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Abstract

We studied the problem of designing intervention strategies (e.g. vaccinations),

under budget constraints, to minimize the spread of an epidemic outbreak. This

is a challenging stochastic optimization problem in the context of the SIR epi-

demic model on a network. Previous approaches for this problem were either

heuristics or approximation algorithms for restricted settings (e.g., transmission

probability p = 1). We developed a bicriteria approximation algorithm, called

SaaRound, for the EpiControl problem, using techniques from stochastic op-

timization. Our algorithm provides empirical guarantees for solution quality in

graphs of moderate size. We empirically evaluated our approach on various net-

works such as synthetic agent-based populations, random, and real-world collab-

oration networks. Our algorithm outperformed standard baseline heuristics (e.g.,

remove nodes with a high degree). Also, we showed that our approach obtained

near-optimal interventions in practice.

The main bottleneck of the SaaRound algorithm is using a solver to obtain

a fractional optimal solution for the LP relaxation of the EpiControl problem. To

overcome this bottleneck, we developed an approximation algorithm, adapting the

Multiplicative Weights Update (MWU) method and the SAA technique, such that

it bypasses the need to use a solver, to approximately solve the LP. We provided

a memory-efficient version of this algorithm to scale this approach further, which

allowed scaling to very large networks corresponding to state- and country-level

populations.
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Further, we considered a version of the EpiControl problem, where the

sources might not be known precisely. In such a setting, a min-max objective,

where the goal is to minimize the maximum expected outbreak size in any possible

scenario, gives a more robust solution compared to the interventions considered

for a single scenario. We developed rigorous approximation algorithms for this

problem and evaluated its performance on different random graphs.

Finally, we considered the problem of extending our approach to control prob-

lems in other epidemic models that follow SIR class dynamics (e.g., SEI, SI). To

this end, we developed a simple framework to extend our approach to such models.

Particularly, we focused on the problem of designing group-scale interventions,

to control the spread of invasive alien species (IAS), that affect crops, across a

landscape. Our goal was to find a set of regions to intervene, satisfying budget

constraints, such that the spread of IAS is minimized. We developed a bicri-

teria approximation algorithm for finding effective group-scale interventions for

this problem and showed its performance guarantees. Further, we evaluated our

algorithm on real-world networks and compared it with standard baselines.
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Chapter 1

Introduction

1.1 Motivation

Infectious diseases are responsible for millions of deaths and make many more

people disabled each year, according to the World Health Organization (WHO)

[72]. An epidemic outbreak is said to be a sudden rise in the number of cases of

a disease-related illness within a community, population, or region. A pandemic

is an epidemic that is widespread over multiple countries or even continents.

An epidemic can also lead to potential economic and social crises [100]. The

ongoing COVID-19 pandemic only reinforced the need for studying computational

problems such as modeling the epidemics, analyzing the spatio-temporal spread of

an epidemic, and designing interventions, such as vaccinations, social distancing,

and quarantining, to contain an outbreak.

During any large epidemic outbreak, public health agencies solve a variety of

mathematical models to prepare guidelines and measures needed to contain the

epidemic. These mathematical models can be broadly classified into (i) differ-

ential equation-based, and (ii) network or agent-based models. The differential

equation-based models involve using a system of coupled differential equations to

represent the dynamics [62, 95]. Typically, these models do not have any closed-
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Chapter 1 Introduction

form solutions. However, when the system is small, they can be solved by brute

force local search methods [62]. The second is stochastic agent-based models on

social contact networks [27, 39, 59]. In these models, the complete mixing as-

sumptions of differential equation models can be relaxed. These models are com-

plex and more useful for modeling epidemics on large heterogeneous populations.

These mathematical models are used extensively in studying the trade-off between

the cost of interventions and the benefit of interventions (e.g., the number of peo-

ple saved from infections). For instance, the CDC COVID-19 Scenario Hub [15,94]

uses a variety of such models, both deterministic differential equations-based

models [2, 62] and stochastic network-based models [17, 27, 35, 39, 59] in order to

evaluate the benefits of different interventions, and finds the most effective ones.

Interventions such as quarantining infected individuals, closing schools, en-

couraging work from home, avoiding social gatherings, can help in controlling

the epidemic, by reducing the transmissibility of the disease [22]. Vaccination

and social distancing are the primary strategies for controlling the spread of epi-

demic outbreaks [6,39,57,62,71,77–79,98,103,104]. The production of vaccines

is expensive and time-intensive. Therefore, there is always a shortage of vaccine

supply. This makes the task of allocating vaccines under budget constraints very

challenging.

Some of the objectives of interest in vaccine allocation are to minimize the

expected outbreak size [14, 24], reduce the duration of the epidemic, lower the

size of the peak, etc. The objective to lower the peak of the epidemic curve (i.e.,

a chart used to visualize the progression of an outbreak over time) is useful in

cases, where the critical resources needed for patient care — such as hospital

beds, ventilators, personal protective equipment (PPE), and so on — are scarce

[13, 60, 64, 96]. However, this is a hard problem. The focus of this dissertation

is designing interventions strategies intending to minimize the expected outbreak

size.
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Chapter 1 Introduction

At the start of every flu outbreak or during major pandemics, public health

agencies seek to find implementable interventions to contain the outbreaks.There

could be interventions that are effective, but might not be implementable, due to

social and ethical issues [21, 47,69]. For instance, targeted interventions, such as

immunizing specific individuals, are not practical as they raise moral and social

issues. Several implementation strategies [40,58] are used to improve the adoption

of interventions in a population.

Implementable strategies such as prioritizing immunization for people belong-

ing to a particular age group [44] are typically used by public health agencies.

Such strategies tend to be useful in the case of epidemics, where the risk of severe

illness or death increases with the age of an individual [44]. These strategies are

sub-optimal compared to targeted ones. Therefore, comparison with near-optimal

strategies can help public health agencies to understand the cost incurred by the

issues arising due to implementability [62]. As a result, there is a lot of interest

in evaluating different kinds of interventions strategies [39,57,62,95], and finding

optimal interventions [62]. Such studies are useful in guiding policies, when there

are shortages in vaccines, for instance, to decide the logistics of where and how

the vaccines should be deployed [95].

1.2 Overview: Problems and Results

We consider the networked Susceptible-Infectious-Recovered (SIR) class models

[59, 73] of disease spread for most of this dissertation. Assume we are given a

social contact network, where nodes in the network represent people, and edges

between any two nodes represent a connection over which an infection can be

transmitted.

Interventions such as vaccinations and social distancing can be modeled as

node removal and edge removal from the network, respectively. Figure 1.1 shows
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Chapter 1 Introduction

Figure 1.1: Types of interventions in the network-based epidemic models.

the node and edge removal interventions in the network-based epidemic models.

The nodes in red correspond to infected people. The vaccinated nodes (or the

nodes removed from the network) are represented in gray color. Note that, for

each node that is removed, all the edges incident on it are removed as well. The

node removal intervention models the assumption that a node, once vaccinated,

will not get infected during the epidemic; consequently, it will not infect any

of its neighbors. Whereas, in the case of edge removal (e.g. social distancing or

quarantining), a person might avoid some contacts to reduce their risk of infection.

But, they can still get the infection from the remaining active contacts.

This dissertation focuses on vaccination or node removal interventions. The goal

is to find a subset of nodes in the network to remove (i.e., vaccinate), such that

the expected epidemic outbreak size is minimized. In one chapter (Chapter 6) of

this dissertation, we focus on group interventions, where a group represents a set

of nodes. Intervening a group corresponds to removing all the nodes in the group

from the contact network.
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The contributions of this dissertation are approximation algorithms to find opti-

mal intervention strategies in order to control epidemic spread. We designed our

algorithms using techniques such as the sample average approximation (SAA)

[54,91] from stochastic optimization, linear programming and rounding [99], and

multiplicative weights update (MWU) method [4]. We showed theoretical guaran-

tees on the performance of these algorithms. Further, we evaluated the empirical

performance of these algorithms on various networks.

The specific problems considered in this dissertation, the challenges they pose,

and our contributions are presented in the rest of this section.

1.2.1 Algorithms to Minimize Expected Outbreak Size

Let us assume that we are given a contact network G = (V,E), where V is the set

of nodes (or people), and they are connected by an edge in E if they come into

contact with each other. We assume a stochastic discrete-time SIR model on the

contact network [59] for the epidemic spread, which can be summarized as follows:

(i) each node in the network is in one of the following three states: Susceptible

(S), Infectious (I), or Recovered (R), (ii) initially a small subset S ⊆ V of nodes

are infected, (iii) an infected node can infect each of its susceptible neighbors

with probability p, referred to as transmission probability, and (iv) each infected

node remains infected for tI > 0 time steps and then moves to the recovered (R)

state.

Problem 1: EpiControl. Given a contact network G = (V,E), sources of

infection S (or source distribution), transmission probability p, and a budget B

on number of interventions. The goal is to find a subset X ⊆ V of nodes in G

to vaccinate, satisfying the given budget B on number of vaccines, such that the

expected number of infections resulting from the SIR process is minimized.

We consider non-adaptive interventions; i.e., all interventions are performed at
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Chapter 1 Introduction

the beginning of the epidemic denoted by time t = 0. We assume that the vac-

cinations are immediately effective and have 100% efficacy. These assumptions,

although not realistic, help to study this problem in a formal manner and achieve

reasonable guarantees. The real problem of controlling epidemics is very complex

with a lot of uncertainties. However, studying the solution characteristics of the

nodes picked in the optimal solution can help identify “surrogates” for interven-

tions in designing implementable strategies. Furthermore, the implementable in-

terventions strategies available to public health agencies can be evaluated against

the optimal solution. A precise formulation of the EpiControl problem is pre-

sented in Chapter 2.

Hardness of the EpiControl problem. The problem involves finding a subset

of nodes from the network that optimizes a stochastic objective function (i.e.,

expected number of infections in G resulting from the SIR process). This is a

very challenging stochastic optimization problem. This problem is NP-Hard,

even for the case with transmission probability p = 1, shown in Hayrapetyan et

al. 2005 [41]. The case with transmission probability p = 1 corresponds to a

highly transmissible disease, where an infected node infects all of its susceptible

neighbors, making this process deterministic. In this setting, it follows that any

node that is reachable from the seed infected nodes (i.e., sources) will be infected.

Therefore, all nodes in a component that have at least one seed node will be

infected in the epidemic.

Previous approaches to this problem can be classified as follows:

(i) Heuristics: Many heuristics have been proposed based on local structure

such as degree (selecting nodes with high degrees for vaccination), centrality, etc.

These heuristics perform reasonably well in practice. However, they provide no

guarantees for the objective of minimizing the expected number of infections in

an epidemic.

(ii) Optimization of spectral properties: A fundamental result in epidemic
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modeling is the characterization of an outbreak in terms of the spectral prop-

erties such as the first eigenvalue λ1 of the adjacency matrix (also called the

spectral radius) of the network, and the eigenvalues of the Laplacian [32, 76]. A

property of spectral radius is that, the epidemic dies out if λ1 is reduced to a

value below a certain threshold (referred to as epidemic threshold). This result

is used as a basis in many works to control the spread of epidemics [76–79, 81].

However, these methods do not provide any guarantees directly for this problem.

(iii) Algorithms with guarantees: This problem is NP-hard for the case with

p = 1. The problem of designing pure approximation algorithms, for the case of

EpiControl problem with transmission probability p < 1, is still open. Some of

the previous works considered bicriteria approximation algorithms. Before the re-

sults in these works are summarized, a brief description of bicriteria approximate

solutions is as follows.

Let us refer to the set of vaccinated nodes X ⊆ V as an intervention set. An

intervention set is a (α, β)- bicriteria approximate solution for the EpiControl

problem if (i) X is of size at most α times the given budgetB, and (ii) the expected

number of infections resulting from SIR process after removing nodes in X from

contact network is at most β times that resulting from SIR process after removing

nodes in X∗, where X∗ is an optimal solution for the EpiControl instance. A

formal definition of bicriteria approximate solution appears in Chapter 2. As

the problem is NP-hard even for the case with p = 1, earlier works such as

Hayrapetyan et al. [41] and Eubank et al. [28], provide bicriteria approximation

algorithms.

Our focus was to design intervention algorithms that obtain good approximation

guarantees on both the criteria of EpiControl problem: objective (expected

number of infections) and budget. More importantly, to obtain empirical approx-

imation factors for the given problem instance. This is very useful to evaluate

the performance of other standard interventions strategies (e.g. degree) deployed
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by public health agencies [17].

Our contributions to this problem are briefly described below. Since the problem

is NP-hard even for the case with p = 1, and pure approximations are still open,

we too considered designing bicriteria approximation algorithms.

saaRound Algorithm. [83] We first designed a bicriteria approximation algo-

rithm for the EpiControl problem using the sample average approximation

(SAA) technique [54, 85, 86] from stochastic optimization, linear programming

and rounding techniques.

The main idea of this algorithm is to generate M sampled outcomes of the SIR

process for a sufficiently large value of M . Then, solve a deterministic problem

on the M samples, which involves finding a solution (i.e., subset X ⊆ V of

nodes to vaccinate) that minimizes the average number of infections in these M

sampled outcomes. This problem is very hard to solve with efficient algorithms.

To see this, consider the case with p = 1, there is only one unique sample since

the process is deterministic. The resulting version of the problem is NP-hard

[41]. Therefore, we considered linear program (LP) relaxation of the problem.

However, the optimal solution to the LP relaxation is a fractional solution. We

designed a randomized rounding procedure to obtain an intervention set from

this optimal fractional solution. We showed in our analysis that the intervention

set thus obtained has bicriteria approximation guarantees for the EpiControl

problem instance.

Scalable Algorithms. In recent works, agent-based models on larger popula-

tions are used, for instance, Chen at al. [17], to study a model for Virginia in the

United States. They considered a degree-based strategy for interventions. Also,

the state and the national-level agent-based models are also used in the CDC

modeling hub [15]. This motivates scaling the saaRound approach to state- and

country-level populations.

However, the saaRound algorithm only scales up to networks with 105 nodes,

23



Chapter 1 Introduction

typically the size of a county in the United States. The main bottleneck of

this approach is that it uses LP solvers for the linear program relaxation of the

problem.

We designed fast and scalable algorithms, by adapting the MWU method [4],

to approximately solve the LP relaxation of the EpiControl problem. The

Multiplicative Weights Update method maintains a distribution over a set of

values and then iteratively updates these weights based on a multiplicative update

rule [5]. This approach is well studied and used in various fields and for various

problems [31,75]. In our approach, which is an adaptation of Fleischer, 2000 [30],

the variables are initialized with small values and are updated in each iteration,

based on certain criteria, until all the constraints of our problem are satisfied.

Our main contributions to EpiControl problem can be summarized as follows:

• We designed saaRound algorithm for the EpiControl problem. We

showed that it obtains (O(log(nN)), 6)-bicriteria approximate solutions

for the problem with high probability. Here, n is the number of nodes in

the contact network and N is the maximum number of paths from a source

to any node in any sampled outcome. We note that in the worst-case, the

guarantees for the budget criteria can be O(n). However, the empirical

approximation factor for budget is a very small value in practice.

• saaRound provides the empirical approximation factor for the problem

instance, relative to an optimum.

• We performed a detailed experimental evaluation of saaRound algorithm

on various real-world, random, and synthetic population networks. Our

results showed that saaRound algorithm has near-optimal performance

in practice. It significantly outperformed the standard baselines for this

problem.
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• We designed a scalable algorithm, referred to as MwuRound, using the

MWU method with SAA technique and randomized rounding. We showed

that this algorithm provides (O(log(nN)), 6(1+4ε))- bicriteria approximate

solution for the EpiControl, where ε is an error parameter.

• We showed that MwuRound algorithm has near-optimal guarantees for

EpiControl problem, similar to that of saaRound algorithm, in prac-

tice. Furthermore, we showed that MwuRound algorithm is able to run for

large networks with millions of nodes without any memory issues. However,

this algorithm is slow on large networks.

• Finally, we designed a fast, scalable, and memory-efficient version of

MwuRound algorithm, which obtains a feasible solution to the problem.

We showed that this algorithm scales well to large networks correspond-

ing to country-size populations. More importantly, we showed that this

algorithm has good performance guarantees in practice.

1.2.2 Robust Intervention Algorithms

The EpiControl problem assumes that the source set or their distribution, and

the transmission probability p are known. However, many components of the

SIR epidemic model, such as transmission probability, p, source distribution, or

seed source set, might not be known precisely. The seed source set (or the source

distribution) are called the initial conditions of an epidemic. In such settings,

where the initial conditions are not known precisely, a min-max type objective,

where the goal is to minimize the maximum expected number of infections in

any given scenario, is more suitable than tailoring the interventions to a single

scenario. The use of a min-max objective to handle uncertainty is well motivated

and has a solid foundation in the field of stochastic optimization [42,87].

Problem 2: MinMaxEpiControl. Given a contact network G, a set I of
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possible scenarios, where each scenario corresponds to a different set of sources.

Let budget B denote the number of available vaccinations. The goal is to find a

subset X ⊆ V of nodes in G to vaccinate, satisfying the given budget B, such that

the maximum expected number of infections resulting from any scenario from I

is minimized.

Summary of contributions [84] related to MinMaxEpiControl are as follows:

• We formalized the MinMaxEpiControl problem, to design robust in-

terventions, in the case where the initial conditions of an epidemic are

unknown.

• We designed an approximation algorithm called mmRound and showed its

performance guarantees. For the version of MinMaxEpiControl prob-

lem with p < 1, we adapted the SAA and LP rourounding based approach

used in saaRound algorithm. Specifically, for the case with transmission

probability p = 1, mmRound algorithm was modified to use a graph sepa-

rator subroutine, which gave a better approximation factor (logarithmic in

the number of nodes) on the budget than shown for the p < 1 case.

• Empirically, we showed that the solutions to the min-max objective, are

very different from those picked for a specific source distribution.

1.2.3 Extensions to Other Epidemic Models

As discussed in the previous sections, the problem of designing intervention strate-

gies, under budget constraints, is challenging even for a simple SIR epidemic

model. The two problems considered so far make a lot of assumptions that sim-

plify the epidemic model. However, in reality, epidemic processes tend to be very

complex. So, the questions that arise are: (i) Can we adapt our saaRound ap-

proach to any other model in the SIR class dynamics (e.g. Susceptible-Infectious-
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Exposed (SEI))? (ii) Is it possible to apply our techniques to epidemic control

problems that assume complex epidemic models that follow SIR class dynamics?

These questions led us to consider the problem of designing interventions to con-

trol the spread of invasive alien species (IAS) (e.g., Tuta absoluta [10]) across

a landscape. McNitt et al. [61] modeled the IAS spread as a multi-scale epi-

demiological process named MultiPath, whose dynamics follow a discrete-time

Susceptible-Exposed-Infectious (SEI) [59] process. The study region can be rep-

resented by a spatial network, where the nodes correspond to cells (i.e., crops).

The network considered in MultiPath model is a directed edge-labeled and edge-

weighted temporal network. Groups correspond to a set of spatially contiguous

cells. Group-scale interventions are more practical for this problem.

The SEI model belongs to the SIR class of dynamics. The key difference in the SEI

model is that, once a node is infected it enters the exposed state E and remains in

that state for a certain period of time before moving to the infectious state I. Only

when it is in the state I, it can infect its susceptible neighbors. The other models

in SIR class dynamics include Susceptible-Infectious (SI), Susceptible-Infectious-

Susceptible (SIS), and Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic

models [26, 59].

Problem 3: IAScontrol problem. The goal is to find a subset of regions (or

groups) to intervene, under budget constraints, such that the expected number of

nodes infected1 at a time horizon T due to SEI process is minimized.

The steady-state for an SEI process is when all the nodes reachable from source

infections are exposed. Therefore, this problem is meaningful only in a setting

with a finite time horizon T . A formal description of IAScontrol problem

appears in Chapter 2. A summary of our contributions related to this problem

and extensions to other models is presented below.

1The formal definition of this problem considers the objective of minimizing expected number
of nodes exposed at time horizon T , since the nodes exposed at time-step T will eventually get
infected
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• We showed that the MultiPath epidemic for a finite time horizon can be

reduced to an SIR process on the corresponding time-expanded network.

• We showed that the IAScontrol problem is NP-complete even when G

is a tree. Further, we showed that a variation of this problem where the

goal is to minimize the cost of the interventions to ensure that the expected

number of infections is bounded is very hard to approximate.

• We designed a bicriteria approximation algorithm SpreadBlocking for

the IAScontrol problem and showed guarantees on its performance.

• We studied the performance of SpreadBlocking on real-world networks

and note that its performance is superior to the baselines for this prob-

lem. Further, we showed that SpreadBlocking has good performance

guarantees in practice.

• We presented a framework to extend our saaRound approach to other

complex epidemic models that follow SIR-class dynamics.

1.2.4 Summary and Takeaways

The work in this dissertation broadly focuses on controlling SIR class epidemics

on networks. These are hard problems, as they involve selecting a subset of nodes

from the network to optimize a stochastic objective function. Our research shows

the following.

(i) SAA+LP+Rounding: The sample average approximation (SAA) tech-

nique, along with LP and rounding, is very useful in designing algorithms that

provide reasonable guarantees for such problems. Particularly, using the SAA

technique reduces the problem from a stochastic optimization to a determinis-

tic one on samples. Then, the LP and rounding techniques are used to solve

the deterministic problem on samples. More importantly, we note that these
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algorithms are capable of obtaining near-optimal solutions in practice. A key

limitation of this approach is scalability, as solving the LP exactly using a solver,

is a bottleneck.

(ii) SAA+MWU+Rounding: The SAA technique combined with the MWU

method and rounding, aids in designing scalable algorithms for such stochastic

optimization problems. The MWU method allows to approximately solve the LP

without losing much of the guarantees. Therefore, this combination of techniques

overcomes the limitations of SAA+LP based approach.

