
STATISTICAL LEARNING IN RECOMMENDATION SYSTEMS:

PERSONALIZED RANKING AND DECENTRALIZED LEARNING SYSTEMS

James Lee

Bachelor of Arts, Rice University, 2017

Master of Science, University of Virginia, 2021

A Dissertation submitted to the Graduate Faculty

of the University of Virginia in Candidacy for the Degree of

Doctor of Philosophy

Department of Statistics

University of Virginia

May 2024

Dr. Xiwei Tang, Chair

Dr. Jordan Rodu

Dr. Lingxiao Wang

Dr. Shan Yu

Dr. Sheng Li

ii

Copyright © 2024, James Lee

iii

Statistical Learning in Recommendation Systems: Personalized
Ranking and Decentralized Learning Systems

James Lee

(ABSTRACT)

Recommendation systems are integral to various domains, including content-based

platforms and e-commerce. Despite extensive research efforts in designing diverse rec-

ommendation systems in recent years, popular approaches based on explicit ratings

often struggle to perform effectively in practical recommendation-making scenarios.

This dissertation comprises three main sections. Firstly, we will present an overview

of recommendation systems from a statistical perspective. Secondly, we propose a

personalized ranking-based model that utilizes pairwise preference information from

explicit feedback, demonstrating superior performance compared to conventional ap-

proaches in real-world settings. Finally, addressing growing concerns over privacy and

data safety within recommendation systems, we introduce a novel decentralized fed-

erated learning framework. This framework operates without relying on centralized

data aggregation or costly model merging procedures.

iv

Acknowledgments

I am deeply grateful to my advisor, Dr. Xiwei Tang, whose invaluable guidance and

kindness have been instrumental in making this journey not only fruitful but also

enjoyable. Additionally, I extend my sincere appreciation to my esteemed committee

members, Dr. Jordan Rodu, Dr. Lingxiao Wang, Dr. Shan Yu, and Dr. Sheng Li,

for their valuable time and contributions to my work. I am also indebted to my wife,

Dr. Jasmine Lee, for her unwavering support throughout this endeavor. Lastly, I

express my heartfelt thanks to my children, Sophie and Emmanuel, for their constant

presence and encouragement.

v

Contents

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Recommendation Systems . 4

1.2 Different Data Frameworks . 4

1.2.1 Explicit Feedback . 4

1.2.2 Implicit Feedback . 5

1.3 Rating-based Recommendation . 7

1.3.1 Content-based Recommender Systems 9

1.3.2 Collaborative Filtering . 9

1.3.3 Latent Factor Models . 11

1.3.4 Drawbacks of Rating-based Framework 15

1.4 Top-k Recommendation . 19

1.4.1 Ranking-based Recommendation 20

1.4.2 Item Recommendation Literature Review 23

1.4.3 Challenges in Top-k Item Recommendation 26

vi

2 Pairwise Personalized Ranking 28

2.1 Matrix Factorization Model . 29

2.2 Pairwise Personalized Ranking Model 33

2.2.1 Optimization Strategy . 36

2.3 Computational Challenges . 38

2.4 Extensions to Pairwise Personalized Ranking 40

2.5 Simulations . 42

2.5.1 Data Generating Process . 42

2.5.2 Recommendation Accuracy 44

2.5.3 Computational Analysis . 50

2.6 MovieLens Datasets . 53

2.6.1 Data Exploration . 53

2.6.2 Analysis of Cutoff Criteria . 55

2.6.3 MovieLens 100K . 57

2.6.4 MovieLens 1M . 60

2.7 Discussions . 62

3 Decentralized Recommender System 63

3.1 Introduction . 64

3.2 Literature Review . 69

vii

3.3 Methodology . 73

3.3.1 Notation and Background . 73

3.3.2 Decentralized System with Network Communication Structure 74

3.3.3 Generalized SVD . 80

3.3.4 Order selection . 82

3.4 Data Description . 84

3.4.1 MovieLens Dataset . 84

3.4.2 H&M Personalized Fashion Recommendations Dataset 85

3.5 Experiments . 87

3.5.1 Network Structure . 87

3.5.2 Comparing Train Types . 90

3.5.3 Performance Evaluation . 91

3.6 Discussion . 97

Bibliography 101

Appendices 113

Appendix A Pairwise Personalized Learning 114

A.1 Computational Complexity . 114

A.2 ML100K Results . 116

A.2.1 Results Including EASE and VAECF 116

viii

A.3 Models . 116

A.3.1 Rating Weighted PPR . 116

Appendix B Code 119

ix

List of Figures

1.1 Example ratings matrix showing sparse explicit feedback. 5

1.2 Example utility matrix showing dense implicit feedback. 6

1.3 Utility matrix to CSR matrix. 8

1.4 User-based neighborhood method. 10

1.5 Factorization of the user-item matrix 12

1.6 Comparison randomly assigned item ratings vs the existing rating dis-

tribution (Marlin et al. 2007). 17

1.7 Comparing ranking evaluation weights of positions. 22

2.1 Factorization of the user-item matrix. 29

2.2 Interpretation of embeddings. 30

2.3 Stochastic Gradient Descent vs Gradient Descent. 32

2.4 Computational milestones. 39

2.5 Simulation diagram. 42

2.6 Evaluation Metrics on Medium simulated dataset. The metrics used

for each row starting from the top are NDCG@5 (top), NDCG@20,

Recall@5, and Recall@20 (bottom). Using the small test set (left)

shows little difference between models, but the full test set (right)

