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Abstract

The contact invariant is an element in the monopole Floer homology groups of an
oriented closed three manifold canonically associated to a given contact structure. A
non-vanishing contact invariant implies that the original contact structure is tight,
so understanding its behavior under symplectic cobordisms is of interest if one wants
to further exploit this property.

Under a suitable reinterpretation of work by Mrowka and Rollin, we will show that
the contact invariant behaves naturally under a strong symplectic cobordism.

As quick applications of the naturality property, we give alternative proofs for the
vanishing of the contact invariant in the case of an overtwisted contact structure,
its non-vanishing in the case of strongly fillable contact structures and its vanishing
in the reduced part of the monopole Floer homology group in the case of a planar
contact structure. We also prove that a strong filling of a contact manifold which is
an L space must be negative definite.
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1. Stating the Result and Some Applications

Monopole Floer Homology associates to a closed, oriented, connected 3-manifold
Y three abelian groups HM

∧

•(Y ) , ĤM•(Y ), HM•(Y ), pronounced HM -to, HM -
from and HM -bar respectively. They admit a direct sum decomposition over spin-c
structures of Y , in the sense that

HM

∧

•(Y ) =
⊕
s

HM

∧

•(Y, s)

ĤM•(Y ) =
⊕
s

ĤM•(Y, s)

HM•(Y ) =
⊕
s

HM•(Y, s)

In fact, the previous decomposition is finite [32, Proposition 3.1.1]. The chain
complexes whose homology are the previous groups are built using solutions of a
perturbed version of the three dimensional Seiberg-Witten equations, which are at
the same time critical points of a perturbed Chern-Simons-Dirac functional [32, sec-
tion 4]. There are three different types of solutions (the boundary stable, boundary
unstable and irreducible solutions) and each group uses two of the three types in
their corresponding construction.

Now suppose that Y is equipped with a co-orientable contact structure ξ compat-
ible with the orientation of the manifold. In practice this means that there exists a
globally defined one form θ on Y for which ξ = ker θ and θ∧dθ is positive everywhere
[21, lemma 1.1.1]. As we will review momentarily, ξ determines a spin-c structure sξ
and one can exploit the additional structure provided by ξ in order to construct an
element c(ξ) ∈ HM

∧

•(−Y, sξ) known as the contact invariant of (Y, ξ).
It is important to observe that c(ξ) belongs to the monopole Floer homology

groups of the manifold −Y , that is, Y with the opposite orientation. This is because
the contact invariant c(ξ) should actually be regarded as a cohomology element
c(ξ) ∈ ĤM

•
(Y, sξ), and there is a natural isomorphism between ĤM

•
(Y, sξ) and

HM

∧

•(−Y, sξ) [32, section 22.5]. However, we will work with the homology version
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of the contact invariant since most of the formulas in [32] are given explicitly for the
homology groups.

Monopole Floer homology also has TFQT-like features, which concretely means
that given a cobordism W : Y → Y ′ between two three manifolds, there are group
homomorphisms between the corresponding homology groups

HM

∧

•(W, sW ) : HM

∧

•(Y, sY )→ HM

∧

•(Y
′, sY ′)

ĤM•(W, sW ) : ĤM•(Y, sY )→ ĤM•(Y
′, sY ′)

HM•(W, sW ) : HM•(Y, sY )→ HM•(Y
′, sY ′)

Here sW denotes a spin-c structure which restricts in an appropriate sense to the given
spin-c structures on Y and Y ′. Just as in the contact case, if (W,ω) : (Y, ξ)→ (Y ′, ξ′)

is equipped with a symplectic form ω, it determines a spin-c structure sω , and so it
makes sense to ask the naturality question, that is, whether or not

(1) HM

∧

•(W
†, sω)c(ξ′)

?
= c(ξ)

where W † : −Y ′ → −Y denotes the cobordism turned “upside-down”. The main
result of this work is that the answer to the previous question is positive in the case
of a strong symplectic cobordism:

Theorem 1. Let (W,ω) : (Y, ξ)→ (Y ′, ξ′) be a strong symplectic cobordism between
two contact manifolds (Y, ξ) and (Y ′, ξ′). Then

HM

∧

•(W
†, sω)c(ξ′) = c(ξ)

At this point it is important to specify that our notion of a strong symplectic
cobordism is that of a symplectic cobordism for which the symplectic form is given
in collar neighborhoods of the concave and convex boundaries by symplectizations
of the corresponding contact structures.

To give some context it is important to point out that this theorem appears stated
as Theorem 2.4 in [50], though the reference given is a paper by Mrowka and Rollin
in preparation that was never published. Also, as will be discussed later in this paper
the “special condition” imposed on the cobordism in [50] and [40] can be removed.
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One can also ask what is known in the twin versions of monopole Floer homology,
namely, embedded contact homology and Heegaard Floer homology. It is not by
any means obvious that the corresponding homology groups from Heegaard Floer
and ECH are isomorphic to the ones coming from monopole Floer homology and
the proof can be found in [5, 6, 7, 8, 9, 61, 62, 60, 55, 56, 57, 58, 59]. Also, the
corresponding contact invariants in each version are isomorphic to each other.

In Heegaard Floer Homology naturality holds (for example) if (Y ′, ξ′) is obtained
from (Y, ξ) by Legendrian surgery along a Legendrian knot L [35, Theorem 2.3].
This is an interesting case because a 1-handle surgery, or a 2-handle surgery along a
Legendrian knot K with framing −1 relative to the canonical framing gives rise to
a strong symplectic cobordism. On the ECH side the contact invariant is known to
be natural with respect to weakly exact symplectic cobordisms [27, Remark 1.11].
Moreover, Michael Hutchings has communicated to the author that he can improve
this result to the case of a strong symplectic cobordism, with the additional advantage
that the contact manifolds can be disconnected [24].

Implicitly we have used the coefficient field F = Z/2 so that we can ignore ori-
entations issues. Clearly one can also ask whether or not one there is an analogous
statement in the case of integer coefficients. Unfortunately, Theorem H in [28] shows
that there is no canonical choice of sign in the definition of the contact invariant, so
the best naturality statement one could hope for in this case is one given up to a
sign.

In any case, the contact invariant with mod-2 coefficients is still a useful tool
for understanding contact structures and the naturality result is good enough to
find properties of this invariant, though the properties we discuss in this work were
previously known by other means. Before we discuss these applications, however, we
will give some brief history that puts into perspective the construction of the contact
invariant and why the following applications were natural things to look for.

In [31] Kronheimer and Mrowka used the contact structure of Y to extend the
definition of the Seiberg-Witten invariants to the case of a compact oriented four
manifold X bounding it.



8 Mariano Echeverria

More precisely, one considers the non-compact four manifold X+ = X∪Y ([1,∞)×
Y ), where [1,∞)×Y is given the structure of an almost Kähler cone using a symplec-
tization ω of a contact form θ defining ξ. In particular, the symplectic form induced
by θ determines a canonical spin-c structure sω on [1,∞)× Y , which we can think
of as a complex vector bundle S = S+ ⊕ S− together with a Clifford multiplication
ρ : T ∗ ([1,∞)× Y )→ homC(S, S) satisfying certain conditions.

The canonical spin-c structure sω identifies a canonical section Φ0 of S+ together
with a canonical spin-c connection A0 on the spinor bundle. Kronheimer and Mrowka
then study solutions of the Seiberg Witten equations on X+ which are asymptotic
to (A0, Φ0) on the conical end. These solutions end up having uniform exponential
decay with respect to the canonical configuration (A0, Φ0) (Proposition 3.15 in [31] or
Propositions 5.7 and 5.10 in [65] for a similar situation), which means that the Seiberg
Witten equations on X+ behave very similar to how they would if the manifold were
compact, more specifically, the moduli spaces of gauge equivalence classes of such
solutions are compact. This allows as in the closed manifold case to define a map

SW(X,ξ) : Spinc(X, ξ)→ Z

where Spinc(X, ξ) denotes the set of isomorphism classes of relative spin-c structures
onX that restrict to the spin-c structure sξ on Y determined by the contact structure
ξ. This map can be used to detect properties of contact structures on three manifolds.
For example, Theorem 1.3 in [31] shows that for any closed three manifold Y there
are only finitely many homotopy classes of 2-plane fields which are realized as semi-
fillable contact structures. In section 1.3 of the same paper they mention as well that
if (X, ξ) is a 4-manifold with an overtwisted contact structure on its boundary, then
SW(X,ξ) vanishes identically.

The latter result is Corollary B in a different paper [40] by Mrowka and Rollin,
where they analyzed how the map SW(X,ξ) behaves under a symplectic cobordism
(W,ω) : (Y, ξ) → (Y ′, ξ′) which they called a special symplectic cobordism [40,
page 4]. Theorem D in [40] shows that

(2) SW(X,ξ) = ±SW(X∪W,ξ′) ◦ 
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where  : Spinc(X, ξ)→ Spinc(X ∪W, ξ′) is a canonical map that extends the spin-c
structure of X across the cobordism W . With respect to Z/2Z coefficients, the pre-
vious theorem can be interpreted as saying that the mod 2 Seiberg-Witten invariants
are the same.

In order to detect more properties of the contact structure, we need to use the
machinery of Monopole Floer Homology, whose canonical reference is [32].

As first defined in section 6.3 of [30] , one constructs the contact invariant c(ξ) ∈
HM

∧

•(−Y, sξ) by studying the Seiberg-Witten equations on (R+×−Y )∪([1,∞)×Y )

which are asymptotic on the symplectic cone to the canonical configuration (A0, Φ0)

mentioned before and asymptotic on the half-cylinder to a solution of the (perturbed)
three dimensional Seiberg-Witten equations. We will give more details about this
construction in the next section, as well as an interpretation of it as a “relative
invariant” from the TQFT-perspective. However, it should be clear that based on
the analogy with the numerical Seiberg-Witten invariants SW(X,ξ), one would expect
the naturality property (our main theorem 1) as well as the vanishing of the contact
invariant for an overtwisted structure. It is the latter which we now indicate how to
prove.

Corollary 2. Let (Y, ξ) be an overtwisted contact 3 manifold. Then the contact
invariant of ξ vanishes, that is, c(ξ) = 0.

Proof. First we show that the 3-sphere S3 admits an overtwisted structure ξot for
which c(ξot) = 0. For this we will use Eliashberg’s theorem [15, Theorem 1.6.1] on
the existence of an overtwisted contact structure in every homotopy class of oriented
plane field and the fact that the Floer groups of any three manifold Y are graded by
the set of homotopy classes of oriented plane fields [32, Section 3.1].

Thanks to Proposition 3.3.1 in [32], which describes the Floer homology groups of
S3, we can find a homotopy class of plane field [ξ] for which HM

∧

[ξ](S
3) = 0. Notice

that in this case we are not specifying the spin-c structure because S3 has only one up
to isomorphism. By Eliashberg’s theorem we can choose an overtwisted structure ξot
in the homotopy class [ξ]. Now, c(ξot) is supported in HM

∧

[ξ](−S3) ' HM

∧

[ξ](S
3) = 0

(see for example Theorem (46) in this paper) and so it will automatically vanish, i.e,
c(ξot) = 0.
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Now, if (Y, ξ) is an arbitrary overtwisted contact 3 manifold, using Theorem 1.2
in [17], we can find a Stein cobordism (W,ω) : (Y, ξ) → (S3, ξot). Such cobordisms
are in fact strong cobordisms so we can conclude that

c(ξ) = HM

∧

•(W
†, sω)c(ξot) = HM

∧

•(W
†, sω)(0) = 0

and therefore c(ξ) vanishes. �

Remark 3. For a proof that does not use the naturality property see Theorem 4.2
in [54]. The vanishing of the contact invariant for overtwisted contact structures is
also known on the Heegaard Floer side [46, Theorem 1.4]. For a proof on the ECH
side see Michael Hutchings’ blog ([25]). In fact, in the case of ECH one can show
that the contact invariant vanishes in the case of planar torsion ([63]). The same is
also true in the monopole Floer homology side thanks to our naturality result and
Theorem 1 in [64].

Corollary 4. Let (X,ω) be a strong filling of (Y, ξ). Then the contact invariant of
ξ is non-vanishing, that is, c(ξ) 6= 0.

Proof. By Darboux’s theorem we can remove a standard small ball B of X to
obtain a strong cobordism (W,ω) : (S3, ξtight) → (Y, ξ). Naturality says that
c(ξtight) = HM

∧

•(W
†, sω)c(ξ) but the left hand side is non-vanishing (see for ex-

ample the appending in this paper) and so we conclude that c(ξ) is non-vanishing
as well. �

Remark 5. The Heegaard Floer version of this fact appears as Theorem 2.13 in [22].
That same paper contains an example of a weak filling where the contact invariant
vanishes.

To explain the next corollary we do a quick review of some of the properties of the
monopole Floer homology Groups. Formally they behave like the ordinary homology
groups H∗(Z), H∗(Z,A) and H∗(A) for a pair of spaces in that they are related by a
long exact sequence [32, section 3.1]

(3) · · · i∗−→ HM

∧

•(Y, s)
j∗−→ ĤM•(Y, s)

p∗−→ HM•(Y, s)
i∗−→ HM

∧

•(Y, s)
j∗−→ · · ·

An important subgroup of ĤM•(Y, s) is the image of j∗ : HM

∧

•(Y, s) → ĤM•(Y, s)

which is known as the reduced Floer homology group HM•(Y, s), and in general
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it is of great interest to determine whether or not a particular element belongs to it.
For example, if j∗ = 0 we say that Y is an L space in analogy with the terminology
from Heegaard Floer [32, section 42.6]. To relate this question to the naturality
of the contact invariant, we need to use the fact that for a cobordism (W †, sW ) :

(−Y ′, sY )→ (−Y, sY ′) there is a commutative diagram
(4)
· · · HM

∧

•(−Y ′, sY ′)
j∗−→ ĤM•(−Y ′, sY ′)

p∗−→ HM•(−Y ′, sY ′)
i∗−→ HM

∧

•(−Y ′, sY ′) · · ·

↓ ˇHM•(W †,sW ) ↓ĤM•(W †,sW ) ↓HM•(W †,sW ) ↓ ˇHM•(W †,sW )

· · · HM

∧

•(−Y, sY )
j∗−→ ĤM•(−Y, sY )

p∗−→ HM•(−Y, sY )
i∗−→ HM

∧

•(−Y, sY ) · · ·

Corollary 6. Let (X,ω) be a strong filling of (Y, ξ). Assume in addition that Y is
an L space. Then X must be negative definite.

Proof. Suppose by contradiction that b+(X) ≥ 1. Remove a Darboux ball as before
to obtain a cobordism (W,ω) : (S3, ξtight) → (Y, ξ). By proposition 3.5.2 in [32] we
have that HM•(W

†, sω) = 0. By the commutative diagram and the fact that j∗
vanishes for Y we have that c(ξ) ∈ ker j∗ = imi∗. Hence c(ξ) = i∗ ([Ψ ]) for some
[Ψ ] ∈ HM•(−Y ′, sξ′) and the commutativity together with the naturality says that

0 = i∗HM(W †, sω) ([Ψ ]) = HM

∧

•(W
†, sω)c(ξ) = c(ξtight)

which is a contradiction. �

Remark 7. This result appears as Theorem 1.4 in [45].

Corollary 8. Suppose that (Y, ξ) is a planar contact manifold. Then j∗c(ξ) = 0 and
in particular any strong filling of a planar contact manifold must be negative definite.

Proof. Observe that the last statement is exactly the proof of the previous corollary,
which only used the fact that c(ξ) ∈ ker j∗. If (Y, ξ) is a planar contact manifold
Theorem 4 in [64] (and the remarks after it) shows that there is a strong symplectic
cobordism (W,ω) : (Y, ξ) → (S3, ξtight). The result follows using the commutative
diagram 4 and the fact that j∗ vanishes on S3 because it admits a metric of positive
scalar curvature [32, Proposition 36.1.3]. �
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Remark 9. Theorem 1.2 in [44] shows that if the contact structure ξ on Y is compat-
ible with a planar open book decomposition then its contact invariant vanishes when
regarded as an element of the quotient group HFred(−Y, sξ). The second part of our
corollary should be compared with Theorem 1.2 in [16], where it is shown (among
other things) that any symplectic filling of a planar contact manifold is negative
definite.

The proof of the previous corollary can be extended to the case when Y ′ admits
a metric with positive scalar curvature. First of all, it should be pointed out that
this class of manifolds is not very large. Thanks to results of Schoen and Yau an
orientable 3-manifold with positive scalar curvature can always be obtained from a
manifold with b1 = 0 by making a connected sum of a number of copies of S1 × S2.

Corollary 10. Suppose that (W,ω) : (Y, ξ) → (Y ′, ξ′) is a strong symplectic cobor-
dism with Y ′ (hence −Y ′) admitting a metric with positive scalar curvature. Then

a) If c1(sξ′) is not torsion, then the contact invariant c(ξ′) vanishes automatically
and by naturality so will the contact invariant c(ξ).

b) If c1(sξ′) is torsion, then j∗c(ξ′) = 0 and so by naturality j∗c(ξ) = 0. In
particular, for a strong cobordism (W,ω) : (Y, ξ) → (S3, ξtight) we must have that
j∗c(ξ) = 0.

Proof. Proposition 36.1.3 in [32] shows that j∗ vanishes when c1(s) is torsion and
that the Floer groups are zero when c1(s) is not torsion, from which the corollary
follows immediately. �

In the next section we will sketch the main argument in the proof of Theorem
(1). It is our hope that this summary captures the essential ideas of the proof of
our main theorem, since the remaining (and more technical) part of the paper will
follow very closely the paper [40], which is “required reading” for someone interested
in understanding why the naturality theorem will be true.
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2. Summary of the Proof

As stated before, we now give a brief summary of the main ideas involved in the
proof of Theorem 1. In a nutshell, to show that c(ξ) equals HM

∧

•(W
†, sω)c(ξ′), we

will define an intermediate “hybrid” invariant c(ξ′, Y ) ∈ HM

∧

•(−Y, sξ) which will
work as bridge between c(ξ) and HM

∧

•(W
†, sω)c(ξ′). Namely, using a “stretching the

neck” argument we will show that

HM

∧

•(W
†, sω)c(ξ′) = c(ξ′, Y )

while adapting the strategy of [40] (which as we will explain momentarily involves a
“dilating the cone” argument) we will show that

c(ξ′, Y ) = c(ξ)

giving us the desired naturality result.
First we review the definition of the contact invariant, following section 6.2 in [30]

(in their paper the contact invariant was denoted [ψ̌Y,ξ] but we have decided to switch
to the more standard notation used in Heegaard Floer homology). As mentioned in
the introduction, given a contact manifold (Y, ξ) we construct the manifold

Z+
Y,ξ =

(
R+ × (−Y )

)
∪ ([1,∞)× Y )

and study the Seiberg-Witten equations which are asymptotic to the canonical so-
lution (A0, Φ0) on the conical end [1,∞) × Y and to a critical point c of the three
dimensional Seiberg Witten equations on the cylindrical end R+ × (−Y ). To write
the Seiberg Witten equations a choice of spin-c structure needs to be made, and in
this case the contact structure ξ determines a canonical spin-c structure s on Z+

Y,ξ

which we will describe later.
There is a gauge group action on such solutions and we define the moduli space
M(Z+

Y,ξ, s, [c]) as the gauge equivalence classes of the solutions to the Seiberg-Witten
equations on Z+

Y,ξ. As a matter of notation, [·] will represent the gauge-equivalence
class of a configuration so [c] in this case denotes the gauge equivalence class of the
critical point c. The moduli space M(Z+

Y,ξ, s, [c]) is not equidimensional, in fact, it
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admits a partition into components of different topological type

M(Z+
Y,ξ, s, [c]) =

⋃
z

Mz(Z
+
Y,ξ, s, [c])

where z indexes the different connected components of the previous moduli space.
We count points in the zero dimensional moduli spaces (which will be compact, hence
finite) and define

mz(Z
+
Y,ξ, s, [c]) =

|Mz(Z
+
Y,ξ, s, [c])| mod 2 if dimMz(Z

+
Y,ξ, s, [c]) = 0

0 otherwise

The contact invariant is then defined at the chain level as

(5) c(ξ) = (co(ξ), cs(ξ)) ∈ Č∗(−Y, sξ) = Co(−Y, sξ)⊕ Cs(−Y, sξ)

by

co(ξ) =
∑

[a]∈Co(−Y,sξ)

∑
z

mz(Z
+
Y,ξ, s, [a])e[a]

cs(ξ) =
∑

[a]∈Cs(−Y,sξ)

∑
z

mz(Z
+
Y,ξ, s, [a])e[a]

In the previous notation Č∗(−Y, sξ) is the free abelian group generated by the irre-
ducible and boundary stable critical points [a] and e[a] is a bookkeeping device for
each critical point considered as a generator in the group. Lemma 6.6 in [30] then
shows that c(ξ) is a cycle, that is, it defines an element c(ξ) of the Monopole Floer
Homology group HM

∧

•(−Y, sξ).
The previous construction of the contact invariant c(ξ) can be regarded as coming

from the recipe for defining relative invariants in the following sense. When we have
a closed manifold X, we can use the Seiberg-Witten equations together with a choice
of spin-c structure sX to produce numerical invariants

SWX : Spinc(X)→ Z

Now, what happens if X is not closed, but rather bounds a 3-manifold Y ? The
TFQT-philosophy dictates that in this case we should try to produce an element
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Figure 1. Constructing relative invariants.

[ϕX ] living in the Monopole Floer Homology groups of Y . We should remember that
there are different flavors of Monopole Floer homology, so this philosophy needs to
be implemented somewhat carefully. In any case, the basic idea is that ϕX,sX should
be defined at the chain level as

ϕX,sX =
∑
[a]

n[a][a] =
∑
[a]

(∑
#M0(X∗; [a])

)
[a]

where #M0(X∗; [a]) denotes the 0-dimensional moduli space of solutions to the
Seiberg-Witten equations asymptotic to the critical point [a].

The contact invariant c(ξ) should then be regarded as the relative invariant ϕX,sX
associated to a canonical 4-manifold determined by the contact manifold (Y, ξ). The
natural choice is to use the symplectization of (Y, ξ), that is, (X,ω) =

(
R× Y, 1

2
d(t2θ)

)
(other choices of symplectic form are usually used). In any case, in order to make
up for the fact that X has no boundary we chop it off somewhere, say, we just work
with X = [1,∞)× Y , in this case the natural boundary of X is ∂X = −Y , which is
why we think of the contact invariant as an element in the monopole Floer homology
of −Y , rather than Y . The astute reader may just ask in this case why not simply
take X = (−∞, 1]× Y so that we get a manifold with boundary Y . The problem is
that once we introduce riemannian metrics compatible with the symplectic structure,
then the first choice will lead to something with bounded geometry, while the second
does not (we will explain what bounded geometry is in the next section).
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Figure 2. Manifold W †
∗ with two cylindrical ends used to define the

cobordism maps.

Returning to the naturality question, suppose we have a symplectic cobordism
(W,ω) : (Y, ξ)→ (Y ′, ξ′) and we want to decide whether or not HM

∧

•(W
†, sω)c(ξ′) =

c(ξ). Clearly this is equivalent to showing that at the chain level

m̌c(ξ′)− c(ξ) ∈ im∂̌−Y

where ∂̌−Y : Č∗(−Y, sξ)→ Č∗(−Y, sξ) is the differential that generates HM

∧

•(−Y, sξ).
Here m̌ is the chain map (definition 25.3.3 [32])

m̌ =

(
mo
o −mu

o ∂̄
s
u − ∂uo m̄s

u

mo
s m̄s

s −mu
s ∂̄

s
u − ∂us m̄s

u

)
: Č•(−Y ′, sξ′)→ Č•(−Y, sξ)

To see what m̌ does, we will explain the meaning of mo
s and ∂̄su, since the action of

the remaining terms can be inferred easily from these two examples. The map mo
s

counts solutions on W † : −Y ′ → −Y with a half-cylinder attached on each end:

W †
∗ =

(
R− ×−Y ′

)
∪W † ∪ (R+ ×−Y )

which are asymptotic on R− ×−Y ′ to an irreducible critical point [a] ∈ Co(−Y ′, sξ′)
and asymptotic on R+ × −Y to a boundary stable critical point [b] ∈ Cs(−Y, sξ).
On the other hand, the map ∂̄su counts solutions on R× (−Y ′) which are asymptotic
to a boundary stable critical point [a] ∈ Cs(−Y ′, sξ′) as t→ −∞ and to a boundary
unstable critical point [b] ∈ Cu(−Y ′, sξ′) as t → ∞ (in our context a map like ∂uo
would count solutions on R × −Y instead). The bar indicates that we are only
considering reducible solutions, i.e, solutions where the spinor vanishes identically.
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Again, we obtain a moduli spaceM([a],W †
∗ , sω, [b]) and as before we can define

nz([a],W †
∗ , sω, [b]) =

|Mz([a],W †
∗ , sω, [b])| mod 2 if dimMz([a],W †

∗ , sω, [b]) = 0

0 otherwise

In the case of a cylinder there is a natural R action and the corresponding moduli
space after we quotient out by this action is denoted M̌([a], sξ′ , [b]) (the notation in
[32] for this moduli space is M̌z([a], sξ′ , [b]) ). In this case we define

nz([a], sξ′ , [b]) =

|M̌z([a], sξ′ , [b])| mod 2 if dimM̌z([a], sξ′ , [b]) = 0

0 otherwise

Under this notation, m̌c(ξ′) has two terms, and since are working mod 2 we will
write them without the signs to simplify the expression. The term corresponding to

mo
oc
o(ξ′) +mu

o ∂̄
s
uc
s(ξ′) + ∂uo m̄

s
uc
s(ξ′)

is equivalent to

∑
[a]∈Co(−Y ′),[c]∈Co(−Y )

∑
z1,z2

mz1(Z
+
Y ′,ξ′ , s

′, [a])nz2([a],W †
∗ , sω, [c])e[c]

+
∑

[a]∈Cs(−Y ′),[b]∈Cu(−Y ′),[c]∈Co(−Y )

∑
z1,z2,z3

mz1(Z
+
Y ′,ξ′ , s

′, [a])n̄z2([a], sξ′ , [b])nz3([b],W †
∗ , sω, [c])e[c]

+
∑

[a]∈Cs(−Y ′),[b]∈Cu(−Y ),[c]∈Co(−Y )

∑
z1,z2,z3

mz1(Z
+
Y ′,ξ′ , s

′, [a])n̄z2([a],W †
∗ , sω, [b])nz3([b], sξ, [c])e[c]

Notice that if we fix a critical point [c] ∈ Co(−Y, sξ) we can consider the coefficient

∑
[a]∈Co(−Y ′)

∑
z1,z2

mz1(Z
+
Y ′,ξ′ , s

′, [a])nz2([a],W †
∗ , sω, [c])(6)

+
∑

[a]∈Cs(−Y ′),[b]∈Cu(−Y ′)

∑
z1,z2,z3

mz1(Z
+
Y ′,ξ′ , s

′, [a])n̄z2([a], sξ′ , [b])nz3([b],W †
∗ , sω, [c])

+
∑

[a]∈Cs(−Y ′),[b]∈Cu(−Y )

∑
z1,z2,z3

mz1(Z
+
Y ′,ξ′ , s

′, [a])n̄z2([a],W †
∗ , sω, [b])nz3([b], sξ, [c])
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Similarly, the second term of m̌c(ξ′), i.e,

mo
sc
o(ξ′) + m̄s

sc
s(ξ′) +mu

s ∂̄
s
uc
s(ξ′) + ∂us m̄

s
uc
s(ξ′)

is equivalent for each critical point [c] ∈ Cs(−Y, sξ) to

∑
[a]∈Co(−Y ′)

∑
z1,z2

mz1(Z
+
Y ′,ξ′ , s

′, [a])nz2([a],W †
∗ , sω, [c])

+
∑

[a]∈Cs(−Y ′)

∑
z1,z2

mz(Z
+
Y ′,ξ′ , s

′, [a])n̄z2([a],W †
∗ , sω, [c])

+
∑

[a]∈Cs(−Y ′),[b]∈Cu(−Y ′)

∑
z1,z2,z3

mz1(Z
+
Y ′,ξ′ , s

′, [a])n̄z2([a], sξ′ , [b])nz3([b],W †
∗ , sω, [c])

+
∑

[a]∈Cs(−Y ′),[b]∈Cu(−Y )

∑
z1,z2,z3

mz1(Z
+
Y ′,ξ′ , s

′, [a])n̄z2([a],W †
∗ , sω, [b])nz3([b], sξ, [c])(7)

Therefore, we want to show that up to a boundary term,
∑

zmz(Z
+
Y,ξ, s, [c]) is equal

to (6) (if [c] is irreducible) or (7) (if [c] is boundary stable).
If there is any hope of showing the equality between these two quantities we need

to find a geometric interpretation to the sums (6), (7). In order to do this we
will consider the Seiberg-Witten equations on a slightly more general scenario, one
that combines the construction of the contact invariant with the cobordism. More
precisely, we will study the Seiberg Witten equations on

W+
ξ′,Y = ([1,∞)× Y ′) ∪W † ∪

(
R+ ×−Y

)
which are asymptotic on [1,∞) × Y ′ using the canonical solution coming from the
contact structure ξ′ and asymptotic on R+×−Y to a critical point [c] ∈ Č∗(−Y, sξ).
The moduli space of such solutions will naturally be denotedM(W+

ξ′,Y , sω, [c]) .

Thanks to the compactness arguments in [31, 32] and [65] (which guarantee uni-
form exponential decay along the conical end) we can proceed as before and define

mz(W
+
ξ′,Y , sω, [c]) =

|Mz(W
+
ξ′,Y , sω, [c])| mod 2 if dimMz(W

+
ξ′,Y , sω, [c]) = 0

0 otherwise
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Figure 3. Manifold W+
ξ′,Y used to define the “hybrid” invariant c(ξ′, Y ).

Figure 4. ˇHM(W †, sω)c(ξ′) = c(ξ′, Y ) via a “stretching the neck” argument.

