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Abstract

The following dissertation consists of three parts. The first two concern ground-state properties of
one-dimensional matter, while the third describes an experimental realization of the Zel’dovich effect
in Rydberg atoms.

Motivated by emerging experimental possibilities to confine atoms and molecules in quasi-one-
dimensional geometries, in Chapters 1 and 2 we analyze ground-state properties of strictly one-
dimensional molecular matter comprised of identical particles of mass m interacting by a Morse
potential between nearest neighbors. We find that due to zero-point motion, the system first under-
goes a discontinuous evaporation transition into a diatomic gas followed by a continuous dissociation
transition into a monoatomic gas. In particular we find that spin-polarized isotopes of hydrogen and
3 He are monoatomic gases, *He is a diatomic gas, while molecular hydrogen and heavier substances
are Luttinger liquids. We also investigate the effect of finite pressure on the properties of the liquid
and monoatomic gas phases. In particular we estimate a pressure at which molecular hydrogen
undergoes an inverse Peierls transition into a metallic state which is a one-dimensional analog of
the transition predicted by Wigner and Huntington in 1935. In Chapter 2, we show that dissocia-
tion of the Luttinger liquid is a process initiated at the system edge. The latter becomes unstable
against quantum fluctuations at a value of De Boer’s number which is smaller than that of the bulk
instability which parallels the classical phenomenon of surface melting.

In 1959 Ya. B. Zel’dovich predicted that the bound-state spectrum of the non-relativistic
Coulomb problem distorted at small distances by a short-range potential undergoes a peculiar re-
construction whenever this potential alone supports a low-energy scattering resonance. However
documented experimental evidence of this effect has been lacking. In Chapter 3 we demonstrate
that along the Periodic Table of elements the Zel’dovich effect manifests itself as a systematic pe-
riodic variation of the Rydberg spectra with a period proportional to the cubic root of the atomic
number. This dependence, which is supported by analysis of experimental and numerical data, has

its origin in the binding properties of the ionic core of the atom.
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Introduction

Prediction of the ground-state properties of a condensed many-body system of identical particles
starting from microscopic two-body interactions is only meaningful if the outer electronic shells
of underlying atoms or molecules in the bound phase are not very different from their free state
counterparts [1]. If the two-particle potential has a functional form common to a family of substances
(for example, of the Lennard-Jones type), then the properties of all the members of the family can
be related. This conclusion pioneered by De Boer and collaborators, commonly referred to as the
quantum theorem of corresponding states, was originally applied to predict the properties of 3He [2]
before it had become experimentally available. Later Anderson and Palmer [3] and Clark and Chao
[4] used the same approach to estimate the properties of zero-temperature nuclear and neutron-star
matter from those of laboratory substances.

The goal of the first two chapters is to conduct a similar program in a strictly one-dimensional
case. There are several reasons, both of fundamental and practical nature, why it is important to
understand this problem.

First, it is well-known that for ordinary substances zero-point motion is of crucial importance
only for the lightest elements such as helium isotopes as well as spin-polarized isotopes of hydrogen.
The ground state of all heavier elements (and molecular hydrogen) is crystalline and to a large
extent classical. The one-dimensional case is qualitatively different: regardless of the particle mass
zero-point motion destroys the long-range crystalline order - a situation that is closely analogous to
the destruction of the long-range order by thermal fluctuations in classical two-dimensional systems
of continuous symmetry [5]. As a result, the only possible many-body bound state in one dimension
is a harmonic or Luttinger liquid - a uniform density condensed phase with algebraically decaying
density correlations [6]. This decay, characterized by a nonuniversal exponent, is slower than the

exponential fall-off of density correlations in conventional fluids. As the degree of zero-point motion



increases, the many-body bound state can disappear through a transition that has no analog in
the three-dimensional world: since the Luttinger liquid phase is more correlated than conventional
fluids and less correlated than standard crystals its dissociation combines qualitative features of both
laboratory melting and evaporation at once.

Second, in one dimension the difference between fermions and bosons is not very significant
as we cannot go from one configuration to another with exchanged particles without bringing the
particles in contact at some intermediate step. Then short-distance repulsion among bosons has
the same effect on density correlations as the Pauli principle for fermions. On the other hand,
zero-temperature properties of three-dimensional matter with an interaction pair potential of the
Lennard-Jones form are sensitive to the statistics of the underlying particles [7].

Since experimental discovery of carbon nanotubes in 1991 [8] studying the properties of one-
dimensional systems became especially important. In addition to their unique transport, mechanical
and chemical properties [9], bundles of carbon nanotubes can play a role of one-dimensional hosts
for foreign atoms that can find themselves bound in the interstitial channels or inside the tubes [10].
One of the interesting potential applications of these systems includes storage devices for molecular
hydrogen in fuel cells [11].

Recently the quasi-one-dimensional regime has been also realized for Bose-condensates of alkali
vapors both for repulsive [12] and attractive interactions [13]. These systems which are relevant
for atom interferometry [14] have an additional flexibility as the strength and sign of two-body
interactions can be magnetically tuned.

In both of these experimental examples the basic model is a zero-temperature one-dimensional
many-body system of fermions or bosons with pairwise interactions. There were several attempts in
the past to study this problem:

(i) Diffusion Monte Carlo studies predicted that at zero temperature both one-dimensional * He
[15, 16] and molecular hydrogen [17] form weakly-bound liquids.

(i) These conclusions were supported by variational studies based on the Jastrow-Feenberg wave
function [18] where additionally it was argued that in one dimension the many-body bound state
exists only for those systems which have a dimer, i. e. a two-body bound state. One of the findings
common to Refs.[16, 17, 18] is the prediction of a high-density liquid-solid phase transition in which
a standing density wave sets in. We note however that the existence of such a one-dimensional solid

contradicts the quantum version of the Mermin-Wagner-Hohenberg theorem [5].



10

(iii) A direct variational treatment based on a Gaussian wave function was performed in Ref.[19]
where it was assumed that the particles form a one-dimensional chain with the Morse potential
interaction [20] between nearest neighbors. Although it was shown that the chain remained stable
for not very strong quantum fluctuations, the accuracy of the method, the nature of the condensed
phase, the role of dimerization, and the implications for real systems were not addressed.

The techniques used in Chapter 1 to study quantum dissociation of one-dimensional matter are
applied in Chapter 2 to the problem of dissociation at the edge of a one-dimensional system. A
classical three-dimensional solid melts through a first-order transition at a temperature when the
free energies of the solid and liquid phases coincide. At sufficiently low temperatures quantum effects
dominate and a quantum solid can melt due to zero-point motion [49].

The most curious feature of classical melting is the difficulty in overheating the solid while
supercooling the liquid is easy. The latter is expected for the first-order transition while the former
is explained by the phenomenon of surface melting: often, as the bulk transition is approached, the
melting begins at the free surface of a solid. The surface melting is well-documented experimentally,
and phenomenologically it can be viewed as a wetting of the solid by its own melt [50]. A well-
understood example of surface melting of a quantum solid is that of the edge melting of the two-
dimensional Wigner crystal in a strong magnetic field [51].

In Chapter 2 we will show that strictly one-dimensional matter with a free edge can also exhibit
an analog of surface melting. Fundamentally this happens because the edge represents a zero-
dimensional system subject to stronger quantum fluctuations than the one-dimensional bulk. Due
to broken translational symmetry, zero-point motion modifies the cohesive properties of the edge
differently from those of the bulk.

Chapter 3 presents an analysis of the Zel’dovich effect. In a variety of applications in physics it
is important to understand how the normal Hydrogen spectrum is modified if at small distances the
Coulomb law is replaced by a central short-ranged potential. An important aspect of this problem is
the existence of two length scales - the Bohr radius of the Coulomb field ap and the range of action
of short-range forces ry.

For example, in hadronic atoms formed by charged particles and antiparticles the large distance
Coulomb attraction gives way at short distances to nuclear forces whose range r( is significantly
smaller than ap [54].

In condensed matter physics a similar problem is that of the energy spectrum of the Wannier-
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Mott exciton [55]. When in a semiconductor an electron is excited into the conduction band, a
bound state with a hole left in the valence band can form. Due to the large dielectric constant
of the medium the electron and the hole in the exciton are spatially well-separated. Therefore the
electron-hole interaction is a Coulomb attraction modified at short distances. In this context ap can
exceed many times rg which is of the order of the Hydrogen Bohr radius.

Zel’dovich was apparently the first to recognize that in the limit ry < ap the spectrum of the
distorted Coulomb problem is peculiar [56]. Since the centrifugal barrier decreases the probability
of particle penetration in the region of small distances r, the effect of the short-range potential is
strongest for the states of zero angular momentum. In this case the radial motion of a particle of
mass m and energy E in a central potential U(r) is described by the one-dimensional Schrédinger

equation [57]

d’>x  2m

—_— —_— _ = ].

72 + = (E-U(r))x=0 (1)
where x(7)/r is the radial wave function. Zel’dovich chose U(r) = —h?/mapr for r > 79 and

U(r) = Uq(r) otherwise and demonstrated that as long as the short-range potential U,(r) is not
resonant, its effect is weak. If, on the other hand, U,(r) has a low-energy scattering resonance, a
drastic reconstruction of the spectrum takes place. Using the example of the square well of depth
Uop he stated that as the dimensionless coupling constant w ~ mrgUy/h? increases, the spectrum
of the problem E,(w) evolves in a fashion resembling a sharp decreasing staircase. The steps are
located at critical values of w at which bound states occur in U(r) only. As w goes through the first
threshold, the Coulomb levels F,, (n > 2) quickly fall to E,_; while the ground state E; rapidly
drops downward. The relative width of the region where the spectrum reconstruction takes place,
Aw/w ~ ro/ap < 1, is narrow, and qualitatively the same pattern repeats itself upon passing
through every subsequent resonance.

A similar spectral behavior has been found by Popov [58] in his analysis of the Dirac equation
for an electron in a field of the bare nucleus of charge Ze with Z > 137.

The Zel’dovich effect has been re-discovered in the spectra of hadronic atoms, and its generality
has been demonstrated for any interaction with two widely different spatial scales [59].

Various aspects of the spectrum reconstruction have been investigated by Popov and collaborators
[60]. Their study was motivated by then existing experimental evidence of the large 1s-level shift in

the proton-antipropton atom which was naturally linked to the Zel’dovich effect. Later it became
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clear that the experimental level shifts are small and the interest in the phenomenon declined.

As far as we know, at this time there is no documented experimental evidence of the Zel’dovich
effect. This is not surprising because the spectrum reconstruction takes place in a narrow range
of parameters in the vicinity of low-energy resonances. However a given experimental system is
unlikely to be near resonance. A systematic search for the Zel’dovich effect would consist in looking
for spectral changes in response to tuning of the central part of the potential which is often impossible
- the strength of the nuclear force cannot be changed in the laboratory.

Recently Karnakov and Popov [61] pointed out that the Zel’dovich spectrum reconstruction takes
place for a Hydrogen atom as a function of the external magnetic field thus providing an example
of a system where a systematic search for the effect might be possible. Although the phenomenon
is observable in numerical studies, direct experimental evidence is lacking and may only come from
astrophysical observations as the pertinent magnetic fields are comparable to those on the surface
of a neutron star.

The goal of Chapter 3 is to demonstrate that evolution of the Rydberg spectra of ordinary
atoms along the Periodic Table provides direct evidence of the Zel’dovich effect. Since the condition
ro < ap does not hold in atomic systems, the way the phenomenon manifests itself is less dramatic
- we will show that it can be seen as a systematic periodic spectral modulation as a function of the
cubic root of the atomic number Z.

It is known that for a highly excited s electron of a Rydberg atom the effect of polarization of
the ionic core is negligible compared to that of the wave function penetration in the central region
of the atom [62]. Therefore the electron dynamics can be adequately described by Eq.(1) where the
effective central field U(r) at large distances is that of a positively charged ion of charge e. On the
other hand, starting from distances of the order of the size of the ionic core ry ~ ap the field felt by
the electron begins to deviate from the —e?/r form on-average decreasing, as r — 0, to —Ze?/r. By
increasing Z along the Periodic Table Nature systematically deepens the inner part of the potential
leaving the outer —e?/r tail intact. Thus by analyzing the Rydberg spectra as a function of atomic
number Z it may be possible to correlate them with the binding properties of the ionic core which
will constitute evidence of the Zel’dovich effect.

In atomic physics the motion of an electron in the field of a residual atomic ion has been studied
in the past. Approximating the potential of the ionic core by that of the Thomas-Fermi or Thomas-

Fermi-Dirac theories Latter [63] computed numerically the single-electron term values from 1s to 7d
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for all atoms. His ns spectra as a function of atomic number Z for largest n studied clearly show
modulations on a decreasing energy curve. It is well-known that the large n atomic spectra are
described by the Rydberg formula [62]

12 1 2 )

E,=————
2ma% (n — u)

where p is the quantum defect which in the limit n — oo does not depend on n. Latter’s results
imply that the dependence of the quantum defect © on Z has modulations superimposed on an
increasing curve.

The 1(Z) dependence has been numerically computed by Manson [64] and by Fano, Theodosiou
and Dehmer [65] who used the Hartree-Slater model [66] to approximate the potential of the ionic
core of the atom. Although the periodic variations of ©(Z) are strongly obscured by the shell effects
(included in the Hartree-Slater model), Fano, Theodosiou and Dehmer argued that they are there
and that there is a correlation between the location of radial nodes of the function x from Eq.(1) near
ro and the slope of the 1(Z) dependence. In view of the oscillation theorem [57] the nodal structure
of the function yx is intimately related to the binding properties which suggests that systematic
periodic variations of Rydberg spectra as a function of Z might be related to the Zel’dovich effect.

In order to demonstrate that this connection is correct in Chapter 3 we compute the upper part
of the spectrum of the modified Coulomb problem not assuming that rg < ag. We show that the
staircase reconstruction taking place for rg < ap and the spectral modulations for rg ~ ap are
different limiting cases of the same phenomenon - sensitivity to the binding properties of the inner
part of the potential which we continue to call the Zel’dovich effect. We also compare our results for

u(Z) with available experimental and numerical data to show that the phenomenon is observable.



Chapter 1

Ground-state properties of
one-dimensional matter and quantum

dissociation of a Luttinger liquid

1.1 Organization

In this Chapter the problem of the ground-state properties of a one-dimensional many-body system
is re-examined for the case when the two-body interparticle interaction can be approximated by
the Morse potential [20]. Since it involves three parameters, the Morse potential is more flexible in
describing real systems as compared to the two-parameter Lennard-Jones potential. At the same
time the quantum theorem of corresponding states [2] still holds in this case. In addition the problem
of the Morse dimer is exactly solvable [20]; below we will also show that analytical progress is possible
in the many-body case, and the accuracy of our results can be assessed.

The organization of the chapter is as follows. In Section 1.2 we set up the problem in general
terms with the quantum theorem of corresponding states [2] as a guide for possible outcomes. The
parameters of the Luttinger liquid are computed in Sections 1.3-1.5. In Section 1.3 we describe
general properties of the Luttinger liquid and outline the main idea of the calculation. Zero-pressure
analysis is carried out in Section 1.4. The main tool here is a combination of variational and

renormalization-group treatments. As a by-product we also solve the problem of quantum Brownian
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Figure 1.1: The Silvera-Goldman interaction potential between two hydrogen molecules (crosses)
and its approximation by the Morse potential (solid curve). To demonstrate the strength of the
overlap repulsion, a logarithmic scale is used on the positive energy axis. The energy is given in
Kelvin; other details of the fit are explained in the text.
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motion in the Morse potential, and show that it exhibits a localization-delocalization transition.
Finite-pressure variational analysis is conducted in Section 1.5. Section 1.6 is dedicated to the
discussion and applications of our results to various molecular substances. In particular we estimate

a pressure at which one-dimensional molecular hydrogen undergoes a transition into a metallic state.

1.2 Formulation of the problem

Our starting point is the Euclidian action for NV identical fermions or bosons of mass m with pairwise

interactions

N
m dxl
S:/d75§l_£ s +§:V =) (1.1)

i<j
where 7 is the imaginary time variable, x; are particle positions, and V' (h) is the pair interaction
potential. The properties of the function V(h) can be summarized as follows. At large separation
h interparticle interaction is dominated by weak rapidly decaying Van der Waals attraction, while
at short distances there is a very strong overlap repulsion [1]. As a result, the pair potential V' (h)
has an asymmetric minimum at some intermediate h. As a typical example Fig.1.1 shows the semi-
empirical Silvera-Goldman potential [21] between two H; molecules which is extensively used in
computations of the properties of molecular hydrogen.

Assume that the pair potential has the form
V(h) = eU[(h — Ho)/1], (1.2)

where € is the energy scale of the potential, [ is the potential range, Hy is a length scale, and U(y) is
a function common to a family of substances. Introducing dimensionless position and time variables,

qi = z;/l, t = er/h, transforms the reduced action S/# into

%Z / dt[%zd% ZU g — 45— Qo)l, (1.3)

i<j

where Qo = Hy/l. The quantum theorem of corresponding states [2] then directly follows from
representation (1.3): the energy per particle E* measured in units of ¢ is only determined by the

dimensionless parameter
h

Ao = 7l(2me)l/2’

(1.4)
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the form of the function U in (1.2), and the particle statistics:

E* = E*()o, statistics) (1.5)

Similar statements can be made about the reduced relative equilibrium length per particle @Q — Qg
(Q is the one-dimensional version of volume per particle measured in units of /), and other quantities
of interest. Apart from numerical factors (introduced for convenience), the quantum parameter \q
(1.4) is identical to De Boer’s number [2]: its square is proportional to the ratio of the zero-point
energy of a particle of mass m localized within a range [ to the typical potential energy e. Therefore
as )\ increases away from its classical value Ao = 0, the strength of zero-point motion increases.

In the presence of several competing phases the function E* in (1.5) (and other properties) will
have several branches; the branch with lowest E* singles out the ground-state of the system. When
two different branches cross, the ground-state changes via a first-order phase transition. Each branch
of E*(\g) is an analytical function of its argument except possibly at isolated points where critical
phenomena take place. One obvious branch of E* corresponds to a monoatomic gas which must
become the ground state of the system at sufficiently large Ag. Then all the particles are infinitely
far apart from each other, and thus EY, . (\g) = 0 which we select to be the reference point for the
energy.

In what follows we select the pair interaction potential in the Morse form [20]:

V(h) = —Ae M4 Be !

= 6[_26—(h—Ho)/l + 6—2(h—H0)/l]7 (1.6)

where A and B are the amplitudes of the attractive and repulsive parts of the potential, respectively,
Hy = [In(2B/A) is the location of the minimum of (1.6), while ¢ = V(Hy) = A?/4B is the depth
of the potential well. The second representation of (1.6) shows explicitly that the Morse potential
conforms to the general form (1.2). It is physically reasonable to require that the zero of (1.6) is
located at positive h which implies B > A.

Similar to the applications of the Lennard-Jones potential to laboratory molecular systems [1],
Eq.(1.6) should not be taken as literally describing two-particle interactions. The only reason behind

our choice (1.6) is the possibility of analytic progress.



