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(ABSTRACT)

Chip-based microresonators have realized the miniaturization of the optical frequency

combs in the past two decades. They provide a platform connecting the optical fre-

quencies and the electronic frequencies, which revolutionized areas such as metrology,

instrumentation and spectroscopy. The high repetition rate that can go up to 1 THz

is one of the most interesting features of the microcombs. The corresponding large

comb spacing and high-speed carrier are advantageous to wavelength multiplexing,

high-speed RF generation, coherent sampling, and self-referencing. However, the de-

tection of comb repetition rate, the precursor to all comb-based applications, becomes

challenging at these repetition rates due to the limited bandwidth of photodiodes and

electronics. In the first part of this dissertation, I introduce a new way to detect

and stabilize the high microcomb repetition rate that doesn’t require high-speed pho-

todiodes or electronic devices. To leverage this feature of high repetition rate and

large comb spacing, a microcomb-based arbitrary RF waveform generator (AWG) is

demonstrated. This all-optics-based AWG has potential to be fully integrated on a

photonic chip and achieve ultra-high analog bandwidths.

On the other hand, a microresonator works as both a cavity and a nonlinear medium.

The nonlinear optics process inside the microresonator could contribute to many

quantum applications. Over the last few years, a large variety of quantum optics

experiments have been performed in the photonic integrated circuits. They opened



iv

new paths towards applications such as quantum computing, quantum metrology

and quantum sensing. In the second part of this dissertation, some quantum aspects

of the microcombs are introduced and a squeezed quantum microcomb on a chip is

demonstrated for the first time, which could serve as a deterministic approach to scale

up the quantum system.
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Chapter 1

Introduction

Optical frequency combs were developed around the beginning of the 21st century

and soon let to John L. Hall and Theodor W. Hänsch’s winning of the Nobel Prize

in Physics in 2005[1, 2]. Optical frequency combs have revolutionized areas such as

metrology, time keeping and spectroscopy ever since[3, 4, 5]. A traditional way to gen-

erate an optical frequency comb is through a mode-locked laser inside a cavity. In the

past 15 years, a new type of optical frequency comb has been developed in microres-

onators where the Kerr parametric process is used to demonstrate microresonator-

based optical frequency combs (microcombs)[6, 7] and dissipative Kerr cavity soli-

tons[8, 9, 10, 11]. Microcombs have a wide range of applications from metrology

[12] to spectroscopy[13] and make it possible to miniaturize the optical frequency

combs to chip scale through integrated photonics. On the other hand, the quantum

aspects of microcomb have been studied recently [14, 15, 16, 17, 18, 19] for its ca-

pability of providing hundreds of frequency multiplexed quantum channels from a

single microresonator. In this thesis, both classical applications and quantum aspects

of microcombs are introduced and discussed.

Chapter 2 is an introduction to the background of optical microresonators and their

nonlinear behaviors. Microresonator quality factor, dispersion and lineshapes will

be introduced. The dynamics of Kerr frequency combs based on the coupled-mode

theory and Lugiato-Lefever equation will also be covered.
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Chapter 3 introduces some common factors that impact the dispersion of a microres-

onator such as material dispersion, geometric dispersion and mode interaction. Dif-

ferent approaches in dispersion engineering and some examples are given.

Chapter 4 covers the conventional electro-optic modulation (EOM) method and a new

Vernier frequency division method to detect the high repetition rates of microcombs.

Comparison between the EOM method the Vernier frequency division method is

shown. The stabilization of the high repetition rate with low rate electronic devices

is also demonstrated.

Chapter 5 introduces a concept and experiment of a fully optics based radio-frequency

arbitrary waveform generator. Different waveform generations are demonstrated. The

performance of the arbitrary waveform generator such as the effective number of bits

(ENOB) is discussed.

Chapter 6 is a brief introduction to the background of quantum optics. Basic con-

cepts in quantum optics are covered such as the time evolution in quantum systems,

quantum optics states as well as squeezed state generations in nonlinear optics sys-

tems.

Chapter 7 is specifically about the two-mode squeezed state generations in micro-

comb. Concept and theory of two-mode squeezed microcomb are first introduced.

Numerical calculation of two-mode squeezed states can be performed based on the

theory. The first experimental demonstration of a two-mode squeezed microcomb is

then presented.
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Chapter 2

Background of

microresonator-based frequency

comb

2.1 Introduction

An optical frequency comb is a series of laser lines that are discrete and equally spaced

on the spectrum. The development of optical frequency comb let to John L. Hall and

Theodor W. Hänsch’s winning of the Nobel Prize in Physics in 2005[1, 2]. Optical

frequency combs have revolutionized metrology, time keeping and spectroscopy [3, 4,

5]. A traditional way to generate an optical frequency comb is through mode-locked

laser inside a cavity consists of mirrors and a non-linear crystal, for example, Kerr-lens

mode-locking.

The separation between two adjacent spectral lines in a frequency comb is called

repetition rate frep, which is about the free spectral range (FSR) of the cavity or

1/tr, where tr is the round trip time inside the cavity. While the spectral lines in a

frequency comb are equally spaced, the distance between zero and any of the spectral

lines is not an integer times frep, i.e. the origin of the frequency axis doesn’t overlap
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with a spectral line. The offset frequency between the frequency comb and 0 is call

carrier envelop offset fCEO. The frequency of the n-th spectral line can be then

described as fn = fCEO + n · frep. Optical frequency combs can work as a bridge

between the optics regime (hundreds of THz) and electronics regime (up to hundreds

of GHz). A photodiode can not directly detect the oscillation of an optical field.

Instead it will only measure the root mean square power of the optical field. By

overlapping the light with unknown frequency and the known frequency comb, and

appropriately choosing the frep, the unknown frequency and the closest spectral line

in the frequency comb will form a detectable beat for the photodiode.

In the recent decade, optical frequency combs have been realized in optical microres-

onators. They are called microresonator-based optical frequency combs, or micro-

combs. The development of microcombs opened a new path to many applications

such as spectroscopy[13, 20, 21], imaging[22, 23], ranging[24, 25], optical communi-

cation[26] and quantum optics[27, 28, 29, 30].

In this chapter, the properties of microresnator will be first introduced, including the

quality factor, dispersion and spectral line shapes. The formation of microcomb and

soliton states are also discussed.

2.2 Background of optical microresonators

Optical microresonators[31] are a kind of whispering gallery mode resonators[32, 33]

at optical frequencies. Light is circulating around the microresonators and trapped

inside by total internal reflection.

Small mode volume and low loss are two key features of microresonators. These fea-
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Figure 2.1: Microresonators of different geometries and materials. (a) Silica
micro-sphere resonator[31]. (b) Silica micro-toroid resonator[34]. (c) Silica micro-disk
resonator[35]. (d) Aluminum nitride micro-ring resonator[36]. (e) Lithium niobate
micro-ring resonator[37] (f) Silicon nitride micro-ring resonator[38]

.

tures lead to strong nonlinear effects such as microresonator-based optical frequency

comb (microcomb)[6] and dissipative Kerr soliton microcomb[9].

In this chapter, key properties such as quality factor, dispersion, spectral line shapes

and coupling regimes of microresonators will be introduced, followed by the theoretical

background of soliton microcombs.

2.2.1 Basic concept of microresonators

At the resonances of a microresonator, the round-trip optical path is approximately

an integer times the wavelength,

2πnr = mλm, (2.1)
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where n is the index of refraction, r is the radius of the microresonator, λm is the

wavelength in vacuum of the m-th resonant wavelength. The free spectral range

(FSR) is the spacing between two adjacent resonant frequencies,

FSR =
c0

2πnr
, (2.2)

where c0 is the speed of light in vacuum. Eq. (2.2) indicates that in the case without

dispersion, i.e. n is a constant, FSR is also a constant at different wavelengths. The

dispersive case will be discussed in section 2.2.3 as well as in chapter 3.

2.2.2 Quality factor of microresonators

Because of factors such as material absorption and scattering, the energy of the optical

mode in a microresonator is dissipating over time. The cavity dissipation rate κ is

defined as the ratio between the energy dissipation speed and the total energy stored

in the cavity,

dEstored

dt
= −κEstored. (2.3)

If there is no coupling to the cavity, the stored energy in a cavity decays exponentially

over time,

Estored(t) = Estored(0)e
−κt. (2.4)

Since κ is usually related to the angular frequency ω of the optical mode, quality

factor Q is defined as the ratio between stored energy in the cavity and the energy
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dissipation per optical cycle,

Q =
Estored

−dEstored/dωt
=
ω

κ
. (2.5)

Under this definition, the quality factor Q is much less frequency related compared

to κ, while Q could be slightly different at different frequencies due to frequency-

dependent material absorption and scattering.

2.2.3 Dispersion in microresonators

For two adjacent longitudinal modes of the same transverse mode family in a mi-

croresonator, the frequency separation between them is the FSR. In the real world

case, because of the dispersion, the FSR is not a constant at different wavelengths

and the resonance frequencies are not equally spaced. The resonance frequency ωµ

(angular frequency) of the µ-th resonance, or mode number µ, can be written in the

Taylor expansion form,

ωµ = ω0 +D1µ+
1

2
D2µ

2 +
∞∑
j=3

1

j!
Djµ

j, (2.6)

where ω0 is resonance frequency at mode zero, Dj is the j-th order dispersion. D1

equals to 2πFSR and D2 is related to the group velocity dispersion (GVD). D2 can

be connected to the dispersion parameter β2 and D1,

D2 ≈ − c

n
β2D

2
1, (2.7)

where n is the index of refraction. All the dispersion terms can be defined as integrated
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Figure 2.2: A microresonator mode spectrum that contains both normal and anoma-
lous dispersion regimes.

dispersion,

Dint(µ) =
∞∑
j=2

1

j!
Djµ

j. (2.8)

It is called anomalous dispersion regime when Dint > 0 and normal dispersion regime

when Dint < 0. This is slightly different from the dispersion regime defined with

dn/dλ, but the two definitions do overlap in a wide range. In the case when D2

dominates the dispersion, we usually refer to D2 > 0 as anomalous dispersion and

D2 < 0 as normal dispersion.
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2.2.4 Properties of the optical modes

2.3 Coupling in microresonators

Light is typically coupled into and out of a microresonator through a tapered fiber or

bus waveguide. When the laser is being swept across the resonance, the spectrum of

the resonance can be recorded with a photodiode as a transmission versus frequency

figure.

2.3.1 Spectral line shapes of microresonator’s resonances

The resonance spectrum can be derived from coupled-mode theory[39]. The coupling

rate between the microresonator and tapered fiber or bus waveguide is κext. The

intrinsic loss of the resonator is κ0. The dissipation in Eq.(2.3) involves two terms

κ = κ0 + κext. The equation of motion for the optical field A is given by,

dA(t)

dt
= −κ0 + κext

2
A+

√
κextSine

−i(ω−ω0)t, (2.9)

where Sin is the pump field that is being coupled into the cavity and ω is the pump fre-

quency. Transform Eq.(2.9) to a relative frequency frame and take a(t) = A(t)ei(ω−ω0)t

and sin = Sine
i(ω−ω0)t, we obtain

da(t)

dt
= −i(ω0 − ω)a− κ

2
a+

√
κextsin. (2.10)

In the steady state where da(t)/dt = 0, the optical field becomes
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a =

√
κext

i(ω0 − ω) + κ/2
sin. (2.11)

The transmitted field is given by

sout = sin −
√
κexta. (2.12)

The resonance spectrum can be recorded on a photodiode and the optical power is

detected. The transmission can be calculated by taking the ratio between the output

optical power and input optical power,

T (ω) =
|sout|2

|sin|2
= 1− κ0κext

(ω0 − ω)2 + (κ0 + κext)2/4
. (2.13)

This is a Lorentzian lineshape and the full width at the half maximum (FWHM), or

linewidth, is equals to κ which is the total dissipation rate of the cavity including

intrinsic loss and coupling rate. By sweeping the laser frequency across the cavity

resonance and recording the resonance spectrum, the loaded quality factor can be

calculated from the linewidth

Q =
ω

κ
=

ω

κ0 + κext
. (2.14)

2.3.2 Different coupling regimes

According to the strength of the coupling rate κext, the coupling condition can be

defined as three regimes,
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Under-coupling κ0 > κext: In the under-coupled regime, cavity dissipation is faster

than the coupling rate. This is a weak coupling condition. When κext is much smaller

than κ0, the calculated loaded quality factor can be approximated as the intrinsic

quality factor.

Critical coupling κ0 = κext: In the critically coupled regime, cavity dissipation is

equals to the coupling rate. Transmission under critical coupling is zero. Critical

coupling requires the minimum power for a soliton state.

Over-coupling κ0 < κext: In the over-coupled regime, cavity dissipation is larger

than the coupling rate. This regime is ideal for quantum optics expriments.

The loading condition of the waveguide to resonator coupling can be characterized

by escape efficiency η = κext/κ. Different coupling regimes correspond to different

escape efficiency values: 0 < η < 0.5 for under-coupling, η = 0.5 for critical coupling

and 0.5 < η < 1 for over-coupling.

The dip of the resonance lineshape can be achieved by taking ω = ω0 in Eq.(2.13)

T (ω) = (
κ0 − κext
κ0 + κext

)2. (2.15)

Eq.(2.15) is a quadratic equation for κ, so for a certain transmission T and loaded

quality factor Q, there are two possible κext can be derived. It’s not possible to know

if the cavity is under-coupled or over-coupled only judging from its transmission. One

possible way to know the actual transmission is to gradually changing the coupling

rate to the cavity either by changing the location of the tapered-fiber, or having a

series of cavities that have different coupling conditions on a photonic integrated cir-

cuit. Another possible method is to measure loaded quality factors and lineshapes at
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different wavelengths, as the coupling rate normally increases with larger wavelength.

However, the intrinsic quality factor is usually wavelength dependent as well, so this

method is not always reliable.

2.4 Kerr frequency combs

Kerr microresonator based optical frequency combs (microcombs)[6] and dissipative

Kerr solitons[9] have been realized in the past two decades. The dynamics of Kerr

microcombs can be describe by coupled mode theory[34, 40]. For the more compli-

cated dissipative Kerr solitons, the time domain coupled mode equations, known as

Lugiato-Lefever Equation (LLE)[41, 42, 43, 9], is a more convient way to describe its

dynamics.

2.4.1 Kerr nonlinearity

Kerr microcombs form because of Kerr effect, which is a third-order nonlinearity.

In parametric nonlinear optical processes, where the material’s quantum state is

unchanged, the dielectric polarization of the material can be written by a Taylor

expansion in terms of the electric field[44]

P = ϵ0χ
(1) · E + ϵ0χ

(2) : EE + ϵ0χ
(3) ... EEE + · · · , (2.16)

where ϵ0 is the vacuum permittivity and χ(1), χ(2), χ(3) · · · are the components of the

electric susceptibility. In a linear material, only the first term is significant and that is

the linear index of refraction n0. The third order electric susceptibility χ(3) is known
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as the Kerr effect. Compared to the second-order nonlinearty, Kerr effect doesn’t

require the materails to be free of centrosymmetry. The dielectric polarization that

associates with the Kerr effect can be written as

P4 =
3ϵ0
4
χ3[|E4|2E4+2(|E1|2+|E2|2+|E3|2)E4+2E1E2E3e

iθ++2E1E2E
∗
3e

iθ− ], (2.17)

where θ+ and θ− are defined as

θ+ = (k1 + k2 + k3 − k4)z − (ω1 + ω2 + ω3 − ω4)t, (2.18)

θ− = (k1 + k2 − k3 − k4)z − (ω1 + ω2 − ω3 − ω4)t. (2.19)

The first term in Eq.(2.17) corresponds to the self phase modulation (SPM). The

second to the fourth terms are for the cross phase modulation (XPM). The last two

terms result from four wave mixing (FWM). The efficiency of the FWM process

depends on the phase matching θ+ and θ−. The result from SPM is equivalent to an

index of refraction that increases linearly with the intensity of the light

n(I) = n0 + n2I, (2.20)

where n2 is the Kerr nonlinear refractive index.
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2.4.2 Coupled mode equations

The formation of the Kerr frequency combs can be described by coupled mode equa-

tions. The equations of motion for the field of the µ − th mode Aµ can be written

as[34, 45, 40]

dAµ

dt
= −(iωµ + κ/2)Aµ + δ0,µ

√
κextPin

h̄ω0

e−iωpt + ig
∑

µ1,µ2,µ3

Aµ1Aµ2A
∗
µ3
, (2.21)

where Pin is pump power, ωp is the pump frequency, g = h̄ω2
0cn2/(n0Veff ) is the

equivalent Kerr nonlinear coefficient, c is the speed of light. Veff is the effective

cavity mode volume which is defined as the circumference times the effective mode

area Aeff

Veff = 2πr · Aeff = 2πr ·
∫
(|E(x, y)|2dA)2∫
|E(x, y)|4dA

(2.22)

|Aµ|2 is normalized to the unit of photon number. In this section, g is taken as a

constant for all mode numbers. This can be understood as an approximation with a

narrow span of the frequency comb.

With a relative frequency frame transform by taking aµ = Aµe
i(ωp+D1µ) in Eq.(2.21),

the fast oscillating optical field in Aµ can be eliminated. Eq.(2.21) can be then written

as

daµ
dt

= −(iωµ − iωp − iD1µ+ κ/2)aµ + δ0,µf + ig
∑

µ1,µ2,µ3

aµ1aµ2a
∗
µ3
e−iD1(µ1+µ2−µ3−µ)t,

(2.23)
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where f =
√
κextPin/h̄ω0 is the normalized pump. In microresonators, there is usually

κ≪ D1, so that only when phase matching condition is satisfied, i.e. µ3 = µ1+µ2−µ,

the FWM term in the equation above has non-zero contribution. The coupled mode

equations can be then simplified to

daµ
dt

= −(iωµ − iωp − iD1µ+ κ/2)aµ + δ0,µf + ig
∑
µ1,µ2

aµ1aµ2a
∗
µ1+µ2−µ. (2.24)

The threshold of the parametric oscillation can be derived from Eq.(2.24 when only

considering the pump mode µ = 0 and a pair of the primary sidebands µ = ±m [34,

45, 40]

Pth =
κ2n2

0Veff
8ηω0cn2

. (2.25)

The mode number of the primary sidebands can be derived at the same time,

m =

√
κ

D2

(

√
Pin

Pth

− 1 + 1). (2.26)

2.4.3 Lugiato-Lefever equation

Coupled mode equations describe the dynamics of the frequency combs in the fre-

quency domain. A time domain overall optical amplitude A(ϕ, t) can be defined as

the optical amplitude at the azimuthal angle ϕ in a microresonator. With this def-

inition, it is possible to transform the coupled mode equations to time domain by

discrete Fourier transform
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A(ϕ, t) =
∑
µ

aµe
iµϕ (2.27)

dA(ϕ, t)

dt
= i

D2

2

∂2A

∂ϕ2
+ ig|A|2A− iδωA− κ

2
A+ f. (2.28)

This is in the same form as the Lugiato-Lefever equation (LLE) [41, 43], where δω is

the pump-resonance detuning δω = ω0−ωp. This equation is equivalent to the coupled

mode equation that fully describes the dynamics of the microcomb. An analytical

soliton solution can be derived from Eq.(2.28) in the absence of loss and gain

dA(ϕ, t)

dt
− i

D2

2

∂2A

∂ϕ2
− ig|A|2A+ iδωA = 0. (2.29)

The soliton solution has a hyperbolic secant form

A = Bsech(
ϕ

ϕτ

) (2.30)

where B is the soliton amplitude and ϕτ is the pulse width in the azimuth coordinate.