clearly shows performance differences. 45

x

2.7 Histogram of ratings for the Medium dataset with the training set

(left) and test set (right). 45

2.8 Evaluation Metrics on Large simulated dataset for the small test set

(left) and the full test set (right). The metrics used for each row

starting from the top are NDCG@5 (top), NDCG@20, Recall@5, and

Recall@20 (bottom). APR and PPR outperform other models with

EASE right behind. 46

2.9 Histogram of ratings for the Large dataset with the training set (left)

and test set (right). 47

2.10 Evaluation Metrics on MF simulated dataset for the small test set

(left) and the full test set (right). The metrics used for each row

starting from the top are NDCG@5 (top), NDCG@20, Recall@5, and

Recall@20 (bottom). APR, PPR, and MF show the strongest perfor-

mance on the full test set. 48

2.11 Evaluation Metrics on Hard simulated dataset for the small test set

(left) and the full test set (right). The metrics used for each row

starting from the top are NDCG@5 (top), NDCG@20, Recall@5, and

Recall@20 (bottom). Here we see that APR and EASE are the top

performing models on the full test set. 49

2.12 Histogram of ratings for the Hard dataset with the training set (left)

and test set (right). 50

2.13 Training times for Medium (top), Large (middle), and MF (bottom)

simulated datasets. We see that the APR and PPR models train faster

than VAECF but slower than EASE. 51

xi

2.14 Test times for Medium (top), Large (middle), and MF (bottom) sim-

ulated datasets. We see that the APR and PPR have a higher perfor-

mance for testing compared to the other models. 52

2.15 Diagram of how data is partitioned into train, test, and items to rank.

The set of items to rank for each user is created by taking their test

set and optionally combining with their missing items. 54

2.16 Distribution of proportion of positive items per user. A rating thresh-

old of 4 or q85 give the most balanced distribution of postive to neg-

ative items while rating threshold of 5 gives the strictest cutoff. . . . 56

2.18 Results using NDCG at 5 (top) and NDCG at 10 (bottom) for various

cutoff criteria using the Maximal Su. APR and PPR outperform other

models on most metrics. 58

2.19 Results of NDCG at 5 for N = 20 (top) and for N = 10 (bottom). . . 58

2.20 Results of NDCG at 5 for Minimal Su. 59

2.21 Trend of model performance across different Su. 60

2.22 Histogram and heatmap of MovieLens 1M ratings. 60

3.1 Decentralized scheme for recommender systems. 79

3.2 Generalized SVD architecture. 81

3.3 Order selection for undirected graph types (top) and directed graph

types (bottom). 84

3.4 Distribution of MovieLens 100K data. 85

3.5 Initial five rows of Transaction data. 86

xii

3.6 Random 5-out graph and degree distribution. 88

3.7 Scale-free graph and degree distribution 89

3.8 Cycle graph and simple example . 90

3.9 Comparison of Training Types for ML100K (left) and H&M (right). . 90

3.10 Comparing performance of various orders of the decentralized method

to the centralized method over networks in MovieLens dataset(top)

and H&M personalization dataset(bottom). 94

3.11 Validation losses with first order sharing for ML100K (left) and H&M

(right). Gossip takes longer than 1st order and FedAvg takes an order

of magnitude more time to achieve similar performance. 96

3.12 Validation losses with optimal sharing for ML100K (left) and H&M

(right). Gossip takes a similar amount of time but FedAvg takes an

order of magnitude more time to achieve similar performance. 96

A.1 Results on ML100K dataset including EASE and VAECF for cutoffs

3, 4, and 5. 118

xiii

List of Tables

2.1 Simulated dataset parameters . 44

2.2 Details for real-world datasets . 53

2.3 Results on MovieLens 1M dataset for various cutoff using the Maximal

Su. 61

3.1 PushGrad results on the MovieLens dataset (top) and the H&M dataset

(bottom) over various undirected networks compared to 4 other methods. 93

3.2 PushGrad results on the MovieLens dataset over various directed net-

works compared to 3 other methods. 94

3.3 Generalized SVD performance using the decentralized scheme on the

MovieLens dataset. 97

3.4 Memory Used for Experiments . 98

3.5 Predicted memory usage for model initialization. 98

A.1 MovieLens 100K Results of Maximal Su for rating cutoffs 3, 4, 5, and

the 85th user-quantiles. 117

1

Chapter 1

Introduction

Recommendation systems have dramatically increased in usage and effectiveness

throughout the past two decades. With the overarching goal of providing useful con-

nections between users and items, many organizations both in industry and academia

have pushed to improve model performance, evaluation criteria, and the ecosystem

surrounding recommendation system research. Recommendation systems have pro-

liferated in all technological corners of the world thanks to the power of the internet

and exponential growth of personalized data and they touch many aspects of our

lives. Large companies like Google or Amazon use these systems to suggest ads or

products to a user that they think the user will like. Social media platforms like

Facebook and X (formerly Twitter) leverage them by promoting connections or posts

they think a user would most likely interact with. By finding patterns in user demo-

graphics, historical trends, and most importantly in our case, user-item interactions,

recommender systems can guide user behavior in specific directions.

Such user-item data comes in two general formats: explicit feedback, and implicit

feedback (Koren, Bell, and Volinsky 2009). As the names suggest, explicit feedback

is user data where the user explicitly shares how they feel about a certain item. For

example, a movie rating from 1 to 5 stars would be considered explicit feedback. On

the other hand, implicit feedback is user data where the user does not share their

exact preference for an item they interacted with. Given the fact that a user bought

2

a specific item, it does not tell us whether the user truly liked the item or not. Things

like clicks or views can also fall into the implicit feedback umbrella.

Though the difference between the two feedback types may be subtle, there are large

differences in how the data are used and how the corresponding models are evaluated.

The explicit feedback scenario often deals with the rating prediction case, where

recommendation system models are tasked with predicting the exact rating that a

user would give to an item. These models are evaluated using well known evaluation

methods like Root-Mean-Squared error (RMSE) or Mean Absolute Error (MAE). In

contrast, top-k recommendation is more common with implicit data, where the

assumption is that given a user, all items have a true preference (like/dislike). And

because the user will only ever see k recommendations, only the top k ranked items

matter for a user. This requires alternative evaluation methods such as Recall at k,

Precision at k, or Normalized Discounted Cumulative Gain at k. Both types of rec-

ommender systems have their merits and it is ultimately a matter of data availability

and which evaluation metrics are most important in your use case.

Of course, the proliferation of recommender systems finding patterns in vast amounts

of data mined from users has not been without its critics. At the core of recommen-

dation systems is the accumulation and analysis of large amounts of user data. When

used judiciously with proper data protocols, they can provide a valuable experience

to users of a product. However, such large amounts of personal data collection may

seem invasive to users and pose a security and privacy risk. The data can be misused

by those collecting the data as in the infamous Facebook and Cambridge Analytica

scandal (Confessore 2018), or through secondary means as a data breach (Perlroth

2016). Furthermore, even if precautions were taken to keep the personal data safe,

pooling seemingly innocuous data such as movie watched with various sources can

3

even reveal sensitive personal information such as political ideology (Narayanan and

Shmatikov 2008). All these issues point to the fact that it is challenging to recon-

cile traditional recommendation systems with with the important values of user data

security and privacy.

In this backdrop a new class of recommendation systems, called Federated Learning,

was developed Bonawitz et al. 2016; Konečný et al. 2017. The core idea is to be able

to train a model where the data is not directly accessible by the model itself. For

example, the data may live on client machines while the model lives in a central server.

This way the central server does not need access to the potentially sensitive data

present on the client machines. This separation of data and model added complexity

in other areas such as communication costs, model aggregation, and synchronization,

but much research has been done to improve machine learning in this distributed

manner.

The rest of the dissertation covers these important topics in more detail and is struc-

tured as follows. The rest of Chapter 1 introduces recommendation systems, the types

of data used, as well as widely used evaluation methods. In Chapter 2, we propose an

pairwise model that bridges the typical divide in recommendation research between

explicit and implicit feedback. Explicit BPR extends the foundational Bayesian Per-

sonalized Ranking (BPR) model to the explicit feedback scenario in an efficient and

extendable way. Then in Chapter 3 we introduce a novel decentralized federated

learning method where each client node shares training information with its neigh-

bors given some underlying network structure.