18

For two particles interacting according to (1.6) the ground-state energy is exactly known to be
Ea = —¢[1 — 1i/21(me)/?)? [20]. This implies that in the many-body case one of the possible phases
of the system is a diatomic gas (a collection of infinitely far separated dimers) with the reduced
energy function

« 1 7T)\0
Edimer()\o) = __(1 - ﬁ

: 2 (1.7)
valid for A9 < Ap2 = V/2/m; the factor of 1/2 accounts for two particles in the dimer. As \g
approaches Aoz from below, the dimer size diverges, and at A\g = Ag2 a second-order dissociation
transition into the monoatomic gas discussed earlier takes place. The asymmetry of the interaction
potential is responsible for the disappearance of the two-body bound state for sufficiently strong
zero-point motion.

The diatomic gas might be the ground-state of the system for intermediate \g but for sufficiently
small Ao a condensed phase must have the lowest energy. For molecular systems in general [1] pair
interactions decay rapidly with interparticle separation. As a result, the physics of the condensed
phase is dominated by nearest-neighbor interactions. Therefore in what follows in describing the
one-dimensional condensed phase we restrict ourselves to nearest-neighbor interactions. Corrections
coming from ignoring distant neighbors will be marginally small provided the interaction range [ is
substantially smaller than the average interparticle spacing (bond length).

In the classical limit, Ay = 0, the ground-state of the system is a one-dimensional crystal of
particles with lattice spacing Hp given by the minimum of the two-body Morse potential (1.6).
Indeed, the energy per particle for the crystal, —e¢, is twice as negative as that for the diatomic gas.

A condensed phase is also the ground-state of the system for a not very large \g. The quantitative

theory of the properties of this phase is developed below.

1.3 Luttinger liquid phase and its properties

When zero-point motion is present, the asymmetry of the pair interaction potential about its min-
imum causes quantum expansion. As a result the average bond length H in the condensed state
exceeds its classical, A\g = 0, counterpart Hy. The low-energy dynamics of the system are described

by the harmonic action [6]

/d:cdr[(%)z—i-cz(%f], (1.8)

NI

Sharm =
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where u(x, 7) is the particle displacement field, p = m/H is the mass density, and c¢ is the sound

velocity [1]
H292E(h = H)
o HTOLh=H)
“ T m Oh? ’

(1.9)
where F(h) is the ground-state energy per particle as a function of (one-dimensional) volume per
particle h, and the derivative is evaluated at the equilibrium interparticle spacing H. The function
E(h) can be also viewed as an effective pair interaction renormalized by zero-point motion away
from its classical form (1.6).

The harmonic liquid is a possible ground state if interparticle interaction is not more long-ranged
than an inverse-square potential - this comes from the scaling behavior of the kinetic energy operator
in the many-body Schrédinger equation.

The Feynman path integral formulation of quantum mechanics [22] allows us to view the action
(1.8) as a Hamiltonian for a classical two-dimensional crystal of line objects (world lines of underlying
particles) running in the imaginary time direction. In this correspondence zero-point motion plays a
role of thermal fluctuations. But this is exactly the context of applicability of the Mermin-Wagner-
Hohenberg theorem [5]: if n(z,7) is the instantaneous number density, then long-wavelength low-
energy quantum fluctuations captured by the action (1.8) destroy long-range positional order of the
particles. The only allowed many-body bound state is a uniform density phase, < n(z,7) >= H !

(<> stands for the expectation value), with algebraic decay of density correlations [6]:

cos(2mz/H)

< TL((E,T)?’L(0,0) > —H_2 X m, (110)
where the exponent g is given by
wh
g= ocH? (1.11)

The large distance/time behavior of the density-density correlation function (1.10) is the hallmark
of the Luttinger liquid. In order to compute the range of existence of the Luttinger liquid phase, its
bond length H, sound velocity ¢, and correlation exponent g we need to go beyond the harmonic
approximation.

Our calculation relies on the assumption underlying the harmonic description (1.8) (and to be
verified later) that as long as the Luttinger liquid is stable, the ratio of the typical fluctuation of the

bond length to the bond length itself remains small despite the fact that individually both of these
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quantities are increasing functions of Ay (1.17). Then every bond of the system can be viewed as a
quantum-mechanical degree of freedom subject to the external potential V' (h) and placed in contact
with a bath of harmonic oscillators (1.8) corresponding to the rest of the system. The single bond
dynamics is thus given by the action:
Shond = g / dde[(%F + 02(%)2] + /dTV(h) (1.12)
bath
The first integral is over all positions and times except for a small region near x = 0 where the
bond in question is located. This separates the system into two pieces, so that at all times the
displacement field u is discontinuous: u(zx = +0,7) — u(z = —0,7) = h(r) — Hy. The coupling
between the segments of the system joined at the bond is given by the full pair potential V' (h), i. e.
it goes beyond the harmonic approximation.

The action (1.12) has been previously introduced in Ref.[23] to describe tunneling-assisted frac-
ture of a stretched one-dimensional chain. More generally this type of action corresponds to the
Caldeira-Leggett model of coupling between a quantum-mechanical degree of freedom and an envi-
ronment modeled by a reservoir of harmonic oscillators [24]. Since the last interaction term in (1.12)
is restricted to a single spatial point, the bath degrees of freedom can be integrated out away from
the bond with the result [23]:

wp
5=2 / ;l—:|w||h(w)|2 + /dTV(h)7 (1.13)
—wp
where the subscript is dropped for brevity and the Fourier transform of the bond length field
h(w) = [ h(r)exp(—w7)dr has been introduced [25]. The frequency cutoff wp setting the limits
of integration in the first kinetic term of (1.13) is the one-dimensional Debye frequency wp = we/H
- the vibrational spectrum of the system is approximated by the Debye model.

The unusual |w| dependence of the kinetic term of the action (1.13) is due to the many-body
nature of the bond dynamics, and can be understood heuristically by noticing that if the bond length
oscillates with frequency w, then during one oscillation period 27 /|w| this disturbance propagates
in both directions away from the bond a distance of order ¢/|w|. Therefore the standard kinetic
energy density, proportional to pw? should be multiplied by the size of the region c/|w| affected by

the motion thus reproducing the pc|w| term of (1.13).
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The action (1.13) allows us in principle to compute how the bath degrees of freedom renormalize
the properties of a given bond. The nonanalytic |w| dependence in (1.13) guarantees that the bond
cannot renormalize the bath oscillators (whose properties are accumulated in the pc combination).
This observation combined with the fact that all the bounds of the Luttinger liquid are equivalent
provides us with a prescription on how to use (1.13) to solve the problem we are interested in:

The parameters p and c of (1.13) should be selected as initially unknown but fully renormalized
properties of the Luttinger liquid. The reservoir degrees of freedom will renormalize the microscopic
pair interaction V'(h) into a form which we will require to be identical (in the harmonic limit) to the
rest of the chain. This will determine the parameters of the Luttinger liquid and guarantee that the
treatment is insensitive to the choice of the bond.

Since the action (1.13) describes the dynamics of an arbitrary single bond of the system, it can

be directly used to compute the energy per particle of the original many-body problem.

1.4 Zero-pressure analysis

For a quantitative analysis we use Feynman’s [26] variational principle for the ground-state energy:
E§E1:E0+(T/h)<S—SQ >0 (1.14)

where T is the temperature, and /7T has a meaning of the system size in the 7 direction; the T'= 0
limit will be taken at the end. The notation <>y denotes an expectation value computed using an
arbitrary reference action Sy, and Ej is the ground-state energy corresponding to Sp.

This method has been remarkably successful in analyzing the roughening phase transition [27],
multilayer adsorption phenomena [28], wetting transitions [29], the problem of quantum Brownian
motion in a periodic potential [30], the Coulomb blockade problem [31], and a variety of problems
of quantum mechanics and quantum field theory [32].

It is physically reasonable to select the trial action Sy in a Gaussian form similar to that in [28],

[29], and [31]:

wp

so=2 [ Solln)? + 5 [ drh -y, (1.15)

—wp
where two variational parameters which include the familiar bond length H and a new parameter K

(controlling the extent of fluctuations about H) are selected to minimize F; in (1.14). The stiffness
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parameter K has a meaning of the curvature of the effective pair potential evaluated at its minimum
H, and appearing in (1.9), K = 0 E(h = H).
Introducing f = h — H, the deviation of the bond length away from its equilibrium value H, the

reduced root-mean-square (rms) fluctuation, f* = (< f2 >o /12)'/2, can be computed with the help

of (1.15) as
=221 4y, (1.16)
where
h
= 1.1
A mpcl? (1.17)

is the dimensionless parameter quantifying the strength of zero-point motion in the Luttinger liquid,

and
2K
v = (1.18)
wppc

is the dimensionless counterpart of K. For the Morse pair interaction (1.6) the classical sound
velocity is ¢o = (Ho/l)(2¢/m)'/2. Tt is then straightforward to verify that in the classical limit,
h — 0, the quantum parameter A (1.17) reduces to De Boer’s number A\ (1.4).

In the Luttinger liquid the strength of zero-point motion is characterized by the correlation

exponent g (1.11) which is related to A (1.17) by

g=?/Q?, (1.19)

where Q = H/I is the reduced bond length. This relationship demonstrates that if the interaction
range [ is known, then measuring the density-density correlation function (1.10) will allow us to
compute A, and thus the rms fluctuation of the bond length (1.16).

Using (1.15), (1.16), and (1.6) the reduced upper bound E* = F;/e entering (1.14) can be

computed as

E'(7,Q) = v 'ln(l47)—2e% 914471
+ T4, (1.20)
where
27e
v (1.21)
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is related to the reduced Debye temperature as 6* = fiwp /e = 27 /v.

The expression for £* should be minimized with respect to v and @, and in case of multiple
solutions the one minimizing (1.20) must be selected.

Minimizing E* with respect to @) we arrive at the expression for the reduced bond length which

accounts for quantum expansion

Q=Qo+3\In(1+~71) (1.22)

Substituting this back into (1.20) the expression for the reduced energy E* can be written as

E*(y)=v tIn(l+7) — (147" H~2, (1.23)

Minimizing (1.23) with respect to v we find

v =20\(1+~"1)"2 (1.24)

1.4.1 Approximate solution: \ = )\,

First we look at a simplified version of the original problem when only one bond of the system
is subject to the Morse potential (1.6) while the rest of the chain is harmonic. This situation is

described by the action

WDOd
PoCo w 2
- Sl IR
s = 22 [ i)
—wDpo
+ /dr(—Ae*h/lJrBe*?h/l), (1.25)

where po = m/Hy, co = (Ho/l)(2¢/m)"/?, and wpo = wco/Hp assume their classical values. The
parameters A and B are selected so that in the harmonic approximation the Morse bond is identical
to the rest of the chain.

If the imaginary time coordinate 7 is viewed as a fictitious space variable then (1.25) can be
recognized as an effective Hamiltonian defining a classical statistical mechanics problem [22]. If the
bond field A is identified with an interface height and zero-point motion with thermal fluctuations,
then this problem is a one-dimensional analog of the critical wetting problem [29], [33].

For finite )¢ zero-point motion softens and lengthens the Morse bond while leaving the harmonic
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part of the chain intact. This is described by Eqgs.(1.22)-(1.24) with A = Ao and v = vop = 1/(7w ).
Specifically, Egs.(1.23) and (1.24) turn into:

E*(3) = 7o n(1 +7) - 3] (1.26)

2
v = 214y (1.27)
™

First we note that v = 0 is always a solution to (1.27) with E* = 0 which describes two segments
of the chain infinitely far apart from each other. As )\g increases away from the classical value
Ao = 0, the parameter v in (1.27) monotonically decreases from v = 2/ vanishing at Ao = 1/2. For
Ao > 1/2 only v = 0 solves Eq.(1.27). When )\ approaches the critical value of 1/2 from below we
have

_ In(w/2)

y~e T2 (1.28)

Correspondingly, the reduced energy (1.26) monotonically increases with Ag: in the classical limit,
Ao — 0, it rises linearly with A according to E* = —1 4+ Ao[rIn(1l + 2/7) + 2In(1 + 7/2)] ~
—1+3.4361)g. Since \g ~ 1/m!/? Eq. (1.4), the energy E* is not analytic as 1/m — 0, which
is the relevant quantity [3]. This is expected because the crystal (Ao = 0) is qualitatively different
from the Luttinger liquid (finite A\g). Upon approaching A\g = 1/2 from below the reduced energy
vanishes as

In(w/2)
E* ~ —gu —2Xg)e TR (1.29)

As Ao approaches 1/2 the bond length diverges and for Ay > 1/2 the two segments of the chain
are infinitely far apart from each other.
The behavior of the reduced bond length and its rms fluctuation just below the phase transition

can be found by combining (1.16) and (1.22) with (1.28):

In/2(r/2)

_ 3In(7/2)
@ (1= 22)1/2

~ =]’ o~ (1.30)

We note that although both of these quantities diverge upon approaching the phase transition, the
relative fluctuation, f*/@Q, vanishes. Thus fluctuating segments of the chain never overlap and our
treatment is consistent.

The essential singularities (1.28) and (1.29) at Ao = 1/2 as well as the divergences (1.30) parallel
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those found in the context of wetting transitions [29].

The most valuable feature of the variational approach is its nonperturbative nature. The accuracy
of variational predictions depends on how close is the variational guess to the physical reality. For
the problem defined by the action (1.25) the accuracy of our approach can be assessed and the

special role played by A\g = 1/2 can be re-established by using a renormalization-group method.

1.4.2 Perturbative renormalization-group treatment: \ = )\,

Following the argument of Brézin, Halperin, and Leibler originally given in the classical context of
wetting transitions [33] we treat the Morse potential term in (1.25) as a perturbation. Then the

lowest-order renormalization-group equations have the form:

dln A dln B

dln(wpol) (Ao +1), din(@nod) (420 + 1), (1.31)

where ( is the running scale in the 7 direction, and the equations describe how the Morse parameters
A and B renormalize upon (i) successive integration out of high-frequency modes (first terms)
followed by (ii) scaling transformation which restores the cutoff to its original value (second terms).
Instead of following separate evolution of the coefficients A and B, it is more appropriate to look at
the depth of the Morse well (1.6) ¢ = A%/4B which is also proportional to the potential curvature

at its minimum. For its dimensionless counterpart v (1.21) Eqgs.(1.31) imply

dv

Tond ~ (1—2x0)v (1.32)

The flow diagram corresponding to (1.32) is sketched in Fig. 1.2 where we also show the locus of
initial conditions vy = 1/m\g of the model (1.25).

First we note that verticality of the flow lines is a rigorous property of the model (1.25) as the
poco combination (and thus A\g) does not renormalize to any order in v. There are clearly two regimes
separated by a phase transition at the critical value A\g = 1/2. For Ay > 1/2 the parameter v flows
to zero which means that the chain is broken into two infinitely separated segments. On the other
hand, for A\g < 1/2 the parameter v grows under renormalization eventually leaving the perturbative
regime v < 1. This means that the Morse bond holds both segments of the chain together. Upon

approaching the critical value A\g = 1/2 from below there is a divergent time scale ¢ (analog of a
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Figure 1.2: The flow diagram of the model (1.25). The arrows indicate the direction of the flow and
the dashed line vy = 1/m\g is the locus of initial conditions. The stable part of the v =0, Ay > 1/2
fixed line corresponds to two segments of the chain infinitely far away from each other. For Ag < 1/2
the parameter v is relevant and the Morse bond joins the segments together.
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correlation length in standard critical phenomena) which can be found from the condition v(§) ~ 1:

In(1/vq)

£~ wple -0 (1.33)

The one-dimensional nature of the problem then implies that the reduced curvature v (1.18) of
the renormalized potential vanishes as £~'. Similarly the critical behavior of the reduced bond
length @ can be found as Q ~ In[B(£)/A()] ~ (3/2) In(wpef), while its rms fluctuation is f* ~
'/ *(wpof). With ¢ given by (1.33) and logarithmic accuracy these results coincide with their
variational counterparts, Eq.(1.28) and (1.30). If we set the bare parameter vo in (1.33) at 2/7 (the
crossing of the locus of initial conditions vg = 1/7)¢ and the A\g = 1/2 line) the renormalization-
group results would become identical to those of the variational approach.

From a perturbative renormalization-group treatment alone we would not be able to make reliable
statements about the phase transition at Ay = 1/2 as the analysis is valid for vy < 1 while for the
problem in question (1.25) one has vy = 2/7 ~ 0.64 < 1 - it is on the border of applicability
of perturbative theory. However combining the above results with the nonperturbative variational
analysis makes a strong case. Since the latter produces the same answers in the region of parameters
where renormalization-group results are less certain, we argue that the variational solution of (1.25)
is very accurate in the range of Ay between the classical limit A\g = 0 and the dissociation transition
Ao = 1/2 which is described exactly.

As a side observation we note that the problem (1.25) is most likely to be related to that of
quantum Brownian motion of a particle in a periodic potential [30]. Superficially the only similarity
between the two is that (1.25) can be also viewed as describing quantum Brownian motion in the
Morse potential which has no periodicity.

The similarity between the problems becomes noticeable if one inspects their treatments. A
comparison shows that our expression for variational energy (1.23) is identical to that of the periodic
version of the problem with the amplitude of the periodic potential proportional to our parameter
v (1.21) and our A = )¢ corresponding to 1/2« of Fisher and Zwerger [30]. With this identification
renormalization-group equation (1.32) coincides with its periodic counterpart [30]. Both problems
have delocalization transitions of the same universality class driven by zero-point motion.

We remind the reader that the action (1.25) is an approximation to the original problem of the

ground-state properties of the Luttinger liquid - only one bond is subject to the Morse potential
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while the rest of the system is purely harmonic. This chain is obviously stiffer than the original
system - a smaller level of zero-point motion will be necessary to cause dissociation of the Luttinger
liquid. Therefore the results derived for the model (1.25) imply that a zero-pressure Luttinger liquid
phase cannot exist for \g > 1/2.

We also note that the critical value Ay = 1/2 is larger than the dimer dissociation threshold
Aoz = V2/m ~ 0.4502. This can be understood qualitatively by noticing that the dynamics of the
Morse bond joining two half-infinite harmonic segments is more inertial (and thus more classical)
than that of the Morse dimer. Therefore with the same underlying particles a weaker level of

quantum fluctuations (i. e. smaller \o) suffices to break the dimer.

1.4.3 Accurate solution

In order to compute the properties of the Luttinger liquid more accurately while relying on the
Gaussian approximation, Eq.(1.15), we have to impose the condition that all the bonds of the
chain are equivalent. Then using definitions of De Boer’s number Ag (2.1) and its Luttinger liquid
counterpart \ (1.17) the parameter v (1.21) can be calculated as v = \/7A3; for A = \g it reduces
to v = 1/w\y previously used in approximate treatment of the problem. Similarly the reduced
curvature of the effective pair potential (1.18) can be computed with the help of Eq.(1.9) with the
conclusion that v = 2/x. This is exactly what was previously found in the approximate analysis in
the classical limit, Ag = 0, when indeed all the bonds of the chain are equivalent.