Substitude Eq.(2.30) in Eq.(2.29)

(
D2

2ϕ2
τ

− δω) + (gB2 − D2

ϕ2
τ

)sech2(ϕ/ϕτ ) = 0. (2.31)

This equation can be understood as in a soliton state, the phase shift caused by Kerr

nonlinearity balances the phase shift from the dispersion. From this equation, we can

get
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D2 = gB2ϕ2
τ , (2.32)

δω =
D2

2ϕ2
τ

=
gB2

2
. (2.33)

It is indicating that the soliton solutions only exist when the cavity has anomalous

dispersion (D2 > 0) and the pump laser is red-detuned (δω > 0). The requirement

of anomalous dispersion is to balance the phase shift caused by the Kerr effect. The

fact that the pump laser needs to be red-detuned can be understood as a “saturable

absorber-like” feature of microresonators. When the optical field in the cavity is in a

continuous-wave form, the light intensity is low and the pump laser is red-detuned.

While in the case of a soliton state (pulse state), because of the large Kerr phase shift

induced by the large light intensity, the pump laser stays back on resonance.

In the case when gain and loss exist, they can be treated as perturbations to obtain an

approximated analytical solution to Eq.(2.28)[46, 9]. The solutions show that soliton

amplitude B and pulse width ϕτ are still in the form of Eq.(2.32) and Eq.(2.33), and

they only depend on the pump laser detuning δω. The solutions also set a maximum

allowed detuning for a soliton state and the pulse width of the soliton

δω ≤ gπ2f 2

2κ2
, (2.34)

ϕτ =

√
D2

2δω
. (2.35)
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2.4.4 Numerical methods

The coupled mode equations or Lugiato-Lefever equation don’t generally have ana-

lytical solutions except for some very specific cases with approximations. Numerical

methods are more often used to understand and simulate the dynamics of micro-

combs. A normalization of the LLE is perferred by taking t = 2τ/κ, ϕ =
√

2D2/κθ

and A =
√
κ/2gΦ, where τ ,θ and Φ are the normalized time, azimuthal angle and

optical field[9]. By doing the normalization, a more general simulation result can be

obtained that could correspond to a series of scenarios. Eq.(2.28) can be written as

dΦ(θ, τ )

dτ
=
i

2

∂2Φ

∂θ2
+ i|Φ|2Φ− (iν + 1)Φ + f̃ , (2.36)

where ν = 2δ/κ is the normalized detuning and f̃ =
√

8g/κ3f is the normalized

pump. |f̃ |2 = 1 corresponds to the parametric threshold.

Split-step Fourier method[47, 44] has been used extensively to study the dynamics of

pulse propagations in nonlinear dispersive materials, such as soliton propogation in

fibers[48] and microresonators[43]. The idea of this method is to obtain an approxi-

mate numerical solution by dividing a time interval into two steps and assuming only

one of the dispersion and nonlinear effects acts in a single step.

To numerically solve the LLE with split-step Fourier method, in the first step, the

optical field evolves only with dispersion. Transform the optical field Φ(θ, τ ) into

frequency domain by fast Fourier transform (FFT) and applied the phase shift from

dispersion, we obtain the optical field ΦD(τ + δτ) only with the effect of dispersion

ΦD(τ + δτ) = FFT−1{e−
iµ2

2
δτFFT[Φ(θ, τ )]}, (2.37)
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where we have used the property of the discrete Fourier transform in Eq.(2.27)

FFT(
i

2

∂2Φ

∂θ2
) = − iµ

2

2
FFT[Φ(θ, τ )] = − iµ

2

2
Φ̃(µ, τ). (2.38)

In the second step, the optical field evolves only with nonlinear effect

Φ(τ + δτ) = ei|Φ|2−iν−1ΦD(τ + δτ) + f̃ δτ. (2.39)
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Chapter 3

Dispersion engineering of

microresonators

3.1 Introduction

An important feature of microresonators is their capability to be designed and fab-

ricated to have desired dispersion behaviors. Compared to bulk optics, integrated

microresonators have more degrees of freedom to be tailored in order to have a spe-

cific dispersion spectrum. This process is known as dispersion engineering, which can

be done in multiple approaches such as cavity cross section design[49] and material

modifications[50]. Dispersion engineering of microresonators plays important roles

in applications such as microcomb bandwidth and power shaping[49], self-referencing

with dispersive wave[51] and quantum microcomb[30].

3.2 Factors of dispersion

Dispersion in a microresonator depends a variety of factors. The most common ones

are materials dispersion, geometric dispersion and mode-interaction-induced disper-

sion[44].
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3.2.1 Material dispersion

The index of refractive of a material usually depends on the frequency ω of the optical

field. This property is call chromatic dispersion and it is the nature of a material.

This dispersion is related to the resonance frequencies of a material where the material

absorbs the optical field. When the optical field frequency ω is far from the material

resonance frequencies, the index of refraction can be approximated by the Sellmeier

equation[44]

n2(ω) = 1 +
∑
j

Bjω
2
j

ω2
j − ω2

, (3.1)

where ωj are the material resonance frequencies and Bj is the strength of the j-th

resonance. In many materials, the chromatic dispersion results in a normal dispersion

regime over a broad range of wavelengths. As we discussed in Section 2.4.3, anomalous

dispersion is required for soliton states. For those materials with normal chromatic

dispersion[52], certain dispersion engineering is needed in order to generate soliton

states.

3.2.2 Geometric dispersion

The optical field is not always confined in a single material, such as in optical fibers

or waveguides (Fig.3.2). The propagation constant of the optical mode depends on

the distribution of the optical mode and the materials around. Effective index of

refractive for this optical mode can be defined as the ratio between the propagation

constant β and the wavenumber in vacuum k0 [44]
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Figure 3.1: Index of refraction and dispersion of bulk Si3N4 (a) Index of refrac-
tion of bulk Si3N4 decreases with increasing wavelength. (b) Bulk Si3N4 experiences
normal chromatic dispersion. Two traces are numerically calculated with the refrac-
tive index equation n =

√
1 + 2.948λ2/(λ2 − 0.13102).

neff =
β

k0
=

c

vp
, (3.2)

where c is the speed of light and vp is the phase velocity of the optical mode. The

effective index of refraction can be numerically calculated with finite element method

(FEM), such as COMSOL Multiphysics. To more accurately calculate the absolute

mode number m in Eq.(2.1), neff should be used along with the effective radius

reff of the microresonator as different location on a cross section experiences slightly

different radius in a microresonator

reff =

∫
r|E(x, y)|2dA∫
|E(x, y)|2dA

. (3.3)

The absolute mode number can be then calculated as

m =
2πneffreff

λ
. (3.4)
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Dispersion of different orders Dj can be obtained by doing a polynomial fit for a series

of {λ,m}. Effective mode index (EMI) in a microresonator is defined as the product

of the effective radius and effective index of refraction

EMI = reffneff . (3.5)

Therefore the absolute mode number can be written in terms of EMI as

m =
2πEMI
λ

. (3.6)

In an FEM solver such as COMSOL Multiphysics, the solver output in an axial

symmetric model is the EMI instead of neff .

3.2.3 Mode interaction

Spatial mode interaction is another factor that causes dispersion in a microresonator.

Spatial mode interaction can originate from the interaction between different spatial

modes in the same cavity[53] or the coupling between spatial modes from different

cavities when they are put close together[54].

Spatial mode interaction causes the resonance frequencies of the two cavities deviate

from their original locations, thus changes the dispersion behaviors of both cavities.

The frequencies of the hybrid modes resulted from the mode interaction are given

by[55, 56, 57]

ωµ± =
ωµA + ωµB

2
±
√
G2 +

1

4
(ωµA − ωµB)2, (3.7)
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Figure 3.2: COMSOL FEM simulation of TE00 mode of a Si3N4 micro-ring
resonator cross section. The optical mode distributes in both the Si3N4 core and
silica cladding. neff and the effective mode index depend on the distribution of the
optical mode and the material properties.
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Figure 3.3: Dispersion caused by spatial mode interaction between two mi-
croresonators. Because of spatial mode interaction, the mode spectra of two cavities
deviate from their original parabolic shapes.
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where ωµA and ωµB are the frequencies of mode µ in cavity A and B, ± sign cor-

responds to the positive and negative branches of the hybrid modes, and G is the

coupling rate between the two spatial modes. The dynamics of Kerr frequency combs

of the hybrid modes can be studies with the LLE in Eq.(2.28) including interaction

terms iGAA and iGAB[58]

dAA(ϕ, t)

dt
= i

D2

2

∂2AA

∂ϕ2
+ ig|AA|2AA − iδωAA − κ

2
AA + fA + iGAB,

dAB(ϕ, t)

dt
= i

D2

2

∂2AB

∂ϕ2
+ ig|AB|2AB − iδωAB − κ

2
AB + fB + iGAA,

(3.8)

where AA and AB are the optical fields in cavity A and B respectively, fA and fB are

the pump for cavity A and B.

3.3 Examples of dispersion engineering

A variety of dispersion profiles can be designed by dispersion engineering with the

idea of tailoring the cross section or introducing spatial mode interaction. We will

present some examples in this section.

3.3.1 Dispersion for soliton generation

Eq.(2.32) indicates that anomalous dispersion (D2 > 0) is needed for soliton states.

By doing FEM simulation on D2 over a broad range of wavelength, the results show

a range of pump wavelengths that are suitable for soliton generations. More usually
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Figure 3.4: FEM simulation to find anomalous dispersion for SiN micro-ring
resonators. (a) D2/2π at different wavelengths for the same cross section structure.
Blue trace has a 1.2 µm × 0.8 µm (width × height (or thickness)) cross section and
the red trace has a 1.7 µm × 0.8 µm cross section. Both traces have a radius of 300
µm. (b) D2/2π at different widths for the thickness and wavelength. Blue trace has
a thickness of 800 nm and the red trace has a thickness of 1 µm. Both traces have
a radius of 300 µm and are at 1550 nm. (c) A schematic of the cross section. (d) A
microscopic photo of the SiN micro-ring resonator.

we want to keep the pump at a relatively fixed wavelength. Sweeping the width of

the cross section shows what to expect for different dimensions (Fig. 3.4).

3.3.2 Dispersion engineering for microcomb shape tailoring

The shape of the microcomb is mostly determined by the dispersion of the cavity.

A cavity with small anomalous dispersion results in a microcomb with broad span

(Eq.(2.35)). Dispersive waves are another interesting aspect in the microcomb shape
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Figure 3.5: Dispersive generation with cross section tailoring. (a) The optical
mode in a 2.7 µm × 0.8 µm cross section. The cavity is a SiN racetrack cavity that
has an FSR of 110 GHz. (b) Dispersive wave existence wavelengths for different
cross section dimensions. The location of the dispersive for a specific cross section
dimension can be tuned through Raman scattering by changing the pump power. The
horizontal direction of each colored region shows how much the fab error tolerance
is. (c) Simulated integrated dispersion (top) and corresponding soliton microcombs
(bottom). A,B and C correspond to different cross section dimensions in (b). (d)
Raman tuning of dispersive wave. E and F correspond to different pump power levels
for the same cross section in (b). Microcomb simulations are based on LLE with
Raman terms[61].

design. When the span of a microcomb overlap with where the integrated dispersion

changes sign, a dispersive could be generated[59, 60]. The result of dispersive increases

in the intensity at the modes where this phase-matching is happening. Dispersive

waves are sometimes desired for the comb line amplification feature so that a comb

line that is further away from the pump can be detectable[51].

Cross section tailoring (Fig. 3.5) or introducing spatial mode interaction (Fig. 3.6) are

controllable ways to design a dispersion that supports dispersive waves. Engineering

the cross section is a straightforward approach which appears much simpler in the
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Figure 3.6: Dispersive generation with spatial mode interaction between two
racetrack resonators. (a) Two racetrack SiN cavities with FSRs of 110 GHz and
110.3 GHz respectively. The coupling rate between two cavities is 1 GHz. Relative
resonance frequencies of two cavity are tuned by an integrated heater. (b) Simulated
integrated dispersion (top) and corresponding soliton microcombs (bottom). A and
B correspond to the lower and upper limits of the integrated heater tuning range
on the dispersive wave wavelength. (c) Resonance frequency shift versus integrated
heater voltage. (d) Dispersive wave wavelength shift versus integrated heater voltage.
Microcomb simulations are based on LLE with spatial mode interaction (Eq.(3.8)).

layout and design. However, the location of the dispersive wave is relatively sensitive

to fabrication uncertainties. Introducing mode interaction on the other hand, is

not that sensitive to fabrication errors, but is more complicated in the design and

operation.

3.3.3 Dispersion for quantum applications

Quantum photonics expriments sometimes require different shapes of dispersion pro-

file than those of the soliton generations. One example is in the squeezed state gen-

eration[30] where a flat dispersion profile could be preferred to have equally spaced

quantum modes. This can be done by engineering the cross section, such as choosing
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the zero dispersion point in Fig. 3.4.

3.4 Mode spectrum measurement

Measuring the mode spectrum in experiment is as important as designing the disper-

sion. There are multiple approaches to measure the mode spectrum.

Calibrated laser wavelength sweep method is widely used, such as with an Mach-

Zehnder interferometer (MZI)[62] or a frequency comb[63], where the laser wavelength

is scanned over a broad range and the transmitted signal from the cavity is recorded.

The locations of different modes can then be found in data processing (Fig. 3.7 (a)).

In some cases we need the mode spectrum measurement to have higher resolution,

such as when measuring a dispersion profile that is close to flat. Electro-optic mod-

ulation (EOM) method can be used to achieve a better resolution[30] (Fig. 3.7 (b)).

In the EOM method, the pump and the m-th EOM sideband are input to the cavity

and the wavelength being scanned across a single resonance mode. By tuning the

modulation frequency on the EOM, when the resonance dips created by the pump

and the m-th sideband overlap, the sideband is right at the resonance mode number

µ. The frequency difference between the pump mode and mode number µ can be

obtained as ∆fµ = mfVCO. We can acheive a resolution of 100 kHz or better with

EOM method, while the laser scan method usually has a resolution in MHz level.

However, EOM method is much slower to operate in experiment than the laser scan

method. The measurement span of EOM method is limited by the EOM setup and

it’s usually much narrower than the laser scan method.
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Figure 3.7: Mode spectrum measurements with different methods. (a) Mode
spectrum of a SiN micro-ring resonator measured with laser scan method. D2/2π is
estimated to be 1 MHz with parabolic fit. The FSR of the cavity is about 100 GHz.
(b) Mode spectrum of a silica wedge resonator measured with EOM method. The
FSR is about 22 GHz.
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Chapter 4

Vernier frequency division with

dual-microresonator solitons

4.1 Introduction

Dissipative Kerr solitons have been realized in microresonators[9, 10, 11] recently

and have been studied intensively for their potential to miniaturize opitcal frequency

combs, which have revolutionized metrology, time keeping and spectroscopy [3, 4,

5]. These solitary wave packets leverage Kerr nonlinearity to compensate cavity

loss and to balance chromatic dispersion[64, 8, 9]. They output a repetitive pulse

stream at a rate set by the resonator roundtrip time, which can range from GHz to

THz [65, 66, 67]. The reduction of resonator mode volume increases the intracavity

Kerr nonlinearity, lowers the operation pump power and extends the comb spectrum

span. This has enabled demonstrations of battery-operated soliton combs at 194

GHz repetition rate[68], and octave-spanning soliton generation for self-referencing

in a resonator with 1 THz free-spectral-range (FSR)[12]. High repetition rates (rep-

rates) are also desired in many comb-based applications. For instance, the maximum

acquisition speed in dual-comb spectroscopy[13, 20, 21], ranging [25, 24], and imaging

[22, 23], all increase linearly with the comb repetition rate.

However, to detect the high repetition rate, a microresonator-based frequency comb
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(microcomb) system has to include an auxiliary frequency comb whose repetition rate

can be directly detected by a photodiode (PD). The detectable repetition frequency

is then multiplied up optically through the equally-spaced comb lines to track the

microcombs in action [6, 12]. This limits the miniaturization of microcomb system

as the area occupied by the resonator scales inverse quadratically with the repeti-

tion rate. For the popular electrical K-band, the auxiliary resonator diameter has

to exceed several millimeters [35, 62, 69, 70]. An approach to divide and detect

microcomb repetition frequency beyond photodiode’s bandwidth will be critical to

eliminate this restriction, and will advance the frequency comb technology in terms

of miniaturization, power consumption and ease of integration.

In this chapter, a Vernier frequency division method is introduced to detect soliton

microcomb repetition rate well above the electrical bandwidth in use. In contrast to

the conventional approaches, the Vernier frequency division does not require low-rate

frequency combs. Instead, the rate of the auxiliary combs, fr2, can be higher than

that of the main combs, fr1, and it can be free-running and stay unknown.

4.2 Dual-microresonator solitons generation

To overcome the thermal complexity[71] in soliton generation process and generate

single soliton states in two microresonators on seperate chips, a rapid laser frequency

sweeping method [72] can be implemented. The first electro-optic modulation (EOM)

sideband from a continous wave (CW) laser followed by a phase modulator is used

as a rapid-tuning pump laser. The phase modulator is driven by a voltage-controlled

oscillator (VCO). The first sideband from the phase modulation is selected by an

optical tunable bandpass filter (BPF). The sideband can also be obtained with single
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Figure 4.1: Demonstration of soliton generation in a microresonator with
electro-optic modulation sideband sweeping. The first electro-optic modulation
(EOM) sideband from a continous wave (CW) laser followed by a phase modulator
is used as a rapid-tuning pump laser. The phase modulator is driven by a voltage-
controlled oscillator (VCO). The first sideband from the phase modulation is selected
by an optical tunable bandpass filter (BPF). An erbium-doped fiber amplifier (EDFA)
is used to amplify the pump laser. Polarization controllers (PC) are used to align
the polarization to the phase modulator and the bus waveguide mode. A fiber Bragg
grating (FBG) is used to separate the pump and the comb.

sideband modulation through a QPSK modulator[73]. With the fast ramp voltage

on the VCO, the pump laser scans at a speed of ∼ 20 GHz/µs which is faster than

the thermal effect in the microresonator. A 50/50 splitter after the BPF splits the

pump laser equally into two erbium-doped fiber amplifiers (EDFAs). The polarization

should be carefully adjusted by a polarization controller after each EDFA. The pump

laser then is coupled into the bus waveguide by a lensed fiber. Single solitons are

generated simultaneously in both microresonators by rapidly scanning the pump laser

from the blue-detuned regime to the red-detuned regime. The single soliton existence

detuning ranges of both microresonators are thermally tuned to overlap. In our

case, each microresonator has a temperature controller with 0.01◦C resolution. The

resonant frequencies of the SiN micro-ring resonators are tuned ∼ 2.5 GHz/◦C. Dual-

microcomb driven by one pump laser has been previously reported in two cascaded

resonators[74], and in a single resonator by counter-propagating and co-propagating
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Figure 4.2: An integrated photonic chip on a coupling stage. (a) Light is
coupled into and out of the bus waveguide on the integrated photonic chip through
lensed fibers. (b) A microscopic photo of the SiN micro-ring resonator. Light is
coupled to the resonator from the bus waveguide by evanescent field.

pump lasers[75, 76, 77].