These numbers give rise to the hybrid invariant c(ξ′, Y ) mentioned at the beginning
of this section. In order to show the equality HM

∧

•(W
†, sω)c(ξ′) = c(ξ′, Y ) we must

consider the parametrized moduli space

(8)
⋃

L∈[0,∞)

{L} ×M(W+
ξ′,Y (L), sω, [c])

where M(W+
ξ′,Y (L), sω, [c]) denotes the moduli space of solutions to the Seiberg-

Witten equations on the manifold

W+
ξ′,Y (L) = ([1,∞)× Y ′) ∪ ([0, L]×−Y ′) ∪W † ∪

(
R+ ×−Y

)
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The parametrized moduli space (8) is not compact; its compactification will be
denoted

(9)
⋃

L∈[0,∞]

{L} ×M+(W+
ξ′,Y (L), sω, [c])

where the definition ofM+(W+
ξ′,Y (∞), sω, [c]) is given in (34). For now, it suffices to

say that when we count the endpoints of all one dimensional moduli spaces inside
(9) we will get 0.

The count coming from the fiber over L = 0 will give the term
∑

zmz(W
+
ξ′,Y , sω, [c])

while the count coming from the fiber over L = ∞ will give one of the sums (6)
or (7) depending on whether [c] is irreducible or boundary stable. Finally, the
count coming from the other fibers will contribute a boundary term (see Theo-
rem (27) for the precise statement). At the level of homology, this means that
HM

∧

•(W
†, sω)c(ξ′) = c(ξ′, Y ) so the naturality proof has been reduced to showing

that c(ξ′, Y ) = c(ξ). Again, from the chain level perspective this means that up to
boundary terms, for each critical point [c], the numbers

∑
zmz(W

+
ξ′,Y , sω, [c]) must

equal
∑

z′mz′(Z
+
Y,ξ, s, [c]).

If one were to replace the half-cylindrical end R+ × (−Y ) with a compact piece
X so that we could work with numbers instead of homology classes, the previous
quantities would be the same due to Theorem D in [40] (i.e, equation (2) in our
paper). Therefore, it becomes clear at this point that what we need to do is adapt
the Mrowka-Rollin theorem to the case in which we have a half-infinite cylinder.

Two things that change in this new setup are the certain inclusions of Sobolev
spaces are no longer compact and in order to achieve transversality (i.e, obtain un-
obstructed moduli spaces in the terminology of [40]) one must use the “abstract
perturbations” defined by Kronheimer and Mrowka in [32]. In particular, these per-
turbations introduce new terms that do not appear in the usual linearizations of the
Seiberg-Witten equations, so for the gluing argument we will employ one needs to
check that the new contributions do not mess up the desired behavior of the lin-
earized Seiberg Witten equations. Namely, we will see that the contributions have
leading terms which are quadratic in a appropriate sense. Had the leading term been
linear, the gluing argument would not have worked.
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Figure 5. Gluing technique for the “stretching the neck” argument.

Our gluing argument and the proof of Theorem D [40] morally follows the same
basic ideas as the other gluing arguments in gauge theory but as expected differs in
the specific details (a few references include [32, 42, 48, 12, 39, 18, 19] ). Perhaps the
most common gluing argument is gauge theory is the one involving the “stretching
the neck ” operation on a closed oriented Riemannian 4 manifold X which has a
separating hypersurface Y inside it.

Namely, one writes X as X = X1 ∪ X2 and after choosing a metric which is
cylindrical near Y one can stretch the metric along Y in order to have a cylinder
IL × Y of length L inserted between X1 and X2 as shown in the picture. The point
is that as L increases, the Seiberg Witten equations on XL = X1 ∪ (IL × Y ) ∪ X2

start behaving more like the solutions on the manifolds with cylindrical ends X∗1 and
X∗2 . More precisely, one can start from solutions on X∗1 and X∗2 which agree on their
respective ends in order to construct a pre-solution on XL , that is, a configuration
on XL which is a solution to the Seiberg Witten equations on XL, except perhaps
for a region supported on IL × Y . The main point of the gluing argument, is that
one can find an L0 sufficiently large, so that for all L bigger than L0 we can obtain
an actual solution to the Seiberg Witten equations on XL thanks to an application
of the implicit function theorem for Banach spaces. In order for this to work it is
imperative to have estimates that become independent of L.

Likewise, in our situation we want to take advantage of the fact that for a strong
symplectic cobordism the symplectic structure is given near the boundary by the
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Figure 6. “Dilating the cone” argument used to show that c(ξ′, Y ) = c(ξ).

symplectization of the contact structure, so that in analogy with the cylindrical case
we can perform a “dilating the cone” operation, where now the key parameter is
a dilation parameter τ , which determines the size of the cone Cτ determined by
the symplectization of the contact structure near the boundary. As in the cylindrical
case, the main idea is that once τ is sufficiently large, the moduli space of solutions to
the Seiberg Witten equations on the manifold shown below can be described in terms
of the moduli space used to define the contact invariant of (Y, ξ). Again, this will
rely on an application of the implicit function theorem, which requires guaranteeing
that certain estimates become independent of τ (once it becomes sufficiently large).
As we will explain near the end of the paper this gluing theorem will establish that
c(ξ′, Y ) = c(ξ).
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3. Setting Up The Equations

3.1 The Seiberg-Witten Equations and the Configuration Space. As ex-
plained in the previous section, we will analyze first the equations on W+

ξ′,Y . In
particular, we begin by stating some basic geometric properties of the manifolds we
are going to be working with.

Suppose we have a closed oriented three manifold Y with contact structure ξ. We
assume that ξ = ker θ and choose the unique Riemannian metric gθ such that [31,
Section 2.3]:
• The contact form θ has unit length.
• dθ = 2 ∗Y θ
• If J is a fixed choice of an almost complex structure on ξ, then for any v, w ∈ ξ,

gθ(v, w) = dθ(v, Jw).
The contact structure ξ determines a canonical spin-c structure sξ : define the

spinor bundle S as the rank-2 vector bundle S = C ⊕ ξ where C is the trivial
vector bundle and we are considering ξ as a complex line bundle. Moreover, there
is a Clifford map ρY : TY → hom(S, S) which identifies TY isometrically with the
subbundle su(S) of traceless, skew-adjoint endomorphisms equipped with the inner
product 1

2
tr(a∗b) [32, Section 1.1]. Using (Y, gθ, sξ) we can write the configuration

space on which the Seiberg-Witten equations are defined [32, Section 9.1]: for any
integer or half integer k ≥ 0 define

Ck(Y, sξ) = (Bref , 0) + L2
k(M ; iT ∗Y ⊕ S) = Ak(Y, sξ)× L2

k(Y ;S)

where Bref is a reference smooth connection on the spinor bundle S compatible
with the Levi-Civita connection defined on TY and Ak(Y, sξ) denotes the (affine)
space of spin-c connections of S with Sobolev regularity L2

k. We will always assume
whenever needed that k ≥ 5, but by elliptic regularity the constructions end up being
independent of k because one can always find a smooth representative in each gauge
equivalence class of solutions to the Seiberg-Witten equations so will not dwell a lot
on the actual value of k being used.

The gauge group Gk+1(Y ) is

Gk+1(Y ) = {u ∈ L2
k+1(Y ;C) | |u| = 1 pointwise}
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It acts on the configuration space via

u · (B, Ψ) = (B − u−1du, uΨ)

The action is not free at the reducible configurations, that is, the configurations
(B, 0) with the spinor component identically zero. The stabilizer at those configura-
tions consists of the constant maps u : Y → S1 which we can identify with S1. To
handle reducible configurations Kronheimer and Mrowka introduced the blown-up
configuration space [32, Section 6.1]

Cσk (Y, sξ) = {(B, s, φ) | ‖φ‖L2(Y )=1, s ≥ 0} = Ak(Y, sξ)× R≥ × S(L2
k(Y ;S))

Here S(L2
k(Y ;S)) denotes those elements φ in L2

k(Y ;S) whose L2 norm (not L2
k norm!)

is equal to 1. In this case the gauge action is

u · (B, s, φ) = (B − u−1du, s, uφ)

and it is easy to check that the gauge group acts freely on this space. In fact,
Lemma 9.1.1 in [32] shows that the space Cσk (Y, sξ) is naturally a Hilbert manifold
with boundary and when k ≥ 1, the space Gk+1(Y ) is a Hilbert Lie group which acts
smoothly and freely on Cσk (Y, sξ).

We are interested in triples (B, s, φ) which satisfy a perturbed version of the
Seiberg-Witten equations. At this point the nature of the perturbations is not
that important. For now it suffices to say that we will take them to be strongly
tame perturbations as in definition 3.6 of [65]. As a technical point it is use-
ful to note that the cylindrical functions constructed in section 11.1 of [32] are
strongly tame perturbations so the theorems from [32] which used this class of per-
turbations continue to work in this context. We will denote such a perturbation
by qY,gθ,sξ . In general a strongly tame perturbation q can be regarded as a map
q : Ck(Y, sξ) → L2

k(Y ; iT ∗Y ⊕ S), where one thinks of the codomain as a copy of
the tangent space T(B,Ψ)Ck(Y, sξ) for each configuration (B, Ψ) ∈ Ck(Y, sξ). Since the
codomain naturally splits one can write q = (q0, q1) and in section 10.2 of [32] it
is explained how q gives rise to a perturbation on the blown-up configuration space
qσ = (q0, q̂1,σ) (notice that only the second component is modified).
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The corresponding equations (B, s, φ) satisfy are (section 10.3 [32])

(10)


1
2
∗ FBt + s2ρ−1

Y (φφ∗)0 + q0
Y,gθ,sξ

(B, sφ) = 0

ΛqY,gθ,sξ
(B, s, φ)s = 0

DBφ− ΛqY,gθ,sξ
(B, s, φ)φ+ q̃1

Y,gθ,sξ
(B, s, φ) = 0

where:
• FBt denotes the curvature of the connection Bt on det(S).
• (φφ∗)0 denotes the trace-free part of the hermitian endomorphism φφ∗: (φφ∗)0 =

φφ∗ − 1
2
|φ|21S.

• DB is the Dirac operator corresponding to the connection B.
• ΛqY,gθ,sξ

(B, s, φ) = Re
〈
φ,DBφ+ q̃1

Y,gθ,sξ
(B, s, φ)

〉
L2(Y )

and q̃1(B, r, ψ) =
∫ 1

0
D(B,srψ)q

1(0, ψ)ds

(here D denotes the linearization of the map q1).
Using the equations (10) we can distinguish three types of solutions (or criti-

cal points) c = (B, s, φ) [30, Definition 4.4], the irreducible critical point, the
boundary stable reducible critical point and the boundary unstable re-
ducible critical point. What is important about this classification for us is that
solutions of the four dimensional Seiberg Witten equations on R × Y for which the
spinor does not vanish identically can only be asymptotic as t → ∞ to irreducible
critical points or boundary stable reducible critical points. The gauge equivalence
class of any of these points will be denoted as [c].

The triple (Y, gθ, sξ) induces a spin-c structure on (−Y, gθ) given by the same spinor
bundle Sξ and changing the Clifford multiplication from ρξ to −ρξ [32, Section 22.5].
We will continue to denote this spin-c structure by sξ. Given this structure we can
use the cylindrical metric and the spin-c structure induced by −Y on the cylinder
R+ ×−Y [32, Section 4.3]. We use the perturbation −qY,gθ,sξ on −Y .

Consider now the manifold

W+
ξ′,Y = ([1,∞)× Y ′) ∪W † ∪

(
R+ ×−Y

)
We will define the appropriate geometric structures needed on each piece together
with the perturbations we will be using.
• On R+ × −Y , we use the cylindrical metric and the canonical spin-c structure

induced by sξ on the cylinder. As explained on section 10.1 of [32], we have a four
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dimensional perturbation −q̂Y,gθ,sξ : Ck(R+×−Y, sξ)→ L2
k(R+×−Y ; iT ∗(R+×−Y )⊕

S) on the half-cylinder R+ ×−Y , defined by restriction to each slice.
• On W † we choose a metric gW on W † such that the metric gW is cylindrical in

collar neighborhoods of the boundary components. To define the perturbation on
W † we follow section 24.1 in [32]. Since the Riemannian metric is cylindrical in the
neighborhood of the boundary it contains on each boundary component an isometric
copy of I1×−Y and I2× Y ′ where I1 = (−C1, 0], I2 = (−C2, 0]. Since the argument
is the same for both ends we will use generic notation. Let β be a cut-off function,
equal to 1 near t = 0 and equal to 0 near t = −C. Let β0 be a bump function
with compact support in (−C, 0), equal to one on a compact subset inside (−C, 0).
Choose another perturbation p0 of the three dimensional equations and consider the
perturbation

p̂W = βq̂ + β0p̂0

It is useful to note that the reason why we use two perturbations is so that one can
be varied when we use a transversality argument.
• On [1,∞)×Y ′ we assume that the metric is cylindrical in a collar neighborhood

[1, CK)×Y ′ and on a complement of this neighborhood (like NK = [CK + 1,∞)×Y ′

for instance) it is given by the metric

gK,θ′ = dt⊗ dt+ t2gθ′

with symplectic form

ωθ′ =
1

2
d(t2θ′)

Here K stands for Kahler, although in most cases the cone will not be a Kahler
manifold (in fact occurs only when (Y, ξ) is a Sasakian manifold [3].The form is self
dual with respect to gK,θ′ and |ωθ′ |gK,θ′ =

√
2 pointwise. By Lemma 2.1 in [31], on

the symplectic cone we have a unit length section Φ0 associated to the canonical
spinor bundle Sωθ′ . For this section Φ0 we have a corresponding connection A0 such
that DA0Φ0 = 0. Choose a smooth extension of (A0, Φ0) to all of W+

ξ′,Y in such a way
that (A0, Φ0) is translation invariant on the cylindrical end R+ ×−Y . Define

pK =

(
−1

2
ρ(F+

At0
) + (Φ0Φ

∗
0)0, 0

)
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and choose a bump function βK which is supported on NK and identically equal to 1

on [CK+2,∞). Choose also a bump function βNK which is supported on [1, CK)×Y ′

and identically equal to 1 near the boundary ∂ ([1, CK)× Y ′).
Our global perturbation will be

(11)
pW+

ξ′,Y
= −q̂Y,gθ,sξ+

(
βq̂Y,gθ,sξ + β′0p̂0

)
+
(
β′0p̂

′
0 + β′q̂Y ′,gθ′ ,sξ′

)
+
(
βNK q̂Y ′,gθ′ ,sξ′ + βKpK

)
where β′0, β′ are cutoff functions defined analogously for the other cylindrical neigh-
borhood I2 × Y ′.

In words the previous perturbation behaves as follows: if we start on the cylindri-
cal end R+ ×−Y we will see the translation invariant perturbation −q̂Y,gθ,sξ . As we
enter the cobordism through the boundary −Y ⊂ W † (recall that ∂W † = −Y t Y ′)
this perturbation is modified into a combined perturbation βq̂Y,gθ,sξ + β′0p̂0, which is
supported on a collar neighborhood of this end. After we exit this collar neighbor-
hood we will see no perturbations until we reach again the collar neighborhood of
the end Y ′ ⊂ W † , where the perturbation is β′0p̂′0 + β′q̂Y ′,gθ′ ,sξ′ . Finally, as we exit
the cobordism we will see a perturbation identically equal to q̂Y ′,gθ′ ,sξ′ for a small
time until it becomes zero again and then it will eventually be changed into the per-
turbation identically equal to pK . We will explain the reason why the perturbations
were chosen in this way near the end of this section.

Now we must define the corresponding configuration space that we want to use
in order to analyze the Seiberg-Witten equations. In general one needs to define
the ordinary configuration space and its blow-up (see sections 13 and 24.2 for some
motivation behind this construction). Due to the asymptotic condition we will im-
pose, our solutions will always be irreducible so the gauge group action will be free
without having to blow up the configuration space. Therefore, most of the time we
will simply use the ordinary configuration space. However, if one wants to describe
the compactification of the moduli spaces in terms of the space of broken trajectories
then the blow up model is more convenient so for completeness sake we will write
the equations in the blow up model (but we will switch to the ordinary configuration
space when some computations become more transparent there).
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We are interested in the configurations that solve the following perturbed version
of the Seiberg-Witten equations:

(12) Fp = F + pW+
ξ′,Y

= 0

where the unperturbed Seiberg Witten map is [32, eq. 4.12]

F(A,Φ) =

(
1

2
ρ(F+

At)− (ΦΦ∗)0, DAΦ

)
Both the perturbed and unperturbed maps are defined on elements of the following

configuration space (def. 3.5 in [65] and def. 13.1 in [32]):

Definition 11. Define the configuration space (without blow-up) Ck,loc(W+
ξ′,Y , sω)

as follows. It will consist of pairs (A,Φ) such that:
1) A is a locally L2

k spin-c connection for S and Φ is a locally L2
k section of S+.

2) It is L2
k close to the canonical solution on the conical end, that is,

A− A0 ∈ L2
k([1,∞)× Y ′, iT ∗([1,∞)× Y ′))

Φ− Φ0 ∈ L2
k,A0

([1,∞)× Y ′, S+)

Remark 12. a) Recall that we chose an extension of A0 to the cylindrical end in such
a way that it was translation invariant so the condition that A is a locally L2

k spin-c
connection means that A− A0 ∈ L2

k,loc(W
+
ξ′,Y ; iT ∗W+

ξ′,Y ).
b) Notice that the second condition implies that Φ cannot be identically 0, i.e,
Ck,loc(W+

ξ′,Y , s) contains no reducible configurations. In the notation of [32], we would
write Ck,loc(W+

ξ′,Y , s) = C∗k,loc(W+
ξ′,Y ′ , s).

c) Due to the lack of a norm the space Ck,loc(W+
ξ′,Y , s) is not a Banach space unless

we impose some asymptotic condition on the cylindrical end.

The blown-up configuration space Cσk,loc(W+
ξ′,Y , sω) is defined as follows:

Definition 13. If S denotes the spinor bundle, define the sphere S as the topological
quotient of L2

k,loc(W
+
ξ′,Y ;S+)\0 by the action of R+ [32, section 6.1]. The blown-up

configuration space associated to Ck,loc(W+
ξ′,Y , sω) is

Cσk,loc(W+
ξ′,Y , sω) = {(A,R+φ, Φ) | Φ ∈ R≥0φ, φ ∈ S and (A,Φ) ∈ Ck,loc(W+

ξ′,Y , sω)}

Just as its blown-down version, Cσk,loc(W+
ξ′,Y , sω) is not a Banach manifold, much

less a Hilbert manifold, so we will not try to find useful slices on this space. These
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slices would have been “orthogonal” in some suitable sense to the gauge group action,
which begs the question, what is the gauge group in this situation? A provisional
definition for the gauge group is to use

(13) Gk+1,loc(W
+
ξ′,Y ) = {u : W+

ξ′,Y → C | |u| = 1 and u ∈ L2
k+1,loc(W

+
ξ′,Y )}

where the action of u ∈ Gk+1,loc on a triple (A,R+φ, Φ) ∈ Cσk,loc(W+
ξ′,Y , s) is given by

(14) u · (A,R+φ, Φ) = (A− u−1du,R+(uφ), uΦ)

The topology we will give to it is the topology of L2
k+1 convergence on compact

subsets. At this point it is not clear that this is indeed a group nor that 14 defines
an action. We will see that in fact we will need to impose further conditions on our
gauge group. In any case, to check these properties we actually need the help of
the Sobolev multiplication theorems. Since our manifold is not compact this adds
a further complication because the consequences of the Sobolev theorems on open
manifolds are not as powerful as for closed manifolds. However, our situation is not
that terrible given that we are still within the realm of bounded geometry, which we
now proceed to describe.

3.2 Bounded Geometry and the Gauge Group. As we just said, since our
manifoldW+

ξ′,Y is non-compact some care is required when verifying certain properties
of our configuration/moduli spaces. For example, the Fredholm property of elliptic
operators, the closed range property of differential operators with injective symbol,
the Rellich lemma all fail on general open manifolds [13] . Fortunately, most of what
is needed remains true in the setting of bounded geometry [14, pages 5-14]:

Definition 14. Let (Mn, g) be a smooth n dimensional Riemannian manifold with
metric g. We say that it has bounded geometry up to order l if one can find
constants C1, · · · , Cl such that conditions (I) and (Bi(M, g)) are satisfied:(I) : rinj(M, g) > 0

(Bi(M, g) : |∇i
LCR| ≤ Ci ∀i = 1, 2, · · · l

where is rinj the injectivity radius ofM , ∇LC denotes the Levi-Civita connection and
R the curvature tensor.
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If (E, h,∇h)→ (Mn, g) is a Riemannian vector bundle we can use the Levi-Civita
connection ∇LC and the connection ∇h to define metric connections ∇ in all tensor
bundles T uv (M) ⊗ E = (TM)⊗u ⊗ (T ∗M)⊗v ⊗ E. If ϕ ∈ Γ (E) we can regard it as
a E-valued zero form so we define for k a non-negative integer (notice that the case
when k is a half-integer is only being used in our context for the case of compact
three manifolds) and p ∈ R the quantity

‖ϕ‖Lpk(M) =

(∫ k∑
i=0

|∇iϕ|pxvolx(g)

)1/p

together with the spaces

Ωp
k(E) = {ϕ ∈ C∞(E) | ‖ϕ‖Lpk(M) <∞}

Ω̄p
k(E) = {completion of Ωp

k(E) with respect to ‖ · ‖Lpk}
◦
Ω
p

k(E) = {completion of C∞c (E) with respect to ‖ · ‖Lpk}

Ωp
k(E) = {ϕ | ϕ is a measurable distribution section with ‖ϕ‖Lpk(M) <∞}

Likewise, we can define a pointwise norm

|ϕ|b,k = sup
x∈M

k∑
i=0

|∇iϕ|x

with corresponding spaces

Ωb,k(E) = {ϕ | ϕ is a Ck − section and |ϕ|b,k <∞}
◦
Ωb,k(E) = {completion of C∞c (E) with respect to | · |b,k}

Fortunately our manifold W+
ξ′,Y satisfies the condition (Bl(M, g)) for all l and in this

case we do not have to worry about this plethora of spaces thanks to the following
theorem, which actually corresponds to a combination of Proposition 3.1, Proposition
3.2, Theorem 3.3 , Theorem 3.4, Theorem 3.12 and Corollary 3.14 in [14]. Also notice
that unlike the case of a compact manifold, we are not claiming that any of these
inclusions are compact.
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Proposition 15. i) The spaces
◦
Ω
p

k(E) ⊂ Ω̄p
k(E) ⊂ Ωp

k(E) are Banach spaces (Hilbert

for p = 2) and
◦
Ωb,k(E) ⊂ Ωb,k(E) are Banach spaces.

ii) If (Mn, g) satisfies (I) and (Bl(M, g)) then
◦
Ω
p

r(E) = Ω̄p
r (E) = Ωp

r (E) for
0 ≤ r ≤ l + 2.

iii) If for k ≥ 1 we have (Bl(E,∇h)) , (I) and (Bl(M, g)) then we have the
continuous inclusions:

(15)
(l ≥ r, r − n

p
≥ s− n

q
, r ≥ s, q ≥ p) =⇒ Ωp

r (E) ↪→ Ωq
s(E)

(r − n
p
> s) =⇒ Ωp

r (E) ↪→ Ωb,s(E)

iv) If (Ei, hi,∇h
i )→ (Mn, g) are vector bundles with (I), (Bl(M

n, g)), (Bl(Ei,∇i))

for i = 1, 2 and
a) 0 < r ≤ r1, r2 ≤ l, 1

p
≤ 1

p1
+ 1

p2
, then we have a continuous bilinear map

(16)
r − n

p
< r1 − n

p1

r − n
p
< r2 − n

p2

r − n
p
≤ r1 − n

p1
+ r2 − n

p2

or =⇒ Ωp1
r1

(E1,∇h
1)×Ωp2

r2
(E2,∇h

2)→ Ωp
r (E1 ⊗ E2,∇h

1 ⊗∇h
2)

r − n
p
≤ r1 − n

p1

r − n
p
≤ r2 − n

p2

r − n
p
< r1 − n

p1
+ r2 − n

p2

b) 0 = r ≤ r1, r2 ≤ l then we have a continuous bilinear map
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(17)
r − n

p
< r1 − n

p1

r − n
p
< r2 − n

p2

r − n
p
≤ r1 − n

p1
+ r2 − n

p2
1
p
≤ 1

p1
+ 1

p2

or

r − n
p
≤ r1 − n

p1

0 < r2 − n
p2

=⇒ Ωp1
r1

(E1,∇h
1)×Ωp2

r2
(E2,∇h

2)→ Ωp
r (E1 ⊗ E2,∇h

1 ⊗∇h
2)

1
p
≤ 1

p1

or

0 < r1 − n
p1

r − n
p
≤ r2 − n

p2
1
p
≤ 1

p2

Remark 16. a) Because of ii) in the previous theorem, we can safely write L2
r(E) to

represent Ω2
r (E).

b) It is not terribly difficult to see from our the Sobolev Multiplication Theorem
that Gk+1,loc(W

+
ξ′,Y ) will be a group.

Now we return to the question of what is the appropriate definition for the gauge
group. As we mentioned earlier, we clearly want 14 to define an action, which
means that if (A,R+φ, Φ) ∈ Cσk,loc(W+

ξ′,Y , s) then it should also be the case that (A−
u−1du,R+(uφ), uΦ) ∈ Cσk,loc(W+

ξ′,Y , s). If we look at the definition of Cσk,loc(W+
ξ′,Y , s),

this means that A − u−1du should be L2
k close from A0 and uΦ should be L2

k close
from Φ0 on the conical end. As we will see in the next lemma, this imposes the
following condition on u:

(18) condition on u ∈ Gk+1,loc : 1− u ∈ L2
k+1([1,∞)× Y ′)
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In other words, we will take the gauge group to be

(19) Gk+1(W+
ξ′,Y ) = {u : W+

ξ′,Y → C∗ | |u| = 1 and 1− u ∈ L2
k+1([1,∞)× Y ′)}

where (again) the action of u ∈ Gk+1 on a triple (A,R+φ, Φ) ∈ Cσk,loc(W+
ξ′,Y , sω) is

given by

(20) u · (A,R+φ, Φ) = (A− u−1du,R+(uφ), uΦ)

We will regard Gk+1(W+
ξ′,Y ) as a subset of Gk+1,loc(W

+
ξ′,Y ) and correspondingly we

will give Gk+1(W+
ξ′,Y ) the subspace topology. Moreover, observe that for u ∈

Gk+1(W+
ξ′,Y ) the condition 1− u ∈ L2

k+1([1,∞)× Y ′) can be rewritten as

(21)

‖1− u‖2
L2([1,∞)×Y ′) <∞

‖du‖2
L2([1,∞)×Y ′) <∞

‖∇LC(du)‖2
L2([1,∞)×Y ′) = ‖∇2

LCu‖2
L2([1,∞)×Y ′) <∞

...
‖∇k

LC(du)‖2
L2([1,∞)×Y ′) = ‖∇k+1

LC u‖2
L2([1,∞)×Y ′) <∞

At the same time, by part iii) in Proposition (15) we can use using the embedding
L2
k+1(E) ↪→ L4

k(E) (take n = 4, p = 2, q = 4, r = k + 1, s = k and l = ∞) to
conclude that 1− u ∈ L4

k ([1,∞)× Y ′), that is,

(22)

‖1− u‖4
L4([1,∞)×Y ′) <∞

‖du‖4
L4([1,∞)×Y ′) <∞

‖∇LC(du)‖4
L4([1,∞)×Y ′) = ‖∇2

LCu‖2
L4([1,∞)×Y ′) <∞

...
‖∇k−1

LC (du)‖4
L2([1,∞)×Y ′) = ‖∇k

LCu‖4
L4([1,∞)×Y ′) <∞

Another natural thing we might want from our gauge group is that if (Ã,R+φ̃, Φ̃),
(A,R+φ, Φ) both belong to Cσk,loc(W+

ξ′,Y , s) and u ∈ Gk+1,loc(W
+
ξ′,Y ) , then in fact

u ∈ Gk+1(W+
ξ′,Y ). As we will see in the next lemma, this is indeed possible.

Lemma 17. Suppose that k ≥ 4. Then Gk+1(W+
ξ′,Y ) is a group. Moreover, the action

of Gk+1(W+
ξ′,Y ) on Ck,loc(W+

ξ′,Y , sω) is well defined in that:
i) if (A,Φ) ∈ Ck(W+

ξ′,Y , sω) and u ∈ Gk+1(W+
ξ′,Y ) then u · (A,Φ) ∈ Ck(W+

ξ′,Y , sω) and
similarly,
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ii) if u · (A,Φ) = (Ã, Φ̃) for two configurations (A,Φ), (Ã, Φ̃) ∈ Ck(W+
ξ′,Y , sω) and u

is a L2
k+1,loc(W

+
ξ′,Y ) gauge transformation, then 1− u ∈ L2

k+1([1,∞)× Y ′).

Proof. First of all, since k ≥ 4 by part iii) in Theorem (15) an element u ∈
Gk+1(W+

ξ′,Y ) can be regarded as a continuous map so that the first condition |u| = 1

makes sense. For u, v ∈ Gk+1(W+
ξ′,Y ) observe that

1− uv = (1− u) + (1− v)− (1− u)(1− v)

Because of the Sobolev Multiplication Theorem, i.e, part iv) in Theorem (namely,
take n = 4, p1 = p2 = p = 2, r1 = r2 = r = k + 1, l = ∞ in part iv. a) ) (15) , we
have that (1−u)(1− v) ∈ L2

k+1([1,∞)×Y ′) and so it is clear that uv ∈ Gk+1(W+
ξ′,Y ).