(iii) Framework for other epidemic models: Our approach can be ex-

tended to control problems in complex epidemic models (e.g. MultiPath),

whose dynamics follow SIR class models, using a simple framework (Chapter

6):

(Step 1.) Represent the dynamics of the complex epidemic model on a given

network as a SIR process on an auxiliary network. This can be achieved, for

certain models, by the notion of auxiliary graphs such as time-expanded networks.

(Step 2.) Solve the problem of the designing optimal interventions corre-

sponding to the SIR process on the auxiliary graph, which is generated in Step

1. Adapt the saaRound or MwuRound approach to solve this problem.

1.3 Thesis Organization

The organization of the dissertation is as follows:

Chapter 2 introduces the necessary notations and preliminaries to formally

define each problem considered in this dissertation. The rest of this chapter pro-

vides a brief background on the material needed to understand this dissertation.

Chapter 3 presents an overview of the literature related to the works in this

dissertation. In particular, it gives an overview related to different mathemat-

ical models considered for the intervention problems, and the related work on

29



Chapter 1 Introduction

designing interventions for each of these models.

Chapter 4 presents the intuition behind the saaRound algorithm and its

analysis. Next, it presents an experimental evaluation of the empirical perfor-

mance of saaRound algorithm, and the characteristics of the solutions obtained

by it.

Chapter 5 presents the mmRound algorithm and the extensions of this ap-

proach to p < 1 and the case of random sources. Chapter 5 ends with experi-

mental results on random graphs.

Chapter 6 presents extensions of the saaRound approach to other epidemic

models that follow SIR class dynamics. First, it presents an approximation al-

gorithm for the IAScontrol problem, designed by adapting the saaRound

approach, and performance guarantees. Next, it presents an experimental evalu-

ation of this algorithm on real-world networks and a comparison to standard base-

lines. Further, this chapter also presents a framework to extend our saaRound

approach to other epidemic models based on the ideas used to solve IAScontrol

problem.

Chapter 7 presents MwuRound algorithm, which overcomes the bottleneck

in saaRound, for EpiControl problem. This chapter presents the performance

guarantees of this algorithm. Further, a memory-efficient and scalable version of

this algorithm is presented. Chapter 7 ends with an experimental evaluation of

these algorithms.

Chapter 8 provides the conclusions and a short list of open questions.
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Chapter 2

Preliminaries and Problem

Statements

In this chapter, we introduce the notation and the formal statements of the prob-

lems considered in this dissertation. Further, necessary background to understand

the material in the following chapters is presented.

2.1 SIR Epidemic Model on Networks

Contact network. Let G = (V,E) be a contact network where V denotes the

set of people (also referred to as nodes) and e = (u, v) ∈ E if nodes u, v ∈ V come

into direct contact, which can allow a disease to spread. Let n = |V | and m = |E|

denote the number of nodes and edges in the contact network G respectively.

Disease model. We assume a simple SIR model of disease spread [59] on net-

works. Each node in the network is in one of the following three states:

(i) Susceptible (S): nodes that are not yet infected but are susceptible to infection,

(ii) Infectious (I): nodes that are infected and can potentially spread the infection

to those that come into contact with them,

(iii) Recovered (R): nodes that were infected and recovered from the infection.
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In some cases, this state may also include deceased individuals, who are removed

from the process.

To simplify the exposition, we assume that the epidemic starts at a set of ex-

ternally infected nodes denoted by S. The set of nodes in S are referred to as

seeds or sources of the infection. We assume discrete-time, where at any time

t ∈ {0, 1, ..., τ}, all the nodes in the network are in one of the three states: S, I,

and R. At the time t = 0, the sources are in state I, and all the other nodes are

in state S. At any time step t > 0, the disease spreads from an infected node u to

each of its susceptible neighbors with a probability p, referred to as transmission

probability. An infected node recovers in the next time step.

The results in this dissertation also hold for the case where each node u has

a probability su to be infected initially. This is denoted as source distribution s.

Necessary modifications to our algorithms, for this case, are presented in sufficient

detail.

The SIR model generalizes the well studied independent cascades model [49].

There are lots of variations of the SIR model, such as:

1. Each edge has a probability p(u, v) for transmission instead of a uniform

probability p for all edges. This makes sense in situations where some contacts

have a high rate (e.g., working in the same place) of spreading the infection.

2. Variable infectious state duration, where a node u remains in state I for

tI(u) time steps.

The SIR class of epidemic models includes (but is not limited to) the following

models:

(i) Susceptible-Infectious (SI): A node once infected, remains in state I

throughout the rest of the process.

(iii) Susceptible-Infectious-Susceptible (SIS): Each infected node returns back

to the susceptible state S after a certain period of time. This models the epidemics

in which reinfections are possible.
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(iii) Susceptible-Exposed-Infectious (SEI): This is similar to SI model with a

key change that an infected node first enters the exposed state E after getting

infected. It stays in that state for a certain period of time before moving to state

I. The length of the period during which an infected node stays in an exposed

state is referred to as the latency period.

(iv) Susceptible-Exposed-Infectious-Recovered (SEIR): This is similar to the

SIR model, except that an infected node first enters the exposed state E after

getting infected. Then, the node stays in state E for a certain period of time after

which it moves to state I.

2.2 EpiControl Problem

First, we present the notation necessary for the EpiControl problem. Then,

we formally define the problem.

A stochastic outcome from SIR process. Given a contact network G =

(V,E), a source set of infections S, and a transmission probability p. Let us denote

a stochastic outcome from the SIR process by H(sir) =< I(0), . . . , I(τ), E ′ >,

where

(a) I(t) denotes the set of nodes that are infected at time t,

(b) I(0) denotes the source nodes; and

(c) E ′ ⊆ E is the random subset of edges on which the infection spread.

The number of infections in a stochastic outcome from the SIR process is denoted

by #infections(G,S, p). This is a random variable. The expected number of

infections in G resulting from the SIR process is given by

E[#infections(G,S, p)] = EH(sir) [
∑
t

|I(t)|] (2.1)

where, the summation on the right hand side of equation (2.1) corresponds to the

total number of infections over all the time steps.
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Interventions and objective.

Let xu for u ∈ V be an indicator variable defined as

xu =


1 if node u is vaccinated

0 otherwise

(2.2)

Then, X = {u : xu = 1, u ∈ V } denotes the set of vaccinated nodes called the

intervention set. Let B denote the number of vaccines available, also referred to

as budget. The budget constraint then is given by |X| ≤ B.

We consider non-adaptive intervention setting, which means that all the interven-

tions are determined ahead of time at the beginning of the epidemic, say t = 0.

Further, we assume that the vaccines have 100% efficacy and are immediately

effective.

We extend the earlier notation, and define H(sir)(X) =< I(0), . . . , I(τ), E ′ > to

be a stochastic outcome from the SIR process when X is the intervention set,

where the interventions performed at t = 0. This would mean that none of the

nodes in X are part of any I(t).

Let #infections(G,S, p,X) denote the number of infections in a stochastic

outcome of SIR process, when X is the intervention set. The expected num-

ber of infections is denoted by E[#infections(G,S, p,X)]. When the context is

clear, we omit G,S, and p from these definitions as follows: #infections(X) and

E[#infections(X)].

Example. Figure 2.1 shows the SIR model and the definitions of above quan-

tities on a contact network, G = (V,E), which is shown on the left. Here,

V = {A,B,C,D,E, F} is a set of people, and connections (or edges) are shown

as solid lines. It is assumed that node A is initially infected; i.e., it is a seed

infected node, and node C is vaccinated. This corresponds to S = {A} and the

intervention set X = {C}. The four possible stochastic outcomes in the SIR
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Figure 2.1: Example illustrating the SIR model and the notation of EpiControl
problem

model, H
(sir)
1 , H

(sir)
2 , H

(sir)
3 , and H

(sir)
4 are shown on the right.

Recall that, in the SIR model, the disease spreads from an infected node to

each of its susceptible neighbors with probability p, and the infection does not

spread with probability 1− p.

Therefore, we have exactly four possible stochastic outcomes in this case,

H
(sir)
1 , H

(sir)
2 , H

(sir)
3 and H

(sir)
4 , each of which occur with probabilities 1−p, p(1−

p), p2(1 − p), and p3, respectively. Then, the expected number of infections is

given by the following equation.

E[#infections(X)] = 1 · (1− p) + 2 · p(1− p) + 3 · p2(1− p) + 4 · p3

We have set up all the necessary notation to define the EpiControl problem.

Now, a formal definition of the problem is as follows:

Definition 1. EpiControl problem.

Instance. Given a contact network G = (V,E), sources of infection S, transmis-

sion probability p, and a budget B on the number of interventions.

Goal. To find an intervention set X ⊆ V such that |X| ≤ B and the expected
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number of infections E[#infections(G,S, p,X)] is minimized.

Note. Our results (in Chapters 4 and 7) extend to the case of random sources

with a source distribution s, where each node u has a probability su to be a seed

infection.

Most of the algorithms in this dissertation provide bicriteria approximation guar-

antees, i.e., guarantees on both the expected number of infections objective and

the violation of budget. So, we formally define a bicriteria approximate solution

(and algorithm) for the EpiControl problem. This definition can be gener-

alized to any optimization problem including the MinMaxEpiControl and

IAScontrol problems.

Definition 2. Bicriteria approximate solution for EpiControl problem.

We refer to an intervention set X as a (α, β) - approximate solution for a given

instance of the EpiControl problem if:

(1) |X| ≤ αB, and

(2) E[#infections(X)] ≤ β E[#infections(X∗)], where X∗ is an optimal solution

for the instance of EpiControl problem.

We say that an algorithm is a (α, β)-approximation algorithm for the EpiCon-

trol problem, if it gives an (α, β)-approximate solution for any instance of the

problem.

2.3 MinMaxEpiControl

We assume a networked SIR model (described in Section 2.1). The disease spread

depends crucially on the initial conditions (i.e., sources). Let S denote the set of

nodes at which the outbreak starts; this could be an arbitrary subset of nodes,

or could also be a distribution (e.g., uniform, or degree biased).
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Let I indicate a set of scenarios corresponding to different initial conditions.

This models the setting in which any one of these scenarios is possible, but we

don’t precisely know which. Our goal is to find a solution that works well for

all of them. We will generally assume each S ∈ I corresponds to a small set of

deterministic or probabilistically chosen subset of nodes.

Figure 2.2 shows two different scenarios, each with a different source set of in-

fections. The contact network G = (V,E) is shown on the left, where V =

{a, b, c, d, e} represents nodes and are shown in circles. The connections or edges

are shown as solid lines. In the first scenario (top), node a is initially infected (i.e.,

S = {a}), and node b is vaccinated. The five subgraphs O1, O2, O3, O4, O5, shown

on the top-right, are possible stochastic outcomes in the SIR model. The prob-

ability of occurrence for each of these outcomes is indicated below the outcome.

This scenario is the same as the one shown in Figure 2.1. In the second scenario

(bottom), node c is initially infected (i.e., S = {c}), and node b is vaccinated. In

this case, there are eight outcomes Q1, . . . , Q8.

Interventions. We assume that the vaccine is perfect (i.e., 100% efficacy). This

means that a vaccinated node does not get infected. We will first consider the one-

stage vaccination strategy, which involves picking a set of nodes X to vaccinate

at the start of the outbreak. Let B denote the budget for the number of vaccines

available.

We will also consider a two-stage intervention problem, where vaccines are

allocated in two stages: (i) at the beginning, t = 0 and (ii) at time t = T . Let

the sets X0 and XT denote the nodes picked for vaccination at t = 0 and t = T ,

respectively. The sets X0 and XT will be referred to as intervention sets at times

0 and T , respectively.

Objective. Let numinf(G,S, p,X) denote the number of infections in G, in a

stochastic outcome from SIR process, when the outbreak starts at S ∈ I, and X

denotes the interventions. Notice that, we use a different notation for the number
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Figure 2.2: SIR outcomes for two different scenarios.

of infections in the SIR process, in the case of this problem instead of the one

used for the EpiControl problem. This is done deliberately to distinguish the

assumption made in this problem: the sources (or source distribution) are not

fixed.

Let E[numinf(G,S, p,X)] denote the expected number of infections in G when

the outbreak starts at S ∈ I. We omit G and p from this notation when the

context is clear.

Example. Figures 2.2 shows two scenarios, one with node a as the source, and

the other with node c as the source. The set X = {b} denotes the intervention

set.
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Then, the expected number of infections in the first scenario is given by

E[numinf(S = {a}, X = {b}]) = 1 · (1− p) + 2 · p(1− p)2 + 3 · 2p2(1− p) + 4 · p3

On the other hand, when S = {c} (as shown in the bottom scenario in Figure

2.2), the expected number of infections is given by the following equation.

E[numinf(S = {c}, X = {b}]) = 1 · (1− p)3 + 2 · 3p(1− p)2 + 3 · 3p2(1− p) + 4 · p3

The problem of designing robust interventions for a set of scenarios I is formally

defined below.

Definition 3. Min-Max vaccination problem (MinMaxEpiControl).

Instance. Given a contact network G = (V,E), a set I of possible scenarios where

each scenario S ∈ I corresponds to a set of initial sources of infection, and budget

B on the vaccines

Goal. To find a set X of nodes to vaccinate such that maxS∈I E[numinf(S,X)] is

minimized, and |X| ≤ B.

2.4 IAScontrol problem

In this section, we introduce the problem of controlling the spread of invasive

alien species (e.g. pests) using group-scale interventions.

The MultiPath model for IAS spread. We will briefly describe the model

developed in McNitt et al. [61], referred to as the MultiPath model. For a

detailed description of this model, we refer to [61,90].

The region of interest is divided into cells (e.g. crops). The cells represent

the nodes in a spatial network G = (V,E). A group of spatially contiguous nodes
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(e.g., localities) represent the regions of major supply of host crops and demand.

Many nodes in this spatial network do not belong to any locality.

We consider group-scale interventions, where an intervention corresponds to

removing all the nodes in the group, selected for intervention, from the network.

Nodes that do not belong to any group (or locality) are not candidates for group-

scale interventions.

Let Q be a collection of k disjoint subsets of the vertex set V , where each

subset represents a group. Let g(v) ∈ Q denote the group to which node v

belongs.

This model considers three pathways of spread:

(i) Self-mediated dispersal: This represents the diffusion from a crop (or cell)

to its neighboring crops.

(ii) Local human-mediated dispersal: This represents the diffusion within a

group, such as farmer-market interactions.

(iii) Long-distance dispersal: This represents the diffusion from cells of one

group to those in another group, typically via trade.

The diffusion model is a discrete-time SEI process. A node transitions from

exposed state E to infectious state I after ` time steps, where ` is the latency

period.

The transition from S to E is described as follows. A node has two periodic time-

varying attributes called (i) suitability ε(v, t) for the pest (IAS) establishment

and (ii) infectivity ρ(v, t).

The probability that a node can be infected through a pathway is modeled

as a negative exponential function of infectivity and pathway parameters. These

probabilities are modeled as edge weights between the two nodes.

The probability that node v is infected by its neighbor v′ within its Moore
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neighborhood (short-distance dispersal) is given by

w(v′, v, λs, t) = ε(v, t)
(
1− exp(−αsρ(v′, t))

)
,

where λs is the edge label corresponding to the pathway and αs is a tunable

pathway parameter.

If the two nodes v and v′ are within a group, the probability of within group

transmission (human-mediated dispersal) from v′ to v is given by

w(v′, v, λ`, t) = ε(v, t)
(
1− exp(−α`ρ(v′, t))

)
,

where λ` is the pathway label and α` is the pathway parameter.

For the group-to-group transmission, a directed flow network is defined with

groups as nodes and the edge weight for the edge from Qi to Qj denoted by Fij.

Suppose g(v) = Qj and g(v′) = Qi, then the probability that v is infected by v′

through this pathway is given by

w(v′, v, λ`d, t) = ε(v, t)
(
1− exp(−α`dFijρ(v′, t))

)
,

where λ`d is the pathway label and α`d is the pathway parameter.

The complete details of network construction are in McNitt et al. [61]. Now, we

present the notation necessary to define our problem.

Notation and Problem Statement. Let G = (V,E) be a temporal edge-

weighted and edge-labeled directed graph. Let the weight of an edge (u, v, λ, t) ∈

E at a discrete time step t and label λ be denoted by w(u, v, λ, t). Let s denote

the seed set of infections.

Let Q = {Q1, Q2, · · · , Qk} be a collection of k disjoint subsets of the vertex

set, where each Qj is a group.

Intervening at a group means removing all the nodes in the group. The
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interventions are performed τd time steps after the source is known, so τd is

referred to as intervention delay. The interventions are non-adaptive (as in the

earlier problems). This means that the decision to intervene is not made by

observing the system state at some time step in range [1, τd − 1]. Instead, this

decision is based on the expected state of the system at τd.

Suppose V ′ ⊆ V is the set of nodes intervened at τd, then, let infT(G, s, τd, V
′)

(we can drop G, s, τd when context is clear) denote the expected number of nodes

exposed at a time horizon T due to SEI diffusion with source nodes s when nodes

in V ′ are intervened at time τd.

Note that the steady-state for an SEI process is when all the nodes reach-

able from seed infections s become exposed (and then infected). Therefore, the

intervention problem is relevant only when the time horizon T is finite.

The IAScontrol problem is formally defined as follows.

Definition 4. IAScontrol problem

Instance. Given a temporal edge-weighted and edge-labeled directed pathway

network G(V,E), a partition of the vertex set V into k groups Q with a cost (of

intervention) cq for each Qq ∈ Q, source nodes s ⊆ V , SEI diffusion process on G

with transmission probabilities equal to the edge weights, budget B, intervention

delay τd and time horizon T .

Goal. Find a set of groups Q∗ ⊆ Q to intervene such that
∑

Qq∈Q∗ cq ≤ B and

the expected number of infections infT(G, s, τd, {v | g(v) ∈ Q∗}) is minimized.

In this dissertation, we will primarily focus on the unweighted version of IAS-

control, where cq = 1 for all q ∈ Q.

An alternative form of the problem called IAScontrolMinBudget problem

has a goal to minimize the number of groups intervened such that the expected

number of infections is upper bound by some K. This can be stated as fol-

lows. Given a target bound K on the number of infections, choose Q∗ so that
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infT(G, s, τd, {v | g(v) ∈ Q∗}) ≤ K, and
∑

q∈Q∗ cq is minimized.

We do not provide any algorithms for the IAScontrolMinBudget problem,

but just discuss its hardness.

2.5 Technical Background

Stochastic Optimization. Stochastic Optimization (SO), also known as Stochas-

tic Programming, involves methods to maximize or minimize an objective func-

tion (i.e., making optimal decisions) when randomness is present. We refer to [11]

for interested readers. Sample average approximation (SAA) technique is a stan-

dard and natural approach used to solve stochastic optimization problems [54,91].

The basic idea of SAA is that solving the problem on the samples is enough to

get a “good” solution for the stochastic objective. Therefore, we solve the deter-

ministic problem on the samples to achieve a solution.

Tail Bounds. Analysis of algorithmic guarantees often involves bounding the

probability that a random variable deviates far from its mean. The weakest tail

bounds are Markov’s and Chebyshev’s inequalities [45]. This is because Markov’s

and Chebyshev’s inequality converge linearly and quadratically, respectively. A

much more powerful tail bound referred to as Chernoff bounds [19] are derived

using Markov’s inequality on the moment generating functions of a random vari-

able. An interested reader can refer to [68] for a thorough background in these

concepts.

We use the following version of the Chernoff bound in our analysis (Chapter 4).

Theorem 5. (Theorem 1.1 of [23]) Let Z =
∑n

i=1 Zi, where Zi are independently

distributed random variables in [0, 1]. Then, for any ε ∈ (0, 1), we have Pr[Z 6∈

[(1− ε)E[Z], (1+ ε)E[Z]]] ≤ 2exp(−ε2E[Z]/3). Also, for any t > 2eE[Z], Pr[Z >

t] ≤ 2−t.
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Related Work

There is a huge amount of literature on interventions for epidemic models. First,

we will present background on epidemic models and then discuss related work on

interventions.

3.1 Mathematical Models for Epidemiology

Epidemic outbreaks shaped the course of human history, causing the fall of em-

pires and collapse of civilizations [74]. The Black Death outbreak in Europe in

1348 resulted in over 25 million deaths. The cocoliztli epidemics or The Great

Pestilence in the 16th century caused over 13 million deaths [1], decimating the

native population in present-day Mexico. The “Spanish” Influenza pandemic

infected about an estimated 500 million and caused over 50 million deaths dur-

ing 1918-1919. The ongoing COVID-19 pandemic has already infected over 250

million people (as of November 2021), as the threat of a new variant is looming.

The first known use of mathematical models in epidemiology is attributed to

Bernoulli, who developed a mathematical model to show that inoculation against

the smallpox virus increased the life expectancy at birth by three years [12].

In 1911, Ross developed the first differential equation model of malaria [89].

Following this, Kermack and McKendrick in their seminal works [50–52] founded
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the deterministic compartmental modeling using ordinary differential equations

(ODEs) based on mass-action model. In these models, the population is divided

into compartments or subgroups (e.g., disease states). The basic reproductive

number denoted by R0 is defined as the expected number of secondary infections

resulting from a single infective individual into an entirely susceptible population.

The value of R0 is used to determine if an epidemic will occur or not [50]: if

R0 < 1, the epidemic will die out; otherwise there will be an epidemic. Therefore,

estimating R0 value is very useful to public health policymakers in planning their

response to an outbreak or evaluating the effectiveness of the policies in place

[46,80].

There are two broad classes of epidemiological models: (i) differential equations-

based models, and (ii) network-based models. Differential equation-based models

are used to predict the trajectory of the outbreaks [43, 48], which helps in eval-

uating the public health policies used to control the spread of outbreaks. These

coupled differential equations-based models [62, 95, 98] represent the dynamics

using a system of coupled differential equations, relying on the complete mixing

assumption for the population within a compartment. These models are easier

to set up even for a national scale [62].

