20 463.5 -3438.0 -30.5 946.0 8286.5 -53.5 -55.5 696.5 -23.0 -97.0 -95.0 

 50 -10381.5 184.5 -55.0 512.5 5777.5 -43.0 -65.5 476.5 -22.5 -94.5 -96.5 

 100 -37.5 -74.5 -61.5 117.5 2824.5 -40.5 -81.0 179.0 -22.5 -91.0 -98.0 

 200 -12.5 -34.0 -36.5 -38.5 268.5 -31.5 -73.0 -46.0 -19.5 -83.0 -99.0 

10 10 25.5 -1828.5 -58.5 969.0 8674.5 -59.0 -52.5 729.0 -23.5 -97.5 -94.0 

 20 -161.5 1894.0 -22.0 685.0 6097.0 -41.0 -58.0 524.5 -23.0 -96.0 -95.0 

 50 -35.0 -2335.5 -45.0 60.5 1846.5 -28.0 -82.5 107.0 -20.0 -91.5 -97.5 

 100 -8.0 -25.0 -24.0 -46.5 44.5 -23.0 -75.5 -68.0 -17.0 -84.5 -99.0 

 200 -7.0 -14.0 -15.5 -29.5 -42.0 -16.0 -52.5 -77.0 -12.5 -71.0 -96.5 

20 10 -778.5 1868.5 -12.0 713.0 7463.0 -42.0 -62.0 620.5 -21.0 -96.5 -94.5 

 20 -19.5 -155.5 -14.5 235.5 3504.5 -27.0 -74.0 285.5 -19.5 -94.5 -96.0 

 50 -16.0 -38.5 -37.5 -59.0 154.0 -26.5 -86.0 -47.5 -18.0 -89.0 -98.5 

 100 -3.0 -21.0 -19.0 -40.0 -56.0 -19.0 -66.5 -88.0 -14.5 -79.5 -99.0 

 200 -2.5 -19.0 -18.0 -28.5 -38.5 -17.0 -47.0 -69.0 -13.0 -65.5 -93.0 

50 10 1612.5 1308.0 -16.5 547.5 6234.0 -38.5 -63.5 515.5 -21.0 -96.5 -94.5 

 20 -67.0 -269.0 -61.5 25.5 1819.5 -39.0 -91.0 143.0 -20.5 -94.5 -96.5 

 50 -22.5 -43.5 -29.0 -57.0 -53.0 -23.5 -82.5 -81.0 -17.0 -86.5 -99.0 

 100 -12.0 -21.0 -18.0 -35.0 -49.0 -18.0 -59.5 -84.5 -13.5 -75.0 -98.0 

 200 -4.5 -16.0 -14.5 -24.0 -32.5 -14.5 -40.5 -60.5 -11.0 -59.5 -88.0 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 
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Table B3 (continued) 

Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

abB = .16, ICC = .05 

5 10 -16.1 519.2 -63.2 -45.8 757.4 -26.8 -98.1 -87.9 -3.4 -46.6 -77.5 

 20 -44.1 109.6 -60.9 -51.1 669.5 -26.1 -97.6 -88.3 -3.3 -46.2 -76.9 

 50 -81.7 -176.6 -46.3 -54.2 579.2 -22.4 -95.3 -89.4 -3.0 -45.3 -76.1 

 100 -5.9 -205.6 -37.6 -57.1 507.0 -20.4 -93.3 -89.9 -2.8 -44.5 -75.4 

 200 -23.1 -10.6 -14.4 -55.9 411.4 -14.3 -87.2 -92.1 -2.5 -43.2 -73.9 

10 10 -107.7 403.7 -61.9 -52.0 691.6 -26.9 -97.8 -88.1 -3.5 -46.4 -77.4 

 20 -97.3 -922.7 -47.6 -51.8 572.9 -23.3 -95.9 -88.7 -3.1 -45.7 -76.6 

 50 16.3 -109.0 -17.2 -55.9 448.3 -14.7 -89.6 -91.3 -2.3 -44.0 -75.0 

 100 5.3 -33.3 4.5 -49.0 277.1 -6.6 -76.8 -93.4 -1.3 -41.6 -72.4 

 200 36.1 73.3 21.9 -19.5 84.1 0.3 -53.9 -88.4 -0.5 -37.8 -67.7 

20 10 -19.0 527.9 -39.7 -58.0 602.9 -21.1 -96.1 -89.6 -2.8 -45.9 -76.8 

 20 -72.1 7.9 -16.2 -57.5 417.3 -13.8 -90.3 -92.2 -2.0 -44.4 -75.4 

 50 -7.4 -155.2 12.3 -40.9 154.9 -3.8 -71.6 -95.1 -1.3 -41.4 -71.9 

 100 -1.6 11.9 23.2 -7.5 8.1 2.0 -47.3 -82.9 -0.5 -37.0 -66.4 

 200 2.2 2.4 10.2 -0.9 -13.8 1.8 -26.4 -52.7 -0.9 -31.3 -57.8 

50 10 -62.3 -3.9 -19.9 -62.9 438.4 -15.1 -91.4 -92.2 -2.1 -44.8 -75.9 

 20 -14.4 108.1 -2.5 -56.8 136.7 -6.9 -78.8 -96.6 -1.1 -42.7 -73.4 

 50 -2.6 -5.9 8.3 -18.8 -31.1 -1.8 -49.5 -83.1 -1.0 -37.8 -67.0 

 100 0.4 -3.3 4.4 -7.4 -18.2 -0.5 -28.1 -52.9 -1.0 -31.9 -58.1 

 200 1.5 -2.5 1.9 -3.8 -9.0 0.2 -14.5 -28.6 -0.8 -24.3 -45.4 

abB = .16, ICC = .20 

5 10 112.9 812.0 -34.3 -50.2 699.4 -18.7 -95.6 -90.3 -2.5 -45.5 -76.6 

 20 116.7 -400.0 -3.3 -57.9 520.9 -10.9 -89.1 -93.3 -1.9 -43.8 -74.6 

 50 18.9 109.5 24.2 -35.0 186.6 -0.9 -65.8 -93.1 -0.9 -39.6 -69.5 

 100 6.0 -14.9 19.3 -8.8 2.1 -0.1 -43.0 -77.3 -1.4 -35.8 -63.4 

 200 2.0 -0.7 7.8 -2.1 -11.6 0.3 -22.8 -44.4 -1.6 -29.3 -53.3 

10 10 -95.5 103.3 -12.8 -59.3 564.4 -12.9 -92.4 -91.8 -2.1 -44.6 -75.8 

 20 87.4 -695.3 14.1 -47.6 241.0 -6.3 -77.7 -95.1 -1.3 -42.3 -72.9 

 50 3.6 15.8 18.8 -14.8 -30.1 1.1 -47.3 -81.3 -0.8 -37.3 -65.9 

 100 4.0 0.6 8.1 -2.4 -16.3 1.4 -26.6 -50.8 -0.6 -31.3 -56.9 

 200 1.1 1.1 3.6 -1.8 -6.5 1.7 -12.6 -26.4 -0.3 -23.6 -44.1 

20 10 -6.3 161.3 8.3 -64.9 349.0 -7.0 -86.2 -95.4 -1.0 -43.6 -74.7 

 20 -7.0 -112.3 23.3 -34.7 22.3 -1.0 -66.4 -94.6 -0.6 -40.9 -71.3 

 50 4.3 -1.0 9.8 -8.8 -26.8 -0.4 -37.9 -67.6 -1.1 -35.5 -63.2 

 100 2.4 -1.5 2.9 -5.1 -12.6 0.4 -20.6 -39.8 -0.8 -28.6 -52.6 

 200 1.6 -1.9 0.0 -3.8 -7.4 -0.4 -11.3 -21.8 -0.9 -20.9 -39.2 

50 10 -19.6 -2123.1 9.9 -58.6 217.2 -5.8 -80.5 -96.3 -1.0 -43.1 -74.3 

 20 -3.5 2.4 9.6 -35.4 -43.0 -3.6 -63.1 -94.6 -1.1 -40.4 -70.4 

 50 -0.1 -6.0 2.9 -10.4 -24.2 -1.4 -33.4 -60.6 -0.9 -33.9 -60.9 

 100 -0.3 -3.3 0.0 -6.2 -12.5 -0.8 -18.1 -34.2 -0.9 -26.6 -49.1 

 200 0.9 -1.7 -0.4 -3.3 -6.4 -0.5 -9.6 -18.2 -0.6 -18.6 -35.3 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect.  
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Table B4 

Root Mean Square Error (RMSE) for Within-Level Indirect Effects 

Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

abB = .02, ICC = .05 

5 10 0.16 *** 0.11 0.09 0.12 0.06 0.07 0.08 0.02 0.05 0.07 

 20 0.09 155.41 0.07 0.07 0.06 0.05 0.05 0.06 0.02 0.04 0.06 

 50 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.03 0.05 

 100 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 200 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 

10 10 0.08 132.00 0.07 0.07 0.06 0.05 0.05 0.06 0.02 0.04 0.06 

 20 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.02 0.03 0.05 

 50 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 100 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 200 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

20 10 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.03 0.05 

 20 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.04 

 50 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 200 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

50 10 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 20 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 

 50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 200 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

abB = .02, ICC = .20 

5 10 0.13 *** 0.11 0.09 0.13 0.06 0.07 0.08 0.02 0.05 0.07 

 20 0.08 *** 0.08 0.07 0.07 0.05 0.05 0.06 0.02 0.04 0.06 

 50 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.03 0.05 

 100 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 200 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

10 10 0.06 2.20 0.07 0.07 0.07 0.05 0.05 0.06 0.02 0.04 0.06 

 20 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.02 0.03 0.05 

 50 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 100 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 200 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

20 10 0.04 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.02 0.03 0.05 

 20 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.04 

 50 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 200 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

50 10 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 20 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 200 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. Cells with 

asterisks indicate standard errors were too large to compute RMSE.   
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Table B4 (continued) 

Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

abB = .16, ICC = .05 

5 10 0.14 *** 0.11 0.09 0.13 0.06 0.07 0.08 0.02 0.05 0.07 

 20 0.08 17.85 0.07 0.07 0.07 0.05 0.05 0.06 0.02 0.04 0.06 

 50 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.03 0.05 

 100 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 200 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 

10 10 0.07 *** 0.07 0.07 0.06 0.05 0.05 0.06 0.02 0.04 0.06 

 20 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.02 0.03 0.05 

 50 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 100 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 200 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

20 10 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.03 0.05 

 20 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.04 

 50 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 200 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

50 10 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 20 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 

 50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 200 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

abB = .16, ICC = .20 

5 10 0.15 *** 0.11 0.10 0.15 0.06 0.07 0.08 0.02 0.05 0.07 

 20 0.08 102.00 0.08 0.07 0.07 0.05 0.05 0.06 0.02 0.04 0.06 

 50 0.05 0.05 0.04 0.04 0.05 0.04 0.04 0.04 0.02 0.03 0.05 

 100 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 200 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

10 10 0.07 57.72 0.07 0.07 0.07 0.05 0.05 0.06 0.02 0.04 0.06 

 20 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.02 0.03 0.05 

 50 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 100 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 200 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

20 10 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.03 0.05 

 20 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.04 

 50 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 200 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

50 10 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 20 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 200 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. Cells with 

asterisks indicate standard errors were too large to compute RMSE.  
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Table B4 (continued) 

Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

Null abB, ICC = .05 

5 10 0.16 *** 0.10 0.09 0.13 0.06 0.07 0.08 0.02 0.05 0.07 

 20 0.08 3.18 0.07 0.07 0.06 0.05 0.05 0.06 0.02 0.04 0.06 

 50 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.03 0.05 

 100 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 200 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 

10 10 0.08 206.03 0.07 0.07 0.06 0.05 0.05 0.06 0.02 0.04 0.06 

 20 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.02 0.03 0.05 

 50 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 100 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 200 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

20 10 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.03 0.05 

 20 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.04 

 50 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 200 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

50 10 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 20 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 

 50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 200 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Null abB, ICC = .20 

5 10 0.16 *** 0.11 0.09 0.14 0.06 0.07 0.09 0.02 0.05 0.07 

 20 0.07 *** 0.07 0.07 0.07 0.05 0.05 0.06 0.02 0.04 0.07 

 50 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.03 0.05 

 100 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 200 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

10 10 0.05 2.64 0.07 0.07 0.07 0.05 0.05 0.07 0.02 0.04 0.06 

 20 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.02 0.03 0.05 

 50 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 100 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 200 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

20 10 0.04 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.02 0.03 0.05 

 20 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.04 

 50 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 200 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

50 10 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 20 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 200 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. Cells with 

asterisks indicate standard errors were too large to compute RMSE.  
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Table B5 

Root Mean Square Error (RMSE) for Between-Level Indirect Effects 

Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

abB = .02, ICC = .05 

5 10 1.07 44.85 0.04 0.26 1.95 0.01 0.01 0.16 0.00 0.02 0.02 

 20 0.80 42.80 0.05 0.27 1.76 0.01 0.01 0.16 0.00 0.02 0.02 

 50 0.52 6.38 0.08 0.27 1.62 0.02 0.01 0.15 0.00 0.02 0.02 

 100 0.54 1.93 0.08 0.29 1.56 0.02 0.02 0.16 0.00 0.02 0.02 

 200 0.48 2.46 0.09 0.29 1.46 0.02 0.02 0.15 0.00 0.02 0.02 

10 10 0.83 47.84 0.04 0.27 1.84 0.01 0.01 0.16 0.00 0.02 0.02 

 20 0.88 32.28 0.06 0.29 1.63 0.01 0.01 0.16 0.00 0.02 0.02 

 50 0.35 4.47 0.09 0.28 1.48 0.02 0.02 0.16 0.00 0.02 0.02 

 100 0.31 1.33 0.10 0.24 1.33 0.02 0.02 0.14 0.00 0.02 0.02 

 200 0.13 0.38 0.09 0.20 1.08 0.03 0.02 0.12 0.01 0.02 0.02 

20 10 1.00 29.01 0.06 0.28 1.73 0.01 0.01 0.16 0.00 0.02 0.02 

 20 0.66 8.91 0.09 0.28 1.52 0.02 0.02 0.15 0.00 0.02 0.02 

 50 0.30 2.42 0.10 0.23 1.22 0.03 0.02 0.13 0.00 0.02 0.02 

 100 0.14 0.41 0.09 0.15 0.83 0.03 0.02 0.09 0.01 0.02 0.02 

 200 0.05 0.05 0.04 0.06 0.28 0.03 0.02 0.04 0.01 0.02 0.02 

50 10 1.06 15.08 0.10 0.30 1.58 0.02 0.02 0.15 0.00 0.02 0.02 

 20 0.32 37.54 0.11 0.23 1.20 0.02 0.02 0.13 0.00 0.02 0.02 

 50 0.20 0.17 0.09 0.11 0.57 0.03 0.03 0.07 0.01 0.02 0.02 

 100 0.05 0.05 0.05 0.04 0.10 0.03 0.02 0.03 0.01 0.02 0.02 

 200 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 

abB = .02, ICC = .20 

5 10 0.63 87.91 0.07 0.31 2.03 0.01 0.01 0.16 0.00 0.02 0.02 

 20 1.89 18.94 0.09 0.32 1.80 0.02 0.02 0.15 0.00 0.02 0.02 

 50 50.12 1.61 0.11 0.25 1.39 0.03 0.02 0.13 0.01 0.02 0.02 

 100 0.10 0.14 0.07 0.14 0.89 0.03 0.02 0.08 0.01 0.02 0.02 

 200 0.04 0.04 0.04 0.04 0.29 0.03 0.02 0.03 0.01 0.02 0.02 

10 10 0.28 18.37 0.09 0.33 1.87 0.02 0.02 0.16 0.00 0.02 0.02 

 20 0.54 9.20 0.12 0.29 1.47 0.03 0.02 0.14 0.00 0.02 0.02 

 50 0.12 11.55 0.09 0.11 0.72 0.03 0.02 0.07 0.01 0.02 0.02 

 100 0.05 0.04 0.05 0.04 0.15 0.03 0.02 0.02 0.01 0.02 0.02 

 200 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 

20 10 0.95 18.53 0.11 0.29 1.71 0.02 0.02 0.15 0.00 0.02 0.02 

 20 0.28 1.34 0.12 0.19 1.05 0.03 0.03 0.10 0.01 0.02 0.02 

 50 0.07 0.07 0.07 0.06 0.24 0.03 0.02 0.03 0.01 0.02 0.02 

 100 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.02 0.02 

 200 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 

50 10 5.11 4.42 0.11 0.28 1.51 0.02 0.02 0.13 0.00 0.02 0.02 

 20 0.18 1.01 0.11 0.15 0.75 0.03 0.03 0.07 0.01 0.02 0.02 

 50 0.06 0.08 0.05 0.05 0.08 0.03 0.03 0.03 0.01 0.02 0.02 

 100 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.02 0.02 

 200 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 
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Table B5 (continued) 

Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

abB = .16, ICC = .05 

5 10 1.40 24.94 0.13 0.11 1.26 0.05 0.16 0.14 0.00 0.07 0.12 

 20 0.86 10.35 0.14 0.13 1.15 0.05 0.16 0.14 0.01 0.07 0.12 

 50 0.69 5.97 0.16 0.15 1.04 0.06 0.15 0.14 0.01 0.07 0.12 

 100 0.65 4.79 0.17 0.16 0.96 0.07 0.15 0.14 0.01 0.07 0.12 

 200 0.57 2.05 0.20 0.17 0.86 0.08 0.14 0.15 0.01 0.07 0.12 

10 10 0.82 17.72 0.13 0.12 1.17 0.05 0.16 0.14 0.01 0.07 0.12 

 20 1.30 30.16 0.15 0.15 1.03 0.06 0.15 0.14 0.01 0.07 0.12 

 50 0.60 8.90 0.18 0.16 0.91 0.07 0.15 0.15 0.01 0.07 0.12 

 100 0.50 2.32 0.22 0.17 0.71 0.08 0.13 0.15 0.01 0.07 0.12 

 200 1.17 2.45 0.21 0.18 0.44 0.09 0.11 0.15 0.02 0.06 0.11 

20 10 0.69 16.84 0.16 0.14 1.07 0.06 0.15 0.14 0.01 0.07 0.12 

 20 0.79 4.26 0.20 0.16 0.87 0.07 0.15 0.15 0.01 0.07 0.12 

 50 0.39 6.04 0.22 0.18 0.58 0.09 0.13 0.15 0.02 0.07 0.12 

 100 0.28 0.41 0.21 0.19 0.31 0.09 0.10 0.14 0.02 0.06 0.11 

 200 0.11 0.17 0.14 0.13 0.13 0.08 0.08 0.10 0.03 0.05 0.09 

50 10 0.93 8.34 0.19 0.16 0.92 0.07 0.15 0.15 0.01 0.07 0.12 

 20 0.50 4.88 0.22 0.18 0.58 0.08 0.13 0.16 0.01 0.07 0.12 

 50 0.23 0.28 0.19 0.18 0.22 0.09 0.11 0.14 0.02 0.06 0.11 

 100 0.12 0.13 0.13 0.12 0.12 0.08 0.08 0.10 0.03 0.06 0.09 

 200 0.07 0.07 0.08 0.07 0.07 0.06 0.06 0.07 0.03 0.05 0.08 

abB = .16, ICC = .20 

5 10 1.05 22.39 0.16 0.14 1.23 0.05 0.15 0.14 0.01 0.07 0.12 

 20 2.78 15.69 0.20 0.18 1.06 0.07 0.14 0.15 0.01 0.07 0.12 

 50 0.47 3.81 0.23 0.19 0.68 0.09 0.12 0.15 0.02 0.06 0.11 

 100 0.20 1.30 0.19 0.18 0.33 0.09 0.10 0.13 0.02 0.06 0.10 

 200 0.11 0.11 0.12 0.11 0.12 0.07 0.08 0.09 0.03 0.05 0.09 

10 10 0.28 15.74 0.21 0.17 1.11 0.06 0.15 0.15 0.01 0.07 0.12 

 20 3.01 33.21 0.24 0.20 0.77 0.09 0.13 0.15 0.02 0.07 0.12 

 50 0.21 0.42 0.20 0.18 0.26 0.09 0.10 0.14 0.02 0.06 0.11 

 100 0.11 0.13 0.13 0.12 0.12 0.08 0.08 0.10 0.03 0.05 0.09 

 200 0.07 0.08 0.08 0.08 0.08 0.06 0.06 0.07 0.03 0.05 0.07 

20 10 0.91 5.53 0.24 0.19 0.90 0.08 0.14 0.15 0.01 0.07 0.12 

 20 0.47 3.49 0.24 0.20 0.46 0.09 0.12 0.15 0.02 0.07 0.11 

 50 0.15 0.17 0.16 0.15 0.15 0.09 0.09 0.12 0.02 0.06 0.10 

 100 0.09 0.09 0.10 0.09 0.09 0.07 0.07 0.09 0.03 0.05 0.09 

 200 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.03 0.04 0.07 

50 10 0.64 115.60 0.24 0.19 0.77 0.08 0.14 0.16 0.01 0.07 0.12 

 20 0.36 0.60 0.22 0.19 0.32 0.09 0.12 0.15 0.02 0.07 0.11 

 50 0.13 0.14 0.13 0.13 0.13 0.08 0.09 0.11 0.02 0.06 0.10 

 100 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.08 0.03 0.05 0.08 

 200 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.04 0.06 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 
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Table B6 

95% CI Coverage Rates for Within-Level Indirect Effects 

ICC Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

Small between-level indirect effect size (abB = .02) 