To check that it is closed under the inverse operation we will verify that u−1 satisfies
the properties in (21). From

1− u−1 = uu−1 − u−1 = −(1− u)u−1

it is clear that
‖1− u−1‖L2 = ‖1− u‖L2

so the first condition (i.e, 1− u−1 ∈ L2 ) has been verified. For the second condition
observe that

‖du−1‖2
L2 = ‖ − u−2du‖2

L2 = ‖du‖2
L2

which is finite because of (21). The other inequalities that u−1 must satisfy, namely,
the properties in (21) are obtained by similar (recursive) arguments. For example,

‖∇(du−1)‖2
L2 = ‖∇(u−2du)‖2

L2 = ‖ − 2u−3du+ u−2∇(du)‖2
L2 ≤ ‖du‖2

L2 + ‖∇2u‖2
L2

and we already know that both terms are finite. Verifying the smoothness conditions
is essentially the same as what needs to be done on a compact manifold [18, Appendix
A ]. To verify i) observe that if (Ã, Φ̃) = u · (A,Φ) = (A − u−1du, uΦ) for some
u ∈ Gk+1(W+

ξ′,Y ) then we know first of all that

A− A0 ∈ L2
k([1,∞)× Y ′; iT ∗[1,∞)× Y ′) Φ− Φ0 ∈ L2

k,A0
([1,∞)× Y ′;S+)

In this case we will show that (Ã, Φ̃) satisfies the same asymptotic conditions, namely

Ã− A0 ∈ L2
k([1,∞)× Y ′; iT ∗[1,∞)× Y ′) Φ̃− Φ0 ∈ L2

k,A0
([1,∞)× Y ′;S+)
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Observe that  (•) A− u−1du− A0 = (A− A0)− u−1du

(••) uΦ− Φ0 = (u− 1)Φ+ (Φ− Φ0)

To deal with (•) since A − A0 ∈ L2
k([1,∞) × Y ′; iT ∗[1,∞) × Y ′) we just need to

control u−1du to guarantee that Ã− A0 ∈ L2
k([1,∞)× Y ′; iT ∗[1,∞)× Y ′). Clearly

‖u−1du‖2
L2 = ‖du‖2

L2

so we just need to control ‖∇(u−1du)‖L2 , · · · ‖∇k(u−1du)‖L2 . Because of Leibniz’s
rule

∇(u−1du)

= (du−1)⊗ du+ u−1∇(du)

= −u−2du⊗ du+ u−1∇(du)

= u−1
[
−(u−1du)⊗ du+∇(du)

]
In particular

‖∇(u−1du)‖2
L2

= ‖ − (u−1du)⊗ du+∇(du)‖2
L2

≤ ‖u−1du⊗ du‖2
L2 + ‖∇(du)‖2

L2

= ‖du⊗ du‖2
L2 + ‖∇(du)‖2

L2

Because of (21) the second term will bounded. To bound the first term we use the
first version of (17) with r = r1 = r2 = 0 , n = 4, p = 2, p1 = p2 = 4 and the bounds
we have for ‖du‖L4 coming from (22). We conclude that ‖∇(u−1du)‖L2 is finite and
applying a similar procedure we can control the higher derivatives ∇j(u−1du) which
means that u−1du ∈ L2

k([1,∞)× Y ′; iT ∗[1,∞)× Y ′).
For (••) notice that Φ− Φ0 ∈ L2

k([1,∞)× Y ′;S+) and so we just need to control
‖(u− 1)Φ‖L2

k
. On the other hand,
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‖(u− 1)Φ‖2
L2
k

≤ ‖(u− 1)(Φ− Φ0)‖2
L2
k

+ ‖(u− 1)(Φ0)‖2
L2
k

The first term will be controlled thanks to the Sobolev multiplication theorems,
namely, use n = 4, p = p1 = p2 = 2, r = k, r1 = k + 1, r2 = k in the second version
of (16) . The second term will be controlled since we have control on of u − 1 and
the derivatives of Φ0 (since the covariant derivatives ∇•A0

Φ0 are pointwise bounded
given that the ends of our manifold are cylindrical and asymptotically flat). In this
way we have that ‖(u − 1)Φ‖L2

k
< ∞ so u · (A,Φ) ∈ Ck(W+

ξ′,Y , s) as we wanted to
show.

For ii) suppose that both (A,Φ) and (Ã, Φ̃) are elements in the configuration space,
which means that−u−1du = Ã− A = (Ã− A0)− (A− A0) ∈ L2

k([1,∞)× Y ′; iT ∗([1,∞)× Y ′))

(u− 1)Φ = (Φ̃− Φ) = (Φ̃− Φ0)− (Φ− Φ0) ∈ L2
k,A0

([1,∞)× Y ′;S+)

First of all, observe that for any T > 0

‖1− u‖2
Lk+1([1,∞)×Y ′) = ‖1− u‖2

Lk+1([1,T ]×Y ′) + ‖1− u‖2
Lk+1([T,∞)×Y ′)

and the norm in the middle is finite because the submanifold is compact. Therefore,
we just need to show that ‖1 − u‖2

Lk+1([T,∞)×Y ′) is finite, i.e, that u satisfies the
inequalities in (21) on the conical end [T,∞) × Y ′. Observe that by (15) the C0

norm is controlled by the L2
k norm. In particular, since Φ− Φ0 ∈ L2

k,A0
(we can also

write L2
k,A for the second factor if we wish it, e.g [14, Theorem 3.22]) and |Φ0| = 1

on the cone we can find T sufficiently large so that

||Φ| − 1|C0 = ||Φ| − |Φ0||C0 ≤ |Φ− Φ0|C0 <
1

2
on [T,∞)× Y ′

that is, |Φ| ≥ 1
2
on [T,∞)× Y ′. In this way
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‖1− u‖2
L2([T,∞)×Y ′)

=

∫
[T,∞)×Y ′

(1− u)2

≤ 4

∫
[T,∞)×Y ′

(1− u)2|Φ|2

= 4‖(1− u)Φ‖2
L2 <∞

Now we want to show that ‖du‖2
L2([T,∞)×Y ′) <∞, for a potentially different value of

T . Notice that

‖du‖2
L2

= ‖u−1du‖2
L2

= ‖Ã− A‖2
L2 <∞

The other norms can be controlled using similar (recursive) arguments. �

Therefore it makes sense to define

Bσk,loc(W+
ξ′,Y , sω) = Cσk,loc(W+

ξ′,Y , sω)/Gk+1(W+
ξ′,Y )

Again, since the original space Cσk,loc(W+
ξ′,Y , sω) is not a Banach manifold, we won’t

be interested in studying directly Bσk,loc(W+
ξ′,Y , sω), although this is the space where

the solutions to the Seiberg-Witten equations live.
To define the moduli space to the Seiberg-Witten equations, we need to introduce

the τ model first. Let

[c] ∈ Co(−Y, gθ, sξ,−qY,gθ,sξ) ∪ Cs(−Y, gθ, sξ,−qY,gθ,sξ)

be a critical point [32, Proposition 12.2.5] to the blown -up three dimensional Seiberg
Witten equations on −Y (10). Write [c] = [(B, s, φ)] and let c = (B, s, φ) be a smooth
representative in Cσk (−Y, sξ). The critical point c gives rise to a translation invariant
configuration γc on the half-infinite cylinder R+ ×−Y .
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Definition 18. Define on R+ ×−Y the τ model Cτk (R+ ×−Y, sξ, c) associated to c

as the space of triples [32, Section 13.3]

γ = (A, r(t), φ(t)) ∈ Ak,loc(R+ ×−Y, sξ)× L2
k,loc(R+;R)× L2

k,loc(R+ ×−Y ;S+)

such that
i) γ − γc ∈ L2

k,loc(iT
∗(R+ × −Y )) × L2

k,loc(R+;R) × L2
k,loc(R+ × −Y ;S+), i.e, γ is

L2
k,loc close from γc.
ii) For all t ∈ R+, we have that r(t) ≥ 0.
iii) For all t ∈ R+ , we have that ‖φ(t)‖L2(−Y ) = 1, i.e, on each slice the L2 norm

(not the L2
k norm) is one.

There is a natural restriction of the gauge group Gk+1(W+
ξ′,Y ) to R+ × −Y which

acts on C̃τk,loc(R+ ×−Y, sξ, c) via

u · (A, r(t), φ(t)) = (A− u−1du, r(t), uφ(t))

The gauge equivalence classes of configurations under this gauge group action will
be denoted as

Bτk,loc(R+ ×−Y, sξ, [c]) = Cτk,loc(R+ ×−Y, sξ, c)/Gk+1,loc(R+ ×−Y )

We will also use the unique continuation principle, which will essentially allow
us for the most part to avoid working with the blow-up model. The versions most
convenient to us are Proposition 7.1.4 and Proposition 10.8.1 in [32].

These imply that if a solution of the perturbed Dirac equation vanishes on a slice
{t}×−Y of the cylindrical end R+×−Y , then it would have to vanish on the entire
half-cylinder R+×−Y and then on the entire four manifoldW+

ξ′,Y . However, since we
will be interested in solutions which are asymptotic on the conical end to the spinor
Φ0 (which is non-vanishing), this cannot be the case so we can safely conclude that
no such solutions will exist, that is, our spinor Φ will never vanish on an open set
or a cylindrical slice. Thanks to this, the following definition makes sense (compare
with definition 24.2.1 of [32]):

Definition 19. The moduli spaceM(W+
ξ′,Y , sω, [c]) for a critical point

[c] ∈ Co(−Y, gθ, sξ,−qY,gθ,sξ) ∪ Cs(−Y, gθ, sξ,−qY,gθ,sξ)
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consists gauge equivalence classes of triples

[A,R+φ, Φ] ∈ Bσk,loc(W+
ξ′,Y , sω)

such that:
1) (A,R+φ, Φ) ∈ Cσk,loc(W+

ξ′,Y , sω) and (A,Φ) satisfies the perturbed Seiberg-Witten
equations Fp(A,Φ) = 0 on W+

ξ′,Y . Here p refers to the perturbation explained before
equation (12).

2) Because of the unique continuation principle, Φ can not be identically zero on
each of the cylindrical slices. Therefore we can define for each t [32, Sections 6.2 and
13.1]:

(r(t), ψ(t)) =

(
‖Φ̌(t)‖L2(−Y ),

Φ̌(t)

‖Φ̌(t)‖L2(−Y )

)
Also, if we decompose the covariant derivative ∇A in the d

dt
direction as

∇A, d
dt

=
d

dt
+ at ⊗ 1S

we require that γ = (A, r(t), ψ(t)) be an element of Cτk,loc(R+ ×−Y, sξ, c) and that it
solves the following Seiberg-Witten equations on the cylinder [32, eq 10.9]

1

2

d

dt
Ǎt = −1

2
∗−Y FǍt + dat − r2ρ−1(ψψ∗)0 − q0(Ǎ, rψ)

d

dt
r = −Λq(Ǎ, r, ψ)r

d

dt
ψ = −DǍψ − atψ − q̃1(Ǎ, r, ψ) + Λq(Ǎ, r, ψ)ψ

where Ǎ(t) denotes the restriction of A to the t slice. Moreover, we require that
the gauge equivalence class [γ] of γ be asymptotic as t → ∞ to [c] in the sense of
Definition 13.1.1 in [32].

The moduli spaceM(W+
ξ′,Y , sω, [c]) is naturally a subset of Bσk,loc(W+

ξ′,Y , sω). How-
ever, since the latter space is not in any natural way a Hilbert manifold we will use
a fiber product description of M(W+

ξ′,Y , sω, [c]) instead [32, Lemma 24.2.2, Lemma
19.1.1]. The idea is that we can “break” the moduli spaceM(W+

ξ′,Y , sω, [c]) into three
moduli spaces which we will show are Hilbert manifolds. These moduli spaces are
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the moduli space on the cobordismM(W †, sω), the moduli space on the half cylin-
der M(R+ × −Y, sξ) and the moduli space on the conical end M([1,∞) × Y ′, s′).
The fiber product description will then allow us to show that M(W+

ξ′,Y , sω, [c]) has
a Hilbert manifold structure but in order to explain this we need to introduce some
additional notation and explanations.

First, we need to describe each individual piece in the fiber product: the piece
corresponding to the moduli spaceM(W †, sω), is described in [32, Proposition 24.3.1]
where it is shown to be a Hilbert manifold. Likewise, the second moduli space
M(R+ × −Y, sξ) is described in [32, Sections 13 and 14] where it is shown that it
is a Hilbert manifold. Strictly speaking, they analyzed an entire cylinder R × Y

rather than a half cylinder R+ × −Y but the analysis is essentially the same if one
is only concerned with showing that the moduli space is a Hilbert manifold, the
main difference between the two cases is that for a half-cylinder the moduli space
will be infinite dimensional while for the entire cylinder it will be finite dimensional.
Therefore, we will start the next section showing thatM([1,∞)×Y ′, s′) is a Hilbert
manifold, following the arguments in section 24 of [32]. At the end of the day, we
obtain restriction (or trace) maps

Rτ :M(R+ ×−Y, sξ, [c])→ Bσk−1/2(Y, sξ)

R−W :M(W †, sω)→ Bσk−1/2(−Y, sξ)

R+
W :M(W †, sω)→ Bσk−1/2(Y ′, sξ′)

RK :M([1,∞)× Y ′, s′)→ Bσk−1/2(−Y ′, sξ)

given by restricting the (gauge equivalence class of a) solution to the boundary of each
of the corresponding manifolds. We should point out that there is an identification
between Bσk (−Y, s) and Bσk (Y, s) [32, Section 22.5] and we can identifyM(W+

ξ′,Y , s, [c])

with the fiber product Fib(Rτ , R
−
W , R

+
W , RK) given by

(23){(
[γR+×−Y ], [γW ], [γ[1,∞)×Y ′ ]

) ∣∣ Rτ [γR+×−Y ] = R−W [γW ] and R+
W [γW ] = RK [γ[1,∞)×Y ′ ]

}
Now we can explain how to give M(W+

ξ′,Y , s, [c]) a Hilbert manifold structure (the
precise definitions as well as the domains of the following maps appear in the next
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section). For convenience write R = (Rτ , R
−
W , R

+
W , RK) and suppose that [γ] =(

[γR+×−Y ], [γW ], [γ[1,∞)×Y ′ ]
)
∈ Fib(Rτ , R

−
W , R

+
W , RK) is such that the map R is trans-

verse at ([b], [b′]), where [b] = Rτ ([γR+×−Y ]) = R−W ([γW ]) and [b′] = R+
W ([γW ]) =

RK([γ[1,∞)×Y ′ ]). In other words, we want the linearized map D[γ]R to be Fredholm
and surjective. If this can be achieved, then near M(W+

ξ′,Y , sω, [c]) will have the
structure of smooth manifold of dimension dim kerD[γ]R. The Fredholm property is
proven in Lemma 26 of our paper in the next section. The surjectivity of the map
D[γ]R may not be true for an arbitrary perturbation of the form described in equa-
tion 11 earlier, however, an application of Sard’s theorem shows that one can choose
generic perturbations such that the surjectivity is achieved as well (this is stated pre-
cisely in Theorem 25 of our paper). In fact, achieving the surjectivity is essentially
the same as the proof Kronheimer and Mrowka gave for the case of a manifold X∗

with cylindrical ends [32, Proposition 24.4.7]. By choosing a perturbation from this
generic set, one can then guarantee that Fib(Rτ , R

−
W , R

+
W , RK) = M(W+

ξ′,Y , sω, [c])

has the structure of a smooth manifold (possibly disconnected with components of
different dimensions).
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4. Transversality and Fiber Products

4.1 The moduli space on the cobordism M(W †, sω): We will start by describ-
ing each of the individual moduli spaces. The easiest to begin with is M(W †, sω).
By proposition 24.3.1 in [32], the moduli space M(W †, sω) is a smooth Hilbert man-
ifold regardless of the choice of perturbation. To understand the restriction (trace)
maps we review first some basic ideas and notation involving the construction of
M(W †, sω).

Observe that since our solutions will always be irreducible, we don’t need to worry
about the boundary of the moduli space M(W †, sω), which corresponds to reducible
solutions. Moreover, sinceW † is a compact manifold, we can use the standard model
for the blowup, that is, we can define [32, p. 113]

Cσk (W †, sω) = {(A, s, φ) | ‖φ‖L2(W †) = 1, s ≥ 0}

⊂ Ak × R≥0 × L2
k(W

†;S+)

Due to the lack of reducible solutions we can also describe the elements ofM(W †, sω)

as gauge equivalence classes [A, sφ]. We will use both descriptions depending on
which is more convenient at a given moment.

A tangent vector to Cσk (W †, sω) at a configuration γ = (A, s, φ) can be written as
[32, p. 136]

T σk,(A,s,φ) = {(a, t, ψ) ∈ L2
k(W

†; iT ∗W †)⊕ R⊕ L2
k(W

†;S+) | Re 〈ψ, φ〉W † = 0}

If 〈φ〉⊥ is the real orthogonal complement of φ, the linearization of the unperturbed
Seiberg Witten map [32, p. 114]

Fσ(A, s, φ) =

(
1

2
ρW (F+

At)− s
2(φφ∗)0, DAφ

)
is

D(A,s,φ)F
σ : L2

k(W
†; iT ∗W †)⊕ R⊕ 〈φ〉⊥ → L2

k−1(W †; isu(S+)⊕ S−)

(a, t, ψ)→
(
ρ(d+a)− 2ts(φφ∗)0 − s2(φψ∗ + ψφ∗)0, DAψ + ρ(a)φ

)
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Remark 20. See page 467 of [32]. To compute the linearization we compute the
difference Fσ(A+at′, s+t′t, φ+t′ψ)−Fσ(A, s, φ). Since the corresponding connection
on the determinant line bundle is (A+ t′a)t = At + 2t′a the formula on book has an
extra factor of 1

2
in the first term which actually gets cancelled.

The derivative of the perturbation can be regarded as an operator

D(A,s,φ)p̂W : L2
k(W

†; iT ∗W †)× R× L2
k(W

†;S+)→ L2
k−1(W †; isu(S+)⊕ S−)

with formal adjoint(
D(A,s,φ)p̂W

)∗
= (r1, r2, r3) : L2

k(W
†; isu(S+)⊕S−)→ L2

k−1(W †; iT ∗W †)×R×L2
k−1(W †;S+)

Instead of working with the equivalence classes, one can work directly at the level
of the configuration space if one chooses a particular slice, the so called Coulomb
Neumann gauge. Namely, we can define the subspace Kσk,(A,s,φ) ⊂ T σk,(A,s,φ) consisting
of triples (a, t, ψ) satisfying [32, eq 9.11]

〈a, n〉 = 0 at − Y ∪ Y ′

−d∗a+ is2Re 〈iφ, ψ〉 = 0

Re
[
〈iφ, ψ〉L2(W †)

]
= 0

where n is the unit outward normal vector and the definition of the derivative of the
gauge group action [32, eq 9.10]

dσ(A,s,φ) : TeGk+1(W †)→ T(A,s,φ)Cσk (W †, sω)

ξ → (−dξ, 0, ξφ)

Then one defines [32, formula 24.8]

dσ,†(A,s,φ) : T σk,(A,s,φ) → L2
k−1(W †; iR)

(a, t, ψ)→ −d∗a+ is2Re 〈iφ, ψ〉+ i|φ|2ReµW † (〈iφ, ψ〉)

where µW † is the average value of 〈iφ, ψ〉, i.e, µW † =
∫
W 〈iφ,ψ〉
vol(W )

. Notice that the kernel
of dσ,†(A,s,φ) captures the last two conditions defining Kσk,(A,s,φ). In order to work with
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unconstrained sections of the spinor bundle [32, p.208] define

ψ̃ = ψ + tφ

The operator
Qσ

(A,s,φ) = D(A,s,φ)F
σ
p ⊕ dσ,†(A,s,φ)

has domain which we identify with L2
k(W

†; iT ∗W †⊕S+) . The book then shows the
surjectivity of Qσ

(A,s,φ) [32, p. 467], thus showing that M(W †, sω) is a manifold.
Moreover, if we use the restriction maps R−W : M(W †, sω) → Bσk−1/2(−Y, sξ) and

R+
W : M(W †, sω)→ Bσk−1/2(Y ′, sξ′) we can identify the tangent space to Bσk−1/2(−Y, sξ)

and Bσk−1/2(Y ′, sξ′) at [b] = R−W [A, s, φ], [b′] = R+
W [A, s, φ] with the linear spaces

Kσk−1/2,b, Kσk−1/2,b′ . Therefore, we obtain derivatives [32, p.470]

DR−W : T[A,s,φ]M(W †, sω)→ Kσk−1/2,b(−Y, sξ)

DR+
W : T[A,s,φ]M(W †, sω)→ Kσk−1/2,b′(Y

′, sξ′)

This review covers the basics that we need to know for now about the moduli space
on the cobordism W †. Now we proceed to analyze the equations on the cylindrical
end.

4.2 The moduli space on the cylindrical end M(R+ × −Y, s; [c]): Now we
analyze the moduli space M(R+×−Y, s, [c]) following section 14 in [32] Again, they
analyze the moduli space M([a], [b]) of trajectories on the cylinders asymptotic to
the critical points [a], [b] on each end but the analysis works just as well in this case.

At a configuration γ = (A, s(t), φ(t)) ∈ Cτk,loc(R+ × −Y, sξ) the tangent space is
[32, Eq 14.5].

T τk,(A,s,φ) = {(a, t̃, ψ) | Re 〈φ |t, ψ |t〉L2(−Y ) = 0 for all t}

⊂ L2
k(R+ ×−Y, iT ∗(R+ ×−Y ))⊕ L2

k(R;R)⊕ L2
k,A(R+ ×−Y ;S+)

The derivative of the action of the gauge group is then [32, p. 248]

dτ(A,s,φ)(ξ) = (−dξ, 0, ξφ)
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In this case the gauge group slice at (A, s, φ) consists of triples (A+a, t, ψ) satisfying
[32, Eq 14.6]

−d∗a+ istRe 〈iφ, ψ〉+ i|φ|2Reµ−Y (〈iφ, ψ〉) = 0

where µ−Y is the averaging function on −Y . We denote by Sτk,(A,s,φ) ⊂ Cτk (R+ ×
−Y, s, c) the subset of triples satisfying this condition and

Coulτ(A,s,φ) : Cτk (R+ ×−Y, s, c)→ L2
k−1(R+ ×−Y, iR)

is the map defined by the left hand side of this equation. We linearize the Coulomb
map Coulτ(A,s,φ) to obtain an operator [32, p. 248]

dτ,†(A,s,φ) : T τk → L2
k−1(R+ ×−Y, iR)

(a, t, ψ)→ −d∗a+ is2Re 〈iφ, ψ〉+ i|φ|2Reµ−Y 〈iφ, ψ〉

and let Kτk,(A,s,φ) ⊂ T τk,(A,s,φ) be the kernel of dτ,†(A,s,φ). The Seiberg-Witten map is in
this case [32, Eq 9.19]

Fτ (A, s, φ) =

(
1

2
ρ(F+

At)− s
2(φφ∗)0,

d

dt
s+ Re 〈DAφ, φ〉L2(−Y ) s,DAφ− Re 〈DAφ, φ〉L2(−Y ) φ

)
Because Vτk−1 is not a trivial vector bundle, the definition of the derivative of Fτq as
a bundle map

DFτq : T τ
k → Vτk−1

requires a projection. Let [32, p. 252]

Πτ
(A,s,φ) : L2

k(R+ ×−Y, isu(S+))⊕ L2
k(R;R)⊕ L2

k,A(R+ ×−Y, S−)→ Vτk,(A,s,φ)

(a, r, ψ)→ (a, r,Π⊥φ(t)ψ)

Π⊥φ(t)ψ = ψ − Re
〈
φ̌(t), ψ(t)

〉
L2(−Y )

φ

be defined by applying the L2 projection on each slice {t} × −Y . The derivative
is then defined as the derivative in the ambient space, followed by the projection.
The configuration (A, s, φ) defines a path γ̌(t) = (B(t), r(t), φ(t)) . We decompose
the elements (a, r, ψ) on the domain of DFτq as a = b + cdt where b is in temporal
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gauge and c is a 0 form. In this way the domain T τ(A,s,φ) can be written as sections
along (A, s, φ) of the bundle T σ(−Y )⊕L2(−Y, iR). Write the section as (V, c), where
V (t) = (b(t), r(t), ψ(t)) defines an element of T σγ̌(t)(−Y ) and c(t) is in L2(−Y, iR). Set

D

Dt
V =

(
db

dt
,
dr

dt
,Π⊥φ(t)

dψ

dt

)
Under this notation, DFτq is given by [32, p. 254]

(V, c)→ D

Dt
V +D(grad��L)σ(V ) + dσγ̌(t)c

As in theorem 14.4.2 of [32] one can show thatM(R+×−Y, s, [c]) is a Hilbert manifold
by studying the surjectivity of the operator (Theorem 14.4.2 , Proposition 14.4.3 and
Lemma 14.5.4 in [32])

Qτ
(A,s,φ) = D(A,s,φ)(F

τ
q)⊕ dτ,†(A,s,φ)

Finally, we also have the restriction map

Rτ : M(R+ ×−Y, sξ, [c])→ Bσk−1/2(Y, sξ)

with derivative

DRτ
[γR+×−Y ]

: T[γR+×−Y ]
M(R+ ×−Y, sξ, [a])→ Kσk−1/2,b(Y, sξ)

4.3 The moduli space on the conical endM([1,∞)×Y ′, s′): We want to regard
M([1,∞)×Y ′, s′) as a Hilbert submanifold of a Hilbert manifold Bk([1,∞)×Y ′, s′).
Denote for simplicity KY ′ = [1,∞)× Y ′ and define

Ck(KY ′ , s) = {(A,Φ) | A− A0 ∈ L2
k(iT

∗KY ′) , Φ− Φ0 ∈ L2
k,A0

(S+)}

We take the gauge group to be

Gk+1(KY ′) = {u : KY ′ → C | |u| = 1, u ∈ L2
k+1,loc(KY ′) , 1− u ∈ L2

k+1(KY ′)}

Clearly Ck(KY ′ , s
′) will be a Hilbert manifold because of the L2

k asymptotic condi-
tions. It is also easy to see that Gk+1(KY ′) will be a Hilbert Lie group. Therefore,
to show that

Bk(KY ′ , s
′) = Ck(KY ′ , s

′)/Gk+1(KY ′)

we can use Lemma 9.3.2 in [32] which we quote for convenience:
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Lemma 21. Suppose we have a Hilbert Lie group G acting smoothly and freely on
a Hilbert manifold C with Hausdorff quotient. Suppose that at each c ∈ C, the map
d0 : TeG→ TcC (obtained from the derivative of the action) has closed range. Then
the quotient C/G is also a Hilbert manifold.

The Hilbert manifold structure is given as follows. If S ⊂ C is any locally closed
submanifold containing c, satisfying

TcC = im(d0)⊕ TcS

then the restriction of the quotient map S → C/G is a diffeomorphism from a
neighborhood of c in S to a neighborhood of Gc in C/G. Therefore, we need to
verify first that Bk(KY ′ , s) is a Hausdorff space which is the content of the next
lemma.

Lemma 22. The quotient space Bk(KY ′ , s
′) is Hausdorff.

Proof. We follow the proof of Proposition 9.3.1 in [32]. Namely, suppose that γn =

(An, Φn) and γ̃n = (Ãn, Φ̃n) are two sequences converging to γ = (A∞, Φ∞) and
γ̃ = (Ã∞, Φ̃∞). Suppose that un ∈ Gk+1(KY ′) is a sequence of gauge transformations
such that un · γn = γ̃n. For each compact subset C of KY ′ , we can use the proof of
Proposition 9.3.1 in [32] to conclude that there is a gauge transformation u∞C such
that u∞C · (A∞, Φ∞) |C= (Ã∞, Φ̃∞) |C , that is

(24)

A∞ − (u∞C )−1du∞C = Ã∞

u∞C Φ∞ = Φ̃∞

Notice that because of the condition Φ∞ − Φ0 ∈ L2
k,A0

(S+) there must exist a
compact set C such that ‖Φ∞‖L2

k,A0,C
6= 0, where the subscript C means that we are

taking the norm restricted to the compact subset C . For k large enough we can use
the Sobolev embedding L2

k+1 ↪→ C0 on C (Theorem 1.2.15 [42]) to assume that our
section Φ∞ is continuous on C. In particular, there must exist a point x0 ∈ C for
which Φ∞(x0) 6= 0. If C ′ ⊃ C is another compact subset containing C then we obtain
similar relations to (24). In particular, we must have u∞C (x) = u∞C′(x) ∀x ∈ C. To
see why this is true notice than when restricted to C
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d((u∞C )−1u∞C′)

= −(u∞C )−2(du∞C )u∞C′ + (u∞C )−1du∞C′

= (u∞C )−1u∞C′
[
−(u∞C )−1du∞C + (u∞C′)

−1du∞C′
]

= (u∞C )−1u∞C′
[
A− Ã+ (Ã− A)

]
= 0

Since the cone KY ′ is connected we conclude that (u∞C )−1u∞C′ = c for some constant
c ∈ S1. Since both C,C ′ contain x0 evaluating the spinor at this point we see that

u∞C (x0)Φ∞(x0) = Φ̃∞(x0) = u∞C′(x0)Φ∞(x0) = cu∞C (x0)Φ∞(x0)

from which we can see that c = 1.
Therefore it makes sense to define u∞ : KY ′ → S1 without any reference to

a compact subset. It is also clear that u∞ · (A∞, Φ∞) = (Ã, Φ̃) and that u∞ ∈
L2
k+1,loc(KY ′). To show that 1− u∞ ∈ L2

k+1(KY ′) we can now apply condition ii) in
Lemma (17). �

As is usually the case for Seiberg Witten or Yang Mills moduli spaces, we do not
want any random slice to the gauge group action. Rather, we want to use the so-
called Coulomb-Neumann slice [32, Section 9.3]. A tangent vector to Ck(KY ′ , s

′) at
γ = (A,Φ) can be written as

(a, Ψ) ∈ L2
k(KY ′ , iT

∗KY ′)⊕ L2
k,A0

(KY ′ , S
+)

and the derivative of the gauge group action is

dγ : L2
k+1(KY ′ ; iR)→ Tk = L2

k(KY ′ , iT
∗KY ′)⊕ L2

k,A0
(KY ′ , S

+)

d(A,Φ) (ζ) = (−dζ, ζΦ)(25)

We use the inner product

〈(a1, Ψ1), (a2, Ψ2)〉L2 =

∫
〈a1, a2〉+ Re 〈Ψ1, Ψ2〉
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to define the formal adjoint of d(A,Φ) and it is given by [32, Lemma 9.3.3]

(26) d∗(A,Φ)(a, Ψ) = −d∗a+ iRe 〈iΦ, Ψ〉

To use Lemma (21) we just need to show that dγ has closed range. In order to
this we will rely on Theorem 3.3 in [31] and Proposition 4.1 in [65].