4

1.1 Recommendation Systems

The high level goal of any recommender system is to suggest items to a user that it

believes the user will connect with. “Connect” is a general description which may

mean, enjoy, purchase, watch, or evoke a strong response from, even if it is a negative

response. In our research we will use “connect” to typically mean “like” or “want to

purchase”, but in practice a multitude of definitions may be used.

1.2 Different Data Frameworks

Data used by recommender systems can be described as observations where each row

is a (user, item, value) tuple, with the possible addition of a timestamp of when the

interaction occurred. If the timestamp is ignored, the data can also be represented as

a utility matrix, Y , where each element is the interaction between the corresponding

user row and item column. The interaction can be a rating, such a value from 1 to

5 or an up-vote; or an indicator of an action such as a purchase, a click, or a view.

An interaction that conveys the actual preference of a user such a rating from 1 to

5 is called explicit feedback, while an interaction that merely indicates the presence

of some action is called implicit feedback. The interaction is usually a rating from

1 to 5 for explicit feedback and a 0 or 1 for implicit feedback. Explicit and implicit

feedback often have different properties and slightly different use cases.

1.2.1 Explicit Feedback

Explicit feedback provides a clear positive or negative signal, and tends to result in

sparse data with as much as 95% of the user-item matrix missing. This is because

5

the majority of user usually only provide explicit feedback for a small proportion of

the items available. Figure 1.1 shows an example of explicit feedback in the form of

movie ratings. Such data is often used to predict the ratings of each item and models

are evaluated using pointwise loss functions like RMSE.

Figure 1.1: Example ratings matrix showing sparse explicit feedback.

Common datasets that contain explicit feedback are the MovieLens datasets (Harper

and Konstan 2016), which are collections of anonymized ratings that users of the

MovieLens website users gave to movies. The ratings were integers from 1 to 5

prior to version 3, but changed to half-integer increments from 0.5 to 5.0 starting

in February 2003. These datasets come in various sizes such as 100,000 ratings, 1

million ratings, and 25 million ratings. The Netflix Prize dataset was another dataset

of anonymized movie ratings that consisted of 100 million ratings on an integer scale

from 1 to 5(Bennett and Lanning 2007).

1.2.2 Implicit Feedback

On the other hand, implicit feedback provides valuable information that is not unam-

biguously positive or negative. For example, knowing that a user watched a certain

6

movie does not necessarily tell you that they user enjoyed the movie. Because of this

ambiguity, the binary data of implicit feedback is often treated as weak positive and

negative signals (Steffen Rendle 2021), such that the feedback is weakly positive if the

interaction exists and weakly negative if it does not exist. Implicit feedback is often

more abundant than explicit feedback, but the sparsity found in explicit feedback

is lost due to the fact that all non-interactions are considered to be weak negative

signals. Figure 1.2 shows an example of implicit feedback.

Figure 1.2: Example utility matrix showing dense implicit feedback.

It is not uncommon to convert explicit feedback data such as item ratings into an

implicit one by changing all the ratings to 1 and having all the unobserved data

become 0 (Steffen Rendle et al. 2009; Belal et al. 2022), however, by doing so, one

loses potentially valuable information about how the user feels about the specific item.

Furthermore, by converting the dataset in such manner, any classification model will

be predicting whether or not a user has rated an item, and not necessarily whether

the user “likes” an given item. This distinction may be important depending on what

precise outcome you want the system to optimize. Other widely used implicit datasets

include the Yahoo! news dataset, some which provides user view/click data on new

articles, as well as the Last.fm dataset which contains user and artist listening counts

7

(Last.FM 2011). In the next section we will cover the mathematical formulation for

rating-based recommendation, where the goal is to accurate predict user-item ratings.

1.3 Rating-based Recommendation

Given some set of users, u ∈ U and items, i ∈ I, let m = |U| and n = |I|. We denote

the m × n matrix of interactions between users and items as Y m×n. Yu,i or also yui

represents the interaction between user u and item i. In a more general form, the

context, c, replaces the user u. Context is general information related to the query

and can include things like user, personalized information about the user, and time.

For simplicity, the context we use will only include the user, u ∈ U .

Another representation of the interaction data may be as a Compressed Sparse Row

(CSR) matrix where the row and column index array correspond to the user and item

respectively and the data array being the value of the interaction. This is equivalent

to the set of (u, i, y) tuples which we will call (u, i, y) ∈ X . If Y is sparse - such as

explicit feedback - then |X | ≪ (m× n). If Y is dense like in implicit feedback, then

|X | = (m× n). An example of changing Y into a CSR matrix can be seen in Figure

1.3.

The scoring function denotes the preference of a user for a particular item and can

be described as

ŷθ(u, i) : U × I → R (1.1)

where θ are the model parameters, u ∈ U is a user, and i ∈ I is an item. For

convenience we will also write the output of a scoring function for a given user-

item pair as ŷui. The exact form of the scoring function, as well as the optimization

8

Figure 1.3: Utility matrix to CSR matrix.

algorithm for it depends on the task the recommendation system is trying to perform.

As mentioned before, the two broad tasks that we will discuss are rating prediction

and item recommendation (top-k recommendation). Section 1.3 discuss the rating

prediction problem and Section 1.4 covers the item recommendation case.

In the rating prediction paradigm, the goal of a recommendation system is to predict

the exact score a user would hypothetically give to each item. Rating prediction has

been a popular goal used in the literature (Herlocker et al. 2004; Koren, Bell, and

Volinsky 2009; Sedhain et al. 2015). The data used in rating prediction is usually

explicit feedback, such as movie ratings or product review scores. For simplicity, we

assume that the ratings are integers from 1 to 5. This is relatively common in practice

but may also include half intervals like 0.5, 1.5, etc. (Harper and Konstan 2016).

Given these true ratings y, the problem is often formulated by minimizing the magni-

tude of the difference between the actual scores and the predicted scores ŷ. There are

many ways to model the ratings, and we will cover a few of the popular approaches.

9

1.3.1 Content-based Recommender Systems

Recommender systems for rating prediction can be broadly categorized into two dif-

ferent approaches: content-based filtering and collaborative filtering. Content-based

filtering approaches provide recommendations based on the profiles of items and users.

Item profiles could include information such as genre, lead cast, and length of the

movie. User profiles could include demographic information. Then, based on the

profiles, the recommender system would find movies profiles that are similar to ones

the user has already watched. The drawback to this approach is that the information

from the profiles must be sourced from external sources. However, this approach does

not require a large amount of user-item interaction data.