.05 5 10 0.96 0.99 0.99 0.97 0.96 0.98 0.90 0.77 1.00 0.87 0.06 

  20 0.94 0.96 0.96 0.95 0.93 0.97 0.91 0.81 1.00 0.87 0.25 

  50 0.91 0.95 0.95 0.95 0.94 0.95 0.94 0.90 0.99 0.89 0.57 

  100 0.94 0.95 0.95 0.95 0.95 0.96 0.95 0.93 0.98 0.92 0.76 

  200 0.94 0.95 0.96 0.96 0.95 0.96 0.96 0.96 0.97 0.95 0.89 

 10 10 0.90 0.95 0.96 0.94 0.92 0.97 0.91 0.79 1.00 0.87 0.24 

  20 0.90 0.96 0.95 0.95 0.95 0.96 0.94 0.87 0.99 0.89 0.50 

  50 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.92 0.98 0.91 0.76 

  100 0.94 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.97 0.94 0.87 

  200 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.95 0.93 

 20 10 0.83 0.95 0.96 0.95 0.95 0.96 0.93 0.88 0.99 0.89 0.51 

  20 0.92 0.95 0.95 0.96 0.95 0.96 0.95 0.92 0.98 0.91 0.69 

  50 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.97 0.94 0.84 

  100 0.95 0.95 0.95 0.96 0.96 0.95 0.95 0.95 0.96 0.95 0.90 

  200 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.92 

 50 10 0.92 0.93 0.96 0.93 0.94 0.94 0.92 0.91 0.97 0.90 0.74 

  20 0.94 0.95 0.95 0.94 0.95 0.95 0.94 0.93 0.97 0.92 0.84 

  50 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.94 0.90 

  100 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.92 

  200 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.93 

.20 5 10 0.94 0.99 0.98 0.98 0.97 0.98 0.91 0.80 1.00 0.88 0.06 

  20 0.92 0.95 0.95 0.95 0.94 0.97 0.92 0.83 1.00 0.88 0.26 

  50 0.93 0.95 0.95 0.95 0.96 0.95 0.95 0.92 0.99 0.91 0.57 

  100 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.98 0.93 0.78 

  200 0.93 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.97 0.95 0.90 

 10 10 0.95 0.96 0.95 0.94 0.94 0.97 0.92 0.81 1.00 0.87 0.23 

  20 0.93 0.95 0.96 0.95 0.95 0.97 0.93 0.88 0.99 0.89 0.49 

  50 0.94 0.95 0.96 0.96 0.96 0.97 0.95 0.93 0.99 0.91 0.76 

  100 0.94 0.96 0.96 0.95 0.96 0.96 0.96 0.95 0.97 0.94 0.87 

  200 0.95 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.97 0.96 0.93 

 20 10 0.94 0.96 0.95 0.95 0.95 0.97 0.95 0.88 0.99 0.90 0.49 

  20 0.93 0.95 0.96 0.95 0.95 0.96 0.95 0.92 0.98 0.91 0.67 

  50 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.97 0.94 0.84 

  100 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.96 0.94 0.89 

  200 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.94 0.95 0.93 0.91 

 50 10 0.92 0.93 0.94 0.93 0.93 0.94 0.93 0.90 0.97 0.90 0.74 

  20 0.93 0.95 0.94 0.94 0.94 0.95 0.94 0.93 0.97 0.93 0.83 

  50 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.90 

  100 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.92 

  200 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.92 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 
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Table B6 (continued) 

ICC Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

Medium between-level indirect effect size (abB = .16) 

.05 5 10 0.96 0.98 0.98 0.97 0.95 0.98 0.90 0.78 1.00 0.87 0.06 

  20 0.95 0.95 0.96 0.95 0.94 0.97 0.92 0.81 1.00 0.88 0.26 

  50 0.93 0.95 0.95 0.95 0.95 0.97 0.94 0.91 0.99 0.90 0.61 

  100 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.95 0.98 0.93 0.79 

  200 0.95 0.95 0.96 0.96 0.96 0.96 0.95 0.95 0.97 0.96 0.91 

 10 10 0.92 0.95 0.95 0.94 0.93 0.97 0.91 0.80 1.00 0.87 0.25 

  20 0.91 0.96 0.95 0.95 0.95 0.96 0.94 0.89 0.99 0.89 0.51 

  50 0.96 0.96 0.95 0.96 0.96 0.95 0.95 0.93 0.99 0.93 0.76 

  100 0.94 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.94 0.87 

  200 0.95 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.97 0.96 0.93 

 20 10 0.86 0.96 0.96 0.95 0.95 0.96 0.94 0.88 0.99 0.89 0.52 

  20 0.94 0.96 0.95 0.95 0.95 0.96 0.94 0.93 0.98 0.92 0.69 

  50 0.95 0.96 0.96 0.95 0.96 0.95 0.95 0.94 0.96 0.94 0.85 

  100 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.90 

  200 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.94 0.92 

 50 10 0.89 0.94 0.94 0.93 0.93 0.94 0.92 0.90 0.97 0.90 0.73 

  20 0.94 0.95 0.95 0.95 0.95 0.95 0.94 0.93 0.96 0.92 0.84 

  50 0.94 0.94 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.90 

  100 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.92 

  200 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.93 

.20 5 10 0.92 0.99 0.98 0.97 0.97 0.99 0.91 0.82 1.00 0.88 0.05 

  20 0.94 0.95 0.96 0.95 0.95 0.97 0.93 0.85 1.00 0.89 0.27 

  50 0.93 0.95 0.94 0.94 0.94 0.95 0.94 0.93 0.99 0.90 0.59 

  100 0.94 0.95 0.95 0.95 0.94 0.95 0.95 0.94 0.98 0.93 0.78 

  200 0.93 0.95 0.95 0.94 0.94 0.95 0.94 0.94 0.97 0.95 0.89 

 10 10 0.96 0.96 0.95 0.95 0.94 0.97 0.92 0.81 1.00 0.87 0.23 

  20 0.93 0.96 0.96 0.96 0.95 0.97 0.94 0.89 0.99 0.89 0.49 

  50 0.94 0.95 0.96 0.96 0.95 0.96 0.94 0.92 0.99 0.91 0.75 

  100 0.94 0.96 0.95 0.96 0.96 0.96 0.96 0.94 0.97 0.94 0.85 

  200 0.95 0.96 0.96 0.96 0.95 0.96 0.96 0.95 0.97 0.95 0.91 

 20 10 0.94 0.96 0.96 0.96 0.95 0.96 0.93 0.88 0.99 0.90 0.50 

  20 0.93 0.95 0.96 0.95 0.95 0.96 0.94 0.92 0.98 0.91 0.67 

  50 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.97 0.93 0.84 

  100 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.94 0.96 0.94 0.88 

  200 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.95 0.94 0.90 

 50 10 0.90 0.94 0.93 0.93 0.93 0.94 0.93 0.90 0.97 0.90 0.73 

  20 0.93 0.94 0.95 0.94 0.94 0.95 0.93 0.93 0.96 0.91 0.82 

  50 0.93 0.93 0.93 0.94 0.94 0.93 0.94 0.93 0.95 0.93 0.90 

  100 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.91 

  200 0.95 0.94 0.94 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.92 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 
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Table B6 (continued) 

ICC Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

Null between-level indirect effect (abB = 0) 

.05 5 10 0.92 0.99 0.98 0.97 0.96 0.98 0.90 0.77 1.00 0.87 0.07 

  20 0.95 0.95 0.96 0.95 0.93 0.97 0.91 0.80 1.00 0.86 0.24 

  50 0.89 0.95 0.95 0.95 0.94 0.96 0.94 0.90 0.98 0.90 0.57 

  100 0.94 0.94 0.95 0.95 0.94 0.95 0.95 0.93 0.98 0.92 0.74 

  200 0.95 0.95 0.96 0.96 0.96 0.96 0.95 0.95 0.97 0.95 0.87 

 10 10 0.90 0.95 0.95 0.94 0.92 0.97 0.91 0.79 1.00 0.86 0.23 

  20 0.91 0.96 0.96 0.94 0.94 0.96 0.93 0.86 0.99 0.90 0.49 

  50 0.95 0.95 0.95 0.95 0.95 0.96 0.94 0.92 0.98 0.91 0.74 

  100 0.94 0.96 0.96 0.95 0.95 0.96 0.96 0.95 0.97 0.93 0.85 

  200 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.95 0.92 

 20 10 0.90 0.96 0.95 0.95 0.94 0.96 0.93 0.88 0.99 0.89 0.50 

  20 0.88 0.95 0.95 0.95 0.94 0.95 0.94 0.92 0.98 0.92 0.69 

  50 0.95 0.95 0.95 0.96 0.95 0.96 0.95 0.94 0.97 0.94 0.84 

  100 0.95 0.95 0.95 0.96 0.96 0.95 0.96 0.95 0.96 0.95 0.89 

  200 0.94 0.95 0.95 0.94 0.95 0.95 0.94 0.94 0.95 0.94 0.93 

 50 10 0.91 0.94 0.94 0.94 0.93 0.93 0.92 0.90 0.97 0.90 0.73 

  20 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.93 0.96 0.93 0.84 

  50 0.93 0.94 0.94 0.94 0.94 0.95 0.94 0.93 0.94 0.94 0.90 

  100 0.95 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.93 

  200 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.94 0.94 0.94 0.92 

.20 5 10 1.00 0.99 0.98 0.98 0.96 0.98 0.91 0.79 1.00 0.87 0.05 

  20 0.93 0.94 0.94 0.94 0.93 0.97 0.92 0.81 1.00 0.86 0.22 

  50 0.93 0.94 0.95 0.95 0.95 0.95 0.95 0.91 0.99 0.89 0.57 

  100 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.98 0.93 0.78 

  200 0.93 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.97 0.95 0.90 

 10 10 0.92 0.96 0.95 0.95 0.93 0.97 0.92 0.80 1.00 0.86 0.22 

  20 0.93 0.96 0.96 0.95 0.95 0.96 0.94 0.87 0.99 0.89 0.48 

  50 0.94 0.96 0.96 0.96 0.96 0.96 0.95 0.94 0.99 0.91 0.76 

  100 0.94 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.97 0.93 0.87 

  200 0.94 0.96 0.96 0.96 0.95 0.95 0.96 0.96 0.97 0.95 0.91 

 20 10 0.93 0.96 0.96 0.95 0.95 0.96 0.93 0.87 0.99 0.89 0.50 

  20 0.93 0.95 0.96 0.95 0.95 0.96 0.95 0.92 0.98 0.91 0.68 

  50 0.95 0.95 0.95 0.96 0.95 0.96 0.95 0.94 0.97 0.94 0.84 

  100 0.95 0.96 0.95 0.95 0.95 0.95 0.95 0.94 0.96 0.94 0.89 

  200 0.93 0.95 0.94 0.95 0.93 0.94 0.95 0.94 0.95 0.94 0.92 

 50 10 0.91 0.94 0.93 0.93 0.93 0.94 0.93 0.90 0.97 0.90 0.73 

  20 0.94 0.95 0.94 0.94 0.95 0.95 0.94 0.94 0.96 0.92 0.83 

  50 0.93 0.94 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.90 

  100 0.95 0.94 0.94 0.94 0.93 0.94 0.94 0.93 0.94 0.94 0.92 

  200 0.94 0.94 0.94 0.93 0.94 0.94 0.94 0.93 0.94 0.94 0.93 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect  
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Table B7 

95% CI Coverage Rates for Between-Level Indirect Effects 

ICC Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

Small between-level indirect effect size (abB = .02) 

.05 5 10 0.98 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

  20 0.98 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 

  50 0.98 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00 

  100 0.99 1.00 1.00 1.00 0.86 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 0.83 1.00 1.00 1.00 1.00 0.99 1.00 

 10 10 0.98 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 

  20 1.00 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00 

  50 1.00 1.00 1.00 1.00 0.86 1.00 1.00 1.00 1.00 0.99 1.00 

  100 1.00 1.00 1.00 1.00 0.83 1.00 1.00 0.99 1.00 0.98 0.98 

  200 1.00 1.00 1.00 1.00 0.82 1.00 1.00 0.99 1.00 0.93 0.91 

 20 10 0.94 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00 

  20 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.99 1.00 

  50 1.00 1.00 1.00 1.00 0.87 1.00 1.00 1.00 1.00 0.97 0.97 

  100 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.91 0.84 

  200 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00 1.00 0.84 0.56 

 50 10 1.00 1.00 1.00 1.00 0.91 1.00 1.00 1.00 1.00 0.98 1.00 

  20 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.97 0.98 

  50 1.00 1.00 0.99 1.00 0.96 1.00 1.00 1.00 1.00 0.90 0.80 

  100 1.00 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.85 0.46 

  200 0.99 0.99 0.98 0.98 0.97 0.99 0.97 0.97 0.99 0.84 0.35 

.20 5 10 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 

  20 1.00 1.00 1.00 1.00 0.88 1.00 1.00 1.00 1.00 0.99 1.00 

  50 1.00 1.00 1.00 1.00 0.83 1.00 1.00 1.00 1.00 0.95 0.94 

  100 1.00 1.00 1.00 1.00 0.89 1.00 1.00 0.99 1.00 0.91 0.77 

  200 1.00 0.99 1.00 1.00 0.98 0.99 1.00 1.00 1.00 0.85 0.45 

 10 10 1.00 1.00 1.00 1.00 0.91 1.00 1.00 1.00 1.00 0.99 1.00 

  20 1.00 1.00 1.00 1.00 0.84 1.00 1.00 1.00 1.00 0.95 0.96 

  50 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 0.91 0.77 

  100 0.99 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.86 0.46 

  200 0.98 0.98 0.98 0.97 0.97 0.98 0.97 0.98 1.00 0.86 0.38 

 20 10 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.99 0.99 

  20 0.99 1.00 1.00 1.00 0.91 1.00 1.00 0.99 1.00 0.94 0.93 

  50 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 0.90 0.61 

  100 0.99 1.00 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.85 0.35 

  200 0.97 0.97 0.97 0.96 0.96 0.97 0.95 0.89 0.99 0.86 0.41 

 50 10 0.99 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.97 0.98 

  20 0.99 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 0.95 0.87 

  50 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.87 0.48 

  100 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.99 0.99 0.88 0.32 

  200 0.95 0.95 0.96 0.96 0.95 0.96 0.93 0.88 0.99 0.87 0.48 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 
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Table B7 (continued) 

ICC Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

Medium between-level indirect effect size (abB = .16) 

.05 5 10 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 

  20 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 

  50 0.99 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.00 

  100 0.99 1.00 1.00 1.00 0.99 1.00 0.98 0.99 1.00 1.00 0.00 

  200 0.98 1.00 1.00 1.00 0.99 1.00 0.97 0.97 1.00 0.99 0.01 

 10 10 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 

  20 0.96 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.00 

  50 0.99 1.00 1.00 1.00 0.99 1.00 0.97 0.97 1.00 0.99 0.00 

  100 0.98 1.00 1.00 1.00 0.99 1.00 0.96 0.94 1.00 0.98 0.02 

  200 0.97 0.98 0.99 0.99 0.99 1.00 0.94 0.83 1.00 0.97 0.09 

 20 10 0.93 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.00 

  20 0.99 1.00 1.00 1.00 1.00 1.00 0.96 0.98 1.00 0.99 0.00 

  50 0.97 0.99 1.00 1.00 0.99 1.00 0.94 0.90 1.00 0.97 0.02 

  100 0.95 0.97 0.98 0.98 0.98 0.99 0.92 0.79 1.00 0.95 0.11 

  200 0.96 0.96 0.96 0.95 0.93 0.99 0.94 0.78 1.00 0.94 0.30 

 50 10 0.94 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 0.00 

  20 0.96 1.00 1.00 1.00 0.99 1.00 0.95 0.88 1.00 0.99 0.01 

  50 0.95 0.97 0.98 0.97 0.97 0.98 0.92 0.71 1.00 0.94 0.09 

  100 0.95 0.94 0.94 0.93 0.92 0.97 0.93 0.80 1.00 0.91 0.27 

  200 0.96 0.94 0.94 0.94 0.95 0.96 0.94 0.87 0.99 0.93 0.49 

.20 5 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.00 

  20 0.98 1.00 1.00 1.00 0.99 1.00 0.97 0.98 1.00 0.99 0.00 

  50 0.97 0.99 1.00 1.00 1.00 0.99 0.95 0.90 1.00 0.96 0.05 

  100 0.96 0.97 0.97 0.97 0.97 0.99 0.92 0.80 1.00 0.94 0.17 

  200 0.95 0.95 0.96 0.95 0.93 0.98 0.95 0.83 1.00 0.93 0.40 

 10 10 0.96 1.00 1.00 1.00 1.00 1.00 0.98 0.98 1.00 1.00 0.00 

  20 0.97 1.00 1.00 1.00 0.99 1.00 0.94 0.90 1.00 0.97 0.01 

  50 0.94 0.96 0.97 0.97 0.97 0.99 0.92 0.73 1.00 0.94 0.11 

  100 0.95 0.95 0.95 0.94 0.93 0.97 0.93 0.82 1.00 0.93 0.31 

  200 0.95 0.95 0.95 0.95 0.93 0.96 0.94 0.88 1.00 0.93 0.52 

 20 10 0.97 1.00 1.00 1.00 1.00 1.00 0.98 0.95 1.00 0.99 0.00 

  20 0.94 1.00 0.99 0.99 0.99 1.00 0.92 0.77 1.00 0.96 0.04 

  50 0.93 0.96 0.96 0.94 0.92 0.99 0.93 0.73 1.00 0.93 0.17 

  100 0.94 0.96 0.95 0.95 0.93 0.97 0.94 0.84 1.00 0.91 0.38 

  200 0.95 0.95 0.95 0.94 0.95 0.97 0.94 0.90 1.00 0.93 0.59 

 50 10 0.95 1.00 1.00 1.00 1.00 1.00 0.96 0.92 1.00 0.99 0.01 

  20 0.92 0.99 0.99 0.98 0.98 0.99 0.92 0.69 1.00 0.96 0.03 

  50 0.93 0.95 0.96 0.94 0.92 0.98 0.92 0.76 1.00 0.92 0.20 

  100 0.94 0.94 0.95 0.94 0.93 0.96 0.94 0.86 1.00 0.92 0.42 

  200 0.95 0.95 0.96 0.95 0.94 0.96 0.94 0.90 0.99 0.93 0.65 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect.  
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Table B7 (continued) 

ICC Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

Null between-level indirect effect (abB = 0) 

.05 5 10 0.95 1.00 1.00 1.00 0.93 1.00 1.00 0.97 1.00 1.00 0.99 

  20 1.00 1.00 1.00 1.00 0.86 1.00 1.00 0.94 1.00 1.00 0.99 

  50 0.99 1.00 1.00 1.00 0.81 1.00 1.00 0.89 1.00 1.00 0.99 

  100 1.00 1.00 1.00 1.00 0.73 1.00 1.00 0.83 1.00 1.00 0.98 

  200 1.00 1.00 1.00 1.00 0.65 1.00 1.00 0.76 1.00 1.00 0.96 

 10 10 0.96 1.00 1.00 1.00 0.89 1.00 1.00 0.94 1.00 1.00 0.99 

  20 1.00 1.00 1.00 1.00 0.81 1.00 1.00 0.87 1.00 1.00 0.98 

  50 1.00 1.00 1.00 1.00 0.72 1.00 1.00 0.79 1.00 1.00 0.97 

  100 1.00 1.00 1.00 1.00 0.60 1.00 1.00 0.73 1.00 1.00 0.93 

  200 1.00 1.00 1.00 0.98 0.55 1.00 1.00 0.65 1.00 1.00 0.87 

 20 10 0.95 1.00 1.00 1.00 0.84 1.00 1.00 0.91 1.00 1.00 0.98 

  20 1.00 1.00 1.00 1.00 0.76 1.00 1.00 0.82 1.00 1.00 0.96 

  50 1.00 1.00 1.00 1.00 0.66 1.00 1.00 0.76 1.00 1.00 0.90 

  100 1.00 1.00 1.00 0.99 0.67 1.00 1.00 0.74 1.00 1.00 0.87 

  200 1.00 1.00 1.00 0.99 0.84 1.00 0.99 0.78 1.00 1.00 0.84 

 50 10 1.00 1.00 1.00 1.00 0.79 1.00 1.00 0.84 1.00 1.00 0.95 

  20 1.00 1.00 1.00 1.00 0.71 1.00 1.00 0.79 1.00 1.00 0.92 

  50 1.00 1.00 1.00 0.99 0.80 1.00 1.00 0.83 1.00 1.00 0.89 

  100 1.00 1.00 1.00 0.99 0.96 1.00 0.99 0.91 1.00 1.00 0.90 

  200 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.96 1.00 1.00 0.90 

.20 5 10 1.00 1.00 1.00 1.00 0.88 1.00 1.00 0.94 1.00 1.00 0.99 

  20 1.00 1.00 1.00 1.00 0.74 1.00 1.00 0.85 1.00 1.00 0.95 

  50 1.00 1.00 1.00 0.99 0.62 1.00 1.00 0.75 1.00 1.00 0.92 

  100 1.00 1.00 1.00 0.98 0.67 1.00 1.00 0.76 1.00 1.00 0.90 

  200 1.00 1.00 1.00 0.98 0.88 1.00 1.00 0.84 1.00 1.00 0.88 

 10 10 1.00 1.00 1.00 1.00 0.79 1.00 1.00 0.85 1.00 1.00 0.98 

  20 1.00 1.00 1.00 1.00 0.67 1.00 1.00 0.77 1.00 1.00 0.91 

  50 1.00 1.00 1.00 0.99 0.76 1.00 1.00 0.82 1.00 1.00 0.90 

  100 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.91 1.00 1.00 0.89 

  200 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 1.00 1.00 0.92 

 20 10 1.00 1.00 1.00 1.00 0.74 1.00 1.00 0.83 1.00 1.00 0.94 

  20 1.00 1.00 1.00 0.99 0.76 1.00 1.00 0.81 1.00 1.00 0.92 

  50 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.92 1.00 1.00 0.90 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 0.92 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.94 

 50 10 1.00 1.00 1.00 1.00 0.75 1.00 1.00 0.81 1.00 1.00 0.93 

  20 0.99 1.00 1.00 1.00 0.83 1.00 1.00 0.87 1.00 1.00 0.90 

  50 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.96 1.00 1.00 0.91 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.94 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.96 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 
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Table B8 

Non-Null Detection Rates for Within-Level Indirect Effects 

ICC Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

Small between-level indirect effect size (abB = .02) 

.05 5 10 0.00 0.03 0.05 0.03 0.01 0.09 0.01 0.00 1.00 0.63 0.02 

  20 0.24 0.21 0.23 0.21 0.18 0.33 0.18 0.09 1.00 0.88 0.29 

  50 0.65 0.78 0.79 0.81 0.80 0.86 0.81 0.75 1.00 0.99 0.93 

  100 0.97 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 10 10 0.16 0.24 0.24 0.20 0.17 0.35 0.19 0.08 1.00 0.88 0.30 

  20 0.57 0.68 0.68 0.67 0.64 0.78 0.68 0.56 1.00 0.99 0.85 

  50 0.99 0.99 0.99 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 20 10 0.61 0.72 0.74 0.71 0.68 0.80 0.71 0.59 1.00 0.99 0.85 

  20 0.97 0.98 0.98 0.98 0.98 0.99 0.98 0.97 1.00 1.00 1.00 

  50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 50 10 1.00 0.99 1.00 0.99 1.00 1.00 0.99 0.99 1.00 1.00 1.00 

