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Architectural Characteristics of Apple Silicon for Machine Learning Applications
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A study is presented comparing the performance of Apple Silicon and NVIDIA GPUs across a range of machine learning workloads. A
range of models and operation are measured, and conclusions are drawn about the priorities of each architecture.
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1 Abstract

Since the introduction of Apple Silicon, its applicability to machine learning has been a topic of growing interest,
particularly in light of its distinct GPU architecture and unified memory design. In this paper, we systematically
benchmark Apple Silicon GPUs against NVIDIA CUDA across a range of fundamental operations, including matrix-
matrix multiplication, matrix-vector multiplication, and convolution. We also compare the performance and developer
experience of ML frameworks optimized for Apple hardware, namely PyTorch with Metal Performance Shaders
(MPS) and Apple’s MLX. Our results reveal not only the performance trade-offs between platforms but also provide
insight into which operations Apple Silicon appears to be optimized for at the hardware level. We hypothesize how
Apple’s architectural choices—such as high memory bandwidth, large shared caches, and tightly integrated CPU-GPU
pipelines—shape its performance profile and influence its suitability for different classes of machine learning workloads.

2 Introduction

Apple’s M-series SoCs integrate CPU, GPU, Neural Engine, and I/O onto a single chip, sharing a unified pool of high-
bandwidth RAM. [6] [5] For example, the M3 Ultra can deliver 800GB/s of system memory bandwidth [1] , which, while
slower than modern dedicated VRAM, is not similarly bottlenecked by a PCIe bus and allows memory to be instantly
shared between the CPU and GPU. Architecturally, Apple-designed GPUs scale from 7–8 cores (in low-end M1) up to
64 (M1 Ultra/M4) or 80 (M3 Ultra) cores, each split into multiple Execution Units (EUs). . The latest 80-core GPU (in M3
Ultra) reaches about 115 TFLOPs for dense FP16 matrix operations, significantly lower than the 209.5 TFLOPs achieved
by a comparable NVIDIA GPU (RTX 5090). [2] While raw performance is significantly lower, Apple’s unified design
has some key advantages. Because tensors do not have to be copied to VRAM and back, there is much less downtime
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2 Tao Groves

between computations. For smaller tensors or interactive workloads, this unified-memory zero-copy model can reduce
overhead and latency compared to discrete-GPU systems. [4] This advantage is much more meaningful when working
with small models or when models cannot be held in memory long-term (as is often the case on consumer devices,
which Apple Silicon is primarily designed for). Additionally, its newer ARM-based architecture is significantly lighter
and more energy-efficient. However, the fact remains that Apple Silicon is not currently competitive for most HPC
applications, where performance per dollar is more important than performance per watt. This paper investigates the
cause of, reasons for, and implications of this performance gap, focusing on image- and text-generative models.

3 Method

To evaluate machine learning performance across architectures, we conducted a series of benchmarks on three GPUs:

• Apple M1 Max with 32-core GPU, 32GB unified memory, 400GB/s bandwidth
• NVIDIA RTX 2080 with 8GB VRAM, 448GB/s bandwidth
• NVIDIA Quadro A6000 with 48GB VRAM, 768GB/s bandwidth

All benchmarkswere run under comparable conditions using native PyTorch backends to simulate a realistic environment
(Metal Performance Shaders on Apple; CUDA/cuDNN on NVIDIA), with thermal throttling and background processes
minimized to aid reproducibility.

We first measured end-to-end training performance on three representative ML workloads: ResNet-50, U-Net (in
multiple parameter configurations), and Stable Diffusion 2.0. For each model, we recorded peak memory usage, forward-
pass latency, and backward-pass latency across a range of batch sizes and input resolutions. These metrics capture both
raw computational throughput and memory efficiency, and enable comparisons of training viability on-device.

To isolate architectural and kernel-level performance differences, we next benchmarked low-level linear algebra
operations—specifically, matrix–vector products and vector–Jacobian products—across varying input sizes, data distri-
butions, floating-point precisions (FP32, FP16), and iteration counts. These experiments were performed only on the M1
Max and Quadro A6000, chosen to contrast a unified-memory GPU with a high-end discrete GPU. Timing results were
averaged over multiple warm-started iterations, and memory transfer times were excluded where zero-copy access was
supported.