Substituting v = A\/7A3, and v = 2/7 in Eq.(1.20) we arrive at the expression for the reduced

energy as a function of dimensionless “volume” per particle Q:

E* Q) = (mA2/M\)In(l+2/x) — 2eQ-QAm(+7/2)

+ £2(Qo—Q)+4XIn(1+7/2) (1‘34)

Similarly Eqgs.(1.16), (1.22)-(1.24) transform into
5= 0NY2m2(1 + 7/2) (1.35)

Q= Qo+ 3\In(1l +7/2) (1.36)

Ei, = e 207/ [N In(1 + 2/7) — 1] (1.37)
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Ao = Ae Am(F7/2) (1.38)

Eqgs.(1.34)-(1.37) are the main results of this Section. We note that in view of Eqgs.(1.10) and (1.19)
Eqgs.(1.35)-(1.37) give the dependence of the reduced rms bond length fluctuation f*, bond length
Q, and energy per particle of the Luttinger liquid E7; on the experimentally measurable quantum
parameter \.

The dependence of De Boer’s number A\g on A is given by Eq.(1.38); we are interested in the
inverse dependence, A(\g).

The right-hand side of (1.38) has a maximum at A\, = In"'(1 + 7/2) ~ 1.0591 of magnitude
Xos = e 1 In"! (14 7/2) ~ 0.3896. For \g < Aos Eq.(1.38) has two roots for A but only the smaller
one is physical. For A\g = Ags these two roots coincide, and for A\g > Aos Eq.(1.38) has no solutions
- the Luttinger liquid phase is no longer stable. We note that the Luttinger liquid cannot sustain a
level of zero-point motion stronger than that corresponding to A\gs ~ 0.3896 which is smaller than
the dimer dissociation threshold Ao = \/5/7r ~ (0.4502.

The A(\o) dependence found by inverting Eq.(1.38) is shown in Fig.1.3 by a solid line. In the
classical limit, Ay — 0, we have A — )¢ as expected; then the effective pair potential (1.34) reduces
to its bare Morse form. As \g grows, the difference between \ and )y increases. We note that De
Boer’s number \g (1.4) is always smaller than its Luttinger liquid counterpart A (1.17) which reflects
softening of the Luttinger liquid by zero-point motion. The end point of the A(\g) dependence which
is the limit of stability of the liquid phase is a critical phenomenon - there the A(\g) dependence has

an infinite slope. Upon approaching A\os from below we find that A is given by

2e

A=A - [ln(l T 7/2)

(Aos — Ao)] /2 (1.39)

Although both the reduced rms fluctuation f* (1.35) and bond length @ (1.36) are increasing
functions of the Luttinger liquid parameter A (1.17), the relative fluctuation f*/@Q has a maximum at
Aln(1 4 7/2) = Qo/3. While the discussion of specific molecular substances will be postponed until
Section 1.4, here we note that in our attempts to fit real two-body potentials into the Morse form the
reduced classical bond length was always found to satisfy Qg 2 5. The relatively large value of Qg is
a reflection of the strength of the short-distance overlap repulsion and weakness of the large-distance
attraction in the pair interaction potential. With Qo = 5 (used hereafter for estimates) we find that

A= (5/3)In"'(1 4 7/2) ~ 1.7651 at the maximum of the relative fluctuation. But the Luttinger
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Figure 1.3: The dependence of the Luttinger liquid quantum parameter A\, Eq.(1.17) on De Boer’s
number \g, Eq.(1.17). The dashed line is A = Xo.
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Figure 1.4: The reduced energy per particle of the Luttinger liquid phase as a function of De Boer’s
number \g (1.17). The lower grey scale curve corresponds to approximate solution described by
Eqgs.(1.26) and (1.27) while the upper curve is an accurate solution given by Eqgs.(1.37) and (1.38).
The arrow shows the location of the dimer dissociation threshold A\gs = \/5/7r

E o
'l'k

liquid cannot exist for A > A\, = In"*(1 4 7/2) ~ 1.0591.

Therefore the relative fluctuation, f*/Q), reaches its maximal value at the border of existence of
the Luttiner liquid, As ~ 1.0591, with the magnitude not exceeding the level of about 0.18. This
fact resembling Lindemann’s empirical criterion of melting [34] verifies that our description of the
bond dynamics as due to coupling to a bath of harmonic oscillators is quantitatively correct. The
inequality f*/Q < 1 implies that underlying particles never come into close contact with each other
- the effect of particle statistics is negligible. In addition, having @) substantially larger than unity
justifies the nearest-neighbor interaction approximation in our treatment of the liquid.

The only remaining approximation which needs to be addressed is our replacement of the vibra-
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tional spectrum of the system, w(k) = (2¢/H)| sin(kH/2)|, by the Debye model, w(k) = c|k|, valid for
w < wp = we¢/H. Both spectra are fairly close to each other: they coincide in the long-wavelength
limit, kH < 1, and end at the edges of the first Brillouin zone, k = +7/H. Physically the chain with
the Debye spectrum is less susceptible to short-wavelength fluctuations than the original system -
the Debye frequency wp is 7/2 times larger than the maximal allowed frequency. This difference
necessary to have the correct number of degrees of freedom will only have a marginally small effect
on final results because of the dominant role played in one dimension by low-energy long-wavelength
fluctuations where the Debye approximation becomes exact.

The upper curve of Fig. 1.4 shows the reduced ground-state energy per particle of the Luttinger
liquid as a function of De Boer’s number )\ (1.4) found by combining Eqs.(1.37) and (1.38). Qual-
itatively similar dependence was found in Ref.[19]; our energy is about 10 percent lower. For the
purpose of comparison the lower grey scale curve of Fig. 1.4 shows the approximate reduced energy
per particle, Eqgs.(1.26) and (1.27), which was argued to constrain the E7j;()\¢) dependence from
below. The quantitative difference between the curves is not very large and becomes noticeable only
for Ag > 0.15. Since variational analysis always constrains the ground-state energy from above, the
true E7; (Ao) dependence must be sandwiched between the curves of Fig.1.4. We expect however
that E7 ; (Ao) is well-approximated by Eqs.(1.37) and (1.38) (the upper curve of Fig.1.4).

Variation of other properties of the Luttinger liquid with De Boer’s number A (1.4) can be

readily calculated. The expression for the reduced sound velocity ¢* = ¢/¢q can be found to be

" = XQ/AQo

_ e—>\1n(1+7r/2)[1 +3(\/ Qo) In(1 + 7/2)], (1.40)

which together with (1.38) parametrically determine c¢*()\g). In the range of interest Qg 2> 5 the
reduced sound velocity is a monotonically decreasing function of A\g. At the boundary of existence
of the Luttinger liquid the reduced sound velocity reaches its minimal (and finite) value and has a
square-root singularity implied by Eq.(1.39).

Similarly the dependence of the Luttinger liquid exponent g (1.11) on )¢ (1.4) can be found
by combining Eqgs.(1.19), (1.36) and (1.38). Again for Qo = 5 the correlation exponent g is a

monotonically increasing function of Ay reaching its maximal value at the boundary of existence of

the liquid phase.
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Figure 1.5: The reduced quantum expansion @ — Qo (a), and the Debye temperature 6* (b) of
the Luttinger liquid as functions of De Boer’s number Ay (1.17). Various molecular substances are
shown as solid dots on the curves. The numbers in the brackets on the quantum expansion graph are
classical reduced bond lengths Q¢ while the size of vertical bars equals the relative bond fluctuation.
The numbers in the brackets on the Debye temperature graph are Luttinger liquid exponents g
(1.11).
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The \g dependence of the reduced Debye temperature 8* is determined by

0" = 27 /v = 2n2 A~ A RAFT/2) (1.41)

combined with Eq.(1.38). The right-hand side of (1.41) has a maximum at A = \,/2 = 0.5In" ' (1 +
m/2) ~ 0.5295 which is inside the range of existence of the liquid phase. In view of (1.38) this
corresponds to De Boer’s number \g = 1/[2¢'/21In(1 + 7/2)] ~ 0.3212 which is the location of the
maximum of the 6*()\y) dependence.

Figure 1.5 shows the dependence of the reduced quantum expansion () — Q¢ and Debye temper-
ature 0* on De Boer’s number )\g. The quantum expansion is found by combination of Egs.(1.36)
and (1.38); it is merely a magnified A(\g) curve of Fig.1.3. The 6*()\g) dependence (Fig.1.5b) is
constructed by combining Eqgs.(1.41) and (1.38). Both properties are linear functions of De Boer’s

number in the A\g — 0 limit.

1.4.4 Zero-pressure phase diagram

In order to construct the phase diagram of the system we need to compare all the branches of the
reduced energy function (1.5); for a given De Boer’s number Ay the branch with the lowest E*(\¢)
singles out the ground-state. The outcome is shown in Fig. 1.6 where the reduced energy per particle
of the Luttinger liquid, Eqgs.(1.37) and (1.38), is drawn together with those for diatomic, Eq.(1.7),
and monoatomic, EF, . (A) = 0, gases.

We see that as )¢ increases away from the classical limit, A = 0, the reduced energy per
particle of the Luttinger liquid increases, and at Age, ~ 0.3365 a crossing with the dimer gas energy
curve, Eq.(1.7), takes place - the liquid phase evaporates into the diatomic gas via a discontinuous
transition. We note that the Luttinger liquid can still coexist (as a metastable state) with the gas
phases in the narrow range 0.3365 < )¢ < 0.3896. This is shown by the grey scale part of the energy
curve.

The diatomic gas is the ground-state of the system in the range 0.3365 < \g < v/2/7 ~ 0.4502: at
o2 = V/2/m it undergoes a continuous dissociation transition into a monoatomic gas. For \g > v/2/m
quantum fluctuations are too strong and no bound state can exist: a monoatomic gas is the only
possible state of the system.

In determining the ground-state one needs to take into account all possible competing phases of
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Figure 1.6: The dependencies of the reduced energy per particle on De Boer’s number )\ (1.4) for
various phases. The bold parts of the curves correspond to ground states of the system while the
grey scale segments indicate metastable states. The loci of a series of substances are shown by solid
dots, and the arrow pointing down is the dimer dissociation threshold.
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the system in question. We however neglected the possibility that trimers (and generally N-atomic
molecules) may come into play. This is because we only know how to treat the N = 1,2, 0o cases in
a controlled fashion. Although it appears unlikely, we cannot rule out that for sufficiently large )¢,
N > 2-atomic gases might become relevant; resolving this issue is left for future study.

A critical reader still may argue that our prediction of the diatomic gas phase is an artifact of
the variational treatment - the exact energy curve corresponding to the Luttinger liquid may go
lower then what Fig.1.6 shows. If this is the case, then the dimer gas ground state may disappear
altogether.

A finite-pressure treatment described next provides additional evidence that the physics is in-

complete with only a liquid and monoatomic gas present.

1.5 Finite pressure

At zero pressure there is a qualitative difference between a liquid which is a bound many-body
state and a gas which is a collection of infinitely far separated particles. Arbitrarily small confining
pressure necessarily brings a gas to a finite density. As a result the two gas phases previously
discussed turn into Luttinger liquids. The difference between the “parent” Luttinger liquid and what
used to be a monoatomic gas becomes merely quantitative - they will have differing densities, sound
velocities, correlation exponents and other properties. The liquid of dimers is more complicated as
in addition its oscillation spectrum will have an extra optical branch.

To avoid confusion we will keep referring to these pressure-induced Luttinger liquids as gases. As
the pressure and De Boer’s number )\ change, they may undergo gas-gas and gas-liquid transitions.
At sufficiently large pressure and Ao the quantitative difference between the gases and the liquid
must disappear.

In what follows we will not be able to discuss these transitions as at the moment it is unclear
how to describe the effect of pressure on the diatomic gas phase in a controlled fashion. On the
other hand, the generalization of our formalism to both monoatomic gasses and Luttinger liquids is
straightforward. Thus we will restrict ourselves to finding ranges of existence of these phases.

The difference between the liquid and gas becomes most extreme at negative pressure. Here the
liquid may still exist as a metastable state while the gas phase is impossible.

In one dimension the pressure has dimensionality of a force. Assume our system is compressed
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by a constant force p applied to its ends. The system responds by exerting an outward force of
magnitude p on the compressing agent which corresponds to the definition of positive pressure.
Similarly, if the system is stretched by an external force, it responds by exerting an inward force on
the stretching agent which corresponds to the definition of negative pressure. These two cases will
be distinguished by the sign of p.

Since every particle of the system is in mechanical equilibrium, the whole effect of pressure
translates into replacing the bond potential V (k) by V(h) + ph, the total potential energy in the

external field [23]. Then the finite-pressure analog of Eq.(1.20) becomes

E*(7,Q) = v 'In(1+7)—2e2 1+~

+ Q@1 44 ) 4, (1.42)

where p* = pl/e is the reduced pressure. Eq.(1.42) should be minimized with respect to v and @,
and then v = \/7 A3 and v = 2/ substituted in the outcome will guarantee translational invariance.

The results are finite pressure analogs of Egs.(1.34), (1.36), and (1.38):

E Q) = (7 2/N)In(1+2/m) — 2eQ-@+AIn(+7/2)
+ 62(Q07Q)+4)\ 1n(1+7r/2) + p*Q, (1‘43)
Q = Qo+3\In(l+7/2)
— In[(14 /1 + 2p*e22 In(1+7/2)) /2], (1.44)
X = )\e—)\ln(1+7r/2) [(1 + Qp*e2)\ln(1+ﬂ'/2)
+ 1+ 2pre2An(iin/2)) /]1/2 (1.45)

The expressions for the reduced rms fluctuation (1.35) and Debye temperature (1.41) as functions of
A remain the same while the A(A\g) dependence is determined by (1.45). Similarly the reduced sound
velocity is given by the first representation of Eq.(1.40) with @ and X\ determined by Eqs.(1.44) and
(1.45), respectively.

We note that the parameter A (1.17) now accounts for both the effects of pressure and zero-point
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motion.

1.5.1 Classical limit

In the classical limit Ao, A — 0 and p* > 0 the position of the minimum of (1.43) given by (1.44)
naturally shifts to values smaller than Q. In addition Eq.(1.44) predicts that at a very large pressure
pi =~ 2290 = 2¢10 ~ 44000 the bond length vanishes. This conclusion is an artifact because for small
interparticle separation the Morse potential underestimates the true strength of overlap repulsion
- the bond length can only go to zero in the limit of infinite pressure. This flaw implies that only
p* < pg results are credible which is not really restrictive as pf is unrealistically large.

The pressure dependence of the reduced sound velocity follows from the first representation of
(1.40), and Eqgs.(1.44) and (1.45).

For not very large negative pressure the pair potential (1.43) has a minimum given by (1.44) and a
maximum - the “broken” ground state of the chain is separated from the metastable stretched crystal
by a potential barrier. As the magnitude of the pressure increases, the amplitude of the barrier
decreases, and at the classical limit of mechanical stability, p¥,, = —1/2, the barrier disappears
altogether - no bound state can exist for p* < —1/2. As the pressure approaches the limit of
mechanical stability from above, the reduced bond length tends to @ = Qo + In 2 while the reduced

1/4

sound velocity vanishes as (1 + 2p*)/* in agreement with general arguments of Ref.[23].

1.5.2 Quantum case

With quantum effects included, the pressure at which the bond length vanishes (and the Morse
potential approximation fails) will be even larger than its classical counterpart as zero-point motion
counteracts the compression. Therefore the restriction p* < p{ remains unchanged in the quantum
case.

Since quantum fluctuations lead to the expansion and softening of the liquid phase, a smaller
in magnitude negative pressure will suffice to destabilize the liquid - the dependence of the limit
of mechanical stability on De Boer’s number (1.4), p*,.(\g), should be a monotonically increasing
function of Ao satisfying p*,.(0) = —1/2 (classical limit) and p*,.(Aos) = O (zero-pressure limit of
stability of the Luttinger liquid).

For p* = 0 the right-hand-side of (1.45) vanishes both at A = 0 and A\ = oo reaching a maximum

at A = A\ which determined the limit of stability of the liquid in the zero-pressure case (see Section



39

Figure 1.7: The A\o()\) dependence, Eq.(1.45), for sufficiently small positive pressure (p* = 0.002 is
shown). The lines of fixed \g = Agq» are the limits of stability of gas and liquid, respectively.
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1.4.3). For finite positive pressure and A\ — oo the right-hand-side of (1.45) behaves as p*'/?\ which
implies that for not very large p* the \o(\) dependence is a nonmonotonic function which has both
a maximum and a minimum. The position of the minimum shifts to infinity as p* — 0. An example
of the A\g(A\) dependence, Eq.(1.45), for sufficiently small positive pressure is displayed in Fig.1.7
where we also show two lines of constant Ay to help identify possible phases of the system.

For fixed small positive pressure and g < Ao, Eq.(1.45) has a unique solution for A\ describing
the liquid. For M\os < Ao < Aop Eq.(1.45) has three solutions. Out of them only the smallest
(corresponding to liquid) and the largest (corresponding to gas) are physical. For A\g > Aoy there is
only one solution for A\ describing a gas phase. The liquid and gas phases can coexist in the range
of Ay between the limit of existence of the gas phase, \y,, and that of liquid, Ags.

If the condition

P expl(2X0/p*/?) In(1 + 7/2)] > 1 (1.46)

holds, then the explicit A\o-dependence of the properties of the gas phase can be deduced from
Eqgs.(1.44) and (1.45)
A= Xo/p*/? (1.47)

Q@ — Qo=—(1/2)In(p*/2)
+ \/%[mo In(1 + g) - %e—@o@””“n(l%)] (1.48)
We note the range of applicability of these results is rather wide - small pressure and nonzero \g,
large pressure and arbitrary Ay, and arbitrary pressure and large \g. The pressure dependence of
the reduced length per particle Q@ (1.48) is the equation of state of the Morse gas.

As the pressure increases, the distance between the minimum and maximum of the right-hand-
side of (1.45) decreases, and at the critical pressure p* = p¥ ~ 0.0185 the difference between the
properties of liquid and gas disappears for the first time. At this pressure and Ao, ~ 0.4387 the size
of the liquid-gas coexistence region shrinks to a point.

The negative pressure analysis is similar to what we did for p* = 0 in Section 1.4.3. For negative
pressure of sufficiently small magnitude the right-hand-side of Eq.(1.45) vanishes both at A = 0
and 1 4 2p*e2*(1+7/2) — ( reaching a maximum in between. If De Boer’s parameter \q is below

this maximum, then Eq.(1.45) has two solutions for A. The smaller (physical) solution describes
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a metastable Luttinger liquid. As )¢ increases, the two solutions approach each other. When \q
reaches the maximum of the right-hand-side of (1.45), we are at the limit of mechanical stability of
the system - no liquid can exist for larger \g.

Alternatively, for sufficiently small fixed ¢ the height of the maximum of (1.45) decreases upon
increase of the magnitude of pressure, and at some p} . ()\o) the maximum of (1.45) reaches the
level of Ag thus bringing the system to the limit of mechanical stability. It is curious that in
the quantum case the “liquid” solution disappears before the condition 1 4 2p*e2Xn(1+7/2) — () ig
reached. Therefore at the stability threshold both the energy barrier (between “broken” ground-state
and stretched metastable liquid) and sound velocity remain finite. Only in the classical limit Ay — 0
do these quantities vanish.

The pressure-De Boer’s parameter diagram showing ranges of existence of liquid and gas is
displayed in Fig.1.8.

We deliberately selected different scales on the positive and negative parts of the pressure axis in
order to be able to show the complete picture. As a result of this choice there is an illusory change
of slope of the line of mechanical stability of the liquid at zero pressure - in reality the p¥ . (o)
dependence is smooth.

