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ABSTRACT 
A genetic testing company found that its non-
invasive prenatal testing (NIPT) 
bioinformatics algorithm was unable to 
accurately determine fetal aneuploidy in cases 
where fetal fraction was low. To address this 
issue, I updated the NIPT algorithm to weight 
read counts at a given genomic site based on a 
pre-calculated fetal probability score (FPS) for 
that site. I extracted DNA sequencing data for 
over 100,000 patients from raw datafiles and 
aggregated it into Parquet format for efficient 
storage and processing. I then statistically 
analyzed this data using Scipy library 
functions in iPython notebooks to generate a 
lookup table of FPS by site. Finally, I 
integrated that FPS table into the NIPT 
algorithm to replace the existing read counting 
step. Testing on the aneuploidy detection 
effectiveness of the FPS-enabled NIPT 
algorithm was not completed due to time 
constraints, and remains ongoing. Future work 
includes completing this testing by running the 
new algorithm on patient data with known 
results, both with high and low fetal fraction, 
as well as expanding the FPS table to include 
more genomic locations. 
 
1. INTRODUCTION 
Non-invasive prenatal testing (NIPT) is a 
screening tool often advertised as being over 
99% accurate at predicting fetal genetic 
abnormalities early in pregnancy (Samura & 
Okamoto, 2020). But a sobering analysis by 

the New York Times suggests that some 
positive NIPT results can be wrong more than 
85% of the time (Kliff & Bhatia, 2022). NIPT 
has risen in prevalence over the last decade due 
to its non-invasive nature and ability to be 
conducted as early as the first trimester of a 
pregnancy, and is currently estimated to be 
used in 25-50% of pregnancies in the United 
States (Ravitsky et al. 2021). 
 
NIPT works by using a combination of 
biological and computational techniques to 
sequence and then analyze the fetal DNA 
circulating in the maternal bloodstream to 
determine if the fetus has chromosomal 
aneuploidy, a condition in which there are 
fewer or more than the two requisite 
chromosomes (van der Meij et al., 2022). 
However, patients with low fetal fraction (FF), 
or low amounts of fetal DNA circulating in the 
maternal bloodstream, remain incredibly likely 
to receive an inconclusive test result (Samura 
& Okamoto, 2020). Patients of higher BMI are 
disproportionately likely to suffer from low 
FF, indicating this as an area of possible health 
disparity for an already-vulnerable group 
(Haverty & Muzzey, 2019). The development 
of a technique to better classify DNA as fetal 
or maternal could help provide a mechanism of 
in silico FF enrichment, allowing more patients 
to receive more accurate NIPT results. 
 
2. RELATED WORKS 



Multiple studies have shown that low FF 
remains the most common reason for a no-call 
result, which occurs when the NIPT algorithms 
are unable to make a decision on whether a 
fetal chromosomal abnormality exists, with an 
FF less than 4% able to account for up to 50% 
of all test failures (Samura & Okamoto, 2020; 
Yaron, 2016). Patients who receive a no-call 
result typically either have to repeat the NIPT 
process, opt for an invasive testing procedure, 
which carries a 1 in 300 risk of fetal harm, or 
proceed with no prenatal testing at all (Warsof, 
2015; Yaron, 2016). These findings provide a 
rationale for improving fetal fraction in silico, 
meaning via better computational analysis 
techniques, to increase successful NIPT 
outcomes. 
 
While Yaron (2016) provides a clinical 
justification for this project, studies by Chan et 
al. (2016) and Sun et al. (2018) provide the 
scientific foundation. Both of these studies 
showed that DNA from certain genomic sites 
is more likely to be fetal DNA than maternal 
DNA (Chan et al., 2016; Sun et al., 2018). This 
suggests that a DNA fragment from the 
maternal bloodstream can be classified as more 
likely to be fetal or non-fetal based entirely on 
its genomic origin location. This work by Chan 
et al. (2016) and Sun et al. (2018) was the first 
to show that it was possible to computationally 
determine whether fragments were fetal in 
origin after the maternal blood draw and other 
biological techniques were already completed, 
so their work is a cornerstone upon which my 
technical research rests. 
 
3. PROCESS DESIGN 
Overall, my technical project worked on 
improving the existing NIPT pipeline by 
modifying the read counting algorithm used to 
determine fetal aneuploidy. 
 
3.1 Existing Pipeline 
To understand the changes introduced to the 
NIPT computational pipeline by my research, 

an understanding of the existing workflow is 
key. The following is a slightly simplified 
overview of the existing workflow, with some 
details left out to abide by company policy and 
avoid getting lost in biomedical complexity. 
 