The second class of models is network-based [27, 35, 39, 57, 59], which are

considered in this dissertation. Such models have been found to be more pow-

erful and useful for epidemic spread on large heterogeneous populations, where

the complete mixing assumptions of the differential equation models is not rea-

sonable [27, 35, 39, 57, 59]. However, these are harder to set up, simulate, and

computationally challenging.
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3.2 Prior works on intervention strategies

Vaccination and social distancing are standard intervention strategies used by

public health experts to contain epidemics. In this dissertation, we are primarily

concerned with vaccinations.

3.2.1 Interventions in differential equation-based models

Much of the work on designing vaccination strategies to control epidemics has

been done on differential equation-based models [62,95,98]. Optimal vaccination

strategies for such models have been analyzed, and compared with the current

Centers for Disease Control and Prevention (CDC) policies, for instance, for

Swine flu [62]. Even such models tend to be quite complex when the number of

compartments becomes very large [95, 98]. Such models can be solved optimally

by brute force when they are relatively small (see [62]). However, these don’t scale

when the model becomes very large, e.g., representing all counties in the United

States (US). Greedy strategies have been used in some studies [95,98], which are

relatively easy to implement. More sophisticated gradient descent-based methods

have also been designed [9].

3.2.2 Interventions in network-based models

Vaccination in a network-based model corresponds to removing the set of nodes to

vaccinate from the network. The EpiControl type problems involve selecting a

set of nodes of size at most B (where B is the budget) from the network to vacci-

nate such that a certain objective function (e.g., expected number of infections)

is optimized. Such problems are computationally hard and even obtaining good

approximation guarantees is challenging. The previous approaches for designing

intervention strategies in these models can be summarized as follows.

Heuristics. As obtaining optimal interventions over network-based models is
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computationally challenging, a number of heuristics [20, 25, 65, 101] have been

proposed. These methods are based on the idea that the nodes that have high

values for certain network properties such as degree, centrality, eigenscore, and

pagerank [20, 65, 67, 81]) are ideal candidates for vaccination, so they prioritize

them. For instance, the degree-based heuristic involves selecting the top B nodes

with the highest degree. These heuristics are extremely simple and can be com-

puted very efficiently even on large networks. Also, these approaches work for

any network model. Recently, an influence-based approach of [66, 67] has been

parallelized using clever hill climbing techniques. These methods do not directly

provide any guarantees for the EpiControl problem.

Optimizing Spectral properties. Spectral radius, denoted by ρ(G) or λ1, is

the largest eigenvalue of the adjacency matrix of the network G. The spectral

radius ρ(G) has important implications on the length of the epidemic, where re-

sults of the following form are known [32, 63, 76, 97]: if ρ(G) is below a certain

threshold value, the disease dies out quickly. Therefore, an important class of

intervention design methods focused on reducing the spectral radius of the net-

works [71, 77–79,81, 103, 104]. These methods too do not provide bounds for the

EpiControl problem. But, such methods can be implemented in polynomial

time using eigenvector solvers, or greedy approaches [81].

Approximation algorithms for p = 1 case of EpiControl. The EpiCon-

trol problem for p = 1 and fixed set of sources S is well studied and bicriteria

approximation algorithms are known for this problem [28, 41]. Hayrapetyan et

al. show that this special case of EpiControl problem is shown to be NP-hard

via a reduction from the node version of Minimum-Size Bounded-Capacity Cut

(MinSBCC) problem.

The edge version of the MinSBCC problem can be summarized as follows:

Given a network G = (V,E) with edge capacities ce, source and sink nodes s and

t, budget B. The goal is to find a s-t cut (P, P ), s ∈ P of capacity at most B
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such that the number of nodes on the source side of the cut is minimized. The

node version of this problem can be reduced to EpiControl [41].

Hayrapetyan et al. [41] provide a randomized rounding algorithm with a pa-

rameter λ for this problem. The variables in the problem are: xv is an indicator

variable to denote which side of the cut (P, P ) node v belongs to; ye is an indi-

cator variable to denote whether edge e is in cut or not. An LP relaxation of the

problem is provided. Then, the idea of this algorithm is very simple:

(i) solve the LP relaxation of the problem to obtain an optimal fractional

solution (x∗, y∗) to the problem instance.

(ii) choose ` ∈ [1− λ, 1] uniformly at random.

(iii) any node with x∗v ≥ ` is added to the set P .

This algorithm obtains a ( 1
λ
, 1
1−λ) bi-criteria approximate solution for this prob-

lem. This result extends to the EpiControl problem for the case with trans-

mission probability p = 1. Similar results are shown by Eubank et al. [28].

Interventions for Firefighter problems. Firefighter problems were first intro-

duced in 1995 by Bert Hartnell [33]. The problem can be informally summarized

as follows: Given a network G = (V,E), assume that the fire breaks out at a

vertex in G at time t = 0. Firefighters placed at a node at any time step can

defend that node from burning. At each subsequent step, the fire spreads from a

burning node to all of its undefended neighbors. Once a node is burning, it will

remain so throughout the process. The fire stops when it can no longer spread.

There are many objectives of interest such as (i) saving the maximum number

of nodes; (ii) minimizing the expected number of nodes burned (with the fire

breaking at a random vertex), etc. Firefighter problem with the objective of

minimizing the expected number of nodes burned, where only B firefighters are

available, can be viewed as the EpiControl problem on SI model for the case

p = 1 [3, 29]. Rigorous bounds are known for the number of people infected

and saved. However, this has not been much studied for the case where p < 1.
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Authors in [92] study the problem for p < 1 case, but their results are applicable

only for the case when G is a tree.

Static interventions. Static interventions in SIR models are known [103, 104].

But these approaches also do not directly bound the expected outbreak size. A

special case of this problem is with the work of [6], which considers EpiControl

but with the intervention specified at time 0.

Markov Decision Processes (MDP) for interventions. The works based

on Markov Decision Processes [3, 16, 29] are able to capture more complex type

of interventions. However, these are not very efficient in terms of running time.

Linear programming-based techniques are used as subroutines in many of these

works, including [3]. As mentioned in the case of saaRound [83] algorithm,

linear programming solvers such as Gurobi do not scale to very large networks.

Summary of the novelty of our work on EpiControl problem. None of the

above works address the EpiControl for p < 1 case directly. Our saaRound al-

gorithm provides bicriteria guarantees on both the budget and the expected num-

ber of infections objective for the EpiControl problem. Also, our MwuRound

is able to scale to networks with over 100,000 nodes, without losing much on the

bounds. The scalable and memory-efficient heuristic based on MwuRound, is

able to scale to very large networks with many millions of nodes corresponding

to country-level populations. We are able to show that this approach, too, has

good guarantees in practice.

Summary of novelty related to IAScontrol. As discussed above, much of

the work on designing intervention algorithms focused on the SIR class epidemic

models. The MultiPath model is a complex epidemic model with a different

structure. None of these works directly provide any guarantees for the IAScon-

trol problem. Our SpreadBlocking is able to provide a bicriteria approxima-

tion for this problem. Further, the performance of this algorithm is near-optimal

in practice.
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SAAROUND algorithm for

EpiControl Problem

This chapter presents the saaRound [83] algorithm for the EpiControl prob-

lem. saaRound algorithm was designed using the sample average approximation

(SAA), linear programming, and rounding techniques. In Section 4.1, first, a brief

summary of the results in this chapter is presented. In Section 4.2, the intuition

behind the algorithm, its description for the case with transmission probability

p < 1 and a fixed set of source infections, and the analysis of the algorithm are

provided. Next, this section provides the extensions of this algorithm to case with

source distribution and the two-stage version of EpiControl problem. Further,

this section discusses methods to improve the performance of the saaRound al-

gorithm. Finally, Section 4.3 presents the empirical evaluation of the saaRound

algorithm.

4.1 Summary of Results

Our results are summarized below:

1. We designed the saaRound algorithm for selecting a set of nodes within
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a given budget, to vaccinate at the start of the epidemic. We showed that

saaRound gives a (O(log nN), 6)-bicriteria approximate solution for the Epi-

Control problem, where N is the maximum number of paths from a source

node to any node in a set of M sampled subgraph of G. Typically, N is signifi-

cantly smaller than the number of paths in G, so that in practice, saaRound

has a much smaller approximation ratio. saaRound algorithm approach ob-

tains the empirical approximation guarantee of the solution, for any instance

of the problem, by comparing it with the LP objective.

2. We showed that saaRound is a good heuristic for the two-stage intervention

problem as well, and gives similar guarantees as to the single-stage when the

disease transmission subgraphs are trees (e.g., when p is low).

3. We augmented saaRound with a sparsification step, which significantly re-

duces the size of the LP, and allows scaling to networks, with millions of edges,

corresponding to county size population.

4. We evaluated our algorithms on diverse real and random networks. We showed

that saaRound has empirical approximation factors very close to 1. These

empirical guarantees were significantly better than the worst-case guarantees

we have proved rigorously. Further, we showed that the saaRound algorithm

outperforms two of the most commonly used baselines for this problem.

5. We examined the network characteristics of nodes in the intervention set, as

these interventions are near-optimal in practice. These characteristics can help

identify “surrogates” for interventions in real-world settings.

4.2 Algorithm

This section presents saaRound algorithm (Algorithm 1) and its analysis. Table

4.1 summarizes the notation for the EpiControl problem.
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Notation Definition
G = (V,E) Contact network
S Set of sources
p, p(u, v) Transmission probability
H(sir) Stochastic outcome from the SIR process
xu Indicator for node v getting vaccinated
X Set of vaccinated nodes or intervention set
H(sir)(X) H(sir) when nodes in X are vaccinated
#infections(G,S, p,X) number of infections in a stochastic outcome

when X is intervention set
E[#infections(G,S, p,X)] Expected number of infections

when X is intervention set
B number of vaccines available, called budget
EpiControl Designing interventions to minimize

E[#infections(G,S, p,X)] such that X ≤ B
(α, β) approximation Bicriteria approximation factors

Table 4.1: Summary of notation for the EpiControl problem.

Algorithm 1 describes the steps in saaRound. The algorithm first constructs

M sampled outcomes of the SIR process with given transmission probability p.

Then, it solves a linear program relaxation of the EpiControl on these M

samples.

The variables in the linear program are follows. xu are indicators for node u

getting vaccinated, as defined in Section 2. The variables yvj are indicators for

node v getting infected in sampled graph Hj (i.e., there is a path from S to v in

Hj on which no nodes are vaccinated). We first describe the intuition behind the

algorithm and then analyze its performance.

4.2.1 Intuition behind saaRound

Our algorithm involves five key ideas, which are described below, along with an

intuitive description of the steps of the algorithm.

1. Sampling process. We first observe that the sampling process in Step 1 of

Algorithm 1, which is based on percolation, is “equivalent” to the SIR process.

The SIR process is a dynamic process in which the state of the network evolves
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Algorithm 1 saaRound
Input: G = (V,E), S, p, B
Output: X

1: Construct sampled graphs Hj = (V,Ej), for j = 1, . . . ,M , by picking each
edge e ∈ E to be in Ej with probability p. Here, Ej ⊆ E denotes the subset
of edges picked to be in Hj.

2: Solve the following linear program (LPsaa)

(LPsaa) min
1

M

∑
j

∑
v

yvj (4.1)

∀j,∀u ∈ V : yuj ≤ 1− xu (4.2)

∀j,∀u ∈ V, (w, u) ∈ Ej : yuj ≥ ywj − xu (4.3)

∀j,∀s ∈ S : ysj = 1 (4.4)∑
u∈V

xu ≤ B (4.5)

∀u xu, ∀(v, j) yvj ∈ [0, 1] (4.6)

3: Let x, y be the optimal fractional solution to (LP). We round it to an integral
solution X, Y in the following manner

1. For each (v, j), set Yvj = yvj, if yvj ∈ {0, 1}. Similarly, for each u ∈ V ,
set Xu = xu, if xu ∈ {0, 1}.

2. For each (v, j), round Yvj = 1 if yvj ≥ 1
2
, otherwise set Yvj = 0.

3. For each u, set Xu = 1 with probability
min{1, 2xu log(4nMN)}, where N is the maximum number of paths
from S to any node in any sample.

4. X = {u : Xu = 1} is the set of nodes vaccinated.

4: return X
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over time. Percolation is an equivalent but a static view of this process, where

all edges on which the disease is transmitted are selected in advance. Then,

a node will become infected during the SIR epidemic if and only if there is a

path, from a source in S to that node, which consists of only those edges that

are sampled in advance.

2. Sample average approximation (SAA) technique: The SAA technique

[91] is an approach used to solve stochastic optimization problems. The basic

idea is that solving the problem on the samples is enough to get a “good”

solution for the stochastic objective. We adapt this technique for the Epi-

Control problem and show that it suffices to get a solution that minimizes

the average number of infections in a set of M sampled outcomes, in order

to minimize the expected outbreak size (given by E[#infections(·)]) objective,

which is an expectation over all the possible outcomes. In our analysis, we

show that it suffices that M is bounded by a polynomial in n. We show that

using the structure of the SIR model, it suffices to work with M sampled

subgraphs Hj for j ∈ {1, · · · ,M}, instead of the stochastic outcomes of the

SIR process.

3. Compact integer program:

The problem is challenging even if we have to minimize the average number

of infections restricted to H1, . . . , HM . We start with an integer program (IP)

which expresses the following constraints: if a node v is not infected in Hj

(which is indicated by yvj = 0), then for every path P from a node in S to

v in Hj, there must be some node u on the path which has been vaccinated.

However, such an integer program would have exponentially many constraints

— one for each path. Instead, we design a more compact program (referred

to as IPsaa), simply based on states of nodes on an edge, as expressed in

constraints (4.3), where we adapt the idea presented in [41] to our problem.

4. Linear relaxation: We consider a linear relaxation of IPsaa, referred to as
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LPsaa, by replacing the binary constraints by (4.6). LPsaa involves minimizing

a linear objective over a convex polytope, and so step 2 of Algorithm 1 can be

done efficiently to compute the fractional solutions x, y. Also note that since

LPsaa is optimizing over a larger space (specifically, the convex hull of all the

feasible integral solutions), the objective value in (4.1) might be smaller than

the integral objective value.

5. Rounding to an integral solution: If the solution computed by LPsaa is

integral, we are done (Step 3(1)). However, in general solution x is fractional,

which poses a problem: if we have xu ∈ (0, 1), e.g., a fractional value of

0.2, it is not clear how to construct a valid integral solution. In Step 3(2) of

saaRound, we pick all the nodes with yvj ≤ 1/2 (for which Yvj = 0), and pick

a set of nodes to vaccinate (Step 3(3)), such that every node v with Yvj = 0

gets disconnected from S. Step 3(3) achieves this by rounding the fractional

solution x, after appropriate scaling. This randomized rounding step ensures

that the budgets are not violated by much. This also implies that any node v

which gets infected in sample Hj has yvj ≥ 1/2, so that the average number

of infections can be bounded by at most twice the fractional objective value.

4.2.2 Analysis of saaRound algorithm

For a sample Hj computed in Step 1 of saaRound, let

f(Hj(X)) =< U(0), . . . , U(τ), E ′j > be defined in the following manner:

(1) E ′j is the subset of Ej when nodes in X are removed from G (i.e., vacci-

nated),

(2) U(0) = S, and

(3) for t > 0, U(t) is the set of nodes at distance t in the subgraph induced

by E ′j.

We first observe that the sampling process is “equivalent” to the SIR process.
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Observation 6. For any given outcome denoted by O =< U(0), . . . , U(τ), E ′j >,

we have Pr[H(sir)(X) = O] = Pr[f(Hj(X)) = O].

For a vaccination set X, let Zj(X) be the number of nodes in Hj − X, which

are still reachable from S; note that this includes the sources themselves. From

Observation 6, it follows that Zj(X) is equal to the number of infections in the

stochastic outcome H(sir)(X) of the SIR process.

Let Z(X) = 1
M

∑
j Zj(X). Let X̂opt = argminX′Z(X ′) be a solution that

achieves the minimum average number of infections in the samples.

Let Xopt = argminX′ E[#infections(X′)] be the optimal solution to the

EpiControl problem instance. The following lemma shows that the average

number of infections achieved by any intervention set X restricted to the sam-

ples H1, . . . , HM is close to the expected number of infections, E[#infections(·)]

objective.

Lemma 7. Let Z(·) be as defined above. If M ≥ 24n2 log n, with probability at

least 1− 1/n, for every intervention set X, we have,

Z(X) ∈
[

1

2
E[#infections(X)],

3

2
E[#infections(X)

]
.

Proof. From Observation 6, we have E[Z(X)] = E[Zj(X)] = E[#infections(X)]

for all j. The Zj(X) variables are independent, and
Zj(X)

n
∈ [0, 1]. This implies

the Chernoff bound (Theorem 5) can be applied to M Z(X)
n

=
∑

j
Zj(X)

n
, so that

Pr
[MZ(X)

n
6∈
[1

2
,
3

2

]ME[#infections(X)]

2n

]
≤ 2exp(− M

12n
E[#infections(X)]).

We have E[#infections(X)] ≥ 1, since there is always at least one infection. For

M = 24n2 log n, this probability is at most 2e−2n logn = 2
nnnn

. The number of

possible intervention sets is the number of possible sets X ⊆ V , which is at most

2n. Therefore, the probability that there exists an intervention set X for which
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Z(X) 6∈
[
1
2
E[#infections(X)], 3

2
E[#infections(X)]

]
is at most 2n · 2

nnnn
≤ 1

n
for

n > 1.

Recall that IPsaa is the integral version of LPsaa, obtained by requiring all the

variables to be integral, instead of constraints (4.6). We first show that IPsaa is

valid.

Lemma 8. For every feasible intervention set X, there exists a feasible integral

solution x̄, ȳ to IPsaa, such that 1
M

∑
j

∑
v ȳv,j = Z({v : x̄v = 1}). If x̄, ȳ is an

optimal solution to IPsaa, Z(X̂opt) = 1
M

∑
j

∑
v ȳv,j

Proof. First, consider a feasible intervention set X. We define x̄v = 1 for all v ∈

X. We define ȳ in the following manner: Let f(Hj(X)) =< Uj(0), . . . , Uj(τj), E
′
j >,

as defined earlier; we have Zj(X) =
∑

t |U(t)|. We define yvj = 1 if v ∈ ∪tUj(t).

Now, we show that x̄, ȳ, defined in the above manner, is a feasible solution to

IPsaa. For any j, consider a node u ∈ Uj(t) for some t. Then, there exists a path

P = u0, u1, . . . , ut = u with ui ∈ Uj(i) for i ≤ t. By construction, for each node

ui, we have yuij = 1 ≥ ywj − xui for every neighbor w of ui, which implies the

constraint (4.3) is satisfied for u, and each of its neighbor w. Let U = ∪τjt=0Uj(t).

Consider a node u 6∈ U . If u has a neighbor w ∈ U , it must be the case that

u ∈ X, else node u would be infected at time τj + 1, and would have been in a

set U(τj + 1). This implies, xu = 1, and the constraint (4.3) holds for node u and

any neighbor w. If u has no neighbor w ∈ U , then ywj = 0, and so the constraint

(4.3) holds for u,w.

The converse follows similarly. We need the following additional property: if

yuj = 1, there is a path P from S with yuij = 1 for all nodes ui ∈ P ; this holds

due to the minimization objective.

Lemma 9. For any sampled graph Hj, and any node v ∈ V with yvj <
1
2
, we

have,

Pr[v is reachable from S in Hj[V −X]] <
1

4nM
,
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where Hj[V −X] is the graph induced by removing the nodes in X from Hj.

Proof. Let Pvj = {P1, . . . , PL} be the set of paths to node v in the sampled graph

Hj. For a path P , define S(P ) = {u : u ∈ P} to be set of nodes on the path P .

Node v ∈ V is reachable from S in Hj[V − X] if and only if there exists some

path P ∈ Pvj such that none of the nodes in S(P ) are vaccinated (i.e., Xu =

0, ∀u ∈ S(P )). If there exists u ∈ S(P ) with 2xu log(4nMN) ≥ 1, the rounding

ensures that Xu = 1; therefore, we only consider the case 2xu log(4nMN) ≤

1. Our rounding ensures that we have Pr[Xu = 1] ≥ 2xu log(4nMN), so that

Pr[
∑

u∈S(P )Xu = 0] is upper bounded by

∏
u∈S(P )

(
1− 2xu log(4nMN)

)
≤ e−

∑
u∈S(P ) 2xu log(4nMN) ≤ e− log(4nMN) =

1

4nMN
,

since
∑

u∈S(P ) xu ≥ 1− yvj ≥ 1/2.

Equivalently, the probability that no node from S(P ) is picked is at most

1
4nMN

; here we consider that a node is picked from S(P ), if Xu = 1 for some

u ∈ S(P ). By a union bound, the probability that there exists a path P ∈ Pvj
such that no node from S(P ) is picked is at most L

4nMN
≤ 1

4nM
(since, L ≤ N).

Hence, the lemma follows.

Lemma 10. With probability at least 1− 1/n, we have |X| ≤ 12 log(4nMN)B.

Proof. Let X be the rounded solution returned by saaRound algorithm which

corresponds to the intervention set X = {u : Xu = 1}. Then, the expected

number of nodes picked for vaccination by saaRound is given by

µ = E

[∑
u

Xu

]
≤
∑
u

2xu log(4nMN) ≤ 2 log(4nMN)B

The first inequality is by linearity of expectation and the second inequality fol-

lows from the constraint (5) of LPsaa. The Xu’s are all rounded independently,
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therefore, we have

Pr

[∑
u

Xu > 12 log(4nMN)B

]
≤ Pr

[∑
u

Xu ≥ 6µ

]
≤ exp(−6 log(4nMN)B)

≤ 1

n
.