The point C having coordinates Ao, ~ 0.4387, p% ~ 0.0185 where the limits of existence of liquid
and gas meet is a candidate for the liquid-gas critical point. Then the line of a liquid-gas evaporation
transition should also pass through C. This curve, found by equating the ground-state energy (1.43)
for both phases is shown in Fig. 1.8 by a dotted line. It does not end at C, and everywhere within
the DC segment of the metastability line the Luttinger liquid has lower energy than the gas. These
results imply that a direct liquid-monoatomic gas transition is impossible. Another gas phase,
diatomic, must intervene. Although the existence of this phase will set phase boundaries at finite
pressure, it will not affect the ranges of existence of the Luttinger liquid and monoatomic gas.
Other finite pressure properties of the system can be readily found. As an example, Fig. 1.9 illustrates
the dependence of the reduced quantum expansion Q — Qo on De Boer’s number \q for three different
pressures. The curve of Fig.1.9a shows the expansion of the Luttinger liquid due to the combined
effect of zero-point motion and negative pressure of sufficiently large magnitude (p* = —0.1 was
used). The end point of the dependence is the limit of mechanical stability of the liquid. In Fig.1.9b
the pressure is selected to be within the region of the liquid-gas coexistence (p* = 0.002 was used).

As a result the quantum expansion dependence is not unique: the lower (larger density) curve
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Figure 1.8: The p*()\g) diagram showing ranges of existence of liquid and monoatomic gas phases.
Different scales are selected on the positive and negative parts of the pressure axis. The liquid and
gas can be in equilibrium along the dotted line.
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Figure 1.9: The dependence of the reduced quantum expansion ) — )y on De Boer’s parameter \g
at a negative pressure of large magnitude (a), within the liquid-gas coexistence region (b), and past
the point C of Fig. 1.8 (c).
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Table 1.1: Morse parameters for a series of molecular substances and some of their computed
properties at zero pressure. Substances are arranged in the order of decrease of their De Boer’s
number )\q. Blank entries correspond to gas ground states when interparticle separation is infinite.

m € 12 Ho )\0 Q - Qo Q —FEx

au. K A A 103
H1T 1008 6.19 .6869 4.1563 .9136 0
D71 2014 6.19 .6869 4.153 .6463 0
T1 3016 6.19 .6869 4.153 .5281 0
3He 3.016 10.8 .5350 2.980 .5134 0
‘He 4.003 10.8 .5350 2.980 .4456 .0509

Hy, 2.016 322 .6900 3.440 .2819 1.1860 6.172 159.6
D, 4.028 32.2 .6900 3.440 .1994 .7178 5.703 376.6
Ne 20.18 35.6 .5200 3.110 .1124 .3591 6.340 632.6
Ar 3995 120 .6600 3.860 .0343 .1005 5.949 883.9

corresponds to the liquid while the upper (lower density) curve is for the monoatomic gas. The end
of the “liquid” curve and the beginning of the “gas” curve are limits of existence of these phases. In
Fig.1.9c the pressure is selected to satisfy the condition p* > p¥ i.e. past the point C of Fig.1.8.
Now there is no quantitative difference between liquid and gas. The presence of a relatively steep
part around A\g ~ 0.44 is the effect of the proximity of p* = 0.02 to p} ~ 0.0185.

To test the limits of applicability of our theory we also investigated the reduced sound velocity
and relative bond fluctuation at various pressures. We found that at fixed Ay the reduced sound
velocity initially increases with pressure but then at pressures exceeding the level of about 6000
or larger, it begins to decrease vanishing at the point where the bond length ) vanishes. The fall
and vanishing of the sound velocity do not correspond to physical reality and have their origin in
the inadequacy of the Morse potential approximation at small interparticle distances. Similarly, the
relative fluctuation diverges upon approaching the nonphysical @@ = 0 point. These artifacts do not
pose practical limitations to our theory because they occur at unrealistically large pressures. We
verified that if we limit ourselves to pressures not exceeding 5000, then the relative fluctuation is
smaller than 0.5, and the behavior of other properties of the system is in agreement with physical

expectations.
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1.6 Applications and Discussion

Fitting two-body potentials of molecular substances into the Morse form can provide us with the
depth of the potential well €, the interaction range [, and the position of the potential minimum Hy.
Supplemented by the masses of the underlying particles, this information is an input of our theory
which then allows us to determine De Boer’s quantum parameter )y (1.4), the ground state and
virtually any property.

The fitting procedure can introduce uncertainties because real two-body interactions do not have
the Morse form. We already know that the Morse potential underestimates the strength of the
overlap repulsion at short distances but as long as the reduced pressure does not exceed 5000, this
flaw is practically irrelevant.

The Morse potential also underestimates the magnitude of Van der Waals attraction at large
distances. We found that in the condensed state this shortcoming can be kept under the control by
carrying out a Morse potential fit in a range of interparticle distances followed by a consistency check
verifying that the segment of most probable particle location (formed by computed equilibrium bond
length plus/minus its rms fluctuation) is well inside the fitting range.

The first four columns of Table 1.1 represent Morse parameters of various molecular substances
which are used to compute De Boer’s number Ay shown in the fifth column. The remaining three
columns are reduced quantum expansion () — Qo, bond length @), and the energy per particle E* (all
at zero pressure) calculated using the theory developed in this paper. The loci of all these substances
are also indicated on the reduced energy curve E*()\g) of Fig.1.6. For the substances whose ground
state is the Luttinger liquid, Fig. 1.5a also shows the magnitudes of the reduced classical bond length
Qo and its relative fluctuation f*/@Q, while Fig. 1.5b gives the values of the Luttinger liquid exponent
g.

In computing these properties we also assumed that the three-dimensional form of the inter-
action does not change upon one-dimensional confinement of the particles and that translational
symmetry is preserved. Both these assumptions are approximations if the confinement is achieved
in carbon nanotube bundles because interparticle interaction is mediated by the carbon environment
[35] while the axial motion takes place in a periodic potential [15]. The former effect generally weak-
ens interparticle attraction at large distances thus making the system more quantum. On the other

hand the external periodic potential due to the carbon environment has an opposite effect leading



46

to upward renormalization of the mass. Therefore the properties of strictly one-dimensional matter
may differ qualitatively from those of the matter inside nanotube bundles. The effect of an axial
periodic potential may be even more dramatic, and the effective mass approximation insufficient
if the corrugation is strong enough to introduce a commensurate-incommensurate phase transition
[36]. This potentially important effect is beyond the scope of our method and cannot be discussed
here.

Before considering individual substances it is useful to look at the properties of one-dimensional
matter as a whole and compare them with those of laboratory substances. The corresponding states
analysis of three-dimensional molecular matter is based on the Lennard-Jones pair potential and
except for the vicinity of the classical limit A\g = 0, it is empirical [2, 3, 4].

The substances in Table 1.1 are arranged in the order of decreasing De Boer’s number Ay which
is naturally the same as in three dimensions. The main qualitative difference from the ordinary
substances occurs because of the dominant role played by zero-point motion which in one dimension
forbids the crystal ground state. We find that spin-polarized isotopes of hydrogen (hydrogen H 1,
deuterium D T, and tritium 7' T) and *He are monoatomic gases, *He is diatomic gas, while
molecular hydrogen and heavier substances are Luttinger liquids. If we view the Luttinger liquid
as the counterpart of the crystal in three dimensions, then the bold part of the reduced energy
curve, Fig. 1.6, closely resembles its three-dimensional counterpart [3]. There is a change of slope
somewhere between H, and * He which in our case is the dissociation of the Luttinger liquid into a
diatomic gas while in the three-dimensional world it is a melting transition.

Our dependence of the reduced Debye temperature 6* on De Boer’s number Ay, Fig.1.5b, also
looks very similar to its three-dimensional counterpart [2], and even empirical values of the reduced
Debye temperature are close to their computed one-dimensional analogs. We also find that the
6*(\o) dependence has a maximum somewhere past molecular hydrogen; from empirical data it
seems impossible to tell whether this effect is present or not in three dimensions.

Before comparing quantum expansion in one and three dimensions, we note that the quantum
theorem of the corresponding states applied to the Lennard-Jones system predicts that the reduced
volume per particle (length in one dimension) @ is only determined by De Boer’s quantum parameter
Ao- At the same time for the Morse system the analogous statement is valid for the reduced quantum
expansion ) — Qo. However the inspection of Table 1.1 (see also Fig.1.5b) shows that the values

of the reduced classical bond length Qo = Hy/l belong to the relatively narrow interval roughly
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between 5 and 6.3. Therefore the variation of @y from substance to substance can be ignored and
within experimental error our results can be compared to their empirical counterparts [2, 3]. Again
we find that the \g dependencies of the reduced quantum expansion in one and three dimensions
are qualitatively similar.

In three dimensions all these properties can be computed perturbatively in the A\ — 0 limit
[2, 3] with the conclusion that to leading order E*()\g) — E*(0), @ — Qo, and #* all vanish linearly
with A\g. This behavior is identical to the Ay — 0 limit of our theory.

As a final comment, we note that from the viewpoint of their electron transport properties all
the molecular substances are normally insulators as they have completely filled electronic shells.
However at sufficiently large pressure when electron wave functions of neighboring molecules overlap
considerably, any substance should turn into a metal [37]. At that point our “molecular” approxima-
tion describing many-body physics in terms of additive two-body interactions fails. Typically this
happens at a very large pressure, and a different approach explicitly accounting for the dynamics
of the electron degrees of freedom is necessary. This complex problem is beyond the scope of the
present paper. For the case of molecular hydrogen, however, we will be able to estimate this criti-
cal pressure when the metal-insulator transition takes place without leaving the framework of our
method.

In subsequent discussions of individual substances we first present the results based on the pair
interaction potential in free space. These conclusions are robust. On the other hand, our comments
about the properties of matter inside nanotubes are speculative as they rely on the assumption
that the effect of carbon environment can be accommodated within the framework of our method
by adjusting De Boer’s parameter \g. It is also important to keep in mind that inside nanotube
bundles there will be an additional interaction between different one-dimensional channels filled with
absorbed substances. This interaction is responsible for exotic crossover effects which can be viewed
as an effective change of space dimensionality [38]. These effects are also beyond the scope of our

one-dimensional theory.

1.6.1 Spin-polarized hydrogen and its isotopes

The pair interaction between two particles of the spin-polarized hydrogen family has been computed
by Kolos and Wolniewicz [39]. Etters, Dugan and Palmer [40] have found a very good Morse fit to

the Kolos-Wolniewicz potential; the Morse parameters shown in Table 1.1 are their values.
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Compared to the other elements in Table 1.1, these substances have the shallowest potential well
which is only 6.19K deep. Combined with its smallest mass, this makes H T the “quantummost”
element with A\g = 0.9136. Spin-polarized deuterium D 7 is second in line with Ay = 0.6463 while
spin-polarized tritium 7" T takes the third place, A\g = 0.5281. All these elements are monoatomic
gases at zero pressure as can be seen from Fig.1.6. On the other hand at zero pressure in three
dimensions the heaviest of the family, T 7, forms a liquid while H 1 and D 1 are gases [40].

External pressure confines these gases to a finite density but because De Boer’s numbers are
larger than Ao, >~ 0.4387 corresponding to point C of Fig.1.8, applying pressure is not going to turn

them into liquids.

1.6.2 Helium

The pair interaction between two helium atoms is accurately described by the semi-empirical Aziz
potential [41] which is 10.8 K deep; this is the second entry in Table 1.1. The authors of Ref.[19]
proposed the Morse fit of the Aziz potential with the parameters | = 0.5828A and H, = 2.89A
claiming that “the integrated square of the deviation of the fit from the Aziz potential does not
exceed 1% in the range of localization of a He atom”. These parameters produce Ao ~ 0.41 for
4He which according to our theory makes it a diatomic gas. It is indeed experimentally known [42]
that *He can form very large dimers with the bond length of 52A. We verified however that at
interparticle distances that large the Morse fit proposed in Ref.[19] is very poor.

Our own attempts to improve the fit increased the value of )y bringing it into a narrow vicinity
of the dimer dissociation threshold \g2 = \/i/w, and without extra knowledge we could not make
a decision whether \g is larger or smaller than Agy. We resolved this dilemma by invoking the
experimental result [42] that the binding energy of the * He dimer is —1.1mK. Halving this value
and dividing the outcome by 10.8K, the depth of the He — He potential well, produces the last
entry in Table 1.1, the reduced energy per particle of the diatomic gas. This can be substituted
into Eq.(1.7) to recover the fifth entry, Ay = 0.4456. As expected, this is only marginally smaller
than the dimer dissociation threshold Ags. Using the definition of De Boer’s number, Eq.(1.4), we
can now recover the interaction range (the third entry in Table 1.1) to be [ = 0.5350A. Finally the
position of the minimum of the Morse potential Hy = 2.980A was chosen to optimize the fit.

Upon application of pressure the gas of * He dimers will turn into a Luttinger liquid; calculation

of the properties of this dimer liquid is beyond the scope of our method.
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De Boer’s quantum parameter for >He can be obtained from that for *He by invoking their
mass ratio. This gives us the value quoted in the fifth column of the 3He row in Table 1.1. It is
higher than the dimer dissociation threshold g2 thus ruling out earlier prediction [43] that > He can
form a dimer in one dimension. A many-body system of 3He particles in one dimension will form
a monoatomic gas with properties close to those of spin-polarized tritium. Similar to 7' T, the 3He
gas will not condense under pressure.

Our result that He forms a diatomic gas strictly in one dimension is in variance with earlier
work [15, 16, 18] which predicted a liquid ground state with a binding energy on the order of a few
to tens of mK. This is the same order of magnitude as the energy per particle in the diatomic gas.
However Refs.[16, 18] also predict a liquid-solid phase transition which is forbidden in one dimension.

In applying our results to nanotubes one has to bear in mind that *He atoms are strongly
attracted to the interstitial channels inside nanotube bundles. The corrugation felt by the individual
atom is so strong that the effective mass enhancement is very large: m* ~ 18m [44]. There is also
a weaker opposing effect: 28% reduction in the well depth of the pair interaction mediated by the
carbon environment [35]. Combining these effects and assuming the interaction range does not
change significantly, we find that De Boer’s number will decrease by a factor of 3.6 away from its
purely one-dimensional value thus implying a liquid ground state. Similar outcome is expected for

3He.

1.6.3 Molecular hydrogen

The pair interaction between two hydrogen (or deuterium) molecules is commonly described by the
semi-empirical Silvera-Goldman potential [21]. Fig.1.1 shows this potential together with its Morse
fit; the calculated Morse parameters are quoted in Table 1.1.

As can be deduced from Figs.1.5 and 1.6, and Table 1.1 the many-body system of Hy molecules
is a Luttinger liquid with strongest effects of zero-point motion. It is characterized by —5.14K
cohesive energy (ground-state energy per particle) which is an 84% reduction in magnitude away
from the depth of the Hy — Hy potential, largest Debye temperature of 121K, largest Luttinger
liquid exponent g ~ 0.1, largest quantum expansion of 0.82A, and largest, just under 18%, relative
fluctuation of the bond length.

The equilibrium distance between the Hs molecules is 4.26A. As can be seen from Fig.1.1 in

a range around the equilibrium bond length significantly exceeding its rms fluctuation the Morse
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potential is a very good approximation to the Silvera-Goldman potential. The fit worsens at in-
terparticle separations exceeding 5A; there are also deviations from the Silvera-Goldman potential
at distances smaller than 3A. However at these compressions Hemley and collaborators [45] have
found a softening effect unaccounted for by the Sivera-Goldman potential. We verified that the
Morse potential shown in Fig.1.1 provides a very good fit to the Hemley-corrected version of the
Silvera-Goldman potential.

Previous work [17] finds a liquid ground-state with the energy per particle to be —4.8 K and the
bond length of 4.6A. These values are close to our results. However we disagree with the existence
of a liquid-solid transition found in Ref.[17] at higher density; such a transition is forbidden in one
dimension.

The building blocks of one-dimensional molecular hydrogen are H, molecules whose size of 0.75A
[37] is significantly smaller than the computed intermolecular distance of 4.26A. Such structure can
be understood qualitatively from a complementary viewpoint:

There is exactly one electron per every hydrogen atom, and if the protons are arranged equidis-
tantly, then the valence band is half-full, and the resulting system is an alkali metal [1]. However
Peierls [46] noticed that in one dimension the energy can be further lowered by displacing every sec-
ond nucleus by a prescribed distance. As a result of the period doubling the valence band becomes
full, and the resulting dimer chain is an insulator. We conclude that one-dimensional molecular
hydrogen is an example of Peierls-distorted one-dimensional structure; the dimers are hydrogen
molecules.

Peierls’ arguments rely on an adiabatic approximation which ignores zero-point motion of the
nuclei; the former may change the answer qualitatively. Our theory which starts from interacting
H; molecules shows that even for one-dimensional hydrogen the ground-state is a Peierls-distorted
insulator despite strong quantum fluctuations.

This conclusion may change upon application of pressure which brings hydrogen molecules closer
to each other and increases relative fluctuation of the bond length. We argue that the distortion
disappears and thus an insulator-metal transition takes place when all the hydrogen atoms become
translationally identical. This transition is a one-dimensional version of the metallization transition
predicted by Wigner and Huntington [37]. In one dimension the mechanism of the transition consists
in “undoing” the Peierls distortion.

Since the bond between the two hydrogen molecules is significantly softer than that holding the
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H; molecule together, we assume that upon application of pressure, only the former decreases. Thus
the translational equivalence of all the hydrogen atoms will be achieved when intermolecular spacing
reaches the value of order 1.5A, twice the size of the Hs molecule. With zero-pressure intermolecular
spacing being 4.26A, this corresponds to compression by a factor of 2.84. The corresponding reduced
pressure p* > 1 can be found by inverting Eq.(1.48):

P 2e2{Q0—QH V2N In(1+3)— §]e ™90} (1.49)
Substituting here Qo = 4.986, Q = H/l = 2.174, and )y = 0.2819 we arrive at the reduced pressure
of 545. Our theory which does not explicitly consider electronic degrees of freedom fails in the
vicinity of the inverse Peierls transition.

For molecular hydrogen in one dimension the unit of pressure is a force of ¢/l ~ 6.44 x 107 12N
strong. Multiplying this by 545 we find that 3.51 % 10N force compressing one-dimensional hydro-
gen may suffice to induce a transition into a metallic state. If this force is applied at the 147 area,
then the corresponding three-dimensional pressure will be 351G Pa. We note that three-dimensional
solid hydrogen subject to pressure that big still resists metallization [47]. Unfortunately the ac-
curacy of our estimate is not great because of the exponential dependencies in (1.49) - the actual
one-dimensional transition may happen at lower or larger pressures.

For hydrogen confined inside interstitial channels of carbon nanotube bundles the carbon envi-
ronment effectively reduces the well depth of the pair interaction by 54% [35]. This effect alone
would suffice to turn the many-body system of hydrogen molecules into a gas of (Hz)2 complexes.
However if the effective mass enhancement is comparable to that for He [44], the liquid ground state
might be restored.