  20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.20 5 10 0.06 0.03 0.04 0.03 0.01 0.07 0.01 0.00 0.99 0.62 0.01 

  20 0.21 0.19 0.20 0.18 0.18 0.29 0.18 0.08 1.00 0.87 0.24 

  50 0.67 0.71 0.72 0.73 0.76 0.80 0.77 0.72 1.00 0.99 0.90 

  100 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 10 10 0.26 0.21 0.23 0.21 0.15 0.34 0.18 0.08 1.00 0.87 0.26 

  20 0.62 0.63 0.64 0.62 0.63 0.75 0.65 0.53 1.00 0.99 0.81 

  50 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 20 10 0.69 0.69 0.70 0.67 0.65 0.79 0.68 0.57 1.00 0.98 0.85 

  20 0.96 0.97 0.98 0.97 0.97 0.98 0.97 0.96 1.00 1.00 1.00 

  50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 50 10 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 

  20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 
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Table B8 (continued) 

ICC Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

Medium between-level indirect effect size (abB = .16) 

.05 5 10 0.04 0.03 0.05 0.04 0.02 0.08 0.02 0.00 1.00 0.66 0.02 

  20 0.26 0.22 0.25 0.22 0.20 0.35 0.21 0.09 1.00 0.89 0.29 

  50 0.69 0.80 0.82 0.82 0.82 0.86 0.83 0.79 1.00 1.00 0.93 

  100 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 10 10 0.17 0.25 0.24 0.22 0.18 0.35 0.18 0.09 1.00 0.87 0.29 

  20 0.63 0.69 0.71 0.68 0.68 0.78 0.69 0.58 1.00 0.98 0.85 

  50 0.99 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 20 10 0.64 0.74 0.73 0.72 0.70 0.82 0.72 0.60 1.00 0.98 0.86 

  20 0.97 0.98 0.98 0.98 0.98 0.99 0.98 0.97 1.00 1.00 1.00 

  50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 50 10 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 

  20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.20 5 10 0.08 0.03 0.04 0.04 0.02 0.07 0.01 0.01 1.00 0.65 0.02 

  20 0.22 0.20 0.22 0.20 0.20 0.31 0.18 0.10 1.00 0.87 0.25 

  50 0.68 0.73 0.71 0.73 0.77 0.80 0.75 0.73 1.00 0.99 0.90 

  100 0.98 0.99 0.98 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 10 10 0.21 0.21 0.24 0.20 0.17 0.33 0.18 0.08 1.00 0.87 0.26 

  20 0.64 0.65 0.64 0.63 0.63 0.74 0.64 0.53 1.00 0.98 0.82 

  50 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 20 10 0.65 0.69 0.70 0.69 0.67 0.79 0.68 0.56 1.00 0.98 0.84 

  20 0.96 0.97 0.97 0.98 0.97 0.98 0.97 0.96 1.00 1.00 1.00 

  50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 50 10 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 

  20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect.  
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Table B8 (continued) 

ICC Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

Null between-level indirect effect (abB = 0) 

.05 5 10 0.02 0.03 0.04 0.03 0.02 0.08 0.01 0.00 0.99 0.65 0.02 

  20 0.24 0.21 0.22 0.21 0.17 0.32 0.20 0.09 1.00 0.88 0.28 

  50 0.63 0.78 0.79 0.79 0.79 0.86 0.81 0.75 1.00 1.00 0.93 

  100 0.98 0.99 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 10 10 0.12 0.23 0.24 0.19 0.17 0.33 0.18 0.08 0.99 0.87 0.28 

  20 0.61 0.67 0.67 0.67 0.62 0.76 0.66 0.55 1.00 0.99 0.83 

  50 0.99 0.99 0.99 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 20 10 0.62 0.71 0.72 0.70 0.68 0.81 0.71 0.59 1.00 0.98 0.87 

  20 0.96 0.98 0.98 0.98 0.97 0.99 0.98 0.97 1.00 1.00 1.00 

  50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 50 10 1.00 0.99 0.99 0.99 0.99 1.00 0.99 0.99 1.00 1.00 1.00 

  20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.20 5 10 0.00 0.03 0.04 0.02 0.01 0.07 0.01 0.00 0.99 0.61 0.01 

  20 0.19 0.17 0.19 0.17 0.15 0.27 0.15 0.07 1.00 0.86 0.23 

  50 0.65 0.70 0.71 0.72 0.73 0.80 0.75 0.70 1.00 0.99 0.91 

  100 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 10 10 0.21 0.21 0.21 0.18 0.15 0.31 0.17 0.07 0.99 0.85 0.25 

  20 0.62 0.63 0.64 0.62 0.61 0.74 0.64 0.53 1.00 0.98 0.80 

  50 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 20 10 0.67 0.68 0.70 0.67 0.65 0.79 0.68 0.57 1.00 0.98 0.85 

  20 0.96 0.97 0.97 0.97 0.96 0.98 0.97 0.96 1.00 1.00 1.00 

  50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 50 10 0.99 0.99 1.00 0.99 0.99 1.00 0.99 0.99 1.00 1.00 1.00 

  20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect.  
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Table B9 

Non-Null Detection Rates for Between-Level Indirect Effects 

ICC Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

Small between-level indirect effect size (abB = .02) 

.05 5 10 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

  20 0.02 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 

  50 0.02 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 

  100 0.01 0.00 0.00 0.00 0.16 0.00 0.00 0.01 0.00 0.00 0.00 

  200 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.01 0.00 0.00 0.00 

 10 10 0.02 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 

  20 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 

  50 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.02 0.00 0.00 0.00 

  100 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.02 0.00 0.00 0.00 

  200 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.02 0.00 0.00 0.00 

 20 10 0.06 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 

  20 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.01 0.00 0.00 0.00 

  50 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.01 0.00 0.00 0.00 

  100 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.01 0.00 0.00 0.00 

  200 0.01 0.01 0.01 0.00 0.02 0.01 0.00 0.01 0.02 0.00 0.00 

 50 10 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.01 0.00 0.00 0.00 

  20 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.01 0.00 0.00 0.00 

  50 0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.00 

  100 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.04 0.00 0.00 

  200 0.03 0.03 0.03 0.02 0.02 0.04 0.02 0.01 0.13 0.00 0.00 

.20 5 10 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 

  20 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.01 0.00 0.00 0.00 

  50 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.01 0.00 0.00 0.00 

  100 0.01 0.00 0.00 0.00 0.12 0.00 0.00 0.01 0.00 0.00 0.00 

  200 0.02 0.01 0.01 0.01 0.03 0.01 0.00 0.00 0.04 0.00 0.00 

 10 10 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 

  20 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.01 0.00 0.00 0.00 

  50 0.00 0.01 0.00 0.00 0.07 0.00 0.00 0.01 0.01 0.00 0.00 

  100 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.04 0.00 0.00 

  200 0.04 0.04 0.04 0.03 0.02 0.04 0.02 0.01 0.13 0.01 0.00 

 20 10 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 

  20 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.02 0.00 0.00 0.00 

  50 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.00 0.00 

  100 0.03 0.02 0.02 0.01 0.01 0.02 0.00 0.00 0.07 0.00 0.00 

  200 0.07 0.06 0.06 0.05 0.04 0.07 0.03 0.02 0.21 0.02 0.00 

 50 10 0.01 0.00 0.00 0.00 0.11 0.00 0.00 0.01 0.00 0.00 0.00 

  20 0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.00 

  50 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.03 0.00 0.00 

  100 0.03 0.02 0.03 0.02 0.02 0.04 0.01 0.01 0.10 0.01 0.00 

  200 0.08 0.08 0.08 0.07 0.06 0.09 0.05 0.03 0.28 0.04 0.00 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 
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Table B9 (continued) 

ICC Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

Medium between-level indirect effect size (abB = .16) 

.05 5 10 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.02 

  20 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 1.00 1.00 0.04 

  50 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 1.00 1.00 0.09 

  100 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 1.00 1.00 0.13 

  200 0.01 0.00 0.00 0.00 0.04 0.02 0.00 0.00 1.00 1.00 0.28 

 10 10 0.04 0.00 0.00 0.00 0.01 0.00 0.00 0.00 1.00 1.00 0.04 

  20 0.04 0.00 0.00 0.00 0.01 0.00 0.00 0.00 1.00 1.00 0.08 

  50 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 1.00 1.00 0.21 

  100 0.01 0.01 0.00 0.00 0.03 0.04 0.00 0.00 1.00 1.00 0.43 

  200 0.04 0.05 0.05 0.03 0.04 0.19 0.04 0.01 1.00 1.00 0.71 

 20 10 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 1.00 1.00 0.09 

  20 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 1.00 1.00 0.19 

  50 0.01 0.01 0.01 0.00 0.01 0.07 0.00 0.00 1.00 1.00 0.51 

  100 0.05 0.07 0.06 0.04 0.04 0.26 0.07 0.01 1.00 1.00 0.78 

  200 0.34 0.30 0.30 0.28 0.24 0.58 0.40 0.19 1.00 1.00 0.95 

 50 10 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 1.00 1.00 0.16 

  20 0.01 0.00 0.00 0.00 0.01 0.03 0.00 0.00 1.00 1.00 0.39 

  50 0.08 0.05 0.05 0.04 0.03 0.22 0.05 0.01 1.00 1.00 0.76 

  100 0.34 0.31 0.33 0.29 0.25 0.56 0.35 0.18 1.00 1.00 0.94 

  200 0.82 0.77 0.78 0.77 0.74 0.90 0.83 0.73 1.00 1.00 1.00 

.20 5 10 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 1.00 1.00 0.08 

  20 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 1.00 1.00 0.23 

  50 0.02 0.00 0.00 0.00 0.02 0.09 0.01 0.00 1.00 1.00 0.62 

  100 0.12 0.09 0.08 0.06 0.04 0.29 0.09 0.02 1.00 1.00 0.86 

  200 0.47 0.41 0.40 0.37 0.33 0.68 0.49 0.31 1.00 1.00 0.98 

 10 10 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 1.00 1.00 0.17 

  20 0.01 0.00 0.00 0.00 0.02 0.04 0.00 0.00 1.00 1.00 0.41 

  50 0.08 0.06 0.06 0.05 0.04 0.24 0.06 0.01 1.00 1.00 0.79 

  100 0.38 0.32 0.33 0.30 0.25 0.58 0.39 0.18 1.00 1.00 0.95 

  200 0.84 0.82 0.81 0.80 0.76 0.92 0.86 0.75 1.00 1.00 1.00 

 20 10 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 1.00 1.00 0.25 

  20 0.02 0.01 0.01 0.01 0.01 0.08 0.01 0.00 1.00 1.00 0.54 

  50 0.20 0.15 0.17 0.13 0.10 0.37 0.16 0.04 1.00 1.00 0.88 

  100 0.57 0.55 0.57 0.53 0.49 0.75 0.61 0.42 1.00 1.00 0.98 

  200 0.95 0.94 0.94 0.93 0.92 0.97 0.96 0.93 1.00 1.00 1.00 

 50 10 0.01 0.00 0.00 0.00 0.01 0.02 0.00 0.00 1.00 1.00 0.32 

  20 0.06 0.01 0.02 0.01 0.01 0.09 0.01 0.00 1.00 1.00 0.61 

  50 0.28 0.19 0.22 0.20 0.15 0.48 0.24 0.08 1.00 1.00 0.92 

  100 0.70 0.67 0.70 0.66 0.61 0.85 0.75 0.57 1.00 1.00 0.99 

  200 0.98 0.98 0.98 0.98 0.97 0.99 0.98 0.97 1.00 1.00 1.00 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 
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Table B10 

Type I Error Rates for the Null Between-Level Indirect Effect (abB = 0) 

ICC Nj J ML Diffuse μ,1.0 1σ,1.0 2σ,1.0 μ,.10 1σ,.10 2σ,.10 μ,.01 1σ,.01 2σ,.01 

.05 5 10 0.05 0.00 0.00 0.00 0.07 0.00 0.00 0.03 0.00 0.00 0.01 

  20 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.06 0.00 0.00 0.01 

  50 0.01 0.00 0.00 0.00 0.20 0.00 0.00 0.11 0.00 0.00 0.01 

  100 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.17 0.00 0.00 0.02 

  200 0.00 0.00 0.00 0.00 0.35 0.00 0.00 0.24 0.00 0.00 0.04 

 10 10 0.04 0.00 0.00 0.00 0.11 0.00 0.00 0.06 0.00 0.00 0.01 

  20 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.13 0.00 0.00 0.02 

  50 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.21 0.00 0.00 0.03 

  100 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.27 0.00 0.00 0.07 

  200 0.00 0.00 0.00 0.02 0.45 0.00 0.00 0.35 0.00 0.00 0.13 

 20 10 0.05 0.00 0.00 0.00 0.16 0.00 0.00 0.09 0.00 0.00 0.02 

  20 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.18 0.00 0.00 0.04 

  50 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.24 0.00 0.00 0.10 

  100 0.00 0.00 0.00 0.01 0.33 0.00 0.00 0.26 0.00 0.00 0.13 

  200 0.00 0.00 0.01 0.01 0.16 0.00 0.01 0.22 0.00 0.00 0.16 

 50 10 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.16 0.00 0.00 0.05 

  20 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.21 0.00 0.00 0.08 

  50 0.00 0.00 0.00 0.01 0.20 0.00 0.00 0.17 0.00 0.00 0.11 

  100 0.00 0.00 0.00 0.01 0.04 0.00 0.01 0.09 0.00 0.00 0.10 

  200 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.04 0.00 0.00 0.10 

.20 5 10 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.06 0.00 0.00 0.01 

  20 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.15 0.00 0.00 0.05 

  50 0.00 0.00 0.00 0.01 0.38 0.00 0.00 0.25 0.00 0.00 0.08 

  100 0.00 0.00 0.00 0.02 0.33 0.00 0.01 0.24 0.00 0.00 0.10 

  200 0.00 0.00 0.00 0.02 0.12 0.00 0.01 0.16 0.00 0.00 0.12 

 10 10 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.15 0.00 0.00 0.02 

  20 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.23 0.00 0.00 0.10 

  50 0.00 0.00 0.00 0.01 0.24 0.00 0.00 0.18 0.00 0.00 0.10 

  100 0.00 0.00 0.00 0.00 0.06 0.00 0.01 0.09 0.00 0.00 0.11 

  200 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.08 

 20 10 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.17 0.00 0.00 0.06 

  20 0.00 0.00 0.00 0.01 0.25 0.00 0.00 0.19 0.00 0.00 0.09 

  50 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.08 0.00 0.00 0.10 

  100 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.09 

  200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.06 

 50 10 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.19 0.00 0.00 0.07 

  20 0.01 0.00 0.00 0.00 0.17 0.00 0.00 0.13 0.00 0.00 0.10 

  50 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.04 0.00 0.00 0.09 

  100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.06 

  200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.04 

Note. Nj = cluster size; J = number of clusters; abB = between-level indirect effect. 
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Appendix C 

Table C1 

Model A, 6 Items, Correctly Specified, Covariance = 0.3, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.032 (0.048) 0.948 (0.098) 0.905 (0.172) 0.531 (0.288) 

 MCMC Diffuse 0.057 (0.055) 0.863 (0.179) 0.778 (0.261) 0.454 (0.169) 

 MCMC Weak 0.040 (0.048) 0.896 (0.158) 0.860 (0.205) 0.501 (0.190) 

 MCMC -1SD 0.074 (0.055) 0.775 (0.199) 0.722 (0.237) 0.371 (0.203) 

 MCMC +1SD 0.052 (0.049) 0.828 (0.238) 0.798 (0.257) 0.463 (0.190) 

100 ML 0.025 (0.035) 0.964 (0.065) 0.933 (0.122) 0.515 (0.291) 

 MCMC Diffuse 0.029 (0.036) 0.954 (0.075) 0.916 (0.136) 0.486 (0.166) 

 MCMC Weak 0.021 (0.031) 0.965 (0.065) 0.947 (0.100) 0.532 (0.181) 

 MCMC -1SD 0.051 (0.042) 0.888 (0.117) 0.844 (0.161) 0.374 (0.206) 

 MCMC +1SD 0.026 (0.033) 0.947 (0.096) 0.925 (0.130) 0.491 (0.176) 

250 ML 0.016 (0.022) 0.984 (0.029) 0.970 (0.054) 0.501 (0.286) 

 MCMC Diffuse 0.017 (0.023) 0.982 (0.030) 0.967 (0.059) 0.486 (0.175) 

 MCMC Weak 0.014 (0.021) 0.985 (0.028) 0.975 (0.050) 0.519 (0.182) 

 MCMC -1SD 0.021 (0.025) 0.976 (0.039) 0.959 (0.065) 0.463 (0.187) 

 MCMC +1SD 0.016 (0.021) 0.983 (0.029) 0.972 (0.050) 0.496 (0.178) 

500 ML 0.011 (0.016) 0.992 (0.015) 0.985 (0.029) 0.528 (0.296) 

 MCMC Diffuse 0.012 (0.016) 0.992 (0.015) 0.983 (0.030) 0.498 (0.179) 

 MCMC Weak 0.009 (0.015) 0.993 (0.014) 0.987 (0.025) 0.518 (0.175) 

 MCMC -1SD 0.012 (0.016) 0.991 (0.015) 0.984 (0.029) 0.495 (0.177) 

 MCMC +1SD 0.010 (0.015) 0.992 (0.015) 0.986 (0.027) 0.507 (0.180) 

1000 ML 0.008 (0.011) 0.996 (0.007) 0.992 (0.014) 0.503 (0.286) 

 MCMC Diffuse 0.008 (0.011) 0.996 (0.007) 0.992 (0.014) 0.491 (0.172) 

 MCMC Weak 0.007 (0.011) 0.996 (0.007) 0.993 (0.013) 0.504 (0.176) 

 MCMC -1SD 0.008 (0.011) 0.996 (0.007) 0.992 (0.014) 0.500 (0.181) 

 MCMC +1SD 0.008 (0.011) 0.996 (0.007) 0.992 (0.015) 0.498 (0.177) 
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Table C2 

Model A, 6 Items, Correctly Specified, Covariance = 0.3, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.044 (0.054) 0.974 (0.042) 0.950 (0.079) 0.461 (0.293) 

 MCMC Diffuse 0.061 (0.056) 0.957 (0.053) 0.928 (0.094) 0.445 (0.174) 

 MCMC Weak 0.042 (0.050) 0.969 (0.049) 0.956 (0.069) 0.503 (0.188) 

 MCMC -1SD 0.087 (0.072) 0.907 (0.102) 0.876 (0.130) 0.353 (0.225) 

 MCMC +1SD 0.058 (0.051) 0.949 (0.065) 0.933 (0.087) 0.437 (0.179) 

100 ML 0.029 (0.038) 0.987 (0.022) 0.976 (0.041) 0.486 (0.295) 

 MCMC Diffuse 0.032 (0.038) 0.985 (0.023) 0.973 (0.043) 0.476 (0.174) 

 MCMC Weak 0.023 (0.034) 0.989 (0.020) 0.982 (0.034) 0.514 (0.178) 

 MCMC -1SD 0.033 (0.039) 0.984 (0.026) 0.973 (0.044) 0.472 (0.180) 

 MCMC +1SD 0.033 (0.036) 0.983 (0.024) 0.973 (0.039) 0.465 (0.173) 

250 ML 0.017 (0.022) 0.996 (0.008) 0.992 (0.015) 0.495 (0.287) 

 MCMC Diffuse 0.019 (0.024) 0.995 (0.009) 0.990 (0.018) 0.484 (0.179) 

 MCMC Weak 0.015 (0.022) 0.996 (0.008) 0.992 (0.015) 0.502 (0.185) 

 MCMC -1SD 0.018 (0.023) 0.995 (0.008) 0.991 (0.016) 0.480 (0.180) 

 MCMC +1SD 0.018 (0.023) 0.995 (0.009) 0.990 (0.016) 0.473 (0.179) 

500 ML 0.011 (0.016) 0.998 (0.004) 0.996 (0.008) 0.526 (0.297) 

 MCMC Diffuse 0.012 (0.017) 0.998 (0.004) 0.995 (0.008) 0.494 (0.185) 

 MCMC Weak 0.011 (0.016) 0.998 (0.004) 0.996 (0.008) 0.502 (0.184) 

 MCMC -1SD 0.012 (0.016) 0.998 (0.004) 0.996 (0.008) 0.494 (0.184) 

 MCMC +1SD 0.012 (0.016) 0.998 (0.004) 0.996 (0.008) 0.493 (0.180) 

1000 ML 0.008 (0.011) 0.999 (0.002) 0.998 (0.004) 0.504 (0.285) 

 MCMC Diffuse 0.008 (0.011) 0.999 (0.002) 0.998 (0.004) 0.491 (0.181) 

 MCMC Weak 0.008 (0.011) 0.999 (0.002) 0.998 (0.004) 0.498 (0.175) 

 MCMC -1SD 0.008 (0.011) 0.999 (0.002) 0.998 (0.004) 0.497 (0.180) 

 MCMC +1SD 0.008 (0.011) 0.999 (0.002) 0.998 (0.004) 0.492 (0.179) 
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Table C3 

Model A, 6 Items, Correctly Specified, Covariance = 0.5, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.034 (0.049) 0.951 (0.086) 0.907 (0.162) 0.517 (0.288) 

 MCMC Diffuse 0.059 (0.056) 0.871 (0.165) 0.785 (0.255) 0.450 (0.162) 

 MCMC Weak 0.040 (0.047) 0.909 (0.139) 0.877 (0.183) 0.505 (0.196) 

 MCMC -1SD 0.066 (0.054) 0.824 (0.172) 0.779 (0.212) 0.402 (0.205) 

 MCMC +1SD 0.051 (0.049) 0.838 (0.227) 0.817 (0.239) 0.457 (0.186) 

100 ML 0.026 (0.036) 0.966 (0.060) 0.935 (0.113) 0.505 (0.293) 

 MCMC Diffuse 0.030 (0.038) 0.956 (0.071) 0.919 (0.131) 0.486 (0.172) 

 MCMC Weak 0.021 (0.031) 0.968 (0.062) 0.951 (0.098) 0.534 (0.183) 

 MCMC -1SD 0.053 (0.041) 0.894 (0.104) 0.853 (0.147) 0.365 (0.202) 

 MCMC +1SD 0.028 (0.034) 0.951 (0.081) 0.928 (0.118) 0.483 (0.177) 

250 ML 0.017 (0.022) 0.985 (0.026) 0.973 (0.048) 0.502 (0.289) 

 MCMC Diffuse 0.018 (0.024) 0.983 (0.029) 0.967 (0.057) 0.485 (0.179) 