One example of a content-based model is the Music Genome Project Koren, Bell, and

Volinsky 2009 used by music applications such as Pandora. To create song profiles,

trained analysts score songs a variety of musical attributes, which can then be used

to determine song similarity. Then, if a user likes a song with a certain profile, the

system could recommend other songs that have a similar profile. A drawback to

content-based models is that the extra information must be obtained for each new

item or user. As apparent in the Music Genome Project, this can be a tremendous

amount of work.

1.3.2 Collaborative Filtering

An alternative to content-based filtering is called collaborative filtering, which was

first introduced by Xerox‘s Tapestry system (Goldberg et al. 1992). This method

analyzes the history of user-item interactions and makes predictions based on those

interactions. Additional information such as user or item profiles is not required,

10

making collaborative filtering a domain free method. However, new users and items

do not have an interaction history, which makes prediction for them difficult. This is

known as the cold start problem (Koren, Bell, and Volinsky 2009). This also means

that a company that wants to create a recommender system based on collaborative

filtering needs lots of data pertaining to the history of user-item interactions before

accurate recommendations can be made.

Collaborative filtering can be broken down into two types of models: neighborhood

methods and latent factor models (also known as embedding models). Neighborhood

methods rely on the principle that users (or items) with similar behaviors will have

similar tastes in items (users) and use the user item relationship directly using a sim-

ilarity metric such as cosine similarity. For example, consider Figure 1.4. Say that

Bob likes the three movies he is connected to. A user-centric neighborhood model

would find other users who also liked the three movies, and then make recommenda-

tions based on what those other users also liked. In this example we see that because

Alice, Chris, and Dan like Tenet, the model will recommend Tenet to Bob.

Figure 1.4: User-based neighborhood method.

Given the m × n utility matrix Y with m users and n items, the similarity metric

can be calculated on the rows of Y for a user-based model or on the columns for a

11

item-based model. Then the cosine similarity, sij between item i and item j would

be

sij =

∑m
k=1 ykiykj

(
∑m

k=1 ykiyki) (
∑m

k=1 ykjykj)
(1.2)

=
y:i · y:j

||y:i|| × ||y:j||
.

Then one way to make predictions for ŷui is to identify the k items rated by u that

are most similar to i and take the weighted average of those weightings (Koren 2008).

Let N be the set of neighbor items, then

ŷui =

∑
j∈N sijyui∑
j∈N sij

. (1.3)

Some examples for neighborhood based models include random walk methods, SVM’s,

and k-nearest neighbors.

1.3.3 Latent Factor Models

In contrast to neighborhood methods, latent factor methods learn patterns in the

data through latent model parameters. The widely used latent factor models, also

called embedding models, embed the user-item interaction information into some

embedding space that can be used to generate predictions. A common method is

to embed each user and each item into the same latent embedding space, i.e. a

k dimensional vector space. Then the scores can be generated by taking the inner

product of a user embedding with an item embedding. This is the core idea behind the

Matrix Factorization model (Koren 2008) which is based on low-rank singular value

decomposition (SVD), but tailored to sparse matrices and without the requirement

12

Figure 1.5: Factorization of the user-item matrix

of orthogonality.

Matrix factorization methods are widely employed in recommender systems and

gained prominence during the Netflix Prize competition, where they dominated the

top scoring spots (Bennett and Lanning 2007). The winning technique of the com-

petition’s final team utilized numerous matrix factorization models in an ensemble

fashion. These methods aim to decompose the matrix of user-item interactions, Ω,

into the product of two matrices: one for the user embeddings, P and one for the item

embeddings, Q, also known as the latent factors. Figure 1.5 shows the decomposition.

The scoring function for matrix factorization looks like

ŷui = pT
uqi + bu + bi + µ, (1.4)

where bu and bi are user and item biases and µ is a global bias. The matrix factor-

ization method is central to our work, and we discuss it in more detail in Chapter

13

2.

Various improvements and extensions to matrix factorization have been developed

including the SVD++ model, Bayesian probabilistic matrix factorization, as well as

Mixture Rank matrix approximation. The SVD++ model smoothly merges aspects

of latent factor models and neighborhood models creating a more accurate combined

model. The model showed that error improvements could be found by combining

elements of both explicit and implicit data (Koren 2008). The scoring function for

the SVD++ model is

ŷui = bui + qT
i

pu + |N(u)|−
1
2

∑
j∈N(u)

zj

 , (1.5)

where we now see that the user factor is extended with |N(u)|− 1
2

∑
j∈N(u) zj. Here

N(u) contains all items that user u interacted with and zj is an additional item factor.

The Bayesian probabilistic matrix factorization model introduced a fully Bayesian ap-

proach to probabilistic matrix factorization and showed the feasibility of Markov chain

Monte Carlo (MCMC) methods for large dataset recommender systems (Salakhutdi-

nov and Mnih 2008). The likelihood of the observed ratings is given by

p(Y |P ,Q, α) =
m∏
i=1

n∏
j=1

[
N (Yij|P⊤

i Qj, α
−1)
]Iij

, (1.6)

where N (Yij|µ, α−1) denotes a Normal distribution with mean µ and precision α, and

Iij is an indicator variable that is equal to 1 if (i, j) ∈ Ω. The user and item feature

vectors come from Normal prior distributions. And the hyper-parameters for the user

and item features are assumed to be Gaussian-Wishart distributions.

The Mixture Rank Matrix Approximation method does not represent the user-item

14

ratings as a low-rank matrix approximation of a fixed rank but as a mixture of low-

rank matrix approximations with different ranks (D. Li, C. Chen, W. Liu, et al. 2017).

The slightly different likelihood function used by the MRMA model is as the following

p(Y |P ,Q, α, β, σ2) =
m∏
i=1

n∏
j=1

[
K∑
k=1

αk
i β

k
jN (Yij|P⊤

i Qj, σ
2)

]Iij
. (1.7)

The difference here is now the K, which denotes the maximum rank for all internal

structures of the user-item matrix. Then αk
i and βk

j are weights for the rank k model

for user i and item j. Gaussian priors are placed on the user and item factors, while

Laplacian priors are placed on the αk
i and βk

j which makes them sparse. The model

is optimized using iterated conditional modes.

Furthermore, an adaptive learning rate method was developed for matrix factorization

that adjusted the learning rate based on the noisiness of the rating (D. Li, C. Chen,

Lv, et al. 2018). Instead of a constant learning rate, the AdaError method gives

entries with large training errors smaller steps and entries with small training errors

larger steps. Given a learning rate λ and observation (u, i) ∈ Ω, the learning rate at

the t−th iteration is

λ
(t)
ui =

λ√
E

(t−1)
ui + ϵ

+ β, (1.8)

where E(t−1)
ui =

∑t−1
x=0(Yui−ŷ(x)ui)

2, ϵ is a small constant to prevent dividing by zero, and

β is a constant to prevent λ(
uit) from becoming 0 after many iterations. The continued

extensions and variations of the well-established matrix factorization model show that

it is still an effective and popular model in the recommendation system space, despite

its relative simplicity.