4.3 Measuring repetition rates

In this section, the conventional electro-optic modulation (EOM) method and the

Vernier division method are introduced.

4.3.1 EOM method

The EOM method configuration is shown in the purple panel in Fig. 4.5. An opti-

cal bandpass filter is used to select two adjacent comb lines from the main soliton,

which are then amplified by an EDFA. They are then sent into an electro-optic phase

modulator which is driven by VCO 2 at a frequency of fVCO2. Modulation side-

bands are created for both comb lines, and when the modulation is strong enough,

a pair of sidebands will meet in the midpoint of the two comb lines [78]. This pair

of sidebands is then optically filtered by a Bragg-grating filter, and is detected on a
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Figure 4.3: Concept of EOM method to detection comb repetition rate.
Modulation sidebands are created for both comb lines, and when the modulation is
strong enough, a pair of sidebands will meet in the midpoint of the two comb lines.
The repetition rate can be derived as fr = fe +M × fVCO.

photodiode. Using this method, the repetition rate of the main soliton can be derived

as fr1 = fe +M × fVCO2, where M is the number of modulation sidebands between

the two adjacent comb lines and fe is the beat frequency between the two sidebands

in the middle.

4.3.2 Concept of Vernier frequency division method

The concept is illustrated in Fig. 4.4. The main and Vernier soliton comb lines create

two free-running graduation markings on the optical frequency domain, and similar

to a Vernier caliper, these markings coarsely align periodically. Detectable frequency

beat notes can be created when the frequency of the N -th higher-rate comb line

catches up with that of the (N + 1)-th lower-rate comb line. These beat notes can

be utilized to divide the soliton repetition frequency through an electrical frequency

division followed by the subtraction of dual-comb repetition rate difference. Figure

4.4 presents one conceptual example, where the main soliton repetition rate divided

by N can be obtained from the sum of the first beat frequency ∆1, and the N -th
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beat frequency ∆N divided by N . ∆N denotes the beat frequency between the N -th

Vernier comb line and its nearest main soliton comb line.

More generally, Vernier frequency division method can use two pairs of comb lines in

the overtaking regime, where the frequency of the N -th higher-rate comb line catches

up with that of the (N + 1)-th lower-rate comb line. Here, we use the N -th pair

and the M -th pair of comb lines as an example, and ∆fN,M denotes the frequency

difference between the N(M)-th Vernier soliton comb line and its nearest main soliton

comb line:

∆fN = Nfr2 − (N + 1)fr1 = N(fr2 − fr1)− fr1, (4.1)

∆fM =Mfr2 − (M + 1)fr1 =M(fr2 − fr1)− fr1. (4.2)

fr1 and fr2 are the rep-rates of the main solitons and Vernier solitons, respectively.

Eq. (4.1)/N subtracted by Eq. (4.2)/M will yield

(
1

M
− 1

N
)fr1 =

∆fN
N

− ∆fM
M

, (4.3)

where the repetition rate of the main solitons, fr1, is now expressed by two measurable

quantities. In the experiment, photodetecting the corresponding pair of comb lines

produces RF signals at the frequency of ∆M,N , where ∆M,N = |∆fM,N |. The ”±”

ambiguity in ∆fM,N = ±∆M,N can be resolved by measuring the optical spectral of

the main and Vernier solitons.
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4.4 Measuring microcomb repetition rate

The Vernier division reduces the required electrical bandwidth for rep-rate detec-

tion from the soliton repetition rate to approximately the repetition rate difference

between the main and Vernier solitons, which can be coarsely controlled in microfab-

rication. In this demonstration, the electrical bandwidth is reduced from 197 GHz

to 20s GHz. The Vernier method directly applies to 100s GHz to THz rate soliton

microcombs, which are common in many material systems, such as Si3N4[79, 80, 81,

82], silicon [83], AlN [84], and LiNbO3 [85, 86, 87]. For a fixed electrical bandwidth

and rep-rate difference, a higher main soliton rep-rate will demand a broader comb

span in the Vernier method. This is because the number of comb lines required for the

comb line frequency of Vernier solitons to overtake that of the main solitons increases

linearly with the main soliton repetition rate. At 1 THz repetition rate, 50 comb lines

on one side of the pump are needed for 20 GHz rep-rate difference, and this comb

span has been reported previously [66, 67]. The Vernier division demonstrated in this

manuscript could serve as a universal solution for repetition rate detection in various

microcomb systems and applications.

In this experiment, the main and Vernier solitons are generated in bus-waveguide

coupled Si3N4 microresonators [88], which have FSRs of 197 GHz and 216 GHz,

intrinsic quality factors of 1.5 × 106 and 2.2 × 106, and loaded quality factors of

1.3 × 106 and 1.8 × 106, respectively. The complete experimental setup is shown in

Fig. 4.5.

In our measurement, we select N = 11 and M = 9 for the Vernier frequency division.

∆9 = 22.7 GHz and ∆11 = 16.1 GHz are obtained by photodetecting the correspond-

ing pairs of comb lines. These two RF signals are then amplified to ∼ 3 dBm to meet
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Figure 4.5: Experimental setup for the Vernier frequency division experi-
ment. The main solitons and Vernier solitons are generated in two SiN resonators
which are temperature controlled by thermoelectric coolers (TECs). The pump laser
is the first modulation sideband of a phase modulated (PM) continuous wave (cw)
laser, and the sideband frequency can be rapidly tuned by a voltage controlled oscil-
lator (VCO) [72]. The frequencies of the cw laser and phase modulation are fL and
fVCO1, respectively. The main and Vernier solitons are combined and then split to
two paths, and two optical bandpass filters (BPFs) are used to select the 9-th and
the 11-th pairs of comb lines in each path, respectively. Beat notes ∆9 and ∆11 are
generated by photodiodes (PDs) and they are electronically divided by 36 and 44,
respectively. The sum of the two signals is created by a frequency mixer, and its
frequency fv is recorded on a counter. For stabilizing the rep-rate of main solitons,
fv is mixed with a rubidium-referenced local oscillator (LO) to servo control a volt-
age controlled optical attenuator (VCOA) for repetition rate tuning. For out-of-loop
verification, electro-optics modulation (EOM) method is used and shown in the pur-
ple panel. Erbium-doped fiber amplifiers (EDFAs), polarization controllers (PCs),
electrical amplifiers (Amps), low pass filters (LPFs) and rubidium (Rb) clock are also
used in the experiment.
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the minimum input power requirement of our frequency dividers. Both ∆9 and ∆11

are first divided by 4 so that their frequencies are within the frequency bandwidth of

the by-9 and by-11 dividers. The output frequencies after division are ∆9/4/9 = 629

MHz and ∆11/4/11 = 366 MHz, respectively. These two frequencies are then am-

plified to ∼ 7 dBm and are frequency mixed on an RF mixer. An electrical tunable

bandpass filter is used to select the sum of ∆9/36 and ∆11/44 at the mixer output

port. According to eq. (4.3), this frequency is equal to (1/4/9−1/4/11)fr1 = fr1/198.

The optical spectra of single soliton states for main (red) and Vernier (blue) resonators

are shown in Fig. 4.6a. A zoomed-in panel shows the optical spectra where the

frequency of the N -th Vernier soliton comb line coarsely aligns with that of the

(N + 1)-th main soliton comb line. An electrical spectrum of the beat frequencies

between the two combs is shown in Fig. 4.6b. Within the 26 GHz cut-off frequency

of our electrical spectrum analyzer (ESA), four beat frequencies are observed: ∆1 =

19.3639 GHz, ∆9 = 22.6815 GHz, ∆10 = 3.3157 GHz and ∆11 = 16.0449 GHz. The

strong VCO1 beat note near 14 GHz is derived from the modulation of the cw laser,

and can be removed by an optical or electrical filter.

Beat frequencies ∆9 and ∆11 are selected for the main soliton rep-rate division.

∆9(∆11) is the beat frequency between the 9 (11)-th Vernier soliton comb line and the

10 (12)-th main soliton comb line, where ∆9 = 10fr1 − 9fr2, and ∆11 = 11fr2 − 12fr1.

In the measurement, to avoid photodiodes being saturated by the comb lines not

associated with ∆9 and ∆11, an optical bandpass filter is used to pass only comb

lines between ∆9 and ∆11. These comb lines are then amplified by EDFAs and are

photodetected to create beat note ∆9 and ∆11 (see Fig. 4.5). In the measurement,

after combining the main and Vernier solitons with a fiber coupler, a bandpass filter

is used to pass the comb lines associated with ∆9, ∆10, and ∆11 for optical amplifi-
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cation. Then a second fiber coupler splits the power into two optical paths, where

in each path a bandpass filter is used to select the comb lines of ∆9 or ∆11, and

the corresponding beat note is created on a photodiode. To divide the main soliton

rep-rate, ∆9 and ∆11 are divided by 36 and 44 in frequency, respectively, and sent to

a RF mixer to produce their sum frequency, fv = ∆9/36 + ∆11/44 = fr1/198, which

is the main soliton repetition rate divided by 198. The electrical spectra of ∆9/36,

∆11/44 and their sum fv are shown in Fig. 4.6c,d,e. The complete experimental

setup is shown in Fig. 4.5. More experimental details are included in Methods sec-

tion. In principle, one can use the configuration in Fig. 4.4, where ∆1 is mixed with

∆N/N to generate fr1/N . However, limited by the selection of electrical mixers in

our lab, we do not have the capability to mix ∆1 (∼ 20 GHz) and ∆N/N (∼ 2 GHz

for N = 9, 11), and thus we select ∆9 and ∆11 instead.

To validate the Vernier method, a conventional method by using electro-optics mod-

ulation (EOM) frequency comb is implemented as an out-of-loop verification. In the

conventional EOM method, two adjacent comb lines from the main solitons are phase

modulated at the frequency of a VCO to produce modulation sidebands. The strong

modulation results in a pair of sidebands near the midpoint of the two comb lines,

and they can be optically filtered and detected [79, 78] (see Fig. 4.5, and Methods

section: electro-optics modulation (EOM) comb method). The detected EOM beat

note (Fig. 4.6f) has frequency of fe = fr1 − M × fVCO2, where M is the number

of modulation sidebands, and fVCO2 is the modulation frequency. M and fVCO2 are

set to 11 and 17.897 GHz in this experiment, respectively. It is worth noting that

the Vernier beat note fv has much narrower linewidth than the EOM beat note fe,

which implies that the rep-rate of the main solitons is coherently divided down from

196.974 GHz to 994.82 MHz. It should be noted that ∆9(∆11) are selected as their
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frequencies are relatively close and are compatible with the available RF mixer in our

lab.

To show the coherent division in the Vernier dual-comb method, the phase noise of the

Vernier beat note, fv, and the out-of-loop EOM beat note, fe, are measured with an

ESA through direct detection technique (Fig. 4.6g). For coherent frequency division,

the phase noise of fv (red trace) should be 1982 lower than the phase noise of the

undivided rep-rate, which is measured through the EOM method (blue trace). This

is verified in our measurement, as the phase noise of fv multiplied by 1982 (orange

dash trace) agrees very well with the phase noise of fe at offset frequency up to 30

kHz. Beyond 30 kHz offset frequency, the phase noise of fv is comparable to the

ESA sensitivity limit (black dash trace). At high offset frequency, our phase noise

measurement might be affected by relative intensity noise (RIN). This is common for

direct detection technique, as the RIN cannot be separated from the phase noise in

the measurement.

The rep-rate of the main solitons can be derived by multiplying the Vernier beat note,

fv, by 198. A zero-dead-time frequency counter is used to record fv. The main soliton

rep-rate, fr1 = 198× fv, is shown in Fig. 4.6h (orange trace). The free-running main

solitons have repetition rate around 196.9740 GHz, and the rate is drifting due to

temperature and pump laser frequency fluctuations. This rep-rate measurement is

compared to the rep-rate measured with out-of-loop EOM method. The frequency

of the EOM beat note fe is recorded on a second zero-dead-time counter, and the

rep-rate is derived as fr1 = fe +M × fVCO2. The EOM-measured rep-rate is shown in

Fig. 4.6h (blue trace), and it overlaps with the rep-rate measured by Vernier method

perfectly. The frequency difference between the Vernier-measured rep-rate and EOM-

measured rep-rate is calculated and shown in Fig. 4.6i, and it has a mean value of (19
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± 37) Hz with a 95% confidence interval under normal distribution. Figure 4.6j shows

the Allan deviation of this frequency difference at various gate times, and it agrees

with the counter resolution limit at the frequency of fv (dash black trace) multiplied

by 198 (green dash trace), which is the counter limit for fr1 = 198×fv. This indicates

that no frequency difference between the Vernier method and the EOM method can

be detected within the sensitivity of our instruments. In all frequency measurements,

the counters and VCOs are synchronized to a rubidium clock.

4.5 Phase-locking the repetition rate

The main soliton repetition rate can be stabilized by locking the Vernier beat note

fv to a radio-frequency reference. In this demonstration, fv is locked to a rubidium-

stabilized local oscillator through servo control of the pump power using an voltage-

controlled optical attenuator (VCOA) to vary the main soliton repetition rate (see

Fig. 4.5). Rep-rate measurement with the EOM method is utilized to verify the

locking and the result is shown in Fig. 4.7a. To eliminate the relative frequency

drifts of the electronic components, fVCO1, fVCO2, counter 1 and counter 2 are all

synchronized to the same rubidium clock. Therefore, the error in the rubidium clock

has been corrected, and the absolute stability of the reference will not affect our

frequency readouts. We are characterizing the residual stability of our rep-rate, and

the absolute stability of the reference will not affect our frequency readouts. This

allows us to evaluate the servo locking loop without using high performance atomic

clock reference. The locking is turned on at the time near 50 s, and the soliton

rep-rate immediately stops drifting and is stabilized to 196,962,681,959 Hz (see Fig.

4.7a). The Allan deviations of the free-running (red) and stabilized (green) rep-rate
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are calculated from the EOM-based rep-rate measurements and are presented in Fig.

4.7b. Above 0.3 ms gate time, the Allan deviation of the locked rep-rate scales as

1/τ , where τ is the gate time. Below 0.3 ms gate time, the Allan deviation of the

rep-rate follows that of the free-running rep-rate. This behavior of the Allan deviation

is expected for a phase-locked oscillator with ∼ kHz locking bandwidth. In general,

to improve the residual Allan deviation for a phase-locked oscillator, one can (1)

increase the servo bandwidth and (2) improve the overall system stability and thus

the Allan deviation beyond the servo bandwidth. The first one can be accomplished

by fast feedback control of the resonator temperature and thus the soliton rep-rate

through an integrated heater on chip [74], and the latter one can be achieved by

improving the temperature and mechanical stability of the system through packaging

[89]. Ultimately, the absolute stability of the rep-rate is limited by the atomic clock

reference. It is worth noting that the repetition rate of the Vernier solitons is not

stabilized in the entire measurement.

4.6 Summary

In this chapter, We have introduced the dual-microresonator solitons generation

method, the conventional EOM method and the Vernier division method for rep-

etition rate detection. We demonstrated the Vernier frequency division method to

detect and stabilize soliton repetition rate at 197 GHz with 20s GHz bandwidth pho-

todiodes and electronics. The Vernier method shall be applicable for a wide range

of repetition frequencies spanning from GHz to THz. For low repetition rate combs,

our method can further reduce the required electrical bandwidth, and is only limited

by the optical and electrical filtering capability to select the desired dual-comb beat
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Figure 4.7: Stabilization of main soliton repetition rate by using Vernier
dual-comb method. The rep-rate of the main solitons is stabilized by locking fv
to a Rb-referenced oscillator, and the locking is verified by using EOM method. (a)
Rep-rate measurement using EOM method. The locking loop is engaged at the time
near 50 s. The gate time (τ) is 10 ms. (b) Allan deviation calculated from the
unlocked and locked repetition rates that are measured with the EOM method. The
locking loop has ∼ kHz servo bandwidth. Within the servo bandwidth, the Allan
deviation goes down as 1/τ . Beyond the servo bandwidth, the Allan deviation is
similar to that of the free-running unlock rep-rate. The error in the rubidium clock
has been corrected for the Allan deviation of the locked rep-rate. This is done by
synchronizing the EOM and the soliton rep-rate to the same rubidium reference. In
the entire measurement, the repetition rate of the Vernier solitons is not stabilized,
and there is no feedback control of the laser-cavity detuning for the Vernier solitons.

frequencies. For a fixed electrical bandwidth and rep-rate difference, higher main

soliton rep-rate will demand a broader comb span in the Vernier method. This is

because the number of comb lines required for the comb line frequency of Vernier

soliton to overtake that of the main soliton increases linearly with the main soliton

repetition rate. At 1 THz repetition rate, 50 comb lines on one side of the pump is

needed for 20 GHz rep-rate difference between main and Vernier solitons, and this

comb span has been reported previously [66, 67].

It also applies to the case where the two frequency combs do not share the same pump

frequency/center frequency. In this situation, one more pair of beat frequency should

be detected. As this additional beat note and the two Vernier beat notes share the

same offset frequency between the two pump lasers, the offset frequency can be elimi-

nated by frequency subtraction. This will enable the Vernier method to be applied to
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other types of high-rate combs, such as mode-locked semiconductor lasers [90]. The

concept of Vernier dual combs could also be modified to assist carrier-envelope offset

frequency (fCEO) detection for self-referencing an octave-spanning microcomb. At 1

THz rep-rate, the fCEO given by the f -2f signal can range from 0 to 500 GHz, and

it is challenging to keep this frequency in a detectable range as it is subject to small

fabrication variations. However, if a Vernier comb is frequency doubled and beat

against the main comb, a series of f -2f beat frequencies can be created. Their spac-

ing equals to the dual-comb rep-rate difference, and this can bring the f -2f signal to

a detectable frequency. Finally, the Vernier method has the potential to revolutionize

optical and electrical frequency conversion by eliminating the need for a detectable

repetition rate frequency comb, and it will have direct applications in optical clock

[91], optical frequency division [92], and microwave frequency synthesis [70].
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Chapter 5

Radio-frequency line-by-line

Fourier synthesis

5.1 Introduction

Fourier analysis creates one-to-one mapping between the temporal and frequency

profiles of a waveform. Arbitrary temporal waveforms can be generated through

Fourier synthesis by manipulating the amplitude and phase in the spectrum domain.

Optical spectral waveshaping, or optical line-by-line waveshaping, has been widely

applied to optical arbitrary waveform generation [93, 94] (AWG), coherent control of

quantum processes [95, 96, 97], and optical communications[98]. The broad optical

bandwidth provides femtosecond temporal resolution in the Fourier synthesis[99] that

is not attainable by conventional electronics.