 MCMC Weak 0.014 (0.021) 0.987 (0.025) 0.977 (0.043) 0.518 (0.184) 

 MCMC -1SD 0.029 (0.029) 0.965 (0.046) 0.942 (0.075) 0.399 (0.202) 

 MCMC +1SD 0.017 (0.022) 0.982 (0.029) 0.971 (0.050) 0.483 (0.188) 

500 ML 0.011 (0.016) 0.993 (0.014) 0.987 (0.025) 0.527 (0.294) 

 MCMC Diffuse 0.012 (0.016) 0.992 (0.014) 0.985 (0.028) 0.498 (0.177) 

 MCMC Weak 0.010 (0.015) 0.993 (0.013) 0.987 (0.025) 0.512 (0.184) 

 MCMC -1SD 0.013 (0.017) 0.991 (0.016) 0.983 (0.029) 0.471 (0.181) 

 MCMC +1SD 0.011 (0.016) 0.992 (0.014) 0.986 (0.027) 0.493 (0.180) 

1000 ML 0.008 (0.011) 0.996 (0.007) 0.993 (0.012) 0.505 (0.286) 

 MCMC Diffuse 0.008 (0.011) 0.996 (0.007) 0.993 (0.013) 0.493 (0.178) 

 MCMC Weak 0.008 (0.011) 0.997 (0.006) 0.993 (0.013) 0.498 (0.179) 

 MCMC -1SD 0.008 (0.011) 0.996 (0.007) 0.993 (0.013) 0.492 (0.182) 

 MCMC +1SD 0.008 (0.012) 0.996 (0.007) 0.993 (0.013) 0.490 (0.179) 
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Table C4 

Model A, 6 Items, Correctly Specified, Covariance = 0.5, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.044 (0.054) 0.976 (0.039) 0.954 (0.073) 0.463 (0.292) 

 MCMC Diffuse 0.064 (0.058) 0.958 (0.052) 0.926 (0.092) 0.441 (0.169) 

 MCMC Weak 0.045 (0.051) 0.969 (0.045) 0.956 (0.063) 0.494 (0.188) 

 MCMC -1SD 0.112 (0.069) 0.879 (0.096) 0.843 (0.123) 0.273 (0.228) 

 MCMC +1SD 0.059 (0.051) 0.951 (0.061) 0.935 (0.081) 0.431 (0.182) 

100 ML 0.029 (0.038) 0.988 (0.020) 0.978 (0.038) 0.487 (0.296) 

 MCMC Diffuse 0.034 (0.039) 0.986 (0.022) 0.973 (0.043) 0.471 (0.172) 

 MCMC Weak 0.025 (0.035) 0.989 (0.019) 0.982 (0.033) 0.508 (0.177) 

 MCMC -1SD 0.051 (0.054) 0.967 (0.049) 0.947 (0.076) 0.401 (0.222) 

 MCMC +1SD 0.035 (0.036) 0.983 (0.023) 0.974 (0.037) 0.453 (0.175) 

250 ML 0.017 (0.022) 0.996 (0.007) 0.992 (0.014) 0.495 (0.288) 

 MCMC Diffuse 0.019 (0.024) 0.995 (0.008) 0.990 (0.016) 0.476 (0.181) 

 MCMC Weak 0.017 (0.023) 0.995 (0.008) 0.991 (0.015) 0.495 (0.184) 

 MCMC -1SD 0.020 (0.025) 0.995 (0.008) 0.990 (0.017) 0.466 (0.185) 

 MCMC +1SD 0.020 (0.024) 0.994 (0.008) 0.990 (0.016) 0.463 (0.181) 

500 ML 0.011 (0.016) 0.998 (0.004) 0.996 (0.007) 0.526 (0.295) 

 MCMC Diffuse 0.013 (0.017) 0.998 (0.004) 0.995 (0.008) 0.486 (0.184) 

 MCMC Weak 0.011 (0.016) 0.998 (0.004) 0.996 (0.007) 0.494 (0.186) 

 MCMC -1SD 0.012 (0.017) 0.998 (0.004) 0.996 (0.008) 0.491 (0.182) 

 MCMC +1SD 0.013 (0.017) 0.998 (0.004) 0.996 (0.008) 0.482 (0.179) 

1000 ML 0.008 (0.011) 0.999 (0.002) 0.998 (0.003) 0.507 (0.286) 

 MCMC Diffuse 0.008 (0.011) 0.999 (0.002) 0.998 (0.003) 0.491 (0.179) 

 MCMC Weak 0.008 (0.012) 0.999 (0.002) 0.998 (0.004) 0.496 (0.181) 

 MCMC -1SD 0.008 (0.011) 0.999 (0.002) 0.998 (0.004) 0.486 (0.181) 

 MCMC +1SD 0.009 (0.012) 0.999 (0.002) 0.998 (0.004) 0.490 (0.182) 
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Table C5 

Model A, 6 Items, Misspecified, Covariance = 0.3, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.061 (0.060) 0.853 (0.192) 0.767 (0.284) 0.371 (0.287) 

 MCMC Diffuse 0.069 (0.058) 0.810 (0.207) 0.719 (0.288) 0.414 (0.188) 

 MCMC Weak 0.048 (0.052) 0.862 (0.190) 0.829 (0.223) 0.470 (0.211) 

 MCMC -1SD 0.063 (0.053) 0.812 (0.192) 0.768 (0.231) 0.412 (0.207) 

 MCMC +1SD 0.062 (0.052) 0.779 (0.260) 0.753 (0.274) 0.411 (0.205) 

100 ML 0.049 (0.043) 0.904 (0.113) 0.840 (0.187) 0.335 (0.282) 

 MCMC Diffuse 0.047 (0.043) 0.905 (0.111) 0.845 (0.185) 0.396 (0.195) 

 MCMC Weak 0.034 (0.039) 0.928 (0.100) 0.903 (0.138) 0.444 (0.211) 

 MCMC -1SD 0.044 (0.040) 0.904 (0.112) 0.871 (0.153) 0.399 (0.207) 

 MCMC +1SD 0.043 (0.040) 0.900 (0.123) 0.865 (0.166) 0.401 (0.203) 

250 ML 0.046 (0.029) 0.931 (0.060) 0.885 (0.100) 0.209 (0.238) 

 MCMC Diffuse 0.044 (0.030) 0.933 (0.062) 0.889 (0.103) 0.296 (0.199) 

 MCMC Weak 0.038 (0.028) 0.941 (0.060) 0.912 (0.090) 0.324 (0.213) 

 MCMC -1SD 0.041 (0.029) 0.935 (0.061) 0.903 (0.093) 0.302 (0.209) 

 MCMC +1SD 0.041 (0.028) 0.934 (0.062) 0.902 (0.095) 0.305 (0.208) 

500 ML 0.047 (0.020) 0.936 (0.041) 0.894 (0.069) 0.090 (0.158) 

 MCMC Diffuse 0.046 (0.020) 0.939 (0.040) 0.900 (0.067) 0.168 (0.160) 

 MCMC Weak 0.043 (0.019) 0.942 (0.040) 0.909 (0.064) 0.177 (0.169) 

 MCMC -1SD 0.044 (0.019) 0.940 (0.039) 0.906 (0.064) 0.173 (0.163) 

 MCMC +1SD 0.044 (0.019) 0.941 (0.040) 0.908 (0.064) 0.176 (0.167) 

1000 ML 0.049 (0.012) 0.937 (0.027) 0.895 (0.046) 0.011 (0.044) 

 MCMC Diffuse 0.048 (0.013) 0.940 (0.026) 0.900 (0.048) 0.045 (0.085) 

 MCMC Weak 0.046 (0.013) 0.940 (0.026) 0.905 (0.045) 0.047 (0.088) 

 MCMC -1SD 0.047 (0.013) 0.940 (0.026) 0.904 (0.045) 0.044 (0.083) 

 MCMC +1SD 0.047 (0.013) 0.940 (0.026) 0.904 (0.045) 0.047 (0.090) 
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Table C6 

Model A, 6 Items, Misspecified, Covariance = 0.3, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.077 (0.063) 0.940 (0.066) 0.900 (0.110) 0.303 (0.275) 

 MCMC Diffuse 0.083 (0.060) 0.927 (0.070) 0.891 (0.107) 0.364 (0.188) 

 MCMC Weak 0.062 (0.056) 0.944 (0.066) 0.929 (0.085) 0.420 (0.210) 

 MCMC -1SD 0.072 (0.056) 0.935 (0.067) 0.918 (0.087) 0.385 (0.201) 

 MCMC +1SD 0.080 (0.054) 0.919 (0.081) 0.899 (0.102) 0.354 (0.192) 

100 ML 0.070 (0.045) 0.956 (0.040) 0.927 (0.066) 0.218 (0.247) 

 MCMC Diffuse 0.069 (0.045) 0.956 (0.040) 0.929 (0.066) 0.311 (0.202) 

 MCMC Weak 0.057 (0.044) 0.962 (0.039) 0.946 (0.056) 0.343 (0.212) 

 MCMC -1SD 0.063 (0.044) 0.958 (0.039) 0.940 (0.058) 0.323 (0.210) 

 MCMC +1SD 0.067 (0.042) 0.953 (0.041) 0.934 (0.061) 0.300 (0.197) 

250 ML 0.072 (0.027) 0.962 (0.023) 0.936 (0.038) 0.065 (0.131) 

 MCMC Diffuse 0.070 (0.029) 0.963 (0.023) 0.939 (0.040) 0.145 (0.159) 

 MCMC Weak 0.066 (0.028) 0.964 (0.023) 0.945 (0.037) 0.159 (0.168) 

 MCMC -1SD 0.068 (0.028) 0.963 (0.023) 0.942 (0.038) 0.148 (0.167) 

 MCMC +1SD 0.069 (0.028) 0.962 (0.023) 0.942 (0.038) 0.144 (0.158) 

500 ML 0.074 (0.017) 0.963 (0.015) 0.938 (0.026) 0.008 (0.038) 

 MCMC Diffuse 0.073 (0.017) 0.963 (0.015) 0.940 (0.026) 0.029 (0.066) 

 MCMC Weak 0.071 (0.017) 0.964 (0.015) 0.943 (0.026) 0.030 (0.069) 

 MCMC -1SD 0.071 (0.017) 0.964 (0.015) 0.942 (0.026) 0.029 (0.065) 

 MCMC +1SD 0.072 (0.017) 0.963 (0.015) 0.942 (0.025) 0.029 (0.067) 

1000 ML 0.075 (0.011) 0.963 (0.010) 0.938 (0.017) 0.000 (0.000) 

 MCMC Diffuse 0.073 (0.012) 0.964 (0.010) 0.941 (0.018) 0.001 (0.012) 

 MCMC Weak 0.073 (0.012) 0.964 (0.010) 0.941 (0.018) 0.001 (0.011) 

 MCMC -1SD 0.073 (0.012) 0.964 (0.010) 0.941 (0.018) 0.001 (0.014) 

 MCMC +1SD 0.073 (0.012) 0.964 (0.010) 0.941 (0.018) 0.001 (0.010) 
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Table C7 

Model A, 6 Items, Misspecified, Covariance = 0.5, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.086 (0.065) 0.792 (0.206) 0.667 (0.308) 0.270 (0.267) 

 MCMC Diffuse 0.092 (0.061) 0.737 (0.231) 0.615 (0.312) 0.342 (0.194) 

 MCMC Weak 0.067 (0.055) 0.808 (0.207) 0.772 (0.236) 0.399 (0.214) 

 MCMC -1SD 0.082 (0.056) 0.753 (0.205) 0.705 (0.242) 0.341 (0.209) 

 MCMC +1SD 0.080 (0.055) 0.722 (0.262) 0.679 (0.284) 0.345 (0.201) 

100 ML 0.081 (0.045) 0.826 (0.133) 0.710 (0.221) 0.174 (0.224) 

 MCMC Diffuse 0.076 (0.045) 0.833 (0.134) 0.733 (0.216) 0.282 (0.193) 

 MCMC Weak 0.062 (0.043) 0.858 (0.132) 0.811 (0.178) 0.317 (0.214) 

 MCMC -1SD 0.070 (0.043) 0.830 (0.135) 0.774 (0.183) 0.278 (0.202) 

 MCMC +1SD 0.069 (0.042) 0.827 (0.148) 0.771 (0.193) 0.284 (0.200) 

250 ML 0.083 (0.026) 0.838 (0.077) 0.729 (0.128) 0.036 (0.093) 

 MCMC Diffuse 0.080 (0.028) 0.844 (0.080) 0.745 (0.136) 0.099 (0.130) 

 MCMC Weak 0.073 (0.027) 0.852 (0.080) 0.784 (0.121) 0.111 (0.144) 

 MCMC -1SD 0.076 (0.027) 0.844 (0.080) 0.770 (0.122) 0.103 (0.136) 

 MCMC +1SD 0.075 (0.026) 0.846 (0.080) 0.773 (0.122) 0.104 (0.134) 

500 ML 0.084 (0.016) 0.839 (0.051) 0.732 (0.085) 0.002 (0.012) 

 MCMC Diffuse 0.082 (0.017) 0.843 (0.051) 0.741 (0.094) 0.011 (0.037) 

 MCMC Weak 0.079 (0.017) 0.845 (0.051) 0.759 (0.090) 0.013 (0.040) 

 MCMC -1SD 0.079 (0.016) 0.844 (0.051) 0.759 (0.086) 0.012 (0.040) 

 MCMC +1SD 0.079 (0.016) 0.844 (0.051) 0.761 (0.085) 0.013 (0.039) 

1000 ML 0.084 (0.011) 0.841 (0.036) 0.734 (0.059) 0.000 (0.000) 

 MCMC Diffuse 0.083 (0.012) 0.843 (0.034) 0.742 (0.066) 0.000 (0.003) 

 MCMC Weak 0.081 (0.012) 0.844 (0.034) 0.750 (0.065) 0.000 (0.003) 

 MCMC -1SD 0.081 (0.012) 0.843 (0.034) 0.751 (0.064) 0.000 (0.001) 

 MCMC +1SD 0.082 (0.012) 0.844 (0.034) 0.749 (0.064) 0.000 (0.003) 
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Table C8 

Model A, 6 Items, Misspecified, Covariance = 0.5, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.125 (0.065) 0.887 (0.082) 0.812 (0.137) 0.141 (0.200) 

 MCMC Diffuse 0.127 (0.061) 0.874 (0.084) 0.811 (0.133) 0.235 (0.184) 

 MCMC Weak 0.103 (0.058) 0.895 (0.081) 0.868 (0.103) 0.277 (0.205) 

 MCMC -1SD 0.112 (0.059) 0.882 (0.082) 0.850 (0.108) 0.245 (0.196) 

 MCMC +1SD 0.118 (0.053) 0.865 (0.092) 0.834 (0.117) 0.223 (0.175) 

100 ML 0.127 (0.041) 0.895 (0.052) 0.825 (0.087) 0.043 (0.104) 

 MCMC Diffuse 0.122 (0.043) 0.898 (0.053) 0.837 (0.088) 0.119 (0.141) 

 MCMC Weak 0.110 (0.041) 0.905 (0.053) 0.865 (0.079) 0.132 (0.154) 

 MCMC -1SD 0.114 (0.041) 0.899 (0.053) 0.857 (0.077) 0.120 (0.146) 

 MCMC +1SD 0.116 (0.038) 0.895 (0.053) 0.853 (0.078) 0.107 (0.132) 

250 ML 0.128 (0.022) 0.898 (0.030) 0.830 (0.050) 0.001 (0.005) 

 MCMC Diffuse 0.126 (0.025) 0.900 (0.030) 0.835 (0.057) 0.005 (0.020) 

 MCMC Weak 0.121 (0.023) 0.901 (0.030) 0.847 (0.052) 0.006 (0.023) 

 MCMC -1SD 0.122 (0.024) 0.900 (0.030) 0.845 (0.054) 0.006 (0.022) 

 MCMC +1SD 0.122 (0.023) 0.899 (0.030) 0.845 (0.051) 0.006 (0.022) 

500 ML 0.128 (0.015) 0.899 (0.020) 0.831 (0.034) 0.000 (0.000) 

 MCMC Diffuse 0.126 (0.017) 0.900 (0.020) 0.837 (0.040) 0.000 (0.000) 

 MCMC Weak 0.124 (0.017) 0.901 (0.020) 0.843 (0.040) 0.000 (0.003) 

 MCMC -1SD 0.124 (0.017) 0.900 (0.020) 0.842 (0.040) 0.000 (0.000) 

 MCMC +1SD 0.124 (0.017) 0.900 (0.020) 0.842 (0.040) 0.000 (0.000) 

1000 ML 0.128 (0.010) 0.899 (0.014) 0.832 (0.024) 0.000 (0.000) 

 MCMC Diffuse 0.126 (0.014) 0.900 (0.013) 0.836 (0.034) 0.000 (0.000) 

 MCMC Weak 0.125 (0.013) 0.900 (0.014) 0.839 (0.032) 0.000 (0.000) 

 MCMC -1SD 0.125 (0.013) 0.900 (0.014) 0.839 (0.032) 0.000 (0.000) 

 MCMC +1SD 0.125 (0.014) 0.900 (0.014) 0.839 (0.033) 0.000 (0.000) 
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Table C9 

Model A, 12 Items, Correctly Specified, Covariance = 0.3, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.048 (0.036) 0.886 (0.110) 0.858 (0.137) 0.308 (0.265) 

 MCMC Diffuse 0.057 (0.035) 0.849 (0.122) 0.816 (0.149) 0.458 (0.231) 

 MCMC Weak 0.044 (0.034) 0.887 (0.111) 0.873 (0.127) 0.527 (0.245) 

 MCMC -1SD 0.067 (0.036) 0.793 (0.142) 0.770 (0.157) 0.375 (0.254) 

 MCMC +1SD 0.053 (0.034) 0.841 (0.137) 0.825 (0.151) 0.456 (0.244) 

100 ML 0.025 (0.024) 0.957 (0.052) 0.946 (0.065) 0.405 (0.284) 

 MCMC Diffuse 0.028 (0.024) 0.948 (0.059) 0.935 (0.073) 0.470 (0.236) 

 MCMC Weak 0.022 (0.023) 0.959 (0.054) 0.952 (0.063) 0.523 (0.239) 

 MCMC -1SD 0.030 (0.025) 0.942 (0.063) 0.931 (0.075) 0.449 (0.241) 

 MCMC +1SD 0.028 (0.024) 0.943 (0.063) 0.934 (0.074) 0.458 (0.237) 

250 ML 0.013 (0.014) 0.985 (0.021) 0.982 (0.026) 0.467 (0.290) 

 MCMC Diffuse 0.013 (0.014) 0.985 (0.020) 0.982 (0.025) 0.485 (0.238) 

 MCMC Weak 0.011 (0.014) 0.987 (0.019) 0.985 (0.023) 0.511 (0.236) 

 MCMC -1SD 0.013 (0.014) 0.985 (0.020) 0.982 (0.025) 0.489 (0.233) 

 MCMC +1SD 0.013 (0.014) 0.984 (0.021) 0.981 (0.026) 0.481 (0.233) 

500 ML 0.008 (0.010) 0.994 (0.010) 0.992 (0.012) 0.489 (0.287) 

 MCMC Diffuse 0.009 (0.010) 0.993 (0.011) 0.991 (0.013) 0.488 (0.240) 

 MCMC Weak 0.008 (0.010) 0.993 (0.010) 0.992 (0.013) 0.496 (0.243) 

 MCMC -1SD 0.008 (0.010) 0.993 (0.011) 0.991 (0.013) 0.488 (0.240) 

 MCMC +1SD 0.009 (0.010) 0.993 (0.011) 0.991 (0.013) 0.482 (0.236) 

1000 ML 0.006 (0.007) 0.997 (0.005) 0.996 (0.006) 0.504 (0.293) 

 MCMC Diffuse 0.005 (0.007) 0.997 (0.005) 0.996 (0.006) 0.488 (0.237) 

 MCMC Weak 0.005 (0.007) 0.997 (0.005) 0.996 (0.006) 0.502 (0.238) 

 MCMC -1SD 0.006 (0.007) 0.997 (0.005) 0.996 (0.006) 0.495 (0.236) 

 MCMC +1SD 0.006 (0.007) 0.997 (0.005) 0.996 (0.006) 0.486 (0.236) 
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Table C10 

Model A, 12 Items, Correctly Specified, Covariance = 0.3, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.050 (0.036) 0.957 (0.042) 0.947 (0.052) 0.291 (0.258) 

 MCMC Diffuse 0.058 (0.035) 0.945 (0.045) 0.934 (0.055) 0.445 (0.233) 

 MCMC Weak 0.046 (0.035) 0.958 (0.042) 0.952 (0.048) 0.519 (0.242) 

 MCMC -1SD 0.054 (0.035) 0.949 (0.045) 0.941 (0.053) 0.458 (0.243) 

 MCMC +1SD 0.057 (0.034) 0.942 (0.049) 0.935 (0.054) 0.438 (0.238) 

100 ML 0.025 (0.024) 0.986 (0.017) 0.982 (0.021) 0.400 (0.284) 

 MCMC Diffuse 0.028 (0.024) 0.983 (0.019) 0.979 (0.024) 0.468 (0.234) 

 MCMC Weak 0.024 (0.023) 0.986 (0.018) 0.983 (0.021) 0.510 (0.238) 

 MCMC -1SD 0.027 (0.024) 0.984 (0.019) 0.981 (0.023) 0.478 (0.239) 

 MCMC +1SD 0.031 (0.024) 0.980 (0.021) 0.976 (0.025) 0.433 (0.230) 

250 ML 0.013 (0.015) 0.996 (0.007) 0.994 (0.008) 0.466 (0.289) 

 MCMC Diffuse 0.013 (0.014) 0.996 (0.006) 0.995 (0.008) 0.486 (0.228) 

 MCMC Weak 0.012 (0.014) 0.996 (0.006) 0.995 (0.007) 0.501 (0.230) 

 MCMC -1SD 0.013 (0.014) 0.995 (0.006) 0.994 (0.008) 0.488 (0.230) 

 MCMC +1SD 0.015 (0.014) 0.995 (0.007) 0.994 (0.008) 0.456 (0.227) 

500 ML 0.008 (0.010) 0.998 (0.003) 0.998 (0.004) 0.489 (0.288) 

 MCMC Diffuse 0.009 (0.010) 0.998 (0.003) 0.997 (0.004) 0.491 (0.242) 

 MCMC Weak 0.008 (0.010) 0.998 (0.003) 0.998 (0.004) 0.500 (0.242) 