Finally, we analyzed convolutional kernels and other common ML operations to infer which workloads are most
optimized for on Apple Silicon. This involved measuring isolated layer-level performance in convolution, normalization,
and activation pipelines, enabling identification of operations where Apple’s GPU/compiler stack (e.g., Metal or MLX)
demonstrates either bottlenecks or unusually high throughput.

Together, these methods provide a multi-scale view of machine learning performance on Apple Silicon relative to
CUDA, from low-level numerical ops to full-model training.

4 Results

4.1 End-To-End Training (Comparative)

4.1.1 Memory Usage. Stable Diffusion 2.0 (SD) was the most memory-intensive model on all devices, due to its large
input sizes and complex architecture. Notably, the M1 Max reached its maximum available memory (28GB) during SD
training, while the Quadro A6000 utilized up to 47.5GB. The RTX 2080 was unable to load SD at all due to insufficient
VRAM.
Manuscript submitted to ACM
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Architectural Characteristics of Apple Silicon for Machine Learning Applications 3

Fig. 1. Memory usage and latency for UNet on M1 Max vs. A6000

Fig. 2. Memory usage and latency for ResNet-50 on M1 Max vs. A6000

For smaller models, ResNet-50 and U-Net, memory usage patterns diverged across GPUs. On Apple Silicon, ResNet
consumed slightly more memory than U-Net. Conversely, on NVIDIA GPUs, U-Net required approximately 2× more
memory than ResNet. Interestingly, the M1 Max’s overall memory usage was inconsistent—requiring up to 25% more
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4 Tao Groves

memory than the Quadro A6000 for some models, but slightly less for others. For example, during U-Net training, the
M1 used 50MB less memory on average than the other GPUs.

4.1.2 Forward and Backward Latency. Forward-pass latency remained relatively consistent across all models and GPUs.
The M1 Max exhibited slightly higher latency on average, but the difference was marginal—approximately 15ms slower
for SD, and negligible for smaller models.

Fig. 3. Contribution of each backward pass step to overall backward latency for M1 Max

Backward-pass latency revealed much sharper differences. As model complexity increased, the M1 Max showed
significantly degraded performance relative to the NVIDIA GPUs. For instance, during U-Net training, the Quadro A6000
completed backpropagation 480ms faster than the M1, while during SD training it was 600ms faster. Notably, profiling
revealed that the latency bottleneck on the M1 occurred entirely during the weight update step, rather than during
gradient computation. On the RTX 2080 and A6000, backward-pass components were closely matched in duration,
suggesting better kernel-level optimization and scheduling.

In terms of overall training throughput, the RTX 2080 was 4̃× faster and the Quadro A6000 8̃× faster than the M1
Max for smaller models. This performance gap widened dramatically for SD, where the A6000 achieved a 32× speedup,
though these results were less reliable due to memory constraints and dataset limitations on the M1.

4.1.3 Mixed-Precision Training. One significant downside to current Apple Silicon is its lack of support for mixed-
precision training, which can significantly speed up computation. Mixed-precision was tested on the NVIDIA GPUs
to demonstrate. Across all GPUs, mixed-precision increased both forward and backward latency slightly (by 2̃.5ms
forward, and up to 40ms backward on SD), but roughly doubled overall training throughput. This discrepancy likely
stems from improved GPU occupancy and lower memory bandwidth pressure, despite minor overheads in casting and
managing lower-precision data. Mixed-precision did not reduce memory usage on any GPU.
Manuscript submitted to ACM
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Fig. 4. UNet forward/backward latency on A6000 with mixed-precision on vs. off

In addition to specifying the template style to be used in formatting your work, there are a number of template

parameters which modify some part of the applied template style. A complete list of these parameters can be found in
the LATEX User’s Guide.

4.2 Matrix-Vector and Vector-Jacobian Products (Comparative)

4.2 Matrix–Vector and Vector–Jacobian Product Performance To evaluate low-level linear algebra throughput, we
benchmarked matrix–vector and vector–Jacobian multiplications across a variety of configurations using MLX on Apple
Silicon (M1 Max) and CUDA on the Quadro A6000. The test setup involved multiplying a matrix of shape [𝐵 ×𝑇 × 𝐷]
with a vector of shape [𝐵 × 𝐷 × 1], where B=1 corresponds to a 2D matrix–vector product. We varied matrix size,
floating-point precision (FP32 vs. FP16), data value range, and iteration count to capture performance across realistic
machine learning workloads.