Fourier synthesis in optical domain can be down-converted to microwave and mmWave

frequencies [100, 101, 102, 103, 104, 105] through coherent dual-comb sampling

method[106], and it could have wide applications in wireless communications, radar

systems, and electronic testing[107, 108, 109].

When photomixing two optical frequency combs with different repetition rates on

a photodiode, an RF frequency comb will be created, with its comb lines deriving
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their amplitudes and phases from the dual optical combs. Line-by-line amplitude

and phase control on optical frequency combs [110] can then be coherently mapped

to the RF frequency comb for waveform synthesis, which has been shown recently

with electro-optic frequency combs[100, 101, 102, 103, 104, 105]. Compared with

other existing photonic methods for RF waveform generation[111, 112, 113, 114, 115,

116], which rely on optical delay structures to either provide enough dispersion for

far-field frequency-to-time mapping, or route different replicas of a low repetition rate

optical pulse to different arrival times on a photodiode, the Fourier synthesis method

eliminates the need for long tunable optical delay lines and low repetition rate mode-

locked lasers, and thus creates the potential for mass-scale integration on a photonic

chip.

In this chapter, we demonstrate RF spectral line-by-line waveshaping and Fourier

synthesis of RF waveforms by using optical dual-microresonator solitons [9, 79, 13,

10]. The high repetition rate of soliton microresonator-based frequency combs (mi-

crocombs) [10] enables line-by-line amplitude and phase control of individual optical

comb lines [110]. Dual-comb coherent sampling is then used to coherently down-

convert the waveshaped optical microcomb to RF frequencies by beating it with an-

other soliton microcomb on a fast photodiode. A complete discrete Fourier series can

be constructed for waveform synthesis by nullifying the carrier envelope offset fre-

quency in the down-converted RF frequency comb. A series of temporal waveforms,

including: tunable Gaussian, triangle, square, and “UVA”-like logo, are demon-

strated to illustrate arbitrary waveform synthesis. All critical components in the

dual-microcomb method, including soliton microcombs [10], wavelength multiplex-

er/demultiplexer[117], intensity and phase modulators [118], optical amplifier [119],

and ultrafast photodiodes [120], are compatible with photonic integration. A discus-
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sion of waveform quality and a comparison of the effective number of bits (ENOB)

with electronic AWG are presented at the end of the manuscript.

5.2 Concept of line-by-line Fourier synthesis

The concept of dual-microcomb RF line-by-line waveshaping is illustrated in Fig. 5.1.

Signal solitons with repetition rate of fr, and local solitons with repetition rate of

fr +∆fr, are generated in two Kerr microresonators pumped by the same laser [21,

121]. A radio-frequency (RF) comb with zero offset frequency and a comb spacing of

∆fr can be created by beating the signal and local solitons on a fast photodiode. The

RF comb forms a Fourier series, with V (t) =
∑∞

n=0An cos (2πn∆frt+ φn), where

V (t) is the voltage output of the photodiode, n is the comb line number, An and φn

are the amplitude and phase of n-th comb line, respectively. As the amplitude and

phase of the RF comb lines are fully derived from the amplitude and phase of the

corresponding optical comb lines, the line-by-line optical waveshaping on the signal

solitons can fully control the amplitude and phase of the RF comb. In principle,

dynamic waveform synthesis is possible by using time varying modulations of An

and φn through the use of electro-optic modulators. Here, an off-the-shelf optical

waveshaper is used instead to demonstrate static, repetitive waveform synthesis.
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Figure 5.1: Concept of RF line-by-line Fourier synthesis with dual-
microresonator solitons. A radio-frequency (RF) comb that is composed of a
series of equidistant RF lines is created by photomixing two soliton microcombs with
slightly different repetition frequencies on a photodiode (PD). The RF comb spacing
is set by the repetition rate difference of the two soliton microcombs, and the RF
comb offset frequency is nullified by using a common pump laser to drive both opti-
cal solitons. To implement line-by-line amplitude (An) and phase (φn) control of the
RF comb lines, one of the optical microcomb (signal solitons) goes through optical
line-by-line waveshaping, and optical amplitude modulations (AMs) and phase modu-
lations (PMs) are down-converted to the RF frequency comb through dual-microcomb
coherent sampling. As the RF frequency comb forms a complete Fourier series, arbi-
trary temporal waveforms can be synthesized.

5.3 Demonstration of an arbitrary RF waveform

generator with Fourier synthesis

For Fourier synthesis of arbitrary RF waveforms, the signal and local solitons are

generated in SiN micro-ring resonators[88] with intrinsic quality factors of 7.7×106

and 4.3×106, respectively. The radii of the signal and local soliton resonators are

set to 228.65 µm and 228.30 µm, respectively, which introduces a 150 MHz repeti-

tion rate offset (∆fr) between the two solitons. To create an RF comb with zero

offset frequency, both optical solitons are generated using the same pump laser[21,

121]. Thermoelectric coolers (TECs) are placed beneath microresonators to coarsely

align the resonance frequencies of the two resonators at the pump laser wavelength.

The thermal tuning of the resonant frequency is ∼2.5 GHz/◦C, and the TEC has

a resolution of 0.01◦C. A rapid laser frequency scanning method that leverages the
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single-sideband suppressed-carrier (SSB-SC) modulator[72] is used to generate single

soliton states in both resonators simultaneously[121]. The pump frequency is con-

trolled by the voltage-controlled oscillator (VCO) that drives the SSB-SC modulator,

which scans over ∼3 GHz in 150 ns from shorter to longer wavelength. Fig. 5.2a

illustrates the simplified experimental setup. The optical spectra of signal (red) and

local (blue) solitons are shown in Fig. 5.2b. No active locking technique is used in

our experiments for stabilization..

An optical line-by-line waveshaper[110] is used to control the phase of each comb line

in the signal solitons (φS
n). The signal and local solitons are then combined in a fiber

coupler, and a second waveshaper is followed to control the amplitudes of each comb

line pair (AS
n, A

L
n). An erbium-doped fiber amplifier (EDFA) is used to amplify the

solitons, and a high-speed, high-power photodiode converts the optical dual solitons

into a zero offset RF frequency comb. The dual-comb optical spectrum after EDFA is

measured on an optical spectrum analyzer, and an oscilloscope with 4 GHz bandwidth

is used to characterize the RF temporal waveform, the spectrum of the RF comb, and

the phase of the RF comb. Fig. 5.2 c presents the measurements when no phase or

power adjustment are added by the waveshapers, except compensating the dispersion

introduced by optical fibers. This can serve as a reference point for line-by-line

waveshaping in the RF domain. In our experiment, we purposely select a small RF

comb spacing, ∆fr = 150 MHz, such that the analog bandwidth of the RF comb will

not exceed the 4 GHz bandwidth limit of our oscilloscope. The analog bandwidth

in our experiment is limited by the oscilloscope, not by the Nyquist frequency of

coherent dual-comb sampling method[106] or the speed of the photodiode.

To illustrate line-by-line waveshaping in the RF domain, four types of Gaussian based

temporal waveforms are demonstrated in Fig.5.2 d to Fig.5.2 g. The fundamental
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Figure 5.2: Line-by-line waveshaping of RF Gaussian waveforms. (a) Simpli-
fied experimental setup. The pump laser frequency is derived from the frequency of
a continuous-wave (cw) laser, fL, and the voltage-controlled oscillator (VCO), fVCO.
(b) Optical spectra of the signal (red) and local (blue) microresonator solitons. Sech2

envelope fittings are shown in dash lines. The waveform synthesis is shown in panel
(c) to (g) to illustrate the line-by-line control of amplitude and phase of the RF comb.
(c) The reference dual-microcomb waveforms with only dispersion compensation. (d)
Amplitude control of the RF comb lines to shape temporal waveforms into Gaussian
pulses with 235 ps pulse width. (e) Further amplitude control to add an equidistant
Gaussian pulse and double the RF comb repetition frequency. (f) Adjust the relative
Gaussian amplitudes through comb line amplitude control. (g) Combined amplitude
and phase control of the RF comb to tune the relative position of the two Gaussian
pulses. From the top to bottom rows are: (i) the optical spectra of soliton dual-
microcomb after waveshaping, (ii) the down-converted RF spectra, (iii) the phase of
RF comb lines, and (iv) the temporal waveforms. Designed comb line powers and
phases are shown in red circles, and the designed temporal waveforms are shown in
dashed blue lines.
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signal resonator and local resonator paths. In each path, the pump goes through an
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Gaussian waveform is shown in Fig.5.2 d, which has a Gaussian envelope with flat

phase in both frequency and temporal domains. The power and phase of the generated

RF comb match the designed ones very well, which are shown in red circles. The

corresponding temporal waveform is a Gaussian pulse train with a time period of

6.71 ns, peak voltage of 0.94 Volt, and pulse width of 235 ps. No electrical amplifier

after the photodiode is used in this work. The number of pulses in one period can

be doubled by knocking out half of the RF comb lines (Fig.5.2 e). This is equivalent

to adding an equidistant Gaussian pulse with the same amplitude in one temporal

period. The amplitude of the added Gaussian pulse can be adjusted by changing the

amplitude of the RF comb (Fig.5.2 f). Finally, the temporal position of the added

Gaussian pulse can be shifted by modifying both the amplitude and the phase of the

RF comb lines (Fig. 5.2 g). The demonstration of these four Gaussian waveforms

illustrates the full control of amplitude and phase in our RF line-by-line shaping

method.
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Figure 5.4: Arbitrary waveform generation by using dual-microcomb RF
Fourier synthesis. (a) Triangle waveform. (b) Square waveform. (c) “UVA”-like
waveform. The corresponding (i) optical spectra, (ii) RF spectra, (iii) comb line
phases, and (iv) temporal waveforms are shown from top to bottom in each panel.
Designed comb line powers and phases are shown in red circles, and the designed
temporal waveforms are shown in dashed blue lines.
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One direct application of line-by-line waveshaping is arbitrary waveform generation.

Three representative waveforms, including triangle, square, and “UVA”-like wave-

forms, are demonstrated here. For each temporal waveform, the corresponding am-

plitude and phase of each comb line can be derived by discrete Fourier transform of

the temporal waveform. The Fourier transform of the triangle waveform is xtr(t) =∑∞
j=1 n

−2 cos (2πn∆frt+ (−1)jπ/2), where j is integer number, and n = 2j+1. The

triangle waveform only has comb lines with odd number n, where the phase of the

comb line alternates between −π/2 and π/2, and the amplitude decays quadratically

with the line number n. These features are well reproduced in the power and phase

spectra (Fig.5.4 a), and a triangle wave with period of 6.84 ns and 2.4 V peak to

peak voltage is generated. Similarly, the square waveform is composed of comb lines

with odd number: xsq(t) =
∑∞

j=1 n
−1 cos (2πn∆frt− π/2). Fig.5.4 b shows the mea-

surements of the square waveform. Finally, a “UVA”-shaped waveform is shown in

Fig.5.4 c to illustrate that the waveform construction in our method is arbitrary. All

three demonstrated waveforms agree very well with the designed waveforms.

5.4 Arbitrary RF waveform repetition period tun-

ing

As the RF waveform repetition period is set by the repetition rate difference between

the signal and local solitons, it can be tuned directly by adjusting the repetition rate

of one of the solitons. Small range tuning of repetition period can be achieved by

adjusting the temperature of the local soliton microresonator. Fig.5.5 a presents the

RF comb repetition rate versus the temperature of the local soliton microresonator

and a tuning rate of ∼ 30 MHz/◦C is measured. The spectra and temporal profiles
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Figure 5.5: Tuning the repetition frequency of the RF comb and temporal
waveforms. (a) The RF comb repetition frequency is tuned by adjusting the rep-
rate of local solitons. Small range tuning is realized by tuning the temperature of the
local soliton microresonator with a thermoelectric cooler (TEC). Large range tuning is
accomplished by generating local solitons in a microresonator with a slightly different
radius. Soliton repetition rates are indicated in the figure legend. Panel (b) and
panel (c) show the electrical spectra and corresponding temporal waveforms at three
different operating points indicated in panel (a). (d) Allan deviation of RF comb
repetition rate at point I in panel (a).

of two Gaussian waveforms at (I) 21.95 ◦C and (II) 22.15 ◦C are shown in Fig.5.5 b

and Fig.5.5 c, where a difference of 0.29 ns in the waveform repetition periods can be

seen. Large change of waveform period can be achieved by generating local solitons

in a microresonator with slightly different radius. The RF comb rep-rate changes

from ∼ 150 MHz to ∼ 85 MHz when the radius of local soliton microresonator is

varied from 228.30 µm to 228.53 µm. Finally, Fig.5.5 d presents the Allan deviation

of the RF-comb repetition rate, which is subject to the pump laser frequency drift

and environment temperature fluctuations in our free running system.

5.5 Resolution of the RF waveforms

5.5.1 Effective number of bits (ENOB)

An important figure of merit for RF arbitrary waveform generation is the effective

number of bits (ENOB) [122], which can be used to evaluate the waveform quality
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or the effective resolution of the waveforms. For our dual-comb AWG method, the

fundamental limit of its ENOB is set by the optical power of the frequency combs.

The fundamental limit of the ENOB in the dual-comb AWG method can be calculated

using the ratio of signal voltage to the root-mean-square noise voltage fluctuations,

and it is defined as: 2ENOB = Vp/
√
2Vσ, where Vp is the time domain peak voltage,

and V 2
σ is the voltage noise variance. As harmonic distortion is not observed in our

experiments, it is not included in our ENOB calculation. The digital quantization

noise is not included either for our analog system. It should be noted that the widely

used ENOB expression for sinusoidal waveforms [122] agrees with our definition when

excluding harmonic distortion and digital quantization noise.

The optical field of an N -pair dual-comb can be expressed as:

E =
N∑

n=1

√
P S
n exp[−i(wS

n t− φS
n)] +

N∑
n=1

√
PL
n exp[−i(wL

n t− φL
n)], (5.1)

where ωS,L
n , P S,L

n and φS,L
n are the n-th comb line’s frequency, power, and phase of

the signal (S) and local (L) combs. The photocurrent generated at the photodiode

can be expressed as:

Iph = R|E|2 +∆IS +∆IT

= R

N∑
n=1

(P S
n + PL

n ) + 2R
N∑

n=1

√
P S
n P

L
n cos[2πn∆frt+ (φS

n − φL
n)] + ∆IS

+∆IT + · · · ,

(5.2)

where R is the responsivity of the photodiode, and 2πn∆fr = ωL
n − ωS

n are the

frequency differences of n-th lines of signal combs and local combs. ∆IS and ∆IT are
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the current fluctuations caused by the shot noise and thermal noise, respectively. In

our experiments, the dark current noise can be neglected (10 nA for our PD, Finisar

VPDV2120). The first term in the second line corresponds to the DC photocurrent,

and the second term corresponds to the AC photocurrent for the down-converted

RF comb. Higher frequency terms beyond the Nyquist bandwidth [106], such as

harmonics of comb repetition frequency, are neglected. For analysis of signal-to-noise

ratio (SNR) and effective number of bit (ENOB) [122], we assume a flat spectrum

for the dual-comb for simplicity, i.e., P S
n = PL

n = P0. The AC voltage output is then

given by:

VAC = 2Rload ·RP0

N∑
n=1

cos[2πn∆frt+ (φS
n − φL

n)], (5.3)

where Rload (50 Ω) is the load resistor. For the sinc-shaped waveform, we will have

φS
n = φL

n , and the peak voltage will occur when t = M/∆fr, where M is an integer

number. The peak voltage can be expressed as:

Vp = 2Rload ·R ·NP0. (5.4)

The variances from shot noise and thermal noise, and their total variance are given

by:

σ2
S = 2e · IDC · fBW, (5.5)

σ2
T = kBT/Rload · fBW, (5.6)
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σ2 = σ2
S + σ2

T , (5.7)

where e is the charge of an electron, IDC = 2R ·NP0 is DC photocurrent, fBW is the

bandwidth of photodiode (or the total bandwidth, assuming photodiode bandwidth

is equal to or larger than the Nyquist bandwidth), kB is the Boltzmann constant, and

T is the temperature (300 K in the lab enviroment).

The effective number of bits (ENOB) of the demonstrated waveform can be calculated

using the ratio of signal voltage to the root-mean-square noise voltage fluctuations

[122]:

Vp/
√
2

Vσ
= 2ENOB ⇔ ENOB = log2

(
Vp/

√
2

Rload · σ

)
, (5.8)

where we have used Vσ = Rload · σ. By inserting equations (5.4 - 5.6) to equation

(5.8), the expression of ENOB is given by:

ENOB =
1

2
log2

[
2R2 ·N2P 2

0

σ2

]
=

1

2
log2

[
2R2 ·N2P 2

0

(4e ·R ·NP0 + kBT/Rload) · fBW

]
. (5.9)

The ENOB increases with the number of comb pairs N and comb line power P0, and

decreases with electrical bandwidth.

Our definition of ENOB agrees with the common ENOB definition in electronic AWG

for sinusoidal waveform, which is given by[122]:

ENOB =
SINAD − 1.76

6.02
, (5.10)
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theoretical limit of dual-comb AWG ENOB versus the comb line power for 50 GHz
analog bandwidth. The minimum pump power required to achieve such comb line
power in the single soliton microcomb state is also shown. In this calculation, we
assume 3 dB loss between the microresonators and the photodiode, and 4 dB noise
figure for the optical post-amplifier. (b) ENOB comparison of dual-comb AWG and
state-of-the-art commercial electronic AWG.

where SINAD = Psignal/(Pnoise+Pdistortion) is the signal-to-noise and distortion ratio,

and 1.76/6.02 ≈ 0.29 comes from the quantization error in an ideal digital-to-analog

converter (DAC) / analog-to-digital converter (ADC). When exclucding the effect of

harmonics distortion and digital quantization error, equation (5.10) becomes:

ENOB =
SNR
6.02

=
10 log10(Vsig−rms/Vσ)

2

20 log10 2
= log2(Vsig−rms/Vσ) = log2(Vp/

√
2Vσ),

(5.11)

which is the same as our ENOB definition in equation (5.11).
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5.5.2 ENOB and soliton microcomb power

For bright dissipative Kerr cavity solitons, the center comb line power can be ex-

pressed[9, 62] as a function of cavity second-order dispersion D2 and external coupling

rate κext:

Pc =
h̄ω0

4g
κextD2 =

πn0Seff

2ω0n2D1

κextD2, (5.12)

where g = h̄ω2
0cn2/n

2
0Veff is the Kerr nonlinear coefficient and Veff = 2πcSeff/n0D1

is the effective cavity mode volume. h̄, ω0, c, n0, n2, Seff , D1 are the plank constant,

cavity mode angular frequency, speed of light, refractive index, Kerr nonlinear re-

fractive index, effective mode area and free spectral range, respectively. Pc increases

with the product of κext and D2. For a given soliton pulse width τs, the minimum

pump power for the soliton state is given by [62]:

Ppump,min = −2c

π

Seffβ2
ω0n2D1

κ2

κext

1

τ 2s
=

2

π

n0Seff

ω0n2

D2

D3
1

(κ0 + κext)
2

κext

1

τ 2s
, (5.13)

where β2 = −n0D2/cD
2
1 is the group velocity dispersion, and κ0 is the cavity intrinsic

loss rate.