 MCMC -1SD 0.008 (0.010) 0.998 (0.003) 0.997 (0.004) 0.488 (0.239) 

 MCMC +1SD 0.009 (0.010) 0.998 (0.003) 0.997 (0.004) 0.469 (0.234) 

1000 ML 0.005 (0.007) 0.999 (0.001) 0.999 (0.002) 0.505 (0.292) 

 MCMC Diffuse 0.006 (0.007) 0.999 (0.002) 0.999 (0.002) 0.487 (0.228) 

 MCMC Weak 0.005 (0.007) 0.999 (0.002) 0.999 (0.002) 0.495 (0.235) 

 MCMC -1SD 0.006 (0.007) 0.999 (0.001) 0.999 (0.002) 0.491 (0.238) 

 MCMC +1SD 0.006 (0.007) 0.999 (0.002) 0.999 (0.002) 0.483 (0.236) 
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Table C11 

Model A, 12 Items, Correctly Specified, Covariance = 0.5, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.048 (0.036) 0.888 (0.109) 0.861 (0.135) 0.304 (0.264) 

 MCMC Diffuse 0.058 (0.035) 0.850 (0.122) 0.818 (0.149) 0.455 (0.234) 

 MCMC Weak 0.044 (0.034) 0.890 (0.109) 0.877 (0.122) 0.525 (0.244) 

 MCMC -1SD 0.068 (0.035) 0.796 (0.132) 0.773 (0.147) 0.362 (0.246) 

 MCMC +1SD 0.054 (0.034) 0.846 (0.134) 0.831 (0.146) 0.451 (0.245) 

100 ML 0.025 (0.024) 0.958 (0.051) 0.948 (0.063) 0.402 (0.284) 

 MCMC Diffuse 0.028 (0.024) 0.949 (0.057) 0.937 (0.070) 0.472 (0.235) 

 MCMC Weak 0.022 (0.023) 0.961 (0.051) 0.955 (0.060) 0.522 (0.240) 

 MCMC -1SD 0.038 (0.027) 0.920 (0.073) 0.907 (0.086) 0.379 (0.249) 

 MCMC +1SD 0.029 (0.024) 0.944 (0.061) 0.936 (0.070) 0.451 (0.237) 

250 ML 0.013 (0.015) 0.986 (0.020) 0.983 (0.025) 0.466 (0.292) 

 MCMC Diffuse 0.013 (0.014) 0.986 (0.020) 0.982 (0.025) 0.482 (0.232) 

 MCMC Weak 0.011 (0.014) 0.988 (0.019) 0.985 (0.023) 0.509 (0.239) 

 MCMC -1SD 0.013 (0.014) 0.986 (0.020) 0.982 (0.024) 0.477 (0.231) 

 MCMC +1SD 0.014 (0.014) 0.984 (0.020) 0.981 (0.025) 0.469 (0.234) 

500 ML 0.008 (0.010) 0.994 (0.009) 0.992 (0.012) 0.488 (0.288) 

 MCMC Diffuse 0.008 (0.010) 0.993 (0.010) 0.992 (0.012) 0.485 (0.239) 

 MCMC Weak 0.008 (0.010) 0.994 (0.010) 0.992 (0.012) 0.497 (0.242) 

 MCMC -1SD 0.009 (0.010) 0.993 (0.010) 0.991 (0.013) 0.475 (0.237) 

 MCMC +1SD 0.009 (0.010) 0.993 (0.011) 0.991 (0.013) 0.471 (0.237) 

1000 ML 0.006 (0.007) 0.997 (0.005) 0.996 (0.006) 0.503 (0.293) 

 MCMC Diffuse 0.006 (0.007) 0.997 (0.005) 0.996 (0.006) 0.493 (0.238) 

 MCMC Weak 0.005 (0.007) 0.997 (0.005) 0.996 (0.006) 0.498 (0.236) 

 MCMC -1SD 0.006 (0.007) 0.997 (0.005) 0.996 (0.006) 0.491 (0.238) 

 MCMC +1SD 0.006 (0.007) 0.997 (0.005) 0.996 (0.006) 0.483 (0.238) 
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Table C12 

Model A, 12 Items, Correctly Specified, Covariance = 0.5, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.050 (0.036) 0.958 (0.041) 0.948 (0.051) 0.290 (0.258) 

 MCMC Diffuse 0.059 (0.035) 0.946 (0.045) 0.935 (0.054) 0.439 (0.239) 

 MCMC Weak 0.047 (0.035) 0.958 (0.041) 0.953 (0.047) 0.507 (0.246) 

 MCMC -1SD 0.064 (0.041) 0.932 (0.059) 0.922 (0.068) 0.404 (0.263) 

 MCMC +1SD 0.058 (0.034) 0.942 (0.049) 0.936 (0.054) 0.435 (0.241) 

100 ML 0.025 (0.024) 0.986 (0.017) 0.983 (0.021) 0.399 (0.284) 

 MCMC Diffuse 0.028 (0.024) 0.984 (0.019) 0.980 (0.023) 0.465 (0.233) 

 MCMC Weak 0.024 (0.023) 0.986 (0.017) 0.984 (0.021) 0.509 (0.241) 

 MCMC -1SD 0.028 (0.024) 0.984 (0.019) 0.980 (0.022) 0.470 (0.235) 

 MCMC +1SD 0.032 (0.024) 0.980 (0.021) 0.977 (0.024) 0.427 (0.230) 

250 ML 0.013 (0.015) 0.996 (0.006) 0.995 (0.008) 0.465 (0.291) 

 MCMC Diffuse 0.013 (0.014) 0.996 (0.006) 0.995 (0.008) 0.487 (0.225) 

 MCMC Weak 0.012 (0.014) 0.996 (0.006) 0.995 (0.007) 0.497 (0.232) 

 MCMC -1SD 0.013 (0.014) 0.996 (0.006) 0.995 (0.008) 0.484 (0.229) 

 MCMC +1SD 0.015 (0.015) 0.995 (0.007) 0.993 (0.008) 0.447 (0.224) 

500 ML 0.008 (0.010) 0.998 (0.003) 0.998 (0.004) 0.488 (0.288) 

 MCMC Diffuse 0.009 (0.010) 0.998 (0.003) 0.997 (0.004) 0.485 (0.237) 

 MCMC Weak 0.008 (0.010) 0.998 (0.003) 0.998 (0.004) 0.500 (0.242) 

 MCMC -1SD 0.009 (0.010) 0.998 (0.003) 0.997 (0.004) 0.483 (0.240) 

 MCMC +1SD 0.009 (0.010) 0.998 (0.003) 0.997 (0.004) 0.467 (0.231) 

1000 ML 0.006 (0.007) 0.999 (0.001) 0.999 (0.002) 0.503 (0.292) 

 MCMC Diffuse 0.006 (0.007) 0.999 (0.001) 0.999 (0.002) 0.488 (0.236) 

 MCMC Weak 0.006 (0.007) 0.999 (0.001) 0.999 (0.002) 0.495 (0.235) 

 MCMC -1SD 0.006 (0.007) 0.999 (0.001) 0.999 (0.002) 0.486 (0.235) 

 MCMC +1SD 0.006 (0.007) 0.999 (0.002) 0.999 (0.002) 0.477 (0.231) 
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Table C13 

Model A, 12 Items, Misspecified, Covariance = 0.3, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.053 (0.036) 0.864 (0.119) 0.834 (0.146) 0.266 (0.252) 

 MCMC Diffuse 0.062 (0.034) 0.826 (0.129) 0.792 (0.156) 0.422 (0.235) 

 MCMC Weak 0.049 (0.034) 0.869 (0.118) 0.856 (0.130) 0.489 (0.248) 

 MCMC -1SD 0.056 (0.034) 0.844 (0.121) 0.828 (0.133) 0.442 (0.250) 

 MCMC +1SD 0.059 (0.033) 0.818 (0.141) 0.802 (0.154) 0.419 (0.241) 

100 ML 0.033 (0.025) 0.936 (0.063) 0.921 (0.077) 0.312 (0.268) 

 MCMC Diffuse 0.036 (0.025) 0.926 (0.068) 0.910 (0.083) 0.401 (0.234) 

 MCMC Weak 0.030 (0.024) 0.941 (0.063) 0.932 (0.072) 0.439 (0.244) 

 MCMC -1SD 0.034 (0.024) 0.930 (0.065) 0.920 (0.074) 0.408 (0.241) 

 MCMC +1SD 0.036 (0.024) 0.922 (0.071) 0.911 (0.081) 0.383 (0.235) 

250 ML 0.026 (0.016) 0.963 (0.032) 0.955 (0.039) 0.241 (0.246) 

 MCMC Diffuse 0.026 (0.016) 0.963 (0.031) 0.955 (0.038) 0.299 (0.216) 

 MCMC Weak 0.024 (0.016) 0.966 (0.030) 0.959 (0.036) 0.318 (0.231) 

 MCMC -1SD 0.025 (0.016) 0.964 (0.031) 0.957 (0.037) 0.304 (0.226) 

 MCMC +1SD 0.026 (0.016) 0.961 (0.031) 0.954 (0.038) 0.292 (0.220) 

500 ML 0.026 (0.010) 0.968 (0.019) 0.961 (0.024) 0.111 (0.176) 

 MCMC Diffuse 0.026 (0.010) 0.967 (0.019) 0.960 (0.024) 0.158 (0.180) 

 MCMC Weak 0.026 (0.010) 0.968 (0.019) 0.962 (0.023) 0.161 (0.177) 

 MCMC -1SD 0.026 (0.010) 0.967 (0.019) 0.961 (0.024) 0.156 (0.176) 

 MCMC +1SD 0.026 (0.010) 0.967 (0.020) 0.960 (0.024) 0.154 (0.177) 

1000 ML 0.027 (0.006) 0.969 (0.012) 0.962 (0.015) 0.017 (0.057) 

 MCMC Diffuse 0.027 (0.006) 0.969 (0.012) 0.962 (0.015) 0.031 (0.069) 

 MCMC Weak 0.027 (0.006) 0.969 (0.012) 0.962 (0.015) 0.034 (0.080) 

 MCMC -1SD 0.027 (0.006) 0.969 (0.012) 0.962 (0.015) 0.030 (0.068) 

 MCMC +1SD 0.027 (0.006) 0.969 (0.012) 0.962 (0.015) 0.030 (0.068) 
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Table C14 

Model A, 12 Items, Misspecified, Covariance = 0.3, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.059 (0.035) 0.945 (0.046) 0.933 (0.056) 0.228 (0.235) 

 MCMC Diffuse 0.066 (0.035) 0.933 (0.049) 0.921 (0.059) 0.390 (0.239) 

 MCMC Weak 0.055 (0.035) 0.947 (0.046) 0.940 (0.052) 0.457 (0.247) 

 MCMC -1SD 0.060 (0.034) 0.940 (0.047) 0.932 (0.053) 0.415 (0.246) 

 MCMC +1SD 0.065 (0.033) 0.929 (0.052) 0.922 (0.058) 0.378 (0.239) 

100 ML 0.039 (0.026) 0.974 (0.023) 0.969 (0.028) 0.256 (0.252) 

 MCMC Diffuse 0.041 (0.024) 0.972 (0.023) 0.966 (0.028) 0.345 (0.231) 

 MCMC Weak 0.037 (0.024) 0.975 (0.023) 0.971 (0.026) 0.383 (0.239) 

 MCMC -1SD 0.039 (0.024) 0.973 (0.023) 0.968 (0.027) 0.352 (0.233) 

 MCMC +1SD 0.044 (0.023) 0.968 (0.025) 0.963 (0.028) 0.317 (0.219) 

250 ML 0.034 (0.016) 0.983 (0.012) 0.979 (0.014) 0.143 (0.196) 

 MCMC Diffuse 0.034 (0.015) 0.983 (0.011) 0.979 (0.014) 0.202 (0.188) 

 MCMC Weak 0.033 (0.015) 0.984 (0.011) 0.980 (0.013) 0.209 (0.193) 

 MCMC -1SD 0.034 (0.015) 0.983 (0.011) 0.980 (0.014) 0.203 (0.192) 

 MCMC +1SD 0.035 (0.014) 0.982 (0.011) 0.978 (0.014) 0.182 (0.172) 

500 ML 0.035 (0.009) 0.984 (0.007) 0.981 (0.008) 0.032 (0.091) 

 MCMC Diffuse 0.035 (0.009) 0.984 (0.007) 0.981 (0.008) 0.056 (0.100) 

 MCMC Weak 0.034 (0.009) 0.984 (0.007) 0.981 (0.008) 0.061 (0.107) 

 MCMC -1SD 0.034 (0.009) 0.984 (0.007) 0.981 (0.008) 0.058 (0.104) 

 MCMC +1SD 0.035 (0.008) 0.984 (0.007) 0.980 (0.008) 0.054 (0.098) 

1000 ML 0.035 (0.005) 0.984 (0.004) 0.981 (0.005) 0.001 (0.012) 

 MCMC Diffuse 0.035 (0.005) 0.984 (0.004) 0.981 (0.005) 0.002 (0.020) 

 MCMC Weak 0.035 (0.005) 0.984 (0.004) 0.981 (0.005) 0.003 (0.017) 

 MCMC -1SD 0.035 (0.005) 0.984 (0.004) 0.981 (0.005) 0.002 (0.016) 

 MCMC +1SD 0.035 (0.005) 0.984 (0.004) 0.981 (0.005) 0.003 (0.019) 
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Table C15 

Model A, 12 Items, Misspecified, Covariance = 0.5, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.064 (0.036) 0.830 (0.124) 0.792 (0.152) 0.199 (0.223) 

 MCMC Diffuse 0.071 (0.033) 0.791 (0.131) 0.750 (0.158) 0.348 (0.230) 

 MCMC Weak 0.059 (0.034) 0.834 (0.125) 0.818 (0.138) 0.423 (0.252) 

 MCMC -1SD 0.065 (0.034) 0.809 (0.127) 0.791 (0.140) 0.378 (0.243) 

 MCMC +1SD 0.069 (0.032) 0.782 (0.143) 0.763 (0.157) 0.356 (0.239) 

100 ML 0.048 (0.025) 0.895 (0.073) 0.871 (0.089) 0.176 (0.212) 

 MCMC Diffuse 0.051 (0.023) 0.883 (0.076) 0.858 (0.092) 0.265 (0.212) 

 MCMC Weak 0.045 (0.024) 0.900 (0.073) 0.885 (0.085) 0.303 (0.236) 

 MCMC -1SD 0.048 (0.024) 0.889 (0.074) 0.872 (0.086) 0.272 (0.220) 

 MCMC +1SD 0.051 (0.022) 0.878 (0.077) 0.860 (0.089) 0.258 (0.214) 

250 ML 0.046 (0.013) 0.913 (0.039) 0.894 (0.048) 0.046 (0.107) 

 MCMC Diffuse 0.046 (0.012) 0.912 (0.037) 0.894 (0.046) 0.081 (0.115) 

 MCMC Weak 0.045 (0.012) 0.916 (0.037) 0.900 (0.044) 0.089 (0.123) 

 MCMC -1SD 0.045 (0.012) 0.913 (0.037) 0.897 (0.044) 0.084 (0.120) 

 MCMC +1SD 0.046 (0.012) 0.911 (0.037) 0.895 (0.044) 0.080 (0.114) 

500 ML 0.046 (0.007) 0.914 (0.023) 0.895 (0.029) 0.002 (0.015) 

 MCMC Diffuse 0.046 (0.007) 0.913 (0.023) 0.895 (0.029) 0.005 (0.027) 

 MCMC Weak 0.046 (0.007) 0.914 (0.023) 0.897 (0.029) 0.006 (0.032) 

 MCMC -1SD 0.046 (0.007) 0.914 (0.023) 0.897 (0.029) 0.005 (0.023) 

 MCMC +1SD 0.046 (0.007) 0.913 (0.023) 0.896 (0.028) 0.005 (0.023) 

1000 ML 0.047 (0.005) 0.915 (0.015) 0.896 (0.019) 0.000 (0.000) 

 MCMC Diffuse 0.046 (0.005) 0.915 (0.015) 0.896 (0.019) 0.000 (0.001) 

 MCMC Weak 0.046 (0.005) 0.915 (0.015) 0.897 (0.019) 0.000 (0.000) 

 MCMC -1SD 0.046 (0.005) 0.915 (0.015) 0.897 (0.018) 0.000 (0.000) 

 MCMC +1SD 0.046 (0.005) 0.914 (0.015) 0.897 (0.019) 0.000 (0.000) 
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Table C16 

Model A, 12 Items, Misspecified, Covariance = 0.5, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.076 (0.034) 0.922 (0.050) 0.904 (0.061) 0.132 (0.180) 

 MCMC Diffuse 0.082 (0.032) 0.909 (0.052) 0.892 (0.062) 0.283 (0.217) 

 MCMC Weak 0.072 (0.034) 0.923 (0.051) 0.913 (0.058) 0.337 (0.241) 

 MCMC -1SD 0.076 (0.033) 0.916 (0.050) 0.906 (0.056) 0.308 (0.234) 

 MCMC +1SD 0.081 (0.030) 0.905 (0.055) 0.895 (0.060) 0.274 (0.219) 

100 ML 0.063 (0.022) 0.949 (0.028) 0.937 (0.034) 0.084 (0.142) 

 MCMC Diffuse 0.064 (0.021) 0.945 (0.028) 0.934 (0.034) 0.157 (0.168) 

 MCMC Weak 0.060 (0.021) 0.949 (0.027) 0.941 (0.032) 0.182 (0.186) 

 MCMC -1SD 0.062 (0.021) 0.947 (0.027) 0.938 (0.032) 0.168 (0.177) 

 MCMC +1SD 0.066 (0.019) 0.941 (0.028) 0.932 (0.032) 0.140 (0.155) 

250 ML 0.061 (0.011) 0.954 (0.014) 0.944 (0.018) 0.005 (0.028) 

 MCMC Diffuse 0.061 (0.010) 0.954 (0.014) 0.944 (0.017) 0.014 (0.039) 

 MCMC Weak 0.060 (0.010) 0.955 (0.014) 0.946 (0.017) 0.014 (0.037) 

 MCMC -1SD 0.060 (0.010) 0.954 (0.014) 0.945 (0.017) 0.013 (0.036) 

 MCMC +1SD 0.061 (0.010) 0.953 (0.014) 0.944 (0.016) 0.010 (0.028) 

500 ML 0.061 (0.007) 0.955 (0.009) 0.945 (0.011) 0.000 (0.001) 

 MCMC Diffuse 0.061 (0.007) 0.955 (0.009) 0.945 (0.011) 0.000 (0.001) 

 MCMC Weak 0.060 (0.007) 0.955 (0.009) 0.946 (0.011) 0.000 (0.002) 

 MCMC -1SD 0.060 (0.007) 0.955 (0.009) 0.946 (0.011) 0.000 (0.002) 

 MCMC +1SD 0.061 (0.007) 0.954 (0.009) 0.945 (0.011) 0.000 (0.001) 

1000 ML 0.061 (0.005) 0.955 (0.006) 0.945 (0.007) 0.000 (0.000) 

 MCMC Diffuse 0.060 (0.005) 0.955 (0.006) 0.946 (0.007) 0.000 (0.000) 

 MCMC Weak 0.060 (0.005) 0.955 (0.006) 0.946 (0.007) 0.000 (0.000) 

 MCMC -1SD 0.060 (0.005) 0.955 (0.006) 0.946 (0.007) 0.000 (0.000) 

 MCMC +1SD 0.060 (0.005) 0.955 (0.006) 0.946 (0.007) 0.000 (0.000) 
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Table C17 

Model B, 6 Items, Correctly Specified, Covariance = 0.3, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.036 (0.049) 0.960 (0.068) 0.915 (0.145) 0.500 (0.280) 

 MCMC Diffuse 0.071 (0.065) 0.890 (0.132) 0.781 (0.259) 0.434 (0.157) 

 MCMC Weak 0.039 (0.047) 0.933 (0.106) 0.908 (0.140) 0.509 (0.182) 

 MCMC -1SD 0.076 (0.057) 0.829 (0.160) 0.783 (0.204) 0.370 (0.203) 

 MCMC +1SD 0.052 (0.049) 0.885 (0.162) 0.855 (0.192) 0.452 (0.186) 

100 ML 0.028 (0.037) 0.973 (0.045) 0.942 (0.096) 0.486 (0.288) 

 MCMC Diffuse 0.035 (0.041) 0.964 (0.055) 0.922 (0.124) 0.474 (0.157) 

 MCMC Weak 0.020 (0.031) 0.977 (0.044) 0.963 (0.072) 0.531 (0.171) 

 MCMC -1SD 0.059 (0.042) 0.906 (0.087) 0.865 (0.127) 0.344 (0.196) 

 MCMC +1SD 0.029 (0.034) 0.962 (0.058) 0.942 (0.089) 0.480 (0.164) 

250 ML 0.017 (0.023) 0.989 (0.020) 0.977 (0.042) 0.498 (0.288) 

 MCMC Diffuse 0.018 (0.025) 0.988 (0.021) 0.974 (0.048) 0.486 (0.166) 

 MCMC Weak 0.013 (0.021) 0.991 (0.018) 0.983 (0.035) 0.524 (0.171) 

 MCMC -1SD 0.027 (0.029) 0.976 (0.034) 0.957 (0.058) 0.423 (0.193) 

 MCMC +1SD 0.016 (0.022) 0.988 (0.020) 0.979 (0.037) 0.494 (0.169) 

500 ML 0.011 (0.016) 0.995 (0.010) 0.989 (0.020) 0.518 (0.295) 

 MCMC Diffuse 0.012 (0.017) 0.995 (0.010) 0.988 (0.022) 0.492 (0.165) 

 MCMC Weak 0.010 (0.015) 0.996 (0.009) 0.991 (0.020) 0.517 (0.170) 

 MCMC -1SD 0.013 (0.017) 0.994 (0.010) 0.987 (0.022) 0.486 (0.167) 

 MCMC +1SD 0.011 (0.016) 0.995 (0.010) 0.989 (0.021) 0.500 (0.169) 

1000 ML 0.008 (0.011) 0.997 (0.005) 0.994 (0.010) 0.501 (0.282) 

 MCMC Diffuse 0.009 (0.012) 0.997 (0.005) 0.994 (0.011) 0.488 (0.166) 

 MCMC Weak 0.008 (0.011) 0.997 (0.005) 0.995 (0.011) 0.505 (0.169) 

 MCMC -1SD 0.008 (0.012) 0.997 (0.005) 0.994 (0.011) 0.490 (0.171) 