The first inequality follows from the bound on µ. The second inequality follows

from the Chernoff bound (Theorem 5), as 6µ ≥ 2eµ. Finally, the last inequality

follows, since 6 log(4nMN)B ≥ log n.

Theorem 11. Let M ≥ 24n2 log n. Let X denote the vaccination set computed

by the saaRound algorithm. Then, with probability at least 1/2, we have

E[#infections(X)] ≤ 6E[#infections(Xopt)],

and |X| ≤ 12 log(4nMN)B.

Proof. Let X̂opt be as defined above. By Lemma 9, for any v, j, if yvj ≤ 1/2, the

probability that node v is reachable from S is at most 1
4nM

. By a union bound,

the probability that this holds for at least one vertex v ∈ V (for a fixed j) is at

most 1
4M

. This implies that with probability at least 1− 1
4M

,

Zj(X) ≤ |{v : yvj ≥ 1/2}| ≤
∑

v:yvj≥1/2

2yvj ≤
∑
v

2yvj

By a union bound, with probability at least 1 − M
4M

= 1 − 1
4
, we have Zj(X) ≤

2
∑

v yvj, for all j. By definition of X̂opt, we have 1
M

∑
j Zj(X) ≤ 1

M

∑
v,j 2yvj ≤

2Z(X̂opt), since the LP solution is also a lower bound on Z(X̂opt). By Lemma 10,

the condition |X| ≤ 12 log(4nMN)B holds, in addition to Z(X) ≤ 2Z(X̂opt) ≤

2Z(Xopt), with probability at least 1−1
4
− 1
n
, since Z(X̂opt) ≤ Z(Xopt), by definition

of X̂opt.
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By Lemma 7, with probability at least 1− 1
n
, we have,

Z(Xopt) ≤
3

2
E[#infections(Xopt)] (4.7)

and 1
2
E[#infections(X)] ≤ Z(X). This gives us

E[#infections(X)] ≤ 2Z(X) ≤ 4Z(Xopt) ≤ 6E[#infections(Xopt)]

Therefore, all the conditions of the theorem hold with probability

≥ 1− 1
4
− 2

n
≥ 1

2
.

4.2.3 Extension to the case with source distribution

We assume sv is the probability that v is initially infected; s denotes the initial

infection vector. In this case, we assume sources can also be considered for

vaccination unlike the case with a fixed set of sources.

First, we present the construction of sampled graphs for this case. Then,

we will present the LP relaxation for the problem on samples. The rounding

procedure remains unchanged.

Sampling process. Construct a sampled graph Hj = (Vj, Ej), for j = 1, . . . ,M ,

by picking each edge e ∈ E to be in E ′j with probability p. Also pick a set of

sources src(Hj) (denotes the source set in sample Hj) by sampling from s. Then,

Vj denotes all nodes connected to src(Hj) in Hj. The edge set Ej denotes edges

in E ′j whose both endpoints are in Vj.
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Solve the following modified linear program (LPsaa)

min
1

M

∑
j

∑
v

yvj (4.8)

∀j,∀u ∈ V : yuj ≤ 1− xu (4.9)

∀j,∀u ∈ V, (w, u) ∈ Ej : yuj ≥ ywj − xu (4.10)

∀j,∀s ∈ src(Hj) : ysj = 1− xs (4.11)∑
u∈V

xu ≤ B (4.12)

All variables ∈ [0, 1] (4.13)

Notice that the main change is that the constraint (4.11) is added. This

constraint makes sure that a source node is uninfected if it is vaccinated.

4.2.4 Extension to the multi-stage versions

In this section, we present extension of saaRound for the multi-stage versions

of the EpiControl problem. The problem statement for the two-stage version

(referred to as 2sEpiControl problem) is as follows.

Definition 12. 2sEpiControl problem.

Instance. Given a contact network G = (V,E), and an initially infected set of

nodes S, budgets B0, BT for interventions at time t = 0 and t = T respectively.

Goal. To find subsets of nodes X0,XT ⊆ V to intervene at t = 0 and t =

T respectively, such that E[#infections(X0,XT )] is minimized, and |X0| ≤ B0,

|XT | ≤ BT .

Note. The EpiControl version (discussed in previous sections) where all the

interventions are performed at the beginning is also referred as 1sEpiControl

explicitly when the context is unclear.

Modifications to saaRound for 2sEpiControl. The changes to be made to

LPsaa to adapt it for 2sEpiControl (our approach can be similarly extended
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to multiple stages) are as follows: Let xu0 be an indicator variable whether node

u is vaccinated at time t = 0. Similarly, let xuT be an indicator variable whether

node u is vaccinated at time T . We have B0, BT as inputs. Let Vj,t denote the

set of all nodes at level t in the BFS tree in Hj which has the nodes in S at level

0; let Vj,≥t = ∪t′≥tVj,t denote the set of all nodes at level t or more.

Constraint (4.2) is modified in the following manner: for all nodes u in the

set Vj,≥T − S in each sample Hj, we have

∀j, u ∈ Vj,≥T − S,∀t : yuj ≤ 1− xut.

The Constraint (4.3) is changed to

∀j,∀u ∈ V, (w, u) ∈ Ej : yuj ≥ ywj −
∑

t:u∈Vj,≥t

xut.

We add the constraint for each t = T ,

∑
u

xuT ≤ BT .

We refer to this modified LPsaa as LP e
saa. We use the same rounding procedure

for the x and y variables as in saaRound. The algorithm returns two subsets of

nodes X0 = {u : Xu0 = 1} and XT = {u : XuT = 1} as the solution.

Analysis: If the sampled subgraphs are trees (which is typical for low trans-

mission probability), LP e
saa is valid, and we can show the same guarantees as

Theorem 11. In general, however, LP e
saa may not be valid, and the solution

might not have these guarantees, due to the following reason: suppose there is a

node u which is at level < T in a sampled subgraph Hj before the first stage of

intervention is done at time 0. After a set X0 is picked (and the nodes in X0 are

removed from the graph), the distance of u from S might increase, and it could

be vaccinated at time T . However, our algorithm will not pick such nodes, and
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thus optimizes over a smaller decision space.

4.2.5 Improving performance and speeding up saaRound

Improved approximation factor. The worst case approximation is most im-

pacted by the scaling we do in step 4(3) of saaRound, which is needed for the

application of the Chernoff bound in Lemma 10. However, as we discuss later,

we find that LPsaa computes near-integral solutions, in which many variables are

integral. Step 4(1) handles integral variables separately. We also modify Step

4(3) by using a smaller scaling factor, depending on the fractional value.

Better scaling. The main bottleneck in saaRound is the solution of LPsaa,

which has: nM variables of the form yuj, n|T | variables of the form xut, and∑
j |E(Hj)| constraints (4.3). The worst-case dependence of the running time of

LP solvers is super-quadratic in these parameters (though we find the Gurobi

solver [37] scales very well in practice, as we discuss later). In order to improve

the scaling of saaRound to larger instances, we use the following methods.

• Reduced number of samples: The rigorous bound on the number of samples

needed in the worst-case comes from Lemma 7, as a result of the Chernoff

bound. In practice, we find that there is concentration even with O(
√
n) sam-

ples, and so we use fewer samples in our experiments. This can be estimated in

a statistically rigorous manner by picking the smallest number of samples such

that the variance in infections (i.e., number of reachable nodes from sources

S) is within a factor δ.

• Reducing the number of variables: We define vulnerability of a node u, de-

noted by yu, as the probability that it gets infected when no interventions

are done. This can be estimated as the fraction of samples Hj in which u

is reachable from S, i.e., yu = 1
M
|{j : u is reachable from S in Hj}. For a

parameter γ, we restrict the interventions to nodes in Vγ = {v : yv > 1− γ};

in other words, we can set xvt = 0 for nodes with vulnerability at most γ. The
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intuition is that such nodes are likely to have low xvt values in LPsaa, and so

it is safe to remove them and reduce the size of the LP. This is borne out from

our experiments.

4.3 Experiments

We addressed the following questions in our experiments:

1. Approximation Guarantees: What are the approximation factors of

saaRound in practice? How does it compare with the standard baselines?

2. Scaling: How well does saaRound scale to large networks? How effective

are the techniques for choosing the number of samples and pruning?

3. Effect of multiple stages: How does the effectiveness of the solution com-

puted by saaRound algorithm vary with the number of stages of interventions

and the budget allotted to each stage?

4. Characteristics of the solutions: What kinds of nodes are picked in the

solutions at each stage? What are the characteristics of nodes in the near-

optimal intervention sets?

4.3.1 Dataset and Methods

Datasets. We experiment with three different classes of networks (a total of

eight), in order to fully explore the effect of network structure on the results.

We consider two random network models, namely the small world [53], and

the preferential attachment [7]. The parameters used in the generation of the

random networks are as follows: We use Networkx tool [38] to generate the three

random graphs PA1, PA2, and SW with the following parameters. Further details

of these parameters can be found in Networkx.

1. Preferential1 (PA1): barabasi albert graph(n = 1000,m = 2, seed =

None)
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2. Preferential (PA2): barabasi albert graph(n = 100000,m = 2, seed =

None)

3. Small World (SW): navigable small world graph(n = 50, p = 1, q = 5, r =

2, dim = 2, seed = None)

We study the results on the CA-GrQc and CA-HepTh collaboration networks [56]

since it is a type of social network. We also consider synthetic agent based

populations for Montgomery County, VA, and Portland, OR, constructed by the

first-principles approach by [8, 27]. This has been used in several public health

studies, e.g., [88]. This network has a rich set of demographic attributes for each

node, e.g., age, gender, and income. The details of the networks are summarized

in Table 4.2.

Dataset Nodes Edges
Preferential1 (PA1) 1000 1996
Small World (SW) 2500 14833
BTER 4756 35272
CA-GrQc 5242 14496
CA-HepTh 9877 25998
Montgomery 75457 648667
Portland 1409197 8307767

Table 4.2: saaRound algorithm: Description of datasets

Choosing parameters. There is a large space of model parameters over which

the analysis could be done. We choose a subset of them as described here. We

choose the source distribution s for seed infections such that the expected number

of sources is 10. We assume uniform distribution for s. Then, the probability su

that a node u in a network is a source is given by su = 10
n

, where n is the number

of nodes in the network.

Following standard practice in public health, e.g., [39], we choose three values

for the transmission probability p based on the expected number of infections,

referred to as the “attack rate”. Attack rate of a disease is the percentage of

population that gets infection. We choose a probability plow if the attack rate is
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< 10% (low), pmed if the attack rate is in [10%, 20%] (medium), and phigh if the

attack rate is > 20%. The specific probability values depend on the networks

and their structure. Figure 4.1 presents the effect of transmission probability p

on the attack rate for different networks. This analysis is useful in identifying the

parameter p value range for a particular attack rate.

Methods. We focus on one stage (1sEpiControl) or two-stage (2sEpiControl)

versions of EpiControl in our experiments. We use saaRound algorithm

to find the set X of interventions. The saaRound algorithm uses the Gurobi

solver [37] to solve the LP relaxation for the problem instance.

For 1sEpiControl problem, we consider the following baselines, which select

B nodes based on two different criteria:

• Top-B degree. This heuristics picks top B nodes with the highest degree

as the nodes for intervention. The intuition is that a node (i.e., person) with

many edges (i.e., connections) is likely a better candidate for intervention

in order to decrease the total number of infections. This approach is very

popular and is considered in a number of papers [7, 82].

• Top-B EVC. This heuristic selects the nodes with the highest eigenvector

centrality score for intervention. Eigenvector centrality score measures the

influence of a node in the network: a high score indicates that the node is

connected to many nodes who themselves have high scores.

The top-B EVC does not give insights on the performance of the spectral ap-

proaches [77–79, 93, 98, 103, 104]. A more detailed comparison of our approach

with the spectral methods is an important future direction. We also propose a

new approach called vulnerability based on observations from our experimental

results. This is described below.

Vulnerability. We compute the vulnerability of each node u, denoted by yu,

which is the probability that this node gets infected, and select top B nodes with
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Figure 4.1: The effect of transmission probability p on the attack rate for different
networks.

the highest vulnerability.

No prior results are known for 2sEpiControl problem. Therefore, we adapt

the above baselines and pick B0 and BT nodes in the order of the above scores.
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Figure 4.2: Number of simulations needed for low attack rate.
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Figure 4.3: Comparison of runtimes (in seconds) of linear program, for an in-
stance, with (LP-P) and without pruning (LP).

4.3.2 Scaling

We find that saaRound easily scales well to all the networks considered except

Montgomery and Portland. Also, we note that the two strategies for speeding up

have a significant impact on the scaling.

• Number of samples needed: We find the number of samples sufficient to

get reasonable variance, as shown in Figure 4.2 to be less than the worst-case

bound of Θ(n log n) from Lemma 7. As the number of samples increases, the

expected number of infections over those samples converges to (or very close

to) the expected value. In practice, we observed that the number of samples

needed for this convergence in many cases is O(
√
n) for moderate attack rates
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Figure 4.4: Comparison of objective values of linear program, for an instance,
with (LP-P) and without pruning (LP).

(10%-20%). The number of samples needed for convergence is lower when the

transmission probability p belongs to medium or above attack rates. We note

that these are typically the regimes of most concern to public health agencies.

• Impact of pruning: The pruning of low vulnerability nodes has a very sig-

nificant impact on the running time, as shown in Figure 4.3, which shows the

running time with and without pruning. When the number of samples used is

low, the difference is negligible, but when the number of samples increases to

the range needed for low variance, we find the difference in running times is in

several orders of magnitude. The objective value differs by less than 5% with

and without pruning for PA1 network. Similar trend is observed for Portland

network. This can be seen in Figure 4.4. This implies that our scaling strategies

give good solutions on large networks.

4.3.3 Performance guarantees and comparison to base-

lines

Comparison to baselines

Figures 4.5 shows the performance of saaRound in comparison to the baselines

and the vulnerability method. The X-axis of these plots represents the budget
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B as a percentage of the population (network size n). The Y-axis of these plots

represents the average % of the population infected. Each curve corresponds to a

baseline. Along with the baselines top-B degree, top-B EVC, and Vulnerability,

we also consider the “LP Obj” which is the LP relaxation optimal objective

value. This value gives a lower bound on the optimum value of the EpiControl

instance on the M samples. Further, we also compare with the “No Action”

baseline, which gives the average number of infections with no interventions. The

“No Action” also shows the attack rate resulting from p chosen. The attack rate

considered for all networks, except Montgomery and PA2, is about 15%. For these

two networks, it is about 5%. The probabilities are set accordingly to achieve

these attack rates. Every approach uses exactly the same budget as the rounded

solution to saaRound does. This is done for the purpose of a fair comparison

of performance guarantees.

We observe that saaRound significantly outperforms all the approaches. For

social contact networks, which are relatively dense, the objective value from the

top-B-EVC and top-B-degree baselines are over seven and three times that from

saaRound, respectively, over the entire budget range. In networks such as col-

laboration (CA-GrQc and CA-HepTh) vulnerability shows performance similar

to that of top-B degree baseline. Figures 4.5 shows that for most of the net-

works, the objective value of LP optimal solution almost coincides with that of

saaRound.

Approximation Ratio

As we provide bi-criteria approximation guarantees in the theoretical results, in

this section, we evaluate the empirical performance of our algorithm and show

the guarantees saaRound achieves in practice.

The ratio of the average number of infections resulting from the interventions

set X computed by the saaRound algorithm to the optimum average number
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Figure 4.5: Comparison of saaRound with baselines top-B degree, top-EVC, and
vulnerability. LP Obj corresponds to the lower bound on the optimal obtained
by solving the linear programming relaxation. The dashed red line corresponds
to the average % infected for the “No Action”(no interventions are performed)
scenario.
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of infections is referred to as the objective approximation ratio. This optimum

can be obtained by solving an Integer Linear Program (ILP) for an instance of

the problem on samples. However, the ILP is very slow even on moderate-sized

networks, so we use LP Obj, which is the optimum value of the LP relaxation

for this problem. Then, we use this in the denominator to compute the objective

approximation ratio for the instance. We observe that the approximation ratio

with respect to the objective value is close to 1 in most cases, and is at most 2 in all

our experiments. This is shown in Figure 4.6 for various networks. Note that the

actual optimum can be greater than the LP Obj, so this indicates near-optimal

performance.

The ratio of number of interventions in the solution X returned by saaRound

to the given budget B is called budget violation or budget approximation ratio.

Figure 4.7 shows that the budget approximation ratio on various networks. This

ratio is very close to 1 for all the networks considered and has a value at most

1.75. This is much better than the theoretical bound we show for this criterion

(logarithmic in the number of paths). This shows that saaRound performs much

better in practice than the theoretical results we were able to obtain.

4.3.4 Impact of the interventions on the variance of the

number of infections in the samples

In this experiment, we remove the intervention set X computed by saaRound

from the network. Then, we re-compute the sampled graphs for the same param-

eter settings, on this residual network, to get the average number of infections.

Figure 4.8 shows the effect of interventions by saaRound on the variance of

the number of infections in the sampled graphs. The left-most box plot in each

plot corresponds to the “No Action” scenario, that is no node is removed from

the network before generating the simulations (or budget B = 0 in this case).
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Figure 4.6: Empirical objective approximation ratio of saaRound.

The rest of the box plots correspond to different budgets as a percentage of the

population.

The median (red line in the box plot) clearly falls down as the budget (no.

of nodes removed) is increased as expected. The variance in the number of in-

fections is captured by the length of the box plot for a particular budget. In
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Figure 4.7: Empirical budget approximation ratio of saaRound.

most networks, the variance decreases as the budget is increased. But in some

cases, e.g., the collaboration networks, the variance increases for small budgets

but decreases sharply as the budget is further increased beyond a threshold. The

variance shows that the interventions computed for the expected infections ob-

jective, although reducing the average number of infections over the M outcomes,
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may not be an ideal solution for some of these outcomes. That is the reason, we

see the high variance for smaller budgets in certain networks.
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Figure 4.8: Impact of varying budget B on the percentage of infections resulting
from the intervention set obtain by saaRound.
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4.3.5 Characteristics of Near-optimal interventions

As shown in previous sections, the solutions obtained by saaRound algorithm

tend to be near-optimal in practice. This prompts a question on what network

properties the nodes in these solutions possess. Since, targeted interventions

(i.e., immunizing particular individuals) are not practical, identifying the net-

work properties of the nodes in near-optimal solutions can help in designing

“surrogates” for interventions in real-world settings. We consider two network

properties of a node: (i) degree, and (ii) clustering coefficient. The clustering

coefficient of a node measures how well-connected its neighborhood is. In other

words, this measures how close the neighbors of this node are in forming a clique.

We notice that the nodes picked for interventions by saaRound tend to be

picked based on a metric that is a combination of their degree and clustering

coefficient. This is shown in Figure 4.9. As the budget increases, nodes with less

clustering coefficient or degree are also added into the intervention set.

Another interesting question is to study the impact of transmission probability

p on the network properties of nodes in a near-optimal solution. We fix the

budget in this experiment. For smaller values of p, most nodes in the solution

have higher degree and clustering coefficient values. But, we notice that, as p

value increases, the nodes with a relatively low degree are picked for intervention,

whereas for small p values, most of the nodes picked for intervention have a high

degree. Particularly, we notice a shift in the average degree of the nodes picked

for intervention as p is varied. This is shown in Figure 4.10.

4.3.6 Two stage intervention

In this experiment, we consider the two-stage version (2sEpiControl problem)

of EpiControl. Figure 4.11 shows impact of time step T at which the interven-

tions are performed on the objective value E[#infections(X)]. The first stage of
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Figure 4.9: Degree vs. Clustering Coefficient of nodes in intervention sets ob-
tained by saaRound on Montgomery network. Setting: transmission probability
p = 0.04, B= 60 (top) vs B = 120 (bottom).

interventions is always performed at time step 0 with budget B0. As expected, we

observe that the number of infections (E[#infections(X)]) increases very rapidly

with the value of T . This suggests the idea that the earlier the second stage of

interventions is performed, the better it will be to contain the epidemic spread.

However, we note that this is not always possible, since the vaccines for the second

stage may not be available until certain time steps. So, this kind of analysis gives

an estimate on the best time frame to get the vaccines ready for the second-stage
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Figure 4.10: Change in node characteristics in intervention set returned by
saaRound as transmission probability p is varied on Montgomery network.

interventions.

Figure 4.11: Two-stage intervention. Impact of varying the time T of second-
stage of intervention on the average number of infections.

Another interesting question is to understand the kind of nodes picked in the

two stages of intervention. We expect that the interventions picked in the first

stage to be more important, to contain the spread, than those picked in the second

stage. But, the question of which network or demographic properties of the nodes
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results in the selection at different stages of intervention is still interesting. We

examine the degree and age of the nodes in sets picked in each stage.
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Figure 4.12: Age vs Degree of nodes in the sets X0 and X4 in a solution obtained
by saaRound for an instance of 2sEpiControl problem. Budget B = 50 is
divided equally for two-stages, i.e., B0 = B4 = 25.

Figure 4.12 shows a scatter plot of the node degree and age of the solution to

2sEpiControl with T = 4. We observe that there are slight differences between

the sets X0 and X4: X0 has slightly higher degree nodes, whereas X4 has slightly

lower age nodes. But more importantly, it is not the case that all high degree

nodes are used in X0.
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Chapter 5

Robust Interventions for

Min-Max Objective

The EpiControl problem assumes that either the source set or the distribution

on sources (where the sources can be sampled from a given distribution) is fixed.

However, it is to be noted that there might be multiple seeding scenarios of the

epidemic model that are feasible. Let I denote the set of scenarios which capture

these multiple possibilities.

In such a setting where multiple scenarios are possible, it is more useful to

find robust interventions that gives simultaneous approximation guarantees over

multiple scenarios, instead of an optimal solution for a specific scenario. This

can be modeled through a min-max objective, where the goal is to minimize the

maximum expected outbreak size in any scenario from set I. We note that the

saaRound algorithm is not robust in this sense, and is optimized only for a

specific scenario.