4.2.1 Performance Scaling and Architectural Characteristics. Our results show clear architectural tendencies. CUDA con-
sistently outperformedMLX, and the performance gap widened with increasing matrix size. This indicates that NVIDIA’s
tensor cores and memory pipeline are heavily optimized for large, throughput-oriented matrix operations—consistent
with their intended deployment in large-batch deep learning workloads.

In contrast, MLX was more competitive with CUDA on small matrices, particularly in the 32 × 32 to 64 × 64 range.
In some cases, especially for matrices commonly seen in convolutional layers, MLX even outperformed CUDA when
using FP32, although this advantage diminished quickly as matrix size increased. This pattern supports the hypothesis
that Apple’s GPU architecture is optimized for many small, fast operations rather than large batched workloads.

4.2.2 Precision Effects: FP16 vs. FP32.

Manuscript submitted to ACM
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6 Tao Groves

Fig. 5. Performance ratio of CUDA/MLX for FP16 multiplication

Fig. 6. Performance ratio of CUDA/MLX for FP32 multiplication

4.2.3 Precision Effects: FP16 vs. FP32. Precision had different effects on each platform. On CUDA, FP16 operations were
consistently 1.25× faster than FP32, with little variation as matrix size changed. However, on MLX, the performance
delta between FP16 and FP32 increased dramatically with matrix size—small matrices saw little benefit or even worse
Manuscript submitted to ACM
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Fig. 7. MLX performance ratio of FP16/FP32 across matrix sizes

Fig. 8. CUDA performance ratio of FP16/FP32 across matrix sizes

performance with FP16, while large matrices saw 2× or more speedup. This nonlinearity suggests that MLX benefits
from FP16 only once the overhead of precision conversion and operation setup is amortized over enough compute.

Manuscript submitted to ACM



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Tao Groves

Notably, for certain very small matrix sizes—often used in convolution kernels—FP32 was faster than FP16 on MLX.
This suggests that Apple’s compiler and hardware may fuse or vectorize FP32 operations more effectively in these cases,
or that FP16 incurs overhead at small sizes due to memory alignment or kernel dispatch constraints.

4.2.4 Data Value Effects.

Fig. 9. MLX performance ratio of large/small matrix values across matrix sizes

4.2.5 Precision Effects: FP16 vs. FP32. We also tested how the range of matrix values influenced performance. While
CUDA showed negligible variation, MLX ran marginally faster on matrices with values in [0, 1] compared to larger
values. This effect became more pronounced at larger matrix sizes, but the absolute performance delta remained small.
Without detailed knowledge of Apple’s internal floating-point representation, it’s difficult to determine whether this
behavior stems from numerical encoding optimizations, quantization artifacts, or memory alignment effects. Nonetheless,
the observation suggests that operand magnitude has a non-negligible influence on Apple’s kernel execution time,
particularly for large inputs.

4.2.6 Operation Setup Overhead. Profiling revealed that a significant portion of total execution time on MLX was spent
preparing operations, rather than performing arithmetic. For small matrices, operation setup and kernel dispatch took
up a disproportionate amount of time, leading to reduced throughput. Throughput (ops/sec) increased nonlinearly
with matrix size, particularly when the larger dimension was increased. This scaling behavior implies that Apple’s
pipeline incurs fixed per-operation overhead, which becomes less impactful as matrix size—and therefore arithmetic
intensity—increases. CUDA showed similar throughput scaling, meaning the theoretical benefit of shared memory on
Apple Silicon was not realized in our tests.

4.2.7 Matrix–Matrix Multiplication (MLX Only). To further investigate scaling, we performed matrix–matrix multi-
plication benchmarks on MLX using matrices of size (𝑎, 𝑏) (𝑏, 𝑐), varying all dimensions. Interestingly, ops/sec grew
Manuscript submitted to ACM
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Fig. 10. MLX performance for matrix-matrix multiplication across matrix dimension variations

logarithmically with matrix size, especially when increasing the smaller dimension 𝑏. This behavior suggests that MLX’s
performance scales better when matrices are more square, which aligns with the theoretical properties of modern
block matrix multiplication algorithms. However, another likely contributing factor is that operation setup dominates
execution for smaller or highly skewed matrices, and increasing size reduces the proportional cost of kernel overhead.