 MCMC +1SD 0.008 (0.012) 0.997 (0.005) 0.994 (0.011) 0.493 (0.173) 
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Table C18 

Model B, 6 Items, Correctly Specified, Covariance = 0.3, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.046 (0.055) 0.981 (0.031) 0.958 (0.067) 0.457 (0.290) 

 MCMC Diffuse 0.072 (0.064) 0.964 (0.042) 0.927 (0.101) 0.428 (0.162) 

 MCMC Weak 0.042 (0.051) 0.977 (0.037) 0.965 (0.054) 0.501 (0.179) 

 MCMC -1SD 0.110 (0.075) 0.902 (0.090) 0.867 (0.118) 0.293 (0.223) 

 MCMC +1SD 0.062 (0.052) 0.960 (0.049) 0.944 (0.067) 0.432 (0.172) 

100 ML 0.030 (0.038) 0.991 (0.015) 0.981 (0.031) 0.473 (0.289) 

 MCMC Diffuse 0.037 (0.041) 0.988 (0.017) 0.975 (0.038) 0.458 (0.161) 

 MCMC Weak 0.025 (0.034) 0.991 (0.015) 0.985 (0.026) 0.510 (0.171) 

 MCMC -1SD 0.042 (0.045) 0.983 (0.029) 0.969 (0.049) 0.441 (0.180) 

 MCMC +1SD 0.038 (0.037) 0.986 (0.019) 0.976 (0.032) 0.442 (0.164) 

250 ML 0.017 (0.024) 0.997 (0.006) 0.993 (0.013) 0.494 (0.290) 

 MCMC Diffuse 0.019 (0.026) 0.996 (0.007) 0.992 (0.015) 0.487 (0.167) 

 MCMC Weak 0.015 (0.023) 0.997 (0.006) 0.994 (0.012) 0.502 (0.170) 

 MCMC -1SD 0.018 (0.024) 0.996 (0.006) 0.992 (0.014) 0.483 (0.169) 

 MCMC +1SD 0.020 (0.024) 0.996 (0.007) 0.992 (0.013) 0.470 (0.170) 

500 ML 0.012 (0.016) 0.998 (0.003) 0.997 (0.006) 0.517 (0.296) 

 MCMC Diffuse 0.011 (0.016) 0.998 (0.003) 0.997 (0.006) 0.499 (0.167) 

 MCMC Weak 0.011 (0.016) 0.998 (0.003) 0.997 (0.006) 0.510 (0.172) 

 MCMC -1SD 0.011 (0.017) 0.998 (0.003) 0.996 (0.007) 0.493 (0.170) 

 MCMC +1SD 0.012 (0.017) 0.998 (0.003) 0.996 (0.008) 0.485 (0.167) 

1000 ML 0.008 (0.011) 0.999 (0.001) 0.998 (0.003) 0.501 (0.283) 

 MCMC Diffuse 0.008 (0.012) 0.999 (0.001) 0.998 (0.003) 0.493 (0.167) 

 MCMC Weak 0.008 (0.012) 0.999 (0.001) 0.998 (0.003) 0.497 (0.170) 

 MCMC -1SD 0.009 (0.012) 0.999 (0.001) 0.998 (0.004) 0.494 (0.174) 

 MCMC +1SD 0.009 (0.012) 0.999 (0.002) 0.998 (0.004) 0.488 (0.171) 
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Table C19 

Model B, 6 Items, Correctly Specified, Covariance = 0.5, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.040 (0.051) 0.960 (0.066) 0.914 (0.141) 0.481 (0.283) 

 MCMC Diffuse 0.079 (0.072) 0.901 (0.115) 0.789 (0.250) 0.423 (0.158) 

 MCMC Weak 0.039 (0.048) 0.940 (0.097) 0.918 (0.132) 0.503 (0.191) 

 MCMC -1SD 0.066 (0.055) 0.882 (0.125) 0.848 (0.160) 0.406 (0.207) 

 MCMC +1SD 0.055 (0.050) 0.893 (0.152) 0.864 (0.179) 0.444 (0.179) 

100 ML 0.029 (0.038) 0.977 (0.038) 0.950 (0.082) 0.481 (0.290) 

 MCMC Diffuse 0.040 (0.046) 0.967 (0.047) 0.919 (0.130) 0.460 (0.156) 

 MCMC Weak 0.022 (0.031) 0.979 (0.038) 0.967 (0.060) 0.520 (0.172) 

 MCMC -1SD 0.054 (0.042) 0.930 (0.072) 0.899 (0.104) 0.362 (0.199) 

 MCMC +1SD 0.033 (0.036) 0.964 (0.053) 0.944 (0.084) 0.463 (0.167) 

250 ML 0.017 (0.023) 0.991 (0.016) 0.981 (0.035) 0.496 (0.288) 

 MCMC Diffuse 0.020 (0.026) 0.990 (0.017) 0.976 (0.043) 0.481 (0.167) 

 MCMC Weak 0.014 (0.021) 0.992 (0.015) 0.985 (0.029) 0.523 (0.173) 

 MCMC -1SD 0.040 (0.030) 0.966 (0.036) 0.944 (0.058) 0.329 (0.199) 

 MCMC +1SD 0.019 (0.024) 0.989 (0.019) 0.978 (0.037) 0.480 (0.174) 

500 ML 0.011 (0.016) 0.996 (0.008) 0.991 (0.017) 0.515 (0.293) 

 MCMC Diffuse 0.012 (0.017) 0.995 (0.008) 0.990 (0.019) 0.496 (0.164) 

 MCMC Weak 0.010 (0.016) 0.996 (0.008) 0.992 (0.017) 0.512 (0.170) 

 MCMC -1SD 0.019 (0.021) 0.990 (0.015) 0.981 (0.028) 0.428 (0.188) 

 MCMC +1SD 0.012 (0.017) 0.995 (0.009) 0.990 (0.018) 0.493 (0.172) 

1000 ML 0.008 (0.011) 0.998 (0.004) 0.996 (0.008) 0.501 (0.281) 

 MCMC Diffuse 0.009 (0.012) 0.998 (0.004) 0.995 (0.010) 0.489 (0.164) 

 MCMC Weak 0.008 (0.011) 0.998 (0.004) 0.995 (0.008) 0.505 (0.170) 

 MCMC -1SD 0.009 (0.012) 0.997 (0.004) 0.995 (0.010) 0.476 (0.167) 

 MCMC +1SD 0.008 (0.012) 0.998 (0.004) 0.995 (0.009) 0.486 (0.167) 
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Table C20 

Model B, 6 Items, Correctly Specified, Covariance = 0.5, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.046 (0.055) 0.983 (0.027) 0.964 (0.058) 0.454 (0.289) 

 MCMC Diffuse 0.082 (0.070) 0.966 (0.037) 0.925 (0.105) 0.413 (0.156) 

 MCMC Weak 0.050 (0.054) 0.976 (0.034) 0.965 (0.050) 0.474 (0.179) 

 MCMC -1SD 0.130 (0.065) 0.896 (0.073) 0.862 (0.097) 0.220 (0.200) 

 MCMC +1SD 0.065 (0.052) 0.963 (0.043) 0.949 (0.059) 0.416 (0.174) 

100 ML 0.030 (0.038) 0.992 (0.013) 0.984 (0.027) 0.473 (0.290) 

 MCMC Diffuse 0.040 (0.045) 0.989 (0.015) 0.976 (0.039) 0.454 (0.158) 

 MCMC Weak 0.026 (0.035) 0.992 (0.013) 0.986 (0.024) 0.502 (0.166) 

 MCMC -1SD 0.080 (0.063) 0.957 (0.047) 0.932 (0.072) 0.301 (0.225) 

 MCMC +1SD 0.039 (0.036) 0.988 (0.016) 0.980 (0.026) 0.435 (0.158) 

250 ML 0.017 (0.024) 0.997 (0.005) 0.994 (0.011) 0.493 (0.290) 

 MCMC Diffuse 0.019 (0.025) 0.997 (0.005) 0.993 (0.011) 0.478 (0.162) 

 MCMC Weak 0.016 (0.023) 0.997 (0.005) 0.994 (0.010) 0.501 (0.166) 

 MCMC -1SD 0.020 (0.026) 0.996 (0.007) 0.992 (0.015) 0.466 (0.171) 

 MCMC +1SD 0.020 (0.025) 0.996 (0.006) 0.993 (0.012) 0.459 (0.162) 

500 ML 0.012 (0.016) 0.999 (0.002) 0.997 (0.005) 0.516 (0.294) 

 MCMC Diffuse 0.012 (0.017) 0.999 (0.003) 0.997 (0.006) 0.492 (0.166) 

 MCMC Weak 0.011 (0.017) 0.999 (0.002) 0.997 (0.005) 0.502 (0.161) 

 MCMC -1SD 0.012 (0.017) 0.999 (0.003) 0.997 (0.006) 0.486 (0.160) 

 MCMC +1SD 0.012 (0.017) 0.999 (0.003) 0.997 (0.006) 0.482 (0.163) 

1000 ML 0.008 (0.011) 0.999 (0.001) 0.999 (0.002) 0.502 (0.282) 

 MCMC Diffuse 0.009 (0.012) 0.999 (0.001) 0.998 (0.003) 0.485 (0.163) 

 MCMC Weak 0.008 (0.012) 0.999 (0.001) 0.998 (0.003) 0.491 (0.172) 

 MCMC -1SD 0.009 (0.012) 0.999 (0.001) 0.998 (0.003) 0.483 (0.168) 

 MCMC +1SD 0.009 (0.012) 0.999 (0.001) 0.998 (0.003) 0.477 (0.162) 
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Table C21 

Model B, 6 Items, Misspecified, Covariance = 0.3, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.119 (0.065) 0.728 (0.200) 0.561 (0.301) 0.158 (0.207) 

 MCMC Diffuse 0.124 (0.059) 0.680 (0.210) 0.535 (0.287) 0.246 (0.181) 

 MCMC Weak 0.097 (0.057) 0.741 (0.200) 0.692 (0.234) 0.289 (0.208) 

 MCMC -1SD 0.113 (0.054) 0.676 (0.198) 0.618 (0.234) 0.233 (0.191) 

 MCMC +1SD 0.108 (0.054) 0.675 (0.235) 0.623 (0.267) 0.252 (0.192) 

100 ML 0.119 (0.042) 0.741 (0.134) 0.570 (0.220) 0.054 (0.110) 

 MCMC Diffuse 0.115 (0.041) 0.744 (0.132) 0.595 (0.213) 0.134 (0.142) 

 MCMC Weak 0.099 (0.040) 0.768 (0.133) 0.691 (0.181) 0.151 (0.162) 

 MCMC -1SD 0.106 (0.037) 0.739 (0.130) 0.657 (0.176) 0.130 (0.144) 

 MCMC +1SD 0.105 (0.037) 0.743 (0.138) 0.658 (0.186) 0.136 (0.144) 

250 ML 0.121 (0.023) 0.745 (0.076) 0.575 (0.127) 0.002 (0.018) 

 MCMC Diffuse 0.118 (0.024) 0.749 (0.077) 0.592 (0.139) 0.011 (0.033) 

 MCMC Weak 0.111 (0.023) 0.755 (0.076) 0.638 (0.121) 0.011 (0.034) 

 MCMC -1SD 0.113 (0.024) 0.749 (0.077) 0.628 (0.126) 0.011 (0.035) 

 MCMC +1SD 0.112 (0.023) 0.750 (0.077) 0.631 (0.123) 0.011 (0.033) 

500 ML 0.122 (0.015) 0.745 (0.049) 0.575 (0.082) 0.000 (0.000) 

 MCMC Diffuse 0.120 (0.017) 0.747 (0.052) 0.582 (0.101) 0.000 (0.000) 

 MCMC Weak 0.116 (0.016) 0.750 (0.052) 0.612 (0.094) 0.000 (0.001) 

 MCMC -1SD 0.116 (0.016) 0.748 (0.052) 0.614 (0.095) 0.000 (0.000) 

 MCMC +1SD 0.116 (0.017) 0.749 (0.052) 0.610 (0.099) 0.000 (0.001) 

1000 ML 0.122 (0.010) 0.747 (0.036) 0.578 (0.060) 0.000 (0.000) 

 MCMC Diffuse 0.120 (0.013) 0.749 (0.035) 0.588 (0.078) 0.000 (0.000) 

 MCMC Weak 0.118 (0.013) 0.750 (0.035) 0.600 (0.076) 0.000 (0.000) 

 MCMC -1SD 0.118 (0.013) 0.749 (0.035) 0.599 (0.076) 0.000 (0.000) 

 MCMC +1SD 0.118 (0.013) 0.750 (0.035) 0.598 (0.077) 0.000 (0.000) 
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Table C22 

Model B, 6 Items, Misspecified, Covariance = 0.3, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.179 (0.057) 0.830 (0.083) 0.717 (0.138) 0.041 (0.097) 

 MCMC Diffuse 0.177 (0.054) 0.814 (0.084) 0.724 (0.135) 0.108 (0.129) 

 MCMC Weak 0.154 (0.051) 0.832 (0.084) 0.789 (0.108) 0.125 (0.146) 

 MCMC -1SD 0.162 (0.051) 0.819 (0.083) 0.771 (0.111) 0.111 (0.135) 

 MCMC +1SD 0.163 (0.047) 0.810 (0.090) 0.765 (0.116) 0.099 (0.120) 

100 ML 0.180 (0.034) 0.834 (0.053) 0.723 (0.089) 0.002 (0.008) 

 MCMC Diffuse 0.174 (0.035) 0.835 (0.052) 0.740 (0.090) 0.018 (0.048) 

 MCMC Weak 0.162 (0.034) 0.840 (0.052) 0.774 (0.079) 0.020 (0.051) 

 MCMC -1SD 0.164 (0.034) 0.836 (0.052) 0.768 (0.083) 0.019 (0.051) 

 MCMC +1SD 0.165 (0.033) 0.833 (0.053) 0.765 (0.082) 0.017 (0.047) 

250 ML 0.180 (0.021) 0.836 (0.033) 0.727 (0.054) 0.000 (0.000) 

 MCMC Diffuse 0.176 (0.024) 0.837 (0.032) 0.736 (0.063) 0.000 (0.000) 

 MCMC Weak 0.171 (0.023) 0.838 (0.032) 0.751 (0.059) 0.000 (0.001) 

 MCMC -1SD 0.172 (0.024) 0.837 (0.032) 0.749 (0.062) 0.000 (0.000) 

 MCMC +1SD 0.172 (0.023) 0.837 (0.032) 0.750 (0.059) 0.000 (0.001) 

500 ML 0.180 (0.014) 0.837 (0.021) 0.728 (0.035) 0.000 (0.000) 

 MCMC Diffuse 0.177 (0.019) 0.838 (0.022) 0.736 (0.052) 0.000 (0.000) 

 MCMC Weak 0.175 (0.019) 0.838 (0.022) 0.741 (0.053) 0.000 (0.000) 

 MCMC -1SD 0.175 (0.018) 0.838 (0.022) 0.742 (0.049) 0.000 (0.000) 

 MCMC +1SD 0.175 (0.019) 0.837 (0.022) 0.741 (0.054) 0.000 (0.000) 

1000 ML 0.180 (0.010) 0.837 (0.015) 0.729 (0.026) 0.000 (0.000) 

 MCMC Diffuse 0.176 (0.015) 0.838 (0.015) 0.738 (0.043) 0.000 (0.000) 

 MCMC Weak 0.175 (0.015) 0.838 (0.015) 0.740 (0.043) 0.000 (0.000) 

 MCMC -1SD 0.175 (0.015) 0.838 (0.015) 0.740 (0.042) 0.000 (0.000) 

 MCMC +1SD 0.176 (0.015) 0.838 (0.015) 0.739 (0.042) 0.000 (0.000) 

 

  



 169 

Table C23 

Model B, 6 Items, Misspecified, Covariance = 0.5, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.149 (0.062) 0.672 (0.184) 0.467 (0.278) 0.086 (0.150) 

 MCMC Diffuse 0.151 (0.059) 0.635 (0.191) 0.457 (0.275) 0.176 (0.160) 

 MCMC Weak 0.123 (0.056) 0.683 (0.193) 0.621 (0.229) 0.205 (0.186) 

 MCMC -1SD 0.136 (0.053) 0.623 (0.185) 0.558 (0.219) 0.161 (0.163) 

 MCMC +1SD 0.131 (0.051) 0.630 (0.213) 0.565 (0.245) 0.175 (0.168) 

100 ML 0.149 (0.038) 0.678 (0.121) 0.465 (0.198) 0.015 (0.048) 

 MCMC Diffuse 0.144 (0.037) 0.680 (0.120) 0.495 (0.196) 0.061 (0.093) 

 MCMC Weak 0.128 (0.037) 0.700 (0.123) 0.598 (0.173) 0.067 (0.108) 

 MCMC -1SD 0.133 (0.036) 0.674 (0.119) 0.567 (0.165) 0.057 (0.098) 

 MCMC +1SD 0.131 (0.035) 0.682 (0.127) 0.575 (0.178) 0.061 (0.099) 

250 ML 0.149 (0.022) 0.682 (0.070) 0.470 (0.116) 0.000 (0.002) 

 MCMC Diffuse 0.146 (0.023) 0.686 (0.070) 0.489 (0.129) 0.001 (0.006) 

 MCMC Weak 0.138 (0.022) 0.690 (0.070) 0.543 (0.116) 0.001 (0.005) 

 MCMC -1SD 0.140 (0.022) 0.685 (0.070) 0.533 (0.117) 0.001 (0.007) 

 MCMC +1SD 0.139 (0.022) 0.687 (0.070) 0.536 (0.122) 0.001 (0.005) 

500 ML 0.150 (0.014) 0.683 (0.045) 0.472 (0.076) 0.000 (0.000) 

 MCMC Diffuse 0.147 (0.018) 0.685 (0.048) 0.484 (0.108) 0.000 (0.000) 

 MCMC Weak 0.142 (0.017) 0.687 (0.048) 0.519 (0.096) 0.000 (0.000) 

 MCMC -1SD 0.144 (0.017) 0.685 (0.047) 0.512 (0.099) 0.000 (0.000) 

 MCMC +1SD 0.144 (0.017) 0.686 (0.048) 0.511 (0.099) 0.000 (0.000) 

1000 ML 0.149 (0.010) 0.685 (0.033) 0.475 (0.055) 0.000 (0.000) 

 MCMC Diffuse 0.147 (0.014) 0.687 (0.032) 0.488 (0.084) 0.000 (0.000) 

 MCMC Weak 0.144 (0.013) 0.687 (0.032) 0.505 (0.081) 0.000 (0.000) 

 MCMC -1SD 0.145 (0.013) 0.687 (0.032) 0.501 (0.079) 0.000 (0.000) 

 MCMC +1SD 0.145 (0.014) 0.687 (0.032) 0.500 (0.084) 0.000 (0.000) 
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Table C24 

Model B, 6 Items, Misspecified, Covariance = 0.5, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.231 (0.051) 0.770 (0.077) 0.617 (0.128) 0.007 (0.032) 

 MCMC Diffuse 0.222 (0.049) 0.758 (0.078) 0.646 (0.125) 0.033 (0.070) 

 MCMC Weak 0.200 (0.046) 0.771 (0.079) 0.712 (0.105) 0.040 (0.079) 

 MCMC -1SD 0.206 (0.047) 0.760 (0.078) 0.695 (0.108) 0.035 (0.074) 

 MCMC +1SD 0.204 (0.042) 0.754 (0.083) 0.698 (0.107) 0.030 (0.061) 

100 ML 0.230 (0.032) 0.773 (0.050) 0.622 (0.083) 0.000 (0.000) 

 MCMC Diffuse 0.221 (0.033) 0.774 (0.050) 0.650 (0.092) 0.001 (0.009) 

 MCMC Weak 0.208 (0.033) 0.779 (0.050) 0.689 (0.080) 0.001 (0.010) 

 MCMC -1SD 0.212 (0.033) 0.774 (0.050) 0.677 (0.083) 0.001 (0.011) 

 MCMC +1SD 0.210 (0.032) 0.773 (0.050) 0.683 (0.079) 0.001 (0.010) 

250 ML 0.230 (0.020) 0.775 (0.031) 0.626 (0.051) 0.000 (0.000) 

 MCMC Diffuse 0.225 (0.024) 0.776 (0.030) 0.638 (0.066) 0.000 (0.000) 

 MCMC Weak 0.218 (0.023) 0.777 (0.030) 0.661 (0.063) 0.000 (0.000) 

 MCMC -1SD 0.219 (0.023) 0.776 (0.030) 0.659 (0.062) 0.000 (0.000) 

 MCMC +1SD 0.219 (0.023) 0.776 (0.030) 0.658 (0.063) 0.000 (0.000) 

500 ML 0.229 (0.013) 0.776 (0.020) 0.626 (0.033) 0.000 (0.000) 

 MCMC Diffuse 0.225 (0.019) 0.777 (0.021) 0.639 (0.055) 0.000 (0.000) 

 MCMC Weak 0.222 (0.019) 0.777 (0.021) 0.648 (0.053) 0.000 (0.000) 

 MCMC -1SD 0.222 (0.020) 0.777 (0.021) 0.647 (0.057) 0.000 (0.000) 

 MCMC +1SD 0.222 (0.018) 0.777 (0.021) 0.649 (0.052) 0.000 (0.000) 

1000 ML 0.229 (0.009) 0.777 (0.015) 0.628 (0.024) 0.000 (0.000) 

 MCMC Diffuse 0.225 (0.017) 0.777 (0.014) 0.637 (0.054) 0.000 (0.000) 

 MCMC Weak 0.224 (0.017) 0.778 (0.014) 0.642 (0.050) 0.000 (0.000) 

 MCMC -1SD 0.224 (0.017) 0.778 (0.014) 0.643 (0.050) 0.000 (0.000) 

 MCMC +1SD 0.224 (0.016) 0.778 (0.014) 0.643 (0.049) 0.000 (0.000) 
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Table C25 

Model B, 12 Items, Correctly Specified, Covariance = 0.3, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.048 (0.037) 0.899 (0.099) 0.872 (0.126) 0.308 (0.266) 

 MCMC Diffuse 0.058 (0.035) 0.862 (0.111) 0.829 (0.139) 0.447 (0.228) 

 MCMC Weak 0.044 (0.034) 0.902 (0.098) 0.890 (0.110) 0.533 (0.242) 

 MCMC -1SD 0.070 (0.035) 0.807 (0.125) 0.784 (0.139) 0.357 (0.246) 