The min-max type approach to handle uncertainty has a solid foundation in

the field of Stochastic Optimization. For instance, [42] use this approach for

robust influence maximization.
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5.1 Summary of Results

In this work, we formalize the problem of designing robust intervention strategies,

for a given set of scenarios, corresponding to different sources of outbreak. This

problem is referred to as problem MinMaxEpiControl. Informally, the goal is

to find intervention set X bounded in size by B, so that the maximum expected

outbreak size over a set of scenarios I is minimized. Also, we consider a two-

stage version of the MinMaxEpiControl and show that our algorithm can be

adapted as a heuristic for this setting. Our contributions are described below.

1. Approximation algorithms with rigorous guarantees. We designed the

mmRound for MinMaxEpiControl by combining a linear programming

(LP) rounding approach with the sample average approximation technique

from stochastic optimization.

• Single-stage, p = 1 case: We designed mmRound algorithm that

uses a graph separator subroutine to round the fractional solution from

LP to an integral solution. We showed that this algorithm has a signifi-

cantly better approximation factor of O(log |V |), instead of logarithmic

in the number of paths, as in case of saaRound algorithm from the

Chapter 4. [83].

• Single-stage, p < 1 case. mmRound uses the randomized rounding

in saaRound algorithm and obtains similar guarantees as in that

algorithm.

2. Empirical evaluation of algorithms on random graphs. We used our algo-

rithms to compute and analyze interventions for different random graph

models. First, we found that there are significant differences in the network

properties of nodes picked in the solutions at different times. Further, so-

lutions to the min-max objective are very different from those designed for

a specific source distribution.
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5.2 Algorithm

We describe our algorithm mmRound, which is based on rounding a linear re-

laxation of an integer program for the MinMaxEpiControl problem. We first

consider the setting where each S ∈ I is a deterministic subset of nodes of V

when the intervention is done at the beginning and for p = 1. Then, we discuss

briefly how the extensions to two-stage, the probability distribution over sources,

and p < 1 case, can be handled; the latter two cases involve using the sample

average approximation technique, as in the saaRound [83] algorithm.

5.2.1 Algorithm mmRound for deterministic sources case

of MinMaxEpiControl

We start with some definitions needed for the algorithm. Since p = 1 in this

setting, the SIR outcome for a scenario S ∈ I is deterministic. For S ∈ I, let

Pv,S denote the set of paths from any node in S to node v 6∈ S in G. Let yv,S

denote the indicator variable to check whether node v becomes infected (i.e.,

reachable from S) when the outbreak starts at S. Let xv denote indicator that

node v is vaccinated.

Algorithm mmRound involves the following steps.

1. Solve the following linear program (LP), as described in Lemma 13

min z s.t. (5.1)

∀v, S, ∀P ∈ Pv,S :
∑
u∈P

xu ≥ 1− yv,S (5.2)∑
v

xv ≤ B (5.3)

∀S :
∑
v

yv,S ≤ z (5.4)

All variables ∈ [0, 1]. (5.5)
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2. Let x, y be the optimal fractional solution to (LP). We round it to an integral

solution X, Y in the following manner:

(a) Round Yv,S = 1 for each v, S if yv,S ≥ 1
2
, otherwise set Yv,S = 0.

(b) Solve the multi-commodity separator problem: find the smallest subset

X of nodes V to remove so that for each S ∈ I and each v with yv,S <

1
2
, node v is disconnected from S in G[V − X], using the algorithm

of [34] (also, as described in Lemma 4.2 of [18]).

The integral version of (LP) in mmRound algorithm, i.e., the program with the

same constraints, plus all variables being binary, is a valid program. Though

(LP) has exponentially many constraints (one for each path), it turns out, (LP)

can be solved in polynomial time, as we discuss below.

Lemma 13. The linear program (LP) in mmRound algorithm can be solved in

polynomial time.

Proof. The proof can be showing using the ellipsoid method [36]. Ellipsoid

method provides polynomial-time solutions to linear programs even if they have

an exponential number of constraints, as is the case with the LP in mmRound

algorithm.

The key idea is to construct a separation oracle O, which given a candidate

solution x, y, either verifies that it is a feasible solution or finds a constraint that

is violated. If the oracle runs in polynomial time, the ellipsoid method too works

in polynomial time.

For the linear program (LP) in mmRound, given a candidate solution x, y,

it is easy to verify whether or not the objective value is within a certain bound.

Further, it is easy to show that the budget constraint is satisfied. However, the

main challenge is to verify that for each pair v, S, the constraint for each path P

is satisfied, since there can be an exponential number of paths. Our separation

oracle instead solves this as the shortest path problem. Let us consider the weight
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of a path to be the sum of all the xu variables for nodes u on that path. Then,

the path constraint involves checking whether the path weight is at least 1−yv,S.

This can be done directly by running the shortest path algorithm using node

weights for each scenario S ∈ I. If it turns out that for some v, S, the distance

to v is more than 1− yv,S, the shortest path gives us a violated constraint.

Theorem 14. Let X denote the vaccination set computed by the mmRound

algorithm. Let X∗ denote an optimal solution to the instance of MinMaxEpi-

Control problem. Then,

max
S∈I

E[numinf(G,S,X)] ≤ 2 max
S∈I

E[numinf(G,S,X∗)],

and |X| = O(B log n).

Proof. Let x, y, z denote the fractional solution to (LP). The objective value of

(LP) is a lower bound on the optimum. This is because, any solution to Min-

MaxEpiControl, which would be an integral solution, is also a solution to the

LP. Therefore, we have z ≤ maxs E[numinf(G,S,X∗)]. Step 2(b) of the round-

ing ensures that for each S, if yv,S = 0, then node v is disconnected from S in

G[V −X]. Therefore,

E[numinf(G,S, V )] ≤
∑
v

Yv,S ≤ 2
∑
v

yv,S ≤ 2z.

The bound on |X| follows from the fact that the fractional solution 2x is

a separator for all the multi-cut pairs (S, v) with yv,S ≤ 1/2, since
∑

u∈P 2xu ≥

2(1−yv,S) ≥ 1. From [18], it follows that there is an integral separator for all these

multi-cut pairs of cost O(log n
∑

u xu0), and therefore, the theorem follows.
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5.2.2 Extension to two-stage version of MinMaxEpiCon-

trol

Let xu0 be an indicator for node u to be vaccinated at time t = 0. Similarly, let

xuT be an indicator for u to be vaccinated at time t = T . Here, we have to pick

a disjoint subset of nodes X0 and XT to vaccinate at times t = 0 and t = T ,

respectively. Our algorithm involves the following changes.

1. For each S ∈ I, run the breadth-first search (BFS) from the nodes in S,

and let VS,t be the nodes at level t of the search (with nodes in S being at

level 0). Let VS,≥t = ∪t′≥tVS,t′ .

2. We modify constraints (5.2) to the following

∑
u∈P

xu0 +
∑

u∈P∩VS,≥T

xuT ≥ 1− yv,S (5.6)

We also add the constraints
∑

v xvT ≤ BT and ∀u, xu0 = 1− xuT .

3. Let x, y be the optimal fractional solution to (LP). We round it to an integral

solution in the following manner:

(a) Round Yv,S = 1 for each v, S if yv,S ≥ 1
2
, otherwise set Yv,S = 0.

(b) For each v ∈ V , and t = 0, T , set Xvt = 1 independently with proba-

bility min{1, 2xvt log(4nN)}, where N = maxv,S | ∪v,S Pv,S|.

5.2.3 Extension to probabilistic sources and transmission

Both these cases involve using the sample average approximation technique. We

first describe the case of probabilistic sources; the ideas for the p < 1 case are

similar. Consider a source set sr ∈ I, which specifies a probability distribution

over a set of subsets D = {s1r, . . . , skr}, i.e., sir is the source with probability p(sir).

We introduce variables yv,si,r corresponding to each such set, and add constraints:
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∑
u∈P

xu0 +
∑

u∈P∩Vs,≥T

xuT ≥ 1− yv,sir ,

and

∑
i

p(sir)
∑
v

yv,sir ≤ z

The rest of the steps of the rounding remain the same.

5.3 Experiments

In our experiments, we addressed the following questions.

1. Properties of the Min-Max Objective. How does the min-max objec-

tive vary depending on the time T of the second stage intervention and the

number of interventions available? How much higher is the objective if we

use a solution tailored for a specific source distribution s, instead of for the

min-max objective?

2. Properties of nodes selected for intervention at each stage. What

are the characteristics of nodes picked for intervention in both stages of

intervention? Are there any network properties in which these nodes differ?

3. Impact of time T and the ratio B0/BT on the effectiveness of two-

stage interventions. How does the benefit of interventions reduce as the

second-stage of intervention is delayed? What is the impact of the ratio of

budgets allotted in the time steps t = 0 and t = T (i.e., B0/BT ratio)?

5.3.1 Dataset and Methods

We designed experiments with three very different kinds of randomly generated

networks, in order to explore the effect of network structure on the results. We
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considered, the small world [53], the preferential attachment [7], and the BTER

models [55]. All these networks were used in experiments on saaRound algo-

rithm as well. However, we mainly focused on the BTER graph for most of the

experiments in this chapter. Table 5.1 presents the details of these datasets.

We use mmRound algorithm to solve MinMaxEpiControl on these net-

works; for a single s distribution and p < 1. This is the same setting as consider

in saaRound algorithm [83]. There are no baselines known for MinMaxEpi-

Control problem , so we use the solution for a specific s (namely, uniform

distribution) for comparison.

Dataset Nodes Edges
Small World (SW) 2500 14833
Preferential (PA) 10000 19996
BTER 5000 35272

Table 5.1: Description of datasets used in Chapter 5

5.3.2 Properties of Min-Max Objective

We now study the difference between the min-max objective with multiple s

scenarios in set I vs when there is a single scenario. We would expect the min-

max version to become a harder problem and would have a higher objective

value. In Figure 5.1 (a), we show how these objectives compare with each other.

The blue curve corresponds to the min-max objective value for a given set I

of possible scenarios. The orange curve corresponds to a single s, which is a

uniform distribution. We observe that the min-max objective value is much

higher, implying that the problem is much harder. In Figure 5.1 (b), we use the

solution, referred to as “udSoln”, to the s being a uniform distribution (orange)

for the min-max problem, and find that it is much worse than the solution to the

min-max objective (blue).
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Figure 5.1: (a) Comparison of objective value of mmRound with arbitrary
sources to that with random sources. (b) Comparison of objective value of solu-
tion to MinMaxEpiControl using mmRound for arbitrary sources with that
of objective value when udnSoln is used as solution to the same problem.

5.3.3 Impact of intervention delay and budgets

We run mmRound algorithm to compute two-stage interventions on the SW and

PA datasets for different choices of the ratio (budget split) B0/BT . Figure 5.2

presents the corresponding results. Figure 5.2(a) shows that as we delay the time

T for the second stage of intervention, the average number of infections increases,

for a fixed budget B. The blue and orange curves correspond to splitting the

budget equally and unequally (skewed) among the two stages respectively. As

expected, we observe that there is significant benefit in splitting the budget in a
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Figure 5.2: Comparison of two-stage strategies with equal budget (B0 = BT = B
2

),
and skewed budgets (B0 = 3B

4
and BT = B − B0). The X-axis corresponds

to the time T at which second stage of intervention is performed. The Y-axis
corresponds to the average number of infections.

skewed manner, allotting more to time 0 and less to time T , and the number of

infections increases with T . Figure 5.2(b) shows that the difference between the

two types of budget splits is accentuated when B is smaller.

5.3.4 Characteristics of nodes picked for intervention

In this section, we analyze the characteristics of nodes picked for intervention

in each stage of the solution to the two-stage version of MinMaxEpiControl.

Specifically, we look at the degree and clustering coefficient of nodes in the so-

lutions. In Figure 5.3, we present the characteristics of nodes picked in the two
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Figure 5.3: BTER graph. Scatter plot. The blue and red points correspond to
nodes picked at T = 0 and T = t respectively. The X-axis represents the degree,
while the Y-axis represents the clustering coefficient of the nodes. B = 100.

stages of intervention for different settings. The Figure 5.3 corresponds to bud-

get B = 100 and time for second stage of intervention t = T for T ∈ {2, 4, 6, 8}.

Quite surprisingly, for a fixed budget, as t value increases, the red points corre-

sponding to nodes picked for time t tend to have low degrees and high clustering

coefficients, whereas the blue points corresponding to nodes picked at time 0 tend

to have high degree and low to moderate clustering coefficients. Although, we ob-

serve that the separation between blue and red points is much more pronounced

in this setting compared to the two-stage version of EpiControl.
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Chapter 6

Group Interventions to Control

IAS Spread

The EpiControl problem assumes the SIR model and node-scale interventions.

In this work, we considered the MultiPath model, which is a multi-scale epi-

demiological process on a temporal network modeling the spread of an invasive

alien spread across a landscape [61] (described in Chapter 2). In this context, we

studied the IAScontrol problem of designing group-scale interventions to min-

imize the spread under budget constraints and intervention delays. This chapter

was a result of collaborative work and the contributions of the collaborators are

suitably mentioned.

We designed an integer linear programming based algorithm to find effective

group-scale interventions by adapting techniques used in saaRound algorithm

approach. We showed rigorous bounds on its performance.

Further, we provided a framework to solve node- or group-scale interventions

in the context of other epidemic models that follow SIR-class dynamics such as

SI, SEIR, etc.
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6.1 Summary of Results

Our contributions are summarized as follows.

• We considered the group-scale intervention problem, IAScontrol 1, to design

control strategies for invasive alien species spread in MultiPath model. [61].

• We showed that the IAScontrol problem is NP-hard, even when the graph is

a tree. Further, we showed that a variation of this problem (in which the goal

is to minimize the cost of the interventions while ensuring that the expected

number of infections is bounded) is very hard to approximate due to the group-

level interventions. This motivated bicriteria approximations.

• The underlying network of the multi-pathway model is a directed, edge-labeled,

and edge-weighted temporal graph. We introduce the concept of time-expanded

network 2, which is an explicit representation of the interactions at every time

step. We showed that the MultiPath model for a finite time horizon can

be provably reduced to a SIR diffusion process on the corresponding time-

expanded network.

• We designed SpreadBlocking algorithm for the IAScontrol problem for

choosing the groups to intervene, given resource constraints and delay in inter-

vening. Our method uses a combination of the sample average approximation

(SAA) technique along with linear relaxation and rounding. We showed rigor-

ous guarantees on its performance.

• We studied the performance of our algorithm on five real-world networks, which

are considered in [61]. We showed that the performance of our algorithm is

consistently superior compared to the popular baselines for variations in model

parameters, seeding scenarios, budget, and intervention delay. 3

1This problem is considered along with our collaborators [90]
2This is a collaborative effort [90]
3The experimental study is a collaborative effort. Particularly, the implementation of the

baselines and the simulator are the contributions of our collaborations. The implementation of
SpreadBlocking is a contribution of this dissertation.
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6.2 Hardness of IAScontrol and Bicriteria ap-

proximations

We first show that the IAScontrol problem is NP-hard even when the network

G is a tree. The approximation hardness for IAScontrol is still open. We show

that the IAScontrolMinBudget variation is very hard to approximate due

to the group level decisions.

Lemma 15. The IAScontrol problem is NP-complete even when G is a tree.

Proof. Our reduction is from a variation of the Unbalanced Graph Cut prob-

lem [41]: Given a graph G = (V,E), a source node s, and cost cv for each node

v ∈ V . The goal is to choose a subset V ′ ⊂ V of nodes such that
∑

v∈V ′ cv ≤ B,

and |{u : u is reachable from s in G− V ′}| is minimized. By modifying the re-

duction in [41] (the authors in this work consider the edge version of the problem),

it can be shown that the above variation is also NP-hard even for the case when

G is a tree.

We observe that the MultiPath model generalizes the SI epidemic process

on a graph, by considering a single pathway in which each node is in a singleton

group. We reduce the above variation of the Unbalanced Graph Cut problem to

the IAScontrol on a tree, with the model parameters chosen accordingly so

that the MultiPath corresponds to the SI process. Taking T = |V |, the number

of infections is equal to the number of nodes reachable from S in the residual

graph after the intervened set of nodes are removed.

Lemma 16. It is NP-hard to approximate the IAScontrolMinBudget to

within an O(2log1−o(1) n/2) factor.

Proof. Our reduction is from the node version of the Label Cut problem [102],

which is defined in the following manner: given a graph G = (V,E), a source

node s, a sink node t, a label `(v) ∈ L for each node v ∈ V , and a cost ci for
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each label i ∈ L, the objective is to choose a subset L′ ⊂ L such that the nodes

s and t are disconnected in G− {v : `(v) ∈ L′}, and
∑

i∈L′ ci is minimized. The

hardness result of [102] (who consider the edge labeled version of the problem)

can be modified to show that the same hardness holds for the node version of

Label Cut as well.

We reduce the node version of the Label Cut problem to an instance G′ of

IAScontrolMinBudget. G′ is basically the same as G, with an additional set

U of n nodes connected to the node t (so that the total number of nodes is 2n).

We consider the set L to be the groups Q, and choose parameters so that there is

a single pathway in MultiPath, which corresponds to the SI model. We choose

K = n. Then, the infT(G, s, τd, {v | g(v) ∈ Q∗}) ≤ K if and only if the node t

is disconnected from s when the nodes in {v : g(v) ∈ Q∗} are removed, else the

number of infections will be at least N , since all the nodes in U will be infected

if t is infected. Thus, a solution Q∗ to the IAScontrolMinBudget instance

on G′ corresponds to a min-label s, t cut in G. Since the number of nodes in G′

is 2n, the hardness result follows from the bound of [102].

Bicriteria approximation. The hardness in Lemma 16 motivates the notion of

bicriteria approximation: we say that a solution Q′ is an (α, β)-approximation if

infT(G, s, τd, {v | g(v) ∈ Q′}) ≤ α infT(G, s, τd, {v | g(v) ∈ Q∗})

and
∑

Qq∈Q′ cq ≤ βB, where Q∗ is an optimal solution with
∑

Qq∈Q∗ cq ≤ B.

6.3 Approach for IAScontrol

First, we show that the MultiPath can be represented as a SIR process on an

auxiliary network called the time-expanded network. We note that this idea can

be extended to other related SIR models such as SI, SEIR, etc. Next, we present
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Figure 6.1: An example network showing nodes and the associated groups. Nodes
d and h are not associated with any group denoted by x, therefore, they are not
eligible for group-scale interventions.

a group intervention algorithm for the IAScontrol problem using SAA and LP

rounding techniques, and show its guarantees.

6.3.1 Time-expanded network

In this section, we represent the MultiPath model as a SIR process (instead of

the SEI process) on another network called the time-expanded network.

Let Hte(Vte, Ete) denote the time-expanded network corresponding to the

multi-pathway model on G(V,E). The key idea is to treat every node u at

each time step as a distinct node, i.e., we have T + 1 copies {u0, . . . , uT} of node

u, where ui represents the copy of u at time step i. To incorporate the exposed

state in the underlying SEI process of the multi-pathway model, we have ` ad-

ditional copies {ui,0, . . . , ui,`−1}, corresponding to each ui, where ` is the latency

period. The edge set Ete consists of exactly the following four types of edges

which corresponds to different events in a SEI process:

• (vi, ui+1,0, λ, i), ∀(v, u, λ, i) ∈ E with weight w(v, u, λ, i)
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(captures S→ E through pathway λ)

• (ui,r, ui,r+1) for r ∈ [0, `− 2] (captures E→ E)

• (ui,`−1, ui+`) (captures E→ I)

• (ui, ui+1) (captures I→ I)

All edges of types other than S→ E have weight 1. For the special case of the SI

diffusion process (` = 0), there are no nodes of the form ui,r and it has two edge

types, I→ I as defined above and S→ I: (vi, ui+1,0, λ) with weight w(v, u, , λ, i).

An example time-expanded network is shown in Figure 6.2 for a single pathway

which corresponds to a simulation instance on G in Figure 6.1.

Let σG(v, t) be the state of a vertex v in G at time t, which can be either S, E,

or I. Similarly, let σHte(ui, t) (resp. σHte(ui,r, t)) be the state of a vertex ui (resp.

ui,r) in Hte at time t with S, I, and R being the possible states. Let OG denote

a stochastic disease outcome of the SEI model on G – this specifies the state

σG(v, t) for each (v, t), and set of the edges (u, v, λ, t) such that node u infects v

at time t through pathway λ. Similarly, let OHte denote a disease outcome in the

SIR model on Hte. We say that OHte is consistent with OG if:

(i) for any u, σG(u, i) = I (resp. σG(u, i) = S) ⇐⇒ σHte(ui, i) = I (resp.

σHte(ui, i) = S);

(ii) σG(u, i+ r) = E, r ∈ [0, `− 1]) ⇐⇒ σHte(ui,r, i+ r) = I;

(iii) σG(u, i − 1) = σG(u, i) = I ⇐⇒ σHte(ui−1, i) = R; and (iv) u infects v

on edge (u, v, λ, i) in G at time i ⇐⇒ node ui−1 infects node vi,0 at time i on

edge (ui−1, vi, λ).

Given OG, for a time t, let OG(≤ t) be a snapshot of OG up to time step t.

Similarly, OHte(≤ t) is a snapshot of OHte up to t time steps.

Example for time-expanded network construction.: We consider a sim-

plified version of MultiPath for the sake of explaining the construction of a

time-expanded network. Figure 6.1 shows a directed network with nodes and
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their associated groups. Figure 6.2 shows the time-expanded that corresponds to

a simulation instance of MultiPath on this network.

Figure 6.2: A (partial) time-expanded graph corresponding to the following simu-
lation instance of MultiPath on G in Figure 6.1 for latency period ` = 1: Node
a is the seed infection. At time step t = 1, node a infects c and node c infects
node j at time t = 3. The edges in bold correspond to live edges which are the
subset of the edges (bold, dashed, and dotted) that correspond to the events in
SEI process.

