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Abstract 

Persistent bacterial infections are a rapidly growing concern worldwide; combatting 
these drug-resistant infections is hampered by a limited understanding of 
multifactorial pathogen evolution. Pathogens must adapt to novel nutrient 
restrictions, stresses induced by the host environment, competition with other 
microbes, and therapeutic interventions such as antibiotic treatment. The lung 
infections of cystic fibrosis (CF) patients are an excellent model of long-term 
pathogen evolution. Pseudomonas aeruginosa and species of the Burkholderia 
cepacia complex (Bcc) are considered the most problematic CF pathogens, known 
for their dominance over other pathogens, ability to induce infections lasting 
decades, and resistance to antibiotics (factors which also contribute to their role in 
serious hospital-acquired infections).  

With the goal of providing novel insights into potential new therapeutic targets to 
combat rising drug resistance, I investigate the metabolic flexibility, virulence 
capability, and adaptive metabolic rewiring of these pathogens using comparative 
systems analyses via the framework of genome-scale metabolic models. I have 
built two new genome-scale metabolic reconstructions of Bcc species, updated 
and reconciled an existing model of P. aeruginosa PAO1 and also created a 
new model of P. aeruginosa PA14. I couple these models with constraint-
based analysis techniques and experimental phenotype screening to validate 
predictions and pursue model-generated hypotheses. 

My work has resulted in the prediction of specific mechanistic causes for differential 
antibiotic resistance and capacity for virulence between B. cenocepacia and B. 
multivorans via quantitative examinations of genetic redundancy and predicted 
activity of secondary metabolite production pathways. I extended my comparative 
analysis approaches to the study of decades-long evolution in P. aeruginosa clinical 
isolates from chronic CF infections, using a novel integration of single nucleotide 
polymorphism- and expression-based constraints to create isolate-specific 
metabolic models representing early and late stage adaptation. I identified network 
rewiring of redox metabolism as a potentially important contributor to the 
successful persistence of the late stage strains. The P. aeruginosa models have also 
been used to evaluate genes and enzymes essential to the production of known 
virulence factors and tradeoffs between virulence factor production and bacterial 
growth, providing a parallel avenue of treatment to enhance current 
antibiotic approaches. My analysis of these predictions identifies novel 
therapeutic targets for inhibiting virulence factor production alone or in addition 
to growth, of which a subset are experimentally evaluated using in vitro gene 
knockouts. In summary, I use an integrated computational and experimental 
framework to conduct a comparative systems analysis of important drug-
resistant pathogens, contributing novel insights into their adaptive metabolic 
capabilities and proposing new therapeutic approaches. 
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Systems biology in biomedical research 

Biomedical research has now been in the ‘era of genomics’ for two decades since 

the first bacterial genome was sequenced in 1995, and improving technology has 

been opening new doors in rapidly advancing subfields such as functional genomics, 

epigenomics, and metagenomics (Preidis and Versalovic 2009; Davies 2013). As 

the price and ease of genome sequencing drops exponentially, the amount of 

‘omics’ data generation increases exponentially. Omics assays are now significant 

components in characterization of non-communicable diseases such as cancer 

(Kristensen et al. 2014) and metabolic syndrome (Dumas et al. 2014), pathogens 

inducing infectious disease, and interactions between humans and environmental 

factors ranging from toxins and pollutants (Kyrtopoulos 2013; Zeise et al. 2013; 

Vrijheid 2014) to microbiota (Preidis and Versalovic 2009). However, the full 

promise of these research efforts has not been realized. The key limitation in 

pursuit of novel discoveries is not data generation, but analyses that 

comprehensively integrate and interpret these data to identify meaningful trends 

and underlying mechanisms that can be translated into impactful clinical solutions 

(Ritchie et al. 2015).  

 

The impediment of omics integration and interpretation has contributed to the 

parallel, rapid development of systems biology research approaches (Hood et al. 

2004; Ritchie et al. 2015). Traditional molecular biology approaches use a 

reductionist strategy to define the function of single genes or pathways of interest 

and then branch outward to more complex analyses of related components. 

Systems biology uses the tremendous amount of biological information which has 

been produced during decades of the reductionist approach as a starting point to 

holistically evaluate complex interactions between an array of components within a 

given system or systems. Relying on mathematical and statistical modeling 

approaches, systems biologists and bioinformaticians parse important trends from 

collections of big data acquired by sequencing, high throughput screening of 

transcriptomics, proteomics, and metabolomics, and other measurement-dense 

assays. It is an inherently interdisciplinary field that has made great strides in the 
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discovery of emergent properties of molecular networks from a systems 

perspective.  

 

A common target of systems biology analyses is the study of biochemical networks 

through elucidation of their structure, function, and flexibility. The ability to 

computationally map the full range of potential activity within these networks is an 

invaluable tool when designing more expensive and time-consuming experimental 

studies. It enables researchers to target specific questions and interpret the results 

of discovery-based experimental screens from a mechanistic standpoint. A broad 

array of systems modeling approaches has been used in this effort: dynamic versus 

steady state, single-scale versus multi-scale, broadly comprehensive versus tightly 

focused and parameterized (Wolkenhauer 2014). Each approach has been applied 

to elucidation of the key biological networks of transcription, translation, regulation, 

and metabolism with varying degrees of success. The perpetual need for more 

advanced and robust methods of big data interpretation continues to motivate the 

expansion of systems biology applications in biomedical research. 

 

One of the first systems approaches to large-scale network analysis was rooted in 

the most well defined and conserved of biological networks – metabolism. In this 

review, we briefly describe the development of metabolic systems modeling 

specifically via genome-scale metabolic reconstructions along with model 

construction and analysis techniques. We then explore the growing development of 

clinical applications of these techniques, and show how multiple applications can be 

relevant in the study of  infections by a class of particularly troublesome pathogens, 

opportunistic Gram-negative bacteria. 

 

Systems analysis via metabolic modeling 

A series of studies published in the early 1990s describe the application of linear 

systems optimization techniques to the prediction of metabolic reaction fluxes and 

production rates in Escherichia coli, hybridomas, and red blood cells using initial 

networks on the order of tens of reactions (Savinell and Palsson 1992a). 
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Interestingly, this novel biological network optimization approach was originally 

developed for bioprocess engineering; for example, rates of monoclonal antibody 

production by hybridomas were predicted in an attempt to optimize production 

levels. Further development paired with the arrival of the first sequenced microbial 

genome, Haemophilus influenzae, resulted in the publication of a revolutionary new 

tool, the genome-scale metabolic reconstruction, in 1999 (Edwards and Palsson 

1999).  

 

Genome-scale metabolic reconstructions are, on a basic level, curated lists of 

balanced chemical reactions enabled by an organism’s particular repertoire of 

metabolic enzymes (Haggart et al. 2011). Constructed using information from an 

organism’s annotated genome, they account for relationships among hundreds of 

metabolites, genes, proteins, and reactions. These relationships can be 

mathematically represented via a stoichiometric matrix, Boolean gene-to-protein 

relationships (GPRs), and reaction bounds that enforce physicochemical constraints 

on reaction reversibility and substrate uptake. Exchange reactions enable the in 

silico replication of nutrients available in the environment for catabolization. Using 

linear optimization techniques such as flux balance analysis (FBA), reaction flux 

patterns are predicted that enable optimal flux through a set objective function. 

This function is often designed as a ‘growth’-predictive reaction that accounts for 

the production of all required biomass components for a microbe. With FBA, we can 

predict (1) the ability of an organism to use substrates from its environment to 

grow and adapt to nutrient restrictions, (2) the activity of metabolic pathways of 

interest, and (3) the production of important compounds and byproducts that range 

from ATP to microbial virulence factors (Oberhardt et al. 2009). 

 

Construction & analysis approaches 

Detailed explanations of the basic principles and protocols for building and 

analyzing metabolic reconstructions have been reviewed thoroughly in the literature 

(Feist et al. 2009; Orth et al. 2010). Chapter 2 of this thesis provides such an 

explanation as well. Here, we will instead mention that while all reconstructions 
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require manual curation of their contents for high quality predictions, new tools 

such as the modelSEED, KBASE, and RAVEN enable the automated creation of draft 

reconstructions for microbes with sequenced genomes that can be curated even by 

researchers new to the field (Henry et al. 2010; Agren et al. 2013) (Department of 

Energy Systems Biology Knowledgebase (KBase), https://kbase.us). An array of 

optimization toolboxes for reconstruction analysis have been written for Matlab, 

Python, R, and even standalone GUIs such as Optflux that cater to a range of 

coding aptitudes (Rocha et al. 2010; Schellenberger et al. 2011; Ebrahim et al. 

2013). Increasing access to these automated and semi-automated techniques has 

substantially expanded the number of available reconstructions. 

 

The expansion of semi-automated reconstruction has been accompanied by an 

expansion of analysis techniques and applications. Over 100 unique algorithms 

have been developed to evaluate different aspects of metabolism via constraint-

based modeling  (Lewis et al. 2012). For example, model constraints can be 

formulated from ‘omics’ data such as gene expression levels and proteomics; 

resulting model predictions can be used to evaluate the genome-scale functional 

impact of significant expression changes of particular genes and proteins (Blazier 

and Papin 2012). Iterative cycles of integration, prediction, experimental validation, 

and model refinement often also contribute many refinements to the organism’s 

genome annotation through the filling of network gaps and assignment and testing 

of putative functions of orphan ORFs (Blais et al. 2013). Thus, metabolic 

reconstructions can be incorporated into research approaches as a novel tool for 

contextualizing ‘omics’ data and be continually expanded and refined as new 

experimental data is incorporated. Enhancements in automation of omics-based 

constraint development provide an excellent starting place for integration and 

interpretation of data characterizing microbial metabolic activity in a wide array of 

contexts (Blazier and Papin 2012). 

 

https://kbase.us/
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Growth of clinical applications 

The rapid developments in metabolic modeling have corresponded with an 

explosion of publications in the last 15 years. As new techniques are developed, 

subfields have sprung up within the metabolic modeling community that apply 

analysis techniques to unique scientific concerns. To evaluate the growth of these 

subfields and identify current trends within our research area, we used field-specific 

search terms to select and download the titles and abstracts of 1147 publications 

from PubMed spanning from very preliminary mathematical models of metabolic 

pathways published in 1979 to the current state-of-the-art as of February 2015. 

Publication descriptions (titles and abstracts grouped together) were parsed 

computationally in Matlab to count the iterations of each unique word within the 

total collection of text and track changes in these unique word counts by publication 

date (a small set of common words was removed and stemming pre-processing was 

applied to minimally reduce the dataset). Figure 1.1A shows the final counts of key 

terms repeated at least 10 times between 2000 and 2015 in the text data set to 

highlight important areas of investigation. The terms have been divided into 

appropriate subcategories in a qualitative fashion to show the relative activity 

within proposed subfields. The trends summarized in the figure give an indication of 

the relative impact of various developing subfields.  

 

As the sorting of terms into different categories is an imperfect and qualitative 

process (‘engineer’ could obviously be sorted into multiple categories), terms of 

particular interest have been bolded. The category ‘Multi-field applications’ is used 

to resolve this by incorporating terms that are of interest to multiple subfields. 

Terms of expected high impact include ‘reconstruction’, ‘engineer’, ‘disease’, and 

‘biofuels’. Perhaps less expected are the high counts of the terms ‘plant’, 

‘community’, and ‘stress.’ Even more interesting is the relatively low counts and 

number of terms included in the ‘Biotech’ subfield; this could be due to term sorting 

judgements, but also perhaps the consistency of approach versus high diversity of 

applications within this field. 
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We acknowledge this qualitative categorizing is biased by our ability to identify 

clinically relevant terms from the large data set which likely contributes to the 

extended Biomedicine column in contrast to other categories, but the diversification 

of disease states of interest is obvious. Several terms were chosen from this 

subfield for more detailed temporal tracking. Figure 1.1B shows averaged trendlines 

of the changing concentration of these terms by publication year in comparison to 

the average concentration of any single word in that year’s data set. As the number 

of publications per year grows, the full dataset average concentration decreases. In 

contrast, many of the clinically-related terms maintain or increase in average 

concentration. In fact, Figure 1.1B indicates a transition in 2007 for most terms to 

above average concentration, indicating a substantial growth of interest in 

FIG 1.1. Examination of term usage in metabolic modeling publications. (A) Total counts of term 
usage from 1979 to 2015. (B) Changing concentration of clinically relevant terms from 2001 to 2015 
compared to average word concentration. 
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developing biomedical applications within the metabolic modeling field. Surprisingly, 

‘infection’ and ‘antibiotic’ both spike dramatically and then fall to lower than 

average use. Interest appears to have then grown particularly fast in the study of 

pathogens and their hosts and disease applications. The most dramatic increase is 

seen in use of the word ‘community’; while this also incorporates instances of 

references to the modeling community as a whole, it also aligns with the general 

growth of interest in microbial communities. 

 

In summary, biomedical applications of metabolic reconstruction are diversifying 

with time while gaining the interest of new generations of metabolic modelers. In 

the following sections, we detail the application and impact of metabolic 

reconstructions on several different clinically-relevant research areas. We focus on 

the microbial applications of these subfields in contrast to work focused specifically 

on human metabolism. While a few targeted reviews in this area have been 

published, I wanted to present a broader summary of the several subfields which 

interweave in the following chapters of this dissertation.  

 

Drug targeting 

One of the most well-developed biomedical applications of metabolic modeling is 

the identification of new therapeutic targets. Metabolic reconstructions allow 

modelers to predict genes and enzymes integral to the production of metabolites 

critical for cell survival and growth. The systems perspective provided by the 

models allows for efficient proposal of targets for experimental testing and provides 

insight into the degree of pathways and systems impacted by a particular target’s 

inhibition in silico. These factors contribute to prioritization of targets when one is 

designing experimental validation studies.  

 

Computational approaches range from single and double gene-deletion studies of 

essential genes in rich media (Lee et al. 2009) to complex analyses of correlated 

reaction activity that provides insight into potential drug synergies (Jamshidi and 

Palsson 2007). While some work has been performed to identify cancer drug 
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targets (Folger et al. 2011), many more studies have proposed new targets for 

antibacterial therapeutics. The first review of reconstruction-based strategies for 

antimicrobial drug targeting was presented by Chavali et al in 2012 (Chavali et al. 

2012). Within this subfield, noted successes include the identification of a new 

malarial therapeutic target, nicotinate nucleotide adenylyltransferase, using a 

model of Plasmodium falciparum and validation via a small molecule inhibitor (Plata 

et al. 2010). 

 

Comparative genomics 

Metabolic reconstructions are also an excellent framework for comparative 

genomics; in contrast to many other approaches based heavily on bioinformatics, 

the metabolic models enable immediate prediction of the functional impacts of 

differing genomic content on a systems level. Given the dramatic increase in 

sequenced bacterial genomes and growing collections of clinical isolates of 

pathogens, this approach is a valuable tool in evaluating subtle differences between 

highly related species. The models enable automated comparison of network 

content and metabolic capacity through their standardized organization of pathways 

and GPRs, but truly effective comparisons can only be performed if model syntax 

and pathway structure are consistent among distinct models.  

 

This requirement has resulted in the development of manual (Oberhardt et al. 

2011) and then semi-automated approaches (Damiani et al. 2015.) to model 

reconciliation. The improvements in semi-automated model construction using the 

same tool such as the modelSEED offer an alternate path to model consistency. 

Studies have then been performed to evaluate differences in metabolic capacity 

between pathogen and non-pathogen of the same genus (Oberhardt et al. 2011), 

graded virulence between two related pathogens (Bartell et al. 2014), and the 

functional impact of SNPs in a collection of clinical isolates of the same species (Lee 

et al. 2009; Monk et al. 2013).  
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Adaptive evolution 

The relationship between genome-scale metabolic modeling and adaptive evolution 

is a fundamental one. The predictions produced by linear optimization techniques 

are interpreted as the ideal theoretical representation of fully adapted metabolic 

performance of a task such as growth in a given condition. However, inherent 

tradeoffs in an organism’s optimization towards one particular state versus 

retaining suboptimal but flexible metabolic capabilities in many different 

environments means that predictions often overestimate actual experimental 

measurements (Ibarra et al. 2002).  

 

From the perspective of bioprocess applications, the ability to predict the potential 

flux solutions that result in optimal performance can be used to improve production 

efficiency via genetic engineering (Poblete-Castro et al. 2013). In the study of 

adaptive evolution during infection of a host, metabolic modeling can be used to 

evaluate the potential effects of selective stresses on an organism adapting to a 

new environment. Many microbes undergo a shift in their metabolic activity to 

enable successful infection; this shift can encompass development of niche 

specializations, reduction in superfluous metabolic abilities, and adaptive response 

to host defenses over infectious periods that can range from weeks to decades of 

evolution within the host (Folkesson et al. 2012; Proctor et al. 2014). Biologists and 

bioinformaticists can track the accumulation of mutations via sequencing of a 

continuum of clinical isolates collected over the period of infection (Marvig et al. 

2014), but the functional impacts of SNPs and genomic rearrangements including 

insertions and deletions have systemic effects that are difficult to fully evaluate. 

Metabolic modeling offers a framework to systematically study the repercussions of 

these adaptive changes, comparing the original environmental strain to strains at 

representative stages of evolution. 

 

These snapshots along a continuum of adaptation are created by collecting omics 

data via gene expression arrays, RNAseq, or proteomics that encapsulates the 

metabolic activity of each isolate. Differential expression levels among isolates can 

be converted into model constraints for each stage, providing isolate-specific 
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metabolic models for comparison (Blazier and Papin 2012). The first iteration of this 

approach was used in a study of adaptation in Pseudomonas aeruginosa isolates 

causing chronic lung infections in cystic fibrosis patients (Oberhardt et al. 2010) 

using constraints based on simple differential expression cut-offs. More 

sophisticated automated algorithms for consistently applying constraints 

representing expression states have since been developed (Jensen et al. 2011; 

Machado and Herrgård 2014) and will contribute to expansion of adaptive evolution 

studies. 

 

Engineering the host environment 

Early investigation of microbial infections often targeted specific mechanisms of 

virulence such as production of toxins and mechanisms of invasion. While these 

factors are important to successful colonization, there is growing interest in how 

organisms utilize compounds available in the environment around them to survive 

(Wessel et al. 2013; Staib and Fuchs 2014). Researchers are investigating the 

treatment potential of engineering an infection-prone environment to inhibit or 

prevent colonization and growth, or alternatively encourage the growth of healthy 

commensal bacteria. Compounds available to bacteria inhabiting airways or the 

human gut could be manipulated in several ways, including altered diet and 

nutrition (David et al. 2014) and therapeutic delivery of anti-metabolites(Rangel-

vega et al. 2015; Singh et al. 2015).  

 

Metabolic reconstructions offer promise as a source of hypotheses on how to block 

essential nutrient exchanges, but actual studies are somewhat limited. One of the 

earliest modeling studies in this area was an effort by Klitgord et al. to identify 

environmental conditions that promoted the development of commensal microbial 

communities (Klitgord et al. 2010), though this study was not developed with 

regards to any specific clinical application. Another study used coupled 

reconstructions of Plasmodium falciparum and a human erythrocyte to carefully 

examine nutrient uptake by P. falciparum in this parasitic relationship (Huthmacher 

et al. 2010); while the authors used this information to predict enzymes to be 
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targeted therapeutically, these analyses would also be relevant in designing  

application of anti-metabolites. The most relevant study is likely one by Saulnier et 

al., which examined the abilities of 4 strains of Lactobacillus reuteri to produce 

metabolites beneficial to the human gut (Saulnier et al. 2011). As researchers gain 

better understanding of interactions between microbiota and the human host, the 

utility of both human and microbial metabolic reconstructions in identifying how to 

manipulate the host environment will continue to rise. 

 

Interactions within the microbiome 

Few prior microbial community studies have integrated metabolic modeling into 

their approach; studies of competition over substrate utilization via differential 

equation modeling of uptake and growth rates have been conducted in chemostats 

(Hesseler et al. 2006; Behrends et al. 2009; Wintermute and Silver 2010), but the 

integration of genome-scale modeling approaches to study of interspecies 

interaction analysis has only just begun to gain momentum in the last few years. 

Metabolic models allow for broad assessment of substrate sharing and niche 

specialization by particular species within the model by enabling compound sharing 

through careful formulations of exchange reactions. Multiple computational 

approaches to analyzing a model community have been developed, and range from 

a community model created by linking individual species models using a simple 

compartmentalization approach to the sophisticated OptCom and d-OptCom 

modeling frameworks. OptCom enables multi-level, multi-objective optimization of 

a collection of models as well as application of an overarching ‘community 

objective’; this approach allows that growth of the community as a whole may have 

different demands than growth requirements for a single species. d-OptCom is a 

dynamic extension of this approach providing for temporal analysis (Zomorrodi and 

Maranas 2012; Zomorrodi et al. 2013). 

 

An early study in this area investigated the potential for interactions in large 

collections of minimally-curated models to assess synergy versus competition within 

unique species pairings (Freilich et al. 2011). A more recent publication details the 
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prediction of emergent synergy solely possible through community interactions 

(Chiu et al. 2014). With respect to clinical applications, several community models 

have been built to assess human gut microbiota. Bucci et al evaluated how doses of 

antibiotics might affect the species distributions within the human gut using paired 

model evaluations, while Shoaie et al compared predicted interactions among three 

representative species with transcriptomics data from model mouse microbiomes 

(Bucci et al. 2012; Shoaie et al. 2013). As detailed in a proposed road map for 

community systems biology (Zengler and Palsson 2012), the applications of these 

approaches will continue to grow as the study of human microbiomes expands 

beyond the gut to oral, nasopharyngeal, vaginal, and lung microbiomes that all 

impact human health. 

 

Applications in infections by opportunistic pathogens 

There is a wealth of opportunity to use the previously described approaches in the 

study of infections by clinically frustrating microbial pathogens. The need for 

improved understanding of pathogen metabolism and adaptation is great in the face 

of rising levels of antibiotic resistance. One in 20 hospital patients will acquire an 

infection by a drug-resistant pathogen and there are nearly 2 million cases of 

antibiotic resistant infections in the US every year with direct treatment costs 

estimated to be as high as $20 billion (Centers for Disease Control and Prevention 

2014). Bacteria associated with drug resistant infections include obligate pathogens 

such as Mycobacterium tuberculosis as well as a growing class of opportunistic 

pathogens that take advantage of weakened immune function to cause serious 

infections in a variety of health contexts. Gram-negative opportunistic pathogens 

are a serious clinical concern; their double cell membranes and array of efflux 

systems contribute to high levels of intrinsic antibiotic resistance as well as 

resistance to host immune responses (Curcio 2014). Some of the modeling 

approaches already mentioned have involved the study of these important 

pathogens. Here, we provide further background on the characteristics of a few 

problematic and related Gram-negative opportunists, Pseudomonas aeruginosa and 

species of the Burkholderia cepacia complex (Bcc).  
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Pseudomonas aeruginosa is the most prevalent Gram-negative pathogen in 

pneumonia, surgical site infections, septicemia, and lung infections of cystic fibrosis 

(CF) patients; multi-drug resistant P. aeruginosa was recently classed as a serious 

clinical threat by the US Centers for Disease Control and Prevention (Centers for 

Disease Control and Prevention 2014; Curcio 2014). Nosocomial infections by Bcc 

species are increasing due to industrial contamination of aqueous healthcare 

products (antiseptics, IV solutions, etc), and Bcc infection is considered a death 

sentence in CF patients due to the potential for developing cepacia syndrome, a 

severe necrotizing pneumonia (Mahenthiralingam et al. 2008; Moehring et al. 2014; 

Ko et al. 2015). These Gram-negatives have large genomes that encompass a 

broad array of catabolic and anabolic pathways as well as complex regulatory 

networks. Strains of the most common model species of a Gram-negative 

pathogen, Escherichia coli, have genomes ranging from 4 Mb to 5.9 Mb in size. In 

contrast, strains of P. aeruginosa have genomes that range from 6.3-6.9 Mb 

(Centers for Disease Control and Prevention 2014) while members of the 

Burkholderia cepacia complex (Bcc) have genomes ranging from 6.5 Mb to 8.9 Mb 

(Mahenthiralingam et al. 2005). The redundant pathways and isozymes present in 

P. aeruginosa and Bcc species make them resistant to targeting of metabolic 

activity via antibiotics. These features also likely contribute to the ability of these 

pathogens to successfully adapt and persist in the human host for decades in 

diseases such as cystic fibrosis and chronic obstructive pulmonary disease. These 

bacteria are also capable of growth phenotypes such as single and multi-species 

communities that can form biofilms to further avoid eradication; persister cells that 

appear during chronic infections also pose a serious problem for successful 

treatment with bactericidal antibiotics (Eberl and Tümmler 2004; Mulcahy et al. 

2010; Bragonzi et al. 2012; Rodríguez-Rojas et al. 2012; Van Acker et al. 2013). 

 

Studies of opportunistic pathogen adaptation to the host are enhanced by using 

constrained models of long-term infection, such as bacterial persistence in the lungs 

of patients with cystic fibrosis (CF). Recent work has identified patterns of genetic 
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mutations that some highly successful strains of P. aeruginosa acquire in chronic 

infections (Yang et al. 2011). In addition, other work has highlighted surprising 

levels of bacterial community diversity, where an initial infection of a CF patient by 

a broad array of pathogenic bacteria narrows with time to infections of 

predominantly P. aeruginosa and/or Bcc species (Cox et al. 2010; Zhao et al. 

2012a). How these particular species persist to become such troublesome chronic 

pathogens in the lung in contrast to other initial infecting species is poorly 

understood. Many studies have focused on the evaluation of virulence factors 

produced by pathogens that enhance the ability of the microbe to infect and/or 

persist in host tissue (Loutet and Valvano 2010a). Other studies focus on the 

potential for niche adaptation of microbial growth using nutrients provided by the 

host (Palmer et al. 2005). Evaluating the complex interrelationships between 

metabolic genes linked to growth and virulence that contribute to successful 

adaptation requires a systems approach. This approach can be provided by the 

framework of genome-scale metabolic reconstructions. 

 

Metabolic adaptation 

There is tremendous potential for adaptive evolution to different host environments 

and therapeutics during a chronic infection. Antibiotic resistance within an organism 

can develop from broad genetic adaptations to environmental factors such as 

growth within a multi-species biofilm or alterations in substrate availability as well 

as specific mutations in targeted genes, necessitating the development of new 

drugs. Genome-scale metabolic models aid this process through the evaluation of 

metabolic rewiring that may compensate for the inhibition of a growth-related 

enzyme by a chemotherapeutic. Models also enable evaluation of different potential 

drivers of this rewiring that produces systemic adaptation to novel stresses within 

the host. Metabolic drivers of adaptation may be a key player in the complex 

network of interactions with the host environment and surrounding microbial 

community. It has been shown that (1) metabolic adaptation and niche 

specialization occur over the course of chronic infection, (2) antibiotic resistance is 

correlated with altered metabolic phenotypes, and (3) antibiotic resistance of 

microbial communities is greater than resistance of monocultures of each species 
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within the community (Lawrence et al. 2012; Derewacz et al. 2013). However, the 

basic patterns of bacterial metabolic adaptation and interaction are often poorly 

understood in many disease contexts.  

 

In infections of cystic fibrosis patients, pathogens such as P. aeruginosa and Bcc 

species face unique environmental conditions to which they must adapt in order to 

persist within host tissue. Studies of in vitro growth in synthetic CF sputum have 

shown clear preferences by P. aeruginosa for specific substrates such as arginine, 

proline, and aspartate within cystic fibrosis sputum (Palmer et al. 2007). These 

substrates can fluctuate in sputum depending on host physiology, location within 

the airway, and utilization by competing microbes (Folkesson et al. 2012). Limited 

oxygen promotes adaptation towards microaerobic growth, which may also protect  

against oxidative stresses compounded by host immune cells (Hogardt and 

Heesemann 2010). Studies have shown that long term adaptation within the CF 

lung results in repeated nonsynonymous mutation of a selection of pathoadaptive 

genes; late stage strains show an overall downregulation of pathways involved in 

central metabolism as well as broad regulatory remodeling (Marvig et al. 2014). 

While some of these genes can be directly linked to antibiotic resistance or 

phenotypic changes associated with biofilm growth, the functional impacts of other 

mutations are unknown. Further experimental study coupled with computational 

modeling can lend insight into how these adaptations functionally alter metabolism 

on a systems level, probe which optimized objectives best match experimental 

phenotyping, and provide new therapeutic targets for treating both early and late 

stage infections. 

 

Virulence factors 

In addition to adaptation of metabolic pathways critical to pathogen growth, the 

production of compounds that specifically enhance a pathogen’s ability to infect a 

host can adapt over the course of colonization and establishment of chronic 

infection. This array of secondary metabolites, toxins, and enzymes are classed as 

microbial virulence factors. The definition of ‘virulence factor’ also usually includes 
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the caveat that loss of a virulence factor does not affect viability in rich media 

(Brown et al. 2012), which has complicated whether certain byproducts and 

enzymes should be classed as official virulence factors. Recent studies are 

identifying new roles for virulence factors that may indicate greater importance in 

general growth processes in certain environments (Price-Whelan et al. 2007; Brown 

et al. 2012). These studies particularly highlight the need for increased nuance in 

evaluating the role of virulence factors with respect to the metabolic processes in 

opportunistic pathogens. 

 

Here, we provide a description of an array of compounds that are implemented in 

metabolic reconstructions of P. aeruginosa and Bcc species as metabolically 

synthesized virulence factors. Membrane lipopolysaccharides incite host immune 

responses that ultimately injure host tissue, enabling invasion and providing 

nutrients for the microbe to scavenge (King et al. 2009). Communication between 

microbes (occasionally across species) is enabled by the production of quorum 

sensing molecules that allow communities of bacteria to coordinate adaptive 

processes, response to stress, and nutrient scavenging by shared regulatory 

changes (Lewenza et al. 2002; Fazli et al. 2014). For example, quorum sensing 

molecules can signal for the production of other virulence factors including 

secondary metabolites such as siderophores (compounds that sequester essential 

iron) and phenazines (pigments that have antioxidant properties to fend off 

immune attacks) (Dietrich et al. 2006; Williams and Cámara 2009; Wilder et al. 

2011). Quorum sensing signals are particularly relevant in the context of biofilm 

growth, where they can control the production of shared public goods such as these 

secondary metabolites as well as the production of rhamnolipid, a surfactant that 

helps regulate the biofilm structure (Pamp and Tolker-Nielsen 2007). Extracellular 

polysaccharides such as alginate that help form biofilm environments are also 

sometimes grouped with virulence factors (Franklin et al. 2011). 
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The virulence factors implemented in P. aeruginosa and Bcc models by no means 

represent the full array of virulence factors produced by these pathogens. However, 

certain virulence factors are straightforward to implement in a metabolic 

reconstruction. The synthesis pathways of lipopolysaccharides, siderophores, and 

phenazines have been studied in detail, and can be incorporated with the other 

metabolic pathways to provide the desired virulence factor as a compound to be 

optimized for production using constraint-based analyses. Other virulence factors 

pose challenges to model implementation. Enzymes and toxins that are considered 

virulence factors and operate as proteases or lipases could be incorporated as a 

metabolic reaction, but pose difficulties for optimization even if substrates or 

products of the enabled reaction are targeted given that these compounds may be 

extracellular. The many enzymes encoding the synthesis of complex structures such 

as flagella have not been mapped in enough detail for confident inclusion as a 

virulence factor synthesis pathway. In the context of metabolic reconstructions, we 

use the term virulence factor to describe compounds which we can successfully 

implement as metabolic byproducts, and intend for more compounds to be added in 

the future as other synthesis pathways are mapped in more detail. We also attempt 

to account for virulence-linked genes identified through animal infection assays and 

other experimental means; these genes do not always link to an explicit compound 

that could be termed a virulence factor. 

 

Comparing growth and virulence-linked adaptation 

Much of the work on metabolic pathway mapping and curation has been focused on 

understanding how pathways contribute to growth in different environmental 

conditions. The study of virulence factor production has been more limited and less 

systematic. However, both of these factors play important and interrelated roles in 

successful colonization and persistence in host tissue. Recent studies have been 

published evaluating the inhibition of quorum sensing molecules and other virulence 

factors as a therapeutic approach for treating P. aeruginosa and other pathogens 

(Bjarnsholt et al. 2010). Other studies have looked at connections between changes 

in pathogen metabolism and antibiotic susceptibility (Martínez and Rojo 2011). 
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There is a substantial need for development of methods to systematically evaluate 

critical metabolic activity and network rewiring contributing to colonization of host 

tissue, persistence in chronic infection by particular species, and interactions 

between these metabolic states and virulence-linked activity. 

 

In this dissertation, I use metabolic reconstructions as a framework for comparing 

the metabolic capacity of opportunistic pathogens P. aeruginosa and the Bcc as 

they colonize and persist within human hosts. The models allow me to evaluate 

growth-linked activity, virulence-linked activity, and tradeoffs between these two 

metabolic objectives. In Chapter 3, I provide a comparative computational analysis 

of reconciled Bcc species models, providing novel functional assessments of genetic 

redundancy and the contribution of different clinically relevant substrates to the 

production of an array of virulence factors. In Chapter 4, I use updated models of 

P. aeruginosa strains to evaluate tradeoffs between metabolic activity and virulence 

factor production in an attempt to classify new therapeutic targets that inhibit 

virulence factor production alone or in addition to growth, identifying a novel set of 

central growth-linked pathways that are also critical for virulence factor production. 