4.3 Convolution and Theories

Unlike the general matrix–vector and matrix–matrix multiplication benchmarks, convolutional operations presented
an interesting inversion in performance dynamics: MLX on Apple Silicon consistently outperformed CUDA on NVIDIA
GPUs across a range of kernel sizes and input shapes, often by a significant margin, and even when mixed-precision
was used on the NVIDIA GPUs. This finding was robust across both FP32 and FP16 precision and held for input tensors
corresponding to typical convolutional layers used in image processing and computer vision models.

MLX achieved faster execution times for standard 2D convolutions with small to moderate kernel sizes (e.g., 3 × 3
and 5 × 5). CUDA consistently trailed behind MLX in raw throughput for equivalent convolution workloads. This
performance edge is consistent with all findings in showing that Apple Silicon performs much better when the majority

Manuscript submitted to ACM
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Fig. 11. Heatmap of MLX computation time for FP32 5x5 convolution (lower is better)

Fig. 12. Heatmap of CUDA computation time for FP32 5x5 convolution (lower is better)

Fig. 13. Heatmap of CUDA computation time for FP32 5x5 convolution (lower is better)

of computation is many small, square matrix operations. As established in the previous section, CUDA held a substantial
advantage for larger computations, particularly outside of vision-oriented layers. The reversal observed here suggests
Manuscript submitted to ACM



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Architectural Characteristics of Apple Silicon for Machine Learning Applications 11

that Apple Silicon has been explicitly tuned at the hardware level for convolutional workloads—a likely consequence of
its intended use cases and design priorities.

4.3.1 Architectural Implications. This finding is consistent with Apple’s vertical integration strategy and the com-
pany’s emphasis on real-time image processing, computer vision, and on-device machine learning. Apple’s GPUs are
designed not for general-purpose training of large language models but for efficient execution of a wide range of image
manipulation and inference tasks—from Photo app filters to real-time object segmentation in AR and the Camera app.

In the context of Apple Intelligence and similar on-device AI initiatives, convolution remains a foundational operation.
From edge detection and segmentation to style transfer and facial recognition, convolutions underpin the vast majority
of compute-intensive image transformations. It follows that Apple would prioritize optimizations for convolution
kernels—potentially including:

• Specialized convolution accelerators or fused compute pipelines
• Optimized memory access patterns for common kernel shapes
• Lower dispatch and setup latency for tiled convolutions
• Tighter integration with unified memory for small image tiles

These architectural choices may also be influenced by power and thermal constraints. Accelerating convolutions
efficiently enables high-throughput real-time processing within the tight thermal envelope of mobile devices. This
is less of a priority for CUDA, which targets large data center GPUs where maximizing throughput for large-scale
training takes precedence over thermal efficiency.

These results also align with prior research about Apple Silicon. [3] Specifically:

• The MLX framework shows performance benefits on small, vision-oriented tensor operations, suggesting
hardware–software co-design.

• Apple’s Neural Engine, while not directly benchmarked here, is known to offload certain convolution operations
in inference scenarios, which may influence how the GPU pipeline is optimized for training workloads that
resemble inference patterns.

• Convolutions are inherently local operations with predictable memory access patterns, which map well to tiled
memory hierarchies like those on Apple GPUs.

5 Conclusion

This study set out to investigate how Apple Silicon compares to traditional NVIDIA CUDA-based GPUs for machine
learning workloads, with a focus on understanding architectural trade-offs and performance characteristics. By bench-
marking a range of models alongside fundamental operations, we aimed to assess both high-level training performance
and low-level computational behavior on Apple Silicon.

Our results confirm a significant gap in training performance between Apple Silicon and NVIDIA GPUs, especially
as model size and memory requirements increase. M1 Max exhibited notably higher backward pass latency, primarily
due to overhead in applying gradients, and lagged behind by factors ranging from 4× to 32× depending on the model.
However, Apple Silicon demonstrated surprising strengths in specific areas: MLX performed competitively—sometimes
outperforming CUDA—on small matrix operations and consistently outpaced CUDA in convolutional workloads. These
findings point to a likely optimization of Apple Silicon for many small, local operations rather than large batched matrix
multiplications.

Manuscript submitted to ACM
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12 Tao Groves

We theorize that these design decisions stem from Apple’s focus on on-device intelligence, image processing, and
mobile-first use cases, where low-latency convolutional performance and power efficiency are critical. By contrast,
CUDA and NVIDIA’s architecture are built for large-scale, parallel workloads in datacenter training environments.
Together, these results underscore the importance of architectural context in ML performance and offer insight into
how and why Apple may be tuning its silicon differently for emerging AI use cases.
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