Neural network methods often extend the embedding model approach but may use

15

other methods to embed user and item interaction data (H. Wang, N. Wang, and

Yeung 2015; He et al. 2017). The Restricted Boltzmann Machine was one of the first

successful implementation of a neural network based model in recommender systems

(Salakhutdinov, Mnih, and Hinton 2007). And AutoRec proposed an autoencoder

framework (Sedhain et al. 2015) for the rating prediction problem. An autoencoder

is an auto-associative neural network with a single k-dimensional hidden layer that is

trained to recreate its input data after embedding it into a lower dimensional space.

Given a set S of vectors in Rd and k ∈ N+, an autoencoder minimizes the following

min
θ

∑
r∈S

||r − h(r; θ)||22, (1.9)

where h(r; θ) is the reconstruction of input r ∈ Rd,

h(r; θ) = f(W · g(V r + µ) + b) (1.10)

for activation functions f(·), and g(·) where θ = {W ,V , µ, b} for transformation

W ∈ Rd×k, V ∈ Rk×d, and biases µ ∈ Rk, b ∈ Rd. In contrast to MF which learns

a linear latent representation, AutoRec learns a non-linear latent representation of

either the items or users.

1.3.4 Drawbacks of Rating-based Framework

Evaluating recommender systems in the rating prediction paradigm is straightfor-

ward. A test set is withheld during training and used exclusively for evaluation.

Commonly used evaluation metrics are error metrics such as Root Mean Squared

Error (RMSE) and Mean absolute Error (MAE). For both metrics, lower values

16

equate to higher prediction accuracy. Given user-item pairs withheld in the test

set, Ω′ = {(u, i)}, the formula for Root Mean Squared Error is

RMSE =

√
1

|Ω′|
∑

(u,i)∈Ω′

(yui − ŷui)2. (1.11)

The formula for Mean Average Error is

MAE =
1

|Ω′|
∑

(u,i)∈Ω′

|yui − ŷui|. (1.12)

Such evaluation metrics have been used widely in the recommendation literature,

particularly for the rating prediction task (Koren 2008; Salakhutdinov, Mnih, and

Hinton 2007; Bi 2017; Sedhain et al. 2015). RMSE in particular is not only a popular

evaluation metric but also commonly used as part of the loss function for rating

prediction models.

Rating prediction is a popular recommendation system problem setting but it is not

without its criticism. The three main issues we cover are the following:

1. The missingness and rating distribution assumptions

2. The difficulty of evaluating baselines

3. The disconnect from user experiences

Missingness and Rating Distribution Assumptions

One concern is that the distribution of ratings in the observed data may be different

than the distribution of ratings the unobserved data. Since the goal is to suggest

novel items to a user that they will like, one approach is to predict the ratings of

all unseen items and pick the highest rated items. This approach assumes that the

17

Figure 1.6: Comparison randomly assigned item ratings vs the existing rating distri-
bution (Marlin et al. 2007).

unobserved data is missing at random (MAR). A previous study using music ratings

showed that the MAR assumption may not hold (Marlin et al. 2007). A large number

of users surveyed in that study described their opinion of a song affected whether or

not they rated it. Figure 1.6 compares the distribution of ratings between the random

selection and the existing selection.

Much research has been done to address this missingness problem. Ideally, one would

evaluate a model by suggesting unobserved items to the user and observing their

ratings in a live fashion. However, this is not typically possible in a research setting

with static datasets. Instead, there has been research to quantify and reduce the biases

that arises from the data being missing not at random (MNAR). One approach is

by modeling the binary missingness data directly, such as by using the nuclear-norm-

constrained matrix completion algorithm (Ma and G. H. Chen 2019; Davenport et

al. 2014), and then using the calculated propensity scores to weight data. Other

approaches include causal inference techniques and imputation (J. Chen et al. 2021).

This body of research shows that it may be beneficial to include the unobserved data

in some way to ensure that the model isn’t solely learning patterns in the observed

data that do not generalize to the unobserved data.

18

Difficulty of Evaluating Baselines

State-of-the-art rating prediction results have steadily been improving on benchmark

dataset as newer sophisticated models were developed. However, studies showed that

the original baseline results used in previous papers may have been sub-optimal (Stef-

fen Rendle, L. Zhang, and Koren 2019) and on potential problems of reproducibility

with the deep learning approaches (Dacrema, Cremonesi, and Jannach 2019). Their

results showed that the much older baseline models such as matrix factorization,

Bayesian Probabilistic Matrix Factorization, and SVD++ outperformed nearly all

of the more recent state-of-the-art models when the baselines were carefully set up.

This highlights the difficulty of properly setting up baselines and demonstrates that

simpler models like matrix factorization are still very competitive in the current land-

scape. Hence in our work we are comfortable using MF as a central part of our work

as it has stood the test of time.

Disconnect from User Experience

Finally, the rating prediction paradigm along with its popular evaluation metrics

has been criticized that it is too far removed to the user experience of recommender

systems (McNee, Riedl, and Konstan 2006). In practice, users often view recommen-

dations as lists due to restrictions such as space on a screen. Therefore, it may better

to tailor models and evaluations toward the task of predicting the best k items that

will be shown to the user. This is the item recommendation scenario, also known as

top-k recommendation, which has seen an emergence of research over the past decade

alongside tradition rating prediction approaches.

Rating-based recommendation, where the goal is to accurately predict the rating a

19

user would give to an item, has been a popular area of research for the last 2 decades.

During that time, many new methods were developed ranging from neighborhood

models, latent factor models, and neural networks. However, explicit feedback is not

easy to collect as it requires active input from users. Implicit feedback on the other

hand has grown exponentially as it can be collected passively from the actions of

users. In this backdrop another type of recommendation research has been gaining

traction - the top-k recommendation problem. In the next section we discuss the

top-k item recommendation paradigm in more detail.

1.4 Top-k Recommendation

In the top-k item recommendation problem space, items are typically categorized as

‘relevant’ or ‘irrelevant,’ and the goal is to provide k item suggestions that a user

should find ‘relevant.’ It is often treated as a two-class classification problem with

the classes coming from the implicit feedback which is abundant compared to explicit

feedback. This often means that the observed data are the relevant class, and the

unobserved data are considered the “weakly-negative” irrelevant class.

Models originally created for rating prediction, such as KNN and MF, can also be

used in the top-k recommendation scenario. However, error metrics like RMSE which

are dominant in rating-based recommendation, are not necessarily a good indicator of

performance on accuracy metrics used in item recommendation (Cremonesi, Koren,

and Turrin 2009). Furthermore, because the nature of implicit feedback, the sparsity

in the data is lost and the data space becomes much larger. Due to this, many model

tailored to the item recommendation task have been developed. But first, we discuss

the evaluation metrics common in top-k recommendation.