Combining eq. (5.12) and eq. (5.13), the center comb line power can be expressed as

a function of the minimum pump power:

Pc =

(
ηπD1τs

2

)2

Ppump,min, (5.14)

where we have used resonator-waveguide coupling strength coefficient η = κext/(κ0 +

κext). For the sech2-shaped soliton microcomb, its comb power spectral envelope is
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given by:

P (∆ω) = Pc · sech2
(πτs

2
∆ω
)
, (5.15)

where ∆ω is the comb tooth frequency relative to the comb center frequency. As-

suming that within 3-dB spectral bandwidth there are N single-sided comb lines, we

can then obtain:

sech2
(πτs

2
ND1

)
=

1

2
⇔ πD1τs

2
=

0.8814

N
. (5.16)

Therefore, equation (5.14) can be expressed as:

Pc =

(
0.8814η

N

)2

Ppump,min, (5.17)

In our experiment, these N comb lines can be used for line-by-line Fourier synthesis.

For sinc-shaped waveform, the power of each comb line is set to the weakest comb line

power, i.e., 3 dB lower than that of the center comb line. Also, considering the total

insertion loss of optical components (such as wavelength demultiplexer/multiplexer,

phase/intensity modulators) between microresonators and photodiodes, the actual

comb line power received by the photodiode can be expressed as:

P0 = α× Pc

2
, (5.18)

where α is the efficiency from resonators to detectors. By plugging eqs. (5.17)-(5.18)

into equation (5.9), ENOB can be expressed as:



65

ENOB =
1

2
log2

[
R2 · α2N2P 2

c

2(2e ·R · αNPc + kBT/Rload) · fBW

]
=

1

2
log2

[
(0.8814η)4 ·R2 · α2P 2

pump,min

2[2(0.8814η)2 · e ·R · αPpump,min/N + kBT/Rload]N2 · fBW

]
.

(5.19)

Equation (5.19) is used for plotting ENOB without amplifier in Fig.5.6 (a) and Fig.5.6

(b).

5.5.3 ENOB after optical amplification

If an optical amplifier, i.e. erbium-doped fiber amplifier (EDFA), is placed before the

photodiode for amplifying the comb line power, the output optical power per comb

line P0A is given by:

P0A = P0G, (5.20)

where G is the gain of the amplifier and we assume it is constant over the entire

amplifier bandwidth. The spectral density of amplified spontaneous emission (ASE)

noise is given by [123, 124, 125, 126]:

SASE =
1

2
(FnG− 1)hν, (5.21)

where Fn is the amplifier noise figure, h is the Planck constant, and ν is the frequency

of input signal. Given that the amplifier bandwidth (∆ν) is much smaller than the

frequency of light (∆ν ≪ ν), the spectral density of ASE noise can be treated as a

constant, i.e., SASE = 1/2 × (FnG − 1)hν0, where ν0 is the center frequency of the
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amplifier operating band. The total power of ASE noise over the entire amplifier

bandwidth ∆ν is given by:

PASE = 2× SASE ×∆ν = (FnG− 1)hν0 ×∆ν, (5.22)

where the factor of 2 includes both orthogonal polarization modes supported in a

single-mode fiber. When dividing the ASE bandwidth ∆ν into K bins[127, 128, 126]

and each bin has a bandwidth of δν = ∆ν/K, we can express the optical field of the

ASE noise as:

EASE = (SASEδν)
1/2

K∑
k=1

exp[−i(ωkt− φk)]. (5.23)

The photocurrent generated at the photodiode can be modified as:

Iph = R|
√
GE + EASE|2 +∆IS +∆IT . (5.24)

While the thermal noise variance σ2
T remains the same as before, the shot noise

variance of the amplified light now becomes:

σ2
S = σ2

Scomb
+ σ2

SASE
= 2e ·R(2NP0G+ PASE) · fBW, (5.25)

which has optical power contributed from both the amplified comb signals and the

ASE noise. Besides the shot noise, from equation (5.24), the ASE noise field can also

induce extra noise current IASE, which includes the ASE field photomixing with the
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amplified signal (Isig−sp), and ASE field photomixing with itself (Isp−sp):

IASE = Isig−sp + Isp−sp, (5.26)

Isig−sp = R(
√
GEE∗

ASE +
√
GE∗EASE)

= 2R
√
G(SASEδν)

1/2

K∑
k=1

(
N∑

n=1

AS
n cos[(ωS

n − ωk)t+ φk − φS
n]

+
N∑

n=1

AL
n cos[(ωL

n − ωk)t+ φk − φL
n ]

)

= 2R
√
GA0(SASEδν)

1/2

K∑
k=1

(
N∑

n=1

cos[(ωS
n − ωk)t+ φk − φS

n]

+
N∑

n=1

cos[(ωL
n − ωk)t+ φk − φL

n ]

)
,

(5.27)

Isp−sp = R · EASEE
∗
ASE · 2

= 2RSASEδν
K∑
k=1

exp[−i(ωkt− φk)]
K∑
l=1

exp[i(ωlt− φl)]

= 2RSASEδν

K∑
k=1

K∑
l=1

cos[(ωk − ωl)t+ φl − φk],

(5.28)

where the factor of 2 in Isp−sp includes both two orthogonal polarization modes. Note

that only terms with their frequencies within the photodiode bandwidth should be

kept in the calculation, i.e., |ωS(L)
n − ωk| ≤ fBW and |ωk − ωl| ≤ fBW. To derive the

variances, we can first calculate the average values of Isig−sp, Isp−sp:

< Isig−sp >= 0, (5.29)
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< Isp−sp >= 2RSASEδνK = 2RSASE∆ν = R · PASE, (5.30)

where we have considered the phase of ASE noise φk(l) fluctuates with time. The

expected values of I2sig−sp, I2sp−sp are given by:

< I2sig−sp >=4R2P0GSASEδν[
∑K

k=1(
∑N

n=1 cos[(ωS
n−ωk)t+φk−φS

n ]+
∑N

n=1 cos[(ωL
n−ωk)t+φk−φL

n ])]
2

= 4R2P0GSASEδν × (
2fBW

δν
· 2N · 1

2
) = 4R2 · (2NP0G)SASE · fBW,

(5.31)

< I2sp−sp >= 4R2S2
ASEδν

2

(
K∑
k=1

K∑
l=1

cos[(ωk − ωl)t+ φl − φk]

)2

= 4R2S2
ASEδν

2 ×
[
K · 2fBW

δν
− fBW

δν
(
fBW

δν
− 1)

]
× 1

2
+ 4R2S2

ASEδν
2 ×K2

≈ 4R2S2
ASEδν

2 ×
[
2K · fBW

δν
− (

fBW

δν
)2
]
× 1

2
+ 4R2S2

ASEδν
2 ×K2

= 4R2S2
ASE · fBW(∆ν − fBW/2) + 4R2S2

ASE∆ν
2,

(5.32)

where fBW/δν represents the number of frequency bins within PD bandwidth.

2fBW/δν · 2N is the number of terms whose frequencies fall within PD bandwidth

for I2sig−sp. K · 2fBW/δν − (fBW/δν)(fBW/δν + 1) and K2 are the numbers of terms

whose frequencies fall within PD bandwidth for I2sp−sp when k ̸= l and when k = l,

respectively. As a result, the variances can be expressed as[127, 128, 126]:

σ2
sig−sp =< I2sig−sp > − < Isig−sp >

2= 8R2NP0GSASE · fBW, (5.33)
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σ2
sp−sp =< I2sp−sp > − < Isp−sp >

2= 4R2S2
ASE · fBW(∆ν − fBW/2). (5.34)

The total noise variance after optical amplification is:

σ2
A = σ2

S + σ2
sig−sp + σ2

sp−sp + σ2
T . (5.35)

The ENOB after amplification can be expressed as:

ENOBA =
1

2
log2

2R2 ·N2P 2
0G

2

σ2
A

= 1
2

log2
2R2·N2P 2

0G
2

[4eRNP0G+R(FnG−1)hν0(2e∆ν+4RNP0G+R(FnG−1)hν0(∆ν−fBW/2))+kBT/Rload]·fBW
.

(5.36)

To simplify this expression, three noise terms can be neglected with confidence. The

first is the shot noise of ASE, since the optical power of ASE is usually much smaller

than the optical power of amplified comb lines. The second is the photomixing of

ASE field with itself, which can be significantly suppressed using optical filters. The

last term is the shot noise of amplified comb lines, as it is found to be always much

smaller than the noise contributed from the photomixing of the ASE field and the

amplified signal field:

σ2
S,comb = 4eRNP0G · fBW ≪ 4ηpd · eRNP0G(FnG− 1) · fBW = σ2

sig−sp, (5.37)

where we have used amplifier gain G ≫ 1, and the expression of responsivity R =
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ηpd · e/hν, ηpd is the quantum efficiency of the photodiode. The amplifier noise figure

Fn is usually bigger than 2 (3 dB in log scale). Then the remaining noise sources only

include the thermal noise, and the noise from the photomixing between the ASE field

and the amplified signal field. Equation (5.36) can be reduced to:

ENOBA ≈ 1

2
log2

[
2R2 ·N2P 2

0G
2

[4ηpd · eR(FnG− 1)NP0G+ kBT/Rload] · fBW

]
≈ 1

2
log2

[
2R2 ·N2P 2

0G
2

[4ηpd · eRFnG2NP0 + kBT/Rload] · fBW

]
.

(5.38)

Plugging eqs. (5.17,5.18,5.20) into eq. (5.38), ENOB after amplification can be

expressed as:

ENOBA =
1

2
log2

[
R2 · α2N2P 2

cG
2

2[2ηpd · eRFnG2αNPc + kBT/Rload] · fBW

]
=

1

2
log2

[
(0.8814η)4 ·R2 · α2P 2

pump,minG
2

2[2(0.8814η)2ηpd · eR · FnG2 · αPpump,min/N + kBT/Rload]N2 · fBW

]
.

(5.39)

Equation (5.39) is used for plotting ENOB with amplifier in Fig. 5a and Fig. 5b.

5.6 Summary

In this chapter, we have demonstrated arbitrary RF waveform generation through

spectral line-by-line shaping with optical dual-microresonator solitons. The ultra-

high analog bandwidth has been the key advantage of photonic AWG systems. 60

GHz analog bandwidth has been achieved previously using frequency-to-time map-
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ping[111] and direct time-domain synthesis[115]. The analog bandwidth of the dual-

comb Fourier synthesis method is ultimately limited by the Nyquist frequency of op-

tical coherent sampling[106], i.e., half of the optical frequency comb repetition rate,

and the bandwidth of the photodiode. The Nyquist frequency of dual-microcomb

can range from a few GHz up to a few hundred GHz [65, 66]. The high Nyquist

frequency has been applied to increase the bandwidth or sampling rate in dual-

microcomb spectroscopy [13, 21], Lidar[24, 25] and imaging[23, 22]. In terms of

photodiodes, bandwidth exceeding 100s GHz has been demonstrated, and has been

combined with soliton microcombs to generate RF signals with exceptional perfor-

mance in power [129], phase noise[130, 131] and time jitter [132]. It is thus possible to

extend the analog bandwidth of dual-microcomb AWG beyond 100 GHz. In addition,

all the critical components in dual-microcomb Fourier synthesis, including laser, Kerr

microresonators, multiplexers/demultiplexers, modulators, amplifiers, and ultrafast

photodiodes, have all been shown to be compatible with silicon photonics integra-

tion. Also, it eliminates the need of low-rate mode-locked lasers and long tunable

delay lines required by the previous proposed on-chip solutions[111, 115, 116], and

has the potential of mass-production on a photonic chip. Finally, the time-bandwidth

product (TBWP) of our current static arbitrary waveform demonstration is limited

by the number of comb lines, which gives a maximum TBWP of 20. In contrast, a

TBWP of 600 has been demonstrated by combining frequency-to-time mapping and

optical interferometry[112]. In the future, the TBWP of our method can be increased

dramatically by replacing the static waveshaper with phase and amplitude modula-

tors for dynamic line-by-line phase and amplitude control [118, 98, 104], and the the

time aperture of the waveforms will be directly set by the time aperture of modulation

signals.
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In our experiment, the analog bandwidth of the waveform is 3 GHz, which is set pur-

posely such that the waveform bandwidth will not exceed our oscilloscope bandwidth.

The waveform analog bandwidth in our dual-microcomb method can be conveniently

increased by adjusting the FSR difference between the two soliton microresonators,

which can be precisely controlled in microfabrication. In addition, although the

demonstrated waveform generation is periodic and static, dynamic waveform genera-

tion can be implemented by using time varying amplitude and phase modulation of

the optical comb lines through integrated photonic modulators [118, 98, 104].
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Chapter 6

Background of quantum optics

6.1 Introduction

We have covered some introductions of the physics of microcombs in the classic regime

in the previous chapters. In this chapter, the concept of quantum optics will be briefly

introduced before we move to the quantum experiments in microresonators. Detailed

introduction of quantum optics can be found in found in references[133, 134, 135].

6.2 Quantization of the eletctromagnetic field

The quantization of the electromagnetic field is essential to explore the quantum

properties of the light. To get started, it is more convenient to describe the field con-

strained to a certain volume and in a discrete form consists of the cavities mode[135],

which leads to the mode expansion form of electric field

E(r, t) = i
∑
k

√
h̄ωk

2ϵ0
[akuk(r)e−iωkt − a†ku∗

k(r)eiωkt], (6.1)

where uk are a series of discrete orhtogonal mode functions which represent the electric

fields in the certain volume, ωk is the frequency of mode k and ak is the complex

Fourier amplitude and are dimensionless. Quantization of the electromagnetic field
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can be accomplished by choosing annihilation operator âk and creation operator â†k
that satisfy the boson commutation relations

[âk, â
′
k] = [â†k, â

′†
k ] = 0, [âk, â

′†
k ] = δkk′ . (6.2)

The Hamiltonian of the electromagnetic field in the volume can be written as

Ĥ =
1

2

∫
(ϵ0E2 + µ0H2)dr =

∑
k

h̄ωk(â
†
kâk +

1

2
). (6.3)

The Hamiltonian is the sum of the photon number times the energy per photon in

each cavity mode, plus the energy of half a photon which represents the vacuum

fluctuations in each mode. This can be understood as an analogy to the harmonic

oscillator.

Define Hermitian operators P̂ and Q̂ that are observables in experiments,

Q̂ =
â+ â†√

2
, (6.4)

P̂ = −i â− â†√
2
, (6.5)

They satisfy the commutation relation and the Heisenberg uncertainty principle

[Q̂, P̂ ] = i, (6.6)
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∆Q̂∆P̂ ≥ 1

2
. (6.7)

6.3 Time evolution

Quantum systems can evolve with time. Different approaches are used to mathemat-

ically describe the dynamics of the system. These approaches are called dynamical

pictures, including the Schrödinger picture, the Heisenberg picture and the interac-

tion picture.

6.3.1 Schrödinger picture

In the Schrödinger picture, the operators stay constant and the quantum state evolves

with time. The evolution in the Schrödinger picture is given by

d|ψ(t)⟩
dt

= − i

h̄
Ĥ|ψ(t)⟩, (6.8)

where |ψ⟩ is the quantum state vector or wave function and Ĥ is the Hamiltonian of

the quantum system. The evolution of the quantum state from time t0 to t can be

written as

|ψ(t)⟩ = U(t, t0)|ψ(t0)⟩, (6.9)

where U(t, t0) is the time-evolution operator. If the Hamiltonian commutes with itself

at different times, the time-evolution operator can be written as
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U(t, t0) = e
− i

h

∫ t
t0

Ĥ(t′)dt′
. (6.10)

The expectation value of an observable Ô(t) can be obtained as

⟨Ô(t)⟩ = ⟨ψ(t)|Ô(t)|ψ(t)⟩. (6.11)

6.3.2 Heisenberg picture

In the Heisenberg picture, the operators evolve with time while the quantum state

stay constant. The expectation value of an operator should stay the same no matter

which picture it is described in

⟨Ô⟩ = ⟨ψ(t)|Ô|ψ(t)⟩

= ⟨ψ(t0)|U(t, t0)†ÔU(t, t0)|ψ(t0)⟩

= ⟨ψ(t0)|Ô(t)|ψ(t0)⟩.

(6.12)

This can be understood as the wave function remains constant and the operator

evolves from time t0 to t as

Ô(t) = U(t, t0)
†ÔU(t, t0). (6.13)

The equation of motion of an operator in the Heisenberg picture is given by
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dÔ(t)

dt
= − i

h̄
[Ô(t), Ĥ]. (6.14)

This is known as the Heisenberg equation.

6.3.3 Interaction picture

In the interaction picture, both the operators and quantum state evolve with time.

We can write the Hamiltonian of the quantum system as

Ĥ = Ĥ0 + V̂ , (6.15)

where Ĥ0 is the free part of the Hamiltonian that doesn’t interaction between the sub-

systems and V̂ is the interaction Hamiltonian that describes the coupling between the

sub-systems. Ĥ0 can be understood as an analogy to the kinetic energy of a series of

particles and V̂ can be understood as an analogy to the potential energy among those

particles. We can include the time-dependent terms in V̂ and leave Ĥ0 constant. The

evolution operator under the Hamiltonian Ĥ0 can be obtained through Eq. (6.10) as

Û0(t) = e−
iĤ0(t−t0)

h̄ . (6.16)

Define an operator in the interaction picture

ÔI(t) = Û0(t)ÔÛ0(t)
†. (6.17)

Take time derivative of Eq. (6.17), we obtain
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dÔI(t)

dt
=
i

h̄
[ÔI , Ĥ0] + Û0

dÔH

dt
Û †
0 . (6.18)

We can derive from the Heisenberg equation that

Û0
dÔH

dt
Û †
0 = − i

h
([ÔI , Ĥ0] + [ÔI , V̂ ]). (6.19)

Substituting this equation into the time derivative Eq. (6.18) leads to

dÔI(t)

dt
= − i

h
[ÔI , V̂ ]. (6.20)

The expectation value of the operator Ô at time t should remain the same in the

interaction picture as in other two pictures,

⟨Ô⟩ = ⟨ψ(t)I |ÔI |ψ(t)I⟩

= ⟨ψI(t)|Û0(t)Û(t, t0)
†ÔÛ(t, t0)Û

†
0(t)|ψI(t)⟩

= ⟨ψ(t0)|U(t, t0)†ÔU(t, t0)|ψ(t0)⟩,

(6.21)

where ψI(t) is the wave function defined in the interaction picture. To satisfy the last

equation to preserve the expectation value among different dynamical pictures, the

wave function ψI(t) should satisfy

|ψI(t)⟩ = Û0|ψ(t0)⟩. (6.22)

This indicates that the wave function in the interaction picture only evolves with the
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free part of Hamiltonian Ĥ0. The time derivative of Eq. (6.22) gives the equation of

motion

d|ψI(t)⟩
dt

= − i

h̄
|ψ(t0)⟩. (6.23)

6.4 Quantum states

In this section, we will briefly introduce the states in quantum optics.