In Chapter 5, I extend the comparative analyses implemented in Chapters 3 and 4 

to the study of metabolic adaptation of P. aeruginosa during decades of chronic 

infection in CF patients. Guided by experimental characterization of representative 

isolates, I identify a novel mechanism of metabolic network rewiring that may 

contribute to improved oxidative stress resistance by persistent P. aeruginosa 

strains in the CF lung. These aims are linked in their use of comparative 

computational analyses to improve model predictions and evaluate differing 

pathogen objectives in the context of infection. In each aim, I identify critical 

pathways that can be targeted therapeutically, offering novel drug targets and 

optimized treatment regimens that may help combat antibiotic resistance.  

 

Ultimately, my work has resulted in four new genome-scale metabolic 

reconstructions of CF pathogen strains. I assess these models using several 

different approaches described in this text; I use constraint-based analysis 

approaches to identify novel drug targets, compare genomic content, evaluate 
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adaptive evolution, and investigate the catabolic potential of nutrients provided by 

the host in the context of infections by CF pathogens. By comparing their metabolic 

capacity for virulence, adaptive rewiring, and alternate objectives in chronic 

infection conditions using a metabolic modeling approach, I provide novel insights 

into Gram-negative pathogen metabolism that improve our understanding of 

adaptation and virulence during infection by drug resistant pathogens.  
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SYNOPSIS 

With the advent of modern high throughput genomics, there is a significant need 

for genome-scale analysis techniques that can assist in complex systems analysis.  

Metabolic genome-scale network reconstructions (GENREs) paired with constraint-

based modeling are an efficient method to integrate genomics, transcriptomics, and 

proteomics to conduct organism-specific analysis.  This text explains key steps in 

the GENRE construction process and several methods of constraint-based modeling 

that can help elucidate basic life processes and development of disease treatment, 

bioenergy solutions, and industrial bioproduction applications. 
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Introduction 

The rapid expansion of methods to utilize organism-specific whole genome 

sequences provided by high throughput sequencing technology has provided clarity 

in areas scientists have long puzzled over and improved our ability to probe for 

answers on a system-wide level in addition to our classic reductionist investigative 

strategy. The substantial amounts of data now being harvested on phenotypic, 

genetic, protein, and molecular scales is driving the development of computational 

systems analysis ever faster in a search for ways to organize and contextualize raw 

data into a coherent picture. One promising area within the field of systems biology 

is reconstruction of organism-specific genome-scale metabolic networks that has 

been accompanied by the development of a wide range of constraint-based 

modeling approaches. The metabolic genome-scale network reconstruction (GENRE) 

provides a framework to organize all available information about an organism's 

metabolism through careful construction and curation of a computational network 

that links the cell’s genome and gene expression to metabolic reaction fluxes, 

biomass and energy production and consumption. Once completed, the power of 

each GENRE can be realized as a model for probing a cell’s genotype-phenotype 

relationship via constraint-based modeling.  

  

Building an organism-specific GENRE is a promising opportunity to improve 

metabolic understanding. If the reconstructed network model can be validated 

through experimental investigations of growth rates, phenotypes, reaction fluxes, 

and gene expression, it may be immediately useful as a method for drug discovery 

or the development of strategies for optimizing byproduct metabolite yields as 

examples. If the model predictions vary from experimental validation, the 

discrepancies offer the researcher a roadmap for iterative in vivo experimentation, 

in silico modeling, and annotation refinement that further the understanding of the 

organism's metabolism. Also, the GENRE itself, if well-constructed and curated, is a 

directed method of collecting and organizing all currently available knowledge of the 

organism's metabolism in a functional manner. 
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A cell’s phenotype is subject to the constraints imposed by its genome and 

extracellular environment. By quantifying these constraints in an appropriate 

manner, one can predict the range of possible cellular phenotypes in silico without 

acquiring large quantities of kinetic metabolic data. While constraint-based 

modeling of metabolic networks is far more quantitative than interaction-based 

(i.e., graph-based) network models (Price et al. 2003), it does not allow for 

characterization of the dynamics of metabolism with the same level of confidence 

as a mechanistic, kinetic model (Raman and Chandra 2009). However, given the 

lack of experimentally measured metabolic reaction parameters for most 

organisms, kinetic modeling is not a widely applicable approach to modeling cellular 

biochemical networks. Constraint-based modeling presents an alternative approach 

to better understanding and predicting the behavior of a biochemical network under 

various environmental and genetic perturbations. 

 

While excellent reviews of the reconstruction process are available (Durot et al. 

2009; Feist et al. 2009), including highly detailed protocols for reconstructing 

genome-scale metabolic networks (Thiele and Palsson 2010), the present work 

focuses on providing an introduction to the reconstruction process, including 

important methods, tools, and validation techniques, as well as the constraint-

based modeling approaches that utilize the curated information within each GENRE.  

 

Metabolic Network Reconstruction 

Metabolic network reconstructions are comprised of the stoichiometry of reactions 

necessary for nutrient usage in synthesis and degradation of basic metabolites and 

more complex compounds, specific genes whose protein products are associated 

with these biochemical reactions, and supporting annotation and literature 

references. This list can then be converted to mathematical form and combined 

with constraint-based modeling approaches detailed in the second half of this 

manuscript to predict metabolic phenotype. The reconstruction of a metabolic 

network of an organism with a completed genome sequence consists of the 

following steps: 1) genome annotation, 2) automated network reconstruction, 3) 

network refinement, 4) in vitro experimentation, and 5) gap analysis.  These steps 
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are often completed concurrently or iteratively to improve the accuracy of the 

model as shown in Figure 2.1. 

 

 

Genome annotation 

Since the first genome was sequenced via high-throughput technology in 1998, 

technological advancement has decreased the required cost and time to obtain a 

full genome sequence (Kircher and Kelso 2010). However, for completed genome 

sequences to be useful, they need to be annotated using standardized gene 

ontologies that provide consistency while identifying genes and cataloging their 

function and regulation in relation to biological processes (Giglio et al. 2009). 

FIG 2.1. The reconstruction process. Flow diagram illustrates the iterative multi-step methodology 

for reconstructing and simulating the behavior of an organism-specific genome-scale metabolic 

network model. 
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Automated annotation programs (ERGO, J. Craig Venter Institute, Integrated 

Microbial Genomes) provide annotations that usually require manual curation to  

 

Table 2.1.  Valuable resources for GENRE curation and analysis efforts. 
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supplement organism-specific depth and detail as well as verify the automated 

annotation assignments (Y. Yang et al. 2009). Some effort has been made to 

design methods for evaluating annotation quality dependent on the degree of 

sequence match and phylogenetic relatedness to other annotated genomes (Y. 

Yang et al. 2009). Alignment tools such as BLAST are commonly used to annotate 

gene function based on orthology with previously annotated genomes provided in 

online databases, followed by other more intensive methods relying on phylogenetic 

grouping (Kuzniar et al. 2008).  Both general and organism-specific databases of 

genome annotations are available as listed in the appropriate section of Table 2.1, 

which also details other useful tools in the reconstruction process. 

 

Automated network reconstruction 

Most metabolic reconstruction efforts begin with an automated draft reconstruction 

from a publicly annotated genome available online. Much effort is being directed to 

development of comprehensive automation suites.  One such effort, the Model 

SEED project, moves from an unannotated, sequenced genome to a draft metabolic 

Table 2.1 Cont’d.  Valuable resources for GENRE curation and analysis efforts. 



 

 

34 

 

network with gap filling and verification features. Programs such as Pathway Tools 

and others listed in Table 2.1 require a previously annotated genome to build a 

draft reconstruction and offer various visualization and analysis tools. These 

programs produce at minimum lists of genes, their associated reactions, and 

corresponding Enzyme Commission (EC) numbers. It is also possible to use 

appropriate ontology keywords to retrieve core metabolic genes and reactions from 

an annotation. However, regardless of the automated tool used, manual 

reconstruction efforts are always necessary to ensure organism-specific metabolic 

characteristics are included (DeJongh et al. 2007; Karp et al. 2009). 

 

Network refinement 

Manual reconstruction begins with an initial evaluation of the completeness of the 

automated draft reconstruction. Each reaction must be evaluated for its necessity to 

the model, accurate stoichiometry, reaction direction and reversibility, and role in 

metabolite production, usage and recycling. Other concerns include thermodynamic 

feasibility and energy constraints. Integral to a successful reconstruction, this 

manual evaluation can take a significant amount of dedicated work to complete. 

 

Key organizational tools. Research groups commonly use the few techniques listed 

below to speed the reconstruction process and provide consistency between 

different reconstruction projects. 

 

(i) Spreadsheet organization. A thorough and well organized annotation record, 

usually stored in a spreadsheet, should include the gene name, all pertinent gene 

abbreviations, the reaction equation with consistent reactant, substrate, and 

product symbols, balanced stoichiometry, an indicator of reversibility, the metabolic 

subsystem that utilizes the reaction, the associated protein and its EC number, any 

literature references used to adjust or add the reaction, a rating of confidence in 

the annotation entry and comments about any adjustments or questions about the 

entry. 
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(ii) Reaction confidence level. In curating the reconstruction, it is helpful to keep 

track of the quality of the various annotations and changes. A standard method is 

to apply a classification system to each entry, ranging from class 1 (high confidence 

in the data) to class 4 (low confidence). This judgment is still qualitative, so 

consistency in class assignment within the reconstruction is important. When 

adding a reaction based solely on sequence matches with another organism, the 

confidence level of the added reaction should be based on the phylogenetic 

relatedness of the organism. It is also vital to record the addition of enzymes that 

have not been associated with a particular gene in the organism's sequence data 

but are known to be necessary in a certain pathway.  Examples of metabolic 

reconstructions that have utilized reaction confidence ratings include iMO1056 

(Oberhardt et al. 2008) and the human metabolic network reconstruction (Duarte 

et al. 2007). 

 

Organism-specific curation. After canonical metabolic reactions have been collected 

via the automated draft reconstruction, a review of literature pertaining to the 

metabolism and function of the organism is necessary to identify organism-specific 

characteristics that should be integrated. Reconstructions of related organisms can 

be searched for specific functionality such as substrate usage preference and 

unique metabolic products that may be replicated in the organism of interest.  For 

example, the reconstruction of Aspergillus niger included pathways related to 

steroid synthesis based on the biology of other aspergilli fungi, while a gap in 

lipopolysaccharide synthesis in the reconstruction of Pseudomonas aeruginosa was 

filled using gene similarity in the Pseudomonas fluorescens annotation (Andersen et 

al. 2008; Oberhardt et al. 2008). 

 

(i) Compartmentalization and exchange reactions. When building the 

reconstruction, care must be taken to check the transport and exchange potential 

of a particular metabolite so that appropriate limits can implemented as constraints 

on model behavior. Localization and transport of a metabolite between the cytosol 

and organelles or within the cytosol may be complicated, particularly in eukaryotic 

organisms, and the order of transport may be critical to metabolic processes (Hao 
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et al. 2010). Exchange reactions can be implemented that account for the 

movement of metabolites across intracellular and intercellular membranes, creating 

compartments within the in silico network to represent these physical boundaries. 

 

(ii) Gene-protein-reaction relationships. While data for the reconstruction is based 

on gene annotations, constraint-based modeling can proceed using solely the 

enzymes and associated reaction stoichiometries. However, to simulate the 

phenotypic effects of gene knockout (KO) experiments and enable integration of 

gene expression microarray data, genes can be connected to their associated 

enzymes. Boolean logic is often used to define this relationship. When multiple 

genes encode enzyme subunits that are each required for catalysis of a reaction, an 

"AND" statement is used to convey necessity of each gene for that reaction. 

Alternately, an "OR" statement is used to reflect the requirement of genes that 

encode isozymes that catalyze the same reaction independent of one another. 

Some enzymes may perform similar functions with unclear substrate specificity 

where it is difficult to correlate a particular gene with a particular pathway 

(Andersen et al. 2008) and may require approximation during modeling. The 

incorporation of gene-protein-reaction relationships (GPRs) have been incredibly 

valuable to researchers interested in studying the impact of different growth states, 

environment, or degree of infection measured with microarrays and connecting the 

gene expression results to a modeled reconstruction to investigate changes in 

metabolism (Oberhardt et al. 2010). 

 

(iii) Biomass composition. Biomass, the key components from which an organism is 

built and sustains itself, may be determined from experimental measures, described 

here, or through more computational methods described in following sections. DNA, 

RNA, lipids, fatty acids, cell wall components, cytosolic solutes and ions, and 

cofactors must be present in sufficient amounts to enable cell operation (Senger 

2010). Experimentally, biomass composition can be determined through fitting 

carbon content and amino acid content measured at different population levels and 

growth states (Gonzalez et al. 2010). The number of factors that should be included 

varies with the organism's metabolic characteristics, but even biomass composition 
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of the minimal cell model Mycoplasma genitalium includes 61 different factors 

(Suthers et al. 2009). 

 

(iv) Thermodynamics. Assessing reaction thermodynamics can alleviate excessive 

constraining of the model’s directionality (Henry et al. 2009). Directionality of 

reactions (reversible vs. irreversible) in the model and feasible rates of reaction are 

based on thermodynamic favorability determined from Gibbs free energy changes. 

Experimentally determined values can be found in literature, but available data is 

rarely sufficient to address a genome-scale reconstruction and more often has been 

obtained for smaller sections of metabolism or major canonical pathways. Methods 

for computationally estimating the free energy values of reactions include group 

contribution methods that can be performed online at Web GCM using reaction 

information from KEGG and BRENDA (Jankowski et al. 2008). 

 

In vitro experimentation and validation 

In conjunction with in silico reconstruction efforts that rely on annotations, 

databases, and literature review, valuable information can also be collected through 

in vivo and in vitro experimentation. Growing an organism on specific carbon 

sources via high throughput Biolog microplates or more traditional techniques is an 

easy method for initial model validation because carbon source can be limited in 

silico.  The organism's carbon source usage and production of byproducts during 

growth can be investigated by measuring media metabolite concentration using 

high performance chromatography. Many organisms have also been examined to 

determine survival genes through mutagenesis studies that create single gene KO 

mutants (Jacobs et al. 2003; Gallagher et al. 2007; Cameron et al. 2008). 

Phenotypic characteristics such as substrate usage and byproduct synthesis of a 

particular mutant can be predicted in silico and then compared to in vitro 

experiments to investigate and improve GENRE accuracy. Investigating reaction 

fluxes and static and dynamic localization of specific enzymes in a living cell for 

comparison and incorporation with a GENRE is possible via metabolic mapping of 

fluorescent substrates and cofactors within live cells (Van Noorden 2010) and pulse 



 

 

38 

 

labeling, using 13C as a radiotracer to investigate distribution of labeled molecules 

(Niittylae et al. 2009). 

 

Constraint-based modeling methods 

Thus far, we have introduced the necessary steps to assemble an in silico metabolic 

GENRE whose components include stoichiometric coefficients for the reactants and 

products of each metabolic reaction, a Boolean GPR rule-set which defines the 

genes associated with each reaction, and notation for reversible and irreversible 

reactions. Each of these constrains the behavior of the metabolic model they 

comprise and limits the attainable metabolic phenotype of the cell. An organism’s 

metabolic phenotype is often quantified by growth rate, the amount of biomass 

added per unit time. Because the reactions that produce individual biomass 

components are integrated into the GENRE (e.g., DNA, RNA, amino acids, lipids, 

carbohydrates), we can also characterize metabolic phenotype by the amount of 

flux (metabolite mass per dry organism mass per unit time) that is carried through 

these reactions in the GENRE. Constraint-based modeling aims to reduce the 

number of possible flux profiles and identify one that best predicts the metabolic 

phenotype of the organism under specified genetic and environmental conditions. 

 

Constraints limit the number of possible flux profiles for a given organism to some 

finite number and additional constraints further reduce the flux space and allow us 

to make even more accurate in silico predictions of metabolic phenotype. These and 

other constraints are generally assigned to one of four categories: physico-chemical 

constraints (e.g., mass and energy balance), environmental constraints (e.g., 

temperature, pH, substrate availability), spatial/topological constraints (e.g., 

organelle compartmentalization), and self-regulatory constraints (Price et al. 2004). 

The rapid growth of complete genome sequencing and curation of metabolic 

GENREs and the utility of constraint-based modeling have driven the improvement 

and innovation of methods for constraint-based modeling. Here, we will introduce a 

range of these methods developed for constraint-based modeling of genome-scale 

metabolism using GENREs constructed with the methods detailed in following 
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sections. In particular, we will focus on the quantitative constraints and motivation 

for method development. 

 

GENRE-to-model implementation 

To test model predictions against experiments, the constraining elements of the 

GENRE are given mathematical structure, primarily within the S matrix, which 

quantifies the stoichiometric relationship between reactant and product metabolites 

for each reaction in the GENRE (Figure 2.2). The individual elements of S are the 

stoichiometric coefficients collected in the reconstruction process that correspond to 

the ith metabolite within the jth metabolic reaction, such that each of the m rows 

represents a metabolite (M1,2,3) and each of n columns represents a reaction, 

including intracellular biochemical conversions (R1,2), metabolite exchange (uptake, 

X1,2; secretion, X3), metabolite demand (cell maintenance, D1), and inter-

compartment metabolite transport (extracellular to cytosolic space, T1,2). To 

account for a metabolite’s presence in separate compartments, one row should be 

added to the S matrix for each compartment within which the metabolite exists. By 

convention reactants have a negative coefficient and products have a positive one, 

while flux, vi, is positive for forward biochemical conversions, transport reactions 

into the cell, and exchange reactions out of the cell (i.e., secretion), and negative 

flux indicates a reverse intracellular reaction, an uptake exchange reaction and 

transport from the cytosol to another compartment. The GPR relationships between 

genes and reactions should be coded as a Boolean vector with an element for each 

reaction, while flux bounds and an objective function should be implemented in 

vector form, as described in the next section. One can carry out most of the 

constraint-based methods that follow with these few mathematical and Boolean 

structures. 
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Flux Balance Analysis 

The most widely used constraint-based method in the field of metabolic engineering 

and systems analysis of metabolism is flux balance analysis (FBA), and most of the 

methods described herein are either explicit alternatives or add-on improvements 

to FBA. The number of review papers dedicated solely to FBA in recent years 

(Kauffman et al. 2003; J.M. Lee et al. 2006; Raman and Chandra 2009) gives an 

idea of the wide applicability of this approach. Two recent articles provide greater 

detail to support carrying out FBA (Oberhardt et al. 2009) as well as a concise, 

visually aided description of what is achieved by performing FBA (Orth et al. 2010). 

FBA allows for the in silico prediction of a flux profile that optimizes some pre-

defined cellular objective without making any experimental measurements. It has 

become a standard tool for simulating the effects of genetic perturbations or 

environmental conditions on an organism’s growth rate or rate of byproduct 

synthesis (Raman and Chandra 2009). FBA has also provided a means to simulate 

the metabolic effects of global gene expression and other large “omics” datasets for 

an organism or even a particular human tissue type (Becker and Palsson 2008; 

Shlomi et al. 2008; Jerby et al. 2010). 

 

The underlying theory for FBA assumes that cellular metabolism is at a steady-state 

(i.e., constant growth rate) (Savinell and Palsson 1992b; Varma and Palsson 1994), 

FIG 2.2. Conversion of GENRE reaction stoichiometries to S matrix. (A) Schematic of a toy 

cell/organism with defined boundaries (E/I), metabolites (M), and reactions (X,T,R,D). (B) – Five 

metabolites and seven reactions comprise the S matrix converted from the cell/organism of panel A. 
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and all reaction fluxes (vi) and metabolite concentrations (Ci) have reached a 

steady state, such that the net amount of each metabolite added to and removed 

from the cell must equal zero (Eq. 1). Given this, FBA uses linear programming (LP) 

to find the steady-state flux profile (v) that optimizes the organism’s objective 

function (e.g., maximal growth rate) while satisfying a set of physico-chemical and 

environmental constraints. The primary FBA constraint is mass balance, requiring 

that the amount of each metabolite that is (1) transported into or (2) produced 

within the cell be balanced by the amount of that metabolite that is (3) consumed 

within or (4) secreted from the cell. The mass balance constraint (Eq. 1) provides m 

metabolite balance equations to solve for n unknown reaction fluxes, and because 

there are usually more reactions than metabolites, the system of equations is 

under-determined. As such, the collection of flux vectors that satisfy the mass 

balance constraints span a multidimensional space, often referred to as the null 

space of the S matrix.  

 

 



dCi

d t
 Si j v j  0

j1

n

         iM  (1) 

  (2) 

 

It is important to note that many of the flux profile vectors, v, in the null space are 

physically impossible for a number of reasons (Orth et al. 2010). In order to refine 

and reduce the size of the predicted flux space and exclude irrelevant flux profiles, 

the standard FBA implementation constrains individual reaction fluxes, vj, by 

defining lower and upper bounds (αj and βj, respectively; Eq. 2). Some of these 

bounds are based on literature and experimentation and collected in the GENRE 

process. These bounds can be applied to enforce environmental constraints, such as 

the availability of a substrate in growth media, by setting the upper and lower 

uptake exchange bounds to the same negative value. Similarly setting the lower 

and upper bounds on an exchange reaction to zero and some arbitrarily high value 

(~1000), respectively, will prevent metabolite uptake, while leaving the rate of 

secretion of a desired output metabolite unconstrained. Bounds can also be set on 

internal biochemical reactions by constraining the lower bound to zero to enforce 



 j  v j   j         jN
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thermodynamic irreversibility of a reaction, by setting the bounds to reflect the 

kinetic limitations of a particular enzyme or membrane transporter, or by 

constraining the flux to zero to simulate a gene KO. This approach is often used to 

identify genes essential for growth, both for identification of drug targets and 

maximizing the production of targeted byproducts (Feist and Palsson 2008; 

Oberhardt et al. 2009). Several of the methodologies described below impose more 

sophisticated or problem-specific constraints on the flux bounds to minimize the 

possible flux space and provide more accurate predictions of metabolic network 

behavior, though a standard FBA implementation typically enforces constraints on 

substrate uptake, reaction irreversibility, and flux capacity. 

 

Once the mass balance constraint and flux bounds are set, an objective function 

(vobj, Eq. 3) must be defined for the LP optimization problem. The optimization 

problem will find a flux profile, v, which maximizes or minimizes the objective 

function and satisfies the mass balance constraints and flux bounds described 

above. While the objective function can be unique for each FBA problem, a common 

choice for microorganisms is maximization of biomass (e.g., proteins, nucleic acids, 

carbohydrates, and lipids necessary for growth), based on the idea that 

evolutionary pressures select for higher growth rates of these organisms. In some 

organisms, however, alternative objective functions such as maximization 

(minimization) of ATP production (utilization) are more appropriate, as will be 

further discussed below. In those GENREs for which maximization of biomass 

production is the organism’s objective, a “biomass reaction” is added as a column 

to the S matrix with stoichiometric coefficients in proportion to each metabolite’s in 

vivo contribution to one unit of biomass determined as explained previously 

(Oberhardt et al. 2009). To implement the chosen objective function, a “cost” 

vector (c) is defined, whose elements correspond to each reaction (i.e., columns of 

S, elements of v). To maximize the desired reaction, all elements are set equal to 

zero except that corresponding to the chosen objective reaction (Eq. 4). FBA 

identifies an optimal flux vector whose elements corresponding to the non-zero 

elements of the cost vector are maximized, subject to the defined constraints.  
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

max    v o b j  c j  v j (3) 

 



c 0 0 0 ... cobj ... 0 0 0         cobj0 (4) 

 

Dynamic Flux Balance Analysis 

The steady-state assumption required of FBA is not appropriate for in silico 

modeling of organisms in all situations, most notably during a “diauxic shift” from 

one carbon source to another. To address this, Dynamic Flux Balance Analysis 

(DFBA) was developed, based on an earlier approach (Varma and Palsson 1994), 

implementing both dynamic (non-linear programming, NLP) and static (LP) 

optimization of an objective function and the addition of constraints to the rates of 

change of flux in addition to the typical FBA constraints (Mahadevan et al. 2002). 

The static optimization – a more tractable computational approach for large 

biochemical networks – performs a series of FBA problems at the beginning of each 

discrete time interval. Using both approaches, Mahadevan and colleagues correctly 

predicted the timing of acetate production and the sequence of substrate utilization 

(glucose before acetate) in Escherichia coli, validating the use of this constraint-

based method to simulate the dynamic behavior of genome-scale metabolism. 

 

Flux Variability Analysis 

The redundancy inherent in most biochemical networks corresponds to the 

possibility for numerous alternative flux distributions that yield the same maximal 

growth rate or ATP synthesis rate (Papin et al. 2002). Put in graphical terms, the 

multidimensional flux space of possible flux profiles often includes multiple points 

with an identical optimal objective function value. In metabolic pathway terms, 

different combinations of intermediate reaction fluxes give rise to the same flux 

through the objective reaction (e.g., biomass), and each of these alternative 

pathways may be biologically meaningful. FBA is often used to identify a reference 

in silico flux profile with which to compare constraint-based behavior of a 

genetically or environmentally perturbed counterpart (see Minimization of Metabolic 

Adjustment below). As such, it is critical to understand flux variability, as two 
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alternate FBA reference flux profiles could lead to a significantly different 

assessment of the perturbed state. 

 

A report by Smallbone and Simeonidis introduced a computational method to 

identify a unique flux profile by analyzing the geometry of the multidimensional flux 

space defined by the standard FBA constraints (Smallbone and Simeonidis 2009). 

This method identifies a minimal flux solution without any thermodynamically 

infeasible fluxes. An earlier approach by Mahadevan and co-workers called Flux 

Variability Analysis (FVA), uses constraints to assess the variability of each reaction 

flux toward an optimized objective flux value (Mahadevan and Schilling 2003). FVA 

first uses FBA to determine the optimal objective flux (Eqs. 3-5), which is used with 

mass balance and flux bounds (Eqs. 1-2) as constraints for the subsequent one-by-

one maximization and minimization of each reaction flux within the GENRE (Eqs. 6-

7). This method quantifies the maximum and minimum fluxes for each reaction that 

are consistent with the optimal objective function value.  

 

 



vobj   max c j  v j  (5) 

 



max  v j ,     j N,  j  obj  (6) 

 



min  v j ,     j N,  j  obj  (7) 

 

Minimization of Metabolic Adjustment 

Flux balance analysis assumes that each organism’s metabolic network has been 

tuned through evolution for some objective function, be it maximal growth rate or 

energy efficiency (e.g., minimal ATP utilization). While this assumption may be valid 

for wild-type (WT) organisms that have evolved over many hundreds or thousands 

of generations, it may be less appropriate for engineered mutants, genetically 

modified in a controlled laboratory environment and unexposed to the same 

evolutionary forces or number of reproduction cycles. As such, Segre and 

colleagues developed Minimization of Metabolic Adjustment (MOMA), hypothesizing 

that mutant organisms are unable to immediately adapt their metabolic network to 

achieve the WT objective function, but instead display some suboptimal flux profile 
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intermediate to the FBA-determined optima of both the WT (WT-FBA) and 

genetically perturbed (KO-FBA) organisms (Segrè et al. 2002). This approach finds 

a suboptimal flux profile (v) that is a minimal Euclidean distance from the WT-FBA 

flux profile (vFBA, Eq. 8), and is mathematically formalized as a quadratic 

programming (QP) problem (Eq. 9), subject to the standard FBA mass balance and 

flux capacity constraints (Eqs. 1-2), including constraining all KO gene-associated 

reaction fluxes to zero (Eq. 10). Ultimately, FBA combined with MOMA provides a 

more accurate prediction of the immediate metabolic response to KO than FBA does 

on its own (Segrè et al. 2002).  

 

 



D vFBA,v = v j

FBA  v j 
2

j1

N

      j N  (8) 

 



min  vFBA  v 
T

vFBA  v  (9) 

 



vk  0,     kA (10) 

 

Regulatory On/Off Minimization 

The Euclidean distance metric introduced in MOMA finds a sub-optimal KO-

associated flux distribution with many component fluxes slightly altered from their 

WT-FBA state. Shlomi and colleagues developed an alternative method, Regulatory 

On/Off Minimization (ROOM), which seeks a flux profile for the mutant organism 

with a minimal number of significant flux changes from the WT-FBA flux profile 

(Shlomi et al. 2005). This method is based on the assumptions that a KO organism 

will minimize the costs associated with adapting its gene regulatory network, and 

that these costs are quantifiable – using a Boolean on/off framework – and 

independent of the magnitude of change in gene expression and associated reaction 

flux. 

 

ROOM does not explicitly incorporate any gene regulatory constraints into the 

model, but accounts for them via a binary cost variable for each reaction (yj set to 

one for fluxes that are significantly different from the WT-FBA; Eq. 12). This 

quantification of an altered flux is assumed to reflect a concordant change in 
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expression of the necessary enzyme-encoding gene, and the associated cost to the 

organism of regulating that gene’s expression. The objective of this mixed-integer 

linear programming (MILP) problem is to minimize the number of fluxes in the 

mutant GENRE that are different from their WT-FBA counterparts (Eq. 11), while 

satisfying the FBA mass balance, irreversibility, and flux capacity constraints (Eqs. 

1-2), and constraining the set of fluxes (A) associated with the given knockouts to 

zero (Eq. 10). The upper and lower thresholds by which flux changes are deemed 

significant (v FBA+ and v FBA-, respectively) are user-defined via relative (δ) and 

absolute (ε) flux tolerance terms (Eqs. 13-14). Accordingly, if yj is set to zero, vj is 

constrained by these bounds, while setting yj to one adds to the cost sum (Eq. 11) 

and leaves vj unbounded (Eqs. 15-16). This method was shown to improve 

predictions of flux and steady-state growth rate over MOMA, though it performed 

very similarly to FBA (Shlomi et al. 2005).  

 

 



min  y j

j1

n

  (11) 

 



y j  0, 1  (12) 

 



v j

FBA  v j

FBA + v j

FBA +  (13) 

 



v j

FBA  v j

FBA - v j

FBA -  (14) 

 



v j  y j (vmax, j  v j

FBA)  v j

FBA
 (15) 

 



v j  y j (vmax, j  v j

FBA)  v j

FBA
 (16) 

 

Objective function search methods 

Both MOMA and ROOM proposed an alternative to the FBA assumption that 

organisms are evolved for a specific objective function. Though MOMA and ROOM 

were developed to address this assumption in the context of a gene knockout, the 

question of a universal WT objective function for an organism remains. To address 

this, Schuetz and colleagues tested the ability of 11 unique FBA objective functions 

(or combinations thereof) to accurately predict fluxes in an E. coli model of central 

metabolism (Schuetz et al. 2007), and reported that no single in silico objective 
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function was the most accurate predictor of 13C-determined in vivo fluxes across 

many different growth conditions. Several constraint-based approaches have been 

developed to identify the best objective function for an organism in a specified 

environment, including ObjFind, BOSS, and a Bayesian probability-based selection 

method. 

 

ObjFind. ObjFind (Burgard and Maranas 2003), uses bi-level programming to find a 

set of positive weights, cj, that maximize the sum of optimal fluxes (Eqs. 18-19), 

while minimizing the sum-squared difference between the optimal flux profile, vj, 

and the experimentally measured fluxes, vj* (Eq. 17, where E is the set of all 

experimentally measured fluxes and P is the set of all reactions that could 

potentially be cellular objectives). By comparing these optimal weights to those 

given by a hypothesized objective function, such as biomass, a researcher is able to 

assess the accuracy of the hypothesized objective function. However, this approach 

requires that all components of the true objective function be included within the S 

matrix, a priori, and will return the wrong objective if a component reaction is not 

included in the GENRE.  

 

 



min
c j

  (
jE

 v j  v j

* )2 (17) 

 



max
v j

  c jv j

jP

  (18) 

 



c j 1,
jP

      c j 0,     j P  (19) 

 

Biological Objective Solution Search. Gianchandani and co-workers addressed the a 

priori requirement of ObjFind by adding a generic “objective reaction,” vobj, to the 

stoichiometric S matrix (Gianchandani et al. 2008). This Biological Objective 

Solution Search (BOSS) requires only the S matrix and experimental isotopomer 

flux data. BOSS adds the generic objective reaction with unknown stoichiometry as 

an additional column in the S matrix (Eq. 20, where m is the total number of 

metabolites) and performs an FBA on this updated set of mass balance constraints 
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and flux bounds (Eqs. 1-2), defining vobj as the objective function to maximize (Eq. 

22).  

 

 



Si,obj  [S1,obj S2,obj ... Sm,obj] (20) 

 

 



min   v j

BOSS  v j

* 
2

jN

  (21) 

 



max   vobj (22) 

 

Similar to ObjFind, this inner optimization serves as a constraint on the outer 

optimization, which minimizes the sum-squared difference between the in silico flux 

profile (vj
BOSS), and the measured in vivo fluxes (vj*). This approach will identify the 

optimal objective reaction if it already exists in the network (i.e., with identical 

stoichiometry as an existing column in S), but also if it is a combination of existing 

reactions or a reaction that was omitted from the GENRE altogether. To validate 

this method, BOSS was used to identify the objective function in the central 

metabolic network of S. cerevisiae, and found the best two reactions to be nearly 

identical to the precursor biomass synthesis reaction and the ATP maintenance 

reaction, both commonly used FBA objective functions. 