20

1.4.1 Ranking-based Recommendation

Evaluation metrics in the top-k item recommendation scenario are based on the item

rankings rather than the item ratings that are used in rating prediction. Some metrics

are truncated versions of traditional classification based metrics such as recall or

precision. The central idea for these metrics is to answer the two questions for each

user:

1. What are the items to rank?

2. What are the predicted ranks of the relevant items?

Assume there are n items to recommend from. For each user, u, a ranked list of those

n items is generated by the recommender system. The predicted ranks of the withheld

relevant items for the user is denoted as R(u) ⊆ {1, . . . , n}, and these predicted ranks

are used for evaluation. For example, R(1) = {2, 5} means that two relevant items

were predicted to be at ranks 2 and 5. A metric M is applied to each R(u) to

transform it into a single number and they averaged for the final value

1

|U|
∑
u∈U

M(R(u)). (1.13)

M only uses the predicted ranks below k to contribute to the metric. Next, we cover

some commonly used metrics for evaluating the quality of the rankings.

Recall at k

Recall at k measures the fraction of all items that were present in the top k ranks.

Recall(R)k =
|{r ∈ R : r ≤ k}|

|R|

21

Precision at k

Precision at k measures the proportion of the top k items that are relevant.

Precision(R)k =
|{r ∈ R : r ≤ k}|

k

Discounted Gain at k

Discounted Gain at k measures the sum of the item relevance in the top k ranks. For

general relevance the formula is

DG(R)k =
k∑

i=1

reli.

In the case of binary relevance (our case) it becomes:

DG(R)k =
k∑

i=1

δ(i ∈ R)

Cumulative Discounted Gain at k

Cumulative Discounted Gain at k measures the sum of the item relevance that is

weighted by the item rank. For general relevance the formula is

DCGk =
k∑

i=1

2reli − 1

log2(i+ 1)
,

and for binary relevance it becomes

DCG(R)k =
k∑

i=1

δ(i ∈ R)
1

log2(i+ 1)

22

Figure 1.7: Comparing ranking evaluation weights of positions.

Normalized Discounted Cumulative Gain at k

Normalized Discounted Cumulative Gain at k (NDCG@k) normalizes the CDG at k

by the Ideal Cumulative Discounted Gain (ICDG), which is the best CDG possible

where all the relevant items are ranked the highest. The equation for NDCG at k is

NDCG(R)k =
DCG(R)k
IDCG(R)k

,

where

IDCG(R)k =

min(|R|,k)∑
i=1

1

log2(i+ 1)
.

Figure 1.7 shows how the different evaluation metrics weight the various ranks. At

their core, the ranking evaluation metrics (accuracy metrics) are different ways to

answer the question : “How well are the relevant items represented in the predicted

top k ranked items?”

23

1.4.2 Item Recommendation Literature Review

The evaluation metrics for top-k item recommendation are more involved than their

rating prediction counterparts. Furthermore, the discrete nature of ranking lists

means that it difficult to use them in the loss functions directly. This means that

a large variety of loss functions have been proposed such as pairwise loss functions,

would compare two data points, and even list-wise loss functions, more common in

the learning-to-rank literature, which calculate the loss on an entire set of items.

This this section we cover a variety of recommender systems developed for the top-k

recommendation problem.

Bayesian Personalized Ranking

The Bayesian Personalized Ranking (BPR) model serves as one of the inspirations of

our work in Chapter 2. The BPR model takes a Bayesian approach to the ranking

problem by optimizing the area under the curve AUC (Steffen Rendle et al. 2009).

It uses a pairwise loss function comparing relevant to irrelevant items in the implicit

feedback scenario to maximize the probability that a relevant item is ranked higher

than an irrelevant item. The BPR likelihood function is

∏
u∈U

p(>u |Θ) =
∏

(u,i,j)∈DS

p(i >u j|Θ) (1.14)

=
∏

(u,i,j)∈DS

σ(ŷui − ŷuj), (1.15)

where p is the logistic function, >u is the item ordering for user u, U is the set of all

users, and DS : U × I × I := {(u, i, j)|i ∈ I+u ∧ j ∈ I \ I+u }. σ(yui − yuj) can be

thought of as the probability that user u would prefer item i over item j.

24

One of the challenges has been the problem of selecting the irrelevant item to pair

with the relevant item. The original model uses a uniform sampling process but other

informative sampling methods were shown to improve performance (Lian, Q. Liu, and

E. Chen 2020).

Sparse Linear Methods

The Sparse Linear Methods model (SLIM) is a linear model that learns a sparse

item-to-item similarity matrix W by minimizing the following optimization function

min
W

1

2
||A− AW ||2F +

β

2
||W ||2F + λ||W ||1 (1.16)

subject to W ≥ 0, (1.17)

diag(W) = 0. (1.18)

A is the utility matrix, || · ||F is the Frobenius norm, and ||W ||1 =
∑n

i=1

∑n
j=1 |wij|

is the element wise ℓ1-norm of W . SLIM generated fast recommendations like item

neighborhood methods that were high quality like model-based methods by learning a

sparse representation of the item-to-item similarity matrix (Ning and Karypis 2011).

Neural Collaborative Filtering

Neural Collaborative Filtering (NCF) was a neural network based model that general-

ized matrix factorization by adding nonlinear interactions between the user and item

latent factors (He et al. 2017). It extended the matrix factorization model with addi-

tional nonlinear layers and replaced the commonly used dot product with a multilayer

perceptron.

25

Variational Autoencoder for Collaborative Filtering

The Variational Autoencoder for Collaborative Filtering (VAECF) model introduces

a multinomial variational autoencoder. It is based on the variational autoencoder but

uses a multinomial likelihood and Bayesian inference for parameter estimation (Liang

et al. 2018). Like an autoencoder, it learns to reconstruct its inputs but instead of a

deterministic lower dimensional latent embedding, it embeds to a parameter space of

a Gaussian distribution which is then sampled from to generate its targets.

Embarrassingly Shallow Autoencoders

The EASER model is a simple linear model geared toward implicit data whose training

objective has a closed form solution (Steck 2019). Surprisingly, it achieves better

ranking accuracy than many other more complicated models (Steck 2019). It is similar

to SLIM but uses different constraints for optimization is able to be trained much

faster. The parameters of the model are the item-item weight matrix B ∈ R|I|×|I|.

Given the utility matrix Y , the predicted score is calculated as

ŷui = Yu,· ·B·,i, (1.19)

where Yu,· refers to row u and B·,i refers to row i.