Once the DNA has been sequenced, the 
biological part of the workflow ends and the 
computational side begins. The first technical 
step is assembling the sequenced DNA 
fragments, which involves mapping each 100 
base pair fragment to its most likely location in 
the genome based on probability models. 
Hereafter, I will refer to these mapped 
fragments as reads. Next, the entire genome is 
divided into buckets of a set base pair length, 
much larger than the 100 base pair length of 
each read. Then, the workflow counts the 
number of reads in each bucket, giving every 
read an equal weight of 1 when being counted. 
Variations and irregularities in the number of 
reads for a given bucket relative to the other 
buckets indicate a possible chromosomal 
abnormality in that part of the genome. The 
final determination of whether a count 
variation is an aneuploidy, a process termed 
aneuploidy calling, involves further 
probability models and analysis techniques 
beyond the scope of this project. 
 
3.2 Proposed Changes 
Other employees and researchers at the genetic 
testing company identified an issue with the 
existing workflow. Every single read, 
regardless of its location of genomic origin, 
had an equal weight of 1 when counted. 
However, as described in the Related Work 
section, reads originating in some locations are 
more likely to be fetal DNA reads, which are 
in turn the reads most important in determining 
fetal aneuploidy. However, the fetal 
probability of every site in the genome is not 
known. Therefore, my project focused on 
assigning every genomic site an FPS, which 
categorized that site as more likely to contain 
fetal DNA (a score closer to +1), or more likely 



to contain maternal DNA (a score closer to 0). 
The goal was that I could then integrate this 
score into the existing computational pipeline, 
such that reads would be weighted by their FPS 
when being counted for aneuploidy 
determination. That way, reads more likely to 
be fetal would have a greater impact on the 
count, providing an in silico method of 
increasing FF regardless of the actual 
percentage of fetal DNA in the maternal 
bloodstream. 
 
3.3 Analysis Plan 
To calculate this FPS by site, my team and I 
came up with a plan to use de-identified 
sequencing data from existing patients to 
analyze possible correlations between genomic 
location, FF, and read count. The example 
graph in Figure 1 provides a visual 
representation of our analysis plan. Each dot 
represents a different patient sample. On the x-
axis is the FF for that patient. On the y-axis is 
the number of reads for that patient at the given 
genomic region, which in this example graph 
is a site on Chromosome 21.  

Computational biology experts at the company 
explained that if the number of reads at a 
particular genomic site increased with FF, that 
was a good indicator that the site was more 
likely to be fetal DNA specific. This is the line 
shown in blue. Conversely, if the number of 
reads at a particular site decreased with 
increasing FF, that indicated the site was more 

likely to be maternal DNA specific. This is the 
line shown in red. If the number of reads 
remained relatively constant regardless of FF, 
then the site was likely neutral, with an equal 
probability of containing maternal or fetal 
DNA. With this in mind, I constructed the 
following analysis plan. 
 
I planned to first aggregate sequencing data 
from hundreds of patients into a table of 
number of reads by genomic location. Then, I 
would run a Spearman correlation analysis 
between number of reads and fetal fraction 
across all of the patients for a given site. The 
resulting correlation coefficient R would range 
from -1 to 1, with -1 indicating a negative 
correlation between number of reads and FF, 
and therefore maternal specificity, while +1 
would indicate a positive correlation and 
therefore fetal specificity. I then planned to 
compress these coefficients to range from 0 to 
1, and use that resulting number as the FPS for 
the genomic site in question. My goal was to 
perform this analysis across the whole genome, 
to generate a genomic FPS lookup table. 
 
3.4 Data Collection, Storage, & Analysis 
Following my proposed plan, I first collected 
de-identified sequencing data for 1559 patients 
with known FF and no known aneuploidy. This 
involved scraping BAM files, which contain a 
list of every single read sequenced for a patient 
along with that read’s likely location in the 
genome. Using an iPython notebook as my 
environment, I compiled that read count data 
into a Pandas DataFrame that was organized so 
every row was a patient, every column was a 
genomic site, and every data point was the 
relevant count. The human genome has over 3 
billion individual base pairs, but analyzing 
every single one of those as a unique start site 
required more computational power than I had 
available. Therefore, I focused my work to 
only look at genomic sites on Chromosome 21, 
the chromosome most often implicated in 
aneuploidy. To further reduce computational 

Figure 1. Example graph of number of reads versus 
fetal fraction. 



complexity, I aggregated sites into 10 base pair 
regions, resulting in a total of 234740 unique 
genomic sites analyzed in my work. 
 