6.4.1 Fock state

Fock states are eigenstates of the photon number operator N̂ = â†â and the wave

functions |n⟩ are their eigenvectors, where we have

â†|n⟩ =
√
n+ 1|n+ 1⟩, (6.24)

â|n⟩ =
√
n|n− 1⟩, (6.25)

N̂ |n⟩ = n|n⟩, (6.26)

Ĥ|n⟩ = (n+
1

2
)|n⟩. (6.27)

Note that in the specific fock state where n = 0, it is called the vacuum state. We
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can calculate the expectation values and deviations of the quadrature operators Q̂

and P̂

⟨Q̂⟩ = ⟨n|Q̂|n⟩ = 1√
2
⟨n|â+ â†|n⟩ = 0,

⟨P̂ ⟩ = ⟨n|P̂ |n⟩ = − i√
2
⟨n|â− â†|n⟩ = 0,

(6.28)

In a similar way, we can get

⟨Q̂2⟩ = ⟨n|Q̂2|n⟩ = n+
1

2
,

⟨P̂ 2⟩ = ⟨n|P̂ 2|n⟩ = n+
1

2
,

(6.29)

The deviations are then given by

∆Q =

√
⟨Q̂2⟩ − (⟨Q̂⟩)2 =

√
n+

1

2
,

∆P =

√
⟨P̂ 2⟩ − (⟨P̂ ⟩)2 =

√
n+

1

2
.

(6.30)

In the vacuum state, which is the minimum uncertainty state, we have the Heisenberg

uncertainty relation taking the equals sign

∆Q̂∆P̂ =
1

2
. (6.31)

The deviations of quadrature operators are constant in a given fock state and are
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independent of quadrature angle. The expectation values of quadrature operators are

zero. The quantum state appears as a circle that centers at the origin in the phase

space with a radius of
√
n+ 1

2
.

6.4.2 Coherent state

Coherent states |α⟩ are eigenstates of the annihilation operators â,

â|α⟩ = α|α⟩. (6.32)

Coherent states can be describe as classical electromagnetic waves. The annihilation

operator â is usually not hermitian and its eigenvalue α is a complex number that

can be written as

α = |α|eiθ, (6.33)

where |α| and θ are the amplitude and phase of the eigenvalue α. A stable optical

field that is above the parametric threshold can be treated as a coherent state. The

coherent state can be written in the photon number basis as

|α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n⟩. (6.34)

The expectation value and deviation of the photon number are given by
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⟨N̂⟩ = ⟨α|N̂ |α⟩ = |α|2,

∆N̂ = |α|.
(6.35)

The expectation values and deviations of the quadrature operators Q̂ and P̂ are given

by

⟨Q̂⟩ = 1√
2
(α + α∗),

⟨P̂ ⟩ = − i√
2
(α− α∗),

(6.36)

∆Q̂ =
1√
2
,

∆P̂ =
1√
2
.

(6.37)

The coherent state is also a minimum uncertainty state. Unlike the vacuum state

where it appears as a circle that centers at the origin in the phase space, the coherent

state centers at a distance to the origin that equals to
√
N̂ .

6.4.3 Squeezed state

In a squeezed state, one of the quadrature operators has smaller deviation than that

of the vacuum state, while the deviation of the other quadrature operator is larger

than that of the vacuum state. The Heisenberg uncertainty relation is still satisfied.
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In the rest of the introduction, we will particularly focus on the squeezed vacuum

state which mathematically can be obtained by applying a squeezing operator on a

vacuum state. The squeezing operator can be written as

Ŝ(γ) = e
γ∗
2
â2− γ

2
â†

2

, (6.38)

where γ = reiϕ. r is the squeezing parameter which is related to the squeezing

generation process, such as nonlinear optics process. ϕ is related to the angle of

the squeezed state in the phase space. In the Heisenberg picture, by applying the

squeezing operator to the quantum state, we obtain the annihilation and creation

operators as

â(t) = Ŝ(γ)†âŜ(γ) = âcoshr − â†eiϕsinhr,

â(t)† = Ŝ(γ)†â†Ŝ(γ) = â†coshr − â†e−iϕsinhr

(6.39)

These two equations are known as the Bogoliubov transformation. The expectation

value and deviation of the photon number operator in a squeezed vacuum state is

given by

⟨N̂(t)⟩ = ⟨0|Ŝ†(γ)N̂ Ŝ(γ)|0⟩ = sinh2r,

∆N̂(t) =

√
∆[N̂(t)]2 − [∆N̂(t)]2 =

1√
2
|sinh2r|.

(6.40)

The generalized quadrature operator can be defined as
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Âθ = Q̂cosθ + P̂ sinθ. (6.41)

The expectation value and deviation of Âϕ are given by

⟨Âθ⟩ = 0,

∆Âθ =
1√
2

√
cos(2θ − ϕ)sinh2r + cosh2r.

(6.42)

When ϕ = 0, the equation above reduces to the form

∆Âθ =

√
(∆Q̂)2cos2θ + (∆P̂ )2sin2θ =

1√
2

√
e2rcos2θ + e−2rsin2θ. (6.43)

In the more general case when ϕ ̸= 0, we can get ∆Âθ(θ = ϕ/2) = er/
√
2. Therefore

the phase term ϕ in the squeezing parameter represents twice the angle of the squeezed

state in the phase space.

6.5 Squeezing in nonlinear optics

Squeezed states can be generated in nonlinear optics processes, such as parametric

down-conversion and four-wave mixing. In this section, we will introduce the genera-

tion of single-mode squeezed state and two-mode squeezed state in nonlinear optics.

The calculations will be performed in the interaction picture.
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6.5.1 Single-mode squeezed state

A single-mode squeezed state is a quantum state where only one frequency mode is

involved in the squeezing quadrature operators. Consider the interaction Hamiltonian

in the parametric down-conversion process

Ĥint = ih̄
g

2
(â†

2

âp − â2â†p) = ih̄
g

2
(â†

2

αp − â2α∗
p), (6.44)

where âp and â are the annihilation operators of the pump mode and the half-

frequency mode respectively,g is the interaction rate. The strong pump laser light âp

can be approximate to the coherent field, and operator âp and â† can be substituted

by complex number αp and α∗
p.

The equations of motion of the quadrature operators can be obtained through the

interaction picture as

dQ̂

dt
= γQ̂,

dP̂

dt
= −γP̂ .

(6.45)

where we defined γ = g
2
αp. The equations of motion show squeezing and anti-

squeezing of the quadrature operators.

6.5.2 Two-mode squeezed state

A two-mode squeezed state is a quantum state where two frequency modes are in-

volved in the squeezing quadrature operators. Consider the interaction Hamiltonian
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in the four-wave mixing process

Ĥint =
∑
n

h̄g(âpâpâ
†
nâ

†
−n + â†pâ

†
pânâ−n) =

∑
n

h̄g(α2
pâ

†
nâ

†
−n + α∗2

p ânâ−n), (6.46)

where g is the interaction rate, n is mode number relative to the mode being pumped,

and âp is the annihilation operator of the pump light. The strong pump laser light

can be approximate to the coherent field, and operator âp and â† can be substituted

by complex number αp and α∗
p, respectively. We can define quadrature operators for

different frequency modes as

Q̂k =
âk + â†k√

2
,

P̂k =
âk − â†k
i
√
2

,

[Q̂k, P̂k] = i,

(6.47)

where Q̂k and P̂k are quadrature operators of frequency mode k. The equations of

motion through the interaction picture are given by

d

dt
(Q̂n + Q̂−n) = γ(Q̂n + Q̂−n),

d

dt
(Q̂n − Q̂−n) = −γ(Q̂n − Q̂−n),

d

dt
(P̂n + P̂−n) = −γ(P̂n + P̂−n),

d

dt
(P̂n − P̂−n) = γ(P̂n − P̂−n),

(6.48)
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where we have used γ = g|αp|2, and αp = |αp|eiπ/4 as a rotation operation. This set

of equations of motion clearly shows that (Q̂n − Q̂−n) and (P̂n + P̂−n) are squeezed.

Note that this calculation does not include the effects of cavity dissipation, waveguide-

cavity coupling, laser-cavity detuning, Kerr self/cross phase modulation or resonator

dispersion. The modelling of the squeezing generation considering those effects will

be introduced in the next chapter.
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Chapter 7

Two-mode squeezed microcomb

7.1 Introduction

In this chapter, we will introduce the concept and theory of two-mode squeezed states

generation through Kerr effect (four-wave mixing) in a microresonator, detection

approaches of the squeezed states and the first demonstration of two-mode squeezed

optical frequency comb in a microresonator.

Optical microresonators employ the Kerr nonlinearity [34] to provide broadband para-

metric gain through four-wave mixing (FWM) among cavity resonance modes, where

pairs of pump photons can be annihilated to generate signal and idler photons at

lower and higher frequencies. The Kerr parametric process has been used to demon-

strate microresonator-based frequency combs (microcombs)[6, 7] and dissipative Kerr

cavity solitons[8, 9, 10, 11], which have revolutionized a wide range of applications

from metrology [12] to spectroscopy[13]. The quantum aspects of microcomb have

been studied recently [14, 15, 16, 17, 18, 19] for its capability of providing hundreds

of frequency multiplexed quantum channels from a single microresonator. Access

to individual quantum channels is possible through off-the-shelf wavelength-division-

multiplexing filters thanks to microcombs’ large free-spectral-ranges (FSRs), which

range from a few GHz to 1 THz [65, 66] as opposed to the finer FSRs of fiber or bulk

resonator-based combs. When combined with integrated photonic circuits, quantum
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microcombs have the potential to revolutionize photonic quantum information pro-

cessing.

So far, experiments of quantum microcombs have been limited to the probabilistic

regime[15, 16, 17, 18], where entanglement is measured between randomly emitted

photon pairs with postselecting, coincidence detection. The photon coincidence rate

suffers from exponential decrease with the increase of photon number in a quantum

state. Quantum architectures built upon probabilistic quantum states are not scalable

without quantum memory, which allows repeat-until-success strategies[136, 137]. In

contrast, a quantum microcomb in the deterministic regime, where the entanglement

among different frequency modes can be deterministically generated and detected, will

be a significant step forward towards the scalable quantum architecture on photonic

chips.

One approach to constructing deterministic quantum microcombs is to leverage two-

mode squeezing and create unconditional entanglement between the optical fields in

optical frequency combs[138, 139, 140]. Squeezed light[141], with quantum uncer-

tainty below than that of the vacuum field, has broad applications in science and

technology, ranging from enhancing the gravitational wave detection sensitivity in

LIGO[142], Gaussian boson sampling[143, 144], to continuous-variable-based quan-

tum computing (CVQC) [145, 146, 147, 148]. The unconditional entanglement cre-

ated by two-mode squeezing is between continuous optical fields, which can serve

as quantum modes (qumodes) to encode quantum information through continuous-

variable-based (CV) approaches[149] for applications in universal quantum comput-

ing[145, 146, 148], unconditional quantum teleportation[150], quantum dense cod-

ing[151], quantum secret sharing[152], and quantum key distribution[153]. Unlike

probabilistic photonic qubit approaches, the unconditional entanglement in CV ap-
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proaches enables the number of entangled quantum modes (qumodes) in a quantum

state to be deterministically scaled up through frequency[138, 139, 154], time [155,

156, 157], or spatial multiplexing[158], which provides a scalable physical platform for

continuous-variable quantum computing[149]. Squeezing is conventionally generated

through nonlinear optics in bulk optical systems, such as optical parametric oscillators

(OPOs)[159, 141], or atomic vapor[160, 161]. Squeezed quantum microcombs, when

combined with integrated photonic circuits, Gaussian and non-Gaussian measure-

ments, can serve as simple and compact building bricks for CV universal quantum

computing[162], entanglement-assisted spectroscopy[163], and quantum networking

for distributed quantum sensing[164]. While the generation[165, 166, 167, 168, 169,

170, 171, 27, 28, 29] and detection[172] of one or two squeezed frequency qumodes, and

the generation of 8 spatial qumodes[144] have been shown in miniaturized platforms

recently, a squeezed microcomb has not been reported yet.

7.2 Two-mode squeezed states generation in a mi-

croresonator

In this section, we will introduce the concept and theory of two-mode squeezed states

generation and detection in a microresonator. We will also discuss the factors that

may impact the squeezing detection such as optical loss and phase noise.

7.2.1 Concept of two-mode squeezed microcomb

The Kerr parametric (four-wave mixing) process generates unconditional Einstein-

Podolsky-Rosen (EPR) entanglement, i.e., two-mode squeezing, between the optical



91

CW laser

FSR

frequency

f

Pump

Squeezed
Microcomb

Kerr
Microcavity

Pump

...... ......

...... ......

Kerr FWM
E

ne
rg

y

Pump combs

0-1-2-N

x-n

xn

p-n

pn

1 2 N...... ...... mode number

squeezinganti-squeezing squeezing anti-squeezing

vacuum vacuum

a b

c d

1 mm

Figure 7.1: Generation of deterministic, two-mode squeezed quantum mi-
crocombs on a chip. (a) A continuous-wave (cw) pump laser is coupled to a
microresonator, which has thousands of longitude resonance modes with their fre-
quencies separated by the resonator free-spectral-range (FSR), as shown in panel
(b). (c) The χ(3) Kerr nonlinearity in the microresonator creates broadband para-
metric gain as the pump photon pairs (green) can be converted into signal and idler
photons at lower and higher frequency modes. This non-classical correlation cre-
ates two-mode vacuum squeezing and thus unconditional EPR entanglement of the
optical quadrature fields between frequency modes n and −n, which are connected
by dashed black lines in the optical spectrum in panel (b). Also shown is the im-
age of a silica microresonator on a silicon chip used in this work. (d) Conceptual
illustration of the two-mode squeezing wavefunctions in position (left) and momen-
tum (right) basis, where (x̂n - x̂−n) and (p̂n + p̂−n) have uncertainty level below
the vacuum fluctuation (dashed circle). The electrical field of the n-th optical mode
is En = x̂n cosωnt + p̂n sinωnt, where x̂n and p̂n are the in-phase and out-of-phase
quadrature amplitudes of the mode at frequency ωn.

quadrature fields of the qumode pairs in the microresonator[14, 28]. The concept is

demonstrated in Fig. 7.1. The Kerr microresonator is pumped by a continuous-wave

laser. Through the four-wave mixing process, two pump photons are converted to a

signal photon and an idler photon simultaneously. This process satisfies energy and

momentum conservation, and the sum frequency of the signal and idler photons equals

that of the two pump photons. As a result, entanglement is established between the

signal mode and the idler mode.
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7.2.2 Evolution of the annihilation and creation operators

In Section 6.5.2, we calculated the two-mode squeezed state generation in the four-

wave mixing process in a simple way. Here we will include the effects of cavity

dissipation, waveguide-cavity coupling, laser-cavity detuning, Kerr self/cross phase

modulation or resonator dispersion. When taken all effects into account, the Hamil-

tonian in the interaction picture can be written as[173, 174, 14]

Ĥint =− h̄g
[
(â†nâ

†
−nâpâp + ânâ−nâ

†
pâ

†
p) + 2(â†pâ

†
nâpân + â†pâ

†
−nâpâ−n + â†nâ

†
−nânâ−n)

+
1

2

∑
j=p,±n

(â†j â
†
j âj âj)

]
.

(7.1)

With the effect of dispersion, external coupling, cavity dissipation and laser-cavity

detuning, the quantum Langevin equations are given in the following forms:

dâp
dt

=− (κ+ iδp)âp + ig
[
(â†pâp + 2â†nân + 2â†−nâ−n)âp + 2â†pânâ−n

]
+
√
2κcâκc,p +

√
2κ0âκ0,p,

dân
dt

=− (κ+ iδn)ân + ig
[
(2â†pâp + â†nân + 2â†−nâ−n)ân + â2pâ

†
−n

]
+
√
2κcâκc,n +

√
2κ0âκ0,n,

dâ−n

dt
=− (κ+ iδ−n)â−n + ig

[
(2â†pâp + 2â†nân + â†−nâ−n)â−n + â2pâ

†
n

]
+
√
2κcâκc,−n +

√
2κ0âκ0,−n,

(7.2)

where we have transformed into the relative frequency frame (rotating frame, or

equidistant frequency frame) by replacing ân with âne
−iΩnt. The frequency Ωn is

defined as Ωn = ωp +D1, where D1 is the free-spectral-range (FSR) of the microres-
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onator. δn ≡ ωn−Ωn is the frequency detuning between the cavity resonant frequency

ωn and the equidistant frequency. κ0 is the cavity dissipation rate, κc is the external

coupling rate, âκ0 and âκc are the vacuum fluctuation operators associated with the

cavity dissipation rate and external coupling rate respectively, and κ = κ0 + κc is the

total dissipation rate. The interaction rate g can be linked with the normalized Kerr

parametric oscillation threshold to photon number, P th = Pth/h̄ω, as g = κ
P th

[174,

175, 40]. By doing Fourier transform on the fluctuation operators âκ0,±n and âκc,±n,

in the frequency domain ˆ̃aκ0,±n and ˆ̃aκ0,±n have the following correlation relations,

⟨ˆ̃am,n(ω)ˆ̃am′,n′(ω′)†⟩ = δm,m′δn,n′δ(ω − ω′),

⟨ˆ̃am,n(ω)
†ˆ̃am′,n′(ω′)⟩ = 0,

⟨ˆ̃am,n(ω)ˆ̃am′,n′(ω′)⟩ = ⟨ˆ̃am,n(ω)
†ˆ̃am′,n′(ω′)†⟩ = 0,

(7.3)

where m indicates “κ0” or “κc”, δi,j is the Kronecker delta and δ is the Dirac delta

function. When the pump power is below the the parametric oscillation threshold,

the annihilation operators can be linearized as,

âp = αp + δâp,

ân = δân,

â−n = δâ−n,

(7.4)

where αp is a complex number. In our experiment, the pump mode is in steady

state, and thus we have dâp
dt

= 0. The resonator mode frequency can be expressed as

ωn = ω0+D1n+
1
2
D2n

2+ ..., where D2 term represents group velocity dispersion. The

results with higher orders of the dispersion can be derived in exactly the same way.

When neglecting the higher order dispersion terms, we can have δn = δ−n. Through

the linearization process, neglecting higher order terms that are small, the quantum
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Langevin equations in (7.2) become,

0 = −(κ+ iδp)αp + ig |αp|2 αp +
√
2κcαin,p, αin,p =

√
Pin

h̄ωp

,

dδân
dt

= −(κ+ iδn)δân + igα2
pδâ

†
−n +

√
2κcâκc,n +

√
2κ0âκ0,n,

dδâ−n

dt
= −(κ+ iδn)δâ−n + igα2

pδâ
†
n +

√
2κcâκc,−n +

√
2κ0âκ0,−n,

(7.5)

where Pin is the pump laser power in the waveguide/tapered fiber before coupling

into the microresonator. Take A = −(κ + iδn) + i2g |αp|2, B = igα2
p, the last two

equations can be written as,

dδân
dt

= Aδân +Bδâ†−n +
√
2κcâκc,n +

√
2κ0âκ0,n,

dδâ†−n

dt
= A∗δâ†−n +B∗δân +

√
2κcâ

†
κc,−n +

√
2κ0â

†
κ0,−n.