Theorem 17. Consider the multi-pathway diffusion process on G(V,E) for T

time steps with a latency period ` ≥ 0 and the SIR process on the corresponding

time-expanded graph Hte(Vte, Ete). Then, for any outcome OG and a consistent

outcome OHte, the probability that OG is the outcome in the multi-pathway process

on G is equal to the probability that OHte is the outcome in the SIR process on

Hte.

Proof. The proof is by induction on time t. We will assume that the latency period

` > 0. The proof for ` = 0 (corresponding to SI process) can be shown using the

same approach. At t = 0, by definition, ∀v ∈ V (G) we have σG(v, 0) = I ⇐⇒
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σHte(v0, 0)) = I and σG(v, 0) 6= E. Suppose that Pr(OG(≤ t)) = Pr(OHte(≤ t))

for some t ≥ 0.

For the induction step, we consider all events that can occur at time t + 1

w.r.t. a node v in OG at time t+ 1 on a case by case basis. It is enough to prove

that for each such event, the corresponding event in OHte for t+ 1 has the same

probability. This is because, for a given time instance, any event corresponding

to v is independent of events corresponding to any other node v′ at time t + 1,

since the state of v at time t+ 1 depends only on the system state at time t.

Case 1. I → I Consider the event where v is in state I in OG at t and it

remains in this state at time t + 1. By model definition, the probability of this

event is 1. In OHte , the corresponding event is,

(i) σHte(vt, t) = I,

(ii) σHte(vt+1, t) = S, and

(iii) σHte(vt+1, t+1) = I. By induction assumption, (i) and (ii) are true. Since

the weight on edge (vt, vt+1) is 1, this event happens with probability 1.

Case 2. S→ S Suppose v is in state S in OG at t and it remains in this state

at time t+ 1. For this to occur, v should not be infected through any edge of the

form (v′, v, λ, t+1) at time t+1. Let E(v,OG, t+1) denote the set of such edges.

By model definition, the probability of this event is
∏

(v′,v,λ,t+1)∈E(v,OG,t+1)

(
1 −

w(v′, v, λ, t+ 1)
)
. In OHte , the corresponding event is,

(i) σHte(vt, t) = S and

(ii) σHte(vt+1, t+ 1) = S. By induction assumption, (i) is true.

By definition ofHte, probability that vt+1,0 is infected by the edge (v′t, vt+1,0, λ, t+

1) is w(v′, v, λ, t+1). This is equal to
∏

(v′,v,λ,t+1)∈E(v,OG,t+1)

(
1−w(v′, v, λ, t+1)

)
.

Case 3. S→ E Suppose v is in state S at time t and is infected at time t+ 1

through one or more edges from E(v,OG, t + 1). Let E ′ denote the set of such
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edges. The probability of this event occurring is
∏

(v′,v,λ,t+1)∈E′ w(v′, v, λ, t + 1).

The corresponding event in OHte is,

(i) σHte(vt, t) = I,

(ii) σHte(vt+1,0, t) = S, and

(iii) vt+1,0 is infected at time t+1 through edges in the setE ′′ = {(v′t, vt+1,0, λ, t+

1) | (v′, v, λ, t+ 1) ∈ E ′}.

By induction assumption, (i) and (ii) are true. By definition of Hte, prob-

ability that vt+1,0 is infected by the edge (v′t, vt+1,0, λ, t + 1) is w(v′, v, λ, t + 1).

Therefore, the probability that vt+1,0 is infected through all the edges in E ′ is∏
(v′,v,λ,t+1)∈E′ w(v′, v, λ, t+ 1).

Case 4. E → E Consider the event where v is in state E in OG at t and it

remains in this state at time t + 1. By model definition, this can happen only

if v was infected at t − r for some r ∈ [0, ` − 1]. Under this assumption, the

probability of this event is 1. In OHte , the corresponding event is,

(i) σHte(vt−r,r, t) = I,

(ii) σHte(vt−r,r, t) = S, and

(iii) σHte(vt−r,r+1, t+ 1) = I.

By induction assumption, (i) and (ii) are true. Since the weight on edge (vt−r,r, vt−r,r+1)

is 1, this event happens with probability 1 as well.

Case 5. E → I Consider the event where v is in state E in OG at t and

transitions to state I at time t+1. By model definition, this can happen only if v

was infected at t − `. Under this assumption, the probability of this event is 1.

In OHte , the corresponding event is,

(i) σHte(vt−`,`, t) = I,

(ii) σHte(vt+1, t) = S, and

(iii) σHte(vt+1, t+1) = I. By induction assumption, (i) and (ii) are true. Since

the weight on edge (vt−`,`, vt+1) is 1, this event happens with probability 1.
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For the special case of the SI diffusion process (` = 0), the proof follows by

replacing Case 3 (S→ E) with (S→ I) and ignoring Cases 4 and 5.

6.3.2 Group Intervention Algorithm

SpreadBlocking (Algorithm 2) is based on the sample average approxima-

tion (SAA) technique from stochastic optimization. Let {H1, . . . , HM} be the

set of M simulation outcomes corresponding to SIR process on Hte, where each

Hj = (Vte, E
j
te), such that Ej

te ⊆ Ete. We solve a linear relaxation of the IAS-

control problem, restricted to these samples, and the resulting objective value

is guaranteed to be close to the actual expected number of infections. Table 6.1

summarizes the quantities and variables used in the linear program, referred to

as LPτd .

Term Definition
M Number of simulation outcomes
Ste ⊆ Vte Fixed set of sources of infection ∀Hj

R(Hj) ⊆ Vte Set of nodes in Hj reachable from Ste via a directed
path

xq,τd = 1 if group Qq ∈ Q is intervened at time-step τd
yju,i = 1 if ui ∈ Vte is infected in Hj at time-step i (there is a

directed from Ste to ui in Hj), i.e., σHte(ui, i) = I.

yju,i,r = 1 if ui,r is infected in Hj at time-step i (there is a di-
rected from Ste to ui,r in Hj), i.e, σHte(ui,r, i) = I

zju = 1 if node ui or ui,r is infected in Hj (corresponds to u
being infected within T in G)

gm maximum number of groups to which the set of nodes
on any path in any Hj belong to. Typically, we ex-
pect gm << k

Table 6.1: Notation for SpreadBlocking algorithm

Let Q′ ⊆ Q be any intervention set for τd. Let Vte(Q′) = {vi, vi,r ∈ Vte |

g(v) ∈ Q′ and i ≥ τd}, be the set of nodes in Hj to which intervention Q′ applies.

Let V (Q′) = {v ∈ V | vi, vi,r ∈ Vte(Q′)} be the set of nodes in G to which

intervention Q′ applies. Let Hj − Vte(Q′) denote the subgraph of Hj induced by

removing all nodes in Vte(Q′) from Hj. Let Ij(Q′) = {v ∈ V | ∃i s.t. vi or vi,r ∈
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Algorithm 2 SpreadBlocking algorithm
Input: G = (V,E), set of sources S ⊆ V , budget B, time horizon T , intervention
delay τd
Output: intervention set QSB ⊆ Q
1: Construct time expanded network Hte from G
2: Construct M simulations of the SIR process
{H1 = (Vte, E

1
te), . . . ,H

M = (Vte, E
M
te )} with Ste = {u0 | u ∈ S} as sources on

the time-expanded network H corresponding to SEI process on G (as described in
Section 6.3.2)

3: Solve the linear program LPτd defined as follows:

(LPτd) min
1

M

∑
j

∑
u

zju

∀i < τd, ui, ui,r ∈ R(Hj) : yju,i = 1, yju,i,r = 1

∀ui, ui,r ∈ R(Hj) : zju ≥ yju,i, zju ≥ y
j
u,i,r

∀(vi−1, ui,0) ∈ Ejte : yju,i,0 ≥ yjv,i−1 − xg(u),τd
∀(ui,r, ui,r+1) ∈ Ejte : yju,i,r+1 ≥ yju,i,r − xg(u),τd
∀(ui−`,`−1, ui) ∈ Ejte : yju,i ≥ yju,i−`,`−1 − xg(u),τd
∀(ui−1, ui) ∈ Ejte : yju,i ≥ yju,i−1 − xg(u),τd

∀i ≥ τd, ∀ui, ui,r ∈ R(Hj) : yju,i ≤ 1− xg(u),τd
yju,i,r ≤ 1− xg(u),τd∑

Qq∈Q
xq,τd ≤ B

All variables ∈ [0, 1]

4: (Rounding) Let x,y, z be the optimal fraction solution to LPτd . Round it to an
integral solutionX,Y, Z using the following rounding procedure: (i) For eachHj , ui,
set Y j

u,i = 1 if yju,i ≥ 1
2 . Similarly, for each Hj , ui,r, set Y j

u,i,r = 1 if yju,i,r ≥ 1
2 . (ii)

For each Hj , u ∈ V , set Zju = 1 if zju ≥ 1
2 . (iii) For each Qq ∈ Q, set Xq,τd = 1

if xq,τd ≥ 1
2gm

where gm, such that gm ≤ k is the maximum number of groups

associated with the set of nodes on any path in any Hj .

5: return QSB = {Qq | Xq,τd = 1}

R(Hj −Vte(Q′))} denote the number of infections (nodes still reachable from Ste

in Hj) in V . Let I(Q′) = 1
M

∑
j I

j(Q′) denote the average number of infections

in V restricted to the M simulations.

Let Q̂opt = argminQ′′ I(Q′′) be an intervention set that achieves the minimum

average number of infections on the simulations. Then, let Iopt = infT(V (Q∗)),
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i.e, the expected number of infections achieved by an optimal solution Q∗ to the

given instance of the IAScontrol.

We first show that the average number of infections I(Q′) achieved by any

intervention setQ′ restricted to the M simulations is close to the expected number

of infections infT(Q′) for that intervention set.

Lemma 18. Let the number of groups |Q| = k ≥ 2. If M ≥ 24nk log k, with

probability at least 1 − 1
k
, for any intervention set Q′ ⊆ Q, we have I(Q′) ∈

[1
2

infT(V (Q′)), 3
2

infT(V (Q′))].

Proof. From equivalence in Section 6.3.1, we have,

E[I(Q′)] = E[Ij(Q′)] = infT(V (Q′)) (6.1)

The Ij(Q′) variables are independent and Ij(Q′)
n
∈ [0, 1] where |V | = n is the

number of nodes in G. Using Chernoff bound in Theorem 1.1 of [23] to M Ij(Q′)
n

,

we have

Pr
(Ij(Q′)

n
6∈
[M

2n
infT(V (Q′)), 3M

2n
infT(V (Q′))

])
≤ 2exp(− M

12n
infT(V (Q′)))

(6.2)

Since, there is at least one infection (sources are assumed to be infected as

they cannot be intervened), we have infT(V (Q′)) ≥ 1. This probability is at

most 2e−2k log k = 2
k2k

. The number of possible intervention sets Q′ is at most 2k

(there is a one-to-one mapping between a group Q ∈ Q and associated V ({Q})).

Therefore, for M = 24nk log k, the probability that there exists an intervention

set Q′ ⊆ Q such that I(Q′) 6∈ [1
2

infT(V (Q′)), 3
2

infT(V (Q′))] is at most 2k 2
k2k
≤ 1

k

for k ≥ 2.

Let ILPτd denote the integral version of LPτd , i.e., with all variables required

to be in {0, 1}. Below, we show that ILPτd is valid
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Lemma 19. For every feasible intervention set Q′ ⊆ Q, there exists a feasible

integral solution x̄, ȳ, z̄ to ILPτd such that 1
M

∑
j

∑
u z̄

j
u = I({Qq : xq,τd = 1}). If

x̄, ȳ, z̄ is an optimal solution to ILPτd, I(Xopt) = 1
M

∑
j

∑
j z̄

j
u.

Proof. Given a feasible intervention set Q′. Let us define xq,τd = 1 for each Qq

if Qq ∈ Q′ and xq,τd = 0 otherwise. Let us define yju,i = 1 (resp. yju,i,r = 1) if

ui ∈ R(Hj − V (Q′))) (resp. ui,r ∈ R(Hj − V (Q′))) (set of nodes reachable from

Ste can be computed by a BFS from Ste). Now, define zju = 1 if ∃ some i s.t.

yju,i = 1 or yju,i,r = 1. We have,

Ij(Q′) = |R(Hj − V (Q′))| =
∑
j

zju (6.3)

Consider a path P from some s0 ∈ Ste to a node ui,0 ∈ R(Hj − V (Q)).

For the edge (vi−1, ui,0) ∈ Ej
te, where i ≥ τd, by construction, we have yju,i,0 ≥

yjv,i−1 − xg(u),τd (since yju,i,0 =1) for every vi−1 that has a directed edge into node

ui,0, which implies that the corresponding edge-constraint in LPτd is satisfied.

Now, consider a node ui,0 6∈ R(Hj − V (Q)) and i ≥ τd, if ui,0 has an edge from

a node in R(Hj − V (Q)), it must be that g(u) ∈ Q′, otherwise ui,0 would be

infected (i.e, reachable from Ste by this path). This implies that xg(u),τd = 1 and

the constraint is satisfied.

With similar arguments, we can show that the other constraints are satisfied.

Since Q′ is a feasible intervention set to the IAScontrol problem, we have

|Q′| ≤ B. The budget constraint in ILPτd is satisfied as
∑

Qq∈Q xq,τd ≤ B by

construction.

The converse follows with a similar argument. Additionally, we will need the

property that if yju,i,0 = 1 for node ui,0, then there is a path P from Ste to some

node ui,0 with all y variables corresponding to nodes on path having value 1.

This is satisfied by the edge constraints in LPτd (adding all the constraints on

the edges on path P gives this constraint).
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Lemma 20. For any Hj, and any node ui ∈ Vte with yju,i <
1
2

(resp. for ui,r ∈ Vte
with yju,i,r <

1
2
), rounding in SpreadBlocking algorithm ensures that the node

ui (resp. ui,r) is not reachable from Ste in Hj − Vte(QSB), where QSB is the

intervention set computed by the algorithm.

Proof. Let Pui,j be the set of paths from Ste to node ui in Hj. Let Uτd(P ) denote

the set of nodes on path P at distance τd or more from Ste. Let us denote

Gτd(P ) ⊆ QSB to be the groups to which nodes in Uτd(P ) belong.

We will prove the statement for ui ∈ Vte (a similar argument works for ui,r

case). Given yju,i <
1
2
, by rounding in SpreadBlocking we have Y j

u,i = 0 (i.e.,

ui is not infected in Hj). A node is uninfected in Hj if and only if for every path

P ∈ Pui,j at least one group inGτd(P ) is inQSB, i.e., ui is not reachable from Ste in

Hj − V (QSB). This corresponds to the constraint
∑

Qq∈Gτd (P ) xq,τd ≥ 1− yju,i > 1
2

(this path-based constraint could be obtained from the edge constraints in LPτd

by adding all the constraints on the edges on path P ).

Assume for the sake of contradiction that none of the groups in Qq ∈ Gτd(P )

have xq,τd ≥ 1
2gm

. Then, we have
∑

Qq∈Gτd (P ) xq,τd <
1
2

as there could be at most

gm groups for any path where each Qq ∈ Gτd(P ) has xq,τd < 1
2gm

. This is a

contradiction as a feasible solution to LPτd satisfies this constraint. Therefore,

for a node ui ∈ Hj, on each path P ∈ Pui,j there exists some group Qq ∈ Gτd(P )

with xq,τd ≥ 1
2gm

implying that some Qq ∈ Gτd(P ) is in QSB.

Lemma 21. Let QSB = {Qq | Xq,τd = 1} be the intervention set computed by

SpreadBlocking algorithm, then we have |QSB| ≤ 2gmB.

Proof. The rounding procedure in SpreadBlocking scales each xq,τd variable

by a factor at most 2gm. Therefore,

|QSB| =
∑
Qq∈Q

Xq,τd ≤
∑
Qq∈Q

2gmxq,τd ≤ 2gmB (6.4)
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The first inequality follows from the rounding and the second inequality follows

from the budget constraint in LPτd .

Theorem 22. Let M ≥ 24nk log k. Let QSB be the intervention set computed

by SpreadBlocking algorithm. Then with probability 1 − 1
k
, infT (V (QSB)) ≤

6 infT (V (Q∗)) where Q∗ ⊆ Q is an optimal solution for the given instance of

IAScontrol, and |QSB| ≤ 2gmB.

Proof. By Lemma 20, our rounding ensures that any node ui ∈ Vte (resp. ui,r ∈

Vte) with yju,i <
1
2

(resp. yju,i,r <
1
2
) will be disconnected from Ste in Hj. Since,

for any u ∈ V , zju ≥ yju,i, y
j
u,i,r for all i ≤ T , zju ≥ 1

2
if there exists some i such

that yju,i ≥ 1
2

or some (i, r) yju,i,r ≥ 1
2
. Therefore, from Lemma 20 it follows that,

node u is disconnected from Ste in Hj if Zj
u = 0.

Then, for all Hj,

Ij(QSB) = |{u | Zj
u = 1}| =

∑
u

Zj
u ≤

∑
u:zju≥ 1

2

2zju ≤ 2
∑
u

zju (6.5)

Then,

I(QSB) =
1

M

∑
j

Ij(QSB) ≤ 1

M

∑
u,j

2zju ≤ 2I(Q̂opt)

The last inequality follows since the LPτd solution is a lower bound on I(Q̂opt).

Furthermore, we have I(QSB) ≤ 2I(Q̂opt) ≤ 2I(Q∗), by definition of Q̂opt. By

Lemma 18, with probability 1− 1
k

we have I(Q∗) ≤ 3
2

infT (V (Q∗)) and 1
2

infT (V (QSB)) ≤

I(QSB). This implies 4I(Q∗) ≤ 6 infT (V (Q∗)) and infT (V (QSB)) ≤ 2I(QSB). By

Lemma 21, we have |QSB| ≤ 2gmB. Putting all this together with probability

1− 1
k
, we have

infT (V (QSB)) ≤ 2I(QSB) ≤ 4I(Q∗) ≤ 6 infT (V (Q∗)) (6.6)

and |QSB| ≤ 2gmB.

105



Chapter 6 Group Interventions to Control IAS Spread

6.4 Framework to extend saaRound approach to

other epidemic models

Based on the ideas developed in the approach used for IAScontrol, particularly,

the results of the equivalence theorem (Theorem 17), we formulate a framework

to extend our approach to other epidemic models that follow SIR (or SEIRS)

class dynamics. We present this simple framework in this section.

Step 1

Represent the epidemic 
model that follows SEIRS-
class dynamics on given 

network as an SIR process 
on an auxiliary network

Techniques: 
- Time-expanded networks

- Establish equivalence 
between processes

Step 2

Solve the intervention 
problem for the SIR 

process on the auxiliary 
network

Techniques: 
- SAA

- LP relaxation 
- Rounding

Input/assumptions

Network
Epidemic model
Model parameters

Auxiliary network

Figure 6.3: Framework for controlling spread in epidemic models that follow SIR
class dynamics.

Our framework to solve control problems on complex epidemic models that

follow SIR-class dynamics consists of the following two main steps:

(Step 1.) Represent the dynamics of the given epidemic model as a SIR

process. This can be achieved by the notion of auxiliary graphs such as time-

expanded networks. Show the equivalence between the process (corresponding

to the given epidemic model) on the given network and a SIR process on the

auxiliary graph constructed in this step.

(Step 2.) Solve the problem of designing interventions for the SIR process

on the auxiliary graph generated in Step 1. This can be solved by adapting the

saaRound approach. Compute M sampled outcomes of the SIR process on this
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auxiliary graph. Formulate an Integer Linear Program (ILP) for the intervention

problem on the M samples. Solve the corresponding LP relaxation and round

the fractional optimal solution thus obtained to obtain the intervention set.

6.5 Experiments

We conducted experiments on several real-world networks. The main objective of

our experiments (relevant to this dissertation) was to evaluate the performance

of SpreadBlocking.

We compared our algorithm against popular baselines with respect to effec-

tiveness in minimizing the spread. We studied its performance relative to the LP

solution (which gives a lower bound on optimum for the instance) to compare

with the approximation ratios established in Section 7.2.

Also, we evaluated our algorithm by comparing it to the targeted (or node)

intervention case, where each node belongs to its own distinct group.

Datasets. Table 6.2 presents a summary of all networks used in our experi-

ments. These were constructed by McNitt et al. [61] and are publicly accessible.

We used the values 2 and 500 for the distance function exponent and cut-off

respectively. These were among the best model parameters obtained after cali-

bration in their work.

Each network has groups containing, on average, about 20–30 nodes capturing

key urban and producing areas. For most datasets (each corresponding to data

from a country), a significant portion of the nodes does not belong to any group.

Therefore, such nodes will not be considered for the interventions. However, these

nodes together cover less than 20% of the total production and population in each

country.
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Table 6.2: List of networks used and their attributes.

net. name nodes edges groups gp. edges

BD Bangladesh 211 6846 7 141
ID Indonesia 3296 110640 35 2181
PH Philippines 673 20108 16 450
TH Thailand 738 27666 5 48
VN Vietnam 503 16746 15 426

Experimental setup. The parameter values of the multi-pathway model were

chosen to cover the best models with the highest fit to ground truth. The param-

eters used in our experiments are stated in the plots, for a detailed list of suitable

parameters (a full factorial design of the experimental study), we refer to [90].

Each simulation was run for T = 24 time steps corresponding to a time-

horizon of two years. Seeding scenarios were picked from McNitt et al. [61]. We

also added a few more seeding scenarios for more counterfactual experiments. For

performance evaluation, we used the mean number of infections across simulation

instances as the metric for time horizon T = 24.