A Pandas DataFrame quickly grew to be 
unsustainable for the size of my dataset, so I 
converted the data into a columnar Parquet 
format for storage. Parquet uses more 
advanced compression and encoding 
algorithms than Pandas, allowing for large 
datasets to be stored and operated on without 
requiring as much storage space or 
computational power. Figure 2 below is an 
example of what the data looked like when 
tabulated into Parquet format. 

I then ran Spearman’s correlation analysis 
between the fetal_fraction column shown in 
Figure 2 and every single other column of the 
Parquet table, in order to calculate the 
correlation coefficient between number of 
reads versus fetal fraction for every genomic 
site. I used the Scipy library’s Spearman 
correlation function in order to do this, so that 
I didn’t need to implement my own correlation 
function from scratch. I then stored the 
mapping between each genomic site and its 
corresponding correlation coefficient in a two-
column Pandas DataFrame. 
 
3.5 Generation of FPS Table 
From this DataFrame of correlation 
coefficients by site, I generated each site’s FPS 

by compressing the coefficients, which ranged 
from -1 to +1, into a range between 0 and 1. I 
did this by first adding 1 to each coefficient, 
and dividing that result by 2, creating a list of 
FPS by site. I saved each genomic site and its 
corresponding FPS in a new two-column 
Pandas DataFrame to create the desired FPS 
lookup table. 
 
4. RESULTS 
Figure 3 below shows the frequency of each 
range of FPS across Chromosome 21. As 
expected, the frequencies exhibited a normal 
distribution, where most genomic sites were 
relatively neutral, with an FPS around 0.5. 
Comparatively fewer sites had an FPS closer to 
0, indicating strong maternal preference, or an 
FPS closer to 1, indicating strong fetal 
preference. 

Due to time constraints, I was unable to 
complete the final steps of the proposed plan, 
namely integrating this FPS into the existing 
computational workflow and testing how well 
the updated pipeline worked at calling 
aneuploidy for normal and low FF patients. 
That work is currently ongoing by other 
employees working at the company, and has 
yet to be completed. Though I am unable to 
provide specific benchmarks or metrics for the 
performance of the FPS-enabled workflow, the 
distribution shown in Figure 3 provides 
optimism that the FPS table I generated is, if 
not entirely correct, at least built along the 
correct lines. Computational biologists I spoke 
to while attempting to validate my work 
suggested that the normal distribution of FPS 
across Chromosome 21 tracks with what 

Figure 2. Example table showing the data in columnar 
Parquet format. 

Figure 3. FPS frequency for Chromosome 21 reveals  
a normal distribution. 



would be expected biologically, wherein most 
sites would be neutral and only a few strongly 
maternal or fetal in preference. 
 
The expected outcome of my work is that the 
FPS table will be integrated into the existing 
computational workflow, and will result in 
accurate aneuploidy calls even when a 
patient’s FF is below the 4% threshold.  
 
5. CONCLUSION 
Through a combination of computational, 
statistical, and metagenomic analysis 
techniques on sequencing data from thousands 
of patients, this work laid a foundation for 
assigning every genomic site a fetal probability 
score (FPS). This site-specific FPS can 
eventually be incorporated into NIPT pipelines 
to enrich FF in silico by giving greater weight 
to reads with a higher FPS when predicting 
fetal aneuploidy. The goal is that this enhanced 
NIPT algorithm will be able to better predict 
aneuploidy even in cases of low FF, resulting 
in fewer no-call results and greater prenatal 
screening success rates for pregnant patients of 
all backgrounds. 
 
6. FUTURE WORK 
Work on this project is ongoing, as there are 
many avenues to continue exploring. My 
research focused solely on genomic sites 
located on Chromosome 21, in order to work 
within time and computing constraints, but 
genomic sites on all of the other chromosomes 
will need to be processed in the same way. 
Further, I was unable to finish integrating the 
new algorithm into the NIPT pipeline, which 
needs to be completed in order for the FPS-
determined read weighting scheme to take 
effect. Work is also continuing on validating 
the accuracy of the new FPS-based algorithm, 
by running it on patient data with known 
aneuploidy results and ensuring that the new 
algorithm is at least as accurate as the old one 
in calling aneuploidy. Finally, the primary 
research question still remains to be answered. 

The new algorithm will need to be tested on 
data from patients with FF less than 4%, to 
determine whether weighting read counts by 
FPS truly works to improve accuracy in low-
FF patients. 
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