As can be seen from Fig. 1.6 and Table 1.1, the ground state of molecular deuterium is a Luttinger
liquid. The quantitative difference from the properties of molecular hydrogen is solely due to the
fact that D- has a larger mass. The cohesive energy of the one-dimensional D5 liquid is —12.1K
(62% reduction in the magnitude of the Ds — D5 pair potential well), the Debye temperature is

99.8 K while the equilibrium distance between D, molecules is 3.94A.
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1.6.4 Heavier substances

While discussing the physics of molecular hydrogen in one dimension we came to the conclusion that
it can be viewed as an example of a Peierls-distorted structure. The same arguments are applicable
to any element with odd number of electrons: the period doubling should take place and the resulting
system must be an insulator. We note that three-dimensional counterparts of these substances are
metals. These observations imply that our theory is also applicable to substances which traditionally
are not considered to belong to the molecular group. For example, one-dimensional lithium must be
an insulating Luttinger liquid of Liy molecules [48]. Similar to molecular hydrogen, under pressure
it should undergo a metallization transition. Had we known the pair interaction between two Lis
molecules, we could have computed the properties of the lithium liquid. From the viewpoint of the
quantum theorem of corresponding states molecular lithium is expected to occupy a place somewhere
between D, and Ne.

Table 1.1 also contains the Morse data for Ne and Ar. They were obtained from the parameters
of the Lennard-Jones interaction potential [1] which is commonly used to describe these noble gases.
Some of the properties of these substances in one dimension can be found in Table 1.1 and in
Figs.1.5 and 1.6. The equilibrium interparticle spacing, cohesive energy and Debye temperature
can be extracted from what is shown in the same manner as was done for lighter elements. As the
underlying particles become heavier, the effect of zero-point motion decreases. For elements heavier

than Ar quantum fluctuations can be ignored for most practical purposes.



Chapter 2

Quantum dissociation of an edge of a

Luttinger liquid

As in Chapter 1, we begin with a many-body system of identical particles of mass m with pairwise
interaction V(h) corresponding to molecular matter [1], given by eq. (1.2). With this choice the
quantum theorem of the corresponding states [2] holds stating that every property measured in
appropriate dimensionless units is only determined by the function U(y), particle statistics and De

Boer’s number

(2.1)

measuring the intensity of zero-point motion.

The possibility of several bulk phases in the system translates into a corresponding number of
branches of the energy as a function of \g; the lowest of them singles out the ground state of the
system. When two energy curves cross, the ground state changes via a first-order phase transition.
For sufficiently large Ao and zero pressure the ground state must correspond to individual particles
infinitely far apart from each other. This is a monoatomic gas which will be chosen as the zero
reference point for the energy.

As in section 1.2 we select the pair interaction potential in the Morse form [20]:

V(h) = E(6*201/1*(»?0) _ 26*(’1/1*@0))’ (2.2)
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where € is the depth of the potential well and Q) is the location of the minimum of (2.2) measured in
units of the potential range /. Similar to the applications of the Lennard-Jones potential to laboratory
molecular systems [1], the only reason behind this choice is the possibility of analytic progress.
Morse parameters for a series of molecular substances and corresponding De Boer’s numbers (2.1)
were computed in Ref.[53] and were given in Table 1.1. Hereafter the energy and length scales will
be measured in units of ¢ and [, respectively. As appropriate for molecular substances, we restrict
ourselves to nearest-neighbor interactions.

In the classical limit, Ao = 0, the ground state of the system is a crystal; its quantum counterpart
for sufficiently small )¢ is a Luttinger liquid [6] whose properties have been computed in Ref.[53] as
follows:

The length of any bulk bond h as a function of imaginary time 7 is viewed as a quantum-
mechanical degree of freedom subject to the external potential V(). This bond joins together two
half-infinite segments representing the rest of the system, the “bath”. After the bath is approximated
by a harmonic liquid, the latter can be integrated out away from the anharmonic bond leading to
a problem of the Caldeira-Leggett type [24]. The latter has been analyzed by a combination of
variational and renormalization-group techniques, and it has been demonstrated that the approx-
imation is a controlled way of dealing with the interplay of zero-point motion and anharmonicity
of the two-body interaction [53]. Similar consideration applied to the edge bond of a half-infinite

Luttinger liquid leads to the Euclidian action of the form

8

|lw|<wp

Sedge = = / ;l—:|w||h(w)|2 +/d7-V(h), (2.3)

where p and c are the mass density and sound velocity, respectively, and h(w) is the Fourier transform
of the bond-length field; the frequency cutoff is given by the Debye frequency wp.

The calculation of the properties of the edge of a Luttinger liquid proceeds through the application
to the action (2.3) of Feynman’s variational principle [26] which states that for any trial action Sy
with associated ground-state energy FEj, the system’s true ground-state energy is bounded above
by Eog+ (T/h) < S — Sp >0 where the zero-temperature limit 7" = 0 is taken at the end and <>q

denotes an expectation value computed with Sy.
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Similar to the bulk problem [53] the trial action is selected in the Gaussian form

C dw
=%\ [ Solln)P +rwp [drth-qu? . (2.4)
w|<wp
where dimensionless variational parameters (Q and v have a meaning of the bond length and its
stiffness, respectively. Then the root-mean-square (rms) fluctuation of the bond length can be

computed as

< 12>y = 222 (14 7Y, (2.5)
where
h
A= —— 2.6
mpcl? (2:6)

quantifies the strength of zero-point motion in the Luttinger liquid. The binding energy of the edge

particle E.qqe is approximated by Eo + (T'/h) < S — Sy >0, i. e. by its upper bound:

Eedge (’% Q) = (77)\(2)/)\) ln(l + '7) — 26Q0—Q(1 + 7—1)2)\

4 2QQ)(] 4y 1yEA (2.7)

Minimizing E.44. with respect to () we arrive at the expression for the quantum expansion of the

edge bond

Qedge - QO =6A ln(l + 7_1) (28)

Substituting this back into (2.7), Eeqqe can be written as

Eedge(7) = (mA3/X) In(1 +7) = (14471~ (2.9)

Minimizing Eq.(2.9) with respect to 7, and substituting the outcome back into (2.9) we find

v = (4N /7A2)(1 +~~H) (2.10)

and

Eedge = (TA3/4X?) (AAIn(1 + ) — 7) (2.11)
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respectively. The results (2.5), (2.8), (2.10), and (2.11) should be compared with their bulk coun-

terparts [53] Eqgs. (1.35)-(1.37) which are reproduced below:

< 2= N2 2 (1 4+ 7 /2), (2.12)
Quutk — Qo = 3XIn(1 +7/2), (2.13)

o = A1 +7/2)72 (2.14)

Eyur = (1 +7/2)72* (mAIn(1 +2/7) — 1) (2.15)

Substituting Eq.(2.14) back in Egs.(2.10) and (2.11) brings them into a form convenient for analysis

y=4/m)(1+7/2)2 1+~ (2.16)

Eeage = (1/4)(1 4+ 7/2) 72 (4N In(1 + ) — 7) (2.17)

The properties of the edge as a function of the quantum parameter A (2.6) can be computed by
finding a solution v(\) to Eq.(2.16) minimizing the energy (2.17) and substituting the outcome in
the expressions for the rms fluctuation (2.5) and quantum expansion (2.8); the dependence on De
Boer’s number (2.1) follows from Eq.(2.14).

In the classical limit, A — 0, the only solution to (2.16) is v = 4/m with the energy (2.17)
Eeqge = —1 as expected. As the degree of zero-point motion intensifies (A increases), the bond
stiffness v decreases and the energy E.q,e increases. For finite A\ Eq.(2.16) may have more than one
solution. One of them is always v = 0 corresponding to the delocalized edge particle. For large A
this solution must correspond to the lowest (zero) energy (2.17).

For v < 1 the right-hand-side of Eq.(2.16) behaves as v** while for v — oo it approaches a -
independent limit, thus implying that (2.16) cannot have more than three solutions and that A = 1/4
plays a special role.

For 0 < A < 1/4 Eq.(2.16) has two solutions and the larger of them (whose A = 0 limit is
~v = 4/7) corresponds to the lowest energy (2.17). For A = 1/4 the explicit solution to (2.16) is
v =(4/m)(1 +7/2)"/? —1~1.0415

As X increases beyond 1/4, Eq.(2.16) acquires a third root whose A — 1/4 + 0 limit is v =
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Figure 2.1: Dimensionless stiffness of the edge bond v and corresponding binding energy of the edge
particle Eqqe of a half-infinite Luttinger liquid as functions of the quantum parameter A (2.6). The
region of metastability is confined to the 1/4 < X\ < 0.3730 range.

\

- alk

Y Metastability
05 ]

0 //

_1 1 1 1 1 I |
0 005 01 015 02 025 03 035 04

A

(m/4(1 4+ 7/2)Y/2)1/(#A=1) 0. However this solution leads to a larger energy (2.17) than even the
delocalized solution v = 0. The lowest energy (bound) state continues to be described by the largest
solution to (2.16).

As )\ continues to increase, the finite solutions to (2.16) approach each other and at some A they
coalesce. This is a critical phenomenon corresponding to the limit of stability of the bound edge.
At that point the slopes of the right- and left-hand-sides of Eq.(2.16) coincide which leads to the
limiting values v ~ 0.4920 and A ~ 0.3730 satisfying the relationship v = 4\ — 1. At larger values of
A Eq.(2.16) has only one solution v = 0 corresponding to an unbound edge. The transition between
the bound and unbound states actually happens before the limit of stability is reached, namely when
the energy (2.17) vanishes. Numerical analysis shows that it happens at A ~ 0.3412. This is close
to the limit of stability thus implying that the edge delocalization is a weak first-order transition.

The results of the analysis are summarized in Fig. 2.1 where we show the bond stiffness v and
the edge binding energy Fcq4e as functions of the quantum parameter A\. The metastability develops
in the 1/4 < X\ < 0.3730 range: for A < 0.3412 the bound edge has lower energy while for A > 0.3412

the ground state corresponds to a delocalized edge particle.
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Figure 2.2: (Color online) Quantum expansion Q-Q, and rms fluctuation of the bulk and edge bonds
as functions of the quantum parameter A\ (2.6). The rms fluctuation is shown both as the vertical
extent of shaded regions centered around the quantum expansion curves, and explicitly in the inset.
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These conclusions should be contrasted with the properties of the bulk Luttinger liquid. Its range
of existence is given by [53] 0 < A < 1.0591 (or equivalently 0 < Ay < 0.3896) which is the condition
that a solution A(Ag) to Eq.(2.14) can be found for given De Boer’s number )y (2.1). Therefore in
the 0.3730 < A < 1.0591 range the bulk Luttinger liquid is stable against the disordering effect of
quantum fluctuations while the edge is not. This is due to the stronger softening effect that zero-
point motion has on the free edge as compared to the bulk of the system. The direct evidence of
this is presented in Fig. 2.2 where we show the quantum expansion and rms fluctuation of the bulk
and edge bonds as functions of the quantum parameter A\ (2.6) within their corresponding ranges of
existence. The quantum expansion in the bulk (2.13) is a linear function of A while the edge bond
expands faster than linearly because the bond stiffness v entering the argument of the logarithm in
(2.8) is a decreasing function of A as shown in Fig. 2.1. Since the v()\) dependence is not very strong
one can say that the edge expansion is roughly twice the bulk value as suggested by the ratio of
pre-logarithmic factors in Eqgs.(2.8) and (2.13). This can be understood by noticing that any bulk
bond joins two half-infinite Luttinger liquids thus implying that its dynamics is twice as inertial as

that of the edge. In this sense zero-point motion at the edge is about twice as strong as that in
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the bulk. The same argument explains why the edge rms fluctuation is roughly square-root of two
larger than its bulk counterpart (compare Eqgs.(2.5) and (2.12)).

In describing the dynamics of the edge bond the rest of the system was approximated by a
harmonic liquid with the bulk properties which means that the bond adjacent to the edge has the
length and rms fluctuation identical to those in the bulk. This is an artifact and in reality, as one
goes inside the bulk, the bond lengths and their rms fluctuations decrease approaching the bulk
values asymptotically. This deficiency would be acceptable provided the calculated length of the
edge bond and its rms fluctuation are not very different from their bulk counterparts. Since for
molecular matter with pair interaction potential of the Morse form the classical bond length satisfies

the condition Q¢ 2

~

5 [53], inspection of Fig. 2.2 shows that even at the limit of its stability the
length of the edge bond and its rms fluctuation do not exceed their bulk counterparts by more than
an acceptable 25%.

Moreover, the relative fluctuation < f2 >(1)/ fdge /Qedge is always significantly smaller than unity
which implies that our conclusions are weakly sensitive to the statistics of the underlying particles
and that the deficiencies of the Morse potential in mimicking the true pair interaction at largest and
shortest distances are ignorable. The latter allows us to argue that the edge dissociation pre-emting
the bulk instability is a general property of one-dimensional molecular matter.

In order to gain an insight into the consequences of this effect in Fig. 2.3 we plot the ground-state
energy per particle of the bulk Luttinger liquid (given by Egs.(2.14) and (2.15)) and the binding
energy of the edge particle (determined through Egs.(2.14), (2.16), and (2.17) as functions of De
Boer’s number )\ (2.1). Additionally we show the ground-state energy per particle for an infinitely
diluted gas of Morse dimers, Egimer(Ao) = —(1/2)(1 — 7Ao/v/2)? [20]. The bold parts of the curves
describe the ground states of the bulk matter: as De Boer’s number increases, at A\g ~ 0.3365
the Luttinger liquid evaporates via a discontinuous transition into a gas of dimers followed by a
continuous dissociation transition at \g = v/2/7 into a monoatomic gas [53]. For a system with a
free edge the binding energy of the edge particle E.qq4e can become smaller than its dimer counterpart
Egimer: for Mg 2 0.1981 the whole Luttinger liquid comes unraveled, two particles at a time despite
the fact that the bulk condensed state is energetically favorable. Since our bulk and edge binding
energies are variational upper bounds, in actuality the dimer gas may not come into play; its role
then will be played by the monoatomic gas.

If the escape of the edge particles to infinity is impossible due to a distant obstacle, this will
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Figure 2.3: The dependences of the energy per particle for various bulk phases of the system on De
Boer’s number )\¢(2.1) together with edge binding energy. The arrow pointing down is the dimer
dissociation threshold.
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generate a vapor pressure and the bulk Luttinger liquid may coexist with a gas of particles. As
Ao increases toward the point of the bulk transition, dissociation proceeds inside the bulk in a
manner similar to that in surface melting [50]. We hasten to mention the speculative character of
the statements of this paragraph which we plan to clarify in the future.

Two examples of one-dimensional matter with a dissociated edge and a stable bulk, 0.1981 <
Ao < 0.3365, include Ho and D in free space, and more cases can be found in the presence of a

medium [53].



Chapter 3

The Zel’dovich effect and evolution of
atomic Rydberg spectra along the
Periodic Table

3.1 Organization

The organization of this chapter is as follows. In Section 3.2 we provide a short derivation of the
Rydberg formula (2) and arrive at the expression for the quantum defect in terms of the dimensionless
range of the inner potential and its scattering length. This general result is further analyzed in the
ro < ap limit and the main features of the Zel’dovich spectral reconstruction are recovered (Section
3.2.1). In Section 3.2.2 we establish a relationship between the Zel’dovich effect and Levinson’s
theorem of quantum mechanics. This is followed (Section 3.2.3) by the analysis of the opposite
ro > ap limit where we demonstrate that the Zel’dovich effect manifests itself in the form of a
spectral modulation whose origin still lies in the binding properties of the inner potential Us(r).
These general findings are illustrated in Section 3.2.4 where we use the exactly-solvable example
of the rectangular well as a model for the inner potential. In Section 3.2.5 we observe that only a
treatment more accurate than semiclassical can capture the Zel’dovich effect.

Section 3.3 focuses on the computation of the systematic quantum defect of the Rydberg electron

as a function of atomic number Z. First (Section 3.3.1), for the inner potential having an attractive
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Coulombic singularity at the origin, we derive a semiclassical expression for the quantum defect
and show that it is equal to the number of de Broglie’s half-waves fitting inside the inner potential
minus a contribution proportional to (ro/ap)'/2. Going beyond the semiclassical approximation we
also demonstrate that the Zel’dovich modulation of the quantum defect is a periodic function of the
number of de Broglie’s half-waves fitting inside the ionic core of the atom. This is followed by an
explicit calculation based on Latter’s model of the ionic core [63]. Here, the semiclassical quantum
defect is calculated as a function of Z'/3 (Section 3.3.2). Then (in Section 3.3.3) a full computation
capturing the Zel’dovich effect is performed. An important ingredient here is an approximate cal-
culation of the scattering length of the ionic core of the atom. Both the scattering length and the
related Zel’dovich modulation of the quantum defect turned out to be nearly periodic functions of
ALLS

In Section 3.4 the results of our systematic calculation are compared with experimental and
numerical data. First, we observe that the bulk of the quantum defect values is well-captured
semiclassically. Then (Section 3.4.1) we demonstrate that the gross features of the deviation away
from semiclassics are due to the effects of the shell structure. This is done by establishing and
demonstrating a correlation between the variation of the radius of the ionic core of the atom and
the corresponding variation of the quantum defect. Finally, in Section 3.4.2 a Fourier analysis of
the quantum defect variation with Z'/? is conducted which singles out the Zel’dovich effect. As a
by-product we also find a Z'/3 periodic contribution coming from the shell effects.

We conclude (Section 3.5) by outlining our main result and directions of future work.

3.2 Distorted Coulomb problem and quantum defect

We will be interested in low energy bound states with the classical turning point being far away
from the boundary of the central region, i. e. h?/mag|E| > ro. Then the quickest way to derive
the spectrum is via semiclassical arguments derived from those given by Migdal [67]:

For ro < r < h?/mag|E| the semiclassical solution to Eq.(1) can be written in two equivalent



63

forms:
h?/map|E|

! si d 4—7T

Xse O —=sin | = pdr + —
/P 4

o L sin 1/ dr + (3.1)

— — [ pdr +« .
VP h

To

where p = (—2m|E| 4+ 2h%/rap)'/? is the momentum. The first representation in Eq.(3.1) is the
standard result with the phase of 7/4 improving on the deficiency of the semiclassical approximation
near the classical turning point, while the yet undetermined phase a in the second representation
in Eq.(3.1) both corrects for the failure of the semiclassical approximation in a Coulomb field at
distances r < ap and accounts for the short-range potential Us(r).
For ro < r < h%/magp|E| the Schrédinger equation (1) simplifies to
d?x 2

X2 ) 2
dr? +7°an (3:2)

and can be exactly solved:

x o< /2 (Jl(\/Sr/aB)—Yl(\/8r/a3)tan6> (3.3)

where J,(x) and Y, (z) are the order v Bessel functions of the first and second kind respectively
[68]. The solution (3.3) is a linear combination of the regular J;(0) = 0 and irregular ¥7(0) = oo
Coulomb functions of zero energy, and for the purely Coulomb problem, U,(r) = —h?/magr, one
has to recover tand = 0.

For ap < r < h?/map|E| the semiclassical approximation is accurate, and the second represen-

tation of Eq.(3.1) yields x o r'/*sin(,/8r/ag —\/8ro/ag + ). On the other hand, the r > ap limit
of (3.3) is x oc 7*/*sin(y/8r/ap — m/4+ &) which determines a in (3.1) to be \/8rg/ap — /4 +6. It
also implies that ¢ in (3.3) is the zero-energy phase shift due to the small-distance deviation of the
potential from the Coulomb form.