First we need to define another map which will be used soon to show thatM([1,∞)×
Y ′, s′) is a Hilbert manifold. The linearization of the unperturbed Seiberg-Witten
map is [31, Eq. 8]

D(A,Φ)F : L2
k(KY ′ , iT

∗KY ′)⊕ L2
k,A0

(KY ′ , S
+)→ L2

k−1(KY ′ , isu(S+))⊕ L2
k−1,A0

(KY ′ , S
−)

(a, Ψ)→
(
ρ(d+a)− {ΦΨ ∗ + ΨΦ∗}0, DAΨ + ρ(a)Φ

)
where

{ΦΨ ∗ + ΨΦ∗}0 = ΦΨ ∗ + ΨΦ∗ − 1

2
〈Φ, Ψ〉 − 1

2
〈Ψ, Φ〉 = ΦΨ ∗ + ΨΦ∗ − Re 〈Φ, Ψ〉

Define as before (in [65, 40, 31] this is the operator D)

Q(A,Φ) = D(A,Φ)F⊕ d∗(A,Φ)

(a, Ψ)→ (ρ(d+a)− {ΦΨ ∗ + ΨΦ∗}0, DAΨ + ρ(a)Φ,−d∗a+ iRe 〈iΦ, Ψ〉)(27)

We also want a formula for the formal adjoint: Q∗(A,Φ): this is essentially eq. 24.10
in [32]. Modulo notational differences, for we obtain

(28) Q∗(A,Φ)(η, ψ, ϑ) =
(
(d+)∗ρ∗η + ρ∗(ψΦ∗)− dϑ,D∗Aψ − ηΦ+ ϑΦ

)
In particular, taking η = 0 and ψ = 0 one obtains sees that:

(29) Q∗(A,Φ)(0, 0, ϑ) = (−dϑ, ϑΦ) = d(A,Φ)(ϑ)

Now we are finally ready to finish showing that Bk(KY ′ , s) is Hausdorff.
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Lemma 23. Define at a configuration γ = (A,Φ) the subspaces

Kk,γ = {(a, Ψ) | d∗(A,Φ)(a, Ψ) = 0,
〈
a |∂KY ′ , n

〉
= 0 at ∂KY ′}

Jk,γ = im dγ

As γ varies over Ck(KY ′ , s), the subspaces Jk,γ and Kk,γ define complementary closed
subbundles of Tk,γ and we have a smooth decomposition

TCk(KY ′ , s) = Jk ⊕Kk

Proof. First of all, Theorem 3.3 in [31] shows that the operator Q∗(A,Φ) has closed
range whenever it is defined on a manifold without boundary which has a conical
end except on a compact subset. In particular, equation 29 says that d(A,Φ) has
closed range. Likewise, we know that on a compact manifold with boundary the
operator d(A,Φ) has closed range as well (this is implicit in the proof of Proposition
9.3.4 in [32] ). Observe that we are working on a manifold with boundary which has
a conical end so the closed range property follows from a patching argument from
the previous two situations.

In order to show the smooth decomposition TCk(KY ′ , s) = Jk ⊕Kk we can follow
again the proof of Proposition 9.3.4 in [32] and reduce this to the invertibility of the
“Laplacian”

(30) ϑ→4ϑ+ |Φ|2ϑ

This property can be proved using a parametrix argument (which is essentially the
same as Lemma 26 and Theorem 40 in this paper): choosing a compact subset large
enough for which |Φ|2 is not identically zero, one knows from Proposition 9.3.4 in
[32] that the operator (30) is invertible. On the other hand, Lemma 2.3.2 in [40] says
that on any four manifold with conical end (like the manifold X+ we just used), the
operator 30 is invertible. Notice that their lemma requires a solution to the Seiberg
Witten equations but this is only because this section was trying to find uniform
bounds (independent of the solution used). At this stage this is not our concern so
the proof they give near the end of that section can be adapted to any configuration.
Therefore, we can splice these two inverses to get an approximate inverse to 30 on
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our domain of interest KY ′ . By choosing appropriate cutoff functions one can then
guarantee that 30 will be invertible (again, the proof of Theorem 40 provides more
details). �

Continuing with our analysis of our moduli spaceM(KY ′ , s
′), to show that it is a

Hilbert submanifold of Bk(KY ′ , s
′) we seek for an analogue of proposition 24.3.1 in

[32]. The main point in that proof was to show that the operator Q(A,Φ) introduced
before in (29) is surjective. To show surjectivity, the idea in the book was to apply
Corollary 17.1.5 in [32]. We will not use directly the corollary but rather its proof.

Namely, using the same argument as in the proof of the previous lemma, we can
see that Q(A,Φ) has closed range. Therefore we just need to show that Q∗(A,Φ) has the
property that every non-zero solution of Q∗(A,Φ)v = 0 for v = (η, ψ, ϑ) has non-zero
restriction to the boundary ∂KY ′ .

Using the equation (29) for the adjoint Q∗(A,Φ), we can see that the equation
Q∗(A,Φ)(η, ψ, ϑ) = 0 becomes in the coordinates (a, Ψ) of Q(A,Φ) (compare with eq
24.10 in [32])

(d+)∗ρ∗η + ρ∗(ψΦ∗)− dϑ = 0

D∗Aψ − ηΦ+ ϑΦ = 0(31)

As in eq. (24.15) of [32], the equations in the last form have the shape

d

dt
v + (L0 + h(t))v = 0

where L0 is a self-adjoint elliptic operator on Y ′ and h is a time dependent operator
on Y ′ satisfying the conditions of the unique continuation lemma. Since v vanishes
on the boundary, it vanishes on the collar too and therefore on the cone KY ′ .
Therefore the moduli spaceM([1,∞)×Y ′, s′) is a Hilbert sub-manifold of Bk(KY ′ , s

′)

. Moreover, as in the other cases we have a restriction map

RK :M([1,∞)× Y ′, s′)→ Bσk−1/2(−Y ′, sξ′)

4.4 Gluing the Moduli Spaces. Now that we know that each moduli space ap-
pearing in the fiber product description is a Hilbert manifold, we need to show that
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their fiber product is a finite dimensional manifold, possibly with components of
different dimensions. As mentioned before, we have the restrictions maps

Rτ :M(R+ ×−Y, sξ, [c])→ Bσk−1/2(Y, sξ)

R−W :M(W †, sω)→ Bσk−1/2(−Y, sξ)

R+
W :M(W †, sω)→ Bσk−1/2(Y ′, sξ′)

RK :M([1,∞)× Y ′, s′)→ Bσk−1/2(−Y ′, sξ)

If we write as before an element [γ] ∈M(W+
ξ′,Y , sω, [c]) as

Fib(Rτ , R
−
W , R

+
W , RK) 3 [γ] = ([γR+×−Y ], [γW ], [γ[1,∞)×Y ′ ])

and define Bσk−1/2(−Y, sξ) 3 b = R−W (γW )

Bσk−1/2(Y ′, sξ′) 3 b′ = R+
W (γW )

then the derivatives of our restriction maps can be written as

DRτ
[γR+×−Y ]

: T[γR+×−Y ]
M(R+ ×−Y, sξ, [c])→ Kσk−1/2,b(Y, sξ)

DR−W,[γW ] : T[γW ]M(W †, sω)→ Kσk−1/2,b(−Y, sξ)

DR+
W,[γW ] : T[γW ]M(W †, sω)→ Kσk−1/2,b′(Y

′, sξ′)

DRK,[γ[1,∞)×Y ′ ]
: TM[γ[1,∞)×Y ′ ]

([1,∞)× Y ′, s)→ Kσk−1/2,b′(−Y ′, sξ′)

where the right hand side is the corresponding Couloumb slice at each configuration
b, b′. The next definition is the analogue of definition 24.4.2 in [32]:

Definition 24. Let [γ] ∈M(W+
ξ′,Y , sω, [c]) and

ρ :M(W+
ξ′,Y , sω, [c])→M(R+ ×−Y, sξ, [c])×M(W †, sω)×M([1,∞)× Y ′, s′)

the restriction map. Write

ρ([γ]) = ([γ1], [γ2], [γ3]) =
(
[γR+×−Y ], [γW ], [γ[1,∞)×Y ′ ]

)
∈ Fib(Rτ , R

−
W , R

+
W , RK)

and
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[b] = Rτ ([γR+×−Y ]) = R−W ([γW ]) ∈ Bσk−1/2(−Y, sξ)

[b′] = R+
W ([γW ]) = RK([γ[1,∞)×Y ′ ]) ∈ Bσk−1/2(Y ′, sξ′)

We say that the moduli spaceM(W+
ξ′,Y , sω, [c]) is regular at [γ] if the map

R =
((
Rτ , R

−
W

)
,
(
R+
W , RK

))
: Fib(Rτ , R

−
W , R

+
W , RK)→ Bσk−1/2(−Y, sξ)×Bσk−1/2(Y ′, sξ′)

is transverse at ρ[γ]. That is, (Rτ , R
−
W ) is transverse at [b] while

(
R+
W , RK

)
is trans-

verse at [b′].

Following the strategy in section 24.4 of [32], to show regularity what we really
need is an analogue of Lemma 24.4.1 (which is our next lemma). The other pieces
used by [32] do not change so we can conclude the following transversality result
(compare with Proposition 24.4.7 [32]):

Theorem 25. Let q−Y , qY ′ be fixed perturbations for −Y, Y ′ respectively such that for
all critical points [a], [b] ∈ Bσk−1/2(−Y, sξ) and [a′], [b′] ∈ Bσk−1/2(Y ′, sξ), the moduli
spaces M([a],R × −Y, sξ, [b]) and M([a′],R × Y, sξ′ , [b

′]) are cut out transversely.
Then there is a residual subset P0 of the large space of perturbations P(−Y, sξ) ×
P(Y ′, sξ′) defined in section 11.6 of [32] for which the following holds: if for any
(p0, p

′
0) ∈ P0 ⊂ P(−Y, sξ)× P(Y ′, sξ′) one forms perturbation

pW+
ξ′,Y

= −q̂Y,gθ,sξ+
(
βq̂Y,gθ,sξ + β′0p̂0

)
+
(
β′0p̂

′
0 + β′q̂Y ′,gθ′ ,sξ′

)
+
(
βNK q̂Y ′,gθ′ ,sξ′ + βKpK

)
described in equation (11) , then the moduli space M(W+

ξ′,Y , sω, [c], pW+
ξ′,Y

) defined
using the perturbation pW+

ξ′,Y
is regular, in other words, we have transversality at ρ[γ]

for all [γ] ∈M(W+
ξ′,Y , sω, [c], pW+

ξ′,Y
).

In particular, for any perturbation belonging to this residual set, the moduli space
M(W+

ξ′,Y , sω, [c], pW+
ξ′,Y

) will be a manifold whose components have dimensions equal
to indDρ[γ]R = dim kerDρ[γ]R.

Again, the proof of this theorem is a consequence of the following lemma:

Lemma 26. Let [γ] ∈M(W+
ξ′,Y , sω, [c]) . Then the sum of the derivatives
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Dρ[γ]R =
(
D[γ1]Rτ +D[γ2]R

−
W

)
⊕
(
D[γ2]R

+
W +D[γ3]RK

)
:

T[γ1]M(R+ ×−Y, sξ, [c])⊕ T[γ2]M(W †, sω)⊕ T[γ3]M([1,∞)× Y ′, s)

→ Kσk−1/2,b(−Y )⊕Kk−1/2,b′(Y
′)

is a Fredholm map.

Proof. We will begin showing that the following maps are Fredholm and compact:
(32)

πb ◦ D[γ1]Rτ is compact (1) (1− πb) ◦ D[γ2]R
−
W is compact (5)

(1− πb) ◦ D[γ1]Rτ is Fredholm (2) πb ◦ D[γ2]R
−
W is Fredholm (6)

(1− πb′) ◦ D[γ2]R
+
W is compact (3) πb′ ◦ D[γ3]RK is compact (7)

πb′ ◦ D[γ2]R
+
W is Fredholm (4) (1− πb′) ◦ D[γ3]RK is Fredholm (8)

Here πb, πb′ are defined as follows [32, Sections 12.4, 17.3]. We have a Hessian
operator Hessσq : Kσk → Kσk−1 obtained by projecting D(grad��L)σ onto the subspace
Kσk−1. The spectrum of Hessσq is real, discrete and with finite dimensional generalized
eigenspaces. If the operator is hyperbolic (that is, zero is not an eigenvalue) we have
a spectral decomposition

Kσk−1/2,b = K+
b ⊕K

−
b

where K+
b is the closure of the span of the positive eigenspaces and K−b of the negative

eigenspaces. In the non-hyperbolic case, we choose ε sufficiently small that there are
no eigenvalues in (0, ε) and then define K±k−1/2,b using the spectral decomposition of
the operator Hessσq,b − ε. The effect is that the generalized 0 eigenspace belongs to
K−b .

Also, notice that the roles of the different operators are sometimes opposite because
of the different orientations on the manifolds, namely

K−b (−Y ) = K+
b (Y )

K−b′(−Y
′) = K+

b′(Y
′)
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•By Proposition 24.3.2 in [32], (3), (4), (5), (6) are true (remember that in this
section of the book the boundary is the compact four manifold is allowed to be
disconnected. In our case the boundary is simply −Y ∪ Y ′).
•By the discussion in Lemma 24.4.1 in [32], (1) and (2) are true. So really the

only thing left to verify are (7) and (8). To explain what we need to do we will chase
through some theorems of [32] (and Proposition 2.18 , Lemma 3.17 in [34]).
•Assertions (7) and (8) are the “conical” versions of Proposition 24.3.2 in the

book. The proof of this theorem in turn refers to Theorem 17.3.2, which at the same
time requires Proposition 17.2.6, which depends at the same time on Proposition
17.2.5. The latter uses essentially Theorem 17.1.3 and the only part that is not
proven explicitly is part a) , which depends on a parametrix argument (modeled on
Proposition 14.2.1) of Theorem 17.1.4.

In a nutshell, we must do the following. Decompose Q(A,Φ) as

Q(A,Φ) = D0 +K

D0(a, Ψ) =
(
ρ(d+a), DA0Ψ,−d∗a

)
K(a, Ψ) = (−{ΦΨ ∗ + ΨΦ∗}0, ρ(A− A0)Ψ + ρ(a)Φ+ iRe 〈iΦ, Ψ〉)

On the collar of ∂KY ′ , D0 can be written in the form

d

dt
+ L0

where L0 : C∞(−Y ′;E0) → C∞(−Y ′;E0) is a first order, self-adjoint elliptic differ-
ential operator. We will not write the exact formula for the domain and codomain
since they would rather cumbersome. Rather we will denote the bundles involved by
the letter E0 when referring to the three manifolds and by E for the four manifolds
just as the book does.

If H+
0 and H−0 are the closures in L2

1/2(Y ;E0) of the spans of the eigenvectors
belonging to positive and non-positive eigenvalues of L0 and

Π0 : L2
1/2(Y ;E0)→ L2

1/2(Y ;E0)
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is the projection with image H−0 and kernel H+
0 , we need to show that the operator

Q(A,Φ) ⊕ (Π0 ◦ r−Y ′) : L2
k(KY ′ ;E)→ L2

k−1(KY ′ ;E)⊕ (H−0 ∩ L2
k−1/2)

is Fredholm. First, for notational purposes take the collar neighborhood of ∂KY ′ to
be (−5, 0]×−Y ′, where ∂KY ′ has now been identified with {0} ×−Y ′. Also denote
for simplicity

QKY ′
= Q(A,Φ) : L2

k(KY ′ ;E)→ L2
k−1(KY ′ ;E)

To see this we will give a parametrix argument, which is essentially the same as the
one used in Proposition 14.2.1 of [32]. Namely, we modify the manifold KY ′ in two
different ways. For the first modification we close up KY ′ first by extending the collar
neighborhood a little bit (to the left in our figure) and then finding a four manifold
X (dots on the left side of the figure) bounding Y ′. For the second modification,
we forget about the part of the cone KY ′ which does not have a product structure,
in other words, we take the collar neighborhood of KY ′ and extend it into a half-
infinite cylinder which extends indefinitely to the right in our figure (see next page).
In particular, notice that we superimposed both modifications in our image to save
some space but they do not interact with each other. Each modification provides a
parametrix as follows.

Regarding the first modification, we can define the manifold X+ = X ∪ cylinder∪
KY ′ and extend QK′Y

to an operator

QX+ : L2
k(X

+;E)→ L2
k−1(X+;E)

and by theorem Theorem 3.3 in [32] there is a parametrix (that is, QX+PX+ − I and
PX+QX+ − I are compact operators) which we denote

PX+ : L2
k−1(X+;E)→ L2

k(X
+;E)

Similarly, we define the half-cylinder Z = (−∞, 0]×−Y ′. By Theorem 17.1.4 in [32],
the operator

QZ ⊕ (Π0 ◦ r−Y ′) : L2
k(Z;E)→ L2

k−1(Z;E)⊕ (H−0 ∩ L2
k−1/2(−Y ′;E0))
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Figure 7. Closing up the cone KY ′ into the manifold X ∪ KY ′ . Si-
multaneously, we extend the product neighborhood (−5, 0] × −Y ′ of
KY ′ into a half-infinite cylinder Z = (−∞, 0]×−Y ′.

has a parametrix

PZ : L2
k−1(Z;E)⊕ (H−0 ∩ L2

k−1/2(−Y ′;E0))→ L2
k(Z;E)

Finally, to define the parametrix corresponding to QKY ′
⊕(Π0 ◦r−Y ′) , let 1 = η1 +η2

be a partition of unity subordinate to a covering of KY ′ by the open sets U1 =

KY ′\([−2, 0]×−Y ′) and U2 = (−3, 0]×−Y ′. Let γ1 be a function which is 1 on the
support of η1 and vanishes on (−1, 0]×−Y ′. Similarly, let γ2 be 1 on the support of
η2 and vanishing outside [−4, 0]× Y ′. Define

PKY ′ : L2
k−1(KY ′ ;E)⊕ (H−0 ∩ L2

k−1/2)→ L2
k(KY ′ ;E)

e→ γ1PX+(η1e) + γ2PZ(η2e)

Notice that thanks to how the supports of the functions where chosen, the function
is actually well defined. A similar computation to Proposition 14.2.1 in [32] shows
that PKY ′ is a parametrix for QKY ′

⊕ (Π0 ◦ r−Y ′).
Returning back to the proof of the lemma, thanks to the eight identities (32) we

can see that
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D[γ1]Rτ +D[γ2]R
−
W

= (1− πb) ◦ D[γ1]Rτ︸ ︷︷ ︸
Fredholm

+πb ◦ D[γ2]R
−
W︸ ︷︷ ︸

Fredholm

+πb ◦ D[γ1]Rτ︸ ︷︷ ︸
compact

+ (1− πb) ◦ D[γ2]R
−
W︸ ︷︷ ︸

compact

Likewise,

D[γ3]RK +D[γ2]R
+
W

= (1− πb′) ◦ D[γ3]RK︸ ︷︷ ︸
Fredholm

+πb′ ◦ D[γ2]R
+
W︸ ︷︷ ︸

Fredholm

+πb′ ◦ D[γ3]RK︸ ︷︷ ︸
compact

+ (1− πb′) ◦ D[γ2]R
+
W︸ ︷︷ ︸

compact

Therefore, (
D[γ1]Rτ +D[γ2]R

−
W

)
⊕
(
D[γ2]R

+
W +D[γ3]RK

)
differs by the compact operator(

πb ◦ D[γ1]Rτ + (1− πb) ◦ D[γ2]R
−
W

)
⊕
(
πb′ ◦ D[γ3]RK + (1− πb′) ◦ D[γ2]R

+
W

)
from the direct sum of the Fredholm operators(

(1− πb) ◦ D[γ1]Rτ ⊕ πb ◦ D[γ2]R
−
W

)
⊕
(
(1− πb′) ◦ D[γ3]RK ⊕ πb′ ◦ D[γ2]R

+
W

)
and so the result follows. �
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5. Stretching the Neck

As promised when we explained our strategy for proving naturality, we will consider
a parametrized moduli space following the ideas used in sections 4.9, 4.10, 6.3 of [30]
and sections 24.6, 26.1 and 27.4 of [32]. Thanks to the computations done in sections
5.5 and 6 of [65], formally our situation cylinder+compact+cone behaves in the same
way as if we were working in the context of cylinder+compact, which is where the
theorems just mentioned strictly speaking apply.

Recall that we want to show that HM

∧

•(W
†, sω)c(ξ′) = c(ξ′, Y ), in other words,

at the chain-level we must have

m̌c(ξ′)− c(ξ′, Y ) ∈ im∂̌−Y

The strategy we spelled out consisted in attaching a cylinder of length L to W+
ξ′,Y

and studying the Seiberg-Witten equations on

W+
ξ′,Y (L) = ([1,∞)× Y ′) ∪ ([0, L]×−Y ′) ∪W † ∪ (R+ ×−Y )

Equivalently, as explained in section 24.6 of [32], we can consider a family of metrics
gL and perturbations on W †, all of which are equal near Y ′. For example, we can
choose a fraction of the collar neighborhood near Y ′ and instead of using the product
metric dt⊗dt+gY ′ , we use a smoothed out version of the metric gL = L2dt⊗dt+gY ′ ,
which agrees with the old metric outside this region. In any case, we obtain a
parametrized configuration space

Mz(W
+
ξ′,Y , sω, [c]) =

⋃
L∈[0,∞)

{L} ×Mz(W
+
ξ′,Y (L), sω, [c])

which we can identify with a subset of [0,∞) × Bσk,loc(W+
ξ′,Y , sω) as follows (see the

remark before definition 24.4.9 in [32] and section 2.3 in [41]):
For any t ∈ [0,∞) there is a unique automorphism bt : TW+

ξ′,Y → TW+
ξ′,Y that

is positive, symmetric with respect to g0 and has the property that g0(u, v) =

gt(bt(u), bt(v)). The map induced by bt on orthonormal frames gives rise to a map of
spinor bundles b̄t : S±0 → S±t associated to the metrics g0 and gt . This map is an
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isomorphism preserving the fiberwise length of spinors. The identification

[0,∞)× Bσk,loc(W+
ξ′,Y , sω)→

⋃
L∈[0,∞)

{L} × Bσk,loc(W+
ξ′,Y (L), sω)

is then given by

(33) (L,A,R+φ, Φ)→ (L,A,R+b̄L(φ), b̄L(Φ))

Just as in proposition 26.1.3 in [32], the moduli space Mz(W
+
ξ′,Y , sω, [c]) is a smooth

manifold with boundary. The boundary is the fiber over L = 0, that is, the original
moduli space Mz(W

+
ξ′,Y , s, [c]). Each individual moduli space Mz(W

+
ξ′,Y (L), sω, [c])

can be compactified into M+
z (W+

ξ′,Y (L), sω, [c]) by adding broken trajectories as in
definition 24.6.1 of [32]1 and to compactify⋃

L∈[0,∞)

{L} ×M+
z (W+

ξ′,Y (L), s, [c])

we add a fiber over L =∞, which is denotedM+
z (W+

ξ′,Y (∞), s, [c]) , where

(34) W+
ξ′,Y (∞) =

(
KY ′ ∪

[
R+ ×−Y ′

])
∪
([
R− ×−Y ′

]
∪W † ∪

[
R+ ×−Y

])
An element in this space consists (at most) of a quadruple ([γK′ ], [γ̌Y ′ ], [γW † ], [γ̌Y ])

where :
• [γK′ ] ∈M(Z+

Y ′,ξ′ , s
′, [aY ′ ]) is a solution on [R+ ×−Y ] ∪KY ′ .

• [γ̌Y ′ ] ∈ M̌+([aY ′ ], sξ′ , [bY ′ ]) is an unparametrized trajectory on the cylinder
R×−Y ′.
• [γW † ] ∈ M([bY ′ ],W

†
∗ , sω, [bY ]) is a solution on W †

∗ , that is, W † with two cylin-
drical ends attached to it.
• [γ̌Y ] ∈ M̌+([bY ], sξ, [c]) is an unparametrized trajectory on the cylinder R×−Y .
Just as in proposition 26.1.4 in [32], the space

M+
z (W+

ξ′,Y , s, [c]) =
⋃

L∈[0,∞]

{L} ×M+
z (W+

ξ′,Y (L), s, [c])

1More precisely, for us a broken trajectory asymptotic to [c] consists of an element [γ0] in a mod-
uli space Mz0(W+

ξ′,Y (L), sω, [c]) and an unparametrized broken trajectory [γ̌] in a moduli space
M̌z([c0], sξ, [c]).
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is compact and when it is of dimension 1 the 0 dimensional strata over L = ∞ are
of the following forms (compare with proposition 26.1.6 [32]):

i)MZ+
Y ′,ξ′
×MW †∗

ii)MZ+
Y ′,ξ′
×MW †∗

× M̌−Y

iii)MZ+
Y ′,ξ′
× M̌−Y ′ ×MW †∗

Here M̌ denotes an unparametrized moduli space. Also, in the last two cases the
middle space denotes a boundary-obstructed moduli space, i.e, it denotes trajectories
which connect a boundary stable point (as t→ −∞) with a boundary unstable point
(as t→∞).

The following theorem shows that up to a boundary term,
∑

zmz(W
+
ξ′,Y , sω, [c])

equals either of the sums (6), (7). It can be seen as the analogue of Lemma 4.15 in
[30] and Proposition 24.6.10 in [32] (in fact, it was implicitly used in the proof of the
pairing formula in Proposition 6.8 of [30] and Theorem 6.2 in [65]):

Proposition 27. IfMz(W
+
ξ′,Y , s, [c]) is zero-dimensional, it is compact. If Mz(W

+
ξ′,Y , sω, [c])

is one-dimensional and contains irreducible trajectories, then the compactification
M+

z (W+
ξ′,Y , sω, [c]) is a 1-dimensional manifold whose boundary points are of the fol-

lowing types:
1) The fiber over L = 0, namely the spaceMz(W

+
ξ′,Y , sω, [c]).

2) The fiber over L =∞, namely the three products described previously.
3) Products of the form M(W+

ξ′,Y , sω, [b]) × M̌([b], sξ, [c]) or M(W+
ξ′,Y , sω, [a]) ×

M̌([a], sξ, [b])× M̌([b], sξ, [c]) where the middle one is boundary obstructed.

In order to apply the proposition define P = [0,∞) and the numbers

mz(W
+
ξ′,Y , sω, [a])P =

|Mz(W
+
ξ′,Y , sω, [a])| mod 2 if dimMz(W

+
ξ′,Y , s, [a]) = 0

0 otherwise

Recall also that the differential on Č•(−Y, sξ) = Co(−Y, sξ) ⊕ Cs(−Y, sξ) is [32,
Definition 22.1.3]

∂̌ =

(
∂oo −∂uo ∂̄su
∂os ∂̄ss − ∂uu ∂̄su

)
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Suppose now that Mz(W
+
ξ′,Y , sω, [c]) is one dimensional. We use the previous propo-

sition to count the endpoints of M+
z (W+

ξ′,Y , sω, [c]) by making cases on [c].

Case [c] ∈ Co(−Y, sξ) [irreducible critical point].

(1) The fiber over L = 0, gives the contributions

(35)
∑
z

mz(W
+
ξ′,Y , sω, [c])

These numbers were used in the chain-level definition of c(ξ′, Y ).
(2) The fiber over L =∞ gives the contributions (6)

(36) ∑
[a]∈Co(−Y ′)

∑
z1,z2

mz1(Z
+
Y ′,ξ′ , s

′, [a])nz2([a],W †
∗ , sω, [c])

+
∑

[a]∈Cs(−Y ′),[b]∈Cu(−Y ′)
∑

z1,z2,z3
mz1(Z

+
Y ′,ξ′ , s

′, [a])n̄z2([a], sξ′ , [b])nz3([b],W †
∗ , sω, [c])

+
∑

[a]∈Cs(−Y ′),[b]∈Cu(−Y )

∑
z1,z2,z3

mz1(Z
+
Y ′,ξ′ , s

′, [a])n̄z2([a],W †
∗ , sω, [b])nz3([b], sξ, [c])

These numbers were used in the chain-level definition of m̌c(ξ′).
(3) We obtain contributions of the form

(37) ∑
[a]∈Co(−Y )

∑
w1,w2

mw1(W
+
ξ′,Y , sω, [a])Pnw2([a], sξ, [c])

+
∑

[a]∈Cs(−Y ),[b]∈Cu(−Y ′)
∑

w1,w2,w3
mw1(W

+
ξ′,Y , sω, [a])P n̄w2([a], sξ, [b])nw3([b], sξ, [c])

These numbers will be used momentarily to define the boundary term.

The proposition tells us that the sum of (35), (36) and (37) equals 0.

Case [c] ∈ Cs(−Y, sξ) [boundary stable critical point].