 

Bayesian discrimination. Knorr and colleagues introduced a method which uses FBA 

and in vivo flux measurements to compare any number of candidate objective 

functions (Knorr et al. 2007). This method determines the most probable objective 

function by calculating posterior probabilities. Specifically it calculates the 

probability of each objective function (Fx), given the product of differences between 

predicted and measured data (Y), normalized by the sum of all posterior 

probabilities (Eq. 23). While this approach again requires the definition of candidate 

objective functions a priori, the validation used only a few in vivo measurements 

(growth rate, oxygen uptake rate, succinate uptake rate and acetate production 

rate) to compare to in silico predictions.  
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

(Fx Y) 
p(Fx Y )

p(Fz Y )
z


 (23) 

 

Multiple metabolic objectives 

Selecting the most biologically relevant objective function is critical to accurately 

predicting cellular metabolism by FBA or other constraint-based methods, though 

more than one objective function is occasionally desired. For example, metabolic 

engineering often aims to identify the genetic manipulations for an organism that 

will optimize its synthesis rate of a desired byproduct (e.g., ethanol in E. coli). An 

appropriate approach must optimize the organism’s intrinsic objective function 

(e.g., max growth) in parallel with this secondary engineered objective. Burgard 

and colleagues developed OptKnock, a constraint-based method, to tackle this 

problem of multiple objective functions (Burgard and Maranas 2003). Similar to the 

bi-level optimizations of ObjFind and BOSS, OptKnock uses an FBA framework to 

maximize the cellular objective, vobj, subject to mass balance and flux bounds 

constraints (Eqs. 1-2), as well as gene knockout constraints (Eqs. 25-28, where K is 

the maximum number of allowable knock-outs across the set of all reactions, N). In 

parallel, this approach varies the number and identity of knockout genes to 

maximize byproduct secretion, vbyproduct (Eq. 24). More recently, numerous 

constraint-based metabolic engineering methods have been developed to identify 

optimal gene deletions with more computational efficiency than OptKnock (OptGene 

and GDLS), and to identify optimal gene knock-ins (OptStrain) or manipulations to 

increase or decrease gene expression (OptReg) (Pharkya et al. 2004; Patil et al. 

2005; Pharkya and Maranas 2006; Lun et al. 2009).  
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

max
y j

  vbyproduct (24) 

 



max
y j

  vobj (25) 

 



v j

min  y j  v j  v j

max  y j,     jN  (26) 

 



y j  0, 1  (27) 

 



1 y j K
jN

  (28) 

 

Constraint-based modeling software 

 The bulk of the aforementioned constraint-based modeling approaches are LP 

problems, which can be solved using a standard solver of which there are many 

open source (LP_Solve, glpk) and proprietary versions (Gurobi, CPLEX, LINDO). The 

constraint-based reconstruction and analysis (COBRA) toolbox has become a 

popular means to apply many of these constraint-based methods (e.g., FBA, 

MOMA, and FVA) to GENRE-derived models (Becker et al. 2007). This toolbox is 

open source and has been written to operate in the MATLAB programming 

environment using the systems biology markup language (SBML). A recently 

developed open source software platform, OptFlux, combines strain optimization 

methods (e.g., OptKnock) as well as classic constraint-based approaches FBA, 

MOMA and ROOM (Rocha et al. 2010).  

 

Summary 

In this chapter we have attempted to detail the key steps in the metabolic 

reconstruction process as well as introduce several constraint-based modeling 

techniques useful for various applications and desired outcomes. Again, it is critical 

to use the highest quality annotation available and dedicate significant time to 

refinement of the network reconstructions with well-curated databases and quality 

literature references in addition to the results of automated reconstruction 

techniques. Some common methods of collecting experimental data for both model 

improvement and validation are detailed, but many more are available that may be 

more appropriate for specific applications. The constraint-based modeling 
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techniques presented are standards in the FBA field and accompanied by additional 

information helpful during difficult portions of the modeling process such as 

objective function definition and variability analysis. The field is a fast growing one, 

with an exponential rise in new reconstructions and further investigations into 

comparative model building techniques and reconstruction consistency, and we 

hope this text will be a helpful reference in these efforts. 
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Chapter 3: Differential metabolism in emerging opportunistic pathogens 
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SYNOPSIS 

Burkholderia cenocepacia and Burkholderia multivorans are opportunistic drug-

resistant pathogens that account for the majority of Burkholderia cepacia complex 

infections in cystic fibrosis patients and also infect other immunocompromised 

individuals. While they share similar genetic compositions, B. cenocepacia and B. 

multivorans exhibit important differences in pathogenesis. We have developed 

reconciled genome-scale metabolic network reconstructions of B. cenocepacia 

J2315 and B. multivorans ATCC 17616 in parallel, designated iPY1537 and iJB1411, 

respectively, to compare metabolic ability and contextualize genetic differences 

between species. The reconstructions capture the metabolic function of the two 

species and give insight into similarities and differences of their virulence and 

growth capabilities. The two reconstructions have 1,437 reactions in common, and 

iPY1537 and iJB1411 have 67 and 36 metabolic reactions unique to each, 

respectively. After curating the extensive reservoir of metabolic genes in 

Burkholderia, we identified 6 genes essential to growth that are unique to iPY1513 

and 13 genes uniquely essential to iJB1411.  The reconstructions were refined and 

validated by comparing in silico growth predictions to in vitro growth capabilities of 

B. cenocepacia J2315, B. cenocepacia K56-2, and B. multivorans ATCC 17616 on 

104 carbon sources. Overall, we identified functional pathways that indicate B. 

cenocepacia can produce a wider array of virulence factors compared to B. 

multivorans, which supports the clinical observation that B. cenocepacia is more 

virulent than B. multivorans. The reconciled reconstructions provide a framework 

for generating and testing hypotheses on the metabolic and virulence capabilities of 

these two related emerging pathogens. 
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INTRODUCTION 

Multi-drug resistant pathogens are a severe health concern and can cause chronic 

infections in a variety of patient populations with limited recourse for treatment. 

Here, we investigate two multi-drug resistant species, B. cenocepacia and B. 

multivorans, of the Burkholderia cepacia complex (Bcc) which are considered 

dangerous and difficult to treat in patients with cystic fibrosis (CF), chronic 

granulomatous disease, or compromised immune systems (Mahenthiralingam et al. 

2002). With larger genomes (8.06 Mbp and 7.01 Mbp, respectively) than many 

other multi-drug resistant pathogens, they also contain an expanded reservoir of 

genes that may assist their ability to avoid clinical eradication (Rice 2008; Slama 

2008; Boucher et al. 2009). Nosocomial, transmissible between patients, and also 

routinely acquired (and reacquired) from the environment, B. cenocepacia and B. 

multivorans are the two Bcc species most commonly isolated from the sputum of CF 

patients (De Boeck et al. 2004; Jones et al. 2004; Vandamme and Coenye 2004; 

Horsley et al. 2011). In patients with CF, pulmonary infection with Bcc can 

contribute to the rapid deterioration of lung function known as cepacia syndrome, a 

necrotizing pneumonia that can lead to bacteremia, septicemia, and increased 

mortality (Isles et al. 1984; Glass and Govan 1986). A combination of high 

microbial antibiotic resistance and decreased immune function in patients makes B. 

cenocepacia and B. multivorans extremely difficult to eradicate once lung 

colonization is established (Hancock 1998; Aaron et al. 2000). The potential to 

cause chronic infection as well as rapid decline in health make Bcc clinically 

important emerging human pathogens.  

 

Further complicating treatment is the variability in infection course and severity in 

patients infected with B. cenocepacia or B. multivorans (or occasionally both 

species). Compared to patients infected with Pseudomonas aeruginosa, the most 

common CF lung pathogen in adults, patients infected with Bcc can have a 

substantially worse prognosis (Snell et al. 1993; Marolda et al. 1999). Cepacia 

syndrome has historically been associated with B. cenocepacia, but infections with 

B. multivorans have on occasion also induced this syndrome (Horsley et al. 2011).  

B. cenocepacia causes greater mortality than B. multivorans, and has also been 
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seen to replace B. multivorans infections (Mahenthiralingam et al. 2001). However, 

many centers in multiple countries are showing a shift within Bcc infection incidence 

from predominantly B. cenocepacia to B. multivorans infections that is not fully 

understood (Horsley et al. 2011). These differences between B. cenocepacia and B. 

multivorans provide motivation for a comparative systems analysis of these two Bcc 

species. Comparing and contrasting the metabolic functions of B. cenocepacia and 

B. multivorans can help elucidate their metabolic adaptability, mechanisms of 

pathogenicity, and other underlying contributors to differing clinical outcomes such 

as cepacia syndrome. 

 

Genome-scale metabolic reconstructions of multiple organisms can be used to study 

and predict phenotypic differences between related species or strains based on their 

genetic content (Oberhardt et al. 2009). For example, a recent study used the 

framework of two previously published reconstructions of Staphylococcus aureus 

N315, the ERGO bioinformatics suite, and the KEGG pathway suite to assemble a 

consensus species-level reconstruction of S. aureus. Strain-specific enzyme 

annotations were then incorporated to develop 13 reconciled models of S. aureus 

strains that identified differences in common essential enzymes (Lee et al. 2009). 

Meaningful biological comparison becomes more complex when using species-level 

reconstructions. These reconstructions must be intensively curated in such a way 

that all artifacts from the model building process are reconciled, as performed in 

the reconstruction-based comparison of two species of Pseudomonas (Oberhardt et 

al. 2011). Artifacts that must be reconciled include differences in naming 

conventions, reaction stoichiometries, and, importantly, annotations of gene 

functions and their implementation in gene-protein-reaction associations. Proper 

reconciliation of genome-scale metabolic reconstructions is crucial for studying the 

genetic and phenotypic differences between the organisms. 

 

Here, we present reconciled genome-scale metabolic reconstructions of B. 

cenocepacia and B. multivorans, two of the largest bacterial reconstructions built to 

date in terms of the number of genes and reactions incorporated; this correlates 

with the large genomes of the pathogens. A previously published reconstruction of 
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B. cenocepacia J2315, iKF1028, using the ToBiN reconstruction platform accounted 

for 859 reactions, 834 metabolites, and 1,028 genes and was used as a reference 

for our curation efforts (Fang et al. 2011). However, we chose to begin with draft 

reconstructions both built using the Model SEED tool (Henry et al. 2010), currently 

the most widely used publicly available reconstruction platform, to aid our 

comparative analyses. Our B. cenocepacia reconstruction is substantially larger 

than iKF1028 while including much of the knowledge gained from this prior study. 

The reconstructions for B. cenocepacia J2315 and B. multivorans ATCC 17616 were 

developed and manually curated in parallel to ensure consistency in all aspects of 

the model-building process. In particular, the two reconstructions were reconciled 

in the annotation and assignment of orthologous gene functions which span 1,437 

common metabolic reactions. 

 

The reconstructions of B. cenocepacia J2315 and B. multivorans ATCC 17616 are 

denoted formally as iPY1537 and iJB1411, respectively, following established 

naming conventions (Reed et al. 2003). However, for the sake of clarity, iPY1537 

and iJB1411 will be referred to as iBC and iBM throughout this manuscript for in 

silico B. cenocepacia and in silico B. multivorans, respectively. The reconstructions 

were validated by comparing growth predictions with substrate utilization 

experiments using B. cenocepacia J2315, B. cenocepacia K56-2, and B. multivorans 

ATCC 17616. Through the reconstruction and reconciliation process, we 

reannotated the functions of a collection of genes. Predictions of genes essential for 

growth were made by simulating in silico growth of iBC and iBM, which has 

relevance in drug target identification. Pathogenic characteristics of the two species 

were compared by predicting the production capacity of an array of metabolites 

involved in virulence. This study provides a framework for investigating the 

metabolic architectures of two clinically important Bcc species emphasizing 

metabolic connections to virulence and pathogenicity, as well as a guide for parallel 

reconstruction and comparison of genome-scale metabolic networks of related 

organisms. 
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MATERIALS AND METHODS 

Metabolic reconstructions of B. cenocepacia and B. multivorans 

The complete sequenced genomes of B. cenocepacia J2315 and B. multivorans 

ATCC 17616 were used as the starting points for the metabolic network 

reconstruction process shown in Figure 3.1. The J2315 strain of B. cenocepacia was 

isolated from a cystic fibrosis patient (Holden et al. 2009) and the ATCC 17616 

strain of B. multivorans was an environmental isolate obtained from the soil 

(Stanier et al. 1966). The DNA genomic sequences of B. cenocepacia J2315 

(Genbank accession numbers NC_011000 to NC_011003) and B. multivorans ATCC 

17616 (Genbank accession numbers NC_010084, NC_010086, NC_010087, and 

NC_010070) were downloaded from the NCBI Genbank database. 

 

The Model SEED was used to generate draft reconstructions of B. cenocepacia and 

B. multivorans (Henry et al. 2010). The Model SEED requires annotated genomes 

as input in order to produce draft reconstructions. While the finished annotation for 

B. cenocepacia had already been uploaded from NCBI and converted to the SEED 

format, the genome of B. multivorans was not included in the SEED database. The 

genome of B. multivorans was downloaded from the NCBI Genome database and 

was submitted to the RAST server for annotation (Aziz et al. 2008), and then the 

Model SEED was used to produce draft reconstructions of both species. Differences 

in annotation quality between these submission methods were evident in the 

resulting draft reconstructions and addressed during the manual curation process. 

We allowed SEED to gap-fill needed reactions to enable growth on SEED’s complex 

media formulation (all exchange reactions open) and default biomass formulation in 

the draft construction process.  

 

We then used biological databases such as KEGG (Ogata et al. 1999), Metacyc 

(Caspi et al. 2014) and the Burkholderia Genome Database (BGD) (Winsor et al. 

2008) to evaluate the draft reconstructions. Specifically, we used the gene and 

reaction annotations in KEGG and compared them with those of the draft 

reconstructions. Protein BLAST was used to determine genes that likely code for 

isozymes, both within each genome as well as between the two genomes. This 
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FIG 3.1. Overview of the 

reconstruction and reconciliation 

process. The annotated genomes of B. 

cenocepacia J2315 and B. multivorans 

ATCC17616 were used to generate 

automated draft metabolic 

reconstructions using Model SEED 

(20,60). The gene-protein-reaction 

associations of the draft reconstructions 

were then further manually curated and 

annotated using information from online 

databases and literature references. 

Curation of the two reconstructions was 

done in parallel to ensure the proper 

assignment of homologous and 

orthologous genes. The reconstructions 

were then functionally curated through 

iterative validations of in silico and 

experimental data. The final reconciled 

models for B. cenocepacia and B. 

multivorans are designated as iPY1539 

and iJB1413, respectively, but are 

referred to throughout as iBC and iBM 

for clarity. 

Abbreviations: GPR, Gene-Protein-

Reaction; BLASTP, Protein Basic Local 

Alignment Search Tool; CDD, 

Conserved Domain Database; KEGG, 

Kyoto Encyclopedia of Genes and 

Genomes 
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process expanded the size of the models, as well as reduced the number of non-

gene-associated reactions (gap-filled by SEED) needed in rich media to 15 reactions 

(11 unique enzymes). Ten more reactions were used in gap-filling virulence-related 

pathways and growth in particular minimal media conditions.  Thirty-seven and 39 

reactions were removed from the original SEED drafts of iBC and iBM, respectively, 

due to low annotation evidence, low likelihood of enzyme activity or infeasible loops 

formed in the model. The final curated models iPY1537 and iJB1411 are available as 

spreadsheets and SBML files on the Papin Lab website 

(http://bme.virginia.edu/csbl). 

 

Flux Balance Analysis of iBC and iBM 

Flux balance analysis (FBA) was used to assess in silico growth of iBC and iBM (Orth 

et al. 2010). Mathematically, the FBA problem is formulated as: 

 

maximize vbiomass 

such that 

S•v = 0 

vmin < v < vmax 

 

In the FBA framework, the reactions of a metabolic network are represented using 

a stoichiometric matrix, S, such that the rows of S correspond to the metabolites 

and the columns correspond to the reactions. The elements of the matrix are the 

stoichiometric coefficients so that Sij is the coefficient for metabolite i in reaction j. 

At steady-state, we have the relation S•v = 0 where the vector v represents the 

fluxes of each of the reactions. The fluxes are conventionally in units of 

mmol/gDW/h (where gDW is gram dry cell weight), with the exception of vbiomass, 

which has units of h-1 (representative of the growth rate). Because S•v = 0 is 

underdetermined, FBA uses linear programming to optimize the flux through an 

objective reaction (typically, the biomass reaction, denoted as vbiomass). The biomass 

reaction includes the relative weights of the metabolites required to form biomass 

and details of its formulation are described below. vmin and vmax are vectors of the 

upper and lower bounds of the reaction fluxes, respectively. Consequently, media 
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conditions are imposed by constraining the bounds of the exchange reactions, 

which represent the uptake and secretion of metabolites in the model (e.g. vmin<0 

for a metabolite that is imported and vmax >0 for a metabolite that is secreted). The 

formulations of the different media conditions are described on the Papin lab 

website. All FBA simulations were conducted using the COBRA Toolbox in MATLAB 

(Schellenberger et al. 2011). 

 

Biomass reaction formulation 

Burkholderia-specific biomass reactions were formulated for iBC and iBM. To 

evaluate capability of growth in a variety of environments and genetic backgrounds, 

the biomass reactions are often set as the objective functions in FBA and the 

numerical value of the flux through the biomass reactions corresponds to the 

theoretical maximal growth rates under a given media condition (Feist and Palsson 

2010). The constituents of the biomass reactions represent the molecular 

components that are required for growth. These molecular components are grouped 

according to the main macromolecular components, which include protein, DNA, 

RNA, lipopolysaccharide, peptidoglycan, glycogen, lipids, and polyamine pools. 

Burkholderia species exhibit unique fatty acid and lipid compositions such as the 

presence of fatty acids containing cyclopropane rings, and these were accounted for 

in the formulation of the composition of the biomass reaction (Taylor et al. 1998). 

The biochemical reactions needed to synthesize many of these unique lipids and 

fatty acids have been included in the reconstructions based on work done 

previously (Fang et al. 2011). The stoichiometric coefficients for constituents of the 

biomass reactions of iBC and iBM were based on experimental evidence for 

Burkholderia and related organisms where possible. Otherwise, values from the 

well-annotated biomass reaction of Escherichia coli were used (Feist et al. 2007). 

Values specific to the two species were used when possible (e.g. RNA, DNA, 

protein). Otherwise, for constituents not specific to either species, the same value 

was used for both reconstructions (e.g. lipids, fatty acids, cell wall, ATP 

maintenance). 
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Predicting essential genes 

Essential genes are defined as genes for which there is no in silico growth in a given 

media condition (maximum flux through vbiomass is zero) when the reaction(s) 

associated with that gene is (are) removed from the network. To simulate the loss 

of a gene in the model, gene-protein-reaction (GPR) associations are evaluated to 

determine which reactions are not allowed to carry flux when the gene is removed. 

GPRs link genetic information such as isozymes, gene duplications, and enzyme 

complexes to the reactions in the reconstructions using Boolean logic. Perturbations 

of the GPRs enable the prediction of phenotypic changes as a function of genetic 

changes. For example, the fluxes for the reactions affected by a gene deletion are 

constrained by setting the corresponding vmax and vmin to zero, and the model is 

then optimized for growth to evaluate the effect of the missing gene. 

 

in silico media conditions 

Media conditions were formulated for lysogeny broth (LB), M9 minimal media, and 

synthetic cystic fibrosis media (SCFM) as in previous publications (Palmer et al. 

2007; Oberhardt et al. 2010). The media conditions were defined by setting the 

lower and upper bounds of the exchange reactions to specify metabolites that are 

available or unavailable. Full descriptions of the media conditions are presented on 

the Papin lab website. All media conditions allow for the exchange of typical salts 

and water. LB contains amino acids, glucose and salts. SCFM contains lactate in 

addition to similar carbon sources to LB; in addition, the uptake rates of all 

nutrients present in SCFM are constrained to 10 mmol/gDW/h to represent the 

reduced nutrient availability in the cystic fibrosis lung environment as done 

elsewhere (Oberhardt et al. 2010).  In M9 minimal media, a single carbon source is 

enabled for uptake at 10 mmol/gDW/h  to represent tested compounds in in vitro 

Biolog growth screening (Oberhardt et al. 2008). 

 

Prediction of virulence factor production capacity 

Virulence factor production capacity was assessed by adding a demand reaction to 

the model for each virulence-related compound. Maximizing the flux through this 

reaction allows prediction of the maximum theoretical production level under a 
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given media condition such as with each of the individual carbon substrates in 

SCFM. Tradeoff between growth and virulence factor production was assessed by 

maximizing the flux through a demand reaction for each factor while constraining 

the biomass flux to various percentages of its maximum value when simulated 

under SCFM conditions. 

 

Network visualization 

MetDraw was used to generate visual representations of the metabolic networks 

(Jensen and Papin 2014). SBML versions of the models were used as inputs to 

MetDraw and the resulting network visualizations were output as SVG files. 

 

Growth phenotype screening 

 We conducted growth screening using Biolog PM1 and PM2A microplates (Biolog, 

Inc., Hayward, CA). Instead of adding redox dye and measuring oxidation of each 

carbon source included in the screen, we evaluated growth in each well using 

optical density measurements at 700 nm to avoid error due to pigment production. 

Bacteria were scraped from an LB plate and resuspended in Biolog inoculating fluid 

PM IF-0a GN/GP to reach an optical density of 0.07. Biolog microplate wells were 

inoculated with 100 μl of this suspension, and plates were then incubated at 37°C 

for 48 h. Optical density at 700 nm was measured at time zero and every 12 h 

thereafter. Experiments with B. cenocepacia J2315 were carried out using two 

biological replicates each for PM1 and PM2A, while experiments with B. cenocepacia 

K56-2 and B. multivorans ATCC 17616 were performed using three biological 

replicates. Growth was evaluated based on the resulting growth curves and 

maximum change in OD for each carbon source compared to maximum change in 

OD of inoculated control wells with no carbon source. Additionally, we evaluated the 

ability of each organism to catabolize cysteine and tryptophan, which are amino 

acids present in cystic fibrosis lung sputum but not included in the Biolog plates 

(Palmer et al. 2007). These amino acids were each added at concentrations of 20 

mM to M9 salts to create cysteine and tryptophan minimal media. Colonies of each 

Burkholderia strain were scraped from LB plates and resuspended to reach 0.07 OD 

in each respective minimal media. Three replicates of 200 μl of each inoculated 
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strain-media combination were plated in a 96-well microplate and grown in 

conditions replicating the Biolog screen.  

 

An alternate strain-specific network reconstruction of B. cenocepacia K56-2 was 

created by conducting a genome-scale reciprocal BLASTP with an E-value cutoff of 

0.01 with no low-complexity filter using CLC Main Workbench (CLC bio, Aarhus, 

Denmark). Protein sequences were derived from annotated ORFs in B. cenocepacia 

J2315 and B. cenocepacia K56-2 (Varga et al. 2013). Nearly all genes incorporated 

in iBC matched genes present in B. cenocepacia K56-2, and the 7 genes that did 

not have significant matches (E-value > 10-30) did not affect predictions in this 

study.  

 

RESULTS 

Metabolic network reconstructions 

Here, we present the metabolic networks of B. cenocepacia and B. multivorans as 

valuable tools that we use as a framework to perform our comparative analyses 

(Figure 3.1). Figure 3.2A provides a quantitative comparison of the reconstructions 

in contrast to the previously published B. cenocepacia J2315 reconstruction 

(iKF1028) and the reconstruction of the closely related pathogen Pseudomonas 

aeruginosa PAO1 (iMO1086). It also highlights the substantial increase in scope of 

the reconciled network reconstructions. iBC accounts for the function of 1,537 

genes, 1,506 reactions and 1,280 metabolites. iBM accounts for the function of 

1,411 genes, 1,473 reactions and 1,245 metabolites. Most of the reactions for each 

reconstruction are broadly concentrated in lipid, amino acid, and carbohydrate 

metabolism (Figure 3.2B), but reactions in over 60 canonical metabolic pathways 

(as classified by KEGG) are included in the reconstructions.  Figure 3.2C shows a 

map of the reconstructions that contrasts the shared and unique metabolic 

reactions of each species. iBC has nearly double the number of unique reactions 

compared to iBM as well as a substantially higher number of incorporated genes 

(Figure 3.2A). There are more unique reactions in iBC in the amino acid and 

carbohydrate subsystems; however, iBM has more unique reactions in the lipid 

subsystem (Figure 3.2B). The reconstructions enable functional comparative  
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FIG 3.2. Statistics of metabolic network reconstructions. (A) Statistics of iBC and iBM are shown. For 

reference, statistics for the previously reconstructed models iMO1086 (P. aeruginosa PAO1) and iKF1028 

(B. cenocepacia J2315) are listed. (B) Distribution of the reactions in iBC and iBM by metabolic pathways 

are presented. The dotted, gray, and black stacked bars show the reactions that are shared, unique to 

iBC, and unique to iBM, respectively. Numbers next to the gray and black bars indicate their numerical 

values. (C) Visualization of iBC and iBM shows the reactions unique to iBC, reactions unique to iBM, and 

reactions common to both reconstructions as red, blue, and gray lines, respectively. 
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analysis of these differences through examination of gene essentiality, growth 

capacity, and virulence factor production capabilities. 

 

Model curation and validation 

Substantial manual curation of the draft Model SEED reconstructions was performed 

in order to build an up-to-date knowledgebase of genetic and metabolic information 

for B. cenocepacia and B. multivorans and resulted in the addition of a substantial 

number of reactions. For example, we added 13 reactions to iBC involved in 

tryptophan catabolism and 17 reactions to iBM involved in phenylalanine catabolism 

that were missing from the original Model SEED draft reconstructions; species- 

specific functionality of the associated pathways had been investigated in 

Burkholderia cenocepacia J2315 in the literature (Colabroy and Begley 2005; 

Yudistira et al. 2011). After databases and literature were canvassed as explained 

in the Methods, B. cenocepacia J2315 and B. multivorans ATCC 17616 were 

experimentally tested for growth on Biolog phenotype microplates to generate in 

vitro data to guide further curation decisions and enable validation of substrate-

utilization predictions.  

 

The Biolog screen of B. cenocepacia J2315 showed markedly limited growth in 

many of the in vitro minimal media conditions, ranging from no apparent growth to 

growth at a substantially lower rate than B. multivorans ATCC 17616 on many 

substrates. To further investigate this outcome, we also performed identical Biolog 

screens on B. cenocepacia K56-2 after noting nearly identical genomic content with 

respect to the metabolic genes incorporated in iBC. Given the high sequence 

similarity between the B. cenocepacia strains, we used iBC to predict B. 

cenocepacia growth which we compared with equivalent B. cenocepacia K56-2 in 

vitro data (Figure 3.3) and B. cenocepacia J2315 in vitro data. The same analysis 

was performed with iBM and B. multivorans ATCC 17616. Complete in vitro data 

and in silico growth comparisons for all assessed strains are available. 
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FIG 3.3. Validation of in silico 

growth predictions. Gray and 

white boxes indicate the growth 

ability of bacteria provided a 

single carbon source. “D” 

denotes discrepancies between 

experimental and in silico 

results.  
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When comparing growth between the two B. cenocepacia strains on the 192 carbon 

sources, 53 substrates enabled quantifiable growth of both J2315 and K56-2. 

Twenty eight substrates did not enable quantifiable growth of J2315 in contrast to 

successful utilization by K56-2, while only 4 substrates enabled quantifiable growth 

of J2315 but no quantifiable growth of K56-2. Biolog plates introduce temporal 

limitations to assessing growth because of potential effects of evaporation after 48 

h of incubation that complicate the evaluation of a slow-growing strain like J2315. 

The limited growth timeframe as well as potential unaccounted for regulatory 

differences between strains may in combination explain the difference between in 

vitro results and in silico predictions that reflect the collected genetic evidence for 

the catabolic pathways in iBC. At minimum, this is an opportunity for comparative 

study in the future, as we found no metabolic evidence for the growth defects of 

J2315 compared to K56-2 within the context of our expansive models. Perhaps 

certain enzymes integral to basic metabolic processes are operating at low 

efficiency due to point mutations, or there are alterations in transcriptional control 

that could be addressed via a future integration of regulatory and metabolic 

reconstructions. In light of this, we chose to use B. cenocepacia K56-2 in vitro data 

when assessing the accuracy of our growth predictions as growth versus no growth 

on a given substrate was possible to assess confidently with the Biolog plates. 

 

Of the 190 Biolog carbon source substrates experimentally tested, 102 substrates 

were accounted for in iBC and iBM and could be tested for in silico growth using 

FBA. In addition, growth on the two amino acids cysteine and tryptophan was 

separately evaluated given their presence in the CF lung and discrepancies 

identified during the curation process. After further curation efforts, iBC and iBM 

correctly matched the experimental growth phenotypes of 53 substrates for which 

transporters were incorporated in the reconstructions (44 correct growth and 9 

correct no-growth, each). For the other 31 substrates for which transporters were 

incorporated, iBC, iBM, or both failed to match experimental growth phenotypes. B. 

cenocepacia and B. multivorans did not exhibit growth in vitro on 14 substrates, 

and because iBC and iBM lack transporters for these substrates, they predicted 

correct no-growth phenotypes. Lastly, 6 substrates did not have transporters in iBC 
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and iBM; however, B. cenocepacia, B. multivorans, or both grew on the substrates 

in vitro. Overall, iBC and iBM predicted the correct growth phenotype with 75%  

and 76% accuracy (78 and 79 out of 104 substrates), respectively. Sixty-seven 

substrates enabled the same accurate in silico and in vitro phenotypes in both 

models, 13 substrates showed the same type of discrepancy between in silico and 

in vitro phenotypes in both models, and the remaining 24 substrates showed 

discrepancies in phenotype between B. cenocepacia and B. multivorans. Though the 

remaining 88 carbon sources were not incorporated in the reconstructions and thus 

not analyzed in silico, B. cenocepacia and B. multivorans were capable of growing 

on 24 and 32 additional substrates in vitro, respectively.  

 

With curation efforts guided by the in vitro data, iBC and iBM both underpredict 

growth on lysine, and iBM underpredicts growth on tryptophan (Figure 3.3). 

Genomic evidence to support the addition of reactions that would fix these 

inconsistencies could not be found. For example, no evidence for several key 

reactions in lysine degradation could be found in iBC (glutarate-CoA ligase E.C. 

6.2.1.6, 3-hydroxyacyl-CoA dehydrogenase E.C. 1.1.1.35). The difference in 

branched chain amino acid catabolism between reconstructions is due to the 

identification of three B. cenocepacia genes that appear to have high sequence 

similarity with the bkd operon of other bacteria, which enables catabolism of 

isoleucine, leucine, and valine (Madhusudhan et al. 1999).  These genes were not 

present in B. multivorans.  However, neither species is capable of in vitro growth on 

valine or leucine, and B. multivorans is unexpectedly capable of in vitro growth on 

isoleucine (Figure 3.3).  

 

These differences in experimental and in silico growth are potentially due to 

incomplete and/or incorrect annotations of genes in the databases.  For example, 

while we explored homology of current hypothetical proteins with known enzymes 

in lysine catabolism, the homology may be below thresholds we used or novel 

lysine degradation reactions may exist.  Another possible reason for the 

discrepancy is control by regulatory systems not accounted for in our current 



 

 

69 

 

metabolic network reconstruction. These differences present opportunities for 

further study of metabolism of the Bcc. 

 

Through our curation of the models from the SEED drafts to the presented final 

versions, iBC gained 269 reactions and lost 116 reactions and GPRs were 

substantively altered in a further 324 reactions. iBM gained 297 reactions, lost 106 

reactions, and had a further 352 reactions subjected to GPR alterations. In 

summary, more than a third of each model’s individual content is different from the 

original draft reconstructions due to major additions and improvements to both 

reactions and GPR formulations during the curation and reconciliation process, 

resulting in the identification of 1,437 reactions common to both iBC and iBM. The 

scope of these changes emphasizes the value of manual curation after automated 

network reconstruction and the functional implications of these differences are 

presented below. 

 

Refinement of genome annotation 

Manual curation of iBC and iBM aided in the identification of many proposed 

genome annotation refinements of B. cenocepacia and B. multivorans. A subset of 

our changes and additions to reaction GPRs were based on the assignment of novel 

function to genes previously annotated as hypothetical or putative proteins. Many 

of the annotation refinements were the identification of potential isozymes and 

duplicated genes for a given reaction, but refinements also included genes that fill 

in gaps in model pathways and putative functional assignment of 10 hypothetical 

proteins. Table 3.1 summarizes these annotation refinements and a selection of 

other high confidence refinements of interest. A table of moderate confidence 

annotations and list of reactions that are missing gene associations is also 

available.  Examples of genome annotation refinements are presented below. 

  

Ornibactin synthesis. During our refinement process, we added pathways enabling 

the synthesis of ornibactin, a key Burkholderia-specific siderophore which literature 

indicates is associated with increased virulence of some clinical isolates (Darling et 

al. 1998). A model of ornibactin synthesis has been proposed based on a study of  
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B. cenocepacia 715j transposon mutants identifying nonribosomal peptide 

synthases and associated enzymes grouped into an operon (the orb operon) that 

enables ornibactin production (Agnoli et al. 2012). This operon of 14 genes involved 

in ornibactin synthesis, export, and uptake was annotated in the BGD for B. 

cenocepacia J2315. However, despite identification of a likely orb operon induced 

by iron-responsive regulator Fur in B. multivorans ATCC 17616 (Yuhara et al. 