The energy spectrum can be found from the requirement that the semiclassical expressions (3.1)



64

coincide. Combined with o = \/8rg/ap — w/4 + § this gives the quantization rule

. h?/mag|E|
7 / pdr =mn — 6 — xo (3.4)
o
where the dimensionless parameter
8
ap

measures the range of the short-range forces. Calculating the integral we arrive at Eq.(2) with 6 =
which is the statement of Seaton’s theorem [62] relating the quantum defect to the zero-energy phase
shift.

The range of applicability of Eq.(2), n — u > (ro/ap)'/? ~ x¢, follows from the condition
|E| < h?/mapro which also implies that in order to calculate the quantum defect entering the
spectrum (2), we only need to match (3.3) with its zero energy counterpart at r < rg.

We proceed by computing h = [dInx/dInr|, ., +0, the logarithmic derivative of the function

(3.3) evaluated at the boundary of the inner region:

xo Jo(xo) — Yo(zo) tanmp

h=—
2 Ji(zg) — Yi(xo) tanmu

(3.6)

where we used 6 = wu. The quantum defect p is determined by setting eq. (3.6) equal to hs =
[dlnx/dInr],—,,—0 which can be found by solving the F = 0 Schrddinger equation (1) for r < 7
with U(r) = Us(r):

d’>x 2m

The parameter h, can be equivalently expressed in terms of the scattering length corresponding
to the inner potential only. Indeed for motion in a short-range potential the scattering length a,
is defined from the asymptotic » — oo behavior x(r) « 1 — r/as of the solution to (3.7). For a
potential well identically vanishing for r > rg, this is also the exact behavior outside the well with

the implication that [56, 60]

. (dlnx(r—”"o—o))l_ _ O (3.8)
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Then substituting h = h, in Eq.(3.6) and using (3.8) we arrive at the formula for the quantum defect

2x51J1(:co) + (as/ro — 1)Jo(xo)
215 Y1 (z0) + (as/ro — 1)Yo(xo)

tanmp = (3.9)

If the short-distance potential is selected in the form U (r) = —h%/mapr, i. e. we have the ordinary
Coulomb problem in the whole space, the quantum defect u entering the Rydberg formula (2) must
vanish identically. It is straightforward to verify that this is indeed the case: the F = 0 inner r < rg
solution to (1), x o< 71/2.J;(1/8r/ap), leads to the expression for the scattering length nullifying
the numerator of (3.9). This argument defines the zero of the quantum defect and implies that p is
necessarily positive if for all » < rg the inner potential Us(r) is more attractive than the Coulomb
potential —h?/mapr; otherwise the quantum defect is negative. For example, for Us(r) = 0 the
quantum defect (0, 7o) is a negative monotonically decreasing function of zg such as u = —z3/32
for xg < 1, and p = 3/4 — xp/7 in the opposite xo > 1 limit. The 1(0,x¢) dependence as well as

its xp > 1 limit are shown in Fig. 3.1.

3.2.1 Zel’dovich effect in the ry < ap limit

For xp < 1 Eq.(3.9) simplifies to a form accumulating the physics of the Zel’dovich effect:

ap 4 2 2
=— —~ = —cotmp — —In — (3.10)
2mag 7m:0(1 —hs ") T YTo

where In~y = 0.5772 is Euler’s constant. Terms of higher order in xy which for Us(r) = 0 lead to
small negative values of the quantum defect are neglected in (3.10).

We verified that Eq.(3.10) matches the upper portion of the ns spectrum which for rqg < ap is
known in closed form for any n [60]. We also note that with some effort Eq.(3.10) can be deduced from
the expression for the phase shift of the proton-proton scattering given by Landau and Smorodinskii
[69]: in their formula we have to (i) reverse the sign of the Bohr radius, (ii) take the limit of zero
energy, and (iii) employ Seaton’s theorem [62] § = 7p.

Fig. 3.2 shows the dependence of ap/2mas; on p given by Eq.(3.10); its inverse p(ap/2mas)
is a multivalued function consisting of a series of increasing step-like curves sandwiched between
nearest non-negative integers. The slope of p(ap/2mas) is small everywhere except for the vicinity

of half-integer p.
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Figure 3.1: Quantum defect for U,(r) = 0 as a function of the range parameter xo, Eq.(3.5), and its

2o > 1 limit, p(0,z9) = 3/4 — zo/7 (shown in gray scale).

1
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Figure 3.2: Graphical solution of Eq.(3.10); o = 1/30 has been used to construct the graph. The
quantum defect p is given by the intersections of the right-hand side of (3.10) with the line of
constant ap/2mwas.
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Since typically the central potential Us(r) is not resonant, |hs| in (3.10) is not small. Then
the magnitude of the scattering length is of the order of the size of the inner well, |as| ~ ¢ and
ap/2m|as| ~ 1/x2 is significantly larger than the last term in (3.10). This implies that the quantum
defect is very close to an integer, u = —2as/ap (mod 1), with |as|/ap ~ ro/ap < 1. This conclusion
is in quantitative agreement with the results of perturbation theory in as/ap when the deviation
from the Bohr Hydrogen formula is small [70, 56]. It is applicable to an attractive non-resonant well
of arbitrary strength; for weak U, (r) which cannot support a bound state we have ; = —2a5/ap >0
[71] represented by the leftmost intersection in Fig. 3.2. We also note that the spectrum is exactly
Hydrogenic if the scattering length is zero which can be viewed as an analog of the Ramsauer effect
[72]: in the present context it refers to a resonant phenomenon when the distortion of the Coulomb
potential at small distances is invisible to the low-energy bound (or incident) particle.

Exactly at half-integer 1 the scattering length is negative with the magnitude given by |as| =
(ap/4)In"1(2/yxo) = 2roxy 2 In~1(2/yx0) significantly exceeding the size of the central region 7.
This implies that the slope of the u(ap/2mas) dependence is largest when Ug(r) itself is almost
resonant so that it supports a low-energy virtual state. At the point of steepest slope we also have
[dx/dr]r=r, x hs ~ (22/2)In(2/y20) < 1. Since this is practically zero, one can equivalently say
that the slope of the u(ap/2mas) dependence is largest when the antinode of the function x in
Eq.(1) occurs at the boundary of the inner region ro. This criterion resembles that given by Fano,
Theodosiou and Dehmer [65] for the dependence of the quantum defect 1 on atomic number Z. We
note however, that for a Rydberg atom the size of the residual ion does not satisfy the condition
ro < apg; this issue is further addressed below.

If for all » the central well is attractive, its effect can be quantified by a single dimensionless
coupling constant w ~ mr3|Us|/h? > 0 where |U;| has a meaning of the characteristic depth of the

! is known to be a monotonically increasing function

well. Then the inverse scattering length a_
of w [60] - an as dependence shown in Fig. 3.3 in gray scale is typical and may help illustrate the
argument given below.

The step-like features of the function u(ap/27as) are amplified in the pu(w) dependence. Indeed,
for w < 1 the scattering length a is very small and negative. Then the line of constant ap/2mas in
Fig. 3.2 lies at very large negative values, the quantum defect satisfies u = —2as/ap < 1, and the

deviation from the normal Hydrogen spectrum is small. As the well deepens, the coupling constant w

increases, the scattering length becomes more negative and the horizontal line of constant ap/2mwas
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moves upward. However as long as the well remains non-resonant, the quantum defect p will only
grow very little. The strongest increase of u(w) in response to deepening of the well (and thus
the largest deviation from the Bohr Hydrogen formula) occurs when the scattering length reaches
a very large negative value a; = —2rpx, 2111_1(2/7%). For ¢y <« 1 this takes place very close
to a threshold value of the coupling constant w when the first bound state is about to appear in
Us(r). The relative width of the reconstruction region Aw/w centered around p = 1/2 thus can be
estimated from the scaling behavior of the scattering length near the threshold as ~ row/Aw and
the condition ap =~ |as|. This leads to the original result of Zel’dovich [56] Aw/w ~ rq/ap.

As the coupling constant w increases through the first binding threshold, the inverse scattering
length changes sign, and the line of constant ap/2mas in Fig. 3.2 enters the region of positive
values. After passing through the reconstruction region, the positive scattering length decreases in
magnitude, for as/ap < 1 the quantum defect is close to unity, u = 1 — 2a4/ap, and the deviation
from the normal Hydrogen spectrum is again small. In the region as ~ r¢ the scattering length does
not vary strongly with the depth of the well, and one can say that the slope of the u(w) dependence
will be minimal when the node of the function x in Eq.(1) is near the boundary of the central region
ro which parallels the criterion of Fano, Theodosiou and Dehmer [65]. Upon further increase of the
coupling constant w, the scattering length gets smaller and the line of constant ap/27a, in Fig. 3.1
enters the region of very large positive values becoming infinite at a; = 0.

The correlation with the binding properties of the well is seen from the plot of the reduced
scattering length as/ro (gray scale). Shown are also the values of the zero-energy phase shift 6 = 7
relating the Zel’dovich effect to Levinson’s theorem.

To summarize, as as(w) goes through one complete cycle decreasing from zero, passing through
the binding resonance, and then approaching zero from above, the quantum defect u(w) increases
from zero to unity in a staircase fashion: it is mostly zero or unity except for the narrow region
Aw/w ~ro/ap < 1, p =~ 1/2 near the first binding threshold of U,(r). Combined with the Rydberg
formula (2) this implies that the Coulomb levels E, quickly fall to F,_; which constitutes the
essence of the Zel’dovich effect [56].

As the coupling constant w continues to increase away from as(w) = 0, the next cycle, 1 <
w(w) < 2, begins and qualitatively the same pattern repeats itself. This remains true for every
subsequent cycle with pu(w) sandwiched between nearest integers. Overall the quantum defect is an

increasing function of w having the form of a staircase with practically integer plateaus and sharp
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Figure 3.3: Evolution of the Zel’dovich effect for the rectangular well of radius ro and depth Uy for
a series of range parameters zg, Eq.(3.5), manifested in the dependences of the quantum defect

on ¢ = (8mUyrd /m2h?)Y/? ~ w'/2,
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steps located at half-integer . The steps correspond to the presence of the low-energy scattering
resonances in Ug(r).

To illustrate this behavior we choose the inner potential in the form of a rectangular well of depth
Uy whose scattering length is given by as/rg = 1 — 2tan(w(/2)/n¢ with dimensionless parameter
¢ = (8mUgr3/n?h?)Y/? ~ w'/? quantifying the depth of the well. The scattering length diverges
at odd values of { which correspond to consecutive occurrences of bound states in the well; the
respective dependence of as/ro on ( is shown in Fig. 3.3 in gray scale. We also plot the dependences
of the quantum defect p on ¢ found from the general expression (3.9) for a series of representative
xo. The analysis based on Eq.(3.10) is illustrated by the o = 1/10 and z¢ = 1/2 curves; the latter
corresponds to the case of the proton-antiproton atom [60]. These dependences have the form of
staircases with nearly integer plateaus; the steepness of the steps where the quantum defect varies
by unity and the flatness of the plateaus increase as xy gets smaller. An inspection reveals that the
points of maximal slope of ;(¢) somewhat precede the scattering resonances in accordance with the
analysis given above. This is seen most clearly for the ( ~ 1 step of the zyp = 1/2 curve. Fig. 3.2
of Zel’dovich’s work [56] has this feature as well. From a practical standpoint the steps can be
considered to coincide with the binding resonances of the well.

The relative width of the reconstruction region A(/( can be estimated as 79/ap(?. Since the
threshold values ¢ grow linearly with the number of bound states, then for fixed zy the steepness
of the steps increases with ¢ as can be seen in Fig. 3.3. This is merely the consequence of the
sharpening of the binding resonances. Similarly the flatness of the plateaus improves as ( increases,
and the points of least slope of the 1({) dependence asymptotically approach even values of (. This
is where the node of the function x in Eq.(1) coincides with the boundary of the central region,
as = 19.

Finally we note that the quantum defect takes on exactly integer values whenever the scattering

length vanishes.

3.2.2 Connection to Levinson’s theorem

There is a deep parallel between the Zel’dovich reconstruction of the upper £ — 0 part of the
Coulomb spectrum in the rp < ap limit and the low-energy scattering by a short-range potential
well. For a particle of energy E = h?k?/2m whose wave vector k is small in magnitude, kry < 1,

scattered by the short-range potential Us(r) vanishing for r > ro the scattering length as can be
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defined [73] through the & — 0 limit of the relationship

1/kas = — cot d4(k) (3.11)

where d5(k) is the phase shift. Employing Seaton’s theorem [62] § = mu relating the quantum
defect to the zero-energy phase shift it is straightforward to realize that Eqs.(3.10) and (3.11) are
direct analogs. The Coulomb field is characterized by its own length scale, the Bohr radius ap.
Its free particle counterpart entering Eq.(3.11) is the de Broglie wavelength 27/k. The range of
applicability of Eq.(3.10) o < ap parallels the low-energy condition kry < 1 necessary for Eq.(3.11)
to hold. The analysis which led to the explanation of the Zel’dovich effect can be repeated for
Eq.(3.11) with the conclusion that the phase shift d,(k) as a function of the dimensionless depth
w of the scattering well has the form of a sharp increasing staircase whose plateaus practically
coincide with 05(k) = 0 (mod m). The steps where the phase shift changes by 7 are very narrow,
Aw/w ~ krg < 1, and the points of steepest slope are located at d5(k) ~ 7/2 (mod 7). In the limit
k — 0 the staircase becomes perfect. This can be recognized as Levinson’s theorem [73] relating
the number of bound states in a well with the zero-energy scattering phase shift. We conclude
that for rp < ap the Zel’dovich effect expressed in terms of the zero-energy phase shift ¢ is the
Coulombic cousin of Levinson’s theorem [74]. A special case of this correspondence, the Ramsauer-
like recovery of the normal Hydrogen spectrum for a; = 0, was already mentioned earlier. In the limit
To = \/m — 0 Zel’dovich’s staircase becomes perfect and identical to Levinson’s staircase. This
can be understood as a result of taking the neutral limit, ag — oo, when the Coulomb part of the
binding potential U(r) in (1) vanishes. From this viewpoint, Levinson’s theorem is a consequence of
the Zel’dovich effect. To emphasize the connection to Levinson’s theorem, in Fig. 3.3 we additionally
show the zero-energy phase shift § = 7pu.

Fig. 3.3 also demonstrates that as z( increases, the staircase 1(¢) dependence with well-defined
steps and plateaus evolves into an increasing function with modulations: the “plateaus” develop
noticeable slope and the “steps” acquire a width. Moreover for sufficiently large xo = 1 the staircase-
like appearance seems to emerge only for a sufficiently deep well, i. e. large (. Another feature is
the presence of a negative offset which is a growing function of xy. This is due to the fact that for
Us(r) = 0 the quantum defect is a monotonically decreasing negative function of xy as shown in

Fig. 3.1.



73

Figure 3.4: Graphical solution of Eq.(3.12); o = 4 has been used to construct the graph. The
reduced quantum defect M = pu + xo/m — 3/4 is given by the intersections of the right-hand side of
(3.12) with the line of constant as/ro.
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3.2.3 Zel’dovich effect in the ro > ap limit

In the 2o > 1 limit Eq.(3.9) simplifies to the form

Qg 2 3
— = —cot - — 1 3.12
" — = cot(m+ o0~ ) + (312)

allowing model-independent treatment. The analysis of Eq.(3.12) is convenient to conduct in terms
of the reduced quantum defect M = p + zo/m — 3/4 whose zero gives the zy > 1 asymptotic of u
for Us(r) = 0. Eq.(3.12) can be investigated in a manner analogous to that of Eq.(3.10); a brief
summary is given below.

Fig. 3.4 shows the dependence of as/rg on M = p + xo/m — 3/4 given by Eq.(3.12); its inverse
M (as/ro) is a multivalued function consisting of a series of decreasing step-like segments sandwiched

between nearest integers.
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The magnitude of the slope of M (as/7) is smallest at integer M which occurs at binding reso-
nances, a; = +00, i. e. when the antinode of the function y in Eq.(1) coincides with the boundary
of the inner region rg. In the vicinity of integer M we find M = 2ry/mxzoas (mod 1). This translates
into an explicit result for the quantum defect u = 3/4 — xo/7 + 2rg/mxoas (mod 1) valid in the
limit 29 > 1 and ro/x0as < 1, thus roughly covering the range of |as| from r¢ to infinity. In the
vicinity of the first binding resonance we have u = 3/4 — 2o /7 + 2rg/mxoas which is represented by
the leftmost intersection in Fig. 3.4.

The magnitude of the slope of the M (as/ro) dependence is largest at half-integer M which occurs
at as = 1o, i. e. when the node of the function x in Eq.(1) coincides with the boundary of the inner
region ry. Since the reduced quantum defect M is a decreasing function of a, /7, and the scattering
length ay is a decreasing function of the well depth w [60], then for fixed zy the parameter M (and
thus the original quantum defect p) is an increasing function of w.

In contrast to the zp < 1 regime, here the step-plateau features of the function M (as/ro) are gen-
erally suppressed in the M (w) dependence. This is because the dependence of the scattering length
as on the depth of the well w is weakest in the region ag ~ ¢ where the M (as/r¢) dependence shows
a “step”. By the same token the “plateaus” acquire a noticeable slope since the as(w) dependence is
strongest near the binding resonance, a; = +00, i. e. where the M(a;/rg) dependence is weakest.
As a result the dependence of the quantum defect 12 on the depth of the well w is more appropriately
viewed as consisting of modulations superimposed on an increasing curve. These modulations still

have their origin in the binding properties of the inner potential Us(r).

3.2.4 Rectangular well example

The analysis of Sections 3.2.1 and 3.2.3 is illustrated in Fig. 3.5 where using the example of the
rectangular well and Eq.(3.9) we plot the surface of the relative quantum defect Au(¢,zg) =
1(¢,z0) — p(0,20). The point of subtracting p(0,x¢) from u(¢,zo) is to isolate the physics of
binding from the background (0, z¢) which is a monotonically decreasing function of zy shown in
Fig. 3.1. The peculiar shape of the resulting surface can then be understood as follows:

For zy < 1 the background contribution (0, z¢) is negligible (see Fig. 3.1), the relative quantum
defect Ap(¢, xo) reduces to (¢, xo) which, according to our earlier analysis, is a staircase function
of ¢ with steps located at odd (, i. e. when the bound states occur in the well.

For zy > 1 the background contribution u(0,xz¢) is 3/4 — xo/7, and we find that Au(¢, zp) =



75

p(Csxo) — p(0, o) for

a rectangular potential well with dimensionless range and depth parameters zy and (, respectively,

Figure 3.5: Plot of the surface of the relative quantum defect Au((,xg)
according to Eq.(3.9).
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(¢, z0) — (0, z0) = p(¢, x0) +xo/m—3/4 = M which, according to Fig. 3.2, is a decreasing staircase
function of as/rg. For not very deep well the dependence on ¢ has a form of a rounded staircase
with “steps” and “plateaus” centered at even (as = 7¢) and odd (as = £o0) values of ¢, respectively.
In this regime the underlying step-plateau character of the M (as/ro) function is preserved in the
M (¢) dependence due to the appreciable slope of the a4(¢) dependence at a; = r¢ and relatively
weak divergence at a; = +00. To recapitulate, both for o < 1 and xg > 1 and not very deep well
the relative quantum defect Au((,zp) is an increasing staircase function of the depth parameter ¢
with the steps located at odd (z¢ < 1) or even (z¢ > 1) values of (. The crossover between the two
regimes can be seen in Fig. 3.5 as a relatively narrow stripe of very weak modulations.