(1) The fiber over L = 0, gives the contributions

(38)
∑
z

mz(W
+
ξ′,Y , sω, [c])

These numbers were used in the chain-level definition of c(ξ′, Y ).
(2) The fiber over L =∞ gives the contributions (6)

(39) ∑
[a]∈Co(−Y ′)

∑
z1,z2

mz1(Z
+
Y ′,ξ′ , s

′, [a])nz2([a],W †
∗ , sω, [c])

+
∑

[a]∈Cs(−Y ′)
∑

z1,z2
mz(Z

+
Y ′,ξ′ , s

′, [a])n̄z2([a],W †
∗ , sω, [c])

+
∑

[a]∈Cs(−Y ′),[b]∈Cu(−Y ′)
∑

z1,z2,z3
mz1(Z

+
Y ′,ξ′ , s

′, [a])n̄z2([a], sξ, [b])nz3([b],W †
∗ , sω, [c])

+
∑

[a]∈Cs(−Y ′),[b]∈Cu(−Y )

∑
z1,z2,z3

mz1(Z
+
Y ′,ξ′ , s

′, [a])n̄z2([a],W †
∗ , sω, [b])nz3([b], sξ, [c])
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These numbers were used in the chain-level definition of m̌c(ξ′).
(3) We obtain contributions of the form

(40) ∑
[a]∈Co(−Y )

∑
w1,w2

mw1(W
+
ξ′,Y , sω, [a])Pnw2([a], sξ, [c])

+
∑

[a]∈Cs(−Y )

∑
w1,w2

mw1(W
+
ξ′,Y , sω, [a])P n̄w2([a], sξ, [c])

+
∑

[a]∈Cs(−Y ),[b]∈Cu(−Y )

∑
w1,w2,w3

mw1(W
+
ξ′,Y , sω, [a])P n̄w2([a], sξ, [b])nw3([b], sξ, [c])

These numbers will be used momentarily to define the boundary term.

The proposition tells us that the sum of (38), (39) and (40) equals 0.
Define the chain element ψ ∈ Co(−Y, sξ)⊕ Cs(−Y, sξ) via the formula

ψ =

 ∑
[a]∈Co(−Y )

∑
w1

mw1(W
+
ξ′,Y , sω, [a])P e[a],

∑
[a]∈Cs(−Y )

∑
w1

mw1(W
+
ξ′,Y , sω, [a])P e[a]


It is not hard to see that

∂̌ψ =

 ∑
[c]∈Co(−Y )

Coe[c],
∑

[c]∈Cs(−Y )

Cse[c]


where Co equals (37) and Cs equals (40). In other words, we have the chain-level
identity

m̌c(ξ′)− c(ξ′, Y ) = ∂̌ψ

which gives us the desired identity

HM

∧

•(W
†, sω)c(ξ′) = c(ξ′, Y )

concluding the first phase in the proof for the naturality of the contact invariant
under strong symplectic cobordisms. Now we proceed to address the second part of
the proof (as explained at the beginning of the paper). Namely, we will show that
c(ξ′, Y ) equals c(ξ) by adapting Mrowka and Rollin’s “dilating the cone” technique
to the case of a manifold with cylindrical end.
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6. Generalized Gluing-Excision Theorem

6.1 Gluing and Identifying Spin-c Structures. Our next objective in this sec-
tion is to modify the arguments in [40] to the case where there is a cylindrical end
instead of a compact manifold. The results in that paper apply only under the as-
sumption that we are working with a special symplectic cobordism W : Y → Y ′.
This appears near formula (1.1) of [40], and it was defined as follows:

Definition 28. A cobordism (W,ω) : (Y, ξ) → (Y ′, ξ′) is said to be a special
symplectic cobordism if:

1) With the symplectic orientation, ∂W = −Y t Y ′ and ω is strictly positive on ξ
and ξ′ with their induced orientations.

2) The symplectic form is given in a collar neighborhood of the concave boundary
by a symplectization of (Y, ξ).

3) The map induced by the inclusion i∗ : H1(W,Y ′;Z) → H1(Y ;Z) is the zero
map.

Notice that it is the last condition the one that makes the symplectic cobordism
“special”. We want to work with strong cobordisms, which in particular means that
the convex end is also given by a symplectization of (Y, ξ) and that the special
condition does not appear. To explain why we can ultimately drop this condition,
we will now say a quick words on how to identify (relative) spin-c structures, since
this is the place where Mrowka and Rollin used it. It is useful to think of the special
condition in the following way [40, Remark 1.2.2]: if u ∈ Map(W,S1) is homotopic to
the identity along Y ′ (so [u] ∈ H1(W,Y ′) ), then u must be homotopic to the identity
along Y (so [u |Y ] = 0 ∈ H1(Y )). We will explain how the special assumption is
related to the uniqueness of certain gluing operations involving spin-c structures.

It is well known that there are several different ways to think about spin-c struc-
tures, but from the perspective of monopole Floer homology, it is very convenient
to think of it as being realized concretely by a spinor bundle. Therefore, we will
start by discussing what is meant by a spinor bundle. The following is based on the
exposition by Salamon in [49].

Definition 29. Suppose (M, g) is an oriented Riemannian manifold of dimension
2n or 2n + 1. A spin-c structure on the vector bundle TM → M is a pair (S, ρ)
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where S →M is a Hermitian vector bundle of rank 2n and a Clifford multiplication
map

ρ : TM → homC(S, S)

which is a homomorphism satisfying for all v ∈ TM

(41) ρ(v) ◦ ρ(v) = −|v|2gIdS

and for all Φ,Φ′ ∈ Γ (S)

(42) 〈ρ(v)Φ,Φ′〉 = −〈Φ, ρ(v)Φ′〉

where 〈·, ·〉 is the hermitian inner product on S.
If (S1, ρ1) and (S2, ρ2) are two spin-c structures associated to TM , a spin-c iso-

morphism from (S1, ρ1) to (S2, ρ2) is a unitary bundle morphism

(43) S : S1 → S2

such that for all v ∈ TM , Φ1 ∈ S1 we have

(44) S(ρ1(v)Φ1) = ρ2(v)S(Φ1)

In the case that (S1, ρ1) = (S2, ρ2) we will call S an automorphism of the spinor
bundle (S, ρ).

The definition of spin-c isomorphism basically says that S intertwines the two
Clifford actions. Recall that using the metric duality ρ can be defined on the cotan-
gent bundle T ∗M and every three or four manifold admits a spin-c structure. We will
denote by Spinc(M) the isomorphism classes of spin-c structures under the previous
relation and s = [(S, ρ)] ∈ Spinc(M) will denote an isomorphism class of a spin-c
structure. We will sometimes say that s is an abstract spin-c structure and the
pair (S, ρ) is an instantiation of the abstract spin-c structure.

Observe that given a particular instantiation (S, ρ) it is quite easy to produce
automorphisms associated to it. For example, choose a map u : M → S1 and define

Su(Φ) = uΦ

where just as in the case of a gauge transformation the right hand side means fiberwise
multiplication of the spinor by a complex number. Since all automorphisms of an
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instantiation (S, ρ) arise in this way, we can think of the gauge group as the group
of automorphisms of an abstract spin-c structure s [32, Section 1.1].

In general it is useful to think of a spin-c structure s as being independent of the
Riemannian metric g used on the manifold M . Therefore, we need to generalize
our definition of isomorphic spin-c structures to include the case in which the spinor
bundles are built from different metrics on the manifold.

Suppose that g0, g1 are two metrics on M and that x ∈ M . Since the metrics are
symmetric and positive definite bilinear forms, there is a a unique automorphism 2

bg0,g1 : TM → TM

that is positive, symmetric with respect to g0 and satisfies for all v, w ∈ TM

g0(v, w) = g1(bg0,g1(v), bg0,g1(w))

If we have an abstract spin-c structure s0 with respect to (M, g0) instantiated by the
spinor bundle (S0, ρ0), using bg0,g1 we will define a canonical spinor bundle (S1, ρ1) as-
sociated to (M, g1) and we will define s1 as its corresponding abstract spin-c structure.
Under this construction we would say that s0 is equivalent to s1. More concretely:

(1) As a vector bundle, we define S1 ≡ S0.
(2) To define ρ1, observe that it must satisfy condition (41), namely, we want for

v ∈ TM , ρ1(v) ◦ ρ1(v) = −|v|2g1IdS1 . Since

|v|2g1 = g1(v, v) = g0(b−1
g0,g1

(v), b−1
g0,g1

(v)) =
∣∣b−1
g0,g1

(v)
∣∣2
g0

we can see that the natural definition for ρ1 should be

ρ1(v) ≡ ρ0

(
b−1
g0,g1

(v)
)

(3) If 〈·, ·〉0 represents the hermitian inner product on S0 with respect to g0 then
we can also define 〈·, ·〉1 ≡ 〈·, ·〉0 as the hermitian inner product on S1 = S0

with respect to g1, that is, the inner product remains unchanged. It is not
difficult to see that ρ1 satisfies property (42).

2This construction can be done fiberwise so it is a consequence of linear algebra [37, Section 2].
Namely, if V is an m dimensional real vector space and g0, g1 ∈ Sym(V ∗ ⊗ V ∗) are two metrics
then there is a unique positive endomorphism H of V such that g1(·, ·) = g0(H·, ·) . One then takes
bg0,g1 = H−1/2 .
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(4) We denote this construction as the map b̄S0,S1 : (S0, ρ0)→ (S1, ρ1).

Definition 30. Identification of abstract spin-c structures: suppose that M
is an oriented manifold with metric g0 and abstract spin-c structure s0 associated to
g0. If g1 is another metric and s1 is an abstract spin-c structure we will say that the
abstract spin-c structures s0 and s1 are equivalent if the following happens:
one can find an instantiation (S0, ρ0) of s0 such that the spinor bundle (S1, ρ1) as
described before is an instantiation of s1.

Remark 31. i) Observe that if (S ′1, ρ
′
1) is another instantiation of (S1, ρ1) then by

definition we have a unitary isomorphism S : (S1, ρ1) → (S ′1, ρ
′
1) which intertwines

ρ1 and ρ′1 . If we define

b̄S0,S′1
≡ S ◦ b̄S0,S1 : (S0, ρ0)→ (S ′1, ρ

′
1)

we obtain a map of spinor bundles which preserves the pointwise norms of spinors.
It is not difficult to check that b̄S′1,S0

◦ b̄S0,S′1
= IdS0 .

ii) Thanks to the previous definition we can talk of an abstract spin-c structure s

in a way that is metric independent. For example, it is well known the isomorphism
classes of spin-c structures Spinc(M) onM is a H2(M ;Z) torsor, i.e, if we fix a spin-c
structure s0 as the “basepoint”, any other spin-c structure s1 differs from s0 by an
element of H2(M ;Z) [32, Proposition 1.1.1].

We briefly repeat the proof this fact to show how it fits in our current framework.
Let (S0, ρ0) be an instantiation of s0 and start with an element ẽ ∈ H2(M ;Z). Choose
a hermitian line bundle Lẽ such that c1(Lẽ) = ẽ where c1(•) denotes the first Chern
class. Define sẽ ≡ s0 + ẽ as the abstract spin-c structure which has a particular
instantiation the spinor bundle Sẽ = S0 ⊗ Lẽ , ρẽ = ρ0 ⊗ 1Lẽ . The inner product on
Sẽ is the usual inner product on the tensor product of two vector spaces:

〈Φ⊗ σẽ, Φ′ ⊗ σ′ẽ〉 = 〈Φ,Φ′〉 〈σẽ, σ′ẽ〉

Conversely, if we start with instantiations (S0, ρ0) and (S1, ρ1) of s0, s1 respectively,
then we can define the difference line bundle LS0,S1 as the subbundle of hom(S0, S1)

consisting of homomorphisms S : S0 → S1 that intertwine ρ0, ρ1 in the sense of
equation (44) . This subbundle has rank 1 because the only endomorphisms of S0

that commute with the image of ρ0 are the scalar endomorphisms (Schur’s Lemma).
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Define ẽ ≡ c1(LS0,S1) ∈ H2(M ;Z). It can be checked that (Sẽ, ρẽ) and (S1, ρ1)

represent the same abstract spin-c structure s1 via the “tautological” map Sẽ : Sẽ →
S1 , (Φ,S)→ S(Φ) (which is clearly unitary) and that if ẽ = 0, i.e, the line bundle
LS0,S1 admits a global section, then s0 = s1.

Our main objective is to analyze the spin-c structure associated to a symplectic
form on a compact four manifold and to a contact structure on a three manifold.
More generally, we want to see to what extent are these different spin-c structures
related. To make this precise, we first need to address how a spin-c structure on
manifold X with boundary ∂X induces a spin-c structure on its boundary and how
a spin-c structure on a three manifold Y induces a spin-c structure on the cylinder
R× Y [32, Sections 4.3 and 4.5].

Definition 32. 1) Suppose that Y is a closed 3 manifold with abstract spin-c struc-
ture sY . It induces an abstract spin-c structure sZ on Z = R × Y as follows. Let
(SY , ρY ) be an instantiation of sY . Use the product metric on Z and define the spinor
bundle

SZ = SY ⊕ SY
and the Clifford multiplication to be

ρZ(∂t) =

(
0 −1

1 0

)

ρZ(v) =

(
0 −ρY (v)∗

ρY (v) 0

)
v ∈ TY

Define sZ as the abstract spin-c structure whose instantiation is SZ .
2) Suppose thatX is a compact, oriented Riemannian 4 manifoldX with boundary

Y = ∂X and abstract spin-c structure sX . It induces an abstract spin-c structure
sY on Y as follows. Let (SX = S+ ⊕ S−, ρX) be an instantiation of sX Here the
splitting comes from the eigenspaces of ρ(volX) as described in Section 1.1 in [32].
Use an outward normal n (which we take to be of unit norm and orthogonal to TY )
to identify S+ and S− at the boundary ρX(n) : S+ |Y' S− |Y , i.e, (Φ+, 0) ∈ S+ |Y
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is identified with ρX(n)(Φ+, 0) ∈ S− |Y . Define the spinor bundle as

SY = S+ |Y' S− |Y

and the Clifford multiplication is

ρY (v) = ρX(n)−1ρX(v)

Define sY as the abstract spin-c structure whose instantiation is (SY , ρY ).
3) Suppose that Y is a closed oriented three manifold with abstract spin-c structure

sY . It induces an abstract spin-c structure s−Y as follows. Let (SY , ρY ) be an
instantiation of sY . Define

S−Y ≡ SY

ρ−Y ≡ −ρY
We reversed the sign of the Clifford map to continue to have ρ(vol) = id. Define s−Y
as the abstract spin-c structure whose instantiation is (S−Y , ρ−Y ).

Now we will define abstract spin-c structures canonically associated to a symplectic
form on a symplectic manifold and on a contact manifold. Some references for the
symplectic case can be found in Lemma 4.3 of [26] or 3.1.4 [20]. For the contact case
see section 2 in [47] and section 2.1 in [53].

Definition 33. 1) Suppose that (W,ω) is a symplectic four manifold. We construct
an abstract spin-c structure sω as follows. Choose a metric g and an almost complex
structure so that (g, J, ω) is a compatible triple. That is, for all v1, v2 ∈ TW ,
ω(v, Jv) > 0, ω(Jv1, Jv2) = ω(v1, v2) and g(v1, v2) = ω(v1, Jv2). See section 12.3 in
[10] for more information.

There is an induced almost complex structure J [ : T ∗W → T ∗W on T ∗W via the
rule (J [η)(v) = −η(Jv). This is an awkward convention but agrees with the one
used by [36, 20].

We can extend J [ to all the exterior algebra of W so we can define Λ0,0
J as the

−i eigenbundle of J [ (when acting of 0 forms) and Λ0,2
J for the +i eigenbundle of J [

when acting on two-forms. We define the spinor bundle

Sω = Λ0,0
J ⊕ Λ

0,2
J

and the Clifford multiplication
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ρω : Ω1(M)⊗ C→ homC(S, S)

ρω(η)γ =
√

2
(
η0,1 ∧ γ − ı(η0,1)γ

)
(45)

Here η is a one form and we are decomposing it into types η = η1,0 + η0,1. Under
the C linear metric duality η0,1 represents the corresponding (0, 1) vector field. The
abstract spin-c structure sω is the one whose instantiation is (Sω, ρω).

2) Suppose that (Y, ξ) is a contact 3 manifold. We construct an abstract spin-c
structure sξ as follows. Choose a one form θ such that ξ = ker θ and θ ∧ dθ > 0.
Choose the metric g on Y for which |θ|g = 1 , dθ = 2∗Y,g θ and J is an isometry with
respect to ξ, where J is a choice of an almost complex structure on ξ such that for
any v ∈ ξ, (v, Jv) is a positively oriented basis for ξ. Define the spinor bundle

Sξ = C⊕K−1

where K−1 denotes the complex line bundle (〈θ〉⊥ , J [). Any form η ∈ Γ (K−1) can
be decomposed according to type as η = η1,0 + η0,1 and a generic one form can be
written as

η = η(R)θ + η1,0 + η0,1

where R is the Reeb vector field of θ, i.e, the metric dual of θ. The corresponding
Clifford multiplication map is

ρξ : T ∗Y ⊗ C→ homC(S, S)(46)

ρξ(η)(α, β) = (iη(R)α,−iη(R)β)−
√

2(η0,1 ∧ Φ− ı(η0,1)Φ)

where we use the C linear metric duality. The abstract spin-c structure sξ is the one
whose instantiation is (Sξ, ρξ).

Remark 34. As a small digression (which will be useful in the next section) we can
decompose S+

ω as S+
ω = CΦ0 ⊕ 〈Φ0〉⊥ where denotes the orthogonal complex line

bundle. The canonical connection A0 is then the unique spin-c connection for which
DA0Φ0 = 0 [26, Section 4.3]. The Seiberg-Witten equations (with respect to Taubes’
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perturbations from [52]) can then be written as

SWTaubes :

1
2
ρ(F+

A )− (ΦΦ∗)0 = 1
2
ρ(F+

A0
)− i

4
ρ(ω)

DAΦ = 0

Since i
4
ρ(ω) = (Φ0Φ

∗
0)0 then (A0, Φ0) is tautologically a solution of the previous

equations. Now suppose that we dilate the metric, that is, for τ > 0 a constant we
define gτ = τ 2g. Since τ is constant then ωτ = τ 2ω will continue to be a symplectic
form compatible with the metric gτ (in the sense that it has pointwise norm

√
2).

Also, because of our recipe for identifying spin-c structures for different metrics on
the same manifolds, we take Sω,τ ≡ Sω and ρτ = ρ

τ
, where we are assuming that

the Clifford map is defined on one forms. When we extend ρτ to the rest of the
exterior algebra we have that on two forms ρτ = ρ

τ2
so in particular ρτ (ωτ ) = ρ(ω).

Moreover, a dilation is a very trivial case of a conformal change of metric so using
the formula for how the Dirac operator changes with respect to it [11, eq. D.1] it
is not difficult to see that DA,gτΦ = τ−1DA,gΦ so in particular being a harmonic
spinor is independent of the metric gτ and moreover the canonical connection A0 is
preserved under dilations, that is, A0,τ = A0. Since the notion of self duality is also
conformally invariant the system of equations

SW τ
Taubes :

1
2
ρτ (F

+
A )− (ΦΦ∗)0 = 1

2
ρτ (F

+
A0,τ

)− i
4
ρτ (ωτ )

DA,gτΦ = 0

can be rewritten as [recall that ρτ (F+
A ) =

ρ(F+
A )

τ2
]

SW τ
Taubes :

1
2
ρ(F+

A )− τ 2(ΦΦ∗)0 = 1
2
ρ(F+

A0
)− τ 2 i

4
ρ(ω)

DA,gΦ = 0

setting τ =
√
r this suggests how one could find the class of perturbations used by

Taubes [51, eq. 1.20].

Back to our main topic of gluing and identifying spin-c structures, suppose that
(W,ω) : (Y, ξ)→ (Y ′, ξ′) is a strong symplectic cobordism between (Y, ξ) and (Y ′, ξ′).
The next lemma addresses how is sω related to sξ and sξ′ .
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Lemma 35. If (W,ω) : (Y, ξ) → (Y ′, ξ′) is a strong symplectic cobordism then
sω |Y ′= sξ and sω |−Y = s−Y as abstract spin-c structures where sY = sξ.

Proof. We start with the convex end. Choose a contact form θ′ and metric gθ′ as
explained before. We choose the canonical spinor bundle (Sθ′ , ρθ′) constructed above.
Being a convex end, we can choose a collar neighborhood (0, 1]× Y ′ ⊂ W such that
the symplectic form ω on this collar neighborhood looks like the symplectization
1
2
d(t2θ′).
Choose the conical metric dt ⊗ dt + t2gθ′ on this collar neighborhood. Then ∂t is

the outward normal vector and if e1
Y ′ , e

2
Y ′ , e

3
Y ′ is a coframe of Y ′ then (e0, e1, e2, e3) =

(dt, e1
Y ′ , e

2
Y ′ , e

3
Y ′) is a coframe of W at the boundary ∂[(0, 1] × Y ′] = {1} × Y ′ ' Y ′.

For the canonical spinor bundle (Sω, ρω) we have that a section Φ ∈ Γ (S+
ω |Y ′) can

locally be written as
Φ = αW + βW ε̄

01 ∧ ε̄23

where ε̄01 = 1√
2
(e0 − ie1) and ε̄23 = 1√

2
(e2 − ie3). Likewise, a section Ψ ∈ Γ (Sθ′) can

be written as
Ψ = αY ′ + βY ′ ε̄

23

The isomorphism between (Sω |Y ′ , ρω |Y ′) and (Sθ′ , ρθ′) is given by

S : (Sω |Y ′ , ρω |Y ′)→ (Sθ′ , ρθ′)

Φ = αW + βW ε̄
01 ∧ ε̄23 → Ψ = αW + βW ε̄

23

Clearly S will be a unitary isomorphism. The only thing that needs to be checked
is that S intertwines the Clifford multiplication, that is, for all v ∈ TY ′ we have

S(ρ−1
W (∂t)ρW (v)Φ) = ρθ′(v)S(Φ)

This can be verified using the definition given for ρω and ρξ in formulas 45 , 46
and also that ρ−1

W (∂t) = −ρW (∂t). The concave case can be dealt with in a similar
manner.

�

Now we return to the problem of gluing spin-c structures. Following [31], suppose
thatX is a compact four manifold with boundary Y = ∂X (potentially disconnected)
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which will ultimately be equipped with a contact structure ξ, though for the moment
we won’t use this.

A relative spinor bundle is a triple (SX , ρX ,SY ) where (SX , ρX) is the instan-
tiation of some abstract spin-c structure sX ∈ Spinc(X) and

SY : (SX , ρX) |∂X→ (SY , ρY )

is an isomorphism to some instantiation (SY , ρY ) of some abstract spin-c structure
sY ∈ Spinc(Y ). In other words,

∀v ∈ TY, ∀Φ ∈ S+
X |Y SY

[
ρX(nX)−1ρX(v)Φ

]
= ρY (v)SY (Φ)

Observe that if (S ′X , ρ
′
X) is a different instantiation of sX we have a map

S′X : (S ′X , ρ
′
X)→ (SX , ρX)

which satisfies

∀v ∈ TX, ∀Φ′ ∈ S ′X S′X(ρ′X(v)Φ′) = ρX(v)S′X(Φ′)

In particular, if we define S′Y ≡ SY ◦ (S′X |Y ) : (S ′X , ρ
′
X) |∂X→ (SY , ρY ) it is easy to

see that ∀v ∈ TY, ∀Φ′ ∈ S+′
X |Y

S′Y
[
ρ′X(nX)−1 (ρ′X(v)Φ′)

]
= SY ◦ (S′X |Y )

[
ρ′X(nX)−1 (ρ′X(v)Φ′)

]
= SY ◦ (S′X |Y ) (S′X)

−1 (
ρX(nX)−1S′X (ρ′X(v)Φ′)

)
= SY

(
ρX(nX)−1S′X (ρ′X(v)Φ′)

)
= GY (ρX(nX)−1ρX(v)G′X(Φ′))

= ρY (v)SY ◦S′X(Φ′)

= ρY (v)S′Y (Φ′)

In other words, the triple (S ′X , ρ
′
X ,S

′
Y = SY ◦ (S′X |Y )) is also a relative spinor

bundle. Similarly, if (S ′′Y , ρ
′′
Y ) is another instantiation of the same abstract spin-c

structure sY then we have a map

S : (SY , ρY )→ (S ′′Y , ρ
′′
Y )
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which satisfies

∀v ∈ TY, ∀Ψ ∈ SY S(ρY (v)Ψ) = ρ′′Y (v)S(Ψ)

and if we define S′′Y = S ◦ SY : (SX , ρX) |∂X→ (S ′′Y , ρ
′′
Y ) it is not hard to see that

∀v ∈ TY, ∀Φ ∈ S+
X |Y

S′′Y
[
ρX(nX)−1ρX(v)Φ

]
= S ◦SY

[
ρX(nX)−1ρX(v)Φ

]
= S [ρY (v)SY (Φ)]

= ρ′′Y (v)S ◦SY (Φ)

= ρ′′YS
′′
Y (Φ)

In other words, the definition of relative spinor bundle (SX , ρX ,S) depends on
(SY , ρY ) only in terms of the abstract spin-c structure sY . Therefore, it makes sense
to talk about a relative spinor bundle (SX , ρX ,SY ) associated to an abstract
spin-c structure sY and we can now define a relative spin-c structure as follows:

Definition 36. Let X be a four compact with boundary Y and choose an abstract
spin-c structure sY . A relative spin-c structure (sX , [SY ]) associated to sY is
an equivalence class of triples (SX , ρX ,SY ) where (SX , ρX ,SY ) ∼ (SX ,

′ ρ′X ,S
′
Y ) if

the following are satisfied:
i) (SX , ρX ,SY ) is a relative spinor bundle associated to sY .
ii) (SX , ρX) and (S ′X , ρ

′
X) are instantiations of the same abstract spin-c structure

sX .
iii) The isomorphisms S′Y and SY are related by S′Y ≡ SY ◦ (S′X |Y ) where

S′X : (S ′X , ρ
′
X)→ (SX , ρX) is the usual inter-twiner map.

In the case that Y is equipped with a contact structure ξ we define

Spinc(X, ξ) = {relative spin-c structures (sX , [SY ]) associated to sξ)}

In practice, we will think of an element (sX , [SY ]) ∈ Spinc(X, ξ) as being repre-
sented by an instantiation (SX , ρX ,SY ) where SY : (SX , ρX) |∂X→ (Sθ, ρθ) is an
isomorphism between the spinor bundle (SX , ρX) induces on the boundary and the
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instantiation (Sθ, ρθ) associated to sξ which is determined by the choice of a contact
form θ for ξ. The following lemma clarifies the structure of Spinc(X, ξ).

Lemma 37. The set Spinc(X, ξ) is a principal homogeneous space for the relative
cohomology H2(X, ∂X;Z).

Proof. We follow a similar strategy to the one used in determining Spinc(X). Let
(SX , ρX ,SY ) be a relative spinor bundle associated to (sX , [SY ]) and choose e ∈
H2(X; ∂X;Z). In particular we can choose a line bundle Le over X such that Le is
trivial over ∂X, i.e, there is a trivialization Υe : Le → ∂X × C which we can take to
be unitary.

Using the long-exact sequence in cohomology for the pair (X, ∂X) we have (section
3.1 [23])

· · · → H1(X)→ H1(∂X)
δ→ H2(X; ∂X)

j∗→ H2(X)
i∗→ H2(∂X)→ · · ·

e ẽ 0

where we take ẽ = j∗(e).
Therefore we define (se, [Se]) as the equivalence class of the relative spinor bundle

(Se, ρe,Se) where Se = SX ⊗ Le, ρe = ρX ⊗ 1Le and Se : (Se, ρe) |∂X→ (SY , ρY ) is
given for all

Φ⊗ σe ∈ Γ (Se) = Γ (S+
X |Y )⊗ Γ (Le |Y )

by
Se(Φ⊗ σe) ≡ Υe(σe)SY (Φ)

where we are using the trivialization Υe so that the previous multiplication makes
sense globally on ∂X. We need to verify that

∀v ∈ TY, Se

[
ρe(nX)−1ρe(v)(Φ⊗ σe)

]
= ρY (v)Se(Φ⊗ σe)

For this we simply start with the left hand side
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Se

[
ρe(nX)−1ρe(v)(Φ⊗ σe)

]
= Se

[
ρe(nX)−1(ρX(v)Φ⊗ σe)

]
= Se

(
ρX(nX)−1ρX(v)Φ⊗ σe

)
= Υe(σe)SY

(
ρX(nX)−1ρX(v)Φ

)
= Υe(σe)ρY (v)SY (Φ)

= ρY (v)Se (Φ⊗ σe)

which is what we wanted to show.
Conversely, suppose that we start with two relative spinor bundles (SX , ρX ,SY )

and (S ′X , ρ
′
X ,S

′
Y ) associated to sY , which is instantiated by (SY , ρY ), so that we

regard SY and S′Y as maps SY : (SX , ρX) |∂X→ (SY , ρY ), S′Y : (S ′X , ρ
′
X) |∂X→

(SY , ρY ). Consider the subbundle LSX ,S′X of hom(SX , S
′
X) of homomorphisms S :

SX → S ′X which intertwine ρX , ρ′X . Our construction is set up in such a way that
LSX ,S′X is trivializable along the boundary. Therefore we obtain a well defined element
e ≡ c1(LSX ,S′X ) ∈ H2(X, ∂X;Z) and it is not difficult to see that (Se, ρe,Se) will be
in the same equivalence class as (S ′X , ρ

′
X ,S

′
Y ). �

If (W,ω) : (Y, ξ)→ (Y ′, ξ′) is a strong cobordism we can define a map

 : Spinc(X, ξ)→ Spinc(X ∪W, ξ′)

as follows [40, Section 1.2] : if (SX , ρX ,SY ) is a relative spinor bundle associated to
(sX , [SY ]) ∈ Spinc(X, ξ) there is an isomorphism

SY : (SX , ρX) |Y→ (Sθ, ρθ)

as explained previously. It satisfies in particular that

∀v ∈ TY, ∀Φ ∈ S+
X |Y SY

[
ρX(nX)−1ρX(v)Φ

]
= ρθ(v)SY (Φ)

The spinor bundle (Sθ, ρθ) on Y induces the natural spinor bundle (Sθ,−ρθ) on −Y
which we now we can identify with (Sω, ρω) |−Y via a map

Sθ : (Sθ,−ρθ)→ (Sω, ρω) |−Y
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which satisfies (here we are identifying TY with T (−Y ) for notational convenience):

∀v ∈ TY, ∀Φ ∈ Sθ Sθ [−ρθ(v)Φ] = ρW (nW )−1ρW (v)Sθ(Φ)

Define the relative spinor bundle (SX∪W , ρX∪W ,SY ′) as the one obtained from SX

and Sω using the transition map

Sθ ◦SY : (SX , ρX) |Y→ (Sω, ρω) |−Y

We take (sX , [SY ]) as the equivalence class defined by the relative spinor bundle
(SX∪W , ρX∪W ,SY ′).