2008), most of the B. multivorans genes are annotated as putative enzymes or 

hypothetical proteins in the BGD. We have incorporated the proposed synthesis 

pathways in both reconstructions.  

 

Ectoine degradation. As another example of a refinement that involves novel 

assignment of gene function, Figure 3.4A shows our proposed annotation of 

orthologous hypothetical proteins encoded by BCAS0031 and Bmul_6140 as an 

essential enzyme in ectoine degradation. Ectoine, produced by many prokaryotes as 

a solute that assists in maintaining an osmotic equilibrium, can be used as a growth 

substrate by environmental bacteria including some halophile and soil bacteria 

(Schwibbert et al. 2011). Ectoine production has been shown to be upregulated 

under stress conditions and, interestingly, in mutant strains of soil bacteria that are 

resistant to antibiotics targeting the cell envelope (e.g. Streptomyces coelicolor) 

and protein synthesis (e.g. Nocardiopsis sp. FU40) (Hesketh et al. 2011; Derewacz 

et al. 2012). These studies theorize that ectoine upregulation may be part of a 

broad secondary metabolism response to changes in regulation due to resistance-

related mutations. Through literature mining and similarity searches via BLASTP, 

we determined that BCAS0031 and Bmul_6140 have high similarities to Helo_3661 

in H. elongata DSM 2581 (E-values of 10-154 and 10-155, respectively) (Schwibbert et 

al. 2011). Through mutational studies, Helo_3661 was found to be an L-2,4-

diaminobutyric acid transaminase (DoeD) and BCAS0031 and Bmul_6140 and the 

associated reaction in iBC and iBM were subsequently included. These genes are 

also part of apparent operons that also contain doeABC, lending credence to this 

reannotation (Schwibbert et al. 2011). A search for sequences similar to BCAS0031 

and Bmul_6140 across all bacteria via BLASTP showed that many of the 

orthologous genes were annotated as encoding hypothetical proteins or generic 
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class III aminotransferases. This refinement enabled a fully functional ectoine 

degradation pathway in the models that had not been previously identified in B. 

cenocepacia and B. multivorans genome databases or literature. 

 

Cepacian synthesis. Another type of model refinement is the gap-filling of metabolic 

pathways that are known to be present in Burkholderia. For example, as part of our 

effort to include pathways for the biosynthesis of virulence-related compounds, 

reactions required for the production of the Burkholderia exopolysaccharide 

cepacian were added. Literature evidence suggests that the production of GDP-D-

rhamnose, one of the sugar residues of cepacian, is catalyzed by a GDP-D-mannose 

reductase (RMD) (Sousa et al. 2013). In B. vietnamiensis G4, the RMD protein is 

encoded by Bcep1808_4471, also known as bceM (55). A similarity search of 

Bcep1808_4471 via BLASTP shows that bceM in B. cenocepacia and B. multivorans 

is encoded by BCAM1003 and Bmul_4613 (E-values 10- 141 and 10-129, respectively). 

Though BCAM1003 and Bmul_4613 are currently listed as a putative epimerase and 

an NAD-dependent epimerase/dehydratase in the BGD, respectively, they have 

been assigned as RMDs in iBC and iBM and we suggest a consistent update to the 

database annotations. 

 

Tryptophan catabolism. The in vitro carbon-source growth screens further aided in 

identifying gaps in iBC and iBM. In our growth screens, B. cenocepacia and B. 

multivorans were observed to grow on M9 minimal media supplemented with 

tryptophan as the sole carbon source. However, the draft reconstructions initially 

could not grow in silico in these conditions. Literature mining revealed that 

kynurenine-3-monooxygenase (Kmo) catalyzes an essential reaction in the 

tryptophan degradation pathway (Figure 3.4B). A study identified orthologs of a 

cluster of tryptophan catabolic genes similar to those in Bacillus cereus 10897 in B. 

cenocepacia J2315 with the exception of the gene encoding Kmo, which suggests 

the existence of a nonorthologous form of Kmo in Burkholderia (Colabroy and 

Begley 2005). The reaction catalyzed by Kmo was then added to iBC and iBM 

without a gene assignment. This model refinement identifies a current gap in our 

genomic knowledge of Burkholderia even though there is evidence for the 
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enzymatic reaction (Figure 3.4B) and the experimental screen provides evidence of 

its assumed function. 

FIG 3.4. Examples of network refinements and reannotations. (A) Both B. cenocepacia (BC) and 

B. multivorans (BM) genomes include genes that allow for the degradation of ectoine. BCAS0031 and 

Bmul_6140, which are currently annotated as hypothetical proteins, were identified as orthologs of 

Helo_3661 in H. elongata, which encodes DoeD.  (B) Curation of the tryptophan degradation pathway 

identified a gap for the essential reaction catalyzed by Kmo which led to the addition of Kmo to both 

iBC and iBM without an assigned gene. The gene for HaaO was present only in BC and allows for the 

synthesis of quinolinate. (C) BC has the rhlABC genes necessary for rhamnolipid synthesis while BM 

does not. The intermediate reaction that converts beta-hydroxydecanoyl-beta-hydroxydecanoyl-S-CoA 

to 3-hydroxydecanoyl-3-hydroxydecanoate is catalyzed by an unknown enzyme but because there is 

experimental and modeling evidence that this reaction takes place in P. aeruginosa PAO1, it was 

included in iBC and iBM.  

Abbreviations: DoeA, ectoine hydrolase; DoeB, N-alpha-acetyl-L-2,4-diaminobutyric acid deacetylase; 

DoeC, aspartate-semialdehyde dehydrogenase; DoeD, diaminobutyric acid transaminase; KynA, 

tryptophan 2,3-dioxygenase (EC 1.13.11.11); KynB, kynurenine formamidase (EC 3.5.1.9); KynU, 

kynureninase (EC 3.7.1.3); Kmo, kynurenine 3-monooxygenase (EC 1.14.13.9); HaaO, 3-

hydroxyanthranilate-3,4-dioxygenase (EC 1.13.11.6); RhlA, rhamnosyltransferase chain A; RhlB, 

rhamnosyltransferase chain B; RhlC, rhamnosyltransferase chain 2; PhaC, poly(3-hydroxyalkanoic 

acid) synthase 
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Further curation of the tryptophan degradation pathway led to refinements that 

showed species-specific differences. Literature evidence has shown that 

hydroxyanthranilate-3,4-dioxygenase (HaaO) also catalyzes an essential step 

required for the degradation of tryptophan in B. cenocepacia (Colabroy and Begley 

2005). BCAM2130 encodes HaaO in B. cenocepacia; however, an ortholog could not 

be found via a BLASTP search in B. multivorans (Figure 3.4B). In this case, the 

reaction was included in iBC but not in iBM. Lack of HaaO and its reaction 

contributes to the inability of iBM to grow in silico with tryptophan as a sole carbon 

source. However, artificial inclusion of the reaction in iBM still did not allow for in 

silico growth, suggesting that other reactions needed for the catabolism of 

tryptophan are missing in iBM. This was one of the inconsistencies between the in 

vitro and in silico growth screens that we were unable to rectify through model 

refinement. This inconsistency demonstrates how the capability of the entire 

metabolic network is assessed when testing for growth; network gaps are not 

always direct or trivial and provide hypotheses for further experimentation. 

 

Rhamnolipid synthesis. Species-specific differences are also exemplified within the 

rhamnolipid synthesis pathway. Rhamnolipid production has been linked to 

enhanced P. aeruginosa virulence in the cystic fibrosis lung by enabling invasion of 

host epithelial cells and affecting biofilm assembly, structural maintenance and 

dispersion (Zulianello et al. 2006; Pamp and Tolker-Nielsen 2007). We located 

genes in B. cenocepacia that were previously unidentified as the rhamnolipid 

synthesis operon rhlABC but could not find genes encoding enzymes in this operon 

in the rhamnolipid synthesis pathway in B. multivorans (Figure 3.4C). The rhlABC 

genes in B. cenocepacia are BCAM2340, BCAM2338, and BCAM2336, which have 

BLASTP E-values of 7×10-63, 5×10-86 and 4×10-63 to the orthologous genes in P. 

aeruginosa PAO1 (PA3479, PA3478 and PA1130, respectively). Our additions 

resulted in a functional rhamnolipid synthesis pathway in iBC, while iBM was unable 

to produce rhamnolipids. Currently we are unaware of literature supporting 

rhamnolipid production in B. cenocepacia or B. multivorans, but nonpathogenic 

Burkholderia thailandensis and Burkholderia plantarii as well as pathogenic 

Burkholderia pseudomallei can produce rhamnolipids in specific conditions (Häußler 
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et al. 1998; Andrä et al. 2006; Dubeau et al. 2009). However, a transcriptomics 

screening study by Sass et al. showed significant upregulation of the genes we 

identified as the rhl operon in B. cenocepacia during stationary phase growth in 

minimal medium (Sass et al. 2013). These studies support the likelihood of the 

ability of B. cenocepacia to produce rhamnolipids, and may contribute to the 

enhanced virulence of B. cenocepacia over B. multivorans during chronic lung 

infections. 

 

Comparison of gene content 

Our model curation efforts resulted in a high number of genes associated with each 

reaction in the reconstructions compared to other large, well-curated 

reconstructions. This increase in genes per reaction was quantified by counting the 

number of unique genes in the GPR of each reaction in each model, resulting in an 

average of 3.24 genes per reaction in iBC, 3.01 genes per reaction in iBM, and 1.9 

genes per reaction in the P. aeruginosa reconstruction iMO1086. This difference in 

genes per reaction in the Bcc reconstructions appears to be due to higher numbers 

of isozymes and gene duplications as implemented in GPRs and may be evidenced 

by the larger genomes of the Bcc species compared to P. aeruginosa. By dividing 

the total number of genes associated with the reactions in each subsystem by the 

number of reactions in each subsystem, the average number of genes per reaction 

per subsystem was calculated (Figure 3.5). For context, the average number of 

genes associated with each reaction grouped by subsystems in iBC, iBM, and 

iMO1086 is compared.  

 

While iMO1086 shows a higher number of average genes per reaction in a subset of 

amino acid metabolism pathways and a few other subsystems, overall, iBC has the 

most genes per reaction across all subsystems, followed by iBM and iMO1086. The 

most notable increases in the average number of genes associated with reactions in 

iBC over the other reconstructions are incorporated in lipid metabolism. However, 

iBM may have higher metabolic capacity in certain energy and carbohydrate 

metabolic pathways as it has a higher gene per reaction average in these pathways.  

Pathways where iBC and iBM have similar numbers of genes associated with a 
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reaction include metabolism of amino acids as well as terpenoid and polyketide 

metabolism. The reconstructions offer a method of probing specific subsystems to 

identify gene duplications or isozymes that may indicate concentrated genetic 

redundancy. 

 

Gene essentiality 

An important consequence of increased genes per reaction in iBC and iBM 

compared to reconstructions of other bacteria was the reduction in the number of 

genes predicted to be essential for growth. During in silico growth in LB medium, 

our models predicted 66 essential genes in iBC and 73 essential genes in iBM (Table 

3.2). Sixty of these genes were orthologs between iBC and iBM, 6 genes were 

uniquely essential in iBC, and 13 genes were uniquely essential in iBM. In 

comparison, iMO1086 required 150 genes to grow in silico on LB (with an accuracy 

of 83.9%) (Oberhardt et al. 2011). Because iBM and iBC are not currently 

reconciled with iMO1086, we compared our predicted essential genes with a list of 

potentially essential P. aeruginosa PAO1 genes identified experimentally; these 

PAO1 genes had no recorded transposon mutants as identified in the Pseudomonas 

Genome Database based on genome scale transposon mutagenesis libraries 

(Winsor et al. 2011). Thirty five out of 78 predicted essential Burkholderia genes 

matched P. aeruginosa PAO1 probable essential genes using a BLAST comparison. 

Another 12 predicted essential Burkholderia genes matched PAO1 genes with likely 

isozymes or duplications. Two predicted essential Burkholderia genes had no match 

to any PAO1 gene locus. The low number of potential essential Burkholderia genes 

compared to other species corresponds with a recent study that created promoter-

based conditional mutants to identify essential Burkholderia cenocepacia K56-2 

genes (Bloodworth et al. 2013). However, the authors saw unexpectedly low 

essential operon hit rates during their mutant library screening. 

 

The difference between the overall number of essential genes in iBC and iBM 

compared to P. aeruginosa is likely due to the high number of isozymes and 

duplicate genes included in our GPRs as well as the comprehensive GPR 

formulation, which added robustness to the performance of particular functions. 
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Many of the predicted essential genes were located in expected pathways such as 

nucleotide metabolism, energy metabolism, and lipid metabolism. The common 

essential genes represent opportunities to target both species with the same 

treatment. The high number of unique essential genes predicted for each species 

offers new hypotheses regarding species-specific targets in developing novel 

treatments for B. cenocepacia versus B. multivorans infections. 

 

When comparing the unique essential genes predicted for each model shown in 

Table 3.2, a gene associated with dihydrofolate reductase (DHFR) was only present 

in iBM. DHFR, encoded by Bmul_2221, is the target of trimethoprim, an antibiotic 

commonly effective against pathogens such as E. coli and Haemophilus influenzae. 

However, trimethoprim has shown variable effectiveness against different strains of 

the Bcc (Nzula 2002) and our essentiality analysis indicates no apparent matching 

essential gene i n iBC. Instead, two genes were associated with this reaction in iBC 

by the Model SEED tool. One gene, BCAL2915, is annotated as dfrA, a 

trimethoprim-resistant variant of DHFR (Kehrenberg and Schwarz 2005), and has 

high similarity to Bmul_2221. The other gene, BCAL1859, is annotated on the BGD 

as a hypothetical protein. When conducting a BLASTP search with BCAL1859, the 

most similar functionally annotated matches were to DHFR genes in Deinococcus 

and Aeromonas species (E-values of ~10-50 and ~10-40, respectively) with no other 

highly similar matches. Interestingly, a study of in vitro antimicrobial susceptibility 

determined that B. multivorans ATCC 17616 is notably more susceptible to 

trimethoprim than B. cenocepacia J2315, with a minimum inhibitory concentration 

of 2 mg/L compared to 64 mg/L (Nzula 2002).  Determining whether this 

apparently rare variant of DHFR (BCAL1859) is connected with the elevated 

trimethoprim resistance of B. cenocepacia J2315 would require further experimental 

study, but the identification of a previously unannotated DHFR isozyme in the more 

virulent of our two Bcc species of interest is an important consequence of our 

comparative study of essential genes. 
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  FIG 3.5. Distribution of the number of genes per reaction in iBC and iBM by subsystem. The 

average number of genes per reaction per subsystem was calculated by dividing the total number of 

genes in the GPRs of the reactions in each subsystem by the number of reactions in each subsystem. 
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Virulence factor production capacity 

Our models enable in silico investigation of how the nutritional environment of the 

cystic fibrosis lung contributes to production of important factors in initial 

colonization and chronic infection by Burkholderia. iBC and iBM were used to predict 

the ability of each species to produce an array of virulence-related molecules while 

under varied growth demands or when presented with limited nutritional resources. 

We include prototypical virulence factors such as biofilm-related exopolysaccharide 

cepacian, immune response-triggering, phagocytosis-resistant LPS, and quorum 

sensing signals that enable communication with other bacteria (Loutet and Valvano 

2010b). We also include the production of rhamnolipids due to their role in biofilm 

formation and regulation as previously mentioned. Intracellular signaling molecules 

such as polyamines putrescine and spermidine are not essential for growth in many 

environments, but their loss induces significant phenotypic changes in various 

bacteria and they are considered important in the regulation of biofilm production 

and other virulence pathways (Williams et al. 2010). Ornibactin enables iron 

acquisition, and salicylate potentially acts as a siderophore and is also required for 

production of other siderophores; both compounds have been connected with 

enhanced virulence both clinically and in animal models (Darling et al. 1998).  

Homogentisate is a precursor of the melanin-like pigment produced by some 

Burkholderia species that provides protection from reactive oxygen and nitrogen 

species (Keith et al. 2007; Liu and Nizet 2009). 

 

  FIG 3.5 Cont’d. Diamonds and crosses show the average number of genes per reaction for iBC and 

iBM, respectively. For reference, the average number of genes per reaction for iMO1086 (P. 

aeruginosa PAO1) is shown as open circles. For each subsystem, the three values in brackets denote 

the number of reactions for iBC, iBM, and iMO1086. 
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  TABLE 3.2. Comparison of essential gene predictions. 

 

 

Table 2: Comparsion of essential gene predictions

B. cenocepacia 

Locus Tag

B. multivorans 

Locus Tag

Gene 

Abbreviation
Enzyme Name EC #

BCAL0800 prs ribose-phosphate pyrophosphokinase EC 2.7.6.1

BCAL0902 D,D-heptose 1,7-bisphosphate phosphatase

BCAL2356 phosphatidylserine decarboxylase EC 4.1.1.65

BCAL3389 tktA transketolase EC 2.2.1.1

BCAL3428 nrdB ribonucleotide-diphosphate reductase subunit beta EC 1.17.4.1

BCAL3429 ribonucleotide-diphosphate reductase subunit alpha EC 1.17.4.1

BCAL0162 Bmul_0198 gmhA phosphoheptose isomerase EC 5.3.1.28

BCAL0508 Bmul_3079 lipid A biosynthesis lauroyl acyltransferase EC 2.3.1.-

BCAL0509 Bmul_3078 metK S-adenosylmethionine synthetase EC 2.5.1.6

BCAL0612 Bmul_2976 glmU UDP-N-acetylglucosamine pyrophosphorylase EC 2.7.7.23

BCAL0743 Bmul_0450 gpsA NAD(P)H-dependent glycerol-3-phosphate dehydrogenase EC 1.1.1.94

BCAL0817 Bmul_0528 kdsC putative 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase EC 3.1.3.45

BCAL0818 Bmul_0529 putative arabinose 5-phosphate isomerase EC 5.3.1.13

BCAL1269 Bmul_2021 glmM phosphoglucosamine mutase (EC:5.4.2.10)

BCAL1281 Bmul_1997 hypothetical protein (ornithine-acyl-ACP N-acyltransferase in Burkholderia sp. 383)

BCAL1556 Bmul_1683 rpiA ribose-5-phosphate isomerase A EC 5.3.1.6

BCAL1887 Bmul_1460 ndk nucleoside diphosphate kinase EC 2.7.4.6

BCAL1987 Bmul_1360 purL phosphoribosylformylglycinamidine synthase EC 6.3.5.3

BCAL2061 Bmul_1287 guaA GMP synthase EC 6.3.5.2

BCAL2078 Bmul_1270 lpxB lipid-A-disaccharide synthase EC 2.4.1.182

BCAL2079 Bmul_1269 lpxA UDP-N-acetylglucosamine acyltransferase EC 2.3.1.129

BCAL2080 Bmul_1268 fabZ (3R)-hydroxymyristoyl-ACP dehydratase EC 4.2.1.-

BCAL2081 Bmul_1267 lpxD UDP-3-O-(3-hydroxymyristoyl) glucosamine N-acyltransferase EC 2.3.1.191

BCAL2089 Bmul_1259 pyrH uridylate kinase EC 2.7.4.-

BCAL2101 Bmul_1247 dapD 2,3,4,5-tetrahydropyridine-2,6-carboxylate N-succinyltransferase EC 2.3.1.117

BCAL2103 Bmul_1245 dapE succinyl-diaminopimelate desuccinylase EC 3.5.1.18

BCAL2146 Bmul_1207 ask aspartate kinase EC 2.7.2.4

BCAL2154 Bmul_1199 UDP-2,3-diacylglucosamine hydrolase EC 3.6.1.54

BCAL2180 Bmul_1162 2-dehydro-3-deoxyphosphooctonate aldolase EC 2.5.1.55

BCAL2181 Bmul_1161 pyrG CTP synthetase EC 6.3.4.2

BCAL2289 Bmul_1080 glutamate racemase

BCAL2355 Bmul_1017 putative phosphatidyltransferase EC 2.7.8.8

BCAL2388 Bmul_0984 hypothetical protein (Glucose-1-phosphate adenylyltransferase in iKF1028)

BCAL2389 Bmul_0983 purD phosphoribosylamine--glycine ligase EC 6.3.4.13

BCAL2403 Bmul_0965 putative LPS core biosynthesis protein EC 2.4.-.-

BCAL2759 Bmul_0751 tetraacyldisaccharide 4'-kinase EC 2.7.1.130

BCAL2761 Bmul_0749 kdsB 3-deoxy-manno-octulosonate cytidylyltransferase EC 2.7.7.38

BCAL2770 Bmul_0740 putative glycerol-3-phosphate acyltransferase PlsY EC 2.3.1.15

BCAL2836 Bmul_0675 purK phosphoribosylaminoimidazole carboxylase ATPase subunit EC 4.1.1.21

BCAL2837 Bmul_0674 purE phosphoribosylaminoimidazole carboxylase catalytic subunit EC 4.1.1.21

BCAL2838 Bmul_0673 purC phosphoribosylaminoimidazole-succinocarboxamide synthase EC 6.3.2.6

BCAL2912 Bmul_2218 thyA thymidylate synthase EC 2.1.1.45

BCAL2944 Bmul_2251 hldD ADP-l-glycero-D-manno-heptose-6-epimerase EC 5.1.3.20

BCAL2951 Bmul_2258 cmk cytidylate kinase EC 2.7.4.14

BCAL3012 Bmul_2401 gmk guanylate kinase EC 2.7.4.8

BCAL3110 Bmul_2494 waaA 3-deoxy-D-manno-octulosonic-acid transferase EC 2.4.99.12

BCAL3113 Bmul_2497 manB phosphomannomutase EC 5.4.2.2

BCAL3133 Bmul_2598 rmlC dTDP-4-keto-6-deoxy-D-glucose 3,5-epimerase EC 5.1.3.13

BCAL3134 Bmul_2597 rmlA glucose-1-phosphate thymidylyltransferase EC 2.7.7.24

BCAL3239 Bmul_4484 glucosyltransferase

BCAL3261 Bmul_2624 purM phosphoribosylaminoimidazole synthetase EC 6.3.3.1

BCAL3336 Bmul_2693 purH phosphoribosylaminoimidazolecarboxamide formyltransferase EC 2.1.2.3

BCAL3361 Bmul_2717 purB adenylosuccinate lyase EC 4.3.2.2

BCAL3397 Bmul_2756 putative phosphatidylglycerophosphatase EC 3.1.3.27

BCAL3460 Bmul_2834 ddl D-alanine--D-alanine ligase EC 6.3.2.4

BCAL3461 Bmul_2835 murC UDP-N-acetylmuramate--L-alanine ligase EC 6.3.2.8

BCAL3462 Bmul_2836 murG undecaprenyldiphospho-muramoylpentapeptide beta-N-acetylglucosaminyltransferase EC 2.4.1.227

BCAL3464 Bmul_2838 murD UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase EC 6.3.2.9

BCAL3465 Bmul_2839 mraY phospho-N-acetylmuramoyl-pentapeptide-transferase EC 2.7.8.13

BCAL3466 Bmul_2840 murF UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diami nopimelate--D-alanyl-D-alanyl ligase EC 6.3.2.10

BCAL3467 Bmul_2841 murE UDP-N-acetylmuramoylalanyl-D-glutamate--2,6-diaminopimelate ligase EC 6.3.2.13

BCAM0683 Bmul_3371 ceoR LysR family regulatory protein

BCAM0986 Bmul_4626 asd aspartate-semialdehyde dehydrogenase EC 1.2.1.11

BCAM0998 Bmul_4615 purF amidophosphoribosyltransferase EC 2.4.2.14

BCAM1337 Bmul_4402 glycosyltransferase

BCAM2044 Bmul_3751 putative asparagine synthetase EC 6.3.5.4

Bmul_0742 murB UDP-N-acetylenolpyruvoylglucosamine reductase EC 1.1.1.158

Bmul_1262 phosphatidate cytidylyltransferase EC 2.7.7.41

Bmul_2179 3-oxoacyl-(acyl carrier protein) synthase II EC 2.3.1.179

Bmul_2182 fabD1, fabD2 UDP-3-O-(3-hydroxymyristoyl) N-acetylglucosamine deacetylase EC 3.5.1.108

Bmul_2183 fabH1, fabH2 3-oxoacyl-ACP synthase EC 2.3.1.41

Bmul_2184 plsX putative glycerol-3-phosphate acyltransferase EC 2.3.1.15

Bmul_2221 dihydrofolate reductase EC 1.5.1.3

Bmul_2735 dapB dihydrodipicolinate reductase EC 1.3.1.26

Bmul_2829 lpxC UDP-3-O-(3-hydroxymyristoyl) N-acetylglucosamine deacetylase EC 3.5.1.108

Bmul_3080 dapF diaminopimelate epimerase EC 5.1.1.7

Bmul_3287 prpB 2-methylisocitrate lyase EC 4.1.3.30

Bmul_3288 methylcitrate synthase EC 2.3.3.5

Bmul_4654 prpD 2-methylcitrate dehydratase EC 4.2.1.79
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We evaluated the in silico production capacities of each of these compounds under 

different growth and media constraints as explained in Methods (Figure 3.6). We 

analyzed the tradeoff between virulence factors and biomass by predicting the 

maximum production of each virulence factor under a given requirement for 

biomass flux in SCFM (Figure 3.6A). For the majority of the virulence factors that 

iBC and iBM can produce, production capacity decreases approximately linearly as 

the percent of maximum biomass flux constraint is increased (Figure 3.6A). 

However, both models predict that ornibactin and homogentisate can be produced 

at a sustained level over a wide range of growth rates until constrained by demand 

for resources necessary for near-optimal levels of biomass production. Also, both 

models predict that maximum cepacian production occurs at non-zero biomass 

production requirements. This dependency between cepacian production and 

growth is a result of complex interrelationships between cofactors and byproducts 

upstream of the cepacian biosynthesis pathway. Additionally, while iBC is capable of 

de novo synthesis of all of the tested virulence factors, iBM contains incomplete 

biosynthetic pathways for the production of spermidine, salicylate, and di-

rhamnolipid, resulting in the inability to produce these molecules. The models 

enable the identification of both the missing genes that entirely prevent production 

and altered upstream pathways that limit final production levels of a given virulence 

factor in iBM. The relationship among changing in vivo nutrient resources, 

colonization and infection has been highlighted as an understudied potential target 

of novel therapies in an array of host-pathogen relationships (Brown et al. 2008). 

 

To better understand the role of the individual components of SCFM in the 

production of the various virulence factors, we assessed in silico virulence factor 

production capacities on each individual carbon source present in SCFM without any 

biomass flux constraints (Figure 3.6B). The production capacities for each virulence 

factor were normalized by the maximum possible value across the different 

individual carbon sources for that molecule. For both models, on average, tyrosine 

and glucose were the carbon sources that contributed the most towards the 

production of the virulence factors. An example of an exception is that tyrosine 
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FIG 3.6. iBC and iBM virulence factor production capacities.  
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contributes greatly to cepacian production in iBC but not in iBM (Figure 3.6B). 

Homogentisate is produced at high levels on L-phenylalanine for both iBC and iBM, 

but other factors are only produced at average levels on the same substrate. The 

models also predict that each virulence factor can be produced at some level on any 

single carbon source that also enables growth in that model as shown in Figure 3.3. 

These results suggest variabilities in virulence factor production given changing 

substrate availability and predict potential pathways to target for therapeutic 

virulence inhibition. 

 

To evaluate the potential production advantage imparted by each analyzed 

substrate to the full set of virulence factors, we averaged the virulence factor 

production capacity for all compounds by each substrate in Figure 3.6C. The results 

suggest that general virulence factor production is well supported by catabolism of 

L-tyrosine, D-glucose, L-arginine and L-ornithine, and poorly supported by glycine, 

D-lactate, and L-serine. B. cenocepacia has higher capacity averages on all 

substrates capable of supporting virulence compound production. The difference in 

averages of substrates supporting any virulence factor production in both models 

highlight a potential species-specific substrate preference for L-proline by B. 

cenocepacia. Ultimately, these analyses offers an interesting set of hypotheses 

regarding substrates that may be important to maximal virulence activity during 

FIG 3.6 (Cont’d). (A) Tradeoff between virulence factor production and growth (biomass production) 

was predicted by optimizing the production of an array of virulence factors while constraining the flux 

of the biomass reaction to various percentages of its maximum value under SCFM conditions. 

Presented values were normalized from 0-100% for each virulence factor across all biomass flux 

constraint conditions. While iBC is capable of producing all tested virulence factors, iBM contains 

incomplete biosynthetic pathways for the production of spermidine, cis-2-dodecenoic acid, salicylate, 

and di-rhamnolipid. (B) The contribution of the carbon source components of SCFM to the production 

of the virulence factors was predicted. For each virulence factor, production was maximized under 

minimal media conditions supplemented with each SCFM carbon source individually. Presented 

values were normalized from 0-100% for each virulence factor across all single substrate conditions. 

(C) Each column of production capacities was averaged along all virulence factors to calculate an 

average production capacity on each substrate for each model as shown in the heatmap via text and 

shading. Capacity averages below 50 are in white text for contrast. Colors are consistent with the 

color bars of panels A-B. For both iBC and iBM, on average, L-tyrosine supports the highest average 

production capacity for both models. 
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infection of cystic fibrosis patients, identify potential variations in substrate 

preferences between each Burkholderia species, and emphasize the enhanced 

pathogenic abilities of B. cenocepacia in comparison to B. multivorans.   

 

DISCUSSION 

This study involved the parallel generation and comparison of two new genome-

scale metabolic reconstructions for the multi-drug resistant pathogens B. 

cenocepacia and B. multivorans. The reconstructions share 1,437 reactions, with 68 

additional reactions unique to iBC and 36 additional reactions unique to iBM. iBC 

accounts for the function of 1,537 genes, while iBM accounts for the function of 

1,411 genes. The reconstructions incorporated pathways necessary for growth on 

an array of substrates, species-specific biomass formulations, and virulence factor 

synthesis pathways common to related bacteria as well as specific to Bcc 

pathogens. Models were validated using experimental growth screens on over 100 

carbon sources including substrates abundant in the cystic fibrosis lung 

environment. This process enabled us to refine the genome annotations of each 

species by reannotating an array of hypothetical and putative proteins, evaluate the 

consequences of the large genomes of B. cenocepacia and B. multivorans via GPR 

comparisons, make predictions regarding unique and shared essential genes for 

each pathogen, and evaluate the enhanced virulence factor production capacity of 

B. cenocepacia in comparison to B. multivorans. 

 

The reconstructions provide a framework for contextualizing the genes of B. 

cenocepacia and B. multivorans in relation to growth and virulence factor 

production capacities. iBC and iBM are new tools that can enable the interrogation 

of interdependent functions of the large Bcc genomes. The reconstruction process 

guided our evaluation of the current genome annotations, and in several cases, led 

us to propose annotation refinements. Additionally, our comparison of in silico 

predictions with in vitro growth screening identified pathways which were clearly 

functional in vitro, such as lysine degradation and tryptophan degradation, that we 

could not make function in silico by addition of any known enzymes/genes. Thus, 

this analysis highlighted potentially uncharacterized enzymes that enable the 
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function of certain pathways in Burkholderia and may also be active in other 

organisms. Our genome annotation refinements also generated model-driven 

hypotheses that can be followed up experimentally such as the species-specific 

production of rhamnolipids and spermidine and the degradation of ectoine. 

 

Tools for semi-automatic generation of genome-scale metabolic models have 

proved useful for expediting the reconstruction process (Agren et al. 2013; Devoid 

et al. 2013). In this study, using the Model SEED pipeline to concurrently generate 

the two reconstructions aided the manual curation and reconciliation phases since 

the differences in content and function between the two reconstructions could more 

easily be tracked and evaluated in parallel. The parallel curation process also 

ensured that the two reconstructions were of higher detail and quality than if the 

two reconstructions were developed in isolation since genetic evidence for reactions 

were exhaustively cross-checked between the two species. It is unlikely that our 

reconstructions have incorporated every metabolic function of each species and 

further curation will be required as the Bcc knowledgebase grows. Growth 

prediction discrepancies on lysine, tryptophan, and branched chain amino acids 

have highlighted areas to be investigated further experimentally.  

 

The size and scope of the reconstructions in addition to high average gene count 

per reaction likely contributed to the reduced number of predicted essential genes 

in comparison to other reconstructions. To date, while there are emerging 

computational efforts to predict essential genes (Juhas et al. 2012), no complete 

transposon mutagenesis library of B. cenocepacia or B. multivorans is available, 

and our network-driven in silico gene essentiality predictions serve as hypotheses 

for future work. The essential genes predicted to be unique to each species also 

offer interesting opportunities for targeted therapeutics. Given the general similarity 

of the network architectures in terms of the common incorporated reactions, the 

unique essential gene sets are a novel outcome of our comprehensive formulation 

and comparison of the GPR associations. 
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Our comparative analysis enabled system-wide evaluations as well as the 

evaluation of single reaction or gene functionality that could be tied to a particular 

model prediction, which is a strength of genome-scale metabolic modeling. 

Modeling reaction activity using the reconstructions and constraint-based analysis 

allowed us to evaluate altered production capacity between models due to specific 

reaction differences in upstream pathways that limited final production levels. 

These analyses provide specific, testable hypotheses regarding important metabolic 

functions that are less intuitive than hypotheses generated through gene 

essentiality analysis alone.  