(7.6)

The equations in (7.6) are relatively easy to solve in the frequency domain. Through

the Fourier transform,

F [â(t)] =
1√
2π

∫ ∞

−∞
â(t)eiωtdt ≡ ˆ̃a(ω),

F
[
â†(t)

]
=

1√
2π

∫ ∞

−∞
â†(t)eiωtdt =

[
ˆ̃a(−ω)

]†
≡ ˆ̃a(−ω)†,

(7.7)

the equations (7.6) can be expressed in the following forms in the frequency domain,

C(ω)

 δˆ̃an(ω)

δˆ̃a−n(−ω)†

 =
√
2κc

 ˆ̃aκc,n(ω)

ˆ̃aκc,−n(−ω)†

+
√
2κ0

 ˆ̃aκ0,n(ω)

ˆ̃aκ0,−n(−ω)†

 ,

where C(ω) ≡

−iω − A −B

−B∗ −iω − A∗

 .

(7.8)
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To calculate the amount of squeezing and anti-squeezing in the output waveguide, the

output annihilation operator, δˆ̃aout,n, can be expressed by the input-output relations,

δˆ̃aout,n = −
√
2κcδˆ̃an + ˆ̃aκc,n,

δˆ̃a†out,−n = −
√
2κcδˆ̃a

†
−n + ˆ̃a†κc,−n,

(7.9)

Then we have the annihilation operators on the output of the Kerr resonator,

 δˆ̃aout,n(ω)

δˆ̃aout,−n(−ω)†

 = (I − 2κcC−1(ω))

 ˆ̃ain,n(ω)

ˆ̃ain,−n(−ω)†


− 2

√
κ0κcC−1(ω)

 ˆ̃aloss,n(ω)

ˆ̃aloss,−n(−ω)†

 .

(7.10)

The annihilation operators are not observables. In experiment, we measure the

quadrature operators instead, more specifically, the variances of the quadrature op-

erators. The quadrature operators are defined as,

δX̂out,±(t) =
1√
2

[
1√
2
(δâout,n + δâ†out,n)±

1√
2
(δâout,−n + δâ†out,−n)

]
,

δŶout,±(t) =
1√
2

[
1

i
√
2
(δâout,n − δâ†out,n)±

1

i
√
2
(δâout,−n − δâ†out,−n)

]
,

(7.11)

and their variances are,
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VX,± = ⟨δX̂†
out,±(t)δX̂out,±(t)⟩,

VY,± = ⟨δŶ †
out,±(t)δŶout,±(t)⟩.

(7.12)

We can get an explicit expression of the frequency components of the quadrature

variances,

VX,± = ⟨δX̂†
out,±(t)δX̂out,±(t)⟩ =

1√
2π

∫ ∞

−∞
dω
SX,±(ω)√

2π
, (7.13)

where SX,± is the quadrature variance in the frequency domain, also known as the

squeezing spectrum:

SX,± =4κcκ
[∣∣C−1

11 (ω)
∣∣2 + ∣∣C−1

12 (−ω)
∣∣2]± 8κcκRe

[
C−1

11 (ω)C
−1
12 (−ω)

]
− 4κcRe

[
C−1

11 (ω)± C−1
12 (−ω)

]
+ 1.

(7.14)

C−1
11 (ω) and C−1

12 (ω) are the components of C−1(ω), and

C−1(ω) =

C−1
11 (ω) C−1

12 (ω)

C−1
21 (ω) C−1

22 (ω)

 , (7.15)

where

C−1
11 (ω) =

−i(ω + A∗)

|A|2 + i2ωRe(A)− ω2 − |B|2
, C−1

12 (ω) =
B

|A|2 + i2ωRe(A)− ω2 − |B|2
,

C−1
22 (−ω) = C−1

11 (ω)
∗, C−1

21 (ω) = C−1
12 (−ω)∗.

(7.16)

The squeezing spectrum of the Y quadrature SY,± can be derived in the same way.
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7.2.3 Detection of the squeezed state

The optical field of the squeezed state is too small to be directly detected with phodi-

odes. In experiment, the variances of the quadrature operators can be measured with

balanced homodyne detection[138], which can be understood as a linear amplification

of the quadrature operators.

Frist consider a simple case to demonstrate the balance homodyne detection. In a

single-mode squeezed state, the squeezed vacuum field â and the local oscillator (LO)

field b̂ = βeiθ are mixed by a 50/50 beam splitter or fiber coupler, where we used

coherent state approximation for the LO field and β is the amlitude of the LO field,

θ is the relative phase difference between the signal and LO in the rotation frame.

The two output fields ĉ± from the beam splitter are given by

ĉ± =
1√
2
(â± b̂). (7.17)

The two outputs are sent to a balanced photodiodes, and the photocurrent is pro-

portional to the photon number. The photon numbers on the photodiodes are given

by

N̂± = ĉ†±ĉ =
1

2
â†â± 1

2
β2 + β(âe−iθ + â†eiθ)

=
1

2
â†â+

1

2
β2 ± 1√

2
β(Q̂cosθ + P̂ sinθ).

(7.18)

A balanced homodyne detector outputs the difference between the two photocurrents

to cancel the noise introduced by the LO photon number term β2 which is generally

much larger than the vacuum noise. The different photocurrent is proportional to
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the difference in photon numbers

N̂+ − N̂− =
√
2β(Q̂cosθ + P̂ sinθ). (7.19)

With balanced homodyne detection, a detector consists of regular photodiodes can

detect the quantum signal that is amplified by the LO amplitude β. By changing

the phase difference θ between the quantum signal and LO, difference quadrature

operators, or the generalized quadrature operator at different phases can be detected.

For detection two-mode squeezed states, a bichromatic local oscillator can be used in

the balanced homodyne detection. The optical fields of the quantum signal â and the

LO b̂ are given by

â = âne
−iωnt + â−ne

−iω−nt,

b̂ = β(e−iωnt+iθn + e−iω−nt+iθ−n),

(7.20)

where θn and θ−n are the phase differences between the quantum signal and LO at the

signal mode and idler mode respectively. Here we assumed that the LO amplitudes

are the same at two modes.

In the experiment, the photocurrent is measured with an electrical spectrum analyzer

(ESA), which measures the power of the photocurrent. Since in the squeezed vacuum

state, the expectation value of the photocurrent is zero, the power of the photocurrent

equals to its variance. The variance of the generalized quadrature operator is thus

proportional to the ESA measurement of the photocurrent i at different LO phases,

which is given by
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⟨∆i(θn, θ−n)
2⟩ ∝ α2⟨(eiθn â†n + eiθ−n â†−n + e−iθn ân + e−iθ−n â−n)

2⟩

= α2⟨ei2θn â†2n + ei(θn+θ−n)â†nâ
†
−n + â†nân + ei(θn−θ−n)â†nâ−n

+ ei(θn+θ−n)â†−nâ
†
n + ei2θ−n â†2−n + ei(θ−n−θn)â†−nân + â†−nâ−n

+ ânâ
†
n + ei(θ−n−θn)ânâ

†
−n + e−i2θn â2n + e−i(θn+θ−n)ânâ−n

+ ei(θn−θ−n)â−nâ
†
n + â−nâ

†
−n + e−i(θn+θ−n)â−nân + e−i2θ−n â2−n⟩.

(7.21)

With the results from equations (7.3) and (7.10), 8 of the 16 terms in equation (7.21)

are zero and (7.21) in the frequency domain becomes,

⟨∆i(ω, θn, θ−n)
2⟩ ∝ α2⟨(eiθn ˆ̃a†out,n + eiθ−n ˆ̃a†out,−n + e−iθn ˆ̃aout,n + e−iθ−n ˆ̃aout,−n)

2⟩

= α2⟨ˆ̃aout,nˆ̃a†out,n + e−i(θn+θ−n)ˆ̃aout,nˆ̃aout,−n + ˆ̃a†nˆ̃aout,n

+ ei(θn+θ−n)ˆ̃a†out,nˆ̃a
†
out,−n + e−i(θn+θ−n)ˆ̃aout,−n

ˆ̃aout,n

+ ˆ̃aout,−n
ˆ̃a†out,−n + ei(θn+θ−n)ˆ̃a†out,−n

ˆ̃a†out,n + ˆ̃a†out,−n
ˆ̃aout,−n⟩

= ⟨∆i(ω, θn + θ−n)
2⟩.

(7.22)

In both equations (7.21) and (7.22), we used the fact that (eiθn â†n + eiθ−n â†−n +

e−iθn ân + e−iθ−n â−n) and its Fourier transform (eiθn ˆ̃a†out,n + eiθ−n ˆ̃a†out,−n + e−iθn ˆ̃aout,n +

e−iθ−n ˆ̃aout,−n) are Hermitian. While the time domain expression is always Hermi-

tian, its Fourier transform is only Hermitian in the absence of odd order dispersion

terms, because of the rules described in Eq.(7.7). In the cases with odd order dis-
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Figure 7.2: Numerical calculation of squeezing and anti-squeezing versus
cavity mode number for a SiN microresonator. The numerical calculation
is based on Eq. (7.10) and Eq. (7.22) by choosing θ1 + θ2 to get the variances of
the squeezing and anti-squeezing quadrature operators. Following parameters are
used: 10 GHz FSR, dispersion D2/2� = 10 kHz, loaded cavity linewidth of 1 GHz,
90% escape efficiency, pump power that is 1 dB below the parametric oscillation
threshold, and no optical loss.

persion terms, the ESA measuurement of the photocurrent should be calculated by

multiplying the operators with their Hermitian conjugates and follow Eq.(7.7).

It should be noted that ⟨∆i2⟩ is not sensitive to the relative phase θn − θ−n be-

tween the two local oscillators. It only depends on the sum of their phases θn + θ−n.

Thus the noise spectrum measurement can only identify squeezing/anti-squeezing,

but cannot distinguish if the squeezing belongs to x̂n − x̂−n or p̂n + p̂−n. Squeezing

and anti-squeezing values with different parameters can be numerically calculated by

substituting Eq. (7.10) in to Eq. (7.22).



101

7.2.4 Effect of optical loss and phase noise

Factors such as optical loss and phase noise will directly affect the amount of squeezing

detected. The effect of optical loss can be calculated in a beam splitter model, where

the quantum signal couples in from one of the paths and vacuum state couples in

from the other path. The generalized quadrature operator with optical loss Âθ,detected

is given by,

Âθ,detected =
√
ηÂθ +

√
1− ηÂvacuum, (7.23)

where η is the optical power detection efficiency, i.e. the percentage of optical power

detected after optical losses, Âθ is the generalized quadrature operator of the quantum

signal and Âvacuum is the generalized quadrature operator of the vacuum state. The

variance of the generalized quadrature operator can be obtained as,

∆Âθ,detected = η∆Âθ + (1− η), (7.24)

where we have normalized the variance of the quadrature operators in a vacuum

state to 1. This equation shows that any optical loss will degrade the squeezing

level. Optical loss includes factors like insertion loss, reflection, absorption, mode

mismatch and photo detection efficiency. Since the squeezing is smaller than 1 and

anti-squeezing is usually much larger than 1, compared to the anti-squeezing level,

the squeezing level is more prone to optical loss.

Phase noise on the other hand doesn’t change the optical field physically, but will

affect the detection of the quantum signal. The effect of the phase noise can be

understood as an averaging between the squeezing and anti-squeezing. Balanced
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homodyne detection measures the linearly amplified generalized quadrature operator.

With the presence of phase noise, the detected generalized quadrature operator can

be written as

N̂+ − N̂− =
√
2|β|

[
Q̂cos(θ + ϕ(t)) + P̂ sin(θ + ϕ(t))

]
, (7.25)

where ϕ(t) is the phase noise term which acts as a jitter in the total phase. Assume Q̂ is

the squeezed quadrature. Because of this phase jitter, when the squeezed quadrature

Q̂ is supposed to be detected with θ = 0, a fraction of P̂ is coupled into this detection,

(N̂+ − N̂−)θ=0 =
√
2β
[
Q̂cos(ϕ(t)) + P̂ sin(ϕ(t))

]
. (7.26)

The variance of this detection is given by,

∆Âθ=0 ∝ ⟨
[
Q̂cos(ϕ(t)) + P̂ sin(ϕ(t))

]† [
Q̂cos(ϕ(t)) + P̂ sin(ϕ(t))

]
⟩

= ∆Q̂cos2(δϕ) + ∆P̂ sin2(δϕ)

(7.27)

where δϕ =
√

⟨ϕ(t)2⟩ is the root mean square phase jitter which can be achieved by

calculating the area under the curve in the power spectral density plot of the phase

noise. By taking time average, cross terms in the last equation go to zero. The

result is equivalent to coupling anti-squeezing to squeezing. Larger the phase jitter

and anti-squeezing level, larger the effect of phase noise degrades the squeezing level

detected.

Optical loss changes the annihilation operator of the optical field, and phase noise
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affects how this optical field is being detected. Therefore, in the case when both

optical loss and phase noise are taken into account, we should apply the effect of

optical loss before applying the effect of phase noise.

7.3 Demonstration of a two-mode squeezed micro-

comb

In this section, we will introduce the experimental demonstration of a two-mode

squeezed microcomb.

7.3.1 Experimental setup

The experimental setup is shown in Fig. 7.3(a). A continuous-wave (cw) laser (New

Focus, TLB-6700) at 1550.5 nm is used to drive both the squeezed microcomb and the

local oscillators (LOs). For the squeezed microcomb generation, the cw laser is am-

plified by an erbium-doped fiber amplifier (EDFA) to pump the Kerr microresonator.

A fiber-Bragg grating (FBG) filter is used to filter out the amplified spontaneous

emission (ASE) noise from the EDFA. The amplified pump laser is then coupled into

the microresonator through a single-mode tapered fiber. At the through port of the

tapered fiber, another FBG filter is used to separate light at the pump laser wave-

length from light at all other wavelengths. The transmitted squeezed microcomb from

the FBG is sent to a 50/50 fiber coupler to be combined with the local oscillators

for balanced homodyne detection. In the experiment, the Pound–Drever–Hall (PDH)

locking technique is used to lock the pump laser frequency to the resonator mode

frequency by servo control of the cw laser frequency. This is implemented by phase
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Figure 7.3: Experimental setup and optical spectrum of local oscillators. (a)
Optical and microwave components are colored in red and black boxes, respectively.
A continuous-wave (cw) laser drives both the squeezed microcomb and the local
oscillators. Part of the cw laser is amplified by an erbium-doped fiber amplifier
(EDFA) to pump the silica microresonator. A fiber-Bragg grating (FBG) filter is used
at the microresonator through-port to separate the pump light and the squeezed light.
The local oscillators are derived from an electro-optic modulation (EOM) frequency
comb, which is driven by the same cw laser. The cw laser is phase modulated by
three tandem phase modulators (PMs) at frequency fm. A programmable waveshaper
(WS) is used to select a pair of comb lines to be the local oscillators. The LOs and
the squeezed microcomb are combined and detected on the balanced photodetectors
(PDs). The noise variance is characterized by an electrical spectrum analyzer (ESA).
Polarization controller (PC), electrical amplifier (Amp), and phase shifter (PS) are
also included in this figure. (b) Optical spectra of the pump laser (black), the EOM
frequency comb (blue), and the local oscillators (red) for qumodes (-21, 21).

modulating the pump laser before the EDFA with an electro-optic phase modulator

(PM), and then photodetecting the pump laser after the second FBG filter. The phase

modulation frequency is set to 80 MHz, much higher than the resonator linewidth.

It should be noted that the Brillouin scattering does not affect the squeezing process

in our resonator, as the resonator FSR is designed to be completely out of the Bril-

louin gain bandwidth [35]. Raman scattering in silica has its peak gain at 13 THz

away from the pump, and the peak Raman gain is smaller than the Kerr parametric

gain in microresonators with anomalous dispersion[34]. As the optical span of the

quantum microcomb is only ±0.5 THz around the pump, the Raman gain within our

microcomb span is only ∼ 2% of the peak Raman gain, and it has a negligible effect

in our current experiment (Fig. 7.4).
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Figure 7.4: Calculation of squeezing level with and without Raman gain.
The numerical calculation is based on solving the quantum Langevin equation Eq.
(7.4) with Raman terms gR|αp|2δân and gR|αp|2δâ−n in the second and third equations,
where gR is the Raman gain rate. The calculation uses our silica resonator parameters,
83% escape efficiency and assumes no optical loss.
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7.3.2 Squeezed qumode pairs

The quadrature noise variances of 20 sets of comb pairs (40 qumodes) are measured by

means of balanced homodyne detection. To measure the quadrature noise variance of

qumodes (−N,N), the EOM comb modulation frequency fm and the programmable

waveshaper are adjusted to precisely match the frequencies of LO pairs to ωp±N×D1,

where N is the relative mode number from the mode being pump (N = 0), and

D1/2π = 21.95258 GHz is the FSR of the resonator at 1550.5 nm wavelength. In each

measurement, the phase of the LOs is ramped to yield varying quadrature variances.

Figure 7.5(b) shows a representative quadrature noise variance (blue) relative to the

shot noise (red) for qumodes (-4,4). A 30-point moving average is used to smooth

out the fluctuations in the noise variance measurement. The raw squeezing of 1.6

± 0.2 dB and anti-squeezing of 5.5 ± 0.1 dB are directly observed, and they are

obtained by averaging the displayed extrema. The uncertainty is concluded with a

95% confidence interval under t-distribution. The quadrature noise variances of all

40 qumodes are shown in Fig. 7.5(c), and squeezing/anti-squeezing are observed for

all 40 qumodes. The number of measurable qumodes is limited by the 1 THz optical

span of the EOM comb. All measurements are taken at 2.7 MHz frequency, 100 kHz

resolution bandwidth, and 100 Hz video bandwidth on an electrical spectrum analyzer

(ESA). The noise levels of qumodes (-1,1) to (-3,3) are not presented here as their

measurements are affected by the transmitted ASE noise from the EDFA near the

pump frequency. This can be addressed in the future by using a filter with bandwidth

much smaller than the FSR of the resonator, or by increasing the intrinsic quality

factor of the cavity and reducing the parametric oscillation threshold to eliminate the

need for the EDFA. Finally, as shown in Fig. 7.5(d), no quantum correlation (two-

mode squeezing) is observed for uncorrelated comb pairs. This serves as a critical
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check for our two-tone homodyne detection.

The raw squeezing and anti-squeezing levels of all 40 qumodes are summarized in Fig.

7.6(a). The raw squeezing in our experiment is primarily limited by the 83% cavity

escape efficiency, 1.7 dB optical loss, and approximately 89% photodiode quantum

efficiency. The total efficiency after the tapered fiber is 60%. Our 1.6 ±0.2 dB raw

squeezing is among the highest raw squeezing measured for miniaturized Kerr optical

parametric oscillators (OPOs)[29], while the highest squeezing ever achieved is 15 dB

in a bulk χ(2) OPO[176]. 6 dB single-mode squeezing was reported earlier in an inte-

grated waveguide [171], which indicates that high squeezing is possible in integrated

photonic platforms. Recent theoretical studies have suggested that quantum error

correction and fault-tolerant quantum computing is possible in photonic CV-based

approaches [148] when squeezing reaches 10 dB[177].