To consider the injectivity of the map , suppose that  (sX , [SY ]) = (s′X , [S
′
Y ]) ∈

Spinc(X ∪W, ξ′) . According to our definition this means that if we choose relative
spinor bundles (SX∪W , ρX∪W ,SY ′) and (S ′X∪W , ρ

′
X∪W ,S

′
Y ′) then

• (SX∪W , ρX∪W ) and (S ′X∪W , ρ
′
X∪W ) are instantiations of the same abstract spin-c

structure sX∪W . Restricting the inter-twining map to X this means that sX = s′X
as abstract spin-c structures over X. Notice we still can’t conclude that they define
the same relative spin-c structure because it is not clear that condition iii) in our
definition is already satisfied.
•However, we still do have thatS′Y ′ ≡ SY ′◦(S′X∪W |Y ′) whereS′X∪W : (S ′X∪W , ρ

′
X∪W )→

(SX∪W , ρX∪W ) is the inter-twining map. Since the restrictions (SX∪W , ρX∪W ) |W=

(Sω, ρω) and (S ′X∪W , ρ
′
X∪W ) |W= (Sω, ρω) differ by an automorphism of the same

concrete spinor bundle Sω we obtain a map u : W → S1 . Along Y , if v ∈ TY and
nX is the outward normal vector we the trivialization provided by u is such that we
may regard S+

X |Y = S+′
X |Y and ρX |Y , ρ′X |Y as related by

ρX(nX)−1ρX(v)Φ = ρX(nX)−1ρX(v)(uΦ)

If it could extend u |Y to the rest of X then we could take SX and S ′X as representing
the same concrete spinor bundle and in this way, (SX , ρX ,SY ) and (S ′X , ρ

′
X ,S

′
Y )

would give rise to the same relative spin-c structure, i.e, (sX , [SY ]) = (s′X , [S
′
Y ]).

From the long exact sequence

· · · → H1(X)
i∗→ H1(Y )

δ→ H2(X;Y )
j∗→ H2(X)

i∗→ H2(Y )→ · · ·
[u |Y ]
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we see that it suffices for δ([u |Y ]) to vanish. Notice that in general this does need to
happen. However, for the proof of naturality we will take X = R+ × −Y and since
H2(R+×−Y ;Y ) = 0 in particular this means that δ([u |Y ]) vanishes automatically so
the problem of extending u |Y disappears, hence the map  is automatically injective.
In particular, all the arguments in [40] where the injectivity of  was invoked can be
used for our case without any concerns and this explains why the “special” condition
can be dropped.

6.2 Connected Sum Along Y . We will now adapt the gluing/ excision theorem
in [40] to our situation. More precisely we want an analogue of their corollary 3.2.2.
The following construction is based on sections 4.1 and 2.1.5 from that paper. There
they proved a gluing result for a class of manifolds with a so called AFAK end Z,
that is, an asymptotically flat almost Kahler end, the idea being that this class of
manifolds behave sufficiently nice near the symplectic end that all the analysis goes
through. Their definition of an AFAK end is given in Definition 2.1.2 of [40]. The
important things that we need to point out regarding this definition is that:
• Their last condition regarding the vanishing of map between de Rham coho-

mologies mimics the special condition for a symplectic cobordism that we already
discussed before. Therefore, in our context this condition is not needed.
• To our cobordism (W,ω) one can associated an AFAK end (Z, ωZ) as explained

in section 4.1 of [40] . We can simplify their construction in our case because our
cobordism is strong so in fact we can exploit the fact that near the convex end ω is
also determined by a symplectization of the contact structure. We can use a collar
neighborhood [T0, T1)× Y of Y ⊂ ∂W (with T0 > 1) and a contact form θ such that
the symplectic form ω near the concave end of that neighborhood is given by 1

2
d(t2θ).

Glue a sharp cone on the boundary Y by extending the collar neighborhood into
(0, T1)×Y with its symplectic form. Likewise, we have a similar collar neighborhood
near the convex end and we can therefore glue (after some reparameterizations) the
half-infinite cone [1,∞)× Y ′ with the symplectic form 1

2
d(t′2θ′) where t′ denotes the

time coordinate on [1,∞)× Y ′. Therefore

Z = ((0, T0)× Y ) ∪W ∪ ([1,∞)× Y ′)
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and we can find a “time coordinate” σZ on Z as they described in that section of
[40] (in fact, after reparametrization in can be taken to agree with the natural time
coordinate on the third factor [1,∞)× Y ′ of Z). Among other properties:
• On (0, T0)× Y , σZ agrees with the time coordinate.
• For all ε > 0, the function e−εσZ is integrable on Z.
• There is a constant κ > 0 such that the injectivity radius satisfies κinj(x) > σZ(x)

for all x ∈ Z.
• For each x ∈ Z, if ex is the map ex : v → expx(σZ(x)v/κ) and γx the metric

on the unit ball in TxZ defined as e∗xγx/σZ(x)2 , then these metrics have bounded
geometry in the sense that all covariant derivatives of the curvature are bounded by
some constants independent of x.
• For each x ∈ Z, if ox denotes the symplectic form e∗xωZ/σ(x)2 on the unit ball,

then ox similarly approximates the translation invariant symplectic form, with all its
derivatives.

Notice in particular that our symplectic form ωZ has the property that it is exact
except for a compact set (which is contained in W ). Hence the class of manifolds we
are using could be called AFAKAE ends (where AE stands for almost exact) but for
convenience we will keep calling this manifold an AFAK end. After choosing a metric
gZ and almost complex structure JZ on Z so that ωZ is self-dual and of pointwise
norm

√
2 the data (Z, ωZ , JZ , gZ , σZ) will represent an AFAK end with the caveats

mentioned above.
This is the class of manifolds to which the generalized excision/gluing theorem

will apply, though the theorem will only be used for this particular Z. The idea will
be to glue Z to the cylindrical end R+ × −Y using an operation that Mrowka and
Rollin named connected sum along Y .

To be more precise, consider as before the symplectic cone [1,∞) × Y for the
contact form θ with metric

gK,θ = dt⊗ dt+ t2gθ

and symplectic form

ωθ =
1

2
d(t2θ)
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Figure 8. Using the “connected sum along Y ” operation to obtain
the family of manifolds Mτ .

Choose a number τ > 1 3 and identify an annulus (1, τ) × Y in [1,∞) × Y with
an annulus (1/τ, 1)× Y ⊂ Z using the dilation map

(1, τ)× Y ντ−→ (1/τ, 1)× Y

(t, y)→ (t/τ, y)

Define Mτ as the union of (R+ ×−Y ) ∪ [1, τ)× Y and Z ∩ {σZ > 1/τ}

Mτ = (
(
R+ ×−Y

)
∪ [1, τ)× Y )) ∪ (Z ∩ {σZ > 1/τ})

glued along the previous annuli via the dilation map ντ .

In the figure, the gray regions represent the annuli that are identified and the
dashed regions are the parts of the cone and Z that are taken off in the construction.
We need to say how to redefine the geometric structures we had in place (metric,
symplectic form, etc) so that they agree under the identification operation (this is
why we discussed the effect of a dilation on the canonical spin-c structure in the

3It goes without saying that the τ is completely unrelated to the τ used in the τ -model of the
configuration space.
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previous section). The symplectic form can be taken as

ωZ,τ = τ 2ωZ

and the new “time coordinate” becomes

στ,Z = τσZ

The metric is a dilation of the original metric, that is,

gτ,Z = τ 2gZ

In this way, with respect to gτ,Z , ωZ,τ is self-dual with norm
√

2. As usual, gZ and
ωZ determine a compatible almost complex structure JZ,τ which in fact can be taken
to be independent of τ , i.e,

JZ,τ = JZ

The natural Clifford multiplication is

ρτ,Z(η) =
ρZ(η)

τ
η a one form

while the spinor bundle remains the same, i.e

Sτ,Z = SZ

We will specify the abstract spin-c structure sτ on Mτ as the equivalence class of
the following spinor bundle (Sτ , ρτ ):
• On R+ × −Y we use the spinor bundle (SR+×−Y , ρR+×−Y ) that the canonical

spinor bundle (Sθ, ρθ) on Y induces on R+ ×−Y .
• Along the boundary, we identify (SR+×−Y,θ, ρR+×−Y,θ) |Y with (SKY , ρKY ) |{1}×Y

where (SKY , ρKY ) denotes the canonical spinor bundle associated to the symplectic
cone KY = [1,∞)× Y .
• Over Mτ ∩ {στ,Z < τ} = Mτ ∩ {σZ < 1} = Mτ ∩ {(1, τ)× Y } we use the spinor

bundle (SKY , ρKY ) .
• OverMτ ∩{στ,Z > 1} = Mτ ∩{σZ > 1/τ} we use the spinor bundle (Sτ,Z , ρτ,Z) =(
Sτ,Z ,

ρZ
τ

)
.

To write the transition map from (SKY , ρKY ) to (Sτ,Z , ρτ,Z) over Mτ ∩ {1/τ <

σZ < 1} observe that if e1
Y , e

2
Y , e

3
Y is a coframe at the slice {1} × Y ' Y then
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dt, te1
Y , te

2
Y , te

3
Y is a coframe on (1, τ) × Y ⊂ KY while τdt, τ te1

Y , τ te
2
Y , τ te

3
Y is a

coframe on {1/τ < σZ < 1} ⊂ Z. Therefore we can define as before ε̄01
t = 1√

2
(dt −

ite1
Y ), ε̄23

t = t√
2
(e2
Y − ie3

Y ) and the identification map

Gτ : SKY → Sτ,Z

αKY + βKY ε̄
01
t ∧ ε̄23

t → αKY + τ 2βKY ε̄
01
t ∧ ε̄23

t

Remark 38. In the case of [40] , their construction required (in their notation) the
choice of an element (s, h) ∈ Spinc(M,ω) (see section 2.1.7). As we explained before,
by using a half infinite cylinder instead of a compact piece, all of our constructions
can be done in a canonical way, which is why our construction is more simple in a
sense and we can drop the explicit reference to h.

Our (unperturbed) Seiberg Witten map continues to be

F(A,Φ) =

(
1

2
ρ(F+

At)− (ΦΦ∗)0, DAΦ

)
To define the perturbations, write the half-infinite cylinder as

R+ ×−Y = ([0, 1]×−Y ) ∪ ([1,∞)×−Y )

where [0, 1]×−Y is going to play the role of a trivial cobordism. By that we simply
mean that the perturbations we use on [0, 1] × −Y are of the form p̂ = βq̂ + β0p̂0

where p̂ coincides near {1} × −Y with a strongly tame perturbation −q̂Y,gθ,sξ on
[1,∞)×−Y and near {0} × −Y it vanishes. On

Zτ = [1, τ)× Y ∪ (Z ∩ {σZ > 1/τ})

consider the perturbation

pZτ = −1

2
ρτ (F

+
At0,τ

) + (Φτ,0Φ
∗
τ,0)0

where (At0,τ , Φτ,0) denotes the canonical solution. Again, similar to the perturbation
pW+

ξ′,Y
defined in equation (11) we can produce a perturbation

(47) pMτ = −q̂Y,gθ,sξ + (βq̂Y,gθ,sξ + β′0p̂0) + βKpZτ
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It is also useful to think of the manifold Z+
Y,ξ [where the contact invariant c(ξ) of

(Y, ξ) is defined] as the manifold Mτ obtained by taking ’τ =∞’. In other words, we
will writeM∞ ≡ Z+

Y,ξ. Notice that on this manifold we can also define a perturbation
pM∞ in exactly the same way as for pMτ (so it agrees with −q̂Y,gθ,sξ on half-cylinder
[1,∞)×−Y , it agrees with pK on the cone [1,∞)×Y and it is interpolated between
these two perturbations on the finite cylinder [0, 1] × −Y through a perturbation
βq̂Y,gθ,sξ + β′0p̂0 ).

Our previous transversality Theorem (25) now reads as follows: for all critical
points [c] ∈ Co(−Y, sξ) ⊕ Cs(−Y, sξ) and for each 0 < τ ≤ ∞ there is a residual
subset Pτ of the large space of perturbations P(Y, sξ) such that for any pτ ∈ Pτ
the corresponding perturbation pMτ satisfies the property that all the moduli spaces
M(Mτ , sτ , [c], pMτ ) are cut out transversely.

When we study the properties of the gluing map it will become clear that we
want to be able to choose a single perturbation pall such that when we plug it
in the formula for pMτ it guarantees transversality simultaneously for all moduli
spaces M(Mτ , sτ , [c], pMτ ). In other words, we would like to be able to choose a
perturbation pall ∈

⋂
0<τ≤∞Pτ . Since we are ultimately interested in the case when

τ is sufficiently large we can choose an increasing sequence τn with τn →∞ and then
use the fact that the countable intersection of residual sets is residual [43, Theorem
1.4] so that (∩nPτn) ∩ P∞ is residual as well. In particular this means that we can
take pall ∈ (∩nPτn) ∩ P∞ , which we will assume from now on.

Strictly speaking, since we will work with an additional family M ′
τ obtained by

using another connected operation with another AFAK end Z ′ we should really take
pall ∈ (∩nPτn)∩P∞∩

(
∩nP ′τn

)
, where P ′τn denotes the residual space of perturbations

for the manifold M ′
τ . However, for the proof of the gluing theorem we will end up

taking Z ′ = (0,∞)× Y (as in section 4.1 of [40]), in which case one can check that
all the M ′

τ end up coinciding with Z+
Y,ξ = M∞. Hence, this subtle points does not

make much a difference. Also, for notational convenience, we will keep writing the
moduli spaces typically asM(Mτ , sτ , [c]) instead ofM(Mτn , sτn , [c]).

6.3 Gluing Map. Our main objective in this section is to adapt Theorem 3.1.9
in [40] to our situation. First we need to define a pregluing map that allows us
to compare solutions in the moduli spaces corresponding to the manifolds Mτ and
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M ′
τ . This will then be promoted to an actual gluing map which basically says that

once τ becomes sufficiently large the Seiberg-Witten solutions on Mτ are in bijective
correspondence with the Seiberg-Witten solutions on M ′

τ (the precise statement is
Theorem 44).

As can be seen from Figure (8) and the definition of the manifold Z, one should
think of the manifolds Mτ as being diffeomorphic versions of the manifold W+

ξ′,Y

described in Figure (2). The moduli space of Seiberg-Witten equations over each of
the Mτ gives rise to a “τ -hybrid” invariant c(ξ′, Y, τ) ∈ Č∗(−Y, sξ), but a standard
deformation of metrics and perturbations argument which is explained at the end of
the paper tells us that in fact they all define the same homology class c(ξ′, Y, τ) =

c(ξ′, Y ), where the right hand side denotes our original “hybrid” invariant. On the
other hand, when we take Z ′ = (0,∞) × Y , the resulting manifolds M ′

τ agree with
Z+
Y,ξ as mentioned at the end of the previous section. Therefore, from the moduli

space of Seiberg-Witten equations over M ′
τ we obtain the ordinary contact invariant

c(ξ) and then the our gluing argument will imply that these two invariants agree.
We write (Mτ , gτ , ωτ , Jτ , στ ) and (M ′

τ , g
′
τ , ω

′
τ , J

′
τ , σ

′
τ ) to make explicit the data re-

quired in our construction. Notice that on the domains {στ ≤ τ} ⊂ Mτ and
{σ′τ ≤ τ} ⊂ M ′

τ all the previous structures agree (including the spinor bundles
and the canonical solutions). In fact, we can regard these regions as subsets of Z+

Y,ξ.
Let (A,Φ) be a solution of the Seiberg-Witten equations on Mτ . We want to

transport (A,Φ) into an approximate solution on M ′
τ .

First we need to construct a spinor bundle S(A,Φ) associated to (A,Φ) on M ′
τ . To

be more precise, as an abstract spin-c structure the construction that we provide is
independent of the solution (A,Φ) that we use, but the particular instantiation will
depend on the solution since it will be used to define a transition function.

Using Lemma 2.2.8 in [40] we can find a compact set C with the following signifi-
cance: for every τ large enough and for every solution to the Seiberg-Witten equations
on Mτ we have |α| ≥ 1

2
on Mτ\[(R+ × −Y ) ∪ C] (recall that Φ = (α, β) and that

the paper [40] writes it instead as (β, γ)). We may write C as C = [1, T ]× Y ⊂ Z+
Y,ξ

where T is large enough and independent of τ and the solution (A,Φ). From now
on we will assume that τ is chosen so that it is larger than T .
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For τ > T , we construct the spinor bundle S ′(A,Φ) on M ′
τ as follows ([40] named

this spinor bundle S(A,Φ)):

(1) Over the regionM ′
τ∩{σ′τ ≤ τ} ⊂ Z+

Y,ξ, we use the spinor bundle Sξ determined
by ξ. Over the region M ′

τ ∩ {σ′τ ≥ T}, we use the spinor bundle determined
by the almost complex structure J ′τ , i.e, S ′Jτ . In other words

S ′(A,Φ) =

Sξ over M ′
τ ∩ {σ′τ ≤ τ}

SJ ′τ over M ′
τ ∩ {σ′τ ≥ T}

(2) To specify what happens over the annulus {T ≤ σ′τ ≤ τ} define the map
(gauge transformation) 4

h(A,Φ) : Mτ\[(R+ ×−Y ) ∪ C]→ S1

h(A,Φ) = |α|
α

If Φ̃ ∈ Γ (Sξ|M ′τ∩{σ′τ≤τ}), then over the annulus {T ≤ σ′τ ≤ τ} we can write with
respect to a coframe

Φ̃ = α̃ + β̃ε̄01 ∧ ε̄23

and if we write h(A,Φ) · Φ̃ =
(
|α|
α

)
Φ̃ as

h(A,Φ) · Φ̃ = α̃Φ + β̃Φε̄
01 ∧ ε̄23

then we will consider h(A,Φ) as the transition map from Sξ to SJ ′τ over the annulus.
That is, the section Φ̃ over Sξ |{T≤σ′τ≤τ} is identified with the section h(A,Φ) · Φ̃ over
SJ ′τ |{T≤σ′τ≤τ} as the next image indicates.

Notice that if u ∈ G(Mτ ) then hu·(A,Φ) = u−1h(A,Φ) and so we can easily build an
isomorphism

u# : S(A,Φ) → Su·(A,Φ)

Our next job is to construct a configuration on the spinor bundle S ′(A,Φ) over M ′
τ .

For this we recall a family of cut-off functions described in section 2.2.1 of [40] . Let

4Here we do not use the notation h′(A,Φ) that can be found in [40] , since our isomorphism h is
already canonical and so there is no need to distinguish h′(A,Φ) from h(A,Φ).
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Figure 9. Defining the spinor bundle S ′(A,Φ) over M
′
τ .

χ(t) be a smooth decreasing function such that

χ(t) =

0 t ≥ 1

1 t ≤ 0

and define

χτ (t) = χ

(
t− τ
N0

+ 1

)
=

0 t ≥ τ

1 t ≤ τ −N0

where N0 is a number that is fixed later to control the derivatives of χτ . With the
help of this function define S ′(A,Φ) as follows:
• On the region M ′

τ ∩{σ′τ < τ} we can identify the structures on Mτ with M ′
τ and

so (A,Φ) |Mτ∩{στ<τ} defines a configuration on S ′(A,Φ) |M ′τ∩{σ′τ≤τ}.
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• On the regionM ′
τ∩{σ′τ ≥ T} we can write Φ as a pair (α, β) and A as A = A0,τ+a

so if we regard h(A,Φ) as a gauge transformation then

h(A,Φ) · (A,Φ)

= h(A,Φ) · (A0,τ + a, (α, β))

=

(
A0,τ + a− α

|α|
d

(
|α|
α

)
,

(
|α|, |α|

α
β

))
=
(
A0,τ + â, (α̂, β̂)

)
Notice that α̂ is a real function with α̂ ≥ 1

2
. Therefore we define on M ′

τ ∩ {σ′τ ≥ T}

(A,Φ)# ≡ (A′0,τ + (χτ ◦ σ′τ )â, (α̂χτ◦σ
′
τ , (χτ ◦ σ′τ )β̂))

• On the end {σ′τ ≥ τ} we set

(A,Φ)# = (A′0,τ , Φ
′
0,τ )

Since the construction is compatible with the gauge group action in the sense that

u# · (A,Φ)# = (u · (A,Φ))#

we have constructed our pregluing map

# :M(Mτ , sτ , [c])→ (C/G)(M ′
τ )

It is easy to see that Lemma 2.5.4 in [40] still holds. That is, there is a δ > 0 and
T large enough such that for every N0 ≥ 1, k ∈ N , τ satisfying τ ≥ T + N0 and
every solution (A,Φ) of the Seiberg-Witten equations on Mτ , we have that (A,Φ)#

satisfies the Seiberg-Witten equations on {σ′τ ≤ T} ⊂M ′
τ and

(48) |FpM′τ
(A,Φ)#|Ck(g′τ ,A

#) ≤ cke
−δστ

on {σ′τ ≥ T} ⊂M ′
τ .

Our objective now is to modify the pre-gluing map # : M(Mτ , sτ , [c])→ (C/G)(M ′
τ )

to obtain a gluing map (Theorem 3.1.9 [40] )

Gτ :M(Mτ , sτ , [c])→M(M ′
τ , s
′
τ , [c])
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We want to define Gτ at the level of configuration spaces in such a way that is gauge
equivariant. Our proposal is that this map should decompose as

(49) Gτ (A,Φ) = (A,Φ)# +
(
D(A,Φ)#FpM′τ

)∗
(b′, ψ′)

where (b′, ψ′) ∈ L2
k,A(isu(S ′+τ )⊕ S ′−τ ) . Here D(A,Φ)#FpM′τ

denotes the linearization of
the perturbed Seiberg-Witten map FpM′τ

. In the old days of Seiberg-Witten theory
where only the curvature equation was perturbed by some imaginary-valued self dual
two form, this linearized map D(A,Φ)#FpM′τ

would coincide with the linearization of
the unperturbed Seiberg-Witten map D(A,Φ)#F, since the perturbations where inde-
pendent of the configuration (A,Φ)# being used. In fact, analyzing the formula (47),
we can see that the discrepancy between these two maps is due to the (abstract) per-
turbations used on the cylindrical end, so to emphasize this point we may sometimes
write Dq,(A,Φ)#F instead of the more precise notation D(A,Φ)#FpM′τ

.
Recall that the perturbed Seiberg-Witten equation is

FpM′τ
(A,Φ) = F(A,Φ) + pM ′τ (A,Φ) = 0

By definition, we want Gτ (A,Φ) to solve the previous equation which means that

FGτ (A,Φ) + pM ′τGτ (A,Φ) = 0

and we want to think of the previous equation as depending on (b′, ψ′) when we
write Gτ (A,Φ) in an explicit way as in (49). At this point one needs to write this
expression in a very explicit way to see many cancellations occur. There is nothing
particularly difficult with this, so the reader may prefer to skip to the statement of
Theorem 39.

We start by computing FGq(A,Φ). First we need some notation. The derivative
of the perturbation can be regarded as an operator

D(A,Φ)q̂ : L2
k(R+ ×−Y ; iT ∗(R+ ×−Y )⊕ S+)→ L2

k−1(R+ ×−Y ; isu(S+)⊕ S−)

and so the formal adjoint is simply(
D(A,Φ)q̂

)∗
= (Q1,Q2) : L2

k(R+×−Y ; isu(S+)⊕S−)→ L2
k−1(R+×−Y ; iT ∗(R+×−Y )⊕S+))

Therefore we will define
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aq = Q1(b′, ψ′)

ψq = Q2(b′, ψ′)

Observe that

Gq(A,Φ) = G(A,Φ) +
(
D(A,Φ)q̂

)∗
(b′, ψ′)

= (A,Φ)# +
(
D(A,Φ)#F

)∗
(b′, ψ′) + (aq, ψq)

=
(
A# + (d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗), Φ# +D∗A#ψ

′ − b′Φ#
)

+ (aq, ψq)

= (A′, Φ′) + (aq, ψq)

= (A′q, Φ
′
q)

By definition

FGq(A,Φ) = F(A′q, Φ
′
q) =

(
1

2
ρ(F+

A′tq
)− (Φ′qΦ

′∗
q )0, DA′qΦ

′
q

)
The spinor term is

DA′qΦ
′
q

= DA′+aq(Φ
′ + ψq)

= DA′Φ
′ +DA′ψq + ρ(aq)Φ

′ + ρ(aq)ψq

while the curvature term is
1

2
ρ(F+

A′tq
)

=
1

2
ρ(F+

A′t + 2d+aq)

=
1

2
ρ
(
F+
A′t

)
+ ρ(d+aq)

The quadratic term (Φ′qΦ
′∗
q )0 = Φ′qΦ

′∗
q − 1

2

〈
Φ′q, Φ

′
q

〉
equals
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(Φ′ + ψq)
(
Φ′∗ + ψ∗q

)
− 1

2
〈Φ′ + ψq, Φ

′ + ψq〉

= Φ′Φ′∗ + Φ′ψ∗q + ψqΦ
′∗ + ψqψ

∗
q

−1

2
〈Φ′, Φ′〉 − 1

2
〈Φ′, ψq〉 −

1

2
〈ψq, Φ′〉 − 〈ψq, ψq〉

= (Φ′Φ′∗)0 + (ψqψ
∗
q )0 + {Φ′ψ∗q + ψqΦ

′∗}0

Therefore, the equation FGq(A,Φ) + pM ′τGq(A,Φ) = 0 is equivalent to
(50)(

1
2
ρ
(
F+
A′t

)
+ ρ(d+aq)− (Φ′Φ′∗)0 − (ψqψ

∗
q )0 − {Φ′ψ∗q + ψqΦ

′∗}0

DA′Φ
′ +DA′ψq + ρ(aq)Φ

′ + ρ(aq)ψq

)
= −pM ′τGq(A,Φ)

Now we define the “perturbed Seiberg-Witten Laplacian”

42,q,(A,Φ)# =
(
D(A,Φ)#Fq

)
◦
(
D(A,Φ)#Fq

)∗
We can relate this operator to the “unperturbed Seiberg-Witten Laplacian”

42,(A,Φ)# =
(
D(A,Φ)#F

)
◦
(
D(A,Φ)#F

)∗
as follows:

(
D(A,Φ)#Fq

)
◦
(
D(A,Φ)#Fq

)∗
=
(
D(A,Φ)#F +D(A,Φ)q̂

)
◦
((
D(A,Φ)#F

)∗
+
(
D(A,Φ)q̂

)∗)
= 42,(A,Φ)# +

(
D(A,Φ)#F

)
◦
(
D(A,Φ)q̂

)∗
+
(
D(A,Φ)q̂

)
◦
(
D(A,Φ)#F

)∗
+
(
D(A,Φ)q̂

)
◦
(
D(A,Φ)q̂

)∗
To continue analyzing the gluing equation we will write A′ and Φ′ in terms of A#

and Φ#. A′ = A# + (d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗)

Φ′ = Φ# +D∗
A#ψ

′ − b′Φ#

Therefore we can write the left hand side of 50 as follows:
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1

2
ρ
(
F+
A′t

)
=

1

2
ρ(F+

A#) + ρ
(
d+
(
(d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗

))

(Φ′Φ′∗)0

=
(
Φ#Φ#∗)

0
+
((
D∗A#ψ

′ − b′Φ#
) (
D∗A#ψ

′ − b′Φ#
)∗)

0

+
{
Φ#
(
D∗A#ψ

′ − b′Φ#
)∗

+
(
D∗A#ψ

′ − b′Φ#
)

(Φ#)∗
}

0

{Φ′ψ∗q + ψqΦ
′∗}0

=
{(
Φ# +D∗A#ψ

′ − b′Φ#
)
ψ∗q + ψq

(
Φ# +D∗A#ψ

′ − b′Φ#
)∗}

0

Therefore the first row on the left hand side of 50 is the same as

1

2
ρ(F+

A#) + ρ
(
d+
(
(d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗

))
+ ρ(d+aq)− (ψqψ

∗
q )0

−
(
Φ#Φ#∗)

0
−
((
D∗A#ψ

′ − b′Φ#
) (
D∗A#ψ

′ − b′Φ#
)∗)

0

−
{
Φ#
(
D∗A#ψ

′ − b′Φ#
)∗

+
(
D∗A#ψ

′ − b′Φ#
)

(Φ#)∗
}

0

−
{(
Φ# +D∗A#ψ

′ − b′Φ#
)
ψ∗q + ψq

(
Φ# +D∗A#ψ

′ − b′Φ#
)∗}

0

For the spinor part we have

DA′Φ
′

= DA#Φ# +DA#

(
D∗A#ψ

′ − b′Φ#
)

+
[
ρ
(
(d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗

)
Φ#
]

+
[
ρ
(
(d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗

) (
D∗A#ψ

′ − b′Φ#
)]
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DA′ψq

= DA#ψq + ρ
[
(d+)∗ρ∗b′

]
ψq + ρ

[
ρ∗(ψ′(Φ#)∗)

]
ψq

ρ(aq)Φ
′

= ρ(aq)Φ
# + ρ(aq)D

∗
A#ψ

′ − ρ(aq)(b
′Φ#)

Therefore the second row on the left hand side of 50 is the same as

DA#Φ# +DA#

(
D∗A#ψ

′ − b′Φ#
)

+
[
ρ
(
(d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗

)
Φ#
]

+
[
ρ
(
(d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗

) (
D∗A#ψ

′ − b′Φ#
)]

+DA#ψq + ρ
[
(d+)∗ρ∗b′

]
ψq + ρ

[
ρ∗(ψ′(Φ#)∗)

]
ψq

+ρ(aq)Φ
# + ρ(aq)D

∗
A#ψ

′ − ρ(aq)(b
′Φ#) + ρ(aq)ψq

We compute first

42,q,(A,Φ)#(b′, ψ′)

= 42,(A,Φ)#(b′, ψ′) +
(
D(A,Φ)#F

)
◦
(
D(A,Φ)q̂

)∗
(b′, ψ′)