 

Ultimately, each comparative analysis performed in this study supports the 

conclusion that B. cenocepacia has enhanced metabolic capacity over B. 

multivorans.  The predicted growth rate of iBC on most in silico media was equal to 

or higher than that of iBM, and notably higher on SCFM, a medium designed to 

replicate the environment of the cystic fibrosis lung. iBC also showed higher 

capacity for virulence factor production over iBM on a range of substrates found in 

CF lung sputum.  Our reconstruction process enabled the organization and 

functional evaluation of the increased genetic redundancy (e.g. isozymes and gene 

duplications) across a range of pathways that were available to potentially 

supplement any disrupted gene function in iBC compared to iBM. This added 

genetic redundancy resulted in both metabolic robustness and increased 

opportunity for the evolutionary divergence of duplicated genes to perform new 

functions (Innan and Kondrashov 2010). We have shown that these reconciled 

metabolic reconstructions offer a way to develop and investigate intriguing 

hypotheses for the enhanced virulence of B. cenocepacia – a higher capacity for 

genetic adaptation in the CF lung in addition to the flexibility provided by a large 

number of distinct catabolic pathways. 

 

In summary, our reconciled metabolic models of the emerging multi-drug resistant 

pathogens B. cenocepacia and B. multivorans are valuable tools that can aid in 

comparative analysis of metabolic capacity, identification of novel therapeutic 

targets and strategies, and prediction of key phenotypes of pathogenesis. Here, we 
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have thoroughly characterized the metabolism of the type strains of B. cenocepacia 

and B. multivorans. Our network reconstructions can be used to contextualize high 

throughput transcriptomic and proteomic data (Yoder-Himes et al. 2010; Zlosnik 

and Speert 2010; Sass et al. 2011; Blazier and Papin 2012; Sass et al. 2013) to 

provide further insight into gene regulation and downstream phenotypes. 

Additionally, our reconstructions can be used as established starting points to 

analyze pathogenesis and physiology of the growing list of sequenced Burkholderia 

strains, including both clinical and environmental isolates (Mukhopadhyay et al. 

2010). The other members of the Bcc are also human pathogens, while related 

species B. mallei and B. pseudomallei are dangerous bioterror agents that would be 

ideal candidates for in silico study. Other non-pathogenic Burkholderia species are 

of great interest to metabolic engineering projects in bioremediation and 

agricultural biotechnology as soil pathogens that excel in catabolism of certain 

pollutants as well as the production of antimicrobials that protect plant health 

(Mahenthiralingam et al. 2005; Suárez-Moreno et al. 2012). Given their notably 

large genomes and capacity for metabolic adaptation as a key factor in 

pathogenesis, the reconstructions of B. cenocepacia and B. multivorans offer 

tremendous potential for future development of treatment strategies to combat 

chronic infections and a model for the metabolic analysis and comparison of similar 

dangerous pathogens.  
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Chapter 4: Targeting virulence-related metabolism  

in a prominent opportunistic pathogen 
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SYNOPSIS 

Alternative approaches to treating opportunistic pathogens are desperately needed 

to stem the rising incidence of antibiotic resistant infections. Traditional antibiotics 

often target gene products essential to growth of a microbe; we investigate 

virulence-related targets in combatting infection that can be used as an alternative 

or supplement to current chemotherapy. We evaluate complex interrelationships 

between growth and virulence-linked pathways using a new genome-scale 

reconstruction of P. aeruginosa PA14, a model organism known for its intrinsically 

high virulence. Our new model is a substantial expansion of previous models of P. 

aeruginosa PAO1; additional genes and pathways account for the potential function 

of 73 hypothetical proteins and putative gene functions as well as the activity of 77 

virulence-linked genes, including expansion of virulence factor synthesis pathways 

to 19 unique compounds. Computational screening on clinically relevant media 

identified gene deletions resulting in production inhibition using a quantitative 

metric of tradeoff between synthesis of virulence factor versus biomass. This 

systems approach allowed us to class gene deletions that are inhibitory to virulence 

factor synthesis, growth, or both as unique therapeutic targets; successful 

experimental validation of selected gene targets using PA14 mutants justifies our 

approach and quality of predictions as well as provides potential new targets for 

therapy that sidestep traditional selectors for antibiotic resistance. 
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INTRODUCTION 

 

Antibiotic resistance is a major health concern. Each year in the United States 

alone, two million illnesses are caused by antibiotic resistant bacteria, resulting in 

more than 23,000 deaths and an economic burden of over $55 billion (CDC, 2013). 

These numbers continue to grow as fewer antibiotics are brought to the market 

each year.  Thus, there is a need to develop new approaches to study resistance 

that contribute to the design of novel treatment strategies.  

 

Many traditional antibiotics kill bacteria by targeting pathways essential for growth 

and, consequently, promote the rapid development of resistance (Allen et al. 2014). 

Here, we explore an alternative therapeutic approach that prioritizes inhibition of 

mechanisms of infection rather than mechanisms of growth. Virulence factors are 

pathogen-produced molecules that are involved in a variety of activities that 

promote the maintenance of an infection, such as signaling or sequestration of 

essential compounds such as iron, and enhance the organism’s potential to cause 

disease, such as the synthesis of toxins. Since virulence factors are non-essential 

for growth, it has been argued that targeting virulence factor production may result 

in a reduced selection pressure for the development of drug-resistant mutations 

within a bacterial population compared to traditional antibiotics (Clatworthy et al. 

2007; Rasko and Sperandio 2010). Additionally, targeting virulence factor 

production might have a less detrimental effect on the host microbiota (Cegelski et 

al. 2008). Thus, therapeutics that inhibit these mechanisms of infection may prove 

to be a promising alternative to traditional antibiotics to treat resistant infections. 

At minimum, pairing current clinical therapeutics with new treatments that reduce 

virulence will handicap a pathogen’s ability to thrive and adapt to the human host, 

reducing bacterial load, inflammation, and community coordination that contributes 

to the development of resistance to traditional antibiotics. 

 

We approach this search for novel virulence-related targets from a systems 

perspective. Genome-scale metabolic network reconstructions can be used to study 

an organism’s metabolic capability to produce virulence factors. Assembled from 
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annotated genomes, metabolic reconstructions incorporate biochemical, genetic, 

and cell phenotype data and account for hundreds to thousands of gene-protein-

reaction relationships as well as physicochemical constraints, such as reaction 

stoichiometry and directionality. Importantly, these reconstructions can be 

represented as a mathematical framework that can be analyzed using a variety of 

constraint-based modeling techniques, such as flux balance analysis (FBA), to 

probe the organism’s capability of catabolizing different substrates and synthesizing 

various metabolites. This allows us to optimize activity for different metabolic 

objectives, whether that is maximization of virulence factor production in a 

particular growth environment or a quantitative evaluation of tradeoffs between the 

production of biomass versus a virulence factor.  

 

We use Pseudomonas aeruginosa as our model organism of choice; P. aeruginosa is 

a Gram-negative opportunistic pathogen known to infect immunocompromised 

patients and develop substantial antibiotic resistance during chronic infections of 

the lungs of cystic fibrosis (CF) patients. Two genome-scale metabolic network 

reconstructions of P. aeruginosa PAO1 have been previously published (Oberhardt 

et al. 2008; Oberhardt et al. 2011). These models have been used to study P. 

aeruginosa metabolism in CF infections (Oberhardt et al. 2010), metabolic activity 

within bacterial biofilms (Sigurdsson et al. 2012), and, importantly, serve as a 

knowledgebase of P. aeruginosa metabolism. We updated this model to improve 

predictions and account for new discoveries in literature, enhance usability by 

updating model syntax, and expand the model’s ability to predict virulence-related 

metabolic activity. We then used this model as a base for creating a strain-specific 

model of P. aeruginosa PA14. While these strains are closely related, PA14 is a 

primary clinical isolate that has increased in use as a model strain due to its 

significantly higher virulence in a variety of hosts (D.G. Lee et al. 2006). This study 

specifically describes analysis of this new P. aeruginosa PA14 model though 

statistics, curation, and accuracy of the updated PAO1 model are also included in 

certain sections. 
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Aiming to enhance the functionality of the model, incorporate new understanding of 

P. aeruginosa metabolism, and specifically probe the complex network of virulence-

related metabolism in Pseudomonad pathogens, we present an updated version of 

the P. aeruginosa PAO1 metabolic network reconstruction, iPae1148, and a new 

reconstruction for P. aeruginosa PA14, iPau1131. This new model accounts for 

1,131 genes, 1,499 reactions, and 1,286 metabolites. We validated our models 

using data from carbon source utilization experiments conducted for PAO1 and 

PA14 as well as published genome-wide transposon mutant data from PAO1 and 

PA14 libraries. We then used iPAu1131 to probe P. aeruginosa virulence factor 

production capabilities on different carbon sources and mutant backgrounds, 

predicting genes essential for virulence factor production as well as biomass 

production. Finally, we tested these predictions for the virulence factor pyoverdine, 

a siderophore involved in iron acquisition, and validated 7 genes predicted to be 

critical for pyoverdine production on different carbon sources in vitro. 

 

MATERIALS AND METHODS 

Metabolic network reconstruction 

The iMO1056 model (Oberhardt et al. 2008) and iMO1086 model (Oberhardt et al. 

2011) were both used as resources during reconstruction efforts. iMO1056 was 

created using field-standard syntax based off the software Simpheny and consistent 

with many models in the BiGG database, while iMO1086 was built using the ToBiN 

platform which is not publically available. Since these original models were 

published, the modelSEED has become a favored draft reconstruction resource, and 

offers a comprehensive library of balanced reactions and metabolites from which 

hundreds of draft models have been created for use within the modeling community 

(Henry et al. 2010). In light of this, we used a draft conversion of iMO1056 to 

model SEED format as the starting point for our reconstruction update to enable 

consistency with our past P. aeruginosa models and easy comparison with a large 

collection of models created and curated by other groups. Because the conversion 

was an automated step performed by the modelSEED in an early iteration of the 

SEED database, manual curation was performed to add additional species-specific 

reactions that did not successfully convert from the original iMO1056 model as well 
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as correct conversion errors in reaction stoichiometry, directionality, and GPR 

assignments. Further updates to SEED reactions and metabolite names using the 

modelSEED database were implemented to ensure consistency, and a KEGG 

subsystem assignment was added to each reaction when possible.  

 

Genome comparisons. The genomic contents of P. aeruginosa PAO1 and P. 

aeruginosa PA14 and two related pathogens from the Burkholderia cepacia complex 

were compared to enable development of new, reconciled reconstructions for each 

strain from previously built models. P. aeruginosa PA14, P. aeruginosa PAO1, B. 

cenocepacia J2315, and B. multivorans ATCC17616 were compared using genome-

scale reciprocal BLASTP with an E-value cutoff of 0.01 with no low-complexity filter 

using CLC Main Workbench (CLC bio, Aarhus, Denmark). Hits with E-values below 

1E-40 were considered high confidence hits and automatically matched between 

iPae1148 and iPau1131. Genes with hits that received a higher E-value score were 

manually evaluated based on predicted function, PseudoCAP category, and gene 

descriptions on the Pseudomonas Genome Database (PGD) for inclusion in the 

models (Winsor et al. 2011). 

 

Biomass. Updated, strain-specific biomass formulas were created using methods 

detailed in Bartell et al (Bartell et al. 2014). This effort expanded the number of 

components considered necessary for growth according to improved formulation 

development and an updated search of literature pertaining to Pseudomonas 

species. More specific lipids were implemented using recent studies from literature 

and as enabled by the expanded lipid reactions used in modelSEED draft 

reconstructions. Additional changes to Pseudomonas-specific requirements such as 

preference for ubiquinone-9 versus ubiquinone-8 as a key cofactor in respiration 

were also included. 

 

Model curation. To fill gaps and improve predictions, additional model components 

were added from iMO1086 and the recently published reconstructions of 

Burkholderia species after identifying potentially orthologous genes between 

strains. Reactions implemented in curated B. subtilis SEED model iBsu1103 as well 
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as reactions included in the MetaCyc and MetRxn databases were also used as a 

resource (Henry et al. 2009; Kumar et al. 2012; Caspi et al. 2014). PAO1 and PA14 

genes categorized as linked to virulence via data from experimental studies 

incorporated into the PGD were specifically evaluated for inclusion in the models to 

expand clinically-relevant functional prediction ability. 

 

Model validation 

Models were validated using new, comprehensive assessments of experimental data 

from genome-scale transposon libraries and carbon utilization screening. Similar 

data had been used with prior models, but unexpected discrepancies identified in 

comparisons between PAO1 and PA14 datasets motivated careful re-assessment of 

data sets and experimental confirmation of results. 

 

Gene essentiality. Gene essentiality predictions were performed by in silico 

deletions of single genes while optimizing for production of biomass using flux 

balance analysis (FBA) via the COBRA Toolbox (Becker et al. 2007). Predicted 

essential genes were compared with a list of genes that did not show effective 

transposon insertions in both genome-scale transposon insertion libraries of P. 

aeruginosa PAO1 (Jacobs et al. 2003) and P. aeruginosa PA14 (Liberati et al. 2006). 

By using genes missing insertions in both studies, which used different transposon 

systems and resulted in differing levels of insertion rate and genome coverage, we 

increased our confidence that these genes were truly essential to growth in rich 

media for P. aeruginosa strains. Curation with essentiality data resulted in improved 

prediction accuracy of gene essentiality via curated GPR relationships as well as 

addition of new components to the biomass formula.  

 

Substrate utilization. Single carbon source catabolic ability of the strains was 

predicted by providing a single carbon source and salts to the model via exchange 

constraints and optimizing for biomass production using FBA.  Carbon utilization 

data was compiled from literature for both PAO1 and PA14, but discrepancies 

motivated us to perform our own growth screens for both strains using Biolog 

phenotype arrays PM1 and PM2. Growth curve screens were performed in triplicate 
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using a microplate reader with shaking at 37C for 48 hours. Curves were evaluated 

to identify substrates enabling growth versus no growth as performed in Bartell et 

al (Bartell et al. 2014). Results guided specific curation of catabolic pathways and 

expansion of transport systems included in the model to improve prediction 

accuracy. 

 

Prediction of virulence-related production capacities and growth tradeoffs.  

Virulence factor production capacity was first evaluated by optimizing the flux 

through an artificial ‘demand’ reaction for each virulence-related metabolite. Genes 

essential for the production of each virulence factor were predicted by evaluation of 

production flux after in silico deletion of a single gene at a time.  Tradeoffs between 

virulence factor production and growth under WT and mutant strain conditions were 

evaluated by construction of Pareto optimum fronts. Pareto fronts were calculated 

for WT and all single gene knockouts by constraining biomass production flux at 20 

different levels ranging from 0 to 100% of biomass production capacity in the given 

strain background and calculating the optimal virulence factor production level at 

each step. The area under this curve was used as an index of production that 

incorporated both virulence factor synthesis and biomass synthesis. This analysis 

was repeated for ‘enzyme’ knockouts that were represented by simultaneous 

knockout of all of the genes involved in each unique GPR within the model. From 

these analyses, the Pareto area for WT, single gene knockout strains, and enzyme 

knockout strains were predicted for each virulence factor under a range of growth 

conditions including SCFM and clinically relevant single substrate minimal media. 

The resulting Pareto areas for each knockout strain condition were normalized by 

WT Pareto area in that condition to create a Pareto Tradeoff Area (PTA) index to 

enable uniform comparisons of change in tradeoff relationships across all 

combinations.  

 

Network visualization 

iPau1131 was visualized using an in-house command line implementation of 

MetDraw that enables color overlay. A public version that builds the maps is 

available at www.Metdraw.com  (Jensen and Papin 2014). 

file:///C:/Users/jab3tz/AppData/Roaming/Microsoft/Word/www.Metdraw.com
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Strains and growth conditions 

Wild-type strains of P. aeruginosa PAO1 and PA14 and PA14 single gene knock-out 

mutants from the PA14 non-redundant genome-scale transposon library (Liberati et 

al. 2006) were grown in Luria-Bertani media supplemented with 15 ug/ml 

gentamycin as necessary at 37C with aeration for liquid cultures. Single substrate 

growth conditions were evaluated using 20mM concentrations of the carbon source 

in M9 minimal media with 15 ug/ml gentamycin as necessary at 37C. 

 

Pyoverdine assay 

To measure pyoverdine production, strains were grown in minimal media to 

stationary phase in 50 ml flasks and the absorbances of culture supernatants were 

measured at 405 nm according to a previously published protocol (Wurtzel et al. 

2012). All measurements were normalized to culture density as determined by the 

absorbance of the bacterial culture at 600 nm.  

 

RESULTS 

Metabolic network reconstruction of P. aeruginosa 

Here, we present an updated genome-scale metabolic network reconstruction of 

P.aeruginosa PAO1, iPae1148, and a new genome-scale metabolic reconstruction of 

P. aeruginosa PA14, iPau1131, that accounts for 1131 genes associated with 1499 

reactions across a variety of functional categories as defined by KEGG. Briefly, the 

reconstruction process began with a Model SEED version of a previously published 

P.aeruginosa metabolic reconstruction, iMO1056. After verifying proper conversion 

of the SEED model from iMO156, we implemented an expanded biomass equation 

and ensured that all biomass components could be synthesized under rich media 

conditions. Using an iterative process, we subsequently curated and validated the 

draft reconstruction according to carbon source utilization, gene essentiality, and 

drug activity data. During this curation, we relied on several literature and database 

resources, namely MetaCyc and KEGG. We then used this model to develop a P. 

aeruginosa PA14 reconstruction using bidirectional BLAST hits for automated 
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conversion of high confidence orthologs paired with manual curation of low 

confidence orthologs, hypothetical proteins, and virulence factor pathways.  

 

Of the 1499 reactions in iPau1131, 1085 are metabolic reactions, while 242 are 

transport reactions, and 172 are exchange reactions (Figure 4.1A). Furthermore, 

797 of the total number of reactions in the model are associated with a single gene, 

while 470 reactions are associated with multiple genes. Conversely, 59 reactions 

have no gene association. In order to assess the coverage of iPau1131, we grouped 

the model reactions, genes, and metabolites according to functional categories as 

defined by KEGG (Figure 4.1B).  Because reactions have their own unique 

identifiers, they were each assigned to a single functional category within the model 

despite their ability to potentially function in multiple pathways. Metabolites and 

genes can occur multiple times in a functional category as well as across multiple 

functional categories. To account for this redundancy within categories, we only 

counted metabolites and genes once per the functional categories in which they 

appeared. 

 

FIG 4.1. iPau1131 reconstruction characteristics. (A) Properties of iPau1131 (for comparison with 
iMO1056, see Supplementary Table S1). (B) The number of genes, metabolites, and reactions in 
iPau1131 grouped into functional categories as defined by KEGG (Kanehisa et al, 2006). 
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This classification revealed that reactions involved in lipid metabolism are most 

abundant, followed by transport reactions and reactions involved in amino acid 

metabolism. This high prevalence of lipid metabolism reactions is due to the 

implementation of a more detailed biomass equation, which includes an updated 

accounting of lipid constituents based on an expanded implementation of lipid 

reactions in SEED format as well as updated analysis of lipid composition from 

literature. Thus, a major manual curation effort of this P. aeruginosa model version 

focused on adding and curating lipid metabolism reactions to ensure that the lipid 

components in the biomass equation could be synthesized. In total, the number of 

reactions in lipid metabolism increased by 240 from iMO1086 to iPau1131.  

 

In contrast to reactions, genes involved in transport, amino acid metabolism, and 

carbohydrate metabolism are most abundant. In an effort to expand carbon source 

utilization capabilities of the model according to BIOLOG phenotyping data, 109 

transport reactions were added to the model compared to iMO1086 in a manual 

curation step that improved GPR formulations and metabolite specificity. 

Interestingly, the number of genes in the lipid metabolism category is relatively low 

compared to the number of reactions in this functional category; lipid metabolism 

has the lowest gene-to-reaction ratio out of all of the functional categories 

(approximately .2 genes per reaction) due to the same gene being able to 

catabolize several reactions. Virulence factors, on the other hand, have a gene-to-

reaction ratio of 2, the highest of all the functional categories. 

 

Finally, unique metabolites are most abundant in transport, followed by lipid 

metabolism, and amino acid metabolism.  

 

Prediction of growth on single carbon sources 

In order to guide curation efforts and validate our updated model, we used Biolog 

phenotyping microarrays to predict substrate utilization of 190 carbon sources for 

P. aeruginosa PAO1 and PA14. While these screens had been previously performed 

and published in literature, we discovered discrepancies in the results from different 

screens and decided to replicate them for both strains using the same experimental  
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conditions and analysis to ensure accuracy. Instead of evaluating optical density at 

0 versus 48 hours as is often performed with these arrays, we collected full growth 

curves from absorbance measurements over 48 hours in a shaking, incubated 

FIG 4.2. Substrate utilization by iPae1148 and iPau1131. Green indicates growth, grey indicates no 
growth in vitro versus in silico, respectively. Overall, iPae1148 and iPau1131 predict P. aeruginosa 
carbon source utilization with an accuracy of 75% and 63.3%, respectively. 
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microplate reader.  A previously published in vitro dataset had been used to 

evaluate the ability of P. aeruginosa PAO1 to grow on 95 substrates using BIOLOG 

phenotyping plate PM1 (Oberhardt et al. 2008). P. aeruginosa PAO1 model iMO1086 

enabled growth predictions for 51 of these substrates. In iPae1148 and iPau1131, 

transport reactions and catabolic pathways for substrates were curated to account 

for a total of 60 Biolog carbon sources.  

 

Using these updated models, we performed growth simulations to assess their 

ability to synthesize biomass on 60 single-carbon source minimal media.  We then 

compared these results to the in vitro dataset to determine the predictive accuracy 

of the model (Figure 4.2). The results show a surprising number of differences 

between strains given the high degree of similarity between their metabolic genes. 

Ultimately, iPau1131 achieved an accuracy of 63.3% compared to the 75% 

accuracy of iPae1148 which was comparable to the 78% accuracy of iMO1086 and 

iMO1056. The lower accuracy of iPau1131 is primarily due to an increase in in vitro 

catabolic abilities compared to in silico predictions, though two false extra false 

positives were also predicted in the utilization of two amino acids, D-serine and L-

threonine. These false positives highlight superfluous functionality of the model; 

possibly PA14 has lost this catabolic ability as an adaptation towards more efficient 

use of key substrates during infection. The false negatives may possibly be enabled 

by genes of currently unknown function within the PA14 genome or expanded 

capacity of transporters. The associated hypothetical proteins could also be present 

in PAO1, but simply aren’t expressed based on differences in gene regulation 

between the strains. These discrepancies offer an opportunity for more targeted 

experimental assays to fill in missing knowledge regarding PA14-specific catabolic 

pathways.  

 

Gene essentiality predictions 

In addition to carbon source utilization data, we also validated our model with 

previously published gene essentiality data derived from two transposon 

mutagenesis screens for PAO1 and PA14  (Jacobs et al. 2003; Liberati et al. 2006). 

Though initially we planned to use each library screen as a validation data set for 
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each respective model, comparison of the genes without transposon insertions in 

both libraries revealed greater variability than expected as shown in Figure 4.3. 

Liberati et al. included a detailed explanation of potential causes of this discrepancy 

between library-derived essential genes in their 2006 publication describing the 

PA14 library which included biases in transposon insertion sites, difficulty in hitting 

genes with short sequences, failed insertion in operons upstream of essential 

genes, and insertions at the 3’ end of genes that do not actually inhibit function. In 

that publication, the authors identified 335 candidate orthologous essential genes 

between the two libraries.  We compared the up-to-date information on transposon 

insertions for both libraries from the Pseudomonas Genome Database and identified 

404 overlapping orthologous essential genes; 101 of these genes were classed in a 

metabolism-related PseudoCAP category. Strains that had a transposon inserted in 

only one library but were predicted to be essential by the models were deemed to 

be probable essentials if the location of the transposon insertion was at the 3’ end 

of the sequence.  

 

 

FIG 4.3. Gene essentiality improvements in iPau1131. Green indicates growth, grey indicates 
no growth in vitro versus in silico, respectively. Overall, iPae1148 and iPau1131 predict P. 
aeruginosa carbon source utilization with an accuracy of 75% and 63.3%, respectively. 
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We then evaluated in silico gene essentiality using single gene knockout analysis 

while optimizing for biomass production. We compared predictions from our new 

models and iMO1086 to both single strain in vitro essential gene sets and the 

overlapped essentials set. We identified 110 genes to be essential for rich media 

growth by iPau1131 compared to 150 in iMO1086 using the overlapped essentials 

set as shown in Figure 4.3. Encouragingly, the overall accuracy of iMO1086 at 87% 

improved with the overlapped essentials set compared to an accuracy of 84.5% 

using just PAO1 essentials. iPau1131 increased to 91% accurately predicted 

essential genes from the overlapped set from an original accuracy of 81% using the 

lower transposon insertion coverage PA14 essentials set, showing that both the new 

overlapped essentials and our updated reconstructions contribute to a better picture 

of gene essentiality in rich media.  Interestingly, iPau1131 decreases in positive 

predictive value when using the overlapped essentials set versus the PA14 

essentials set, but all other metrics improve in the new model or match those of 

iMO1086. The most substantial improvement in using the overlapped essentials set 

was the reduction of false negative predictions, while the most detrimental change 

is in the ability to predict true positive essential genes; however, the reduction in 

this number is not surprising given that the number of in vitro essential genes has 

been halved by the use of the overlapped essentials set. In summary, all but one 

metric of predictive quality (both counts and values) of iPau1131 equaled or 

improved from the prior predictions made by iMO1086 using only the PAO1 

transposon library essentials. A final list of genes proposed to be essential to rich 

media growth based on in silico predictions and the combined transposon library 

analysis is also available. 

 

Pathway refinement 

Despite the extensive study of P. aeruginosa as a model pathogen, genomic 

analyses of P. aeruginosa strains have noted that about 40% of sequenced proteins 

are uncharacterized, consistent with the same estimate for all currently sequenced 

organisms (Blaby-Haas and De Crécy-Lagard 2011; Pohl et al. 2014). Hypothetical 

proteins are considered a likely reservoir for novel metabolic and virulence-related 
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functionality (Hernández et al. 2009). Virulence-related genes and secondary 

metabolites are still being identified in various strains, and attempts to connect 

associated pathways to the broader metabolic network have been limited. Many 

high-throughput screening and bioinformatics-based approaches are being 

developed to improve these poor annotations; within this effort, genome-scale 

modeling provides an excellent quantitative framework for systematic curation and 

interrogation of less studied pathways and functionality (Blais et al. 2013). Thus, 

our model curation process was guided by multiple objectives. We wanted to 

improve our prediction accuracy when accounting for essential gene function and 

substrate catabolism as described above, and we simultaneously wanted to expand 

our ability to make functional predictions regarding putative protein activity and 

virulence-related genes. Figure 4.4A shows the distribution of pathway curation 

efforts using a map of all model reactions categorized by KEGG subsystem. 

Reactions associated with hypothetical protein refinements are highlighted in blue, 

reactions associated with virulence-linked genes are highlighted in red, and 

refinements linked to genes with putative functional assignments and virulence are 

labeled purple  in Figure 4.4A. These refinements are described in more detail in 

the following sections. 

 

Hypothetical proteins. Currently the Pseudomonas Genome Database (PGD) 

includes annotations of more than 2200 hypothetical proteins in each annotation of 

PAO1 and PA14, respectively. More than a thousand additional genes in PAO1 are 

annotated with putative or probable functions; the function of these genes are likely 

also putative/probable in the less-curated annotation for PA14. In iPau1131, we 

refined 50 hypothetical proteins or putative function gene annotations with a high 

degree of confidence, and included another 23 refinements at a lower degree of 

confidence.  
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FIG 4.4. Curated pathways of iPau1131.  
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Further annotation refinements are accounted for in the model if low specificity 

functional assignments (example: ABC transporter) are included. Twenty seven of 

the genes are dehydrogenases of varying specificity, and many of these are classed 

in the low confidence refinement group. Other genes have been linked to substrate 

transport systems as guided by necessary gapfilling for experimental Biolog results; 

for example, an operon was identified with likely association with itaconate 

transport and catabolism that resulted in the refinement of hypothetical proteins 

and non-specific transport genes in the GPRs for five reactions with the assistance 

of a publication from 1964 (Cooper and Kornberg 1964). Further subsets are 

associated with other metabolic systems as shown in Fig. 4.3A. In summary, these 

genes span 28 KEGG subsystems, with the highest number of genes involved in 

transport reactions (29 genes), fatty acid metabolism (21 genes), and glycine, 

serine, and threonine metabolism (17 genes), and their implementation in the 

models offers a method of functional assessment in the context of broader system 

interactions that can guide experimental confirmation of function. 

 

Virulence-linked genes. The PGD has incorporated two different resources 

describing virulence-linked genes in PAO1 and PA14 that are accessible via the 

‘Browse Virulence Factor’ feature in their Database Search tool. The virulence-linked 

genes identified in PAO1 are sourced from the Virulence Factors Database (VFDB), 

a reference database gathered from literature on virulence of an array of pathogens 

including P. aeruginosa (Yang et al. 2008). PA14-specific virulence-linked genes are 

assembled from a transposon mutagenesis library screen in C. elegans (Feinbaum 

et al. 2012). Comparison of these virulence-linked gene sets showed that virulence 

was associated with 223 PAO1 genes and 56 PA14 genes. Evaluation of these genes 

showed that 177 out of the total 279 genes had metabolism-associated PseudoCAP 

assignments. While 261 of 279 genes had orthologs in each strain, only 12 

orthologous genes were linked to virulence in both strains. Twenty-two virulence-

linked genes were unique to PAO1 while 7 were unique to PA14. In our curation 

FIG 4.4 Cont’d. Curated pathways of iPau1131. (A) Refinement distribution of hypothetical proteins 
and virulence-related genes visualized across all iPau1131 reactions using MetDraw. (B) Completed 
virulence factor synthesis pathways for iPae1148 and iPau1131. Italicized virulence factors are 
additions to the new reconstructions, and bolded virulence factors are unique to PA14. 
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process, we evaluated addition of the 177 metabolism-associated genes to both 

iPae1148 and iPau1131 because the unique approaches for identifying the 

virulence-linked genes for each strain likely contributed substantially to the low 

overlap between gene sets. We also focused on adding as many of the strain-

specific virulence-linked genes as possible. Finally, a subset of hypothetical proteins 

linked to virulence were also evaluated in detail in efforts to propose reasonable 

functional assignments. 

 

Our curation of associated pathways enabled iPAu1131 to account for the function 

of 77 virulence-linked genes. They are distributed through 32 KEGG subsystems as 

shown via the red reactions of Figure 4.4A that are associated with these genes. 

Subsystems most impacted by virulence linked genes include glycerolipid 

metabolism, lipopolysaccharide biosynthesis, and phenazine synthesis. While many 

genes are associated with the synthesis of specific virulence factors (discussed 

below), other more central metabolic genes were also linked to virulence such as 

hahahthose encoding the activity of imidazoleglycerol-phosphate synthase and 

arginine succinyltransferase. Accounting for the functions of these more distant 

virulence-related genes such that their activity can be specifically monitored in 

future computational analyses is an important update in these new reconstructions. 

 

Virulence factor synthesis. Virulence factors are compounds or enzymes that 

enhance the ability of a pathogen to infect host tissue but are not essential to 

growth (Allen et al. 2014). The nature of our metabolic models leads us to focus 

specifically on virulence factor compounds that can be incorporated via metabolic 

synthesis pathways in our reaction networks.  P. aeruginosa produces an array of 

such compounds which can be grouped into several categories: exopolysaccharides, 

lipopolysaccharides, phenazines, quorum sensing signal molecules, siderophores, 

and surfactant (Williams and Cámara 2009; Ballok and O’Toole 2013). Within these 

virulence categories, we expanded the number of complete virulence factor 

synthesis pathways that are accounted for in the models. Figure 4.4B lists the 

compounds that can be synthesized by iPau1131 and are considered virulence 

factors that contribute to successful pathogenesis. The six italicized factors are new 
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additions to iPae1148 and iPau1131 compared to iMO1086, and bolded 

dihydroaeruginoic acid is a recently identified PA14-specific virulence factor included 

only in iPau1131 (Maspoli et al. 2014). 

 

A subset of the virulence genes included in these pathways are also hypothetical 

proteins, and their associated reactions are noted in purple in Figure 4.4A. A non-

specific acyl-CoA dehydrogenase, PA14_52900, is associated with several fatty acid 

metabolism reactions as well as a reaction in valine, leucine, and isoleucine 

degradation. Additionally, PA14_54640 is annotated as an enoyl-CoA hydratase on 

the PGD, but literature identifies it as dspI, a gene required for synthesis of 

diffusible signal factor cis-2-decenoic acid (Amari et al. 2013). Other virulence 

factor genes are annotated as more typical hypothetical proteins; for example, 

several genes of the highly divergent B-band O-antigen operon have not been 

characterized for PA14, though gene functions have been studied in detail for PAO1 

(Raymond et al. 2002; Lam et al. 2011). In iPau1131, we chose to incorporate the 

associated reactions as formulated for iPA1148 (and previously iMO1086) and fill in 

genes with high and moderate confidence annotations as possible. These pathways 

will need further curation once the characterization of this locus has been 

performed experimentally, but for now they represent a best estimate of how these 

genes may function. 