 MCMC +1SD 0.054 (0.034) 0.859 (0.123) 0.844 (0.136) 0.455 (0.244) 

100 ML 0.025 (0.024) 0.963 (0.046) 0.952 (0.058) 0.402 (0.282) 

 MCMC Diffuse 0.028 (0.024) 0.957 (0.050) 0.946 (0.063) 0.473 (0.232) 

 MCMC Weak 0.022 (0.023) 0.966 (0.046) 0.960 (0.055) 0.525 (0.245) 

 MCMC -1SD 0.032 (0.026) 0.944 (0.061) 0.933 (0.072) 0.433 (0.247) 

 MCMC +1SD 0.029 (0.024) 0.951 (0.054) 0.942 (0.064) 0.450 (0.234) 

250 ML 0.013 (0.014) 0.988 (0.018) 0.984 (0.023) 0.465 (0.289) 

 MCMC Diffuse 0.013 (0.014) 0.988 (0.017) 0.984 (0.022) 0.488 (0.227) 

 MCMC Weak 0.012 (0.013) 0.989 (0.016) 0.987 (0.020) 0.509 (0.228) 

 MCMC -1SD 0.013 (0.014) 0.987 (0.017) 0.985 (0.021) 0.481 (0.231) 

 MCMC +1SD 0.014 (0.014) 0.986 (0.018) 0.983 (0.022) 0.470 (0.230) 

500 ML 0.008 (0.010) 0.995 (0.008) 0.993 (0.011) 0.485 (0.287) 

 MCMC Diffuse 0.009 (0.010) 0.994 (0.009) 0.992 (0.011) 0.484 (0.238) 

 MCMC Weak 0.008 (0.010) 0.995 (0.009) 0.993 (0.011) 0.501 (0.237) 

 MCMC -1SD 0.008 (0.010) 0.994 (0.009) 0.993 (0.011) 0.481 (0.235) 

 MCMC +1SD 0.009 (0.010) 0.994 (0.009) 0.992 (0.011) 0.476 (0.237) 

1000 ML 0.006 (0.007) 0.997 (0.004) 0.997 (0.005) 0.503 (0.293) 

 MCMC Diffuse 0.005 (0.007) 0.997 (0.004) 0.997 (0.005) 0.495 (0.229) 

 MCMC Weak 0.005 (0.007) 0.998 (0.004) 0.997 (0.005) 0.500 (0.228) 

 MCMC -1SD 0.006 (0.007) 0.997 (0.004) 0.997 (0.005) 0.493 (0.231) 

 MCMC +1SD 0.006 (0.007) 0.997 (0.004) 0.997 (0.005) 0.487 (0.227) 
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Table C26 

Model B, 12 Items, Correctly Specified, Covariance = 0.3, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.050 (0.036) 0.962 (0.038) 0.951 (0.048) 0.291 (0.259) 

 MCMC Diffuse 0.059 (0.035) 0.950 (0.041) 0.939 (0.051) 0.443 (0.231) 

 MCMC Weak 0.046 (0.035) 0.962 (0.037) 0.957 (0.043) 0.513 (0.241) 

 MCMC -1SD 0.056 (0.036) 0.953 (0.042) 0.944 (0.049) 0.454 (0.240) 

 MCMC +1SD 0.058 (0.034) 0.947 (0.045) 0.940 (0.050) 0.430 (0.235) 

100 ML 0.025 (0.024) 0.987 (0.016) 0.984 (0.020) 0.397 (0.282) 

 MCMC Diffuse 0.028 (0.024) 0.985 (0.017) 0.981 (0.021) 0.473 (0.234) 

 MCMC Weak 0.024 (0.023) 0.988 (0.016) 0.985 (0.019) 0.510 (0.236) 

 MCMC -1SD 0.027 (0.024) 0.986 (0.017) 0.983 (0.021) 0.478 (0.237) 

 MCMC +1SD 0.032 (0.024) 0.982 (0.019) 0.978 (0.022) 0.428 (0.229) 

250 ML 0.013 (0.014) 0.996 (0.006) 0.995 (0.007) 0.463 (0.287) 

 MCMC Diffuse 0.013 (0.014) 0.996 (0.006) 0.995 (0.007) 0.483 (0.229) 

 MCMC Weak 0.012 (0.014) 0.996 (0.005) 0.995 (0.007) 0.502 (0.227) 

 MCMC -1SD 0.013 (0.014) 0.996 (0.006) 0.995 (0.007) 0.483 (0.224) 

 MCMC +1SD 0.015 (0.014) 0.995 (0.006) 0.994 (0.007) 0.452 (0.220) 

500 ML 0.008 (0.010) 0.998 (0.003) 0.998 (0.003) 0.484 (0.288) 

 MCMC Diffuse 0.009 (0.010) 0.998 (0.003) 0.998 (0.004) 0.491 (0.232) 

 MCMC Weak 0.008 (0.010) 0.998 (0.003) 0.998 (0.003) 0.496 (0.235) 

 MCMC -1SD 0.009 (0.010) 0.998 (0.003) 0.998 (0.004) 0.488 (0.236) 

 MCMC +1SD 0.009 (0.010) 0.998 (0.003) 0.997 (0.004) 0.464 (0.233) 

1000 ML 0.006 (0.007) 0.999 (0.001) 0.999 (0.002) 0.503 (0.293) 

 MCMC Diffuse 0.005 (0.007) 0.999 (0.001) 0.999 (0.002) 0.496 (0.228) 

 MCMC Weak 0.005 (0.007) 0.999 (0.001) 0.999 (0.002) 0.498 (0.227) 

 MCMC -1SD 0.005 (0.007) 0.999 (0.001) 0.999 (0.002) 0.496 (0.225) 

 MCMC +1SD 0.006 (0.007) 0.999 (0.001) 0.999 (0.002) 0.480 (0.226) 
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Table C27 

Model B, 12 Items, Correctly Specified, Covariance = 0.5, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.048 (0.037) 0.905 (0.093) 0.880 (0.118) 0.303 (0.265) 

 MCMC Diffuse 0.059 (0.035) 0.872 (0.104) 0.841 (0.130) 0.444 (0.229) 

 MCMC Weak 0.044 (0.034) 0.908 (0.092) 0.897 (0.103) 0.527 (0.243) 

 MCMC -1SD 0.069 (0.034) 0.825 (0.113) 0.804 (0.127) 0.350 (0.245) 

 MCMC +1SD 0.055 (0.034) 0.865 (0.118) 0.851 (0.132) 0.448 (0.243) 

100 ML 0.025 (0.024) 0.966 (0.042) 0.956 (0.053) 0.400 (0.282) 

 MCMC Diffuse 0.028 (0.025) 0.960 (0.047) 0.950 (0.059) 0.478 (0.233) 

 MCMC Weak 0.022 (0.023) 0.969 (0.041) 0.964 (0.048) 0.529 (0.234) 

 MCMC -1SD 0.043 (0.027) 0.923 (0.063) 0.909 (0.074) 0.335 (0.242) 

 MCMC +1SD 0.030 (0.024) 0.954 (0.050) 0.945 (0.060) 0.446 (0.228) 

250 ML 0.013 (0.014) 0.989 (0.016) 0.986 (0.021) 0.464 (0.290) 

 MCMC Diffuse 0.013 (0.014) 0.989 (0.015) 0.986 (0.019) 0.484 (0.227) 

 MCMC Weak 0.012 (0.013) 0.990 (0.014) 0.988 (0.018) 0.509 (0.231) 

 MCMC -1SD 0.014 (0.015) 0.987 (0.017) 0.984 (0.021) 0.464 (0.235) 

 MCMC +1SD 0.015 (0.014) 0.987 (0.017) 0.984 (0.021) 0.459 (0.225) 

500 ML 0.008 (0.010) 0.995 (0.008) 0.994 (0.010) 0.485 (0.288) 

 MCMC Diffuse 0.009 (0.010) 0.995 (0.008) 0.993 (0.010) 0.483 (0.236) 

 MCMC Weak 0.008 (0.010) 0.995 (0.008) 0.994 (0.010) 0.503 (0.237) 

 MCMC -1SD 0.009 (0.010) 0.995 (0.008) 0.993 (0.010) 0.481 (0.240) 

 MCMC +1SD 0.009 (0.010) 0.994 (0.008) 0.993 (0.011) 0.468 (0.236) 

1000 ML 0.006 (0.007) 0.998 (0.004) 0.997 (0.005) 0.503 (0.293) 

 MCMC Diffuse 0.006 (0.007) 0.998 (0.004) 0.997 (0.005) 0.488 (0.229) 

 MCMC Weak 0.005 (0.007) 0.998 (0.004) 0.997 (0.005) 0.497 (0.230) 

 MCMC -1SD 0.006 (0.007) 0.998 (0.004) 0.997 (0.005) 0.484 (0.231) 

 MCMC +1SD 0.006 (0.007) 0.997 (0.004) 0.997 (0.005) 0.482 (0.227) 
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Table C28 

Model B, 12 Items, Correctly Specified, Covariance = 0.5, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.050 (0.036) 0.965 (0.035) 0.955 (0.044) 0.291 (0.260) 

 MCMC Diffuse 0.060 (0.034) 0.953 (0.038) 0.943 (0.047) 0.436 (0.228) 

 MCMC Weak 0.047 (0.035) 0.964 (0.035) 0.959 (0.040) 0.504 (0.239) 

 MCMC -1SD 0.071 (0.043) 0.933 (0.058) 0.922 (0.067) 0.369 (0.262) 

 MCMC +1SD 0.059 (0.034) 0.950 (0.042) 0.943 (0.048) 0.427 (0.236) 

100 ML 0.025 (0.024) 0.988 (0.014) 0.985 (0.018) 0.396 (0.282) 

 MCMC Diffuse 0.028 (0.024) 0.987 (0.015) 0.983 (0.019) 0.464 (0.228) 

 MCMC Weak 0.024 (0.023) 0.989 (0.015) 0.986 (0.018) 0.514 (0.235) 

 MCMC -1SD 0.029 (0.024) 0.986 (0.016) 0.983 (0.020) 0.466 (0.229) 

 MCMC +1SD 0.032 (0.024) 0.983 (0.017) 0.980 (0.020) 0.424 (0.223) 

250 ML 0.013 (0.014) 0.996 (0.005) 0.995 (0.007) 0.463 (0.288) 

 MCMC Diffuse 0.013 (0.014) 0.996 (0.005) 0.995 (0.007) 0.483 (0.223) 

 MCMC Weak 0.012 (0.014) 0.997 (0.005) 0.996 (0.006) 0.497 (0.223) 

 MCMC -1SD 0.013 (0.014) 0.996 (0.005) 0.995 (0.006) 0.479 (0.221) 

 MCMC +1SD 0.016 (0.015) 0.995 (0.006) 0.994 (0.007) 0.448 (0.220) 

500 ML 0.008 (0.010) 0.998 (0.002) 0.998 (0.003) 0.484 (0.289) 

 MCMC Diffuse 0.009 (0.010) 0.998 (0.003) 0.998 (0.003) 0.485 (0.229) 

 MCMC Weak 0.008 (0.010) 0.998 (0.003) 0.998 (0.003) 0.500 (0.227) 

 MCMC -1SD 0.009 (0.010) 0.998 (0.003) 0.998 (0.003) 0.483 (0.233) 

 MCMC +1SD 0.009 (0.010) 0.998 (0.003) 0.998 (0.003) 0.461 (0.227) 

1000 ML 0.005 (0.007) 0.999 (0.001) 0.999 (0.001) 0.503 (0.293) 

 MCMC Diffuse 0.005 (0.007) 0.999 (0.001) 0.999 (0.001) 0.490 (0.224) 

 MCMC Weak 0.006 (0.007) 0.999 (0.001) 0.999 (0.001) 0.493 (0.224) 

 MCMC -1SD 0.006 (0.007) 0.999 (0.001) 0.999 (0.002) 0.492 (0.225) 

 MCMC +1SD 0.006 (0.007) 0.999 (0.001) 0.999 (0.002) 0.479 (0.221) 
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Table C29 

Model B, 12 Items, Misspecified, Covariance = 0.3, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.072 (0.035) 0.811 (0.122) 0.769 (0.149) 0.155 (0.199) 

 MCMC Diffuse 0.080 (0.032) 0.771 (0.125) 0.726 (0.151) 0.299 (0.221) 

 MCMC Weak 0.067 (0.033) 0.816 (0.120) 0.798 (0.132) 0.364 (0.242) 

 MCMC -1SD 0.074 (0.032) 0.787 (0.120) 0.765 (0.133) 0.318 (0.234) 

 MCMC +1SD 0.075 (0.031) 0.768 (0.136) 0.748 (0.148) 0.302 (0.229) 

100 ML 0.060 (0.023) 0.866 (0.073) 0.836 (0.090) 0.100 (0.155) 

 MCMC Diffuse 0.061 (0.022) 0.856 (0.076) 0.827 (0.093) 0.185 (0.183) 

 MCMC Weak 0.056 (0.023) 0.872 (0.076) 0.853 (0.087) 0.219 (0.204) 

 MCMC -1SD 0.059 (0.023) 0.859 (0.076) 0.838 (0.088) 0.191 (0.193) 

 MCMC +1SD 0.060 (0.021) 0.852 (0.079) 0.831 (0.092) 0.177 (0.180) 

250 ML 0.058 (0.011) 0.880 (0.039) 0.853 (0.047) 0.007 (0.029) 

 MCMC Diffuse 0.058 (0.011) 0.879 (0.038) 0.853 (0.047) 0.021 (0.052) 

 MCMC Weak 0.056 (0.011) 0.882 (0.038) 0.860 (0.046) 0.024 (0.055) 

 MCMC -1SD 0.057 (0.011) 0.880 (0.038) 0.858 (0.045) 0.021 (0.053) 

 MCMC +1SD 0.057 (0.011) 0.878 (0.038) 0.856 (0.046) 0.020 (0.053) 

500 ML 0.058 (0.007) 0.880 (0.024) 0.854 (0.029) 0.000 (0.000) 

 MCMC Diffuse 0.058 (0.007) 0.880 (0.025) 0.854 (0.031) 0.000 (0.002) 

 MCMC Weak 0.057 (0.007) 0.880 (0.025) 0.857 (0.030) 0.000 (0.003) 

 MCMC -1SD 0.058 (0.007) 0.880 (0.025) 0.856 (0.031) 0.000 (0.003) 

 MCMC +1SD 0.058 (0.007) 0.879 (0.025) 0.855 (0.030) 0.000 (0.001) 

1000 ML 0.058 (0.004) 0.881 (0.016) 0.854 (0.019) 0.000 (0.000) 

 MCMC Diffuse 0.058 (0.005) 0.881 (0.016) 0.856 (0.021) 0.000 (0.000) 

 MCMC Weak 0.057 (0.005) 0.881 (0.016) 0.857 (0.020) 0.000 (0.000) 

 MCMC -1SD 0.058 (0.005) 0.881 (0.016) 0.857 (0.020) 0.000 (0.000) 

 MCMC +1SD 0.058 (0.005) 0.881 (0.016) 0.856 (0.020) 0.000 (0.000) 
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Table C30 

Model B, 12 Items, Misspecified, Covariance = 0.3, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.094 (0.030) 0.898 (0.051) 0.875 (0.062) 0.065 (0.118) 

 MCMC Diffuse 0.099 (0.028) 0.885 (0.051) 0.865 (0.061) 0.177 (0.174) 

 MCMC Weak 0.089 (0.029) 0.899 (0.050) 0.887 (0.057) 0.224 (0.202) 

 MCMC -1SD 0.093 (0.029) 0.892 (0.050) 0.879 (0.057) 0.201 (0.194) 

 MCMC +1SD 0.096 (0.026) 0.883 (0.054) 0.871 (0.059) 0.173 (0.174) 

100 ML 0.084 (0.018) 0.921 (0.028) 0.903 (0.035) 0.016 (0.051) 

 MCMC Diffuse 0.084 (0.017) 0.918 (0.029) 0.902 (0.035) 0.052 (0.090) 

 MCMC Weak 0.080 (0.018) 0.922 (0.029) 0.910 (0.034) 0.061 (0.101) 

 MCMC -1SD 0.083 (0.018) 0.919 (0.029) 0.905 (0.034) 0.053 (0.097) 

 MCMC +1SD 0.084 (0.016) 0.914 (0.029) 0.901 (0.034) 0.042 (0.078) 

250 ML 0.082 (0.009) 0.926 (0.015) 0.909 (0.018) 0.000 (0.000) 

 MCMC Diffuse 0.081 (0.009) 0.926 (0.015) 0.910 (0.018) 0.000 (0.002) 

 MCMC Weak 0.080 (0.009) 0.926 (0.015) 0.912 (0.018) 0.000 (0.004) 

 MCMC -1SD 0.080 (0.009) 0.926 (0.015) 0.912 (0.018) 0.000 (0.002) 

 MCMC +1SD 0.081 (0.009) 0.925 (0.015) 0.910 (0.018) 0.000 (0.001) 

500 ML 0.082 (0.006) 0.926 (0.010) 0.910 (0.012) 0.000 (0.000) 

 MCMC Diffuse 0.081 (0.006) 0.926 (0.010) 0.910 (0.013) 0.000 (0.000) 

 MCMC Weak 0.081 (0.006) 0.926 (0.010) 0.911 (0.013) 0.000 (0.000) 

 MCMC -1SD 0.081 (0.006) 0.926 (0.010) 0.911 (0.013) 0.000 (0.000) 

 MCMC +1SD 0.081 (0.006) 0.925 (0.010) 0.910 (0.013) 0.000 (0.000) 

1000 ML 0.081 (0.004) 0.926 (0.006) 0.910 (0.008) 0.000 (0.000) 

 MCMC Diffuse 0.081 (0.004) 0.926 (0.007) 0.911 (0.009) 0.000 (0.000) 

 MCMC Weak 0.081 (0.004) 0.926 (0.007) 0.911 (0.009) 0.000 (0.000) 

 MCMC -1SD 0.081 (0.004) 0.926 (0.007) 0.911 (0.009) 0.000 (0.000) 

 MCMC +1SD 0.081 (0.004) 0.926 (0.007) 0.911 (0.009) 0.000 (0.000) 
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Table C31 

Model B, 12 Items, Misspecified, Covariance = 0.5, Lambda = 0.5 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.085 (0.032) 0.777 (0.117) 0.728 (0.143) 0.098 (0.154) 

 MCMC Diffuse 0.090 (0.030) 0.741 (0.121) 0.691 (0.147) 0.233 (0.203) 

 MCMC Weak 0.079 (0.031) 0.781 (0.117) 0.760 (0.130) 0.281 (0.228) 

 MCMC -1SD 0.085 (0.030) 0.754 (0.116) 0.729 (0.129) 0.245 (0.215) 

 MCMC +1SD 0.085 (0.029) 0.740 (0.130) 0.718 (0.142) 0.229 (0.202) 

100 ML 0.074 (0.020) 0.823 (0.069) 0.784 (0.085) 0.037 (0.083) 

 MCMC Diffuse 0.075 (0.019) 0.814 (0.073) 0.775 (0.091) 0.093 (0.132) 

 MCMC Weak 0.070 (0.020) 0.829 (0.072) 0.804 (0.084) 0.109 (0.145) 

 MCMC -1SD 0.073 (0.019) 0.818 (0.072) 0.790 (0.085) 0.098 (0.138) 

 MCMC +1SD 0.074 (0.018) 0.812 (0.073) 0.785 (0.085) 0.085 (0.126) 

250 ML 0.072 (0.010) 0.834 (0.037) 0.797 (0.045) 0.000 (0.003) 

 MCMC Diffuse 0.072 (0.010) 0.834 (0.036) 0.799 (0.045) 0.002 (0.011) 

 MCMC Weak 0.070 (0.010) 0.837 (0.036) 0.806 (0.044) 0.001 (0.009) 

 MCMC -1SD 0.071 (0.010) 0.834 (0.036) 0.803 (0.044) 0.001 (0.010) 

 MCMC +1SD 0.071 (0.010) 0.833 (0.036) 0.802 (0.044) 0.001 (0.008) 

500 ML 0.072 (0.006) 0.835 (0.023) 0.798 (0.028) 0.000 (0.000) 

 MCMC Diffuse 0.072 (0.006) 0.834 (0.024) 0.799 (0.030) 0.000 (0.000) 

 MCMC Weak 0.071 (0.006) 0.834 (0.024) 0.801 (0.030) 0.000 (0.000) 

 MCMC -1SD 0.072 (0.006) 0.834 (0.024) 0.800 (0.030) 0.000 (0.000) 

 MCMC +1SD 0.072 (0.006) 0.833 (0.024) 0.800 (0.029) 0.000 (0.000) 

1000 ML 0.072 (0.004) 0.835 (0.016) 0.798 (0.019) 0.000 (0.000) 

 MCMC Diffuse 0.072 (0.005) 0.835 (0.016) 0.800 (0.021) 0.000 (0.000) 

 MCMC Weak 0.072 (0.004) 0.835 (0.016) 0.801 (0.021) 0.000 (0.000) 

 MCMC -1SD 0.072 (0.004) 0.835 (0.016) 0.801 (0.021) 0.000 (0.000) 

 MCMC +1SD 0.072 (0.004) 0.835 (0.016) 0.801 (0.021) 0.000 (0.000) 
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Table C32 

Model B, 12 Items, Misspecified, Covariance = 0.5, Lambda = 0.7 

N Estimation RMSEA (SD) CFI (SD) TLI (SD) 

P-value/ 

PPP (SD) 

50 ML 0.115 (0.025) 0.866 (0.048) 0.836 (0.059) 0.018 (0.050) 

 MCMC Diffuse 0.117 (0.023) 0.855 (0.048) 0.829 (0.057) 0.086 (0.119) 

 MCMC Weak 0.109 (0.025) 0.867 (0.048) 0.851 (0.055) 0.107 (0.142) 

 MCMC -1SD 0.113 (0.025) 0.860 (0.048) 0.843 (0.055) 0.094 (0.135) 

 MCMC +1SD 0.115 (0.022) 0.852 (0.051) 0.836 (0.057) 0.078 (0.113) 

100 ML 0.106 (0.015) 0.886 (0.027) 0.860 (0.033) 0.001 (0.005) 

 MCMC Diffuse 0.106 (0.015) 0.883 (0.028) 0.860 (0.034) 0.006 (0.023) 

 MCMC Weak 0.102 (0.015) 0.887 (0.028) 0.869 (0.032) 0.007 (0.024) 

 MCMC -1SD 0.104 (0.015) 0.884 (0.027) 0.865 (0.033) 0.006 (0.025) 