+
(
D(A,Φ)q̂

)
◦
(
D(A,Φ)#F

)∗
(b′, ψ′) +

(
D(A,Φ)q̂

)
◦
(
D(A,Φ)q̂

)∗
(b′, ψ′)

The first term is

42,(A,Φ)#(b′, ψ′)

= [ρ(d+
[
(d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗)

]
−
{
Φ#
(
D∗A#ψ

′ − b′Φ#
)∗

+
(
D∗A#ψ

′ − b′Φ#
)

(Φ#)∗
}

0
,

DA#

(
D∗A#ψ

′ − b′Φ#
)

+ ρ
(
(d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗)

)
Φ#]
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D(A,Φ)#F

)
◦
(
D(A,Φ)q̂

)∗
(b′, ψ′)

=
(
D(A,Φ)#F

)
◦ (aq, ψq)

=
(
ρ(d+aq)−

{
Φ#ψ∗q + ψq

(
Φ#
)∗}

0
, DA#ψq + ρ(aq)Φ

#
)

We won’t simplify the remaining two terms since we haven’t used any special notation
for D(A,Φ)q̂. For the map

Q(a, φ) = (−(φφ∗)0, ρ(a)φ)

we also compute

Q ◦
[(
D(A,Φ)#F

)∗
+
(
D(A,Φ)q̂

)∗]
(b′, ψ′)

= Q

(
(d+)

∗
ρ∗b′ + ρ∗

(
ψ′
(
Φ#
)∗)

+ aq

D∗
A#ψ

′ − b′Φ# + ψq

)

=

(
−
((
D∗
A#ψ

′ − b′Φ# + ψq
) (
D∗
A#ψ

′ − b′Φ# + ψq
)∗)

0

ρ
[
(d+)

∗
ρ∗b′ + ρ∗

(
ψ′
(
Φ#
)∗)

+ aq
] (
D∗
A#ψ

′ − b′Φ# + ψq
) )

The first term can be simplified as

−
(
D∗A#ψ

′ − b′Φ# + ψq
) (
D∗A#ψ

′ − b′Φ# + ψq
)∗

+
1

2

〈(
D∗A#ψ

′ − b′Φ# + ψq
)
,
(
D∗A#ψ

′ − b′Φ# + ψq
)〉

= −
(
D∗A#ψ

′ − b′Φ#
) (
D∗A#ψ

′ − b′Φ#
)∗ − (D∗A#ψ

′ − b′Φ#
)
ψ∗q

−ψq
(
D∗A#ψ

′ − b′Φ#
)∗ − ψqψ∗q

+
1

2

〈
D∗A#ψ

′ − b′Φ#, D∗A#ψ
′ − b′Φ#

〉
+

1

2

〈
D∗A#ψ

′ − b′Φ#, ψq
〉

+
1

2

〈
ψq, D

∗
A#ψ

′ − b′Φ#
〉

+
1

2
〈ψq, ψq〉

= −
((
D∗A#ψ

′ − b′Φ#
) (
D∗A#ψ

′ − b′Φ#
)∗)

0
−
(
ψqψ

∗
q

)
0

−
{(
D∗A#ψ

′ − b′Φ#
)
ψ∗q + ψq

(
D∗A#ψ

′ − b′Φ#
)∗}

0

The second term can be written as
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ρ
[(
d+
)∗
ρ∗b′
] (
D∗A#ψ

′ − b′Φ#
)

+ ρ
[(
d+
)∗
ρ∗b′
]
ψq

+ρ
[
ρ∗
(
ψ′
(
Φ#
)∗)] (

D∗A#ψ
′ − b′Φ#

)
+ ρ

[
ρ∗
(
ψ′
(
Φ#
)∗)]

ψq

+ρ(aq)
(
D∗A#ψ

′ − b′Φ#
)

+ ρ(aq)ψq

Therefore, the first row of 42,q,(A,Φ)#(b′, ψ′) +Q ◦
[(
D(A,Φ)#F

)∗
+
(
D(A,Φ)q̂

)∗]
(b′, ψ′)

is equal to

[ρ(d+
[
(d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗)

]
−
{
Φ#
(
D∗A#ψ

′ − b′Φ#
)∗

+
(
D∗A#ψ

′ − b′Φ#
)

(Φ#)∗
}

0

+ρ(d+aq)−
{
Φ#ψ∗q + ψq

(
Φ#
)∗}

0[(
D(A,Φ)q̂

)
◦
(
D(A,Φ)#F

)∗
(b′, ψ′) +

(
D(A,Φ)q̂

)
◦
(
D(A,Φ)q̂

)∗
(b′, ψ′)

]1
−
((
D∗A#ψ

′ − b′Φ#
) (
D∗A#ψ

′ − b′Φ#
)∗)

0
−
(
ψqψ

∗
q

)
0

−
{(
D∗A#ψ

′ − b′Φ#
)
ψ∗q + ψq

(
D∗A#ψ

′ − b′Φ#
)∗}

0

while the second row is equal to

DA#

(
D∗A#ψ

′ − b′Φ#
)

+ ρ
(
(d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗)

)
Φ#]

+DA#ψq + ρ(aq)Φ
#

+
[(
D(A,Φ)q̂

)
◦
(
D(A,Φ)#F

)∗
(b′, ψ′) +

(
D(A,Φ)q̂

)
◦
(
D(A,Φ)q̂

)∗
(b′, ψ′)

]2
ρ
[(
d+
)∗
ρ∗b′
] (
D∗A#ψ

′ − b′Φ#
)

+ ρ
[(
d+
)∗
ρ∗b′
]
ψq

+ρ
[
ρ∗
(
ψ′
(
Φ#
)∗)] (

D∗A#ψ
′ − b′Φ#

)
+ ρ

[
ρ∗
(
ψ′
(
Φ#
)∗)]

ψq

+ρ(aq)
(
D∗A#ψ

′ − b′Φ#
)

+ ρ(aq)ψq

A simple comparison shows that
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[FGq(A,Φ)]1

= 42,q,(A,Φ)#(b′, ψ′) +Q ◦
[(
D(A,Φ)#F

)∗
+ (D(A,Φ)q̂)∗

]
(b′, ψ′)

=
1

2
ρ(F+

A#)− (Φ#Φ#∗)0 −
{

(Φ# +D∗A#ψ
′ − b′Φ#)ψ∗q + ψq(Φ

# +D∗A#ψ
′ − b′Φ#)∗

}
0

+
{
Φ#ψ∗q + ψq(Φ

#)∗
}

0
+
{(
D∗A#ψ

′ − b′Φ#
)
ψ∗q + ψq

(
D∗A#ψ

′ − b′Φ#
)∗}

0

−
[(
D(A,Φ)q̂

)
◦
(
D(A,Φ)#F

)∗
(b′, ψ′) +

(
D(A,Φ)q̂

)
◦
(
D(A,Φ)q̂

)∗
(b′, ψ′)

]1
To simplify this further notice that

{
Φ#ψ∗q + ψq(Φ

#)∗
}

0
+
{(
D∗A#ψ

′ − b′Φ#
)
ψ∗q + ψq

(
D∗A#ψ

′ − b′Φ#
)∗}

0

−
{

(Φ# +D∗A#ψ
′ − b′Φ#)ψ∗q + ψq(Φ

# +D∗A#ψ
′ − b′Φ#)∗

}
0

= Φ#ψ∗q + ψq(Φ
#)∗ − Re

〈
Φ#, ψq

〉
+
(
D∗A#ψ

′ − b′Φ#
)
ψ∗q + ψq

(
D∗A#ψ

′ − b′Φ#
)∗ − Re

〈
D∗A#ψ

′ − b′Φ#, ψq
〉

−(Φ# +D∗A#ψ
′ − b′Φ#)ψ∗q − ψq(Φ# +D∗A#ψ

′ − b′Φ#)∗

+Re
〈
Φ# +D∗A#ψ

′ − b′Φ#, ψq
〉

= 0

In other words, we have that

[FGq(A,Φ)]1

= 42,q,(A,Φ)#(b′, ψ′) +Q ◦
[(
D(A,Φ)#F

)∗
+ (D(A,Φ)q̂)∗

]
(b′, ψ′)

+
1

2
ρ(F+

A#)− (Φ#Φ#∗)0

−
[(
D(A,Φ)q̂

)
◦
(
D(A,Φ)#F

)∗
(b′, ψ′) +

(
D(A,Φ)q̂

)
◦
(
D(A,Φ)q̂

)∗
(b′, ψ′)

]1
At the same time
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[FGq(A,Φ)]2

= DA#Φ# −
[(
D(A,Φ)q̂

)
◦
(
D(A,Φ)#F

)∗
(b′, ψ′) +

(
D(A,Φ)q̂

)
◦
(
D(A,Φ)q̂

)∗
(b′, ψ′)

]2
Therefore, we just found the following: solving

FGq(A,Φ) + pM ′τGq(A,Φ) = 0

is equivalent to solving

42,q,(A,Φ)#(b′, ψ′) +Q ◦
[(
D(A,Φ)#F

)∗
+ (D(A,Φ)q̂)∗

]
(b′, ψ′)

−
[(
D(A,Φ)q̂

)
◦
(
D(A,Φ)#F

)∗
(b′, ψ′) +

(
D(A,Φ)q̂

)
◦
(
D(A,Φ)q̂

)∗
(b′, ψ′)

]
= −F(A,Φ)# − pM ′τ (A,Φ)# + pM ′τ (A,Φ)# − pM ′τGq(A,Φ)

To make this even more compact define

P (b′, ψ′) = pM ′τ (G(A,Φ))− pM ′τ (A,Φ)# −
(
D(A,Φ)q̂

)
◦
(
D(A,Φ)#Fq

)∗
and we have found the following (this should be compared with equation 3.2 in [40]):

Theorem 39. The configuration Gq(A,Φ) = (A,Φ)# +
(
Dq,(A,Φ)#Fq

)∗
(b′, ψ′) is a

solution to the perturbed Seiberg-Witten equations FpM′τ
Gq(A,Φ) = 0 if and only if

(51) 42,q,(A,Φ)#(b′, ψ′) +Q ◦
(
D(A,Φ)#Fq

)∗
(b′, ψ′) + P (b′, ψ′) = −FpM′τ

(A,Φ)#

Notice that the term P (b′, ψ′) is a new term that does not appear in the usual
linearization of the Seiberg Witten equations. This appears solely due to the presence
of the abstract perturbations used in [32]. To solve this equation we will need a sharp
version of the contraction mapping theorem.

Namely, the basic idea is to define

Vq = 42,q,(A,Φ)#(b′, ψ′)

Our intention is to show that 42,q,(A,Φ)# is invertible so that if we define
Sq,(A,Φ)#(Vq) as

Sq,(A,Φ)#(Vq) ≡ −Q ◦
[(
D(A,Φ)#Fq

)∗] (4−1
2,q,(A,Φ)#

Vq

)
− P

(
4−1

2,q,(A,Φ)#
Vq

)
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the gluing equation (51) that we need to solve can be written as

Vq = Sq,(A,Φ)#(Vq)− FpM′τ
(A,Φ)#

The solution of this equation will be guaranteed once we shows the hypothesis of
Proposition 2.3.5 in [40] are satisfied. Therefore, we will show first that 42,q,(A,Φ)# is
indeed invertible.

6.4 Invertibility of 42,q,(A,Φ)#. In this section we seek a version of Proposition
3.1.2 and Corollary 3.1.6 in [40] , namely, we want to show that:

Theorem 40. For each k ≥ 0 there exists a constant ck > 0 such that for every τ
large enough, every N0 ≥ 1 and every solution (A,Φ) of the Seiberg-Witten equations
on Mτ belonging to the zero dimensional strata ofM(Mτ , sτ , [c]), the operator

42,q,(A,Φ)# : L2
k+2,A#(M ′

τ , g
′
τ )→ L2

k,A#(M ′
τ , g
′
τ )

(b′, ψ′)→
(
Dq,(A,Φ)#F

)
◦ (Dq,(A,Φ)#F)∗(b′, ψ′)

is an isomorphism, and moreover, its inverse 4−1
2,q,(A,Φ)#

satisfies for all (b′, ψ′)

ck‖(b′, ψ′)‖L2
k+1(g′τ ,A

#) ≥ ‖4−1
2,q,(A,Φ)#

(b′, ψ′)‖L2
k+3(g′τ ,A

#)

Before proceeding we make a few clarifications:

(1) The norms used for the gluing arguments are gauge equivariant norms, which
depend on the configuration (A,Φ)# being used, as can be seen from our use
of subscript in the formulas for the Sobolev spaces.

(2) Our hypothesis regarding the fact that the solution [(A,Φ)] belongs to the 0

dimensional strata of the moduli spaceM(Mτ , sτ , [c]) has to do with the fact
that we will need to find uniform bounds which we will depend (partly) on
the norms of these solutions. Since we are using gauge equivariant norms and
the zero dimensional moduli spacesM0(Mτ , sτ , [c]) are compact, for a fixed τ
there can only be finitely many terms to worry about. Clearly, the a priori the
bounds that we get still depend on the value of τ chosen, but we will see that
a transversality argument will help us control these quantities in a way that
is τ -independent. It should be pointed out that this assumption regarding
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the zero dimensional strata is not that different from the hypothesis used in
other gluing arguments. See for example Theorem 4.17 in [12] (which uses a
compactness assumption as well) or Theorem 18.3.5 in [32] (which describes
all small solutions of a moduli space).

(3) The strategy that we will use to prove the invertibility of 42,q,(A,Φ)# differs
from the one employed by [40] mainly because of the following reasons. The
way [40] controlled the norm 42,q,(A,Φ)# was by first controlling the norm a
different operator �(A,Φ)# = Qq,(A,Φ) ◦Q∗q,(A,Φ) (defined in the proof of Propo-
sition 3.1.2) and then relating the norms of these two operators through
equation (3.6) in their paper. However, these norms were only comparable
because their equation (3.7), which uses the fact that DA#Φ# is almost zero.
This was true in their case because the usual Seiberg-Witten equations do not
perturb the Dirac equation and since (A,Φ)# is very close to being a solution
this means that Φ# is very close to being a harmonic spinor with respect to
DA# . However, the abstract perturbations q used in [32] do modify the Dirac
equation, so any clear relationship between �(A,Φ)# and DA# is lost. Despite
this, we will see momentarily that part of their strategy can be salvaged and
turns out being useful for our purposes.

The proof of this theorem will follow a splicing argument similar to the one used in
section 4.2.2 of [38] (or section 4.4 in [12]). Namely, we can separate the manifold
M ′

τ into two pieces (see figure (9)):
• The unperturbed region: this refers to the region where (A,Φ)# = (A,Φ),

that is, the solution (A,Φ) was not modified. Notice that this includes the cylinder
R+×−Y and the section of the cone [1, T ]×Y and we can use the fact that the moduli
space on (Mτ , gτ ) is regular to conclude that Qq,(A,Φ) is surjective on Mτ [32, Def
14.5.6]. Using that Qq,(A,Φ) = D(A,Φ)Fq⊕d∗(A,Φ) and the fact d∗(A,Φ) has trivial cokernel
[32, Proposition 14.4.3] we conclude that D(A,Φ)Fq must be surjective as well. Now,
since Qq,(A,Φ) is a Fredholm operator we can easily see that Q∗q,(A,Φ) must be injective.
Moreover Q∗q,(A,Φ) =

(
D(A,Φ)Fq

)∗ ⊕ d(A,Φ) where as before d(A,Φ)(f) = (−df, fΦ) .
The fact that Φ is irreducible implies that d(A,Φ) is injective and so

(
D(A,Φ)Fq

)∗ must

be injective as well since kerQ∗q,(A,Φ) = ker
((
D(A,Φ)Fq

)∗ |ker(d(A,Φ)

)
[29, Eq. 3.4]. In

particular, it is not difficult to check that because of this 42,q,(A,Φ) will be invertible
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as an operator on Mτ . To emphasize that we care about this operator when applied
to sections supported on the unperturbed region (which contains the cylinder) we
will write the inverse as a map

4−1
2,q,(A,Φ),cyl : L2

A(Mτ )→ L2
2,A(Mτ )

• The perturbed region: this refers to the region where (A,Φ)# and (A,Φ) do
not necessarily agree. Notice that this includes the region [1, τ ] × Y together with
remaining piece of the AFAK end Z ′. Moreover 42,q,(A,Φ)# = 42,(A,Φ)# on this part
of the manifold. In particular, as long as we work with sections (b′, ψ′) supported
on the perturbed region (vanishing for example on [1, T/2]× Y ]), we can follow the
strategy used by Mrowka and Rollin described in point 3. of the previous Remark.
Namely, in this case we can indeed bound the norm of ‖42,(A,Φ)#(b′, ψ′)‖2

L2(gτ ′ ,Zτ )

using the norm of �(A,Φ)#(0, b′, ψ′) where the domain of this operator is triples and
we set the first entry equal to 0. We would then get the analogue of equation 3.8
in [40] to obtain the following: there is a constant c0 such that for all τ sufficiently
large, for all solutions (A,Φ) on Mτ and all sections (b′, ψ′) on M ′

τ supported on the
perturbed region and vanishing on [1, T/2]× Y , we have that

‖42,(A,Φ)#(b′, ψ′)‖L2(gτ ′ ,Zτ ) ≥ c0‖(b′, ψ′)‖L2
2(g′τ ,A

#,Zτ )

Notice that because of the support condition we can write this as:

‖42,(A,Φ)#(b′, ψ′)‖L2(gτ ′ ,Zτ\[1,T/2)×Y ) ≥ c0‖(b′, ψ′)‖L2
2(g′τ ,A

#,Zτ\[1,T/2)×Y )

Also, similar inequalities hold for the L2
k,A# norms with a constant ck instead of c0.

This means that 42,(A,Φ)# is an operator bounded from below on this domain and
hence it is injective with closed range [1, Theorem 2.5]. In particular

U = im42,(A,Φ)# |Zτ\[1,T/2)×Y

will be a closed subspace and as a consequence of the open mapping theorem for
Banach spaces [4, Corollary 2.7] it follows that

42,(A,Φ)# : L2
2,A#(gτ ′ , Zτ\[1, T/2)× Y )→ U
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is bijective with continuous inverse [the bounds for higher regularity in the Sobolev
spaces are essentially the same]. Therefore we have an inverse which for convenience
we will denote

4−1
2,(A,Φ)#,end

: U → L2
2,A#(gτ ′ , Zτ\[1, T/2)× Y )

Now we will introduce some cutoff functions that will allow us to splice these two
operators: these will be denoted ηcyl and ηend. They satisfy the following properties:
• 0 ≤ ηcyl, ηend ≤ 1 and η2

cyl + η2
end = 1.

• ηcyl is supported on the unperturbed region. Moreover, ηcyl ≡ 1 on a small
neighborhood of the region R+ × −Y ∪ [1, T/2] × Y . In particular, the gradient
of ηcyl is supported on the fixed region [1, T ]× Y .
• ηend is supported on the perturbed region. Moreover, ηend ≡ 1 on a small

neighborhood of ([T, τ ] × Y ) ∪ {Z ′ ∩ {σZ′ > 1/τ}. In particular, the gradient of
ηend is supported on the fixed region [1, T ]× Y .
• For η = ηcyl, ηend we have |∇nη| ≤

(
2
T

)n .
Our proto-inverse will be the operator

4̃−1
2,q,(A,Φ)#

: L2(M ′
τ , g
′
τ )→ L2

2(M ′
τ , g
′
τ )

(b′, ψ′)→ ηcyl4−1
2,q,(A,Φ),cyl[ηcyl(b

′, ψ′)] + ηend4−1
2,(A,Φ)#,end

[ηend(b
′, ψ′)]

First of all, notice that this operator provides a parametrix for 42,q,(A,Φ)# : this is
because

42,q,(A,Φ)#

[
4̃−1

2,q,(A,Φ)#
(b′, ψ′)

]
= 42,q,(A,Φ)#

[
ηcyl4−1

2,q,(A,Φ),cyl[ηcyl(b
′, ψ′)] + ηend4−1

2,(A,Φ)#,end
[ηend(b

′, ψ′)]
]

=
{
D(A,Φ)ηcyl,4−1

2,q,(A,Φ),cyl[ηcyl(b
′, ψ′)]

}
+ η2

cyl(b
′, ψ′)

+
{
D(A,Φ)ηend,4−1

2,(A,Φ)#,end
[ηend(b

′, ψ′)]
}

+ η2
end(b

′, ψ′)

=
{
D(A,Φ)ηcyl,4−1

2,q,(A,Φ),cyl[ηcyl(b
′, ψ′)]

}
+
{
D(A,Φ)ηend,4−1

2,(A,Φ)#,end
[ηend(b

′, ψ′)]
}

+ (b′, ψ′)
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Here the notation {·, ·} is used to indicate a bilinear pointwise multiplication be-
tween some (higher order) derivatives of the cutoff functions and the elements in the
domain. Also, the notation D(A,Φ)ηcyl means that this expression involves (higher or-
der) derivatives of the perturbation (and a priori the configuration (A,Φ), but whose
precise form is not important to use. Notice that the first two terms are supported
on the compact subset [1, T ] × Y , where (A,Φ)# = (A,Φ). Also, we dropped the
dependence on q for the derivatives D(A,Φ)η• since this perturbation affects only the
cylindrical region. To analyze if there is any dependence of D(A,Φ)η• on (A,Φ), we
will study D(A,Φ)ηcyl since the other case is exactly the same. We need to compute

(52) 42,q,(A,Φ)# (ηcyl(bcyl, ψcyl))

where we defined
(bcyl, ψcyl) ≡ 4−1

2,q,(A,Φ),cyl[ηcyl(b
′, ψ′)]

Notice that we may write

42,q,(A,Φ)# =
(
D(A,Φ)#Fq

)
◦
(
D(A,Φ)#Fq

)∗
=
(
D(A,Φ)#F

)
◦
(
D(A,Φ)#F

)∗
= 42,,(A,Φ)#

since we are only interested in computing (52) on the region [1, T ]× Y , where ηcyl is
not constant. The advantage of using this unperturbed Seiberg-Witten ’Laplacian’
is that we can give an explicit formula for it based on the equations (27) and (28).
We find that for arbitrary (b′, ψ′)

42,(A,Φ)#(b′, ψ′)

=
(
D(A,Φ)#F

) (
(d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗), D∗A#ψ

′ − b′Φ#
)

= [ρ(d+
[
(d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗)

]
−
{
Φ#
(
D∗A#ψ

′ − b′Φ#
)∗

+
(
D∗A#ψ

′ − b′Φ#
)

(Φ#)∗
}

0
,

DA#

(
D∗A#ψ

′ − b′Φ#
)

+ ρ
(
(d+)∗ρ∗b′ + ρ∗(ψ′(Φ#)∗)

)
Φ#]

therefore 42,(A,Φ)# [(ηcylbcyl, ηcylψcyl)] becomes
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[ρ(d+
[
(d+)∗ρ∗ (ηcylbcyl) + ρ∗(ηcylψcyl(Φ

#)∗)
]

−
{
Φ#
(
D∗A# (ηcylψcyl)− (ηcylbcyl)Φ

#
)∗

+
(
D∗A# (ηcylψcyl)− (ηcylbcyl)Φ

#
)

(Φ#)∗
}

0

+[ρ(d+
[
(d+)∗ρ∗(ηcylbcyl) + ρ∗((ηcylψcyl) (Φ#)∗)

]
−
{
Φ#
(
D∗A# (ηcylψcyl)− (ηcylbcyl)Φ

#
)∗

+
(
D∗A# (ηcylψcyl)− (ηcylbcyl)Φ

#
)

(Φ#)∗
}

0

Since the Dirac operator D satisfies the Leibniz Rule [2, Prop. 3.38]

D(ηψ) = ρ(dη)ψ + ηDψ

it is not difficult to see from the previous expression that ηcyl is being differentiate
only through quantities which depend on the Riemannian metric and other struc-
tures of the manifold of [1, T ] × Y , which are fixed, i.e, independent of τ , but not
on the specific cofigurations (A,Φ)#. A similar story will be true for ηend. Since
4−1

2,q,(A,Φ),cyl[ηcyl(b
′, ψ′)] and 4−1

2,(A,Φ)#,end
[ηend(b

′, ψ′)] are elements of L2
2,A#(M ′

τ ), our
previous discussion in fact tells us that the operator

K(A,Φ) : L2([1, T ]× Y )→ L2([1, T ]× Y )

(b′, ψ′)→
{
Dηcyl,4−1

2,q,(A,Φ),cyl[ηcyl(b
′, ψ′)]

}
+
{
Dηend,4−1

2,(A,Φ)#,end
[ηend(b

′, ψ′)]
}

can in fact be regarded as an operator

K(A,Φ) : L2([1, T ]× Y )→ L2
2([1, T ]× Y )

and using the compact inclusion L2
2([1, T ] × Y ) ↪→ L2([1, T ] × Y ) on a compact

manifold we conclude that K(A,Φ) is a compact operator. This provides the de-
sired parametrix and considering the composition of the operators 42,q,(A,Φ)# and
4̃−1

2,q,(A,Φ)#
in the opposite order it is not difficult to see we just proved the following:

Lemma 41. For any solution (A,Φ) to the Seiberg Witten equations on the manifold
Mτ , the operator 42,q,(A,Φ)# is a Fredholm operator on M ′

τ .

It is possible to show that the norms of the parametrices are uniform, that is, that
there exist a constant CT so that for all solutions (A,Φ) we have that ‖K(A,Φ)‖ ≤ CT

T
.
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In fact, we will show something better, which is that one could have chosen a constant
c∞ which is independent of T , in other words, ‖K(A,Φ)‖ ≤ C∞

T
.

Notice that a priori the only term that may not seem controllable in terms of T is{
Dηcyl,4−1

2,q,(A,Φ),cyl[ηcyl(b
′, ψ′)]

}
However, if we take a sequence of solutions (An, Φn) on Mτn then on [1, T ] it will
converge strongly to a solution (A∞, Φ∞) on Z+

Y,ξ [this is because of the compactness
theorem 2.2.11 in [40]] and hence for all (b′, ψ′){

Dηcyl,4−1
2,q,(An,Φn),cyl[ηcyl(b

′, ψ′)]
}

converges to {
Dηcyl,4−1

2,q,(A∞,Φ∞),cyl[ηcyl(b
′, ψ′)]

}
It is clear then that it would be enough to have a uniform bound on the operator

norms ∥∥∥4−1
2,q,(A∞,Φ∞)

∥∥∥
L2(Z+

Y,ξ)→L
2
2,A∞ (Z+

Y,ξ)

As we will make more explicitly in the next proof, since we are taking a sequence of
solutions (An, Φn) which belong to the zero dimensional strata of the moduli spaces
M(Mτn , sτn , [c]), the limiting solution (A∞, Φ∞) must belong to the zero dimensional
strata of M(Z+

Y,ξ, s, [c]), and since we are using gauge equivariant norms, there are
only finitely many values the previous operator norm can take (this is related to the
second point in the remarks we made after stating the invertibility of the Laplacian).
Therefore, we will have the uniform bound for the operatorK(A,Φ), that is, ‖K(A,Φ)‖ ≤
C∞
T

where C∞ is independent of τ, T and the solutions (A,Φ) used.
Therefore, there is no loss of generality in assuming that T was chosen from the

beginning so that it would also satisfy the condition

‖K(A,Φ)‖L2([1,T ]×Y )→L2
2([1,T ]×Y ) ≤

C∞
T
≤ 1

2

for all the solutions of the Seiberg Witten equations on Mτ . In particular, from the
identity

42,q,(A,Φ)#

[
4̃−1

2,q,(A,Φ)#
(b′, ψ′)

]
= K(A,Φ)(b

′, ψ′) + (b′, ψ′)
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we see that the operator norms satisfy

‖42,q,(A,Φ)#4̃−1
2,q,(A,Φ)#

− Id‖L2
2,A# (M ′τ ,g

′
τ )→L2(M ′τ ,gτ ′ )

≤ 1

2

In particular we conclude that 42,q,(A,Φ)#4̃−1
2,q,(A,Φ)#

is invertible and they (and their
inverses) are uniformly bounded since

1

2
≤ ‖42,q,(A,Φ)#4̃−1

2,q,(A,Φ)#
‖L2

2,A# (M ′τ ,g
′
τ )→L2(M ′τ ,gτ ′ )

≤ 3

2

Therefore the inverse of 42,q,(A,Φ)# is 4̃−1
2,q,(A,Φ)#

(
42,q,(A,Φ)#4̃−1

2,q,(A,Φ)#

)−1

.

Returning to our proof of Theorem (40), since
(
42,q,(A,Φ)#4̃−1

2,q,(A,Φ)#

)−1

is uni-

formly bounded we just need to check that 4̃−1
2,q,(A,Φ)#

is uniformly bounded to con-
clude that 42,q,(A,Φ)# is uniformly bounded [a similar argument would work to give
uniform bounds on 4−1

2,q,(A,Φ)#
] . Looking at the definition of 4̃−1

2,q,(A,Φ)#
it becomes

clear that it suffices to show that ηcyl4−1
2,q,(A,Φ),cyl[ηcyl(b

′, ψ′)] is uniformly bounded.
Here we will use again the assumption we mentioned at the end of the previous

proof. Namely, we are now assuming that the gauge equivalence classes of our
solutions (A,Φ) ∈ M(Mτ , sτ , [c]) all belong to the zero dimensional strata of the
moduli spaces. Since the Laplacians are gauge equivariant in the sense that

42,q,u·(A,Φ)[u · (b, ψ)] = u · 42,q,(A,Φ)(b, ψ)

and we are using the gauge equivariant norms ‖ · ‖L2
k,A

, then for each τ there are
only finitely gauge equivalence classes we need to worry about, which immediately
implies that for each τ we have a control on the Laplacians (and their inverses).
Clearly we still need to see what happens if as we change τ . Let K be a subset of
(R+ × −Y ) ∪ ([1,∞) × Y ) and use ‖42,q,(A,Φ)‖A,K or ‖4−1

2,q,(A,Φ)‖A,K to denote the
operator norms of 42,q,(A,Φ) and 4−1

2,q,(A,Φ) when restricted to sections supported on
K. Clearly if K ⊂ K ′ then ‖4−1

2,q,(A,Φ)‖A,K ≤ ‖4
−1
2,q,(A,Φ)‖A,K′ .