 

Modeling virulence factor production capabilities 

A strength of using genome-scale metabolic modeling as an interrogation approach 

is the ability to systematically compare the effects of a broad range of small 

changes such as single gene knockouts or altered media conditions. This 

comparative approach is valuable for predictions made in the context of complex 

environmental conditions such as growth in CF sputum. Previous modeling studies 

have used an in silico synthetic cystic fibrosis medium from a defined media 

developed from a chromatographic analysis of CF patient sputum samples (Palmer 

et al. 2007; Oberhardt et al. 2010). We use this in silico medium to represent the 

growth conditions that strains of P. aeruginosa encounter during CF lung 
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colonization while evaluating the roles of genes and enzymes in both the production 

of biomass and the 19 virulence factors accounted for in iPau1131.  

 

Gene essentiality on SCFM. We probed the effect of single gene knockouts on the 

production of each virulence factor alone and compared essential gene sets for each 

factor to the genes predicted to be essential for production of biomass on SCFM. 

Analysis showed that unique subsets of genes were required for production of 

growth and virulence factors, respectively, though this set changed depending on 

the virulence factor being evaluated. However, there was a third subset of genes 

that was required for production of both biomass and a given virulence factor as 

shown in Figure 4.5A. The blue inner boundary can be interpreted as essential 

genes solely contributing to production of biomass. The gene count represented by 

the difference between the blue boundary and the purple boundary are the genes 

that are required for both biomass production and production of a given virulence 

factor. The difference between the red boundary and the purple boundary is the 

number of genes that are essential solely for the production of that virulence factor; 

knockout of these genes does not affect biomass production. As shown in Figure 

4.5A, the O-antigens require the most genes for production; they have the highest 

number of virulence-only essential genes as well as the highest number of shared 

genes required for production of both biomass and virulence factors. In contrast, 

the analysis indicates that the synthesis pathways for quorum signaling molecules 

PQS, HHQ, and DSF are much simpler in comparison. Far fewer genes are essential 

for both virulence factor production and biomass production, and even fewer are 

required solely for synthesis of the signals. 

 

What this figure also highlights is an unexpected consistency in the pool of genes 

required for both virulence factor production and growth. One hundred sixteen 

genes are essential for growth on SCFM, and 46 of these genes are also essential 

for the production of at least one virulence factor. These 46 genes critical to both 

biomass production and virulence are listed in Figure 4.5B along with their 

PseudoCAP category and function, and the number of virulence factors that cannot 

be synthesized if they are knocked out is listed in the far right column. The 
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FIG 4.5. Genes essential for virulence factor synthesis versus growth in SCFM. (A) Overlap of 
gene sets involved in virulence versus growth. (B) Genes that are essential for production of biomass 
and at least one virulence factor. 
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PseudoCAP category that appears to be critical for the largest number of virulence 

factors is fatty acid and phospholipid metabolism, where six genes are predicted to 

be essential for the production of 11 virulence factors in addition to biomass 

production. Several genes in the aro operon that contributes to aromatic amino acid 

synthesis are essential for the production of 6 virulence factors in the phenazine 

and siderophore families, while an array of genes involved in purine metabolism 

only impact the production of A-band O antigen. Ultimately, this analysis provides a 

novel list of genes ranked by their impact on virulence pathways in addition to 

growth inhibition, which makes them attractive new targets for therapeutic 

intervention. 

 

Mutant production tradeoffs on SCFM. The models enable us to compare 

quantitative levels of production inhibition due to gene knockouts as well as 

complete prevention of byproduct and biomass synthesis. We began our analysis by 

comparing sets of genes inhibitory to production of each virulence factor versus 

inhibitory to growth. Figure 4.6 shows all 71 genes that are essential for production 

of at least one virulence factor, but their deletion has no effect on biomass 

production levels. Interestingly, these genes are all located within synthesis 

pathways directly connected to production of each virulence factor, as shown by the 

effect of deletions within the pvd operon on pyoverdine alone. The number of 

essential genes per virulence factor is also an indicator of the complexity of these 

synthesis pathways. While this analysis does not identify any novel central 

metabolic targets that solely prevent virulence factor production, it does show the 

connections between the hypothetical genes and is also an indicator of the 

complexity of these synthesis pathways. While this analysis does not identify any 

novel central metabolic targets that solely prevent virulence factor production, it 

does show the connections between the hypothetical genes and putative enzymes 

reannotated in our curation of virulence factor synthesis pathways to affected 

virulence factors.  
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FIG 4.6. Genes only essential for synthesis of each virulence factor.  
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To evaluate more complex effects of gene deletions in addition to essentiality, we 

calculated Pareto curves by maximizing for the production of a given virulence 

factor at intervals of possible biomass production levels for that particular genetic 

phenotype (WT or single gene knockout) as explained in more detail in the 

methods. After calculating the area under this curve for single gene knockouts of all 

the genes in the model, we normalized the value by the area calculated for wild-

type production levels for the given virulence factor; this normalized area was then 

used as a representative production tradeoff (PTA) presented as 0 to 100% 

inhibition (white to black) compared to WT. Inhibition could be linked to lowered 

production of of a virulence factor, biomass, or both. We replicated this analysis for 

each virulence factor versus growth for wild-type and single gene knockouts of all 

genes in the model under SCFM growth constraints.  

 

Two hundred forty seven gene deletions were identified that reduced PTA for at 

least one virulence factor. This number includes genes essential solely for biomass 

production or virulence factor production as presented in the preceding section. We 

then specifically examined inhibition of virulence factor production within this 

dataset, which was associated with 134 genes (71 of which are essential to VF 

production as shown previously); this analysis left us with 63 inhibitory gene  

deletions for further analysis. Figure 4.7A shows the 17 gene knockouts within this 

dataset that resulted in inhibited production of a virulence factor but did not affect 

biomass production, while the 24 gene knockouts of Figure 4.7B reduced the PTA 

by at least 20% from WT when knocked out and were also associated with 

reduction of biomass production as indicated by the ‘Growth Alone’ column on the 

right. Knockout production phenotypes range from minimal inhibition for a few 

virulence factors to complete inhibition of most byproducts. At times, all virulence 

factor within a category are affected at a similar inhibition level by what is clearly 

inhibition of the same pathway.  

 

FIG 4.6 Cont’d. Genes only essential for synthesis of each virulence factor. Single gene 
knockout was performed while optimizing for production of each virulence factor separately on SCFM. 
All genes that when deleted also resulted in growth inhibition were removed from results.  
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The gene deletions presented in Figure 4.7A highlight the importance of tryptophan 

catabolic pathways to the synthesis of quorum sensing molecules (tryptophan and 

kynurenine-related genes), sulfate assimilation to certain siderophores (cys genes), 

and impact on both phenazines and select siderophores by succinate 

dehydrogenase (sdh genes). However, the most prominent inhibition-causing 

deletion presented in Figure 4.7A is the knockout of PA14_07230, fructose-1,6-

bisphosphate aldolase, which plays a key role in glycolysis. The PGD indicates that 

this gene is essential for growth in rich media; there are no transposon mutants 

available from the PA14 or PAO1 transposon mutagenesis library. So, while this is 

theoretically a false negative result in our gene essentiality analysis, the gene still 

shows clear impacts on production of metabolic byproducts such as virulence 

factors. Recent studies have identified novel alternative rewiring of glycolysis 

pathways in response to gene deletions in Escherichia coli that involve novel 

functionality of fbaA (Nakahigashi et al. 2009). Evolving knowledge of the role of 

this enzyme in glycolysis as well as its apparent importance to virulence factor 

production merits further experimental study in P. aeruginosa and potential 

consideration of the gene product as a therapeutic target that may be more 

effective against virulence factor production than growth in vivo. 

 

In Figure 4.7B, the effects on PTA of growth inhibition by gene deletion are often 

amplified by inhibited virulence factor production. For example, the deletion of 

phosphoglycerate kinase (PA14_07190) broadly reduces the PTA for most virulence 

factors as it significantly affects biomass production; the most interesting artifacts 

of this gene knockout may actually be the virulence factors that appear to be much 

less inhibited than the average. Other virulence factors are substantially reduced in 

production while growth remains relatively unaffected, such as the effects of folate 

metabolism genes metH and metF on phenazine and siderophore production. 
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On average, PTA inhibition is low for many of the mutants in Figure 4.7, but there 

are certain noteworthy patterns in the results. Highlighted relationships include the 

close connection between the synthesis of dihydroaeruginoic acid and pyochelin 

that results in a similar pattern of inhibition across the gene knockouts, though Dha 

production appears more susceptible to the knockout of a handful of genes. 

FIG 4.7. Gene deletions that reduce production of virulence factors. All values presented are of 
production tradeoff area assessing a mutant’s ability to produce a given virulence factor at varying 
levels of biomass production. This value is normalized by the same area calculated for the wildtype 
under that condition, resulting in the PTA index. (A) Gene deletions that result in a reduction of PTA 
but deletions have zero effect on biomass production in isolation. (B) Gene deletions that reduce PTA 
and separately reduce biomass production. 
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Interestingly, four virulence factors from each of the large functional categories 

stood out in particular due to the variance of their inhibition pattern from the other 

members of their groups: C4-homoserine-lactone, lipid A, pyocyanin, and 

pyoverdine. 

 

Pyoverdine production on SCFM substrates. Studies have shown that particular 

substrates within a complex medium may be preferred by bacteria in different 

growth states or under adapting regulatory networks due to exposure to stress or 

competition with other microbes (Shrout et al. 2006; Brown et al. 2008; Xavier et 

al. 2009; Frimmersdorf et al. 2010). These subtle changes are more difficult to 

capture using typical flux balance analyses of metabolic models without overlaying 

the effects of regulatory changes via reaction activity constraints based on 

experimental ‘omics’ expression data, but potential contributions of each individual 

media subcomponent to production of the desired product can be easily parsed.  As 

an in silico case study of the potential contributions of different substrates to 

byproduct synthesis, we evaluated production tradeoffs between biomass and the 

virulence factor pyoverdine through calculation of Pareto fronts while individually 

providing 16 different carbon sources from SCFM. We calculated these fronts across 

the 16 substrates in minimal media using a single gene knockout screen as 

performed previously on SCFM.  

 

Pyoverdine is a siderophore, a molecule that solubilizes iron for use by essential 

processes in bacterial metabolism. In fluorescent Pseudomonads, pyoverdine is the 

main siderophore and primary iron uptake mechanism in use, has been implicated 

in bacterial interactions in biofilms, and is essential for successful colonization of 

burn wounds; it is upregulated in initial colonization of the CF lung (Meyer et al. 

1996; L. Yang et al. 2009; Yeterian et al. 2010). It was also noted for having an 

unusual production index inhibition pattern on SCFM when compared to other 

siderophores accounted for in the model. In examining our results from our screen 

of production tradeoffs under single gene knockouts replicated across SCFM and 16 

individual SCFM substrates, we identified 189 genes that were essential for 

pyoverdine production during growth maintenance in at least one media condition 
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and another 13 genes that resulted in reduction of the production index from 

wildtype in at least one media condition when deleted. The number of essential 

genes varied across the different substrate conditions; aromatic amino acids 

isoleucine and leucine required the most genes for successful growth and virulence 

factor production at 171 genes, while glucose required the fewest at 159 genes.  

 

In Figure 4.8, we show PTA results for 74 gene deletions that result in inhibition of 

pyoverdine production on at least one substrate but are not essential for growth on 

SCFM. The deletions resulting in 100% inhibition could therefore be tied to growth 

on that particular substrate, virulence factor production, or both. We find 20 genes 

essential across all substrate conditions; these are likely tied to biomass production 

inhibition in most cases. We also see genes that are clearly tied to production 

activity on a single substrate. Gene deletions of particular interest are the 15 those 

that show a distribution of inhibition phenotypes across the range of media; these 

hits indicate broad impacts across relevant substrates and offer a novel multi-

targeted therapeutic approach in a growth environment where successful 

competition for the same resources results in preferential substrate switching. 

 

Experimental evaluation of pyoverdine mutants 

Our in silico study of production tradeoffs of pyoverdine on SCFM and 16 individual 

SCFM carbon sources mapped the effects of gene targeting across a range of 

conditions. We tested a subset of our predictions in an effort to validate novel 

therapeutic targets that were designed with respect to virulence factor production 

rather than growth. Evaluation of our computational results guided us to choose 

four carbon sources for inhibition comparisons. Glucose is used as a standard in 

minimal media studies, lactate is a known preferred substrate in growth of P. 

aeruginosa on CF sputum, arginine is a preferred substrate particularly in the low 

oxygen conditions of the CF lung, and isoleucine is predicted to have the highest 

number of essential genes for pyoverdine production (Palmer et al. 2007; Palmer et 

al. 2010). 
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FIG 4.8. Genes important to pyoverdine synthesis on SCFM and SCFM components. Gene 
deletions that reduce PTA on at least one of a range of SCFM substrates but are not essential for 
pyoverdine or biomass production on SCFM. 
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We chose gene targets that were connected to multiple different inhibition 

phenotypes. Metabolic genes directly connected to the pyoverdine synthesis operon 

were used as controls; pvdA, pvdD, and pvdF were predicted to be essential to 

virulence factor production but had no effect on biomass production in all media 

conditions for pyoverdine production. Aspartate kinase (lysC) was chosen as an 

upstream metabolic gene predicted to be essential for growth on all media. Deletion 

of gamma-glutamyl kinase (proB) resulted in inhibition of pyoverdine and biomass 

production on arginine, ornithine, and proline, while it was predicted to be essential 

on all other substrates. Bifunctional N-succinyldiaminopimelate-

aminotransferase/acetylornithine transaminase (argD) was also essential for 

pyoverdine and biomass production on all substrates but arginine and ornithine, on 

which pyoverdine production was inhibited.  

 

Absorbance-based assays of pyoverdine production and growth of strains with 

transposon insertions in these genes from the PA14 library were conducted on 

glucose, lactate, arginine, and isoleucine M9 minimal media as described in 

Methods. Ratios of pyoverdine to growth for wild-type PA14 and each mutant strain 

are shown in Figure 4.9. The mutants show production inhibition from WT levels in 

most conditions, with the pvd gene deletions having the greatest impact on 

production in all cases. All mutants successfully inhibited pyoverdine production to 

varying levels on glucose and arginine as predicted by iPau1131. We also validate 

proB as a potential target for pyoverdine production on all substrates in accordance 

with model predictions. However, we also identified substantial resilience to 

pyoverdine inhibition when PA14 mutants were grown on lactate, contrary to model 

predictions. As mentioned previously, lactate is a preferred growth substrate of P. 

aeruginosa in the CF lung environment (Palmer et al. 2007.). The discrepancies 

between our model predictions and experimental results for lactate highlight 

potential knowledge gaps in our understanding of metabolic capacity and regulation 

during growth on this key substrate that may contribute to enhanced infections by 

P. aeruginosa in CF patients. 
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We also present experimental data for pyoverdine production on a mutant of 

succinyl-CoA synthetase (sucC) which was initially identified as inducing variable 

inhibition of pyoverdine across substrates using a previous iteration of iPau1131. 

Our experimental results showed limited production inhibition on all substrates but 

isoleucine; further examination of the model resulted in identification of missing aru 

operon genes linked to a pathway that utilized succinyl-CoA which we had not 

incorporated into the model. When this pathway was completed, our predictions of 

inhibition disappeared. In this way, an iterative approach of prediction and 

experimentation can be used to better capture the true metabolic capabilities of P. 

aeruginosa through our reconstructions. 

 

FIG 4.9. Pyoverdine synthesis capabilities on 4 CF-relevant substrates in vitro. Values 
presented are the log of the ratio of optical density at 405nm to evaluate pyoverdine production and 
optical density at 600 nm to evaluate growth normalized by the same value for PA14 WT (i.e. 
log(OD405/OD600) for mutant / log(OD405/OD600) for WT).   
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DISCUSSION 

In this study, we present a substantial update to the genome-scale metabolic 

reconstruction of P. aeruginosa PAO1 and contribute a new reconstruction of P. 

aeruginosa PA14, a strain increasing in use as a highly virulent model organism. We 

expand both reconstructions to account for more than 60 additional genes in 

iPae1148, and more than 40 additional genes in iPau1131 in comparison to 

previous P. aeruginosa reconstructions. The new models are reconciled with SEED 

database nomenclature to expand their comparative applications and improve 

consistency within the modeling field. Validating data sets regarding gene 

essentiality and substrate utilization were improved through both bioinformatics 

and experimental assays, and contributed to advances in prediction accuracy of the 

new reconstructions. Substantial expansion of pathway specificity and coverage 

resulted in an increase in the number of reactions included in the new models. 

Focused curation of hypothetical proteins and virulence-related genes enabled novel 

predictions of genes essential to virulence factor production and quantification of 

tradeoffs between synthesis of virulence factors and biomass. Genes that were 

predicted to be essential or important to synthesis of these products were 

evaluated experimentally on a range of CF-relevant substrates. Ultimately we 

identified novel therapeutic targets that could be used to prevent synthesis of 

virulence factors as an alternative or supplement to traditional approaches targeting 

growth of P. aeruginosa. 

 

Targeting virulence-related metabolic pathways as a new avenue of therapeutic 

treatment is an approach that has been attracting more attention and investment 

from a field struggling to find effective ways to combat drug-resistant pathogens 

(D.G. Lee et al. 2006). Quorum sensing inhibitors have been investigated through 

high-throughput small molecule screening for a range of pathogens including P. 

aeruginosa (Fletcher et al. 2007; Bjarnsholt et al. 2010; Valentine et al. 2013 Aug 

2) because of their importance to growth and cooperation of pathogens growing in 

biofilms. Other virulence factors such as rhamnolipids, phenazines, and 

siderophores have also been connected to phenotypes of biofilm growth, but have 

not been targeted at the same level of comprehensive evaluation (L. Yang et al. 
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2009; Martin et al. 2011; Mavrodi et al. 2013; Fazli et al. 2014). While these 

virulence factors are regulated by quorum sensing molecules, the involved signaling 

networks are complex; more direct routes of inhibition provide a valuable and 

efficient avenue for high confidence, controlled treatment. Our analysis in this study 

provides curated sets of hypothetical new targets for diminishing or preventing the 

production of a large array of virulence factors, which we also evaluate 

experimentally. Reducing experimental costs and time investment to identify 

targets while simultaneously providing a route to understanding of the underlying 

mechanisms by which our proposed targets enable inhibition are major 

contributions of our models to effective development of new therapies.  

 

Our evaluation of virulence-linked genes from disparate studies in PAO1 and PA14 

highlights the complexity of pathogenesis in the context of unique strains. The 

genes identified as linked to virulence were remarkably different between PAO1 and 

PA14 even in consideration of the different study approaches despite the majority 

of the genes being orthologous in both strains. This may indicate complex 

regulation of virulence-related pathways that provide adaptive flexibility and 

resilience to a strain adapting to varied stressful environments and cooperating or 

competing with other microbes in the same environment (D.G. Lee et al. 2006). 

The reconciled models enable overlay of ‘omics’ data that captures this varied 

regulation; future studies paired with modeling constraints based on such 

experimental data may elucidate the combinatorial nature of these genes in 

different strain backgrounds that enable novel routes of virulence.   

 

The ability to compare predictions of in silico and in vitro essential genes using the 

models as a framework highlights the importance of careful, contextualized analysis 

of transposon insertion libraries. The results of the P. aeruginosa transposon library 

screens are currently the best experimental estimate of gene essentiality from high-

throughput screening, but clear differences in final essential gene sets result from 

varying experimental approaches and analysis techniques. We have attempted to 

capture an accurate representation of gene essentiality within our models and have 

improved many metrics of prediction accuracy, but discrepancies in predictions 
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remain. However, these discrepancies can be used to guide future targeted in vitro 

evaluation of probable essential genes both in rich media and other more clinically 

relevant conditions.  

 

Our investigation of potential inhibitors of virulence factor synthesis used a novel  

combinatorial analysis of gene deletions and tradeoffs between virulence factor and 

biomass production to reduce and rank potential inhibitor targets. The resulting 

tradeoff indices enable quantitative comparison of multifactorial inhibition that 

identify essential and important genes for product synthesis. PTA inhibition can be 

interpreted as an indicator of potential areas of metabolic prioritization in addition 

to identification of blocked synthesis pathways. Genes resulting in near 100% PTA 

inhibition while growth is only moderately impacted may strain the capacity of 

metabolic processes to the point that all resources are utilized for growth, 

preventing secondary pathways like virulence factor synthesis from functioning. 

These subtleties can be probed further for gene targets that show promising results 

when evaluated experimentally to identify mechanistic explanations of successful 

inhibition. 

 

Treatment with virulence factor inhibitors may ultimately select for “nonvirulent” 

pathogens that stop wasting resources on attempted synthesis of these factors only 

to be thwarted in receiving any benefit from their spent metabolic costs while 

neighboring bacteria expend all of their energy on biomass production. Thus, we 

may be selecting for ‘social cheaters’ that do less damage to the host during 

infection and are less successful at surviving in the stressful host environment 

without the production of virulence-related shared goods (Dandekar et al. 2012). 

Interestingly, recent studies have indicated that traditional virulence factors 

produced by opportunistic pathogens such as P. aeruginosa may also serve 

important roles in bacterial survival other than promotion of virulence (Brown et al. 

2012) This indicates that we could also be inhibiting unknown contributions to basic 

metabolic processes that may in fact also result in resistance to virulence inhibitors. 

Ultimately, these broader concerns require further examination of the intricacies of 

virulence versus growth inhibition; our models are an excellent platform for 
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pursuing fundamental understanding of these relationships from a systems 

perspective in the future. 

 

Our analysis of genes essential or important to the synthesis of virulence factors is 

the most comprehensive genome-scale computational screen to date of virulence-

related metabolism. We account for the interrelated nature of virulence factor 

synthesis and growth in our predictions, providing different classes of targets that 

may prove beneficial in unique therapeutic contexts. Concerns regarding treatment 

side-effects or resistance to growth-targeting antibiotics in the context of multi-

drug treatments may benefit from incorporation of new therapeutics that only 

target virulence factor synthesis (Chait et al. 2007; Torella et al. 2010; Ejim et al. 

2011). However, new proposals regarding careful design of sequences of single 

drug treatments in an attempt to avoid drug resistance may favor drugs that inhibit 

virulence factor production and growth simultaneously (Imamovic and Sommer 

2013; Kim et al. 2014). Ultimately, our updated models are valuable tools for 

quantitatively assessing these relationships that would be challenging to interrogate 

experimentally at a genome-scale level. Our experimental validation of a subset of 

model-based predictions indicates that our approach provides testable hypotheses 

of gene function from a systems perspective that can be used to develop novel 

therapeutic virulence inhibitors to treat drug-resistant pathogens. 
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SYNOPSIS 

Successful bacterial pathogens must satisfy specific metabolic requirements to 

avoid eradication by the human host during chronic infections. Identification of 

metabolic pathways that change during the course of an infection provides novel 

targets for potential therapeutic intervention. We use long-term Pseudomonas 

aeruginosa infections in cystic fibrosis patients as a model system to study this 

evolutionary process. After experimentally determining activity in central 

metabolism of longitudinal isolates, we apply genome-scale metabolic models to 

contextualize our experimental findings from a systems perspective and elucidate 

systemic metabolic adaptations during chronic infection. We find strong evidence 

for a shift in metabolism towards fixation of carbon dioxide through reversal of the 

glycine cleavage system, which may operate as an alternative redox recycling 

reaction. Redox-related metabolic adaptation merits greater consideration as an 

important enabler of pathogen persistence and a potential therapeutic target in 

Pseudomonas aeruginosa and other emerging pathogens. 
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INTRODUCTION 

Opportunistic pathogens change their metabolism in response to the conditions 

they encounter when they colonize their host. This metabolic reprogramming is 

facilitated through complex regulatory and metabolic networks encoded in the 

genomes of bacterial pathogens. Metabolic adaptation is necessary to capitalize on 

available nutrients for growth and survival and such shifts are essential for 

successful pathogenesis (Brown et al. 2008; Mitchell et al. 2009; Eisenreich et al. 

2010). However, the underlying metabolic mechanisms that contribute to 

colonization and persistence are unclear in many bacteria and how these metabolic 

systems develop during pathogen adaptation remains unknown. The opportunistic 

pathogen Pseudomonas aeruginosa is an ideal model system for understanding 

these processes. It has principally evolved in its natural habitat outside the human 

host, where its specific regulatory and metabolic repertoire enables growth in soil 

and water environments.  However, during chronic infections with P. aeruginosa in 

cystic fibrosis (CF) patients, some clinical P. aeruginosa strains have developed into 

host-specific organisms by adaptive mutations that enhance survival in the human 

lung environment (Yang et al. 2011; Folkesson et al. 2012).  How these particular 

P. aeruginosa strains persist to become the dominant, chronic pathogens in the 

lung in contrast to other initial infecting species is poorly understood. Improving our 

understanding of microbial adaptation to the human host will have important 

implications in treatment of infectious disease, development of probiotic therapies, 

and other applications.  

 

Compared to the natural environment of P. aeruginosa, the host environment is 

characterized by a complex and novel combination of stressors that could be 

mitigated by various adaptive strategies. In the CF lung, most of the bacterial 

population grows within CF sputum, which is rich in nutrient sources and has a low 

oxygen tension (Ohman and Chakrabarty 1982; Worlitzsch et al. 2002; Palmer et 

al. 2005). Patient airways have elevated numbers of polymorphonuclear 

neutrophilic leukocytes (PMNs), alveolar macrophages and antibodies; phagocytosis 

of bacteria by PMNs promotes the generation of reactive oxygen species (ROS) by 

host cells (Hoiby 2006). In addition to the host immune response, P. aeruginosa is 
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exposed to a range of antibiotics during the course of infection in CF patients and 

resistance towards antibiotics is a common feature observed for adapted strains 

(Govan and Nelson 1993; Burns et al. 1998; Döring et al. 2000).  

 

We know from previous studies that adaptation of P. aeruginosa to the CF lung 

environment involves many gene regulatory mutations that affect metabolism as 

well as mutations in metabolic enzymes (Yang et al. 2011), but connecting these 

underlying mechanisms to their global impacts on pathogen behaviour is difficult. 

The aim of this study is to identify novel metabolic systems that contribute to 

successful adaptation of P. aeruginosa in the host. Specific metabolic pathways that 

are undergoing changes in activity during the course of adaptation may be essential 

for the bacteria in order to persist in the lungs of the patients and could serve as 

targets for future antibiotics.  

 

We identify these pathways of interest using a systems-level computational and 

experimental approach to characterize and compare the metabolic activity of clinical 

bacterial isolates. By integrating and contextualizing our multi-scale experimental 

data using a genome-scale computational metabolic model, we can streamline the 

prediction and comparison of early and late stage isolate phenotypes to connect 

shifts in the activity of a single enzyme to systems-level changes in metabolism. 

The results have broad implications in understanding mechanisms underlying 

pathogen adaptation in chronic infections and microbial evolution under selective 

pressures. 

 

MATERIALS AND METHODS 

We have chosen three monoclonal longitudinal isolates of P. aeruginosa to 

represent adaptation during cystic fibrosis infection. Full genome sequences are 

available for all strains (Marvig et al. 2013). Our experimental approach includes 

isotope-labelling experiments paired with growth profiling and characterization of 

metabolite excretion. In addition, we perform transcriptome profiling to support 

genome-wide characterization of metabolism under our specific experimental 

growth conditions. We apply genome-scale metabolic models as an analytical tool 
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instead of analysing the omics data sets individually. We integrate SNP data and 

gene expression data into the most recent validated genome scale metabolic model 

of P. aeruginosa, iPA1139. The changes between the derived models of the three 

strains are therefore based on information stored in the genomes or transcriptomes 

of the strains. A comparative study of these individual models can identify potential 

metabolic pathways that have changed during the course of adaptation. We want to 

emphasize that our derived models are based on experimental data and confidence 

in these models and their derived predictions can partly be gained by comparison to 

the original data sets. We are able to trace specific constraints that are responsible 

for the predicted changes, by inverting the SNP or gene expression constraints 

applied to the models. The advantage of using this systemic approach of integrating 

multiple data sets is that we may discover patterns in metabolism that we are not 

able to extract from the individual data sets - e. g. it is possible that we do not see 

any genetic variation or differential gene expression in an otherwise important 

metabolic subsystem, which is affected by genetic or regulatory changes in 

adjacent metabolic pathways and only identified through our systemic 

characterization.  

 

Pseudomonas aeruginosa strains used in this study  

We selected three isolates of the DK2 clone type for our analysis. Two of them, 

DK2-91 and DK2-07, are late-stage clinical isolates isolated from the same patient 

in 1991 and 2007, respectively (DK2-91 and DK2-07 are referred to as CF333-1991 

and CF333-2007 respectively in (Jelsbak et al. 2007)). The third isolate, DK2-WT 

(referred to as CF510-2006 in (Rau et al. 2012 Jun 5)) also shares the DK2 clone 

type, but has a phenotype similar to strains isolated from outside the CF lung (P. 

aeruginosa PAO1 (Holloway et al. 1979) and P. aeruginosa PA14 (Rahme et al. 

1995)) and its genotype is similar to the predicted most common recent ancestor 

for DK2 dated back to 1970 (Rau et al. 2012 Jun 5). DK2-WT therefore resembles a 

non-adapted isolate of DK2 and this isolate serves as our point of reference for the 

DK2 lineage. Other early isolates of the DK2-lineage collected in the early 1970s 

exist. However, we chose DK2-WT as our reference for the DK2 lineage since its 

phylogenetic branching from the most common recent ancestor is distinct from the 
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adaptation path of DK2-91 and DK2-07 in contrast to the other early isolates. We 

therefore expect to capture most adaptive events in DK2-91 and DK2-07 by 

comparing to DK2-WT. P. aeruginosa PAO1 (PAO1) is also included as reference 

throughout most of our experimental and in silico analyses. PAO1 was originally 

isolated from a burn wound (Holloway et al. 1979) and has been widely used as a 

reference strain for studies of P. aeruginosa. 

 

Cell storage and cultivation  

Cells were stored at -80C in a 20% glycerol solution. DK2-91 and DK2-07 were 

streaked on a Luria-Bertani (LB) agar plate and incubated at 37C for 48 hours. 

Individual colonies were inoculated in 10 mL of morpholinepropanesulfonic acid 

(MOPS)-buffered medium supplemented with glucose and grown aerobically at 37C 

for 24-36 hours (depending on growth rate). The total composition of the MOPS 

minimal medium was 40 mM MOPS, 9.5 mM NH4Cl, 0.28 mM K2SO4, 1.3 mM 

KH2PO4, 10 mM glucose and vitamins (0.4 µM biotin, 10 µM pyroxidal-HCl, 2.3 µM 

folic acid, 2.6 µM riboflavin, 8 µM niacinamide, 3 µM thiamine-HCl and 2 µM 

pantotheneate) (Jensen and Hammer 1993). 

 

DK2-WT and PA01 were streaked on LB agar plates and incubated at 37C for 24 

hours. Individual colonies were inoculated in 10 mL of MOPS minimal medium 

supplemented with glucose and grown aerobically at 37C for 16 hours. After initial 

incubation cells were transferred to a 250 mL baffled flask with 50 mL MOPS 

minimal medium supplemented with 10 mM of defined carbon source to an optical 

density (OD600) of 0.01 measured at 600 nm.  

 

Cell growth was determined by measuring OD600 during growth. Cells were 

harvested for GC-MS and DNA microarray analyses at OD600 = 0.4 during the 

exponential growth phase. Supernatant was collected for a glucose determination 

assay during growth in order to make biomass yield calculations. 
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Biomass yield calculations 

Glucose concentrations were determined enzymatically using a glucose reagent 

(catalogue no. 7200-017A, from Thermo Electron, Australia). The dry weight 

biomass concentration was estimated using a correlation factor of 0.360 g cellular 

dry weight per OD unit. This correlation factor was determined for an Escherichia 

coli strain (Kiviharju et al. 2007) and is assumed to be valid for P. aeruginosa. The 

biomass yield on glucose was determined using the concentration data for biomass 

and glucose, respectively. 

 

Labelling experiments 

The experimental protocol for labelling determination was modified from 

(Christensen and Nielsen 1999). Cells were grown in MOPS minimal medium to an 

OD600 of 0.4. 10 mM [1-13C]-glucose (D-glucose-13C, 99% 13C, from Isotec, 

Miamisburg, Ohio, USA, CAS no. 297046) was used as a carbon source. For some 

experiments, a mixture of 44 mol-% [1-13C]-glucose and 56 mol-% 13C6 glucose (D-

glucose-13C6, 99 % 13C, from Isotec, Miamisburg, Ohio, USA, CAS no. 110187-42-3) 

were used to give a final glucose concentration of 10 mM. 

30 ml culture was harvested and the samples were spun down for 10 minutes at 

5,000 rpm at 4C. The pellet was resuspended in 2 mL 0.9 % NaCl and the volume 

was divided into two Eppendorf tubes. The Eppendorf tubes were further spun down 

for two minutes at 10,000 rpm at 4C and the pellets were finally stored at -80C 

until hydrolysis and subsequent derivatization and amino acid analysis by GC-MS. 

The supernatant was stored in 4 individual Eppendorf tubes of 1 mL at -80C for 

later GC-MS analysis of extracellular metabolites. 

 

GC-MS analysis for extracellular metabolites. The experimental procedure of 

labelling determination was modified from Kind et al. 2009 (Kind et al. 2009). 