 MCMC +1SD 0.105 (0.014) 0.880 (0.028) 0.862 (0.033) 0.004 (0.017) 

250 ML 0.104 (0.008) 0.890 (0.015) 0.866 (0.018) 0.000 (0.000) 

 MCMC Diffuse 0.103 (0.008) 0.890 (0.015) 0.867 (0.018) 0.000 (0.000) 

 MCMC Weak 0.102 (0.009) 0.891 (0.015) 0.870 (0.018) 0.000 (0.000) 

 MCMC -1SD 0.103 (0.009) 0.890 (0.015) 0.869 (0.018) 0.000 (0.000) 

 MCMC +1SD 0.103 (0.008) 0.889 (0.015) 0.868 (0.018) 0.000 (0.000) 

500 ML 0.104 (0.005) 0.891 (0.010) 0.866 (0.012) 0.000 (0.000) 

 MCMC Diffuse 0.104 (0.006) 0.890 (0.010) 0.867 (0.013) 0.000 (0.000) 

 MCMC Weak 0.103 (0.006) 0.890 (0.010) 0.868 (0.013) 0.000 (0.000) 

 MCMC -1SD 0.103 (0.006) 0.890 (0.010) 0.868 (0.013) 0.000 (0.000) 

 MCMC +1SD 0.103 (0.006) 0.890 (0.010) 0.867 (0.013) 0.000 (0.000) 

1000 ML 0.104 (0.004) 0.891 (0.007) 0.866 (0.008) 0.000 (0.000) 

 MCMC Diffuse 0.103 (0.004) 0.891 (0.007) 0.868 (0.009) 0.000 (0.000) 

 MCMC Weak 0.103 (0.004) 0.891 (0.007) 0.868 (0.009) 0.000 (0.000) 

 MCMC -1SD 0.103 (0.004) 0.891 (0.007) 0.868 (0.009) 0.000 (0.000) 

 MCMC +1SD 0.103 (0.004) 0.891 (0.007) 0.868 (0.009) 0.000 (0.000) 
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Appendix D 

Table D1 

Model A, 6 Items, Correctly Specified 

  RMSEA  CFI  TLI  PPP 

N Prior PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE 

50 Diffuse .060 .005 .173 .168  .912 .497 .994 .497  .854 .344 .991 .647  .447 

 Weak .042 .005 .136 .131  .936 .565 .994 .429  .912 .478 .993 .515  .501 

 -1SD .085 .027 .164 .137  .846 .444 .965 .521  .805 .360 .957 .597  .350 

 +1SD .055 .005 .145 .140  .891 .518 .991 .473  .871 .447 .989 .542  .447 

100 Diffuse .031 .002 .115 .113  .970 .756 .998 .242  .945 .595 .997 .402  .480 

 Weak .022 .002 .095 .093  .978 .788 .999 .211  .965 .694 .998 .304  .522 

 -1SD .047 .010 .115 .105  .933 .710 .987 .277  .904 .596 .982 .386  .403 

 +1SD .030 .002 .103 .101  .966 .751 .998 .247  .950 .654 .996 .342  .473 

250 Diffuse .018 .001 .070 .069  .989 .914 .999 .085  .978 .838 .998 .160  .483 

 Weak .015 .001 .063 .062  .991 .921 .999 .078  .984 .866 .999 .133  .508 

 -1SD .022 .002 .071 .069  .982 .903 .998 .095  .970 .836 .996 .160  .452 

 +1SD .018 .001 .067 .066  .989 .913 .999 .086  .981 .855 .998 .143  .479 

500 Diffuse .012 .001 .048 .047  .995 .958 1.00 .042  .990 .920 .999 .079  .494 

 Weak .011 .001 .045 .044  .995 .961 1.00 .039  .992 .930 .999 .069  .506 

 -1SD .012 .001 .048 .047  .994 .957 1.00 .043  .990 .922 .999 .077  .488 

 +1SD .011 .001 .047 .046  .995 .959 1.00 .041  .991 .927 .999 .072  .494 

1000 Diffuse .008 .000 .034 .034  .998 .980 1.00 .020  .995 .961 1.00 .039  .491 

 Weak .008 .000 .033 .033  .998 .980 1.00 .020  .996 .963 1.00 .037  .499 

 -1SD .008 .001 .034 .033  .997 .979 1.00 .021  .995 .962 1.00 .038  .494 

 +1SD .008 .000 .033 .033  .997 .980 1.00 .020  .995 .962 1.00 .038  .492 

PE = point estimate; CI = credibility interval; LL = lower limit of CI; UL = upper limit of CI. Bolded PE values are indicative of poor 

fit based on fixed cutoffs. Bolded CIs contain fixed cutoff value.  
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Table D2 

Model A, 6 Items, Misspecified 

  RMSEA  CFI  TLI  PPP 

N Prior PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE 

50 Diffuse .093 .026 .181 .155  .837 .446 .970 .524  .759 .319 .955 .636  .339 

 Weak .070 .021 .145 .124  .877 .507 .973 .466  .849 .444 .967 .523  .392 

 -1SD .082 .024 .155 .131  .846 .455 .966 .511  .810 .393 .959 .566  .345 

 +1SD .085 .025 .158 .133  .821 .459 .963 .504  .791 .400 .956 .556  .333 

100 Diffuse .078 .033 .136 .103  .898 .675 .969 .294  .836 .516 .950 .434  .277 

 Weak .066 .028 .118 .090  .913 .708 .971 .263  .881 .617 .960 .343  .309 

 -1SD .073 .031 .124 .093  .898 .680 .967 .287  .861 .582 .954 .372  .280 

 +1SD .074 .031 .125 .094  .894 .670 .966 .296  .856 .574 .954 .380  .273 

250 Diffuse .080 .053 .107 .054  .910 .828 .950 .122  .852 .718 .918 .200  .136 

 Weak .074 .050 .100 .050  .915 .835 .951 .116  .872 .753 .926 .173  .150 

 -1SD .076 .051 .102 .051  .911 .828 .949 .121  .865 .743 .924 .181  .140 

 +1SD .077 .051 .102 .051  .910 .828 .949 .121  .865 .742 .924 .182  .140 

500 Diffuse .082 .067 .096 .029  .911 .870 .935 .065  .854 .786 .893 .107  .052 

 Weak .079 .065 .093 .028  .913 .873 .935 .062  .863 .801 .899 .098  .055 

 -1SD .080 .065 .093 .028  .912 .871 .935 .064  .862 .798 .898 .100  .054 

 +1SD .080 .065 .093 .028  .912 .871 .935 .064  .863 .800 .899 .099  .054 

1000 Diffuse .082 .075 .089 .014  .912 .891 .924 .033  .855 .822 .876 .054  .012 

 Weak .081 .075 .089 .014  .912 .892 .924 .032  .859 .826 .879 .053  .012 

 -1SD .082 .075 .088 .013  .912 .892 .924 .032  .859 .826 .879 .053  .011 

 +1SD .082 .075 .089 .014  .912 .891 .924 .033  .858 .825 .878 .053  .012 

PE = point estimate; CI = credibility interval; LL = lower limit of CI; UL = upper limit of CI. Bolded PE values are indicative of poor 

fit based on fixed cutoffs. Bolded CIs contain fixed cutoff value.  
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Table D3 

Model A, 12 Items, Correctly Specified 

  RMSEA  CFI  TLI  PPP 

N Prior PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE 

50 Diffuse .058 .020 .096 .076  .898 .722 .969 .247  .876 .665 .962 .297  .449 

 Weak .046 .015 .081 .066  .923 .773 .976 .203  .914 .745 .973 .228  .520 

 -1SD .063 .028 .097 .069  .868 .698 .946 .248  .851 .661 .939 .278  .400 

 +1SD .055 .021 .089 .068  .893 .727 .964 .237  .882 .700 .960 .260  .445 

100 Diffuse .028 .007 .057 .050  .966 .887 .991 .104  .958 .861 .989 .128  .469 

 Weak .023 .006 .050 .044  .973 .903 .993 .090  .969 .886 .992 .106  .516 

 -1SD .031 .009 .058 .049  .957 .876 .987 .111  .950 .853 .984 .131  .444 

 +1SD .030 .008 .057 .049  .962 .882 .990 .108  .956 .863 .988 .125  .442 

250 Diffuse .013 .003 .031 .028  .991 .962 .998 .036  .988 .953 .997 .044  .485 

 Weak .012 .002 .029 .027  .992 .965 .998 .033  .990 .958 .998 .040  .504 

 -1SD .013 .003 .031 .028  .990 .962 .998 .036  .988 .953 .997 .044  .484 

 +1SD .014 .003 .033 .030  .989 .960 .998 .038  .987 .951 .997 .046  .463 

500 Diffuse .009 .002 .021 .019  .996 .982 .999 .017  .994 .978 .999 .021  .488 

 Weak .008 .002 .020 .018  .996 .983 .999 .016  .995 .979 .999 .020  .498 

 -1SD .009 .002 .021 .019  .995 .982 .999 .017  .994 .977 .999 .022  .484 

 +1SD .009 .002 .022 .020  .995 .981 .999 .018  .994 .977 .999 .022  .473 

1000 Diffuse .006 .001 .014 .013  .998 .991 1.000 .009  .997 .989 .999 .010  .489 

 Weak .005 .001 .014 .013  .998 .992 1.000 .008  .998 .990 .999 .009  .498 

 -1SD .006 .001 .015 .014  .998 .991 1.000 .009  .997 .989 .999 .010  .491 

 +1SD .006 .001 .015 .014  .998 .991 1.000 .009  .997 .989 .999 .010  .482 

PE = point estimate; CI = credibility interval; LL = lower limit of CI; UL = upper limit of CI. Bolded PE values are indicative of poor 

fit based on fixed cutoffs. Bolded CIs contain fixed cutoff value.  

 

  



 182 

Table D4 

Model A, 12 Items, Misspecified 

  RMSEA  CFI  TLI  PPP 

N Prior PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE 

50 Diffuse .070 .033 .104 .071  .865 .689 .948 .259  .839 .632 .938 .306  .361 

 Weak .058 .027 .089 .062  .893 .740 .958 .218  .882 .713 .953 .240  .426 

 -1SD .064 .030 .095 .065  .877 .714 .950 .236  .864 .685 .945 .260  .386 

 +1SD .068 .033 .098 .065  .858 .692 .941 .249  .845 .665 .935 .270  .357 

100 Diffuse .048 .023 .071 .048  .931 .847 .971 .124  .917 .815 .965 .150  .292 

 Weak .043 .020 .065 .045  .941 .864 .975 .111  .932 .843 .971 .128  .327 

 -1SD .046 .022 .068 .046  .935 .853 .972 .119  .925 .831 .968 .137  .300 

 +1SD .049 .024 .070 .046  .927 .843 .968 .125  .917 .820 .964 .144  .274 

250 Diffuse .042 .028 .053 .025  .953 .920 .971 .051  .943 .903 .965 .062  .149 

 Weak .040 .027 .052 .025  .955 .923 .972 .049  .946 .908 .967 .059  .158 

 -1SD .041 .028 .053 .025  .953 .920 .972 .052  .945 .905 .966 .061  .151 

 +1SD .042 .029 .054 .025  .952 .918 .970 .052  .943 .902 .965 .063  .141 

500 Diffuse .042 .035 .048 .013  .955 .938 .965 .027  .945 .925 .958 .033  .055 

 Weak .041 .034 .047 .013  .955 .939 .965 .026  .946 .927 .958 .031  .057 

 -1SD .042 .034 .048 .014  .955 .938 .965 .027  .946 .926 .958 .032  .055 

 +1SD .042 .035 .048 .013  .954 .938 .965 .027  .945 .925 .958 .033  .053 

1000 Diffuse .042 .039 .045 .006  .956 .947 .961 .014  .946 .936 .953 .017  .008 

 Weak .042 .039 .045 .006  .956 .948 .961 .013  .947 .937 .953 .016  .009 

 -1SD .042 .039 .045 .006  .956 .947 .961 .014  .947 .937 .953 .016  .008 

 +1SD .042 .039 .045 .006  .956 .947 .961 .014  .946 .936 .953 .017  .008 

PE = point estimate; CI = credibility interval; LL = lower limit of CI; UL = upper limit of CI. Bolded PE values are indicative of poor 

fit based on fixed cutoffs. Bolded CIs contain fixed cutoff value.  
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Table D5 

Model B, 6 Items, Correctly Specified 

  RMSEA  CFI  TLI  PPP 

N Prior PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE 

50 Diffuse .076 .006 .215 .209  .930 .559 .996 .437  .855 .357 .991 .634  .425 

 Weak .043 .004 .144 .140  .956 .680 .996 .316  .939 .585 .995 .410  .497 

 -1SD .095 .033 .174 .141  .877 .576 .967 .391  .840 .477 .959 .482  .322 

 +1SD .059 .005 .153 .148  .925 .631 .994 .363  .903 .546 .992 .446  .436 

100 Diffuse .038 .002 .137 .135  .977 .813 .999 .186  .948 .626 .998 .372  .462 

 Weak .024 .001 .103 .102  .985 .857 .999 .142  .975 .771 .999 .228  .516 

 -1SD .059 .015 .129 .114  .944 .793 .987 .194  .916 .685 .982 .297  .362 

 +1SD .035 .002 .112 .110  .975 .827 .998 .171  .960 .732 .998 .266  .455 

250 Diffuse .019 .001 .079 .078  .993 .938 1.00 .062  .984 .865 .999 .134  .483 

 Weak .014 .001 .068 .067  .994 .947 1.00 .053  .989 .900 .999 .099  .513 

 -1SD .026 .004 .079 .075  .983 .928 .997 .069  .971 .869 .995 .126  .425 

 +1SD .019 .001 .072 .071  .992 .940 1.00 .060  .985 .889 .999 .110  .476 

500 Diffuse .012 .001 .053 .052  .997 .972 1.00 .028  .993 .939 .999 .060  .495 

 Weak .010 .001 .049 .048  .997 .974 1.00 .026  .994 .947 1.00 .053  .510 

 -1SD .014 .001 .054 .053  .995 .968 1.00 .032  .991 .936 .999 .063  .473 

 +1SD .012 .001 .051 .050  .997 .971 1.00 .029  .993 .943 .999 .056  .490 

1000 Diffuse .008 .001 .037 .036  .998 .986 1.00 .014  .996 .969 1.00 .031  .489 

 Weak .008 .000 .036 .036  .998 .986 1.00 .014  .997 .971 1.00 .029  .499 

 -1SD .009 .001 .037 .036  .998 .985 1.00 .015  .996 .969 1.00 .031  .486 

 +1SD .009 .001 .037 .036  .998 .986 1.00 .014  .996 .970 1.00 .030  .486 

PE = point estimate; CI = credibility interval; LL = lower limit of CI; UL = upper limit of CI. Bolded PE values are indicative of poor 

fit based on fixed cutoffs. Bolded CIs contain fixed cutoff value.  
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Table D6 

Model B, 6 Items, Misspecified 

  RMSEA  CFI  TLI  PPP 

N Prior PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE 

50 Diffuse .168 .102 .230 .128  .722 .428 .880 .452  .590 .274 .821 .547  .141 

 Weak .143 .088 .195 .107  .757 .473 .888 .415  .703 .392 .862 .470  .165 

 -1SD .154 .095 .205 .110  .719 .425 .871 .446  .660 .345 .843 .498  .135 

 +1SD .152 .094 .203 .109  .717 .441 .873 .432  .663 .366 .847 .481  .139 

100 Diffuse .163 .128 .197 .069  .758 .603 .848 .245  .620 .403 .761 .358  .054 

 Weak .149 .118 .179 .061  .772 .623 .852 .229  .688 .495 .797 .302  .060 

 -1SD .154 .121 .184 .063  .756 .600 .844 .244  .667 .466 .786 .320  .052 

 +1SD .153 .120 .183 .063  .758 .602 .845 .243  .670 .474 .788 .314  .054 

250 Diffuse .166 .154 .180 .026  .762 .705 .798 .093  .614 .522 .673 .151  .003 

 Weak .160 .148 .172 .024  .765 .709 .800 .091  .648 .564 .700 .136  .003 

 -1SD .161 .149 .174 .025  .762 .704 .798 .094  .642 .556 .696 .140  .003 

 +1SD .160 .148 .173 .025  .762 .705 .798 .093  .644 .559 .698 .139  .003 

500 Diffuse .167 .161 .174 .013  .762 .734 .780 .046  .610 .564 .640 .076  .000 

 Weak .164 .158 .171 .013  .763 .735 .780 .045  .630 .586 .657 .071  .000 

 -1SD .164 .158 .171 .013  .762 .734 .780 .046  .629 .584 .656 .072  .000 

 +1SD .164 .158 .171 .013  .762 .734 .780 .046  .628 .584 .656 .072  .000 

1000 Diffuse .167 .164 .170 .006  .763 .749 .772 .023  .613 .590 .627 .037  .000 

 Weak .165 .163 .169 .006  .763 .749 .772 .023  .622 .600 .636 .036  .000 

 -1SD .165 .163 .169 .006  .763 .749 .772 .023  .621 .598 .635 .037  .000 

 +1SD .166 .163 .169 .006  .763 .749 .772 .023  .620 .598 .634 .036  .000 

PE = point estimate; CI = credibility interval; LL = lower limit of CI; UL = upper limit of CI. Bolded PE values are indicative of poor 

fit based on fixed cutoffs. Bolded CIs contain fixed cutoff value.  
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Table D7 

Model B, 12 Items, Correctly Specified 

  RMSEA  CFI  TLI  PPP 

N Prior PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE 

50 Diffuse .059 .020 .098 .078  .909 .757 .973 .216  .888 .703 .967 .264  .443 

 Weak .045 .015 .082 .067  .934 .809 .980 .171  .926 .784 .978 .194  .519 

 -1SD .067 .030 .101 .071  .879 .735 .949 .214  .863 .700 .943 .243  .382 

 +1SD .057 .021 .091 .070  .905 .763 .968 .205  .895 .737 .964 .227  .440 

100 Diffuse .028 .006 .058 .052  .972 .905 .993 .088  .965 .881 .992 .111  .472 

 Weak .023 .005 .051 .046  .978 .919 .995 .076  .974 .903 .994 .091  .520 

 -1SD .033 .010 .061 .051  .960 .891 .987 .096  .952 .870 .984 .114  .428 

 +1SD .031 .008 .059 .051  .967 .899 .992 .093  .961 .881 .990 .109  .437 

250 Diffuse .013 .002 .032 .030  .992 .968 .998 .030  .990 .960 .998 .038  .485 

 Weak .012 .002 .030 .028  .993 .971 .999 .028  .992 .964 .998 .034  .504 

 -1SD .014 .002 .033 .031  .992 .967 .998 .031  .990 .959 .998 .039  .477 

 +1SD .015 .003 .034 .031  .991 .965 .998 .033  .989 .958 .998 .040  .457 

500 Diffuse .009 .002 .022 .020  .996 .985 .999 .014  .995 .981 .999 .018  .486 

 Weak .008 .002 .021 .019  .997 .986 .999 .013  .996 .982 .999 .017  .500 

 -1SD .009 .002 .022 .020  .996 .985 .999 .014  .995 .981 .999 .018  .484 

 +1SD .009 .002 .023 .021  .996 .984 .999 .015  .995 .980 .999 .019  .467 

1000 Diffuse .005 .001 .015 .014  .998 .993 1.000 .007  .998 .991 1.000 .009  .492 

 Weak .005 .001 .015 .014  .998 .993 1.000 .007  .998 .991 1.000 .009  .497 

 -1SD .006 .001 .015 .014  .998 .993 1.000 .007  .998 .991 1.000 .009  .491 

 +1SD .006 .001 .015 .014  .998 .992 1.000 .008  .998 .990 1.000 .010  .482 

PE = point estimate; CI = credibility interval; LL = lower limit of CI; UL = upper limit of CI. Bolded PE values are indicative of poor 

fit based on fixed cutoffs. Bolded CIs contain fixed cutoff value.  
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Table D8 

Model B, 12 Items, Misspecified 

  RMSEA  CFI  TLI  PPP 

N Prior PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE CI (LL, UL) CI Width  PE 

50 Diffuse .096 .063 .123 .060  .813 .660 .902 .242  .778 .597 .883 .286  .199 

 Weak .086 .055 .110 .055  .841 .703 .914 .211  .824 .672 .905 .233  .244 

 -1SD .091 .060 .115 .055  .823 .678 .904 .226  .804 .643 .893 .250  .215 

 +1SD .093 .062 .116 .054  .811 .664 .896 .232  .793 .634 .886 .252  .196 

100 Diffuse .081 .062 .097 .035  .868 .793 .914 .121  .841 .751 .896 .145  .084 

 Weak .077 .059 .092 .033  .878 .807 .919 .112  .859 .778 .907 .129  .099 

 -1SD .080 .061 .094 .033  .870 .798 .914 .116  .849 .766 .900 .134  .087 

 +1SD .081 .062 .095 .033  .865 .791 .910 .119  .845 .760 .897 .137  .077 

250 Diffuse .078 .071 .085 .014  .882 .853 .901 .048  .858 .823 .880 .057  .006 

 Weak .077 .070 .083 .013  .884 .856 .902 .046  .862 .829 .884 .055  .006 

 -1SD .078 .071 .084 .013  .882 .854 .901 .047  .860 .827 .882 .055  .006 

 +1SD .078 .071 .084 .013  .881 .852 .900 .048  .859 .825 .882 .057  .005 

500 Diffuse .079 .075 .082 .007  .882 .868 .891 .023  .857 .840 .869 .029  .000 

 Weak .078 .075 .081 .006  .883 .869 .892 .023  .859 .843 .870 .027  .000 

 -1SD .078 .075 .081 .006  .882 .868 .891 .023  .859 .842 .870 .028  .000 

 +1SD .078 .075 .082 .007  .882 .868 .891 .023  .858 .841 .869 .028  .000 

1000 Diffuse .078 .077 .080 .003  .883 .876 .888 .012  .858 .850 .864 .014  .000 

 Weak .078 .077 .080 .003  .883 .877 .888 .011  .859 .851 .865 .014  .000 

 -1SD .078 .077 .080 .003  .883 .876 .888 .012  .859 .851 .865 .014  .000 

 +1SD .078 .077 .080 .003  .883 .876 .888 .012  .859 .851 .865 .014  .000 

PE = point estimate; CI = credibility interval; LL = lower limit of CI; UL = upper limit of CI. Bolded PE values are indicative of poor 

fit based on fixed cutoffs. Bolded CIs contain fixed cutoff value.  

 