Now, recall that we are actually working with a sequence τn increasing to∞ so for
each τn let [(An, Φn)] ∈ M0(Mτn , sτ , [c]) be a (gauge equivalence class of) solution
belonging to the zero dimensional strata. Notice that each compact subset K ⊂
(R+×−Y )∪([1,∞)×Y ) eventually belongs to allMτn (once τn is sufficiently large) so
the compactness theorem in this case says that we can choose representatives (An, Φn)
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which converge to a solution (A∞, Φ∞) which solves the equations on Z+
ξ,Y and this

convergence is strong when restricted to the compact subset K. In particular, it is
clear from this that

(53) ‖4−1
2,q,(An,Φn)‖An,K → ‖4

−1
2,q,(A∞,Φ∞)‖A∞,K

In fact, we must also have that the limiting solution (A∞, Φ∞) belongs to the zero
dimensional strata because the different strata are labeled by the index of the op-
erator Qq,(A,Φ) and this index can only decrease (this is how the broken trajectories
appear). However, since the index of each element in the sequence was already zero
then the index of the limiting configuration would need to be negative if it were to
decrease but transversality rules this out, since we do not have negative dimensional
moduli spaces. Therefore the convergence is without broken trajectories, that is,
[(A∞, Φ∞)] ∈ M0(Z+

Y,ξ, s, [c]) . In particular, the fact that no energy is lost along
the half-cylinder allows us to improve the convergence in (53) to (we will say more
about this in a moment)

(54) ‖4−1
2,q,(An,Φn)‖An,Kt → ‖4

−1
2,q,(A∞,Φ∞)‖A∞,Kt

where now Kt = (R+ ×−Y ) ∪ ([1, t]× Y ) (t > 1 is arbitrary). In particular,

‖4−1
2,q,(A∞,Φ∞)‖A∞,Kt ≤ ‖4

−1
2,q,(A∞,Φ∞)‖A∞,Z+

Y,ξ
≤ C

where

C = max
{
‖4−1

2,q,(A∞,Φ∞)‖A∞,Z+
Y,ξ
| [(A∞, Φ∞)] ∈M0(Z+

Y,ξ, s, [c])
}

Since t and the sequence was arbitrary this clearly gives us the uniform bound that
we were after so we have proven Theorem (40).

We will now say more about why the convergence (54) is true. For this we need
to recall that thanks to the fiber product description of our moduli spaces, we can
restrict each solution [(An, Φn)] to a solution on the cylindrical end moduli space
M(R+ × −Y, sξ, [c]) , which we will denote as [(An, Φn)]cyl ∈ M(R+ × −Y, sξ, [c]).
Likewise, the limiting solution [(A∞, Φ∞)] can also be restricted to this moduli space
so we have as well that [(A∞, Φ∞)]cyl ∈M(R+×−Y, sξ, [c]). When we described the
configuration spaces at the beginning of the paper we used the topology of strong
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convergence on compact subsets L2
k,loc to define the moduli spaces. However, as

explained in Theorem 13.3.5 of [32], the same moduli spaceM(R+×−Y, sξ, [c]) can
also be obtained if we had used the stronger topology of L2

k convergence along the
entire half-cylinder R+×−Y [they really did this for the moduli space on the cylinder
R × Y but it does not affect our claim]. Therefore, the convergence of [(An, Φn)]cyl

towards [(A∞, Φ∞)]cyl can be regarded as a strong convergence with respect to the
L2
k,Ac

norm, where Ac represents the translation invariant connection associated to
a smooth representative c of the critical point [c]. In other words, we can choose
representatives of [(An, Φn)]cyl and [(A∞, Φ∞)]cyl so that

An = Ac + an

A∞ = Ac + a∞

Φn = Φc + φn

Φ∞ = Φc + φ∞

where Φc is a translation invariant representative of c and we have that

lim
n→∞

‖An − A∞‖L2
k(R+×−Y ) = lim

n→∞
‖an − a∞‖L2

k(R+×−Y ) = 0

lim
n→∞

‖Φn − Φ∞‖L2
k,Ac

(R+×−Y ) = lim
n→∞

‖φn − φ∞‖L2
k,Ac

(R+×−Y ) = 0

The norms ‖ · ‖L2
k,An

and ‖ · ‖L2
k,Ac

can now be compared thanks to the Sobolev
multiplication theorems (since for example ∇An• = ∇A∞ • +(an − a∞) ⊗ • with
similar formulas for the higher derivatives] and the previous limits make it clear that
the operator norm convergence (53) on compact subsets K can be improved to the
operator norm convergence (54) on sets of the form “half-cylinder +compact”.

Our next step is to explain the properties of the gluing map one obtains using the
invertibility of the Laplacian.

Remark 42. Many of the following arguments will have a similar structure to the one
before. Namely, because we are taking solutions belonging to the zero dimensional
strata for an individual τ we will find a bound, but a priori this may depend on
τ . However, as we take τn sufficiently large the bounds end up being controlled
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by limiting case ’τ = ∞’, since we can invoke the strong convergence on the half-
cylindrical end. Since the arguments are essentially the same in each case we will
not repeat the strategy so we will just say that it “follows by similar arguments”.

6.5 Definition and some Properties of the Gluing Map: As explained before,
if we write Vq = 42,q,(A,Φ)#(b′, ψ′) then the gluing equation 51 is equivalent to solving
the equation

Vq = Sq,(A,Φ)#(Vq)− FpM′τ
(A,Φ)#

The solution of this equation requires an application of the contraction mapping
theorem, which requires us to first show that the map Sq is a uniform contraction in
the following sense (this is analogue of lemma 3.1.8 in [40]):

Theorem 43. For every k large enough there exist constants αk > 0, κk ∈ (0, 1/2)

such that for every τ large enough, every N0 ≥ 1 and every approximate solution of
the Seiberg Witten equations (A,Φ)# on M ′

τ , which comes from an actual solution
(A,Φ) on Mτ whose gauge equivalence class [A,Φ] belongs to the zero dimensional
strata of the moduli spaceM0(Mτ ; sτ ; [c]) ,we have for all V1, V2 ∈ L2

k(M
′
τ ; isu(S+)⊕

S−, g′τ ;A
#)

‖V1‖L2
k(g′τ ,A

#), ‖V2‖L2
k(g′τ ;A#) ≤ αk =⇒

∥∥Sq,(A,Φ)#(V2)− Sq,(A,Φ)#(V1)
∥∥
L2
k(g′τ ,A

#)
≤ κk‖V2−V1‖L2

k(g′τ ,A
#)

Proof. Recall that

Sq,(A,Φ)#(Vq) = −Q ◦
[(
D(A,Φ)#Fq

)∗] (4−1
2,q,(A,Φ)#

Vq

)
− P

(
4−1

2,q,(A,Φ)#
Vq

)
We will mention the main differences compared with the proof given in [40]. First of
all, we need the bounds in proposition 11.4.1 in [32], which say that for k ≥ 2

(55) ‖Dl(A,Φ)q̂‖ ≤ C(1 + ‖a‖L2
k(Z))

2k(l+1)(1 + ‖Φ‖)L2
k,A(Z))

l+1

Here C is a constant independent of the configuration and in this theorem Z

denotes a finite cylinder, while A = A0 + a ⊗ 1 for some reference configuration.
First of all these bounds can be used on the half-cylinder R+× (−Y ) as well. Simply
decompose it as

R+ × (−Y ) =
⋃
n≥0

[n, n+ 1]× (−Y )︸ ︷︷ ︸
Zn

If • denotes an element in the domain of Dl(A,Φ)q̂ then we have
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‖Dl(A,Φ)q̂(•)‖R+×−Y

=
∞∑
n=0

‖Dl(A,Φ)q̂(•)‖Zn

≤ C
∞∑
n=0

(1 + ‖a‖L2
k(Zn))

2k(l+1)(1 + ‖Φ‖)L2
k,A(Zn))

l+1‖ • ‖Zn

where in the last step we used the bounds coming from the operator norm (55). If
we define

Cn,(A,Φ) = (1 + ‖a‖L2
k(Zn))

2k(l+1)(1 + ‖Φ‖)L2
k,A(Zn))

l+1

then it is not too difficult to see that

Cmax,(A,Φ) = max
n

Cn,(A,Φ) <∞

One way to see this is the the previous quantities Cn,(A,Φ) do not differ too much
from those for the translation invariant solution Cn,(Ac,Φc), which are independent of
n. In any case we end up with

‖Dl(A,Φ)q̂(•)‖R+×−Y ≤ CCmax,(A,Φ)

∞∑
n=0

‖ • ‖Zn = CCmax,(A,Φ)‖ • ‖R+×−Y

Since • was arbitrary this says that each Dl(A,Φ)q̂ is a bounded operator on the half-
cylinder. For each τ , we are only dealing with finitely many gauge equivalence
classes of solutions because of our assumption on the strata so the bounds are once
again controlled for a fixed τ . By analogous arguments, one can find bounds which
actually become independent of τ so that ‖Dl(A,Φ)q̂‖ ≤ Cl for some constant Cl on
the half-infinite cylinder.

The other ingredient is that the leading term of P
(
4−1

2,q,(A,Φ)#
Vq

)
is quadratic in

the following sense. To emphasize its dependence on V , we will write P
(
4−1

2,q,(A,Φ)#
Vq

)
as

f(V ) = q
(

(A,Φ)# + (D(A,Φ)#Fq)
∗4−1

2,q,(A,Φ)#
V
)
−q(A,Φ)#−

(
D(A,Φ)#q

)
◦(D(A,Φ)#Fq)

∗4−1
2,q,(A,Φ)#

V
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We want to compute f ′(V ) and f ′′(V ) , that is, the Banach spaces derivatives with
respect to V . For this define the functionsf1(V ) = q

(
(A,Φ)# + (D(A,Φ)#Fq)

∗4−1
2,q,(A,Φ)#

V
)
− q(A,Φ)#

f2(V ) =
(
D(A,Φ)#q

)
◦ (D(A,Φ)#Fq)

∗4−1
2,q,(A,Φ)#

V

so that
f(V ) = f1(V )− f2(V )

Since f2(V ) is linear in V it is easy to determine that

f ′2(V ) =
(
D(A,Φ)#q

)
◦ (D(A,Φ)#Fq)

∗4−1
2,q,(A,Φ)#

(V )

Clearly f ′2 is independent as a linear transformation of the “basepoint” (which is
hidden in our notation) so we will have that f (n)

2 = 0 for n ≥ 2. To compute the
derivative of f1(V ) think of the Taylor expansion of q about (A,Φ)# (which plays the
role of 0 in our affine space interpretation for the domain of q so we can use corollary
4.4 in Chapter 1 from [33]). In this way

f1(V ) =
(
D(A,Φ)#q

)
◦
(

(D(A,Φ)#Fq)
∗4−1

2,q,(A,Φ)#

)
V +

1

2

(
D2

(A,Φ)#q
)
V (2) + · · ·+

where V (2) = (V, V ). Notice that the first term is exactly f2(V )! Thereforef ′1(V ) = f2(V )

f ′′2 =
(
D2

(A,Φ)#
q
)

This means that the leading term for the Taylor expansion of f(V ) will be quadratic,
that is

(56) f(V ) =
1

2

(
D2

(A,Φ)#q
)
V (2) + · · ·+

. To see why this is important notice that in the case of−Q◦
[(
D(A,Φ)#Fq

)∗] (4−1
2,q,(A,Φ)#

Vq

)
Mrowka and Rollin found a bound (after eq. 3.14 [40]) which can be adapted to our
case to read
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∥∥∥Q ◦ [(D(A,Φ)#Fq

)∗] (4−1
2,q,(A,Φ)#

V2

)
−Q ◦

[(
D(A,Φ)#Fq

)∗] (4−1
2,q,(A,Φ)#

V1

)∥∥∥
L2
k(g′τ ,A

#)

≤ C ′k‖V2 + V1‖L2
k(gτ ,A#)‖V2 − V1‖L2

k(g′τ ,A
#)(57)

where C ′k is a constant which is independent of τ (once it is large enough) , the approx-
imate solution (A,Φ) and the constant N0 ≥ 1 used in the perturbations defining the
connected sum along Y operation. Since we are assuming that ‖V1‖L2

k
, ‖V2‖L2

k
≤ αk,

we can use the triangle inequality to obtain that

‖V2 + V1‖L2
k(gτ ,A#) ≤ ‖V2‖L2

k(gτ ,A#) + ‖V1‖L2
k(gτ ,A#) ≤ 2αk

so the inequality (57) reads∥∥∥Q ◦ [(D(A,Φ)#Fq

)∗] (4−1
2,q,(A,Φ)#

V2

)
−Q ◦

[(
D(A,Φ)#Fq

)∗] (4−1
2,q,(A,Φ)#

V1

)∥∥∥
L2
k(g′τ ,A

#)

≤2αkC
′
k‖V2 − V1‖L2

k(g′τ ,A
#)

Hence to make this contribution less than κk
2
‖V2 − V1‖L2

k(g′τ ,A
#) we just need to take

αk <
κ

4C′k
.

Likewise, since
P
(
4−1

2,q,(A,Φ)#
V2

)
− P

(
4−1

2,q,(A,Φ)#
V1

)
is the same as

f(V2)− f(V1)

and each has quadratic leading terms according to equation (56) , the norm∥∥∥P (4−1
2,q,(A,Φ)#

V2

)
− P

(
4−1

2,q,(A,Φ)#
V1

)∥∥∥
L2
k(g′τ ,A

#)

can now be bounded by and expression of the form

f(αk, C
′′
k )‖V2 − V1‖L2

k(g′τ ,A
#)

where f(αk, C
′′
k ) will be some expression in αk whose particular details do not interest

us and C ′′k denotes constants that do not depend on τ or the solution used. In any
case, the important thing is that we can again choose αk so that f(αk, C

′′
k ) < κk

2
and

so combining both inequalities the result follows. �
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At this point we can use the Contraction Mapping Theorem (proposition 2.3.5
[40]) to obtain our definition of the gluing map (Theorem 3.1.9 [40]):

Theorem 44. There exists constants αk, ck > 0 such that for every τ large enough,
every solution (A,Φ) of the Seiberg-Witten equations on Mτ whose gauge equivalence
class belongs to the zero dimensional strata of the moduli space M(Mτ ; sτ ; [c]) and
every constant N0 ≥ 1, there is a unique section (b′, ψ′) on M ′

τ such that

Gτ (A,Φ) = (A,Φ)# + (Dq,(A,Φ)#Fq)
∗(b′, ψ′)

is a solution of the Seiberg-Witten equations with ‖(b′, ψ)‖L2
k+2(gτ ′ ,A

#) ≤ αk. Further-
more, the map is gauge equivariant and induces a map

Gτ :M0(Mτ ; sτ ; [c])→M0(M ′
τ ; s
′
τ ; [c])

where M0(Mτ ; sτ ; [c]) denotes the zero dimensional strata of M(Mτ ; sτ ; [c]). More-
over both ‖(b′, ψ′)‖L2

k+2(g′τ ,A
#) and ‖Gτ (A,Φ)− (A,Φ)#‖L2

k+1(g′τ ,A
#) are bounded by

(58)
‖(b′, ψ′)‖L2

k+2(g′τ ,A
#), ‖Gτ (A,Φ)− (A,Φ)#‖L2

k+1(g′τ ,A
#) ≤ ck‖FpM′τ

(A,Φ)#‖L2
k(g′τ ,A

#)

Furthermore, this map is an injection and since the construction is reversible it is
a bijection. Hence the mod 2 cardinality of M0(Mτ ; sτ ; [c]) and M0(M ′

τ ; s
′
τ ; [c]) is

the same.

Proof. We need to verify that the gluing map preserves the dimensionality of the
zero dimensional strata. For this recall that if [(A,Φ)] belongs to M0(Mτ ; sτ ; [c]),
then the index of the operator

Qq,(A,Φ) = d∗(A,Φ) ⊕D(A,Φ)FpMτ

is precisely the dimension of the strata to which [(An, Φn)] belongs. Since the
transversality condition already implied that Qq,(A,Φ) was surjective we conclude that
in fact Qq,(A,Φ) is an invertible operator.

Now we use the same splicing procedure as in the case of finding the inverse for
the Seiberg Witten Laplacians 42,q,(A,Φ)# . Namely, the operator ηendQ(A′0,τ ,Φ

′
τ )(ηend·)

associated to the canonical solution (A0,τ ′ , Φ
′
τ ) on the AFAK end Z ′ will be invertible

on a suitable domain using Lemma 3.1.4 in [40]. Therefore, we can patch together
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ηcylQ
−1
q,(A,Φ)(ηcyl·) and ηendQ−1

(A0,τ ′ ,Φ
′
τ )(ηend·) to show that Qq,(A,Φ)# will become invert-

ible.
To compare Qq,(A,Φ)# and Qq,Gq(A,Φ) notice that inequality (48) and the bound in

(58) allow us to conclude that the operator norms of Qq,(A,Φ)# and Qq,Gq,τ (A,Φ) are
very close to each other. Since being an invertible operator is an open condition it
follows that Qq,Gq,τ (A,Φ) will have to be invertible as well.

Now we must address the injectivity of our map. It is essentially the same as
the proof of Corollary 3.2.2 in [40]. If the injectivity of the map is not true for
τ large enough then we obtain a sequence τj → ∞ and solutions to the Seiberg
Witten equations (Aj, Φj) and (Ãj, Φ̃j) on Mτj such that for all j, [Aj, Φj] 6= [Ãj, Φ̃j]

while [Gτj(Aj, Φj)] = [Gτj(Ãj, Φ̃j)]. Moreover, after taking gauge transformation
we can assume that they have exponential decay and converge on every compact
subset of Z+

Y,ξ to some solutions (A∞, Φ∞) and (Ã∞, Φ̃∞) . Moreover, for all j we
have [Aj, Φj] 6= [Ãj, Φ̃j] as gauge equivalence classes . We want to show that if
(A∞, Φ∞) = (Ã∞, Φ̃∞) then

(59) ‖(Aj, Φj)− (Ãj, Φ̃j)‖L2
k+1(gτ ,Aj) → 0

First of all, from (58) and (48) we already know that have that

(60) ‖Gτj(Aj, Φj)− (Aj, Φj)
#‖L2

k+1(g′τ ,A
#) → 0

hence Gτj(Aj, Φj) converges on every compact towards (A∞, Φ∞) since (Aj, Φj) does.
Similarly Gτj(Ãj, Φ̃j) converges to (Ã∞, Φ̃∞). The fact that G(Aj, Φj) and G(Ãj, Φ̃j)

are gauge equivalent for each j implies that the limits are also gauge equivalent.
Hence the limits of (Aj, Φj) and (Ãj, Φ̃j) are gauge equivalent. After making further
gauge transformations, we can then assume that (Aj, Φj) and (Ãj, Φ̃j) converge to-
ward the same limit (A∞, Φ∞) on Z+

Y,ξ. In principle, this would be weak convergence
along the cylindrical end R+×Y . However, by the discussion from before when we an-
alyzed the restriction of a solution to the cylindrical moduli spaceM(R+×−Y, sξ, [c])
, we can actually assume that the convergence is strong along the entire cylindrical
end, in other words, (Aj, Φj) and (Ãj, Φ̃j) are converging strongly towards (A∞, Φ∞)

on the cylindrical end as well. This allows us to conclude that (59) is true.
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Since we now have strong convergence along the cylinder then the estimates in [40]
continue to hold in that we can find a “radius” r small enough [independent of τ ] for
which whenever there is j such that ‖(Aj, Φj)− (Ãj, Φ̃j)‖L2

k+1(gτ ,Aj) < r then (Aj, Φj)

and (Ãj, Φ̃j) are gauge equivalent [this is a much weaker version of their proposition
3.2.1]. From (59) it is clear that such j will exist and hence we are done. �

We have reached the proof of the naturality property for the contact invariant
under strong symplectic cobordisms, that is, Theorem (1). To see why this is the
case recall that in the first part of this paper (section 5 to be more specific) we
showed that

HM

∧

•(W
†, sω)c(ξ′) = c(ξ′, Y )

The gluing theorem we just proved was aimed at showing that

(61) c(ξ′, Y ) = c(ξ)

To see why this the case we want to apply Theorem (44) to the case in which the
second AFAK end is Z ′ = (0,∞)× Y . It is not difficult to see that in this case the
corresponding manifolds M ′

τ in fact all agree with each other in the sense that their
metrics, spinor bundles, symplectic forms, etc are the same, and in fact coincide with
the manifold Z+

Y,ξ used to define the contact invariant of (Y, ξ). In particular, we have
that for all τ > 0 that

|M0(M ′
τ , s
′, [c])| mod 2 = |M0(Z+

Y,ξ, s, [c])| mod 2

Now choose τlarge such that

|M0(Mτ ; sτlarge ; [c])| mod 2 = |M0(M ′
τ , s
′, [c])| mod 2 = |M0(Z+

Y,ξ, s, [c])| mod 2

If we think of using the numbers |M0(Mτ ; sτlarge ; [c])| mod 2 in order to define a
chain-level element c(ξ′, Y, τlarge) ∈ Č∗(−Y, sξ) as in formula (5), then the previous
identity says that at the chain level

c(ξ′, Y, τlarge) = c(ξ)

which in particular gives the identity of homology classes

(62) c(ξ′, Y, τlarge) = c(ξ)
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Now, c(ξ′, Y, τlarge) is not the same chain-level element as the element c(ξ′, Y ) we
used during the initial sections of this paper. However, it is not difficult to see that
use a one parameter family of metrics g(t) and perturbations p0(t) on Mτlarge (which
is diffeomorphic to W †

ξ′,Y ) to go from one element to the other. Therefore, one can
consider a parameterized moduli space and use the same argument as in section 5
to conclude that c(ξ′, Y, τlarge) and c(ξ′, Y ) do define the same homology element in
HM

∧

•(−Y, sξ), in other words

(63) c(ξ′, Y, τlarge) = c(ξ′, Y )

Combining the identities (61), (62) and (63) the naturality result follows, i.e, we have
shown that for a strong symplectic cobordism (W,ω) : (Y, ξ)→ (Y ′, ξ′) one has

HM

∧

•(W
†, sω)c(ξ′) = c(ξ′, Y )
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7. Appendix

7.1 The Grading of the Contact Invariant. For sake of completeness we will
show in this section that the contact invariant c(ξ) is supported in the homotopy
class of the plane field ξ. The proof follows from a simple application of the exci-
sion theorem, and since we used this property to show the vanishing of the contact
invariant for overtwisted structures we felt it should at least be explained why it is
true.

As we mentioned at the beginning of the paper, the Floer homology groups are
graded by the homotopy classes of oriented 2-plane fields. Now we will give a more
precise statement [32, section 28.2].

Let Y be a closed oriented 3 manifold with a spin-c structure s. After making a
choice of metric and suitable perturbations, we can assign to each critical point [a]

a homotopy class of non-vanishing sections Φ0 as follows.
Fix a compact manifold X with oriented boundary Y carrying a spin-c structure

sX extending s. Consider the solutions on X∗ which are asymptotic to [a]. Pick a
component z and consider grz(X, sX , [a]), which is the dimension of Mz(X

∗, sX , [a])

if the moduli space is non-empty and regular. Choose a section Φ0 of S = S+ |Y
such that the relative Euler class satisfies

e(S+, Φ0)[X, ∂X] = grz(X, sX ; [a])

Proposition 28.2.2 in [32] shows that the isomorphism class of (S, Φ0) is, up to homo-
topy of Φ0 , independent of X and depends only on Y, s, [a]. Using Lemma 28.1.1 in
[32] such isomorphism class gives an oriented plane plane field ξ. Moreover, such an
element can be regarded by Lemma 28.2.1 as defining an element in Z/(dZ) , where
d is the divisibilityof c1(s). Recall that if s is torsion then the divisibility is 0 by
definition. If it is not torsion, d(s) = g.c.d{〈c1(s), σ〉 | σ ∈ H2(Y,Z)}.

In order to show that the grading of the contact invariant [ψ̌Y,ξ] is represented by
the homotopy class of ξ we need the following version of the excision theorem [41,
section 5.3]:

Proposition 45. Let A1, B1, A2, B2 be (not necessarily compact) oriented 4 mani-
folds such that ∂A1 = ∂A2 = Y and ∂B1 = ∂B2 = −Y where Y is a compact oriented
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3 manifold. Let operators

D1 : L2(A1 ∪B1)→ L2(A1 ∪B1)

D2 : L2(A2 ∪B2)→ L2(A2 ∪B2)

be (unbounded) Fredholm differential operators such that D1 = D2 on Y . Suppose
that

D̄1 : L2(A1 ∪B2)→ L2(A1 ∪B2)

D̄2 : L2(A2 ∪B1)→ L2(A2 ∪B1)

be defined as

D̄1 =

D1 on A1

D2 on B2

D̄2 =

D2 on A2

D1 on A1

are (unbounded) Fredholm differential operators. Then

indD1 + indD2 = indD̄1 + indD̄2

Theorem 46. Suppose that Y is a closed oriented 3 manifold with contact structure
ξ. Let d = div(c1(sξ)). If the critical point [a] makes a non-trivial contribution to
the contact invariant c(ξ), that is, for some z we have mz(Z

+
Y,ξ, s, [a]) 6= 0, then the

element in Z/dZ determined by the homotopy class of oriented plane field ξ[a] defined
by [a] is the same as the element in Z/dZ determined by the homotopy class of the
oriented plane field defined by ξ.

Proof. Recall that if mz(Z
+
Y,ξ, s, [a]) 6= 0 then the moduli spaceMz(Z

+
Y,ξ, s, [a]) must

be 0 dimensional. At the same time, this is the index of a certain operator D1 defined
on the manifold (

R+ ×−Y
)︸ ︷︷ ︸

A1

∪ ([1,∞)× Y )︸ ︷︷ ︸
B1

On the other hand, ξ[a] is determined by choosing a pair (X, sX) together with a
section Φ[a] of S = S+ |Y satisfying

e(S+, Φ[a])[X, ∂X] = grz(X, sX ; [a])
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where grz(X, sX ; [a]) is the index of an operator D2 defined on

X︸︷︷︸
A2

∪
(
R+ × Y

)︸ ︷︷ ︸
B2

By the excision principle,

(64) indD1 + indD2 = indD̄1 + indD̄2

where D̄1,D̄2 are defined on the manifolds

D̄1 : (R+ ×−Y ) ∪ (R+ × Y ) ' R× Y

D̄2 : X ∪ [1,∞)× Y

By hypothesis
indD1 = dimMz(Z

+
Y,ξ, s, [a]) = 0

Also, by theorem 3.3 in [31]

indD̄2 = e(S+, Φξ)[X, ∂X]

where Φξ is the section defined by the contact structure ξ. By lemma 14.4.6 in [32],

indD̄1 = grzu([a], sξ, [a]) = ([u] ∪ c1(S))[Y ]

where [u] denotes the homotopy class of u : Y → S1 corresponding to the loop zµ.
Therefore 64 becomes

e(S+, Φ[a])[X, ∂X] = ([u] ∪ c1(S))[Y ] + e(S+, Φξ)[X, ∂X]

The statement now follows once we reduce the last equation mod div(c1(sξ)). �

7.2 Non vanishing of the Contact Invariant for (S3, ξtight). We also quickly
mention a proof that c(ξtight) 6= 0, that is, the contact invariant of the 3-sphere for
the unique tight contact structure is non-zero. One basically copies the idea behind
the proof of Proposition 6.8 in [30], so we will just remind the reader what this
consisted of. Clearly there is an exact filling of (S3, ξtight), which is the four ball with
the standard symplectic structure (B4, ωstd).

We can equip B4 with a metric with positive scalar curvature containing a collar
region [0, 1] × S3 in which the metric is cylindrical and Y = S3 is given the round
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metric, we let [B0, 0] ∈ B(S3, s0) be the unique critical point for the unperturbed
three dimensional Seiberg-Witten equations [32, eq 4.4]. We can choose a perturba-
tion so that there is still a unique critical point [β] = [B, 0] and the perturbed Dirac
operator has simple spectrum. We can label the eigenvalues in increasing order as λi,
with λ0 the first positive eigenvalue and the corresponding critical point in Bσk (S3, s0)

as [bi]. Then from lemma 27.4.2 in [32] we conclude that

nz((B
4)∗, [bi]) = 0 unless [bi] = [b−1]

Moreover, since B4 has only one spin-c structure and M(B4, [b−1]) has only one
component [32, section 24.4] we deduce that

n(B4, [b]) =

1 if [b] = [b−1]

0 otherwise

In the case of the sphere S3 the Floer groups are isomorphic to the chain groups [32,
section 22.7] so it makes sense to define the relative invariant [ϕ̂B4 ] ∈ ĤM•(S

3) as

[ϕ̂B4 ] = [b−1]

Now, we can also have considered attaching a conical end to B4 which produces the
numerical Seiberg-Witten invariants SW(B4,ξtight) : Spinc(B4, ξtight) → Z explained
at the beginning of the paper. In fact, there is only one relative spin-c structure in
the domain of the previous map and since we are dealing with a filling of (S3, ξtight)

Theorem 1.1 in [31] says that this invariant is identically one.
At the same time, we can consider insering a neck of length L between the four

ball and the cone

B+
S3,ξ(L) = B4 ∪

(
[0, L]× S3

)
∪
(
[1,∞)× S3

)
and considering the parameterized moduli space

⋃
L∈[0,∞]{L} ×M+(B+

S3,ξ(L)) [here
B+
S3,ξ(∞) = (B4 ∪R+×S3)∪ (R+×−S3 ∪ [1,∞)×S3)] the usual count tells us that∑

s∈Spinc(B4,ξtight)

SW(B4,ξtight)(s) = 〈ω̌c(ξtight), [ϕ̂B4 ]〉
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where ω̌ : HM•

∧

(−S3) → ĤM
•
(S3) is the map described in section 3.1 of [32]. The

left hand side is identically one, which means that c(ξtight) had to be non-vanishing.
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