Supernatants were centrifuged at 15000 g and 100µL supernatant lyophilized in 2-

ml silanized glass vials, and then derivatised by 20 µL O-methylhydroxylamine in 

pyridine for 2 hrs, before adding 180 μL of N-methyl-N-

trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane (Thermo Fischer) 

heating in an oven at 40°C for 30 min. The samples were analysed by GC-MS on a 
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Thermo Electron DSQII GCMS systems using the same parameters as described in 

46 for their Agilent GC-MS, and peaks matched in the Fiehn Lib (Agilent 

technologies) using the AMDIS 2.71 (http://chemdata.nist.gov/mass-

spc/amdis/downloads/). Reference standards of glucose, gluconate, 5-

ketogluconate and 2-ketogluconate were co-analysed in the sequence with real 

samples for verification. 

 

Proteinogenic amino acid analysis from 13C-labeled biomass. Hydrolysis: The pellet 

was resuspended in 600 µL of 6 M hydrochloric acid and the volume was 

transferred to a 2 mL glass vial. The vial was capped with an aluminium cap (able 

to withstand high temperatures) and kept at 105°C for hydrolysis overnight. After 

overnight hydrolysis the content of the vial was transferred to an Eppendorf tube 

and centrifuged at 15000 rpm for two minutes. Supernatant was transferred to two 

clean glass vials (280 µL each). The vials were dried for three hours at 105°C 

without caps. After drying one of the vials was capped and stored at -80°C for 

backup. The other vial was added 200 µL of milliQ water and vortexed for 30 

seconds. Another 800 µL of milliQ water was added followed by vortexing. A control 

sample containing bovine serum albumin (BSA) was included to test if the 

hydrolysis step was completed successfully.  

 

Purification: The biomass hydrolysate was loaded on a cat-ion exchange solid phase 

extraction column packed in a 1–ml syringe  (200 mg Dowex 50W X8, 200- 400 

mesh, H+-form, Sigma-Aldrich, St. Louis, MO), that had been conditioned by 1 ml 

methanol and 1 ml water, and the sample was passed through by gravity. Waste 

was discarded. The sample was washed with 1 mL of ethanol in water (1:1). 0.2 mL 

of 1 M NaOH was added to increase the pH of the column and waste was discarded. 

A 2 mL glass vial was placed under the column to collect the purified amino acids. 1 

mL of a mixture of 1% (wt/v) NaOH in saline, ethanol and pyridine in a 9:5:1 

proportion was added and the eluate was collected. The content was divided into 

two parts, 500 µL in an Eppendorf tube for ethylchloroformate (ECF) derivatization 

and 500 µL in a glass vial for N-dimethyl-amino-methylene-methyl-esters 

(DMFDMA) derivatization respectively. The samples were kept at -20°C until 
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derivatization. A control sample containing a mixture of amino acids was included to 

test if the purification step was completed successfully. 

 

ECF Derivatization: 50 µL of ethylchloroformate was added to the 500 µL SPE 

column eluate. Pipetting in and out using a 1 mL pipette followed by a gentle 

vortexing gently mixed the content. The Eppendorf tube was uncapped to release 

the pressure. This step was repeated until no CO2 was observed. 5 additional µL of 

ECF was added followed by vortexing and release of pressure. 200 µL of propyl 

acetate was added, the tube was vortexed for 30 seconds and pressure was 

released. 50 µL of 1 M HCl was added followed by vortexing and release of 

pressure. The fluid was allowed to separate for 1 minute. Thereafter 175 µL of the 

upper organic layer was transferred to a new Eppendorf tube. A small amount of 

anhydrous NaSO4 or MgSO4 was added followed by vortexing. The supernatant was 

transferred to a 2 mL glass vial and kept at -20°C until GC-MS analysis. 

 

DMFDMA Derivatization: 200 µL 1 M HCl was added to the 500 µL SPE column 

eluate and mixed well. The vial was kept for drying for 2 to 4 hours at 105°C 

without cap. The vial was allowed to cool down for ten minutes. 200 µL DMFDMA 

and 200 µL acetonitrile was added to the vial. The vial was capped with a screw cap 

and kept for derivatization at 100°C for 20 minutes. After derivatization the vial 

was placed at -20°C for 10 min. The supernatant was transferred to an Eppendorf 

tube and centrifuged at 15.000 rpm for 2 min. The supernatant was transferred to 

a new glass vial with a screw cap and kept at -20°C until GC-MS. 

 

GC-MS analysis of proteinogenic amino acids. Samples were analysed by GC-MS on 

an Agilent 6890 gas chromatograph (Agilent Technologies,  Waldbronn, Germany)  

coupled to an Agilent 5973 quadruple MS run in electron impact ionization (EI+) 

mode using an electron energy of 70 eV. The GC was equipped with a 4.0 mm i.d. 

Siltek gooseneck splitless deactivated liner (Restek, Bellefonte, PA, USA), and a 

Supelco (Bellefonte, PA, .US) Equity®-1701 (15 m, 0.25 mm i.d., 0.25 µm film) 

column. Helium was used as carrier gas at a constant linear gas velocity of 38 

cm/s. Transfer line temperature was 280ºC, quadruple temperature 150 ºC and MS 
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source 230 ºC. The GC-MS system was controlled from Agilent MSD Chemstation v. 

D.01.02.16, and auto tuned for prior to every sequence. Samples of 1 µL was 

injected using a Combi PAL autosampler (CTC Analytics AG, Zwingen, Switzerland). 

Analysis of amino acid-ECF derivatives was done at an injection temperature of 

220ºC, and oven temperature was initially held at 75 °C for one min. Hereafter the 

temperature was raised 40 °C min-1 until 165 °C, then 4 °C min-1 until 190 °C and 

then 40 °C min-1 to 240 °C. At the end, temperature was increased to 260 °C at 4 

°C min-1 and held constant for 4 minutes. Analysis of the amino acid-DMFDMA 

derivatives was done at an injection temperature of 230ºC, and oven temperature 

was initially held at 60 °C for one min. Hereafter the temperature was raised at 20 

°C min-1 until 130 °C, then 4 °C min-1 until 150 °C and 40 °C min-1 to 260 °C and 

held constant for 4.25 minutes.  

 

Testing for CO2 incorporation into glycine. PAO1 and DK2-91 were grown in MOPS 

minimal medium supplemented with 10 mM unlabelled glucose. At OD600=0.01 20 

mM of NaH13CO3 was added. Cells were harvested at OD600=0.2 and OD600=0.4 and 

labelling patterns of amino acids were determined as described above. We chose 

PAO1 instead of DK2-WT to find out if the potential of carbon fixation into glycine is 

general for P. aeruginosa or just a feature of the DK2 lineage. We chose DK2-91 to 

represent the late-stage clinical isolates, since the growth rate of DK2-91 was 

higher than that for DK2-07 (slow growth of the cells would allow more bicarbonate 

to vaporize before cell harvest). We used a high concentration of bicarbonate (20 

mM) to make sure that some bicarbonate would remain in the medium at the time 

of harvesting despite dilution with unlabelled bicarbonate/carbon dioxide and 

vaporization. Ideally, the experiment would be carried out with concentrations of 

bicarbonate and carbon dioxide corresponding to the initial experiments. However, 

the labelled bicarbonate and carbon dioxide would be diluted out from unlabelled 

carbon dioxide produced under glycolysis in the growing culture. Therefore this 

experimental setup only addresses the question whether carbon dioxide is fixated in 

glycine synthesis and the results cannot be used quantitatively.  
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DNA microarray analysis 

Cells were grown in MOPS minimal medium supplemented with 10 mM glucose to 

an OD600 of 0.4 prior to Affymetrix P. aeruginosa GeneChip microarray analysis. 

Microarray data were generated using Affymetrix protocols as previously described 

(Yang et al. 2011). Data processing was carried out according to Thøgersen et al, 

2013 (Thøgersen et al. 2013). The raw cel-files were extracted in R by use of the 

package affy (Gautier et al. 2004) followed by qspline normalization (Workman et 

al. 2002) and calculation of gene expression index values using robust multiarray 

average expression measure (Irizarry et al. 2003). Differentially expressed genes 

for DK2-91 and DK2-07 compared to DK2-WT were determined with Bonferroni 

adjusted p-values (significance level p=0.05) using the R package "limma" (Smyth 

2005). Enriched gene ontology classes among differentially expressed genes were 

identified by the Hypergeometric distribution test with significance level p = 0.01. 

 

Sorting Intolerant from Tolerant (SIFT) Analysis of SNPs 

The SNP data were obtained from previous studies of the DK2-WT, DK2-91 and 

DK2-07 strains (Yang et al. 2011; Rau et al. 2012 Jun 5). A list of strain specific 

SNPs is available and includes our SIFT (Sorting Intolerant From Tolerant (Kumar et 

al. 2009)) analysis of missense mutations in metabolic genes. The SIFT analysis is 

used to predict if a missense mutation would affect protein function of the given 

gene product, providing numeric scores that indicate the degree to which a 

missense SNP is tolerated or affects protein function. 

 

Isolate-specific genome-scale metabolic models 

An earlier iteration of the new genome scale metabolic reconstruction for P. 

aeruginosa PAO1 described in the previous chapter, iPA1139, was used as the base 

for all computational modelling in this study. This model accounts for the function of 

1139 genes, 1491 reactions, and 1280 metabolites involved in the metabolism of P. 

aeruginosa. Isolate-specific genome-scale metabolic models were created by a 

semi-automated approach in order to incorporate both single nucleotide 

polymorphisms (SNPs) and gene expression-based constraints using the TIGER 

Toolbox 1.2.0 (Zur et al. 2010; Jensen et al. 2011).  
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Raw expression levels were used to develop proposed ‘off’ and ‘on’ gene activity 

levels using 25th and 75th percentile cutoffs of the expression data similar to 

methods described by Machado and Herrgard (2014) (Machado and Herrgård 2014)  

These gene levels were converted into tri-valued logic levels (‘off’ – 0, 

‘unconstrained’ – 1, and ‘on’ – 2) as the input for the TIGER implementation of 

iMAT. Different levels of SNP constraints were also used, ranging from minor impact 

(silent and SIFT-predicted tolerated missense SNPs), moderate impact (missense 

SNPs with SIFT-predicted functional impact), and maximum impact (nonsense 

SNPs). In order to integrate these datasets before iMAT was used to create strain-

specific models, any Boolean gene-to-protein-to-reaction (GPR) relationship that 

incorporated a gene associated with a SNP was manually evaluated in the context 

of the gene expression levels. If only the SNP-affected gene was associated with 

the reaction, the activity of the connected reaction was limited by modifying the 

reaction bounds. If the GPR was a more complex Boolean statement involving 

multiple genes (gene duplications, isozymes, or multiple subunits of an enzyme), 

the GPR was evaluated to see whether any genes were present that could 

compensate for the affected function of the SNP-associated gene. If these 

compensatory genes also had ‘off’ expression levels, the SNP-based constraint was 

applied. If the compensatory genes were unconstrained or ‘on’, the SNP-based 

constraint was not applied. Instead of reducing the potential activity of SNP-

targeted reactions by their base model bounds (usually -1000 to 1000 for reversible 

reactions and 0 to 1000 for irreversible reactions), we conducted flux variability 

analysis of the base model at 100% biomass production to calculate the normal 

range of activity of each reaction in glucose minimal medium conditions. Any minor 

impact SNP being implemented resulted in a 10% reduction of the FVA-predicted 

base activity range enforced via reaction bounds while a moderate impact SNP 

resulted in a 50% reduction applied in the same manner. SNPs implemented with 

maximum impact resulted in associated reactions being turned entirely off via 

modification of reaction bounds.  
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The above SNP integration method was applied to each strain-specific model prior 

to the use of the TIGER implementation of iMAT. Using an objective function 

threshold of 10% of the maximum and Gurobi 5.6.2 as the solver, iMAT predicted 

new sets of genes that could feasibly be turned ‘off’ or ‘on’ while maintaining 

production of biomass at 10% in each SNP-

constrained isolate-specific model. The ‘off’ 

genes were inactivated in the model. The 

predicted ‘on’ genes were implemented by 

applying a lower bound constraint of 0.001 or -

0.001 to ensure a minimum level of activity in 

the appropriate direction of reaction activity. 

Reaction direction was evaluated via FVA, and if 

there was not a clear preference for direction of 

activity (for example, the FVA max and min 

indicated the reaction was fully reversible (a 

range of -0.001 to 0.001 or larger)), then the 

‘on’ minimum constraint was not applied to 

avoid inappropriate/unsupported bias in 

reaction directionality. This evaluation meant 

that it was not feasible to apply all constraints 

predicted by iMAT, and a summary of the gene 

constraints and the difference between 

predicted and applied isolate-specific model 

constraints is presented in Figure 5.1. The 

resulting isolate specific models, base model 

iPA1139, and SBML versions of the isolate-

specific models are available at 

http://bme.virginia.edu/csbl/downloads-

pseudomonas-v3.php. 

 

 

FIG 5.1. Converting ‘omics’ data to 
isolate-specific model constraints. 
Counts of genes and SNPs binned into 
their respective functional categories 
(shown in top two tables) are manually 
evaluated for combined expression-
SNP functional impact and then 
provided to the TIGER implementation 
of iMAT for constraint development. 
Resulting iMAT predictions of ‘off’ 
genes that should be inactivated and 
‘on’ genes that should result in 
associated reactions carrying at least a 
minimum level of flux during growth are 
shown. After enforcing the requirement 
that all models must be able to produce 
biomass (grow), the resulting number of 
reactions with constrained flux activity 
in each isolate-specific model is 
presented in the last table. 

http://bme.virginia.edu/csbl/downloads-pseudomonas-v3.php
http://bme.virginia.edu/csbl/downloads-pseudomonas-v3.php
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The isolate specific models were then used to evaluate metabolic activity using 

several methods of constraint-based modelling. Flux balance analysis (FBA) was 

used to predict the ability of each isolate model to grow (produce biomass) in ‘wild 

type’ conditions as well as with single genes deleted to identify in silico genes 

essential for growth. Flux variability analysis (FVA) was used to predict changes in 

potential reaction activity by calculating the minimum and maximum flux of a given 

reaction when the model was required to produce maximum biomass. We 

calculated the flux range from the maximum and minimum flux values for each 

reaction, and then determined whether the range increased or decreased compared 

to unconstrained iPA1139, sorting results into 5 categories: decreased range in 

mDK2-07 compared to mDK2-WT, increased range in mDK2-07 compared to 

mDK2-WT, or comparable changes in the ranges in both strains that are increased, 

the same, or decreased compared to iPA1139. To identify subsystems with high 

concentrations of changes in activity that we interpret here as potential adaptive 

processes, we counted the number of reactions in these altered activity categories 

within each subsystem and then normalized by the number of active subsystem 

reactions in iPA1139. 

 

The redox cofactor production analysis presented in Figure 5.3 was performed by 

optimizing for the maximum production capacity of NAD+ and NADH separately 

while constraining the maximum uptake rates of O2 and CO2 to 0.2, 2, 5, and 20 

mmol/gDW/hr (low to high uptake rates) and fixing the production rate of biomass 

at 0 to 100% of optimum production when only growth is maximized. The 

command-line implementation of Metdraw (also available at www.metdraw.com) 

was used to build a full-sized map of the base model on which FVA results were 

overlaid automatically (Jensen and Papin 2014). 

 

Statistical Analysis 

All experimental data presented are based on biological triplicates. Significant 

differences in data are evaluated using two-sided Student's t-test with significance 

level p = 0.05 unless otherwise stated. For DNA microarray data the statistical 

file:///C:/Dropbox/Dissertation/www.metdraw.com
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analysis includes corrections for multiple testing (see above under DNA microarray 

analysis). 

 

RESULTS  

Previously, we studied genomic evolution in an epidemic P. aeruginosa clone type 

(DK2) during its dissemination across multiple patients over a 40 year time period 

(Yang et al. 2011; Rau et al. 2012 Jun 5). The DK2 clone has been successfully 

transmitted between patients and replaced previously colonizing P. aeruginosa 

clone types (Jelsbak et al. 2007). Thus, DK2 is highly adapted to the CF airway 

environment, which likely includes optimization of its metabolic activity for growth 

within the CF lung. Here, we use DK2 patient isolates to study metabolic 

adaptation, focusing on DK2-WT (which represents the ancestral genotype at the 

time of first colonization of the CF niche), and two isolates collected at later stages 

of clone evolution (DK2-91 and DK2-07) representing host-adapted isolates. We 

also included the well-studied reference strain P. aeruginosa PAO1 (PAO1) (see 

Materials and Methods for detailed description of the strains). 

 

Major changes in central metabolism occur during adaptation 

Growth experiments with DK2-WT, DK2-91 and DK2-07 in glucose minimal medium 

showed a significant reduction in growth rate for DK2-91 (µmax = 0.46 h-1) and 

DK2-07 (µmax = 0.23 h-1) compared to DK2-WT (µmax = 0.87 h-1). The growth 

rate of DK2-WT was higher but similar to the growth rate of PAO1 (µmax = 0.63 h-

1). Closer inspection of the growth curves revealed diauxic growth curves for DK2-

91 and DK2-07, which were not observed for PAO1 and DK2-WT. This observation 

led us to hypothesize that DK2-91 and DK2-07 excreted one or more metabolites 

that were later degraded and metabolized after glucose depletion.  We then 

measured extracellular metabolites via GC-MS analysis, revealing that the oxidized 

glucose derivatives gluconate and 2-ketogluconate were accumulating in the 

medium for DK2-91 and DK2-07. Gluconate and 2-ketogluconate were not detected 

for the reference strain PAO1 and only a small amount of gluconate was detected 

for DK2-WT. These results indicate activity in the oxidative route of glucose 

degradation via gluconate and 2-ketogluconate for DK2-91 and DK2-07 as an  
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FIG 5.2. Glucose metabolism in Pseudomonas aeruginosa. Glucose can enter the cell through the 
phosphorylative or the oxidative route. The oxidative route involves conversion of glucose into 
gluconate or 2-ketogluconate. In the cytoplasm, further degradation of pyruvate may occur through 
three alternate pathways. The blue arrows indicate alternative convergent pathways and their 
respective names17–19,57–60. Abbreviations: ED (Entner-Doudoroff), PP (pentose phosphate), EMP 
(Embden-Meyerhof-Parnas), TCA (Tricarboxylic acid), P (phosphate). 
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alternative to the phosphorylative route where glucose is phosphorylated to 

glucose-6-phosphate (Fig. 5.2). 

Pseudomonas shifts its metabolism towards fixation of carbon dioxide 

To further investigate the central metabolism of P. aeruginosa, we performed 

substrate-labelling experiments. We used a mixture of [1-13C]-labelled glucose and 

[13C6]-labelled glucose. Using uniformly [13C6]-labelled glucose has been referred to 

as reciprocal labelling and it is particularly useful for investigating catabolism of co-

substrates (Christensen and Nielsen 2002). By increasing the background labelling 

of position 2-5 of glucose, incorporation of an unlabelled carbon source (e.g. carbon 

dioxide) could be detected.  The [1-13C]-labelled glucose can be used to track 

activities of different convergent pathways since the labelled C-atom will end up at 

different positions in the carbon skeleton of metabolic intermediates depending on 

which pathway is used to degrade glucose. This method cannot be used to 

differentiate between the phosphorylative and oxidative route of glucose 

degradation to 6-phosphogluconate (Fig. 5.2) since the resulting carbon skeleton of 

6-phosphogluconate is the same regardless of the two alternative routes. However, 

the method makes it possible to distinguish between the three glycolytic pathways: 

the Embden-Meyerhof Parnas (EMP) pathway, the pentose phosphate (PP) pathway 

and the Entner-Doudoroff (ED) pathway (Gunnarsson et al. 2004). Different 

labelling patterns of pyruvate occur depending on which pathway is used to 

catabolize glucose. By inspecting the labelling patterns of amino acids derived from 

pyruvate, we found that the labelling degree of the carbon atom at position 1 in 

pyruvate was around 50% for all strains grown in 100% [1-13C]-glucose indicating 

that most if not all glucose was degraded through the ED pathway. It is well known 

that the EMP pathway is inactive in Pseudomonas species due to a missing enzyme 

and the PP pathway has previously been found only to serve biosynthetic purposes 

for other Pseudomonas species including P. putida and P. fluorescens (Fuhrer et al. 

2005; del Castillo et al. 2007; Chavarría et al. 2013).   

 

When we further examined the labelling patterns of amino acids derived from 

central metabolites from the combined [1-13C]-glucose and 13C6-glucose 

experiment, we found that glycine had a significantly lower labelling degree than 
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FIG 5.3. Carbon dioxide fixation into glycine through the glycine cleavage system. (A) Labelling 
of glycine derived from cultivation in glucose minimal medium (56% 13C6-glucose and 44% [1-13C]-
glucose). The (m+1)-columns indicate the percentages of compounds with one labelled C-atom, 
whereas the (m+2)-columns indicate the percentages of compound with both carbon atoms labelled. 
The control is a measure of the naturally occurring 13C-isotope in bovine serum albumin (BSA). The 
amount of background labelling from 13C6-glucose (56%) is indicated as a separate column. In (A), (*) 
denotes where the labelling percentages of (m+2)-labelling are significantly lower (Student's t-test, 
two-sided, significance level, p = 0.05) than the background level from labelled glucose in the medium. 
(B) Labelling of glycine derived from cultivation in unlabelled glucose and labelled bicarbonate 
(H13CO3

-). In (B-C), (*) denotes where the percentages of (m+1)-labelling of strains are significantly 
higher (Student's t-test, significance level, two-sided, p = 0.05) than the level of the naturally occurring 
isotope (control). Note that panels (A-C) have different scales.   
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 the labelled carbon substrate the cells were growing on for all strains (Fig. 5.3A). 

This observation was most noteworthy for DK2-91 and DK2-07. The minimal 

medium contained 56% 13C6-glucose and 44% [1-13C]-glucose and we would 

therefore expect the average labelling degree for each carbon atom to be 56% at 

minimum. Surprisingly, the data showed that the carbon atoms in glycine had an 

average labelling degree of approximately 30% for DK2-91 and DK2-07 compared 

to approximately 50% for PAO1 and DK2-WT; all were significantly lower than 

56%. Since the labelled substrate was the only carbon source available for the cells 

in the experiment, we hypothesized that the cells have the capacity to fix carbon 

through glycine metabolism.  

 

A literature search identified instances of non-canonical reversal of the glycine 

cleavage system (GCS) in Clostridia species (Bar-Even et al. 2012), using CO2 as a 

carbon source for the synthesis of glycine. To test this, we added 13C-labeled 

bicarbonate into a growing culture in minimal medium with unlabelled glucose. 

Since the bicarbonate was the only source of the 13C isotope (except for 1.1% 

natural prevalence), any excess labelling on glycine would indicate CO2 fixation. 

Bicarbonate was added during exponential growth and DK2-91 and PAO1 cells were 

harvested after one and two generation times. The results were a qualitative 

measure of the ability of the cells to fix CO2 (see Materials and Methods). Fig. 5.3B 

shows the labelling patterns of glycine for PAO1 and DK2-91 from the 13C-

bicarbonate experiment. We find a significant enrichment of 13C in glycine for both 

PAO1 and DK2-91 one generation time after 13C-bicarbonate addition and for PAO1 

the same observation was made after two generation times. Based on these results 

we confirmed that CO2 could be fixed into glycine when P. aeruginosa is growing in 

glucose minimal medium. No significant enrichment of 13C-isotope was measured 

after two generation times in DK2-91, but since the generation time of DK2-91 is 

1.4 fold longer than PAO1, dilution and vaporization of 13C-bicarbonate during the 

FIG 5.3 Cont’d (C) Labelling of serine derived from cultivation in unlabelled glucose and labelled 
bicarbonate (H13CO3). (D) The glycine cleavage system in reverse. Two molecules of carbon dioxide 
are fixated into glycine - one of them via formate formation. Figure adapted from (Bar-Even et al. 
2012). Abbreviations: Reduced electron donor (AH2), oxidized electron donor (A), tetrahydrofolate 
(THF), lipoyl protein (LP). 
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course of the experiment can account for this difference. We included the labelling 

patterns of serine in Fig. 5.2C since serine can be produced from glycine. We find a 

significant enrichment of the 13C-isotope for DK2-91 harvested two generation 

times after 13C-bicarbonate addition. The lack of 13C-labeling in serine for the other 

samples confirms that carbon dioxide is fixed directly into glycine and not into 

upstream metabolic intermediates in glycolysis, since otherwise we would expect at 

least the same degree of labelling in serine as for glycine. In conclusion, we find 

that the Pseudomonas strains are incorporating carbon dioxide into glycine and 

under normal laboratory conditions with normal carbon dioxide pressure in glucose 

minimal medium (Fig. 5.3A), this observation is more pronounced in DK2-91 and 

DK2-07 compared to DK2-WT and PAO1. Our experimental analysis of central 

metabolism therefore resulted in two specific findings related to metabolic 

adaptation in the late stage isolates: (1) metabolism is shifted towards excretion of 

gluconate and 2-ketogluconate and (2) the activity of the glycine cleavage system 

is altered to enable fixation of carbon dioxide in a non-canonical reversal of 

associated pathways. 

 

The glycine cleavage system may operate as an alternative redox recycling 

reaction 

The ability of P. aeruginosa to fix carbon dioxide into glycine has not been reported 

previously, and alterations in glycine synthesis indicated by our labelling 

experiments support our hypothesis that carbon fixation is occurring through the 

glycine cleavage system (Fig. 5.3D) (Bar-Even et al. 2012). A potential selective 

advantage for the activity of this altered glycine synthesis route may be linked to 

the regeneration of NAD+ from NADH coupled to this reaction. We propose that this 

unconventional pathway phenotype operates as an electron sink for the recycling of 

reduced electron carriers, alleviating redox stress as also suggested for some 

anaerobic bacteria (Bar-Even et al. 2012). Different factors in the lung environment 

may contribute to redox stress in P. aeruginosa including oxidative stress from 

immune system defenses and low availability of electron acceptors. The relative 

contribution of antibiotic exposure to increased oxidative stress in bacteria is 

currently under debate (Kohanski et al. 2010; Liu and Imlay 2013), but most 
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recently, Dwyer et al. (Dwyer et al. 2014) provided evidence for antibiotic-induced 

redox alterations in E. coli. We cannot specify whether the source of redox stress is 

limited oxygen, antibiotic exposure or the immune defense within the CF lung; it is 

possibly a combination of all three factors. However, we hypothesize that the 

impact of these stressors is substantial, driving the enhanced carbon fixation into 

glycine for the late-stage clinical isolates and therefore improving the balance of 

redox equivalents. 

 

Metabolic models evaluate the feasibility of adapted redox metabolism 

In light of our experimental observations, we focused our studies on the global 

effects of our proposed isolate-specific phenotypes of glycine metabolism via a well-

curated and recently updated genome-scale metabolic model of P. aeruginosa, 

iPA1139 (http://bme.virginia.edu/csbl/downloads-pseudomonas-v3.php). This 

approach allowed us to systematically evaluate our observed phenotypes in context 

with model-integrated transcriptomics and sequencing data. Our experimental 

examination of glycine metabolism supports non-canonical activity for two 

connected routes of carbon fixation: glycine dehydrogenase and formate 

dehydrogenase (as shown in Fig. 5.3D). To create isolate-specific models using 

iPA1139, we first altered the possible activity of the glycine cleavage system and 

formate dehydrogenase (both canonically modelled in the forward direction); we 

allowed these reactions to run only in the reverse direction in our in silico models of 

DK2-91 and DK2-07 (mDK2-91 and mDK2-07) while they were modelled as 

reversible in our in silico model of DK2-WT (mDK2-WT) and the base model 

(iPA1139) during our data integration process. This enabled us to evaluate the 

feasibility and systemic impacts of the novel carbon fixation phenotypes indicated 

by our labelling experiments.  

 

We additionally constrained the models to replicate isolate-specific phenotypes in 

our experimental conditions by integrating isolate-specific single nucleotide 

polymorphisms (SNP) and transcriptome data collected during growth on glucose 

minimal medium; this effort substantially expands our data integration approach 

from our earlier study of metabolic activity within CF isolates using a previous 

http://bme.virginia.edu/csbl/downloads-pseudomonas-v3.php
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genome-scale model of P. aeruginosa (Oberhardt et al. 2010). In brief, a SNP 

introducing a nonsense mutation in a given gene resulted in inactivation of that 

gene in the model; the Sorting Intolerant From Tolerant (SIFT) algorithm (Kumar et 

al. 2009) was used to predict the functional impact of other SNPs resulting in 

missense mutations. These data were interpreted as “levels” of gene activity 

reduction (minimal, moderate, or maximal) implemented in context with 

transcriptome expression levels (off, potentially active, on) consistent with the 

gene-protein-reaction relationships to develop activity constraints for associated 

reactions (further details of our constraint-based integration of SNP and 

transcriptome data are described in Materials and Methods). These methods 

resulted in isolate-specific models that are consistent with the substantial activity 

changes in pathways suggested by our experimental observations, and also enabled 

prediction of activity changes that were not highlighted by analysis of the in vitro 

data. 

 

Constrained purine metabolism activity contributes to improved redox 

balance during adaptation  

Results from the constraint-based flux modelling support the feasibility of 

alterations in glycine metabolism that result in novel carbon fixation; our isolate-

specific models predict comparable levels of optimal biomass production regardless 

of GCS and formate dehydrogenase directionality. We hypothesized that the 

experimental phenotypes shown by the late stage isolates might indicate a shift 

from aerobic growth with high biomass production to microaerobic conditions where 

redox cofactor recycling was prioritized in addition to biomass production. Given our 

additional experimental evidence for a novel route of CO2 fixation, we evaluated 

the effects of limitations of O2 and CO2 uptake and biomass production levels on 

the ability for each strain model to produce redox cofactors. We specifically 

compared the ratio of maximized NADH vs. NAD+ production fluxes under varied 

uptake constraints and growth requirements for mDK2-WT and mDK2-07, as shown 

in Fig. 5.4A. mDK2-07 predicts a stable redox cofactor production ratio across 

varied O2 and CO2 uptake conditions while the redox ratio of mDK2-WT varies with  
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O2 uptake, CO2 fixation, and biomass production.  

FIG 5.4. Redox cofactor production differences between mDK2-WT and mDK2-07 due to SNP in 
purine metabolism. (a) An evaluation of the effects of altered O2 and CO2 uptake on the ratio of 
NADH production to NAD+ production under a range of biomass production constraints for mDK2-WT 
(blue), mDK2-07 (red), and mDK2-07 with reduced purL activity constraints (shades of purple).  (b) 
Pathway illustration of the connection between glycine metabolism and purine metabolism, specifically 
highlighting purL, a gene that contains a SNP in DK2-07 that the model predicts is connected to 
differential redox metabolism activity between strains. Abbreviations: Glycinamide ribonucleotide 
(GAR), 5'-phosphoribosylformylglycinamidine (FGAM), lipoyl protein (LP). 
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To identify contributors to these differential predictions between mDK2-WT and 

mDK2-07, we modulated the gene and SNP-based constraints applied to each 

model. We identified the restriction of the purine metabolism enzyme 

phosphoribosylformylglycinamidine synthase (purL) due to an applied SNP 

constraint as the main contributor to the stability of the redox ratio in mDK2-07. 

While mDK2-WT has several SNPs resulting in model reaction constraints including 

a SNP affecting GMP synthase (guaA) that also plays a role in purine metabolism, a 

SNP in purL is not present and thus the associated activity of this reaction is 

unconstrained. We were surprised to find that a single SNP contributed so 

substantially to this phenotype of a stable redox ratio under varying uptake and 

growth constraints; further investigation of our model identified the functional 

relationship between glycine metabolism and purL as shown in Fig. 5.4B, which is a 

non-canonical mapping of pathways that usually would not be obviously linked 

together. By incrementally increasing the constraints applied to the 

phosphoribosylformylglycinamidine synthase reaction due to the SNP in purL from 

unconstrained (mDK2-WT phenotype) to the moderate constraints applied in 

mDK2-07, we showed that the redox ratio of mDK2-07 transitions to a balanced 

state as purL activity is constrained. The graded impact on redox metabolism due 

to the purL constraint is clear in microaerobic conditions at low levels of CO2 

uptake; high biomass production requirements magnify the impact of purL 

constraints on the transition to a balanced redox state. We propose that the close 

connections between the altered glycine metabolism reactions and purL as shown in 

Fig. 5.4B support the potential role of purL as a modulator of redox recycling via 

reversal of the glycine cleavage pathway. Our original constraints based on the 

SIFT predictions of SNP impact in purL were a broad estimate of how function might 

be altered; further fine-tuning may reflect the actual degree of impact of the SNP in 

connection to the experimentally-observed phenotype. Ultimately, our models 

predict that the purL SNP is tightly tied to improved redox balance via novel CO2 

fixation in the late stage isolates.  
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Many metabolic systems may contribute to the redox balance of a cell in addition to 

the contributions we have shown from glycine and purine metabolism. Using flux 

variability analysis (FVA) (Mahadevan and Schilling 2003) we evaluated potential 

changes in redox metabolism by comparing changes in reaction activity within 

reactions where redox cofactors (here defined as NAD+, NADH, NADP+, NADPH, 

FAD+, and/or FADH) participate versus changes in reaction activity across all 

reactions. We then used a global metric of total flux activity (the sum of the ranges 

between minimum and maximum potential flux predicted for all reactions using FVA 

in a given model divided by the same calculation performed for iPA1139) for each 

isolate model normalized by the same measure in iPA1139. Albeit a coarse 

representation of “metabolic capability” of the network, this metric provides a single 

snapshot of changes in metabolism as a function of changes in the underlying 

network characteristics. The late stage models predict 73.2% and 74.7% of the 

iPA1139 global activity metric compared to 69% by mDK2-WT, indicating a total 

flux activity increase in mDK2-91 and mDK2-07 compared to mDK2-WT with this 

global metabolic metric. However, the late stage models predict 85% and 84.4% of 

the iPA1139 redox activity metric compared to 90.1% by mDK2-WT within the 

subset of reactions that utilize redox cofactors, showing a reduction in the redox-

related flux activity of the late stage strain models compared to mDK2-WT. We 

interpret these opposing changes between global and redox metabolism potential 

activity as an indication of systemic shifts in redox-related reaction activity between 

the wild-type and late stage isolates.   