We compared SpreadBlocking to several baselines for different B and τd val-

ues. In each case, the average fraction of nodes infected was used as the metric for

evaluation. The following baselines are used for comparison with our algorithm:

1. Maximum outflow : This method corresponds to ordering groups by outflow

in the group-to-group network (similar to the degree-based method for undirected

graphs). Then, pick the top B groups with highest maximum outflow. This

method is often used in the invasive species literature [61, 70]. In this case, we

considered the annual outflow by aggregating the outflows across different months.

2. Vulnerability [83]: This method is based on idea in experimental study of

saaRound algorithm. We observed that the number of nodes infected in each

group at time step 12 (i.e., halfway in our time horizon) and picked B most

vulnerable groups.

Both these baselines were implemented by our collaborators.

We also considered the objective value of the relaxed ILP corresponding to
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SpreadBlocking. Recall that since SpreadBlocking is a bi-criteria approx-

imation algorithm, for a given budget B, the solution of the algorithm uses a

budget B′ ≥ B. We considered two objective values of the relaxed program:

(i) LP-LB (LB for lower bound) is the objective value corresponding to bud-

get B′ and

(ii) LP-BCA (BCA for bi-criteria approximation) is the objective value cor-

responding to budget B.

LP-LB serves as a lower bound for the expected number of infections for the

integral solution, which uses a budget of B′. LP-BCA is used to evaluate the

algorithm with respect to the bounds established in Theorem 22.

Rounding schemes. In SpreadBlocking algorithm, the xq,τd variables in

the fractional optimal solution to LPτd are scaled by a factor 2gm, and rounded

to 1 if the resulting value after the scaling is at least 1. The term gm corresponds to

the maximum number of groups associated with nodes on any path in any sampled

graph Hj. To obtain the value of gm is computationally intensive. Therefore, we

use some small constant c as a “surrogate” for the factor 2gm. Then, for each

value of c we will have a different rounding scheme. Considering c ∈ {3, 4, 8},

we notice that the budget violation is higher for higher values of c. Therefore,

as c increases, the number of infections tends to be low as well. We found the

best balance in this trade-off between budget violation and minimization of the

number of infections at c = 4. We used this value throughout our experiments.

Performance evaluation. Representative results for two networks are in Fig-

ure 6.4, one corresponding to increasing budget B for a fixed τd and the other

corresponding to increasing intervention delay τd for a fixed B. The number of in-

fections for unmitigated spread is also plotted. We observed consistently superior

performance of SpreadBlocking algorithm against the baselines. In particu-

lar, for lower τd, SpreadBlocking performed much better than other strategies.
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Figure 6.4: Comparison of algorithm with respect to budget and intervention
delay. Some representative plots are given. The titles contain the following
information in the order in which they are mentioned: network, budget/delay,
seeding scenario, and pathway parameters.

We note that for lower budgets and delay, the performance was better suggest-

ing that the solutions provided by SpreadBlocking for early intervention were

significantly better than given by other schemes. However, at lower budget, we

also noticed that the difference between LP-LB and our algorithm is high, moti-

vating further study of rounding techniques for low budget instances. To further

analyze across various networks, model parameters, and seeding scenarios, we

compared the ratio of mean infections corresponding to SpreadBlocking and

that for each baseline. These results are presented in Figure 6.5(a). We observed

that in most cases SpreadBlocking performed significantly better than Max.

overflow. This is because the maximum overflow strategy does not account for

seeding scenarios. We also observed that it is better than the vulnerability-based

strategy indicating that it is not always advisable to intervene only at localities

that are at high risk of invasion.

Comparison with LP solution. In Figure 6.5(a), we compared the interven-

tion benefit obtained with that of LP-LB and LP-BCA. Compared with LP-BCA,

we observed that SpreadBlocking had much better approximation guarantees

in practice, which is also much better than the bounds in Theorem 22. For most

cases, the approximation factor (w.r.t LP-BCA) was less than 1.5. Even when
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compared to the lower bound LP-LB, we noticed that for almost all cases, the

approximation factor was around 1.6 indicating that the performance is near-

optimal for the considered networks and scenarios. Figure 6.5(b) corresponds to

budget violation given by the ratio of the budget of the solution provided by the

algorithm to the given budget. Since SpreadBlocking is a bi-criteria approxi-

mation algorithm, the solution provided can violate the budget constraints. We

observed this phenomenon in all these experiments as well. In most cases, the

budget violation was at most 2. This ratio went down further with the increase

in budget. Occasionally, we also observed that the given budget is higher than

what is required, leading to a solution with fewer groups as intervention set.

Max. overflow

Vulnerability

LP-BCA
LP-LB

0.5

1.0

1.5

2.0

#SpreadBlocking/#Baseline

(0, 4] (4, 8] (8, 12] (12, 16] (16, 20]
Budget

0.5

1.0

1.5

2.0

2.5

3.0

Budget(SpreadBlocking)/Given Budget

Figure 6.5: (a) Summary of performance of SpreadBlocking across networks,
model parameters, seeding scenarios, budget and intervention delay. (b) Budget
violation with respect to user given budget B.

Comparison with targeted intervention. The goal in this experiment was

to assess group-scale interventions with better performing yet difficult-to-implement

individual-based (or targetted) interventions. In Figure 6.6, we compared the two

types of interventions for one country. Since each group on average has around 20

nodes, for the sake of comparison, we expressed the results for the group-scale in-

tervention in terms of the number of nodes intervened at (# groups × avg. nodes

per group in the network). We observed that the performance of group-scale

interventions was comparable to individual-based interventions.

111



Chapter 6 Group Interventions to Control IAS Spread

Figure 6.6: Comparison of group-based and individual-based interventions for
the parameter set: αs ∈ 300, α` ∈ 0.2, α`d ∈ 50, Moore range rM = 1, start
month = 5.

Computation time and scalability. SpreadBlocking algorithm scaled

well for all the networks considered in our experiments. However, for certain

instances of BD, it took longer (≈ 15 mins), due to the solution space as well

as the number of infections resulting in the simulations. The main bottleneck in

this algorithm too is solving LPτd , but using pruning techniques reduced LPτd

program size, thereby speeding up the algorithm.
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Scalable Algorithms for

EpiControl Problem

This chapter presents scalable algorithms for the EpiControl problem. We

identified that using the LP solver is the main bottleneck in saaRound algo-

rithm as the linear program will have n+ nM variables and
∑

j |Ej| constraints.

We overcome this bottleneck by using the Multiplicative Weights Update (MWU)

method along with the sample average approximation (SAA) technique to ap-

proximately solve the LP. Further, we provided a memory-efficient version of this

algorithm that allows it to scale to large networks — corresponding to country-

size populations — with over 300 million nodes and 30 billion edges.

7.1 Summary of Results

• We designed MwuRound algorithm that substantially improves the ap-

proach of [83] for finding near-optimal vaccination strategies in networked

SIR models. (Section 7.2). This algorithm relies on a subroutine, LSearch-

Saa which adapts the multiplicative weights update (MWU) and the sam-

ple average approximation techniques to compute an approximate solution

to the LP relaxation of the problem instance. By a careful implementation

113



Chapter 7 Scalable Algorithms for EpiControl Problem

of MWU, and exploiting the structure of samples, we were able to further

improve the running time by an order of magnitude.

• We designed a scalable and memory-efficient version of MwuRound, re-

ferred to as MwuRound-Scalable. This algorithm doesn’t store all the

samples for SAA in memory and instead runs the MWU computations on

random samples computed on the fly. We showed that this is an improve-

ment over MwuRound-Scalable both in terms of memory and runtime.

• We evaluated the performance of our methods on a number of real and

synthetic networks. We showed that our algorithm scales to a national

scale network containing over 334M nodes; runs in a couple of days without

memory issues. Further, we showed that these methods have good approx-

imation guarantees in practice, thus providing a highly scalable approach

for designing interventions in networked SIR models.

7.2 Algorithm

Notation Definition
Hj = (VHj , EHj) augmented sampled graph
a(u, j) copy of node u, referred to as a stub, attached to u in Hj

A(j) set of stub nodes in Hj

Pv,j set of paths from S to stub v = a(u, j) in Hj

Pj set of paths from S to all stubs in A(j)
P =

⋃
j∈[M ]Pj, i.e., set of all paths

`(u) length of node u
`(v) for v = a(u, j) length of a stub node a(u, j)
`(P ) for P ∈ P sum of lengths of nodes (including stub node) in path P
z(P ) flow on path P

Table 7.1: Summary of notation for MwuRound algorithm

We improve the saaRound algorithm [83] presented in Chapter 4 by bypassing

the need to use a solver to directly solve the LP. Instead, we adapt the technique

of the Multiplicative weight [4] to find a near-optimal solution to the LP. It will
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be easier to present the LP in a slightly different form. Let yvj be an indicator

whether the node v gets infected in the sampled outcome H ′j. Let P ′v be the set

of paths from S to node v in any outcome H ′j for j ∈ [M ].

(LPpath) ZLP = min
1

M

∑
j

∑
v∈VH′

j

yvj s.t. (7.1)

∀v ∈ VH′j \ S,∀P ∈ P
′
v ,
∑
u∈P

xu + yvj ≥ 1 (7.2)∑
u∈V

xu ≤ B (7.3)

xu, yvj ∈ [0, 1] (7.4)

By adding up the constraints for each edge LPsaa on a given path, it can be

verified that we get the constraint (7.2) of LPpath, which is summarized below.

This is summarized in the following observation.

Observation 23. The above LP is equivalent to LPsaa.

Main ideas and steps. Algorithm MwuRound (Algorithm 5) is our main

algorithm; it uses Algorithm LSearch-Saa (Algorithm 4) which in turn uses

Algorithm MwuSaa (Algorithm 3) as a subroutine. The main ideas underlying

the algorithm are summarized below.

1. Lagrangian multiplier for budget : The dual of LPpath is complicated

due to a negative coefficient associated with the budget constraint (7.3). We

simplify it by changing the objective to 1
M

∑
j

∑
v∈VH′

j

yvj + λ
∑

u∈V xu, with the

multiplier λ for the cost of the solution. The budget constraint is dropped; we

refer to this LP as LPLM . This simplifies the resulting LP, since it only has

covering constraints. As λ increases,
∑

u xu will decrease in the optimal solution.

Since values for λ are not known a priori, a binary search can be employed to find

a suitable value such that
∑

u xu ≤ B, which is done in Algorithm LSearch-

Saa. The x′, y′ values returned by Algorithm 3 for λ′ provides an approximate

solution to LPsaa.

115



Chapter 7 Scalable Algorithms for EpiControl Problem

2. Constructing augmented sampled graphs. For simplifying the pre-

sentation, we construct M sampled graphs Hj = (VHj , EHj) in the following man-

ner: Hj is initially the same as H ′j, constructed as in the first step of saaRound.

Let A(j) = {a(u, j) : u ∈ VH′j − S}, where a(u, j) denotes a copy of node u in

Hj, and is referred to as a stub. Let A =
⋃
j∈[M ]A(j) be set of all stubs. Each

stub a(u, j) is attached to u by an edge (u, a(u, j)). Overloading the definitions,

let Pv,j denote the set of paths from S to a stub node v = a(u, j) ∈ A(j) in Hj.

Let Pj =
⋃
v∈A(j)Pv,j and P =

⋃
j∈[M ]Pj.

Figure 7.1: Example showing two samples H1, H2, and stub nodes denoted by
a(v, j) where v is a node in G and j refers to the ID of sample Hj.

3. Variables and costs. We associate a length to each node u ∈ (V −

S)
⋃

A denoted by `(u). For a node u ∈ V , `(u) will correspond to the variable

xu, while for a node v = a(u, j) ∈ A, `(v) will correspond to the variable yuj. The

length of any path in P ∈ P is given by the sum of lengths of nodes on this path.

Let ` = 〈`(u) : u ∈ V ⋃A〉 denote the vector of length variables. Let c(u) = λ

for u ∈ V \ S denote its capacity, whereas c(u) = 0 for u ∈ S. Let c(v) = 1
M

for

v = a(u, j) ∈ A denote the capacity of a stub v. We will keep track of flows on

the network; let z(P ) denote the flow on the path P ∈ P . Let z = 〈z(P ) : P ∈ P〉

denote the vector of flow variables.

116



Chapter 7 Scalable Algorithms for EpiControl Problem

4. Simplified LP. Based on the above discussion, we will be solving the

following LP, denoted by LP`(λ)

ZLR(λ) = min
∑
u

`(u)c(u) s.t.

∀P ∈ P
∑

u∈P−S

`(u) ≥ 1

∀u : `(u) ≥ 0

5. Incremental computation of `(·). Algorithm MwuSaa computes an

approximate solution to LP`, using the multiplicative weight update technique [4].

It starts by initializing the length `(v) = δ for each u ∈ (V \S)
⋃

A, where δ has

a very small value determined in the analysis. The `(v) for v ∈ S is initialized

to zero. Also, for each u ∈ V − S, we set a capacity c(v) = λ, whereas for

v ∈ A the capacity c(v) = 1
M

. In each iteration r of the algorithm, and for each

augmented sampled graph Hj, we update the lengths of nodes on the paths in Pj
corresponding to an augmented sampled graph Hj until all the paths in Pj have

length at least δ(1 + ε)r — this value is referred to as threshold(r) for the rth

iteration. The algorithm terminates after rmax = blog1+ε
1+ε
δ
c iterations. Since,

the threshold(rmax) for the rmax iteration is in [log1+ε
1+ε
δ
− 1, log1+ε

1+ε
δ

], we are

guaranteed that, at termination, all paths in P are of length in range [1, 1 + ε],

thereby satisfying the constraints of the linear program.

7.2.1 Analysis

First, we show below that Algorithm MwuSaa gives a (1 + 4ε)-approximate

solution to LP`(λ) (Theorem 27). The number of iterations and the total running
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Algorithm 3 MwuSaa (λ)
Input: parameter λ (we assume the network G = (V,E), S, subgraphs
H1, . . . , HM , ε are fixed,
δ = (1 + ε)((1 + ε)L)−

1
ε where L is the maximum number of nodes on any path

in G)
Output: `

1: Initialize `(u) = δ for all u ∈ (V − S) ∪A,
z(P ) = 0 for all P ∈ P .

2: Set c(u) = λ for u ∈ V − S and c(v) = 1/M for v ∈ A
3: for r = 1 to blog1+ε

1+ε
δ
c do

4: for j = 1 to M do
5: while there exists path P ∈ Pj such that `(P ) < δ(1 + ε)r do
6: Let c(P ) = minu∈P c(u)
7: Let d ≥ 1 be the smallest integer such that∑

v∈P−S `(v)
(

1 + εc(P )
c(v)

)d
≥ δ(1 + ε)r

8: z(P )← z(P ) + d · c(P )

9: For v ∈ P − S, `(v)← `(v)
(

1 + εc(P )
c(v)

)d
10: end while
11: end for
12: end for
13: Scale ` values such that `(v) = `(v)

`max
where `max = maxu∈V \S `(u)

14: Return `

Algorithm 4 LSearch-Saa(M,B)

1: Set λ = 1
MB

2: ` = MwuSaa(λ)
3: while

∑
u∈V \S `(u) > B do

4: λ = 2 ∗ λ
5: ` = MwuSaa(λ)
6: end while
7: return `

Algorithm 5 MwuRound(G,S,M,B, p, ε)

1: ` = LSearch-Saa(M, B)
2: Using the randomized rounding in [83], round the fractional solution ` to an

integral solution X
3: X = {u : u ∈ V \S and X(u) = 1} is the set of nodes picked for intervention

4: return X
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time are summarized in Lemmas 24 and 25. Then, we show that MwuRound,

by following the same rounding approach as in saaRound, gives a bicriteria

approximate solution to EpiControl problem by losing only a factor of (1+4ε).

Lemma 24. Algorithm MwuSaa terminates after at most nM log1+ε
1+ε
δ

itera-

tions.

Proof. In each iteration, we increase the length of the minimum capacity node

along path P ∈ P by a factor of 1 + ε. For every node u ∈ V \ S ∪A, `(u) = δ

at the beginning of MwuSaa. The length of any variable at end of all iterations

is at most 1 + ε. The number of iterations in which any node is the minimum

capacity node on the path chosen in an iteration is at most log1+ε
1+ε
δ

(as the

length of each node starts with δ and can only be increased up to 1 + ε). We

say that a node is saturated when its length (given by the assignment) can no

longer be increased. There are a total n nodes and at most nM target nodes

(since each sampled graph can have up to n targets). Therefore, the number

of iterations needed for all variables corresponds to all nodes to be saturated is

nM log1+ε
1+ε
δ

.

Lemma 25. Let δ = (1 + ε)((1 + ε)L)−
1
ε . Then, the total runtime of Algorithm

MwuSaa is Õ( 1
ε2
nmM2).

Proof. Let Tsp denote the time taken by an algorithm to find single-source shortest

paths. Since there are exactly M samples, we need to use this algorithm M

times per iteration r of MwuSaa. Using dijkstra’s algorithm for shortest path

computation, we have Tsp = O(m). From Lemma 24, we know that MwuSaa

needs at most nM log1+ε
1+ε
δ

iterations. Therefore, the total runtime is

O(nmM2 log1+ε
1+ε
δ

). By setting δ = (1 + ε)((1 + ε)L)−
1
ε , where L could be O(n)

in the worst-case, the total runtime of Algorithm 1 is Õ(ε−2nmM2).

Lemma 26. Let gt be the total flow computed by Algorithm MwuSaa. Then,

there exists a feasible flow (i.e., a feasible solution to the dual) of value gt
log1+ε

1+ε
δ
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Proof. Consider any node u ∈ VHj
⋃
A(j) in Hj. For every c(u) units of flow

routed through u the value of `(u) increases by a factor of at least (1 + ε). Since,

the algorithm stops when all paths have length > 1, on the last update to `(u), the

shortest path considered in that iteration must be of length < 1. Any increase

in the value of `(u) is at most (1 + ε), therefore, at the end of the algorithm,

`(u) < 1 + ε. We know that, initially, `(u) = δ, therefore, the total flow through

u is at most c(u) log(1+ε)
(1+ε)
δ

. Therefore, by scaling the total flow gt by a factor

log(1+ε)
(1+ε)
δ

all the capacity constraints will be satisfied resulting in a feasible

flow.

Theorem 27. Let x∗,y∗ denote an optimal solution to LP`(λ). Let ` be the

solution returned by MwuSaa(λ). Then, x,y, defined as xu = `(u) for u ∈ V

and yv = `(v) for v ∈ ⋃j A(j), is a feasible solution to LP`(λ), and
∑

v c(v)`(v) ≤

(1 + 4ε)ZLR(λ).

Proof. Algorithm MwuSaa is an adaptation of algorithm 2.2 of [30], which cor-

responds to d = 1 in the while loop. We show that the same proof holds here as

well.

Let α(`) = minP∈P `(P ) denote the length of the shortest path with re-

spect to `, and let D(`) =
∑

u c(u)`(u). Let rmax = blog1+ε
1+ε
δ
c. Let βa =

minrmaxj=1 D(`j)/α(`j) be the lowest objective value to LP`(λ) obtained by MwuSaa

algorithm over all iterations. Note that βa is a feasible by definition of α. Let

`i(·) denote the length function at the end of the ith iteration of the while loop,

and let α(i) = α(`i), and D(i) = D(`i). For path P , let zi(P ) denote the flow at

the end of the ith iteration, and let gi =
∑

P zi(P ) denote the total flow at the

end of the ith iteration.

As in [30], we now consider how α(i) changes over iterations. Let P denote
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the path picked in iteration i. We have

D(i) =
∑
u

`i(u)c(u)

=
∑
u

`i−1(u)c(u) +
∑
u∈P

c(u)`i−1(u)
[(

1 +
εc(P )

c(u)

)d
− 1
]

= D(i− 1) +
∑
u∈P

c(u)`i−1(u)
[ d∑
j=1

(
1 +

εc(P )

c(u)

)j
−
(

1 +
εc(P )

c(u)

)j−1]
= D(i− 1) +

∑
u∈P

c(u)`i−1(u)
[ d∑
j=1

(
1 +

εc(P )

c(u)

)j−1((
1 +

εc(P )

c(u)

)
− 1
)]

= D(i− 1) + εc(P )
∑
u∈P

`i−1(u)
[ d∑
j=1

(
1 +

εc(P )

c(u)

)j−1]
= D(i− 1) + εc(P )

d∑
j=1

∑
u∈P

`i−1(u)
(

1 +
εc(P )

c(u)

)j−1

We use the fact that `i−1(u)
(

1 + εc(P )
c(u)

)j−1
is upper bounded by (1 + ε)α(i − 1)

to obtain

≤ D(i− 1) + εc(P )
d∑
j=1

(1 + ε)α(i− 1)

= D(i− 1) + εd · c(P )(1 + ε)α(i− 1)

= D(i− 1) + ε(1 + ε)(gi − gi−1)α(i− 1)

which, as in [30], gives

D(i) ≤ D(0) + ε(1 + ε)
i∑

j=1

(gj − gj−1)α(j − 1) (7.5)

Let γ denote the ratio of dual and primal solutions, i.e., γ = βa

gt
log1+ε

1+ε
δ

.

This is because gt/ log1+ε
1+ε
δ

is a feasible dual solution. From the proof as in [30],

we have the following upper bound on the βa

gt

βa

gt
≤ ε(1 + ε)

ln (δn)−1
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For ε < .15, substituting this bound in equation for γ, we obtain

γ =
βa

gt
log1+ε

1 + ε

δ
≤ 1 + 4ε.

The theoretical guarantees of MwuRound are summarized in Theorem 28.

Theorem 28. Let X denote the solution computed by Algorithm MwuRound

for a given ε > 0. If M = Ω(n2 log n), with probability at least 1/2, we have

E[#infections(X)] ≤ 6(1 + 4ε) E[#infections(X∗)], and |X| ≤ 12 log(4nMN)B,

where X∗ denotes an optimal solution.