A qualitatively different staircase-like dependence emerges for xo > 1 and sufficiently deep well
because as ( — oo the slope of the a,(¢) function at a; = r¢ tends to zero while the binding
resonances, a; = +00, become progressively more singular. As a result the “steps” and “plateaus”
switch places - the former becomes centered at odd while the latter at even values of . This
is somewhat similar to what happens in the x¢p < 1 limit. This observation explains why the
small modulation crossover stripe in Fig. 3.5 runs at an angle to the (Apu, () plane. The important
qualitative difference between the x¢y < 1 and zo, ( > 1 staircases is that the latter have “plateaus”
centered at half-integer values of M, thus corresponding to the coincidence of a node of the function

x in Eq.(1) with the boundary of the inner region r = ry.

3.2.5 Semiclassical treatment

For most realistic models of the inner potential Us(r) the exact analytical calculation of the scatter-
ing length a entering the general expression for the quantum defect Eq.(3.9) may not be possible.
Therefore it is pertinent to understand whether there is an approximate analytical treatment cap-
turing the Zel’dovich spectrum reconstruction. This is especially relevant to the zg > 1 regime
when the phenomenon manifests itself only as a modulation of the quantum defect superimposed on
a monotonic curve.

For zy > 1 and sufficiently smooth U, (r) the standard semiclassical approximation is applicable,

and the corresponding solution to Eq.(3.7) can be written as

Yoo(r) ~ (S'(r)) " ? sin % (3.13)
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where

S(r) = / (—2mUy(r))"* dr (3.14)
0

is the classical action acquired by a zero-energy particle moving radially out from zero to r, and the
prime in Eq.(3.13) denotes differentiation with respect to r. The semiclassical expression for the
scattering length which can be deduced from Eq. (3.13) with the help of Eq. (3.8) has been given

by Berry [75]
Qs K2

1/2 So
=1 (—m> tan = (3.15)
where Sy = S(ro). Eqgs.(3.13) and (3.15), generalizing the “rectangular well” expressions for the wave
function and the scattering length, are applicable when the number of de Broglie’s half-waves Sy /7h
fitting inside U,(r) is very large. If we additionally assume the continuity of the central potential

U(r) in Eq.(1) at the boundary of the inner region,
Us(ro) = —h*/magro, (3.16)

then Eq.(3.15) simplifies to as/ro = 1 — (2/x) tan(Sp/%). Combining this with Eq.(3.12) we find an

explicit semiclassical expression for the quantum defect
(3.17)

which can be interpreted as approximately the sum of 3/4 — ¢/ 7, the quantum defect for Us(r) = 0,
and the number of de Broglie’s half-waves Sy /7h fitting inside the inner part of the potential; the
estimate ps. ~ So/mh has been given earlier [62]. The number of de Broglie’s half-waves can be
estimated in terms of the dimensionless depth of the inner well w ~ mr2|U,|/h? as So/7h ~ w'/?
which implies that for fixed 2y the quantum defect (3.17) is a monotonically increasing function of
w without any modulations. We conclude that the Zel’dovich modulations of the quantum defect
are lost in the semiclassical approximation despite the fact that the corresponding scattering length
(3.15) does exhibit binding resonances. Thus for zp > 1 a treatment better than semiclassical is
required to capture the deviations from monotonic behavior; a similar conclusion has been reached
earlier [65].

For the rectangular well of radius ro and depth Uy characterized by the coupling constant ¢ =
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(8mUyrg /m?h?)'/? the expression for the scattering length (3.15) is exact, and then Eq.(3.17) predicts
that p = 1/4 — xo/m + (/2 = 1/4 — (/2 < 0. This is the z(,{ > 1 value of the quantum defect
in the middle of the small modulation stripe in Fig. 3.5 whose locus, ¢ = 7(, can be deduced
from Eq.(3.16). The quantum defect is negative because for continuous U(r) the short-distance

rectangular well potential is always less attractive than the Coulomb potential.

3.3 Quantum defect of Rydberg electron

Now when we understand the manifestations of the Zel’dovich effect, and what kind of accuracy
is required to approximately capture it, we begin computing the quantum defect of the Rydberg
electron as a function of position along the Periodic Table. The quantum defect is given by the exact
result Eq.(3.9) with r¢ and as, being the size and the scattering length of the residual atomic ion,
respectively, both dependent upon atomic number Z. The resulting 1 (Z) dependence will exhibit
modulations both due to systematic (Zel’dovich) and shell effects. As discussed in the Introduction,
the shell effects obscure systematic trends making it difficult to see that some modulations of u(Z)
have their origin in the binding properties of the ionic core. To circumvent this inconvenience below
we conduct a calculation capturing only systematic effects. The comparison of the results with
both experimental and numerical data (additionally containing the shell effects) will allow us to

disentangle physically different sources of deviation from purely monotonic behavior.

3.3.1 Method of comparison equations

The short-distance potential U,(r) characterizing the residual atomic ion will be assumed to match
at its boundary the Coulomb potential of unit charge [63],[65] (see Eq.(3.16)). As the Rydberg
electron moves inside the ionic core, the screening of the nuclear charge by the inner shell electrons
diminishes which implies that for » < ry the short-distance potential Us(r) is more attractive than
the Coulomb potential of unit charge. Therefore the quantum defect is a necessarily positive and
increasing function of atomic number Z. As r — 0, the inner potential approaches that of a nucleus
of charge Ze, i. e. Us(r — 0) — —Ze?/r = —Zh? /mapr, and Eq.(3.7) reduces to
d*>xy 27

XL 22 ) 3.18
dr? + raBX (3.18)
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This presents a convenient starting point for obtaining an approximate solution to the differential
equation (3.7) via the method of comparison equations as described by Berry and Mount [76]. Since
Eq.(3.18) is exactly solvable, and the potentials of Eqgs.(3.7) and (3.18) are somewhat similar, the
solution to (3.7) should be also similar to that of (3.18) and can be transformed into it by a slight
deformation of coordinates and an amplitude adjustment. The details of finding an appropriate

mapping are given in Ref. [76]; the resulting approximate solution of (3.7) is then given by

X(r) ~ (5,((?) ) v I (S g) ) (3.19)

The method of comparison equations includes the conventional semiclassical treatment as a special

case [76]. From this more general viewpoint Eq. (3.13) can be viewed as a result of the deformation
and amplitude adjustment of the “rectangular well” sine solution.

To assess the accuracy of (3.19) let us first look at the limit S(r)/h < 1. According to Eq.(3.14)
this corresponds to  — 0 when U,(r) — —Zh?/mapr. Then S(r — 0)/h — (8Zr/ag)'/? and
x(r — 0) ~ r'/2J;(\/8Zr/ag) which can be recognized as the solution to (3.18).

In the opposite limit S(r)/h > 1 a semiclassical approximation is expected to be valid and
Eq.(3.19) simplifies to x(r) ~ (S’(r))71/2 sin(S(r)/h—m/4). This is similar to the naive semiclassical
result (3.13) with the extra phase of —m/4 correcting for the failure of the standard semiclassical
treatment in the Coulomb field of charge Ze at distances r < ap/Z. Thus for the inner potential
Us(r) which has a Coulombic singularity as » — 0 but is otherwise smooth the analog of Eq.(3.17)
is

o  So

fhse = —— + (3.20)

' wh
The expression for the scattering length corresponding to Eq.(3.19) can be found with the help
of Eq.(3.8)

Y O R G SR A DA LA
=1 <xo <SO + (%) Us(ro) (3.21)

where we also used the condition of continuity (3.16). Eq.(3.21) can be used to go beyond the
semiclassical expression (3.20). Combining Eqs.(3.12) and (3.21) we find that in the zq, So/h > 1
limit the quantum defect can be presented as p = psc + 0y where pg. is the semiclassical answer

(3.20) and the correction,

’I”()U/ (To) . 2S0
— s 1 —gin 222 3.22
B = TrzoUs(ro) ) (3:22)
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captures the Zel’dovich effect now manifesting itself as a simple harmonic modulation superimposed
on the semiclassical background. The period of the oscillation is exactly one de Broglie’s half-wave
while the amplitude is of the order ;'. The fact that the latter is independent of the number of
de Broglie’s half-waves fitting inside U4 (r) implies that the Zel’dovich effect persists for any value

of So/ﬂ'h.

3.3.2 Thomas-Fermi model of atomic ion: semiclassical solution

Below we follow Latter [63] and assume that the potential of the atomic ion Us(r) can be approxi-
mated by the Thomas-Fermi theory [77]:
Rz rZ'/3
Us(r) = — (

magr bap

(3.23)

where b = (37/4)'/2/2 ~ 0.885, and the universal function ¢(y) is the solution to the nonlinear

Thomas-Fermi equation

d2
y1/2d_f = ¢3/2 (3.24)
Y

subject to the boundary conditions ¢(0) = 1 and ¢(co) = 0 [77]. Then the size of the ion ry and
thus the range parameter xy (3.5) are determined by the continuity condition (3.16), i. e. when the
Thomas-Fermi potential (3.23) meets the Coulomb potential of unit charge:

B2V 1

1 (3.25)

9 &8 ' Z

Egs. (3.23) and (3.25) imply that the natural variable to characterize the strength of the potential
of the atomic ion is Z'/3. Indeed, the typical length scale of the Thomas-Fermi theory is ap/Z/?,
the magnitude of the typical potential is (Zh%/mag)(Z'/?/ap) = (h?/ma%)Z*/3, and thus the
dimensionless coupling constant w ~ mr3|U,|/h? which entered the general analysis of Section 3.2 is
of the order Z2/3; the parameter Z'/3 then parallels ¢ ~ w'/? used in the rectangular well example
of the inner potential.

Since the Thomas-Fermi function ¢(y) is a monotonically decreasing function of its argument,
the z(Z'/?) dependence defined through Eq.(3.25) is a monotonically increasing function of Z/3.
The boundary condition ¢(0) = 1 implies that xo(1) = 0 which is in accordance with the expectation

that for Hydrogen (Z = 1) we have the standard Coulomb problem in the whole space (g = 0). As
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evident from (3.25) small values of ¢ are relevant for large Z; in view of ¢(y — oo) — 144/y3 [77]
this means that there is an upper bound to the range parameter, zo(c0) = 2'3/631/3p1/2 ~ 6.092.
Another quantity of interest is the number of de Broglie’s half-waves fitting inside the Thomas-

Fermi atomic ion

SQ 2mU 1/2
Th /( m2h2 ) dr
0
@273 /8b

(2b)1/221/3 " / (M)l/2dy (3.26)
0

™ )

which is a monotonically increasing function of Z'/3: for Z — 1 it vanishes as z /7 while for large
Z we have So/mh ~ Z'/3, a known result [67].

For intermediate values of the atomic number the Z'/3 dependences of the range parameter z
and the number of de Broglie’s half-waves Sp/7h can be found by numerically solving the Thomas-
Fermi equation (3.24), inverting (3.25), and computing the integral (3.26). The results are displayed
in Fig. 3.6 where we show zo /7 and Sy /7% as functions of Z'/3. These functions are used to also plot
the semiclassical quantum defect given by Eq.(3.20). To assess the accuracy of the resulting ji,.(Z'/3)
dependence we need to verify whether approximations used to derive Eq.(3.20) are adequate. The
first assumption, o > 1, is equivalent to the assertion that the quantum defect for Us(r) = 0 can be
replaced by its large z limit. Looking at Fig. 3.1 where the dependences in question are compared
we conclude that “large” here really means zy 2 7. The second, semiclassical assumption Sp/h > 1
in practice has a good accuracy provided Sy/mh, the number of de Broglie’s half-waves fitting into
the inner potential U,(r), is anything more than one or two. Inspecting Fig. 3.6 we see that the
conditions zo/m 2 1 and So/mh = 2 are satisfied for Z 2 8. This is also the practical condition for the
Thomas-Fermi-Latter model of the residual ion to be applicable. We note additionally that although
Eq.(3.20) is not expected to be valid for smallest Z, the limit (1) = 0 is nevertheless correctly
reproduced and for any Z the semiclassical quantum defect is an increasing positive function of Z'/3
in accordance with physical expectation. We conclude that except possibly for the elements of the
first row of the Periodic Table, the semiclassical result for the quantum defect Eq.(3.20) shown in

Fig. 3.6 is accurate; only qualitative agreement is expected for lightest elements.
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Figure 3.6: Plots of the number of de Broglie’s half-waves Sy /7h, (3.26), the range parameter x /7,
(3.25), and semiclassical quantum defect 1., (3.20) as functions of Z'/3 for the Thomas-Fermi model
of the residual atomic ion.
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3.3.3 Beyond semiclassical approximation: connection to binding prop-

erties of ionic core

A more accurate p(Z'/3) dependence can be found by computing the scattering length (3.21) and
substituting the outcome together with the zo(Z'/3) dependence, Fig. 3.6, in our general expression
for the quantum defect (3.9). The result is shown in Fig. 3.7 where we also plot the semiclassical
quantum defect, us., Eq.(3.20) (gray scale). It now becomes obvious that for any Z the bulk contri-
bution into the quantum defect is well-captured semiclassically. The Zel’dovich spectral modulation
clearly visible in Fig. 3.7 is a relatively weak effect. To separate the modulation from the mono-
tonic semiclassical background the inset shows the difference du = p — pus. which appears to be a
nearly periodic function of Z'/3. To better understand the meaning of this periodicity the inset
also shows the limiting expression (3.22) (gray scale) [78]. Both curves are exactly in phase and
for sufficiently heavy elements their magnitudes agree semi-quantitatively. This observation implies
that the Zel’dovich modulation is a periodic function of the number of de Broglie’s half-waves fitting
inside the ionic core of the atom.

A complementary way to see the connection between the spectral modulation and the binding
properties is presented in Fig. 3.8 where we compare the 6y (Z'/3) dependence with the behavior
of the scattering length of the residual atomic ion (3.21). The latter, numerically computed for the
Thomas-Fermi model of the residual atomic ion, Eqgs.(3.23) - (3.26), is shown in gray scale. The
binding singularities of the scattering length are nearly equidistant confirming the earlier observation
that the parameter Z'/3 is analogous to ¢ used in Figs. 3.3 and 3.5 to display the Zel’dovich effect for
the rectangular well model of the inner potential. A qualitatively similar behavior of the scattering
length of the Thomas-Fermi atom as a function of Z has been reported by Robinson [79]; quantitative
differences may be attributed to the assumption [79] that the Thomas-Fermi potential vanishes at a
distance of the order ap/Z'/3 which is different from our choice of 7y, Eqs.(3.16) and (3.25).

Fig. 3.8makes it clear that the maxima of the oscillations of i occur when as = rg, i. e. when
the node of the function x(r) in Eq.(1) coincides with the boundary of the atomic ion. On the other
hand, the minima of du are correlated with binding singularities of the ionic core, a; = +o0, thus

corresponding to the antinode of x(r) being near the ion boundary.
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Figure 3.7: Dependence of the quantum defect 1 on Z'/3 along with its semiclassical approximant
tses Bq.(3.20) (gray scale). The inset shows the Zel’dovich modulation 6u(Z'/3) = p — pis together
with the limiting expression, Eq.(3.22) (gray scale).
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Figure 3.8: Dependences of the Zel’dovich modulation du = p — ps. and the reduced scattering
length of the ionic core as/ro (gray scale) on Z'/3. The lines a,/ro = 0 and a,/ro = 1 are also
shown to help the eye.
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3.4 Comparison with experimental and numerical data

We found experimental values of quantum defects for 37 elements of the Periodic Table. These data
and their sources are compiled in Table 3.1 where we also list systematic quantum defects of our
work (also displayed in Fig. 3.7). Some of the figures which we regard as “experimental” came from
an on-line database [82] where the quantum defect is computed from available spectroscopic data.

In cases of He, Be, Mg, Ca, and Mo there is more than one value of the quantum defect available
depending on the angular momentum of the ionic core of the atom. Since our theory represents
average properties and does not distinguish between different LS terms of an atomic configuration,
in Table 3.1 we chose to show only the values corresponding to lowest angular momentum of the
ionic core. It turns out they better agree with our calculation than those left out.

The works of Manson [64] and Fano, Theodosiou and Dehmer [65] contain graphs of numerically
evaluated p(Z) dependence for all elements. After verifying that the results of both studies are
nearly identical, we chose to restrict ourselves to those of the later Ref.[65].

Experimental, numerical and systematic y(Z'/?) dependences are displayed in Fig. 3.9. In order
to produce the numerical curve, the data [65] have been scanned, digitized, and replotted as a
function of Z'/3. We also circled locations of alkali metals because their ionic cores have noble
element electronic configurations thus marking (for the Rydberg atom problem) the end of a period.

Fig. 3.9 makes it clear that all three dependences are in fairly good agreement and Z'/3 is
certainly the right variable to use for analysis. It is not surprising that numerical results [65] are
generally in better agreement with experimental data than our systematic findings because our

calculation omits the shell effects.

3.4.1 Effects of shell structure

In order to be able to separate systematic and shell effects, in Fig. 3.10 we display du = p — psc, the
modulation of the quantum defect relative to the monotonic semiclassical background, Eq.(3.20),
which accounts for the bulk of the quantum defect value. Fig. 3.10 shows that the experimental
and numerical variations of the quantum defect are bounded which is consistent with the view that
they are due to repetitive physics. Moreover, the systematic modulation due to the Zel’dovich
effect appears to have an amplitude which is several times smaller than those of experimental and

numerical data. This observation implies that it may be possible to understand gross features of the
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Table 3.1: Experimentally measured quantum defects for series of elements with their atomic num-
bers Z and corresponding references. Systematic quantum defects of this work are also displayed
for comparison.

Z | Element | Experimental ;1 | Reference | Systematic u
2 He 139 80 110
3 Li .400 81 .336
4 Be .670 82 AT8
5 B 1.000 82 .600
6 C 1.050 82 744
7 N 1.091 82 .904
8 0O 1.132 82 1.040
9 F 1.203 82 1.144
10 Ne 1.300 83 1.229
11 Na 1.348 81 1.307
12 Mg 1.517 82 1.388
13 Al 1.758 84 1.476
14 Si 1.816 82 1.574
16 S 1.947 82 1.774
17 Cl 2.128 85 1.861
18 Ar 2.140 83 1.935
19 K 2.180 81 1.999
20 Ca 2.340 80 2.056
22 Ti 2.400 86 2.161
23 A% 2.300 86 2.134
26 Fe 2.600 86 2.390
29 Cu 2.600 80 2.594
30 Zn 2.639 87 2.660
36 Kr 3.100 83 2.956
37 Rb 3.131 88 2.994
38 Sr 3.269 80 3.031
39 Y 3.385 89 3.067
42 Mo 3.476 90 3.180
47 Ag 3.600 91 3.404
49 In 3.720 92 3.503
54 Xe 4.000 83 3.722
55 Cs 4.049 93 3.759
56 Ba 4.200 80 3.793
70 Yb 4.280 80 4.193
78 Pt 4.611 89 4.479
79 Au 4.660 94 4.515
83 Bi 4.890 80 4.645
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Figure 3.9: Systematic, experimental, and numerical dependences of the quantum defect 1 on Z/3.
To help orientation within the Periodic Table experimental alkali data are circled.
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Figure 3.10: Modulation of systematic, experimental and numerical quantum defect o = p — pise
relative to the semiclassical background, Eq.(3.20) as a function of Z'/3.
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experimental and numerical modulations of the quantum defect as mostly due to the effects of the
shell structure.