 

Genome-scale metabolic modelling contextualizes global metabolic 

changes 

The isolate-specific metabolic models allow us to evaluate altered activity across a 

far greater expanse of metabolic systems than just glucose and glycine metabolism. 

They account for the effects of other SNPs in addition to the purL SNP that we 

previously highlighted as well as the reprogramming of the transcriptome due to 

adapted regulation and/or mutation. We can readily perturb specific genes and 

reactions computationally to investigate both the underlying drivers and potential 

consequences of genetic and transcriptomic adaptations at the genome scale. Here, 
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we performed routine predictions of essential genes and flux variability that are 

often used to identify novel treatment targets by prioritizing genes and reactions 

important for growth (Chavali et al. 2012). Our results indicate broad systemic 

rewiring in the late stage isolates that both complement our conclusions about 

glycine and redox metabolism as well as highlight other potential therapeutic 

targets important to adaptation during adaptation to a host environment. 

 

Essential metabolic activity alters during adaptation 

The isolate-specific models enable us to evaluate genes essential to strain growth 

phenotypes in glucose minimal medium by inactivating a given gene in the models 

and then predicting maximum possible growth in silico. Figure 5.5 shows a Venn 

diagram categorizing all essential genes across our base model iPA1139, mDK2-WT, 

mDK2-91, and mDK2-07 together with a stacked histogram of reactions associated 

with the DK2-specific essential genes. Isolate-specific SNPs were located in six 

genes predicted to be essential for growth in all models.  Of these, constraints 

applied due to the SNP in PA3769, encoding GMP synthase (guaA), were the main 

driver of reduced in silico growth in mDK2-WT compared to the base model; 

constraints applied due to a SNP in PA1609, encoding beta-ketoacyl-ACP synthase I 

(fabB), affected growth to a lesser degree in the same strain. In contrast, 

constraints based on the purL SNP located in PA3763 were the main driver of 

reduced in silico growth in mDK2-91 and mDK2-07. The presence of SNPs in these 

genes predicted to be critical in metabolic activity according to our computational 

models adds emphasis to their potential importance to adaptive selection during 

infection. 

 

While an array of interesting pathways have altered gene essentiality between 

strains, we found the changes in glucose metabolism, glycine metabolism, and 

oxidative phosphorylation as indicated in Fig. 5.5B to be of particular interest when 

compared with the results of our previous experiments. These changes are the 

result of integrating SNP and expression data into our models; we therefore can 

identify the experimental data underlying the specific constraints that contribute to 

these gains in gene essentiality. Upregulated pentose phosphate pathway genes in 
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FIG 5.5. Isolate-specific gene essentiality and associated functions. 



 

 

152 

 

 

DK2-91 and DK2-07 contribute to differences in essentiality predicted by the late 

stage isolate models, highlighting adaptation in glucose metabolism. Select glycine 

cleavage system genes are essential in mDK2-07 due to expression-based 

constraints; glycine dehydrogenase is identified as an essential reaction in mDK2-

91 and mDK2-07 in contrast to mDK2-WT for similar reasons. In oxidative 

phosphorylation, there is a switch in preferred cytochrome complexes in oxidative 

phosphorylation between model mDK2-WT and mDK2-91, which rely on 

cytochrome bc1 complex genes (PA4429-4431), while model mDK2-07 relies on 

cytochrome c oxidase genes (PA1317-1321). This phenotype results from 

transcriptomic changes in DK2-91 and DK2-07 compared to DK2-WT in glucose 

minimal medium that shows significant downregulation of the nuo operon encoding 

NADH dehydrogenase (complex I of the electron chain) in the late stage isolates. 

The lack of active oxidative phosphorylation could explain the need for alternative 

redox recycling reactions such as glycine synthesis through the glycine cleavage 

system. These hypotheses regarding mechanistic drivers of altered essentiality 

between strains are a key contribution enabled by our integrated systems 

approach. Identifying the strain-specific genes important to the adaptations 

occurring in the DK2 lineage allows us to highlight functionally impactful SNPs and 

offer specific, novel treatment targets within key pathways reprogrammed during 

evolution within the host. 

   

Changes in pathway activity highlight adapting systems 

We evaluated the results of flux variability analysis that predicts the minimum and 

maximum levels of a reaction’s flux while maintaining maximum biomass 

production; this enables calculation of the range of potential activity for a given 

FIG 5.5 Cont’d. (a) Stacked histogram of reactions associated with DK2-specific essential genes, as 
shown by % associated reactions within a particular KEGG subsystem. . Total reactions assigned in  
the KEGG subsystem are included in parentheses in each subsystem label. Results for the essential 
reaction distribution across the base model and three isolate-specific models are shown in each 
subsystem category as indicated by colours corresponding to the categories of the Venn diagram in 
(b). Bolded histogram labels highlight subsystems that show variation in reaction distributions between 
isolate models. (b) Venn diagram of the distribution of in silico essential gene predictions, highlighting 
the differences in unique versus shared essential genes between mDK2-WT, mDK2-91, mDK2-07 and 
the base model (iPA1139). 
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reaction. Fig. 5.6 shows a full-scale map of the metabolic network where directional 

differences in adapting reaction activity in mDK2-WT and mDK2-07 are identified by 

reaction colour and dashed lines identify SNPs in associated reactions. Decreases in 

the range of reaction activity likely indicate a SNP- or gene expression-associated 

constraint, while increases in range could be interpreted as increased flexibility of 

this pathway that is required to enable the expression-associated constraints or 

produce necessary biomass components by an alternate pathway; broadly, altered 

range in either direction may indicate areas of potentially important metabolic 

adaptation.  

 

 

Notable trends visualized on the map include increased constraint of "Purine 

metabolism" flexibility in mDK2-07 and changes in range of reaction activity in 

"Glycine, serine & threonine metabolism". These specific metabolic pathways were 

also identified through our study of central metabolism. However, the network map 

includes a list of additional metabolic pathways with differential activity including 

pathways related to "Lysine degradation", "Folate metabolism", "Valine, leucine, 

and isoleucine degradation", "Pyrimidine metabolism", and "Histidine metabolism". 

The mentioned pathways showed the highest degree of altered system activity in 

comparisons between early and late stage isolates (see Materials and Methods). 

Our systems analysis highlights areas of potential adaptation due to SNPs and 

altered transcriptomics in a broad array of pathways, suggesting new avenues of 

future experimental investigation that could elucidate other important mechanisms 

of adaptation in addition to our novel relationship between altered carbon fixation 

and redox metabolism. 
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FIG 5.6. Flux variability analysis displayed on global metabolic map.  
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DISCUSSION  

In this study we have used a systems biology approach to investigate metabolic 

behaviour during adaptation of a pathogen to the human host. We used genome-

scale metabolic models integrated with high throughput data to evaluate the 

feasibility and potential impacts of novel metabolic adaptations suggested by 

experimental characterization of glucose metabolism in P. aeruginosa clinical 

isolates. There is value in evaluating both broad changes in high level systems and 

specific, detailed molecular mechanisms using systems biology approaches; the 

former enables the prediction of systemic network production and quantification of 

network elements while the latter offers specific hypotheses regarding functional 

roles of the smallest network components (Heinemann and Sauer 2010). Here, we 

provide a systems level perspective of key pathways connected to metabolic 

adaptation, but focus our analysis on specific systems suggested by targeted 

experiments that indicated major changes in metabolism between initial infecting 

strains of P. aeruginosa and late-stage clinical isolates. We confirmed that the ED 

pathway is the only active glycolytic pathway in P. aeruginosa, consistent with other 

Pseudomonas species. Experimental profiling identified a transition towards 

accumulation of gluconate and 2-ketogluconate and enhanced fixation of carbon 

dioxide into glycine specifically in the late stage isolates. Computational modelling 

supported the feasibility of reversed utilization of the glycine cleavage system, 

enabling a novel route of carbon fixation that in combination with a previously 

inconspicuous mutation in purine metabolism contributed to improved redox 

balance in the late stage isolates. We identify genes and pathways key to the 

adaptive processes we see in the DK2 lineage using gene essentiality and flux 

variability analysis, which may contribute to the design of novel treatment 

FIG 5.6. Flux variability analysis displayed on global metabolic map. Differential reaction activity 
ranges between mDK2-WT and mDK2-07 predicted by flux variability analysis under 100% biomass 
demands. Increase/decrease in flexibility was identified through comparison of mDK2-WT and mDK2-
07 reaction predictions with base model iPA1139 reaction predictions. Dashed lines indicate SNPs 
present in DK2-WT and DK2-07. The map provides an overview of metabolic changes between DK2-
WT and DK2-07, with enlarged panels of purine metabolism and glycine, serine and threonine 
metabolism presented to highlight the important changes identified in these subsystems. Users can 
zoom in to identify specific compounds and reactions connected to highlighted areas of differential 
activity. 
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strategies. Our approach results in a metabolic map that provides mechanistic 

insight into how SNP and transcriptional changes affect metabolism at a genome 

scale, bridging the difficult gap between molecular mechanisms and broad, system-

wide adaptation and prioritizing novel areas of metabolic reprogramming that can 

be targeted therapeutically. 

 

The production of gluconate has previously been observed for clinical isolates of P. 

aeruginosa. Behrends et al. (Behrends et al. 2013) found that gluconate excretion 

is associated with higher tolerance towards antibiotics and another study by Galet 

et al. (Galet et al. 2014) found that gluconate produced by P. aeruginosa inhibits 

production of an antibiotic in Streptomyces coelicolor. In the context of the above 

analysis indicating the shift in redox balancing, it might also be possible that the 

accumulation of gluconate and 2-ketogluconate is driven by the production of two 

equivalents of NADPH coupled to the oxidation reactions of glucose to 2-

ketogluconate via gluconate in the periplasmic space (Fig. 5.1). This suggestion is 

not necessarily in disagreement with the correlation between gluconate and 

antibiotic resistance since there may also be a link between NADPH generation and 

antibiotic resistance given the literature on antibiotics and oxidative stress 

(Kohanski et al. 2010; Derewacz et al. 2013). The identification of the ED pathway 

as the only active glycolytic route in P. aeruginosa can also be linked to generation 

of NADPH. The ED pathway is found to be essential for glucose metabolism in other 

Pseudomonas species; in P. putida, its activity has recently been associated with 

resistance towards oxidative stress (Chavarría et al. 2013). The activity of these 

pathways can thereby be a mechanism to accommodate the conditions within the 

lung environment including both antibiotics and ROS generated by PMNs, both of 

which are sources of oxidative stress.  

 

The genome scale models support the potential for novel carbon fixation routes in 

the late stage isolates; they also enable us to connect the late stage isolate glycine 

metabolism phenotype and altered redox balance in microaerobic conditions to a 

specific SNP in purine metabolism through network analysis. A study by Ryssel et 

al. recently identified upregulated purine metabolism activity as a contributor to 
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poor stress response in Lactococcus lactis, citing the production of guanine 

nucleotides in inducing stress sensitivity (Ryssel et al. 2014 Aug 20) while a prior 

study had noted the essentiality of purine synthesis in  Escherichia coli during blood 

infections (Samant et al. 2008). To our knowledge, adaptation in purine metabolism 

has not been identified as noteworthy in cystic fibrosis infections; we evaluated 

published genotyping studies of cystic fibrosis isolates and identified purine SNPs in 

other clinical isolates (Bezuidt et al. 2013). We suggest that altered purine 

metabolism may be tied to the reversal of the glycine cleavage system and 

contributes to resultant altered redox physiology. Whether the purL SNP also 

contributes to the need for glycine production via the GCS or is a simple way to 

modulate effects of the reversed GCS phenotype is currently uncertain. However, it 

is likely that the downregulated oxidative phosphorylation highlighted by our late 

stage isolate gene essentiality predictions is a way to avoid generation of oxygen 

radicals through the electron chain. The bacteria therefore need to redirect the 

metabolic flux through the glycine cleavage system to ensure regeneration of NAD+ 

that is used in glycolysis.  

 

Our hypothesis regarding the role of the glycine cleavage system as an important 

mediator of successful adaptation in P. aeruginosa led to our investigation of other 

cases where the glycine cleavage system is important. The glycine cleavage system 

is not only present in bacteria but is present across all domains of life (Bar-Even et 

al. 2012). In cancer cells, elevated activity of the glycine cleavage system has been 

associated with tumorigenesis; glycine decarboxylase activity was correlated with 

reduced survival of patients with lung cancer (Zhang et al. 2012).  Further 

investigation of the GCS in other bacterial pathogens and disordered human cells 

such as cancer cells may merit evaluation of a potential reversal of the pathway 

that enables beneficial adaptation in redox metabolism during cell proliferation in 

stressful environments. 

 

Changes in metabolism in P. aeruginosa during adaptation have previously been 

considered as pleiotropic effects of regulatory actions on other targets, such as 

virulence factor production (Nguyen and Singh 2006; Smith et al. 2006). Here, we 
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suggest that changes in metabolism are a direct target of adaptation and a driving 

force is selection for improved redox balance. Our systems-based analysis 

highlights important genes and metabolic activities involved in these adaptive 

processes, proposing specific pathways for novel therapeutic measures that could 

be used to pre-emptively combat an organism’s evolutionary goals such as rewired 

redox metabolism. We suggest a concrete example of redox balancing through the 

glycine cleavage system, identifying a future target of interest for unwanted cell 

growth in the human body. 
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Chapter 6: Reflections and future directions 

 

A Summary 

My dissertation work has been a collection of projects revolving around systems 

analyses of the metabolic activity of Gram-negative opportunistic pathogens. 

Focusing specifically on pathogens that induce chronic infections in cystic fibrosis 

patients, I investigate the inherent differences in metabolic capacity and virulence 

encoded into their genomes by converting this information into quantitative models 

of metabolic activity. The models have allowed me to predict the functional impacts 

of differences in genetic content between species and extend these comparisons to 

differences within species and strains under specific growth states and adaptive 

stages using omics-based constraints. Parsing predictions of reaction fluxes from 

linear optimization techniques such as flux balance analysis and flux variability 

analysis has led to the identification of network components critical for pathogen 

growth and unique capacities of virulence-linked metabolic pathways. The models 

are also an excellent framework for contextualized analysis of information from 

genome annotations of bacteria with large and complex reservoirs of metabolic 

genes. Curation of model content and predictions guides annotation refinements 

and provides an efficient organizational structure for comparing genomic content 

between species and strains from a functional perspective.  

 

Contributions 

Reconstructions 

Building and updating the four new reconstructions at a high level of detail and 

coverage was a considerable portion of my PhD work; these models are tools for 

the entire community to use and have hopefully been built in an accessible format 

that will make future improvements an easier process than what I underwent in 

creating them in standardized syntax with tools that were still under development. 

While model construction can be tedious even with the use of semi-automated 

tools, the experience provides invaluable insight into a given model’s strengths and 

potential weaknesses that is critical to the design of future analyses. Additionally, 
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these models are then disseminated throughout the modeling community, 

multiplying the impact of any time devoted to model construction and refinement.  

 

The models that I (and co-authors) have provided were curated using the field-

standard approaches of single substrate utilization assays and proposed rich-media 

essential genes identified through transposon mutagenesis studies. I also devoted a 

substantial amount of time to inclusion of peripheral pathways and curation of GPR 

formulas because the bacteria I was modeling were known for their large, under-

annotated genomes that encoded broad and flexible catabolic potential. These 

efforts resulted in very large models that predict high optimal growth rates and a 

limited number of essential genes in complex media. Future curation should be 

focused on improving the predictions of biomass and byproduct production rates as 

well as GPR assignments under a broader range of growth conditions. 

 

Of these future areas of work, validating the predicted impacts of gene and 

pathway redundancy seems more immediately accessible. Growing interest in the 

idea of underground metabolism and enzyme promiscuity motivates an expanded 

analysis of model component essentiality. Using transposon mutant libraries and 

TN-seq screening to experimentally map essential genes and pathways in a broader 

array of growth conditions would provide validating data sets that could be used to 

substantially refine model predictions. Our models would be particularly useful to 

couple with these studies as they enable systemic assessments of the function of 

particular genes and enzymes.   

 

Experimental measurement of production rates and yields would also be feasible 

using transposon library screening, but requires a transition from the binary (or at 

least binned) outcomes of gene essentiality assessment to a continuum of predicted 

rates. For example, achieving an accurate prediction of a gene deletion’s impact on 

growth (essential, inhibitory, or no impact) is more straightforward than accurate 

predictions of the specific production level of a siderophore.  
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Virulence factor modeling 

My focus on virulence factor synthesis pathways and virulence-linked metabolic 

capacity was an extension of ideas originally developed in Matthew Oberhardt’s 

work with the first iterations of the P. aeruginosa model that has been mentioned 

throughout this thesis. Methodical expansions to his approach have improved the 

accessibility of modeling predictions to non-modelers. More emphasis has been 

placed on the role of single genes and substrates in the context of virulence factor 

production to simply experimental validation. The idea of targeting virulence factors 

has been occasionally maligned as a distraction from the need to understand 

mechanisms of existing antibiotic resistance. However,  the method of choice for 

rapidly getting new therapeutics out to patients is high throughput screening of 

small molecules and drugs, repurposing approved chemotherapies, and identifying 

drug synergy that increases effectiveness and/or prevents resistance from arising. 

Thus,  targeting alternate pathways that contribute to successful infections is a 

compelling and under-explored area that aligns perfectly with the capabilities of 

genome-scale metabolic modeling. 

 

This dissertation contains preliminary results of experimental validation of the 

provided targets for inhibition of virulence factor production. Ultimately, screening 

of gene deletions predicted to result in complete or partial inhibition based on 

quantitative production metrics should be performed using transposon mutant 

libraries or other engineered strains. Methods are available to quantitatively 

evaluate production levels of the virulence factors included in the model, though 

ease of performance and precision of the results can vary. Quantification of 

pyocyanin production requires a few extraction steps similar to those used for 

pyoverdine as described in Chapter 4 such that concentration can be determined 

via optical density measurements at a specified wavelength (Wurtzel et al. 2012). 

The production of alginate and rhamnolipids would be other easily accessible 

measurements to conduct given that they can be assayed with dyes which are then 

quantified using optical density measurements at specific wavelengths (Hay et al. 

2009; Pinzon and Ju 2009). In contrast, experimental evaluation of LPS production 
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requires more specialized expertise using LPS Western blots (Davis, Jr. and 

Goldberg 2012). 

 

The production tradeoff metric used to comprehensively account for both biomass 

and virulence factor production defects due to gene inhibition could also be further 

explored. Computational evaluation of the specific shape of the Pareto front (the 

curve of the Pareto area boundary) could enable finer categorization of different 

tradeoff ‘phenotypes’ that might offer insight into the underlying mechanics of the 

defects. For example, gene inhibition in similarly functioning pathways might result 

in the same Pareto front shape. Additionally, optimized growth versus virulence 

factor production could be more rigorously evaluated with these predictions by 

comparing in vitro versus in silico virulence factor production at a given growth 

rate. Confirmation of growth-linked versus virulence-linked defects would be 

important in choosing a therapeutic target that may or may not result in growth-

linked drug resistance. 

 

Evaluating adaptation via omics integration 

My work analyzing adaptation within longitudinal clinical isolates from Danish CF 

patients was an interesting challenge in data integration. There are a tremendous 

number of ways to analyze omics data, much less integrate the dataset into a giant 

model (Machado and Herrgård 2014). I tried many methods based on expression 

level cutoffs and statistical significance before implementing a comparatively simple 

approach modeled after the paper by Machado et al.. My novel method for SNP 

reconciliation and integration in conjunction with the expression data was the most 

substantive contribution to altered predictions between the isolate models. This is 

sensible given that any permanent change that appears to be actively selected for 

within temporally consecutive strains is likely of higher import than impermanent 

fluctuations in expression data. Viewing the expression data as an outward 

extension and artifact of the changes induced by the SNPs was an important mental 

transition to make. While not a perfect representation of the complex layers of 

metabolic rewiring that appear to occur during long term adaptation,  a considered 

understanding of the layered relationship between SNPs and expression data was 
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certainly helpful during the methods development process and analysis of results. 

The contextualization of functional impacts of adaptation with my co-author 

Julianne’s experimental characterization of flux was also a challenging aspect of this 

project. However, our integrated approach helped us develop our hypotheses 

regarding redox stress and the connection of the glycine cleavage pathway to 

purine metabolism is a novel contribution that would not have been feasible without 

the metabolic modeling. 

 

Design decisions and caveats 

Tradeoffs in annotation refinement and model expansion 

In my methodical refinement of the models, the incorporation of genes with lower 

quality functional assignments  has contributed to the substantial size of the 

models. I have attempted to balance between coverage and specificity; when gap-

filling for a needed reaction, I considered lower confidence annotations (BLAST E-

value scores up to 1E-10 and/or assessment of protein functional domain 

predictions depending on how badly the gap needs to be filled based on modeling 

results). However, I also added genes of higher similarity and more specific 

secondary function annotations on genome databases even if gapfilling was not 

required (BLAST E-value scores up to ~1E-35 and more specific domain 

predictions). Given the recent publications supporting unexpected levels of enzyme 

promiscuity and underground metabolism (Patrick et al. 2007; Notebaart et al. 

2014), I feel these additions were justified.  

 

In my view, the known metabolic flexibility of these pathogens, their large 

genomes, and their complex regulatory networks already motivate the 

incorporation of omics constraints to make specific, non-comparative predictions of 

function. I treat the models more as a reservoir of potential functionality that then 

can be reduced with further constraints to tailor them for specific questions. By 

including a more than strictly necessary number of genes, I attempt to increase the 

flexibility of the models in capturing behavior in an expanded range of scenarios. I 

would rather overpredict function in the context of a hunt for new therapeutic 
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targets; to me, it increases the confidence I have in the targets I do identify as 

being critical for a particular application or synthesis product. 

 

There are obviously drawbacks and caveats to this approach that must be taken 

into account when designing a study using the models. If I argue that I need to 

include more hypothetical gene assignments in favor of increased coverage and 

flexibility, this may lower the accuracy of my predictions in certain conditions if I do 

not incorporate extra constraints. The models currently predict very high optimal 

metabolic capacities in rich media because of the many catabolic pathways present 

in Pseudomonas and Burkholderia genomes as well as the high level of pathway 

redundancy via either gene duplications or isozymes. Whether the bacteria are 

realistically capable of evolving to the high levels of growth predicted under these 

conditions is less certain due to regulatory constraints as well as alternate biological 

objectives that may compete or interfere with growth (i.e. quorum sensing, 

competition for nutrients as a community of pathogens grows, the benefits of social 

cheating versus production of public goods). Studies have also shown clear 

substrate utilization preferences by P. aeruginosa in the CF lung that cannot be 

justified by current model predictions based on optimality (Palmer et al. 2007), 

though this may also hinge on incomplete or unknown metabolic pathways not 

currently included in the model.  

 

Further development of multi-objective modeling (Schuetz et al. 2012; Zomorrodi 

et al. 2013), omics integration techniques, and the construction of a complete 

regulatory network to integrate with our metabolic models as is being attempted for 

other organisms (Karr et al. 2012; Lerman et al. 2012) are all avenues to improve 

predictions in the context of high content reconstructions. It would also be 

worthwhile to conduct evolution experiments on relevant rich media such as SCFM 

and improve the accuracy of applied media conditions by improving the accuracy of 

substrate uptake constraints specifically. 
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Benefits of comparative analysis 

This obviously draws questions regarding the predictions made in this thesis 

without incorporating extra constraints via omics data. While our updated P. 

aeruginosa reconstructions have still improved in prediction accuracy for gene 

essentiality and substrate utilization via curation and expansion of included 

reactions and their GPR formulations despite the moderate confidence addition of 

genes, there are likely limitations to the model’s ability to accurately predict growth 

and production yields as mentioned. However, our comparative analysis approach 

allows us to identify gene deletions which induce differences from the base model 

state, mitigating concerns regarding specific rate and yield predictions in favor of 

evaluating relative changes.  

 

Future iterations of the model can be curated to provide improved assessments of 

production rate via more specific constraints of flux bounds, but this would also 

induce more specific tailoring to specific media conditions and reduce the flexibility 

of the model. It would be worthwhile to compare the model with later versions of 

the many E. coli reconstructions that have been built using more tailored 

constraints to achieve accurate yield predictions when compared with in vitro 

evolution experiments. Here, the investigation of gene deletions that indicate novel 

targets for virulence factor inhibition supports our focus on improving GPR 

relationships and expanding genomic coverage of the models.  

 

Iteration in integrated analyses 

The specific mechanistic predictions made in my evaluation of adaption in chronic 

infections do use omics constraints to tailor the models to isolate-specific growth 

states. However, we still did not achieve perfect alignment with the experimental 

results obtained regarding the glycine cleavage system. Ultimately we used the 

model as an organized resource in our initial hunt for any reactions that might be 

contributing to the unexpected glycine accumulation in late stage isolates. We then 

had to specifically constrain the model to replicate the pathway reversal; creating 

the models using the SNP and expression constraints still did not create any specific 

demand for this pathway to be reversed. This illustrates how there still needs to be 
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active involvement in choosing how to best achieve your investigative goals when 

using reconstructions. Ultimately we used the model to seed a hypothesis, went 

back to the lab to test said hypothesis, and then evaluated what the repercussions 

of this hypothesis would be if it were true from a broad perspective by returning to 

the model and adjusting constraints.  

 

Some of our specific mechanistic predictions definitely need further experimental 

validation. Other CF isolates should be examined to see if SNPs appear in purine 

metabolism pathways; ideally, a pool of isolates with and without this SNP could be 

evaluated for glycine accumulation. Redox stress could also be artificially induced in 

the two groups to see which pool adapted more quickly. An alternate approach 

would be to see if reversal of the purine SNP in our DK2 isolates through allelic 

replacement caused any change in glycine accumulation. While we are considering 

which avenue to pursue, we feel our combined experimental and computational 

approach is an impressive representation of an integrated systems analysis that 

offers mechanistic insight, validation, and expansion to broader, important 

hypotheses regarding novel biological functions. 

 

Future (i.e. partially completed) work 

CF community model 

At the beginning of my time in Jason’s lab, we planned to develop a multi-pathogen 

model of cystic fibrosis infection. Initially our interest revolved around the 

competition and differential virulence between P. aeruginosa, B. multivorans and B. 

cenocepacia.  Growing interest in microbiome studies has resulted in some of the 

first studies of bacterial species composition within CF sputum as patients age 

(Zhao et al. 2012b), showing that P. aeruginosa outcompetes other infecting 

species such as Staphylococcus aureus in children with CF to become the dominant 

pathogen after decades of infection. Burkholderia species also manage to persist for 

decades, and B. cenocepacia is capable of outcompeting and replacing other strains 

such as B. multivorans to cause severe morbidity and mortality in patients; 

however, overall incidence of Bcc infections is low. We wanted to investigate both 

inherent advantages in metabolic capacity as performed in Chapter 3 of this 



 

 

167 

 

dissertation and potential metabolic interactions such as resource sharing or 

competition, adaptive niche specialization, and the deployment of virulence factors 

such as phenazines or quorum sensing crosstalk between species. 

 

Inspired by a metabolomics study of secreted metabolites in Streptomyces 

coelicolor co-culture (Traxler et al. 2013), I have screened pairings of five strains of 

our three CF pathogen species on agar plates for four media conditions. 2 ul of 

culture at a standardized 0.25 OD600 in dilute liquid SCFM were plated on glucose-

M9, arginine-M9, phenylalanine-M9, and SCFM solid media plates. Strain pairings 

were created by spotting two cultures of distinct strains 5 mm apart and incubated 

at 37C for 6 days, imaging each colony pair every 24 hours (2 replicates per 

pairing). Single colonies for each strain (2 replicates) from the same starting 

culture were plated in isolation as a control on each media.  

 

Unique interactions were apparent via visual inspection of pigment production, 

colony size, and colony morphology between multiple strain pairings as shown via 

representative pairings in Fig. 6.1A. These results, combined with prior studies of 

growth enhancement in biofilms and during antibiotic exposure showing unique 

interrelationships between Pseudomonas and Burkholderia species, supported our 

hypotheses regarding potential metabolic interactions of these species. The in vitro 

phenotyping shows increased Bcc strain growth rate when paired with PA14, 

changes in secondary metabolite production, and strain-specific killing that is also 

substrate-dependent.  These experiments need to be replicated several more times 

and evaluated using image-based quantitative measurements such as colony 

diameter, pigment intensity, and surface area to enable statistical analysis. 

 

I have performed some initial comparative analyses of the four CF pathogen 

reconstructions for B. cenocepacia J2315, B. multivorans ATCC17616, P. aeruginosa 

PAO1 and P. aeruginosa PA14. Figure 6.1B and 6.1C show the distribution of genes 

and reactions across KEGG subsystems within the 4 models. Bcc species have a 

larger repertoire of secondary metabolism pathways than the P. aeruginosa strains, 

which may provide additional avenues for substrate utilization that enable the  
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Table 1. Growth capacity (normalized by max of all conditions)

iPY1537 iJB1411 iPae1148 iPau1131

Cystic fibrosis sputum (synthetic) 0.41 0.34 1.00 1.00

Arginine minimal media 0.08 0.08 0.08 0.08

Glucose minimal media 0.09 0.09 0.09 0.09

Phenylalanine minimal media 0.07 0.06 0.05 0.05

A 

B C 

D 

Genes Reactions 

FIG 6.1. Preliminary CF pathogen community assessments.  
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avoidance of metabolic competition and/or enhance growth of P. aeruginosa. Figure 

6.1D shows normalized predictions of growth capacity (biomass production flux) for 

the four models on relevant media; P. aeruginosa strains are predicted to have a 

growth advantage on CF sputum, but Bcc strains have an equal to slightly higher 

growth capacity on the other substrates. Subsystem distributions of predicted 

essential reactions indicate that a broader set of unique pathways are vital to Bcc’s 

growth in nutrient limited environments; this inefficiency may contribute Bcc’s 

improved survival in certain co-culture conditions with P. aeruginosa strains in vitro. 

 

I plan to perform a more rigorous analysis of potential metabolic interactions by 

actually connecting the models to create a community model, possibly using 

OptCom as a platform (Zomorrodi and Maranas 2012). I would like to improve 

some of my phenotyping measures using more quantitative methods, and 

potentially integrate omics characterization via RNAseq of colony pairs. 

 

Broader goals 

My dissertation research has provided the opportunity to build a depth of 

knowledge of systems analysis, metabolic modeling, and comparative genomics. I 

have also substantially developed my understanding of the biology of opportunistic 

Gram-negative pathogens; I find their position as both human pathogens and 

beneficial soil bacteria to be a fascinating convergence of metabolic potential. Their 

complexity presents a real challenge to biomedical researchers; I have therefore 

placed high value on truly investing in both understanding underlying biology and 

developing computational skills to improve my ability to contribute to a growing 

health crisis and communicate with collaborators with strengths on either side of 

the field. 

 

FIG 6.1 Cont’d. (A) A subset of phenotypic differences in co-culture of 5 strains on 4 different media 
over the course of 6 days at 37C. Initial colonies were spotted in 2 μl .5X SCFM at 0.25 OD at a 
distance of 5 mm apart. (B) Distribution of genes within KEGG subsystems across 4 metabolic 
reconstructions. (C) Distribution of reactions within KEGG subsystems across 4 metabolic 
reconstructions. (D) Normalized differences in growth capacity across 4 metabolic reconstructions for 
4 different media. 
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I am interested in pursuing the study of interactions among the growing list of 

bacteria that co-habit in these chronic infections. Most microbiota studies have so 

far focused on the human gut. However, chronic infections are a serious and 

growing problem that affect more than just CF patients; the number of patients 

with pneumonia linked to COPD is expanding as rising wealth in developing 

countries has led to longer lives and a surge in later-life noncommunicable diseases 

that are compounded by increased tobacco use. Hospital-acquired infections are 

another key component of the drug-resistance health crisis. Comparisons between 

the adaptive rewiring and pathogenic communities that develop in these health 

conditions have not yet been performed using any kind of systems modeling 

analysis to my knowledge. 

 

I am also interested in expanding my evaluation of tradeoffs between adaptive 

drivers during chronic infections. Few studies have used robust quantitative 

modeling to assess competing objectives during bacterial colonization of the host. 

An understanding of the complex factors that contribute to successful adaptation 

will offer novel therapeutic targets. Given the rapid development of high throughput 

phenotyping and increasing sophistication of modeling techniques, this goal is no 

longer far from reach and represents a unique opportunity for a metabolic modeling 

approach. 

 

In summary, the field of metabolic modeling has been slowly building its reputation 

as an important tool in addressing human disease. Its utility will only increase as 

more modelers are trained and reconstruction and analysis techniques are 

improved and made more accessible. Metabolic reconstruction and analysis is 

quickly merging with high quality experimental approaches that promise to 

revolutionize our understanding of and ability to combat infections by opportunistic 

pathogens. 
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