The objective function for EASER is:

min
B

||Y − Y B||2F + λ · ||B||2F (1.20)

s.t. diag(B) = 0. (1.21)

26

The closed from of the weights of B are given by:

B̂i,j =

0 if i = j

− P̂ij

P̂jj
otherwise,

(1.22)

where P̂ := (Y TY + λI)−1 for sufficiently large λ. EASER is like an autoencoder in

that it recreates its inputs, but instead of a hidden layer it uses a linear transformation

with the constraint that the self-similarity of each item in the input and output layer

is constrained to zero.

1.4.3 Challenges in Top-k Item Recommendation

The top k recommender field has exploded with new models and state-of-the-art

claims and many novel deep learning approaches to the problem. However two areas

of improvement include:

1. The inconsistencies involving evaluation metrics (Krichene and Steffen Rendle

2020; Tamm, Damdinov, and Vasilev 2021)

2. The difficulty of reproducing many of the state of the art deep learning ap-

proaches (Dacrema, Boglio, et al. 2021).

Inconsistency in Evaluation Metrics

As mentioned before, the prevalence of sampled evaluation metrics as well as the

inconsistent sampling sizes make comparing top k recommender systems difficult and

can allow for spurious discoveries. Furthermore, there are differences in literature

and popular libraries on how common metrics are implemented. This means that two

27

different libraries could provide different numbers for the same metric on the exact

same model and data. This is due to the nuances of how the items to be ranked are

selected, and how edge cases may be handled.

Competitive Baseline Performance and Reproducibility

Also, in the reproducibility study in (Dacrema, Boglio, et al. 2021), it was found

that only a small number of published state-of-the-art models had provided enough

code and the data to reproduce the method with reasonable effort. In addition,

many of the deep learning based approaches when reproduced actually performed

more poorly than even much older and simpler baselines like item KNN, SLIM, and

graph based models. Furthermore, many of the deep learning models look orders

of magnitude longer to train than their simpler counterparts. Despite these many

challenges, research in the top k continues to mature and improve.

As seen in matrix factorization, SLIM, and EASE, sometimes, simple models and ideas

and perform surprisingly well compared to much more complex models. Rating-based

models, which use explicit feedback, struggle to perform well in top-k evaluation met-

rics. On the other hand, ranking-based models ignore the valuable information found

in explicit feedback. The key idea of the next chapter is the following: Can we per-

form well in the top-k recommendation scenario, which includes users’ missing items

in ranking, by solely utilizing observed explicit feedback and ignoring the unobserved

data altogether? We propose a pairwise model, Pairwise Personalized Ranking, to

address this question.

28

Chapter 2

Pairwise Personalized Ranking

Our method, Pairwise Personalized Ranking (PPR), is a pairwise model that fully uti-

lizes available explicit feedback to perform well in ranking-based evaluation methods

while retaining high performance and computational efficiency. Top-k recommenda-

tion models treat the data as a two class problem and the split the data so that the

observed data is ‘relevant’ and the missing data is ‘irrelevant’. The observed data is

treated as a weak positive signal and the missing data is treated as a weak negative

signal. Although effective, when used on binarized explicit feedback, it completely

ignores the rich information provided in the explicit feedback itself. Furthermore,

items with low ratings, should not be considered as weak positive feedback.

We hone in on this idea and develop a recommender that uses a pairwise loss function

on explicit feedback. Instead of assuming weakly positive and negative implicit data,

we directly use the explicit feedback and split the data into “true positive” and “true

negative” interactions. The key idea we center on is as follows: Instead of training

a pairwise model on implicit data and assume weak positive and negative signals,

can we get strong performance comparing within the explicit feedback itself without

using the unobserved data at all? Since our PPR model uses the matrix factorization

model as its scoring function, we first go over matrix factorization in more detail.

29

Figure 2.1: Factorization of the user-item matrix.

2.1 Matrix Factorization Model

Let Y ∈ Rm×n be the sparse matrix of user-item ratings, where there are m users, and

n items. Then, yui ∈ Y is the rating that a user u gave to item i, where u ∈ {1, . . . ,m}

and i ∈ {1, . . . , n}. Matrix factorization decomposes Y into the product of two low-

rank matrices: the user and item embeddings P and Q respectively. Figure 2.1 shows

an example of how the user-item matrix is factorized . Then, the predicted rating ŷui

can be calculated by

ŷui = p⊤
u qi, (2.1)

which is similar to the singular value decomposition of a matrix.

However, because the ratings matrix Y is sparse, a normal SVD method is not ap-

plicable. A naive way to correct for this would be to train on only the observed data,

but this would likely result in overfitting. To avoid this, it is common to regularize

30

Figure 2.2: Interpretation of embeddings.

the parameters of the latent factors. The loss function to be minimized then becomes

L(p, q,Ω) =
∑

(u,i)∈Ω

(yui − p⊤
u qi)

2 + λ(||pu||2 + ||qi||2), (2.2)

where Ω is the set of observations and λ is the regularization parameter.

One interpretation for the the model is that the rating for a specific user-item pair

depends on how similar the user embeddings are to the item embeddings. The mean-

ing of the embeddings themselves are not explicitly known, but may be inferred after

the fact by the way the items are distributed along certain factors. For example, the

embeddings may encode the affinity or amount of specific genres, and if both the user

embedding and item embedding contain large values for that element, then it would

positively impact the predicted rating ŷui.

In practice, matrix factorization often includes additional bias parameters such that

the ŷui depends on a global effect, µ, a user effect, bu, an item effect, bi, as well as

the inner product of the user and item embeddings p⊤
u qi. The scoring function then

31

becomes

ŷui = µ+ bu + bi + p⊤
u qi, (2.3)

where the pu, qi ∈ Rk.

Two methods to solve the loss function in Equation 2.2 are Stochastic Gradient De-

scent and alternating least squares.

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a widely used iterative optimization algorithm.

The key idea for SGD is to approximately travel along the gradient of the loss func-

tion in a noisy manner by updating model parameters based on a single training

observation. A small subset of training data, called a batch, may be used instead of a

single data point, and this is often referred to as mini-batch or batch gradient descent.

However, we use the term SGD to refer to both interchangeably. By stepping in the

gradient direction after each small batch, SGD can avoid the computation burden

of traditional gradient descent which requires the gradient to be calculated over the

entire training data. This makes SGD a particularly good optimization method when

dealing with the large data sets common in recommender systems. Figure 2.3 high-

lights the difference between SGD and traditional gradient descent (sgd-vs-gd n.d.).

For a given training observation, the loss function error is used to calculate the

stochastic gradient. For the simple matrix factorization model in Equation 2.1, the

32

Figure 2.3: Stochastic Gradient Descent vs Gradient Descent.

gradient is shown in Equation 2.2.

∇pu = (yui − p⊤
u qi) + λp, (2.4)

∇qu = (yui − p⊤
u qi) + λq.