This viewpoint can be supported by qualitative analysis which rests on the semiclassical result
(3.20). First, let us anticipate the outcome of incorporating the shell effects into the calculation.
This amounts to replacing the smooth inner potential Us(r) by one with modulations due to the
spatial variation of the electron density reflecting the shell structure. This replacement will result in
a value of the size of the ionic core 79, Eq.(3.16), generally different from its systematic counterpart.

Let us additionally assume that the inner potential Ug(r) with shell effects included is still
sufficiently smooth so that a semiclassical treatment is valid. The corresponding quantum defect
(3.20) will deviate away from the systematic result due to different values of the range parameter z,
Eq.(3.5), and the number of de Broglie’s half-waves, Sy/7h. Because the latter involves the integral
of (=Uy(r))'/? from zero to 7o (see Eqs.(3.14) and (3.26)) the modulations above and below the
systematics present in Us(r) are expected to largely cancel each other and the deviation from our
results can be mostly attributed to the different size of the ionic core.

This argument implies that the quantum defect is strongly sensitive to the value of the size of
the ionic core ro and weakly sensitive to the details of the inner potential U,(r). In reality the inner
potential may not be smooth enough for the semiclassial treatment to be quantitatively correct.
Therefore we do not expect more than a qualitative insight into the trends of the variations of the
quantum defect induced by the shell effects.

The simple rule that emerges can be most easily deduced from Fig. 3.6 by keeping in mind
the relationship between the range parameter x, Eq.(3.5) and the size of the ionic core 7o o< z3:
deviation in rg away from systematics leads to the same sign deviation in the quantum defect.

Since the size of the ionic core of the Rydberg atom has a physical meaning close to that of an
ionic radius, to verify the correlation we need a set of ionic radii for singly-charged positive ions as
a function of position Z along the Periodic Table.

Seventy five years ago J. C. Slater [95] gave a very useful, general, empirical set of rules to
approximate analytically atomic wave functions for all the elements in any stage of ionization. The

radial part of the single-electron wave function is selected in the form

Y(r) oc p? TlemZTr/n an (3.27)
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Figure 3.11: Slater’s ionic radii for singly-charged positive ions together with a series of corresponding
ionic radii in crystals and systematic sizes of ionic core of the Rydberg atom, all in atomic units, as
functions of Z'/3. Numerical variation of the quantum defect 6p = p — s, is also displayed to show

the correlation with Slater’s radii.
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which can be recognized as the large-distance asympotics of a Hydrogen-like wave function with an
effective quantum number n* and an effective nuclear charge Z*e. Based on the underlying electronic
structure, Slater’s rules assign values of n* and Z* to the electrons of each shell of an atom or ion,
so that a complete set of single-electron wave functions can be constructed.

For a given shell the maximum of the electron density 47r212(r) is located at

rmam/aB = (n*)Q/Z* (328)

which formally coincides with the expression for the radius of the corresponding circular orbit in
Bohr’s old theory. The radius of the maximum density of the outermost shell is expected to correlate
with the size of the atom or ion. Specifically, Slater defines an ionic radius rg > 74 as a distance
at which the electron density becomes 10% of its maximal value.

Using the existing knowledge of electronic configurations [96] we applied Slater’s rules to calculate
the ionic radii of singly-charged positive ions. The result is shown in Fig. 3.11 where the elements
marking the beginning or an end of more dramatic changes in the ionic radius are labeled. For
comparison we also displayed a series of ionic crystal radii [97] used for predicting and visualizing
crystal structures. Crystal ionic radii are based on experimental crystal structure determinations,
empirical relationships, and theoretical calculations. As Fig. 3.11 shows, they are in fair agreement
with their Slater’s counterparts. We hasten to mention that neither Slater’s nor the crystal ionic
radii are expected to coincide with what we define as the size of the ionic core of the Rydberg atom,
Eq.(3.16). It seems highly plausible, however, that Slater’s ionic radii are correlated with the sizes
of the ionic cores of the Rydberg atoms.

Inspection of Fig. 3.11 tells us that the average Slater’s ionic radius slowly grows with Z'/ in
fairly good agreement with our systematic result. A closer look reveals that our systematic radius
appears to be consistently smaller than its Slater’s counterpart. If the same relationship would hold
between the systematic and (unknown) exact sizes of the ionic cores of Rydberg atoms, then the
fact that experimental and numerical quantum defects in Figs. 3.9 and 3.10 are generally larger than
their systematic counterparts would be explained.

The large variation of the Slater’s ionic radius away from the average trend is due to the effects
of shell structure. Their role in determining the ionic radius can be most easily visualized based on

the expression for the radius of the maximum electron density (3.28) which correlates with the ionic
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radius. This result emphasizes the following main principles:

(i) As Z increases, all the n levels move down in energy which amounts to replacing n by its
effective counterpart n* < n. If the electrons are added to an outer shell, the effective nuclear charge
Z*e seen by each of them gradually increases. This is because the outer shell electrons are relatively
inefficient in shielding the nuclear charge. As a result the ion slowly contracts.

(ii) As a new outer shell begins to fill, the effect of going into the higher shell outweighs the effect
of lowering of an n level as Z increases to Z + 1. This corresponds to an abrupt increase of the
effective principal quantum number n*. Moreover, the effective charge Z*e seen by the outermost
electron drops because now all remaining Z — 2 electrons belong to inner shells thus efficiently
screening the nuclear charge. These changes in n* and Z* cause a sharp increase of the ion size.

Slater’s rules [95] add a quantitative aspect to these principles. In the following explanation of
the variation of the ionic radius, Fig. 3.11, we are always speaking of the positive singly-charged ions
whose electronic configurations are taken from the NIST database [96].

In going from 2He (1s'), to 3Li (1s2) the ion size decreases. As one moves to “‘Be ([He]2s!) the
added electron enters the higher 2s shell, and the ionic radius sharply increases. Similar increases take
place as one goes from every alkali to the following alkali earth ion. A related jump in ionic radius
also occurs past every noble element ion, 22Cu ([Ar]3d'") — 39Zn ([Ar]3d'%4s!), 47Ag ([Kr]4d'?)
— 480d ([Kr]4d'5s'), and P Au ([Xe]4f1*5d10) — 80Hg ([Xe]4f1*5d'%65') because a higher s-shell
starts to be occupied. An analogous argument explains the sharp increase of ionic radius while going
from 2Cr ([Ar]3d®) to 2Mn ([Ar]3d°4s') and from Mo ([Kr|4d®) to *3Tc ([Kr]4d®5s!)

As one moves from “Be ([He|2s') to '!Na (|He]2s%2p®) the 2s and 2p shells are filled by the
electrons, and the ion size gradually decreases. A similar effect explains the decrease of the ionic
radius along the 2Mg ([Ne]3s!)-1°K ([Ne]3s23p°), 39Zn ([Ar]3d'%4s')—2"Rb ([Ar]3d1%4s%4p%), 48Cd
([Kr]4d'9551)-55Cs ([Kr]4d'5525p°), and 8°Hg ([Xe]4 f145d106s1)—5"Fr ([Xe]4 f145d 0 6526p°) sequences.

The ionic radius decreases through the 2°Ca ([Ar]4s')- 21Sc ([Ar|3d*4s')-22Ti ([Ar|3d?4s') seg-
ment. This happens because the electrons filling the 3d shell only partially screen the nuclear charge
- as a result the outer 4s electron sees a gradual increase of effective Z*. The same argument explains
the decrease of ion size while going from *Mn ([Ar]3d°4s') to 2°Fe ([Ar]3d%4s') which is merely a
continuation of the Ca-Ti segment. The decrease of ionic radius through the >Ta ([Xe]4 f145d%65s')-
"r ([Xe]4f145d"6s') series can be similarly understood. In fact, the first entry of this series is "°Yb

([Xe]4f145d°6s') where we intentionally modified the standard notation to show the absence of the
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5d electron.

The size of the ion first abruptly decreases while going from 22Ti ([Ar|3d%4s') to 23V (|Ar|3d?)
and then continues decreasing more gradually as one moves to 2*Cr ([Ar|3d®). The sudden change is
due to the fact that the outer shell changes from 4s to 3d which can be viewed as a decrease in the
effective quantum number n*. The subsequent slower increase of the ionic radius is due to the increase
of the effective nuclear charge Z*e seen by the larger number of 3d electrons. The same trend is
exhibited in the 4°Zr ([Kr]4d?5s!')-*'Nb ([Kr]4d*)-**Mo (|[Kr|4d®) sequence. A very similar behavior
is found in the 2°Fe ([Ar]3d®4s')-2"Co ([Ar]3d®)-2*Ni ([Ar]|3d°)-2°Cu ([Ar]3d'?), *3Tc ([Kr]4d®5s')—
“Ru ([Kr]4d")- “°Rh ([Kr]4d®)-*Pd ([Kr|4d®)-*"Ag ([Kr]4d'®), and ""Ir ([Xe]4f1*5d76s)— 8Pt
([Xe]df15d%)-"Au ([Xe]d f1*5d0) series.

Superficially, a similar steep decrease of the ion size is followed by more gradual decrease in
the 0Yb ([Xe]d f146s')— "'Lu ([Xe]4f146s%)— T?Hf ([Xe]4f1*5d'65%) sequence. This behavior can be
explained by noticing that in both steps the effective Z* felt by a 65 electron increases; the increase
during the second step is smaller because inner shell d electrons are more efficient in screening the
nuclear charge than s electrons.

While going from 3¥Sr ([Kr]5s!) to 2°Y ([Kr|5s?) and to °Zr (|[Kr|4d?5s!) a decrease of ionic
radius follows by an increase. This happens because the effective Z* felt by an outer 5s electron
first increases and then decreases. The increase of the size of the ion is somewhat smaller than the
decrease because two 4d electrons in Zr only partially shield two extra units of the nuclear charge.

For the %*Eu ([Xe]4f76s!)-5*Gd ([Xe]df75d*6s)- 6Tb ([Xe]4f°6s') sequence the ionic radius
first decreases and then increases back to its initial value. This happens because the d electron in
Gd is less effective in shielding the nuclear charge than the f electron in Tb (considered perfect in
Slater’s scheme).

One of the less intuitive increases of ionic radius takes place while going from *°Ba (|Xe]6s') to
°TLa (|Xe]5d?). On one hand, the effective principal quantum number n* decreases which according
to (3.28) should lower the ionic radius. However as compared to the 6s electron of Ba, the effective
Z* seen by one of La’s 5d electrons also decreases. This happens because the inner shell 5sp electrons
screen the nuclear charge more effectively if the outer shell electrons are in a d state (La) as compared
to an s state (Ba). As a result the decrease in Z* outweighs the decrease in n* thus leading to an
increase of the ion size. A very similar argument explains the reversed decrease of ionic radius taking

place as one goes from ®Ce ([Xe]4f'5d?) (whose size is identical to that of La) to *Pr ([Xe]4f36s')
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(identical in size to Ba). Here the role of the 4f electrons merely reduces to compensating for the
increase of the nuclear charge.

The ionic radius does not change as one moves from °"La ([Xe]5d?) to *®Ce ([Xe|4f15d%) because
the increase of nuclear charge is exactly compensated by adding a 4f electron. The same argument
explains the constancy of the ionic radius along most of the lanthanide sequence, >°Pr ([Xe]4f36s')—
B3Eu ([Xe]4f76s1), Tb ([Xe]4f%6st)- OYb ([Xe]4f1*6s'). The only exception from this trend,
64Gd ([Xe]4f"5d 65!, has already been discussed.

Now when the variations of the Slater’s ionic radius are understood, we can compare them
with experimental and numerical modulations of the quantum defect. Since the numerical data are
more extensive than experimental findings, and the agreement between the two is fairly good, in
Fig. 3.11 we only show the variation of the numerically evaluated quantum defect du = p — pse.
The inspection of Fig. 3.11 leaves no doubt that the variations of the quantum defect with Z/ are
correlated with those of the Slater’s ionic radius - even the minute changes of the latter find their
way in the corresponding changes of the former.

There are however two places where it appears there is a disagreement with expectation:

(i) Along most of the lanthanide sequence the Slater’s ionic radius does not change while the
variation of the quantum defect decreases. This can be understood as an artifact of Slater’s rules. In
reality the f electrons do not perfectly screen the nuclear charge. Therefore the effective charge seen
by the outer 6s electron increases with Z'/3 and correspondingly the ionic radius should decrease.
Then the quantum defect variation should decrease as well which is in correspondence with numerical
results. We also note that the Gd dip of the ionic radius is reproduced in the quantum defect
variation.

(ii) For the elements past Hg, the Slater’s ionic radius decreases with Z'/3 while the variation
of the quantum defect increases. The reason why it happens is unclear. It cannot be ruled out
that here the effects of the shell structure might be so strong that our correlation rule derived from
semiclassical arguments breaks down qualitatively.

Overall, the analysis of this section makes it certain that the gross features of the quantum defect

variation with Z1/3 are due to the effects of the shell structure.
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3.4.2 Zel’dovich modulation

Qualitative analysis is of little use in trying to see the Zel’dovich effect in experimental and numerical
data because the Zel’dovich modulation has an amplitude which is several times smaller than that
due to the effects of the shell structure (see Fig. 3.10). A way to proceed quantitatively is suggested
by the fashion in which the shell and systematic effects are coupled.

Inspecting the limiting expression for the Zel’dovich modulation, Eq.(3.22), it is straightforward
to see that after replacing systematic Uq(r) with the one accounting for the shell structure, the
amplitude of the Zel’dovich modulation will become strongly sensitive to the effects of the shell
structure because it is determined by the logarithmic derivative of the inner potential U,(r) and
the range parameter zy. On the other hand, the period of the oscillation is far less sensitive to the
effects of the shell structure since it is determined by the number of de Broglie’s half-waves fitting
inside the ionic core of the atom.

This last observation suggests that it might be possible to see the Zel’dovich effect in the experi-
mental and numerical Fourier spectra of the quantum defect variation du = p— ps. (see Fig. 3.10) as
a peak whose location can be brought in correspondence with the systematic theory. To proceed in

this direction, in a range of Z'/3 of length L we expand the quantum defect variation into a Fourier

series
Sp(Z/3) = Z i exp(ikZY/3) (3.29)
k=2mp/L
where p = 0,£1,£2,.... In order to numerically evaluate the Fourier coeflicients pr = u* ., the

experimental and numerical 6u(Z'/3) dependences (see Fig. 3.10) were fitted with a cubic spline
which was then sampled equidistantly in Z'/3 to extract the Fourier spectrum. The result for the
magnitude of the Fourier coefficients |ux| as a function of & is displayed in Fig. 3.12 as a series of solid
dots which for convenience are connected by straight line segments. The uncertainty of the location
of each dot along the k axis, 27/L, is the distance between the nearest values of k. Since the last
available experimental quantum defect corresponds to ®3Bi (see Table 3.1), for both experimental
and numerical data we restricted ourselves to L = 83'/3. The finite values of 1 correspond to the
presence of nonzero background in experimental and numerical d.:(Z'/?) dependences and are of no
interest to us.

For comparison in Fig. 3.12 we also show the Fourier spectrum of our systematic calculation

which, as expected, has only one peak corresponding to the Zel’dovich effect. The position of the
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Figure 3.12: Systematic, experimental and numerical amplitudes of the Fourier coefficients of the
quantum defect variation (arbitrary units, same normalization ) |ux| as functions of k for k > 0.

The peaks at k& ~ 11 correspond to the Zel’dovich effect.
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peak along the k axis can be understood from the large Z asymptotics of the Thomas-Fermi action
So/h ~ 527"/ (3.26). Comparing this with the limiting expression for the Zel’dovich modulation
(3.22) we would expect a peak at k ~ 10.4. The peak in Fig. 3.12 is located at a slightly different
value of k ~ 11 which is due to the fact that the asymptotic behavior Sy/h ~ 5.2Z'/3 becomes
numerically accurate only for Z/3 exceeding 10.

Both the experimental and numerical spectra in Fig. 3.12 have peaks at the same value of £ ~ 11
which we argue are the signatures of the Zel’dovich effect.

It is curious that both experimental and numerical spectra have another peak in common lo-
cated at k ~ 5.5. This peak which is about twice as high as that due to the Zel’dovich effect is
natural to relate to the effects of the shell structure. The existence of this peak translates into the
(27/5.5)Z1/3 = 1.14Z'/3 periodicity of the quantum defect variation due to the effects of the shell
structure. This conclusion resembles the Z'/3 periodic oscillation of the ground-state energy of an
atom away from the systematic trend [98]. With uncertainty of the peak location in mind, one may
speculate that our result is a manifestation of the same effect for highly-excited states. More work
is necessary to bring understanding to this issue.

We also repeated the same Fourier analysis by choosing the range of Z'/3 to be L = 102!/ which
includes all the numerical data. As far as experimental data go in the range of Z'/3 between 83!/3
and 102'/3 we used extrapolation of our cubic spline fit. As a result the peaks just discussed slightly
change their positions and amplitudes but within the 27/ L uncertainty systematic, experimental and
numerical Fourier spectra share a peak in common corresponding to the Zel’dovich effect. Similarly,
experimental and numerical spectra continue to share a peak in common due to the effects of the

shell structure.

3.5 Conclusions and future directions

In this chapter we analyzed in a model-independent fashion the weakly-bound s spectra of the
distorted Coulomb problem for arbitrary relationship between the range of the inner potential and
Bohr’s radius of the Coulomb field. We demonstrated that the spectra are fairly sensitive to the
binding properties of the inner potential which constitutes the essence of the Zel’dovich effect, and
established the corresponding details of spectral changes. Armed with these results, we conducted

an analysis of experimental and numerical Rydberg spectra of atoms along the Periodic Table which
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indeed show an evidence of the Zel’dovich effect. Our analysis can be extended and adopted in
several directions:

First, there is an abundance of experimental and numerical data for atomic Rydberg states of
finite angular momenta which are likely to contain signatures of the Zel’dovich effect. However,
in the limit of a very short-ranged inner potential the way the effect manifests itself is somewhat
different from its s state counterpart [60]. This observation makes it pertinent to generalize our
analysis to the case of finite angular momentum.

It has been known for some time [99] that the Rydberg formula (2) is superior to the Wannier
(Bohr) formula quoted in textbooks [55] in representing excitonic spectra in condensed matter sys-
tems. Experimental examples here include clean and doped rare-gas solids and rare-gas impurities
in solid hydrogen. Although this is a context in which the Zel’dovich effect has been originally dis-
covered [56], to the best of our knowledge there were no attempts to relate it to excitonic quantum
defects. Because of the dielectric screening of the Coulomb interaction, the Zel’dovich effect in these
systems is expected to be more pronounced than in atomic Rydberg spectra. Only minor changes
to our analysis are needed to understand the excitonic Rydberg spectra.

Other examples of systems where the Zel’dovich effect should have experimental signatures in-

clude Rydberg ions and electronic image states [100].
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