Proof. From Theorem 27, we know that the fractional solution obtained by

MwuSaa is (1 + 4ε)-approximate solution for any λ. LSearch-Saa uses binary

search to obtain a (1+4ε)-approximate fractional solution for λ
′
that has

∑
u xu ≤

B. Since, we use the same rounding procedure from saaRound algorithm, from

Theorem 11, we have E[#infections(X)] ≤ 6(1 + 4ε) E[#infections(X∗)] and

|X| ≤ 12 log(4nMN)B.

7.2.2 Improving running time

Lemma 24 gives the same bound on the number of iterations as [30]. By exploiting

the problem structure (i.e., we have a set of sampled subgraphs), and better

data structures, the number of iterations can be made independent of M in the

following manner; the total running time improves by a factor of M , compared

with Lemma 25.

• Let R(e) denote the set of samples containing edge e.

• Consider an iteration in which a path P = s, v1, . . . , vk ∈ Pj is found, with

`(P ) ≤ δ(1 + ε)r and vk ∈ A(j)
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• We compute R =
⋂
e∈P R(e), the set of samples containing P .

• Perform updates for all the paths P ′ = s, v1, . . . , vk−1, a(vk−1, j
′) for j′ ∈ R.

The above modification to MwuSaa requires O(n log1+ε
1+ε
δ

) shortest path com-

putations, and has a total running time of Õ(ε−2nmM). This is summarized in

the lemma below.

Lemma 29. MwuSaa can be implemented using O(n log1+ε
1+ε
δ

) shortest path

computations, and has a total running time of Õ(ε−2nmM).

7.3 Improving the scaling and memory usage of

MwuSaa

Although MwuSaa scales to much larger networks than the LP solver, it is slow

on large networks and is not memory efficient, as it needs to stores all the M

sampled graphs in memory. The memory aspect can be handled by storing the

sampled graphs in files, so only one sampled graph is loaded in the memory at any

time. However, this solution does not improve the runtime. The main bottleneck

in MwuSaa is that in each iteration, the algorithm has to iterate over all the

M sampled graphs. Therefore, in this section, we present MwuScalable —

a memory-efficient and scalable version of MwuSaa. In our experiments, we

show that MwuScalable is able to scale to very large networks, corresponding

to state- and level populations as well as has good performance guarantees in

practice.

Main ideas in MwuScalable.

1. Generate random stubs. The intuition behind this approach is that

the actual samples do not matter, as long as we are able to generate the
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paths that would appear in these samples in each iteration of the algo-

rithm. Let the probability that u is reachable from S in a sampled graph

be denoted by sp(u), and is referred to as stub probability. This can be esti-

mated from our sampling process as follows: sp(u) ≈ reachable(u,S,M)
M

, where

reachable(u, S,M) denotes the number of samples in the M sampled graphs

in which u is reachable from sources S. At the start of MwuScalable,

we generate the random set of stubs Asp(u) for each node u as follows: for

each u ∈ V and j ∈ 1, · · · ,M , the stub a(u, j) is generated with probability

sp(u). Let Asp =
⋃
uAsp(u). The initial length `(v) = δ for each v ∈ Asp.

2. Generate sampled graphs on the fly. In every iteration r, we generate

only q �M sampled graphs, H ′j = (VH′j , EH′j) for j ∈ [1, q]. The algorithm

then works on one sampled graph at a time. Therefore, at any time, the

algorithm needs to store only one sampled graph in memory.

3. Phases and iterations of the algorithm. A phase of the algorithm

corresponds to loop on line 4 in Algorithm 6, i.e., phase r corresponds to

the rth phase where the threshold is threshold(r) = δ(1 + ε)r. In each

phase r, the algorithm perform several iterations (depending on parameter

q). Each iteration q of phase r, the algorithm generates a random sampled

graph H ′j. Then, attaches a random stub for each node reachable from

sources in H ′j to form Hj. Then, it iteratively updates lengths of paths in

the sampled graph Hj until all paths are of length at least threshold(r). Let

Pj be set of paths from S to a stub node in Hj. The algorithm terminates

after rmax = blog1+ε
1+ε
δ
c phases (same as MwuSaa).

4. Computation of y values. Some of the `(u) for u ∈ V could have a value

in [1, 1 + ε]. Therefore, to make the solution x feasible, we scale `(u) = `(u)
`max

where `max = maxu∈V `(u). Since the sampled graphs Hr generated in each

iteration are a combination of paths from many sampled graphs, the `(v)
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variables for v ∈ Asp will not be meaningful. Therefore, we use the `(u)

for u ∈ V obtained after scaling, and re-compute `(v) (corresponding to

yvj variables) for v = a(u, j) as follows: for each sampled graph H ′j, find

a shortest path tree of H ′j with S as sources using `(u) for u ∈ V \ S as

weights. For each u ∈ VH′j , let Puj be a shortest path to node u that has

length `(Puj). Then, for the stub v = a(u, j), we set `(v) = 1− `(Puj).

Algorithm 6 MwuScalable (λ)
Input: parameters λ and q ∈ [1,M ] (we assume the network G = (V,E), S, ε,
and δ are fixed)
Output: `

1: Generate set of random stubs Asp(u) for each u ∈ V − S as follows: a stub
a(u, j) for j ∈ {1, · · · ,M} is in A(u) with a probability sp(u). Let Asp =⋃
uAsp(u).

2: Initialize `(u) = δ for all u ∈ (V − S)
⋃

Asp, z(P ) = 0 for all P ∈ P .
3: Set c(u) = λ for u ∈ V − S and c(v) = 1

M
for v ∈ Asp.

4: for r = 1 to blog1+ε
1+ε
δ
c do

5: for j = 1 to q do
6: Generate a sampled graph H ′j = (VH′j , EH′j).

7: Construct Hj = (VHj , EHj) as follows: Hj is initially a copy of H ′j. For
each u ∈ VH′j , pick a stub vu uniformly at random from Asp(u). Then,

EHj = EHj ∪ {(v, vu)}.
8: while there exists path P ∈ Pj such that `(P ) < δ(1 + ε)r do
9: Let c(P ) = minw∈P c(w)

10: Let d ≥ 1 be the smallest integer such that∑
w∈P−S `(w)

(
1 + εc(P )

c(w)

)d
≥ δ(1 + ε)r

11: z(P )← z(P ) + d · c(P )

12: For each v ∈ P − S, `(v)← `(v)
(

1 + εc(P )
c(v)

)d
13: end while
14: end for
15: end for
16: for each v ∈ V − S, `(v) = `(v)

`max
where `max = maxv∈V \S `(v)

17: Recompute `(v) for each v = a(u, j) as follows: for each sampled graph H ′j,
find a shortest path tree of H ′j using ` as weights. For each u ∈ VH′j , let Puj
be a shortest path of length `(Puj). Then, `(v) = 1− `(Puj) for v = a(u, j).

18: return `

Lemma 30. The solution ` computed by MwuScalable is a feasible solution

to LP`(λ).
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Proof. First, `(u) for each u ∈ V \ S is scaled such that `(u) ≤ 1. By the

computation of `(v) values in last step of the algorithm, we guarantee that the

resultant ` gives a feasible solution.

7.3.1 Modification for a set of budgets

We consider the version of EpiControl where a set of budgets B = {B1, · · · , Bk}

are provided instead of a single budget B. Let us assume that the budgets in

set B are sorted in non-increasing order. We observe that as λ increases, the

fractional budget (
∑

u∈V `(u)) computed by MwuSaa (and MwuScalable)

decreases. Therefore, for Bi < Bj such that Bi, Bj ∈ B, the values of λ con-

sider by LSearch-Saa (and LSearch-Scalable) for Bi is a subset of λ values

that are considered for Bj. Therefore, to avoid such duplicate computations, the

starting value of λ for the budget Bi can be fixed as the λ value at termination

for Bj.

7.3.2 Parallel approach

LSearch-Scalable sequentially searches over the λ values. But, we notice that

this is an embarrassingly parallel task, as the computation for different λ values is

independent of each other. Therefore, we can search over many λ values in parallel

— this version of LSearch-Scalable is referred to as LSearch-Parallel.

Further details on the implementation are provided in Section 7.4

7.4 Experiments

We addressed the following questions in our experiments:

1. Performance. What are the empirical guarantees of our methods? How

does the performance of our approach compare to the baselines for this
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problem? When to choose this algorithm instead of saaRound or vice-

versa?

2. Impact of parameters. How do the runtime and solution quality of

our methods vary with changes in transmission probability p and error

parameter ε?

3. Scaling: How does the runtime of our approach grow with that of the

size of the network? Does our approach scale to networks corresponding to

state- and country-level populations?

4. Parallelism: What is the throughput of our parallel approach? How does

the runtime vary with the number of threads used?

7.4.1 Datasets and Methods

In our experiments, we considered networks of different classes and varying sizes

for the evaluation of the performance and scalability of our approach. Some of

these networks are earlier described in Chapter 4. The random network (PA1) is

based on the preferential attachment model [7] and the real-world collaboration

networks, such as CA-GrQc and CA-HepTh [56]), is mainly used to evaluate

the performance of our methods. We consider synthetic agent-based populations

for Montgomery county in Virginia, Portland city in Oregon, and Virginia state,

constructed based on first principles in [8,17,27]. These networks have been used

in various public studies [88] as well as in works on intervention algorithms [83].

These networks also have demographic information, for each node in the network,

such as age, income, location, etc. Finally, the networks Regional and US-size

— which are generated using many copies (5 and 44 respectively) of the Virginia

network, where the copies are connected by random edges — are mainly used for

the scalability study. The datasets are summarized in Table 7.2.
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Dataset Nodes Edges
Preferential1 (PA1) 1000 1996
CA-GrQc 5242 14496
CA-HepTh 9877 25998
Montgomery 75457 648667
Portland 2336693 8307767
Virginia 7605430 165533061
Regional 35024319 2068241728
US-size 334638920 32740251903

Table 7.2: Description of datasets

Methods and baselines. In our experiments, we consider the following methods

listed below:

• LSearch-Saa. Obtains a feasible fractional solution ` using the subroutine

MwuSaa.

• LSearch-Scalable. Obtains a feasible fractional solution ` using the

subroutine MwuScalable.

• LSearch-Parallel. Obtains a feasible fractional solution ` using the

subroutine MwuScalable for different λ values in parallel.

• MwuRound-Saa. Sequential version of MwuRound using LSearch-

Saa.

• MwuRound-Scalable. Sequential version of MwuRound using LSearch-

Scalable.

• MwuRound-Parallel. Parallel version of MwuRound using LSearch-

Parallel.

• saaRound [83]. This algorithm obtains a fractional solution using the LP

solver. Then rounds it to obtain an integral solution.

• Degree. The baseline that returns the set of B top-degree nodes in V \ S

as the intervention set.
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• No-Action. Baseline in which no interventions are performed. The num-

ber of infections is given by #infections(X) for X = ∅.

Performance measures. Below we describe the performance measures used in

our experiments.

1. Approximation ratio of a fractional solution `. We computed the

approximation ratio of a fractional solution ` obtained by a method, for a

given instance, as the ratio of the average number of infections 1
M

∑
j

∑
v yvj

resulting from ` to that of the LPsaa objective. So, this measure provides a

comparison of this method with saaRound.

2. Approximation ratio of the intervention set X. We computed the

approximation ratio of the integral solution X returned by a method, as the

ratio of #infections(X) to the optimal objective value of LPsaa, which is a

lower bound on the optimal objective value for the EpiControl instance.

Therefore, this ratio is an upper bound on the approximation ratio of our

methods.

3. Budget violation of the intervention set X. The budget violation (or

the budget approximation ratio) of X returned by a method is the ratio of

|X| to the given budget B.

In our experiments, we show the empirical performance guarantees of LSearch-

Saa and LSearch-Scalable. Since, LSearch-Parallel runs the same sub-

routine MwuScalable as LSearch-Scalable does, the empirical guarantees

shown for LSearch-Scalable also hold for this method.

Attack rate. The attack rate of an epidemic is the percentage of the population

infected. We consider any attack rate in the range 10% to 20% as a moderate

attack rate, whereas an attack rate > 20% is a high attack rate. On the other

hand, an attack rate < 10% is seen as a low attack rate.
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7.4.2 Performance.
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Figure 7.2: Comparison of approximation ratios of fractional solutions obtained
by LSearch-Saa and LSearch-Scalable. The X-axis corresponds to the
error parameter ε. B = 50.
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Figure 7.3: Impact of transmission probability p on approximation ratio of frac-
tional solution obtained by LSearch-Scalable. The value of ε is set to 0.015.

Approximation ratio of fractional solutions. Figure 7.2 shows that the

approximation ratio of the fractional solution ` obtained by LSearch-Saa is

within 1.2 (i.e., its objective value is 1.1 × that of the optimal value of LPsaa

objective), even for ε = 0.15.

In comparison, the approximation ratio of the fractional solution obtained by

LSearch-Scalable is at most 1.3 (Figure 7.2) for an epsilon value of 0.04. We

note that the approximation ratio goes up to 1.7 for ε = 0.15, which is within a

factor of (1 + 5ε).

Figure 7.3 shows that LSearch-Scalable has significantly better performance

for small values of ε. The performance of LSearch-Scalable is better on higher
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p values on the collaboration networks. The approximation ratio of the fractional

solution obtained by LSearch-Scalable is at most 1.12 × the optimal for all

the p values and overall the networks considered in this experiment.
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Figure 7.4: Montgomery. Runtime comparison: MwuRound-Scalable vs
saaRound

7.4.3 Runtime performance.
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Figure 7.5: Runtime comparison of LSearch-Saa and LSearch-Scalable.
The X-axis corresponds to the error parameter ε and the Y-axis corresponds to
the runtime in seconds.

Figure 7.5 shows that for smaller values of ε, the runtime of LSearch-

Scalable is about 1
50
× that of LSearch-Saa.

Figure 7.6 presents the runtime performance of LSearch-Scalable on var-

ious networks. The runtime reported here is for a single λ value and a moderate

attack rate, except for the US-size network for which a high attack rate (> 40%)

is chosen. The total runtime taken by the algorithm on an instance of the dataset
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Figure 7.6: Runtime of LSearch-Scalable for a fixed λ and a medium attack
rate (10-20% infections in population)
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Figure 7.7: Number of outer loop iterations in LSearch-Scalable (i.e., no. of
λ values needed to satisfy the budget constraint) for each budget B.

can be estimated by the run-time on any particular λ. The number of λ values

considered by MwuRound-Scalable algorithm determines the runtime of both

the sequential and the parallel versions of the algorithm. Figure 7.7 shows the

depth of λ search for instances on different networks. As expected, the number

of λ values considered decreases with the increase in the budget B. LSearch-

Scalable ran within a few minutes (< 15 minutes averaged over a few runs), for

a fixed λ value, on the Portland network for problem instances with a moderate

attack rate, whereas it ran about 2 hours and 9 hours on Virginia and Regional

networks respectively. Finally, it ran in just about 2 days on the US-size network

which has over 334 million nodes and 32 billion edges — for instance with a high

attack rate.
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7.4.4 Parallel Implementation

Figure 7.7 shows the relationship between the budget and the number of itera-

tions of the outer loop (different λ values) needed for LSearch-Scalable to

converge to a solution. One possible approach to speed up the convergence of the

algorithm is to leverage parallel execution and to concurrently explore multiple

λ values. To validate the efficiency of this idea, we have implemented a par-

allel version of the algorithm in C++ and OpenMP that leverages thread-level

parallelism to explore multiple values of λ in batches and returns solution ` ob-

tained for the largest λ value satisfying the budget constraint (
∑

u `(u) ≤ B).

This parallel implementation, and the corresponding experiments, are done by

our collaborators.

We executed our implementation on a system equipped with 8 Intel© Xeon©

Platinum 8276M CPU (28 cores per CPU, 224 cores total) running at 2.20GHz

and 6TB of DRAM. In our experiments, we instructed the operating system to

interleave the memory pages across all the 8 sockets in order to maximize the

memory bandwidth available to the program. Our implementation uses a single

shared copy of the graph in the compressed sparse row format (CSR) that requires

O(n + m) bytes to be stored. Each sample is stored through a graph view that

is storing the active edges through a bitmap that requires O(m) bits. O(Mm)

bits are required to store the entire collection of samples. The stub nodes are

not stored directly in the graph, but the corresponding weights are stored in a

separate memo on a need basis.

We have studied the strong scaling behavior of the algorithm and found that

the scaling behavior is highly data-dependent from both the input graph and the

input parameters of the algorithm. Figure 7.8 shows that our parallel implemen-

tation scales reasonably well (2.98× speedup) when going from 2 to 16 threads

when B = 400. After 16 threads performance started to degrade. Our perfor-

mance analysis led us to think that memory bandwidth becomes the bottleneck.
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When B = 500, the algorithm shows no scaling because in this configuration

the algorithm needs to explore a single λ value to converge. However, we want

to note that there is no systematic way of knowing a priori how many values of

λ will be needed. Therefore, evaluating the throughput of the algorithm gives

better insight into the validity of the parallel approach.
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Figure 7.8: Strong scaling study on LSearch-Parallel for the Virginia net-
work. Varying the budget shows the input dependent behavior of the algorithm.
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Figure 7.9: Number of λ values processed per hour by LSearch-Parallel on
the Virginia network varing the budget.

Figure 7.9 shows how the throughput of LSearch-Parallel changes when

increasing the number of threads and varying the budget on the Virginia network.

We observed that, under our experimental settings, the peak in throughput is

between 16 and 32 threads for our computing platform. When operating at
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its maximum throughput, the MwuRound-Parallel algorithm shows to scale

graciously with the size of the input network (Table 7.3).

Dataset Time (s)
CA-HepTh 0.77

Montgomery 11.14
Portland 725.13
Virginia 1940.37

Table 7.3: Execution time of MwuRound-Parallel algorithm at the peak
of throughput (16 threads). We report the execution time as the average of 3
consecutive runs.

Threads vs. execution time. The number of λ values to be considered,

the number of threads used, and the memory needed for each thread together

determine the ideal number of threads needed for each instance. We observe that

using more threads reduces the execution time of MwuRound-Scalable for

instances with smaller budgets.

7.5 Discussion and recommendation.

In our experiments, LSearch-Saa has approximation factors within a factor of

(1+2ε), whereas LSearch-Scalable has approximation factors within (1+8ε)

over all the networks considered.
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Figure 7.10: Budget violation of integral solution X obtained by MwuRound-
SAA

The approximation ratios of the rounded solutions X obtained by both MwuRound-

SAA and MwuRound-Scalable are close to 1 (as is the case for saaRound).
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Figure 7.10 also shows that the budget violation of MwuRound-SAA is within

1.7 for ε as large as 0.15. There is a small upward trend in the budget violation

as ε increases. The rounded solution X obtained by MwuRound-Scalable has

similar performance guarantees as MwuRound, considering that both use the

same rounding scheme.
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Figure 7.11: Comparison of MwuRound-Scalable with Degree and No-
Action

Comparison to saaRound and Degree. Figure 7.11 shows that, MwuRound-

Scalable outperforms the degree baseline. The #infections objective value of

the Degree is at least 1.5 × that of the MwuRound-Scalable for CA-GrQc.

7.5.1 Runtime comparison.

Table 7.4 summarizes the runtime and space usage comparison of saaRound,

MwuRound, and MwuRound-Scalable algorithms. MwuRound-Scalable

is faster than the saaRound which uses the LP solver for networks with more

than 10,000 nodes, such as Montgomery, as demonstrated in Figure 7.4. Our

experiments demonstrate that the run-time shown for MwuRound-Scalable

in this plot can be improved using MwuRound-Parallel. Both our methods,

MwuRound-Scalable and MwuRound-Parallel, are able to scale well for

larger networks than Portland such as Virginia, Regional, and even the US-size

network which has over 334 million nodes and 32 billion edges.
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Method Runtime Space
saaRound [83] O((n+ nM)2.5) O((n+ nM)mM)

MwuRound Õ(ε−2nmM) O(nM +mM)

MwuRound-Scalable Õ(ε−2nmq) O(m+ nM)

Table 7.4: Runtime and space requirements of the different algorithms (see
Table 7.1 for definitions of these quantities). We note that the space for
MwuRound can be improved by a factor of M by using disk storage.

Recommendations.

• saaRound is a better choice for networks with fewer than 10000 nodes.

• Among the sequential methods, we recommend MwuRound-Scalable

(with a small ε value) for large networks of the county- or city-scale popu-

lations such as Montgomery and Portland.

• MwuRound-Parallel is the obvious choice for very large networks cor-

responding to state- and country-level populations. The number of threads

and the memory requirements determine the throughput of this approach

as shown in our experiments.
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Conclusions

In this dissertation, our primary focus was on designing effective intervention

strategies to control SIR class epidemics on networks. This is a challenging

stochastic optimization problem. We developed approximation algorithms us-

ing stochastic optimization techniques for this problem. Our results showed that

these techniques are quite effective in obtaining good approximation guarantees

in practice. Our approach outperformed standard baselines for this problem.

However, we noticed that the use of LP solvers in our approach restricts its

scalability. Therefore, we developed scalable algorithms that bypass the use of LP

solver, by directly solving the LP, approximately. This was achieved by adapting

the Multiplicative Weights Update (MWU) method for this problem. We showed

that this improves the scalability of our approach to large networks corresponding

to country-size populations.

Finally, we showed that our approach can be used to design effective group-

scale interventions in the context of complex epidemic models (e.g. MultiPath)

and other SIR class epidemic models. We also provided a framework to extend

our approach to other epidemic models in SIR class dynamics.

Open Questions. Our work leads to several interesting open questions. Some

of them are listed below:
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(i) Is it possible to achieve tighter bounds on the performance guarantees of

saaRound and MwuRound algorithms?

(ii) Can we study the characteristics of the nodes in near-optimal solutions in

a statistically rigorous manner so as to identify “surrogates” for interventions?

(iii) Can we further improve the runtime of the scalable version of MwuRound

so that it scales well to US population-scale networks?
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