The anti-squeezing levels near qumodes (-10,10), and from (-17,17) to (-23,23) are

observed to be smaller than that of other qumodes. It is caused by to the best of our

knowledge the spatial-mode interaction between different transverse mode families in

the resonator, which not only modifies local dispersion[178] but provides a path to

dissipate optical fields from the squeeze-generating mode to another spatial mode[58].

The spatial-mode-interaction can be identified by measuring the frequency spectrum

of a resonator. The relative mode frequencies of the resonator, ∆ωN = ωN − ω0 −

N ×D1, are measured with sideband spectroscopy method[179] and presented in Fig.

7.6(b), where ωN is the resonance frequency of relative mode number N . An avoided

mode crossing[178] was found near mode -8, and resonance frequencies below mode -18

and above mode 19 are observed to change abruptly. These are caused by the spatial-

mode interaction and hybridization between two transverse cavity modes. The mode

numbers that are affected by spatial-mode-interaction in the mode spectrum coarsely
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Figure 7.5: (a) Simplified experimental schematic. A continuous-wave (cw) laser is
split to pump the resonator and drive the local oscillators (LOs). The LOs are de-
rived from an electro-optic modulation (EOM) frequency comb, with a comb spacing
(modulation frequency) of fm. A line-by-line waveshaper (WS) is used to select a
pair of comb lines as the bichromatic local oscillators. The phase of the LOs can
be tuned by a phase modulator (PM). The LOs and the squeezed microcombs are
combined by a 50/50 coupler and are detected on balanced photodiodes (PDs). The
noise level is characterized on an electrical spectrum analyzer (ESA). In the squeezed
microcomb path, a fiber Bragg grating (FBG) filter is used to block the strong pump
light. Erbium-doped fiber amplifiers (EDFAs) and optical bandpass filter (BPF) are
also shown in the figure. (b) Representative quadrature noise variance (blue) relative
to shot noise (red) as a function of time for qumodes -4 and 4 (indicated with red
arrows). The lower panel illustrates the ramp waveform applied to the phase modu-
lator to ramp the phase of the LOs periodically with time. 1.6 dB squeezing and 5.5
dB anti-squeezing are directly observed. A dashed black line indicates 2 dB below
shot noise level. (c) Quadrature noise variance (blue) relative to shot noise (red) of
all 40 qumodes. The qumodes measured are marked by the red arrows. The regime
below the shot noise limit is colored in orange, and a dashed black line indicates 1
dB below the shot noise level. (d) Quantum correlation check: noise variances show
no quantum correlation between uncorrelated comb pairs for qumodes (-9, 6) and
(-21, 18). All measurements are taken at 2.7 MHz frequency, 100 kHz resolution
bandwidth, and 100 Hz video bandwidth.



109

N
oi

se
 le

ve
l (

1d
B

/d
iv

)

0

0 5-5 10-10 15-15 20-20 25-25

-2

6

4

2

Mode number (N)

Relative optical frequency (GHz)
0 200-200-400 400

Δ
ω

N
 /2

π 
(M

H
z) ΔωN =ωN− ω

0
− N×D1

-20

0

20

40

0 5-5 10-10 15-15 20-20 25-25
Mode number (N)

a

b

Relative mode spectrum:

Figure 7.6: Summary of squeezing and anti-squeezing levels and resonator
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number. The regime below the shot noise level is colored in orange. It should be
noted that the noise level at qumode N or −N represents the two-mode noise level
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under t-distribution. (b) The cold resonator mode spectrum (∆ωN , relative mode
frequency). The degradation of squeezing/anti-squeezing level of certain qumodes is
likely caused by the avoided mode crossing induced by spatial-mode-interaction in
the microresonator.
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align with that of the dips in anti-squeezing measurement. We have performed more

systematic studies both in theory and experiments to understand the mechanism of

how the cavity mode dispersion affects squeezing and anti-squeezing, which will be

in the future publications. Finally, the impact of spatial-mode interaction can be

eliminated in the future by using a microresonator with a single transverse mode

family [180, 69] and the dispersion can be tailored through dispersion engineering

introduced in Chapter 3.

7.3.3 Characterization of the bichromatic local oscillators

The local oscillators in this experiment are derived from an electro-optic modulation

(EOM) frequency comb [181]. The EOM comb is convenient to create coherent local

oscillators which are hundreds of GHz apart from the pump laser frequency. In our

EOM comb, the cw laser is amplified by an EDFA to 200 mW and is phase modulated

by three cascaded electro-optic phase modulators at frequency fm, which is provided

by a signal generator ( Keysight, PSG E8257D). The modulators are driven by am-

plified electrical signals that are synchronized by electrical phase shifters (PSs). The

output power of the electrical amplifiers (Amps) is ∼ 33 dBm. As the EOM comb

and the microresonator share the same pump laser, the local oscillators derived from

the EOM comb are inherently coherent with the squeezed microcomb. A typical

EOM comb spectrum is shown in Fig. 7.3(b) (blue line), and the cw pump laser

spectrum (black) is also shown as a reference. The EOM comb is then sent to a

programmable line-by-line waveshaper (Finisar 1000A, filter bandwidth setting res-

olution: ±5 GHz), which can control the amplitude and phase of each EOM comb

line. To measure the noise variance of qumodes (−N,N), the waveshaper is set

to only pass the comb lines whose frequencies are ±N×FSR apart from the pump
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laser. As an example, the local oscillators for qumodes (-21,21) are shown in Fig.

7.3(b) (red line). Finally, the LOs are amplified to ∼ 17 mW and are combined

with the squeezed microcomb for balanced homodyne detection. It should be noted

that the relative phase between the local oscillator and the squeezed field could be

different from the phase shift applied by the PM in the LO optical path. This is

because environmental fluctuations, e.g., ambient temperature, can cause phase vari-

ations in fibers in both LO and squeezed light paths. Finally, the electrical amplifiers

in the EOM comb cut off at 18 GHz, which is smaller than the FSR of the res-

onator (represented by fr). As a result, the EOM modulation frequency, fm, is set

to n/m × fr, such that the frequency of the m-th EOM comb line can align with

that of the n-th resonator mode. The modulation frequencies used in the experiment

are: fm = 3/4 × fr = 16.464438 GHz for mode pairs ±6,±9,±12,±15,±18,±21;

fm = 2/3 × fr = 14.635056 GHz for mode pairs ±4,±8,±14,±16,±20. For mode

pairs of ±5,±7,±11,±13,±17,±19,±22,±23, modulation frequencies of: 5/7×fr =

15.680417 GHz, 7/9 × fr = 17.074232 GHz, 11/15 × fr = 16.098562 GHz, 13/17 ×

fr = 16.787270 GHz, 17/23 × fr = 16.225823 GHz, 19/25 × fr = 16.683964 GHz,

22/29×fr = 16.653684 GHz, and 23/29×fr = 17.410670 GHz are used, respectively.

The phase noise of the signal generator that drives the EOM comb contributes to

the phase fluctuation of the local oscillator, which could potentially affect squeezing

measurement [182]. Here, we estimate its impact on our experiments. The root mean

square (RMS) of phase jitter from the signal generator can be calculated from its

single-sideband (SSB) phase noise by integrating the phase noise from the electri-

cal spectrum analyzer (ESA) video bandwidth (VBW) used in the squeezing mea-

surement (100 Hz), to the bandwidth of our balanced photodetection circuit (250

MHz). The RMS of phase jitter (θ̃) is calculated to be 0.0024 rad (0.14◦) for comb
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Figure 7.7: (a) Noise power vs. the optical power of local oscillators sent into the PDs.
The noise power is measured at 2.7 MHz frequency, and the dark noise from the PDs
has been subtracted from the noise power. The linear trend indicates the balanced
photodiodes are operated in the shot noise-limited regime. (b) Electrical spectra of
the balanced PD outputs at different local oscillator powers. All measurements in this
figure are taken at 100 kHz resolution bandwidth. (c) Measurement of squeezing and
anti-squeezing versus pump power for qumode (-4,4). The error bars are concluded
with a 95% confidence interval under t-distribution.

mode 1 (∼ 22 GHz), and is 0.055 rad (3.2◦) for comb mode 23 (∼ 0.5 THz). Af-

ter taking account of this phase fluctuation, the observable level of squeezing[182] is

R′
S ≈ RS cos2 θ̃ + RAS sin2 θ̃, where RS and RAS are the variance of output squeezing

and anti-squeezing, respectively. For the current experimental condition, assuming 2

(7) dB squeezing (anti-squeezing) at mode 4, and 1 (5) dB squeezing (anti-squeezing)

at mode 23 after optical losses, the phase fluctuation will cause the measured squeez-

ing (R′
S) to be 0.003 dB and 0.04 dB lower than the actual squeezing (RS) at mode

4 and mode 23, respectively. It should be noted that the N -th comb line in the

EOM comb has N times the RMS phase jitter of the 1st comb line in the EOM comb.

Therefore, when scaling up the number of comb lines in an EOM comb through super-

continuum generation[183] for squeezing measurement, the phase noise of the signal

generator should be improved accordingly to maintain the low phase fluctuation of

the local oscillators. A possible way to obtain exceptional phase noise performance

for the EOM comb is through electro-optical frequency division, where the signal

generator is synchronized to stable optical references[78].
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7.3.4 Characterization of the balanced PD

In the two-mode squeezing noise variance measurement, the balanced photodiodes

(JDSU, ETX 300T) are operated in the shot noise limited regime. The electrical cir-

cuit for balancing the photodiodes is home-built[139], and a common-mode rejection

ratio of 31 dB is measured. The shot noise limited regime is verified by the linear

relationship between the noise power of the balanced photodiodes and the optical in-

put power, which is shown in Fig. 7.7(a). The measurement is done at 2.7 MHz with

100 kHz resolution bandwidth (RBW). The electrical spectra from the balanced pho-

todiodes at different optical input powers are shown in Fig. 7.7(b). The resonance

peaks in the dark noise are likely caused by the electrical circuits in the balanced

photodiodes. At 16.6 mW input power, the electrical spectrum is relatively flat. The

spectra roll-off is around 20 MHz.

7.3.5 Dependence of squeezing on optical pump power

The dependence of squeezing and anti-squeezing on optical pump power is measured

for qumode (-4,4) and is presented in Fig. 7.7(c). Ideally, when there is no optical

loss, vacuum squeezing should increase with the pump power until the pump power

reaches the OPO threshold. However, as the amount of squeezing in our experiment

is primarily limited by optical losses, the increase of squeezing can no longer be

observed when the pump power is roughly above half of the OPO threshold. On the

other hand, the anti-squeezing increases with the pump power. This observation is

consistent with measurements in previous reports[28].
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7.3.6 Improvement to the original two-mode squeezed micro-

comb

By improving the detection efficiency such as reducing the optical loss and increasing

the quantum efficiency of the photodiodes, we can further increase the amount of

squeezing detected. Also with a narrow bandpass filter before the cavity, it enables

the measurements on qumode pairs (−3, 3) nad (−2, 2).

We generated two-mode squeezed states in the same microresonator with the improved

experimental setup. The resonator is overcoupled to achieve large escape efficiency of

82%. The pump power is set to 112 mW, which is below the parametric threshold of

144 mW. The quadrature noise variances of 22 comb pairs (44 qumodes) are shown

in Fig. 7.8. A maximum raw squeezing of 2.1 dB and maximum anti-squeezing of 6

dB are obtained for mode (−4, 4) by averaging the displayed extrema. The squeezing

levels in all other modes are improved to above 1 dB. The raw squeezing value in our

experiment is primarily limited by the 82% cavity escape efficiency, 1.3 dB optical

loss, and approximately 95% photodiode quantum efficiency. The total efficiency after

the tapered fiber is 70%. A corresponding 3.4 dB squeezing at the output waveguide

can be inferred after correcting system losses. The number of measurable qumodes is

limited by the 1 THz optical span of the EOM comb.

7.4 Spectroscopy characterization of the squeezed

microcomb

In this section, we will introduce a qumode spectroscopy method to characterize the

frequency equidistance of squeezed qumodes, a prerequisite of frequency combs.
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Figure 7.8: A squeezed microcomb with improved experimental setup.
(a) Representative quadrature noise variance (blue) relative to shot noise (red) for
qumodes -4 and 4. (b) Quadrature noise variance (blue) relative to shot noise (red)
of other 21 qumode pairs.

Similar to the classical cavity mode spectrum, we can define the relative qumode

spectrum as ∆ωQ
N = ωQ

N − ω0 −N ×D1, where ωQ
N is the optical frequency center of

the N -th qumode. The relative qumode spectrum represents the qumode frequency

deviation from equidistance. To identify the relative qumode spectrum, the two-sided

squeezing/anti-squeezing spectral line shape is measured for each pair of qumodes, and

the center frequency of the spectral line shape yields the relative qumode frequency. In

the measurement, the ±N -th LO frequencies are detuned by ±δ from the equidistant

frequencies, ±N×FSR, and noise variances are measured at each detuning point

for qumodes (-N ,N). For each pair of qumodes, the detuning (δ) is varied from -

30 MHz to + 30 MHz with an interval of 5 MHz, which sets the resolution of the

line shape measurement. Measurements of qumodes (-4,4) at δ = −20,−10, 0, 10, 20

MHz are shown as examples in Fig. 7.9(b). At each detuning point, squeezing

and anti-squeezing levels can be extracted by averaging the extrema. We plot the

squeezing/anti-squeezing levels versus detuning (δ) for all qumodes in Fig. 7.9(c),

which manifest the two-sided spectral line shape of the qumodes. The squeezing/anti-
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squeezing extraction below 0.5 dB has relatively poor accuracy, but this does not affect

the overall qumode spectrum envelopes.

The relative frequencies of the qumodes, i.e., relative qumode spectrum, can be ob-

tained by identifying the centers of the anti-squeezing line shapes via Lorentzian fit-

ting. The average root mean square deviation of the fitting is only 0.15 dB, showing

an excellent agreement between fitting and measurements. ∆ωQ
N of all the qumodes

are plotted in Fig. 7.9(d), and their deviations from equidistant are within the 5

MHz spectroscopy resolution limit for the entire 1 THz optical span of the quantum

microcomb. The qumode spectrum overlaps well with the two-sided averaged cold

cavity mode spectrum, −(∆ωN + ∆ω−N)/2 (will be discussed in the next section),

which represents the averaged deviation from equidistant of the cold cavity mode N

and −N . It should be noted that in the qumode spectrum measurement, the cavity

is pumped by > 100 mW power, which could alter the cavity mode spectrum through

thermo-optic effect and self/cross-phase modulation effects. Further study in the fu-

ture is necessary to understand the requirement for perfectly equidistant frequencies

of qumodes. In this measurement, the cavity escape efficiency is adjusted to 77% to

achieve a more stable coupling condition as the entire measurement spans over 18

hours. As a result, the amount of squeezing/anti-squeezing at δ = 0 MHz is different

from that in the Fig. 7.5. In this experiment, the escape efficiency is adjusted by

varying the relative position between the microresonator and the tapered fiber[184].

The stability of the escape efficiency can be dramatically improved by packaging

the microresonator systems[185], or by integrating the coupling waveguide and the

resonator on the same chip[69].
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Figure 7.9: Spectroscopy characterization of qumodes in the squeezed quan-
tum microcomb. (a) Illustration of spectroscopy measurement of qumode (-N ,N).
The frequencies of the N -th LOs can be detuned by δ away from the equidistant fre-
quencies, ±N×FSR, and the amount of squeezing and anti-squeezing are measured
at each detuning point, δ. (b) Noise variance measurement of qumodes (-4,4) at
detuning δ = -20, -10, 0, 10, 20 MHz. The red trace represents shot noise level.
(c) Squeezing (blue) and anti-squeezing (red) levels extracted from noise variance
measurements at different detuning points (δ) for all qumodes. Shot noise levels
are represented by the horizontal dashed gray lines. Lorentzian fitting of the anti-
squeezing spectrum (red dash line) is used to find the qumode center frequencies.
Vertical dashed black lines represent the equidistant frequencies for each qumodes.
(d) Summary of the measured relative qumode frequencies (red) from qumodes (-3,3)
to (-23,23). The two-sided averaged cavity mode spectrum: -(∆ωN + ∆ω−N)/2 is
plotted in green and it agrees well with the qumode spectrum.
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7.4.1 Mode spectrum measurement of a hot cavity

To study the relation between qumode spectrum and cavity mode spectrum, it is

necessary to measure the hot cavity mode spectrum which can be realized by counter

propagating pumps. Shown in Fig. 7.10, an auxiliary laser (pump 2) is used to heat

up the cavity on the counter propagating direction. Pump 1 is the probe pump that is

used to detect the cavity modes. Pump 1 has a small enough power to avoid additional

thermal effect. When performing the hot cavity measurement, pump 2 is locked to

the dip of one of the cavity modes, and is shifted one FSR away from the probe

laser pump 1 to avoid the interference from the reflected light. Then regular mode

spectrum measurement can be perform using the probe laser pump 1 with either the

wavelength sweep method or EOM method introduced in Chapter 3 Section 3.4. The

theory (Eq. (7.2) with higher orders of dispersion) and measurements of squeezing

along with hot cavity mode spectrum suggest that the center of the qumodes are

determined by (∆ωN −∆ω−N)/2. Therefore only odd orders of dispersion will shift

the center of the qumodes. The even orders of dispersion will affect the amount of

squeezing generated. More studies and investigations will be presented in the future

publications.

7.5 Summary

In this chapter, we introduced the basic theories of a two-mode squeezed microcomb

as well as the experiment demonstration. The generation of squeezed microcomb is

not limited to Kerr microresonators, but can also be realized in microresonator-based

χ(2) parametric oscillators [186, 187, 188, 189]. For our system, the raw squeezing can

be improved in the future by reducing system losses, improving photodiode quantum
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Figure 7.10: Counter propagating pumps to measure hot cavity mode spec-
trum. Pump 1 is the probe laser that has a small enough power that doesn’t introduce
thermal effect in the cavity. Pump 2 is the auxiliary laser that has a large enough
power to heat up the cavity.

efficiency, and achieving higher resonator-waveguide escape efficiency. The number

of measurable qumodes, 40, is primarily limited by the span of the local oscillator,

and this could be dramatically increased in the future by spectrum broadening of

the EOM comb [183], or by using broadband dissipative Kerr soliton microcombs[10]

as the local oscillators. The optical span of quantum microcombs will ultimately be

limited by the microresonator dispersion, which sets the bandwidth of Kerr paramet-

ric gain. Through dispersion engineering, Kerr parametric sidebands that are ∼ ±80

THz away from the pump frequency have been reported in microresonators[190],

which indicates the possibility of creating hundreds or thousands of qumodes in a sin-

gle microresonator. The miniaturization of deterministic quantum frequency combs

provides a path towards mass production, which could be critical for applications in

quantum computing, quantum metrology, and quantum sensing[191, 192].
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