Then the approximate gradient and a learning rate γ are used to step to the updated

model parameters. Given that the error term is

eui ≡ yui − p⊤
u qi, (2.5)

the parameter update step equations are

pu ← pu + γ(euiqi − λpu), (2.6)

qi ← qi + γ(euipu − λqi).

In practice, SGD performs well in many optimization problems. But in general, con-

vergence for SGD is not guaranteed. However, when the learning rate γ decreases at

an appropriate rate, the loss function is Lipschitz, and the noise in the stochastic gra-

dient has bounded support, SGD will converge almost surely to a local minima in the

non-convex case. Furthermore, modifications to SGD such as Nesterov momentum,

33

acceleration, and others can speed up convergence.

Alternating Least Squares

Another popular approach to solve Equation 2.2 is called Alternating Least Squares

(ALS). While the loss function in Equation 2.2 is non-convex, if one of p or q is fixed,

it becomes a quadratic optimization problem. Then the approach will be to fix P

and optimize Q, then fix Q and optimize P , and repeat until convergence.

pu =

(∑
yui∈Ω

qiq
⊤
i

)−1 ∑
yui∈Ω

yuiqi for u = 1, . . . ,m, (2.7)

qi =

(∑
yui∈Ω

pup
⊤
u

)−1 ∑
yui∈Ω

yuipu for i = 1, . . . , n . (2.8)

ALS can be computed in a distributed manner which allows it work very well for

extremely large datasets (Zhou et al. 2008) and parallel computation.

In our experiments in Chapter 2 and Chapter 3, we use SGD and its variants to

optimize the non-convex loss functions. One thing to highlight is the calculation of

the stochastic gradient is a important part that will be used in Chapter 3. Next we

cover how the PPR model leverages explicit feedback for training.

2.2 Pairwise Personalized Ranking Model

One of the distinguishing features of explicit feedback to implicit feedback is that the

user provides finer resolution on the interaction it had with an item. The existence

of such information allows us to make more informed decisions when determining

whether or not a specific user-item interaction was truly positive or negative. When

34

using rating data converted into implicit feedback, the recommender treats any rating

as positive. This is problematic since it is highly unlikely that users would want to

treat items that were rated as 1 star to be treated the same as items that were rated

as 5 stars. Hence, we use the rating data itself to split the observed data into a true

positive and true negative class.

After partitioning the observed data from the ratings dataset into true positive and

true negative sets based on some criteria, PPR compares those positive and negative

items for a given user to learn to differentiate between the two. This criteria can be

a global one, such as a global constant, or a user-specific criteria such as users’ rating

quantiles. The pairwise loss function optimizes the ordering of the true positive and

true negative items.

Recall that the set of observed data, Ω, contains the user-item tuples, (u, i), of all

observed data - both true positives and true negatives. This set of tuples, Ω, will be

used to generate user, positive item, negative item triplets, (u, i, j), used for training

the Pairwise Personalized Ranking model. First, we partition the data into true

positives and true negatives using the global or user-specific criteria from before.

Given a value cu that may be user-specific, let the set of user, true positive, and true

negative item triplets be:

T = {(u, i, j) : (u, i) ∈ K, (u, j) ∈ K, yuj < cu ≤ yui}. (2.9)

This set contains the tuples of all possible user id, positive item id, and negative item

id triplets and allows us to train the model to properly order the true positives and

the true negative items for each user. It can be much larger than than Ω, and is

on the order of |Ω|2. The quadratic increase in data points can cause computational

35

challenges if not handled appropriately.

Given that we want to maximize the probability that a positive item is ranked higher

than a negative item, the optimization function using a pairwise loss function is:

min
θ

∑
(u,i,j)∈T

− log(σ(ŷu,i,θ − ŷu,j,θ)) +
λ

2
(||θ||), (2.10)

where θ are the model parameters and ŷu,i,θ is a generic scoring function with param-

eters θ. This optimization function wants to maximize the probability that a true

positive item will be ranked higher than a true negative item for a user.

Using a matrix factorization model with item biases as the underlying scoring function

for PPR, gives us

ŷui = p⊤
u qi + bi. (2.11)

Since the optimization function in Equation 2.10 takes the difference within a users

items, any user-specific bias will be cancelled out. Then, the optimization function

from Equation 2.10 becomes:

min
P ,Q,b

 ∑
(u,i,j)∈T

− log(σ(ŷuij))

+
λ

2

(
||P ||2F + ||Q||2F + ||b||22

)
, (2.12)

where ŷuij = ŷui − ŷuj, || · ||2F is the squared Frobenius norm, and || · ||22 is the

squared L2 norm. Conceptually, this optimization problem wants to ensure that true

positive items score higher than true negative items for a given user i.e. maximize

the probability that a true positive item will be ranked higher than a true negative

item.

36

2.2.1 Optimization Strategy

To optimize Equation 2.12, we use stochastic gradient descent (SGD). The gradients

with respect to p, q, and bi simplified as θ are:

∂

∂θ
L = − ∂

∂θ
log(σ(ŷuij)) +

∂

∂θ

λ

2
||θ||22 (2.13)

= − 1

σ(ŷuij)

∂

∂θ
σ(ŷuij) + λθ (2.14)

= − 1

1 + eŷuij
∂

∂θ
ŷuij + λθ. (2.15)

Recall that ŷuij = p⊤
u qi + bi − (p⊤

u qj + bj). By substituting zuij = − 1

1+eŷuij
, we see

the gradients will be

∂

∂θ
L =

zuij(qi − qj) + λpu if θ = pu

zuijpu + qi if θ = qi

−zuijpu + qj if θ = qj

zuij + bi if θ = bi

−zuij + bj if θ = bj.

(2.16)

These gradients are used to update the model parameters at every iteration. Algo-

rithm 1 shows the full algorithm including the SGD steps for the Pairwise Personalized

Ranking model. In particular, we show two examples of possible implementations of

the GENERATETRIPLETS function.

The first implementation is the naive one, where all possible (u, i, j) tuples are created

and then iterated over. As we cover later, it is not particularly efficient, but it does

allow the triplet dataset to be created offline.

37

Algorithm 1 Pairwise Personalized Ranking
Require: Ω observed data, Y utility matrix, cu rating threshold.

1: Create Negative Item Mapping N (u) = I−u for u ∈ U where
I−u := {i ∈ I : (u, i) ∈ Ω, yui < cu} (2.17)

2: for i = 1, . . . , N do
3: T ← GENERATETRIPLETS(Ω,N)
4: for all (u, i, j) ∈ T do
5: zuij = −

(
1

1+eŷuij

)
6: Update parameters:
7: pu ← pu − γ (zuij · (qi − qj)− λpu)
8: qi ← qi − γ (zuij · pu + λqi)
9: qj ← qj − γ (−zuij · pu + λqj)

10: bi ← bi − γ (zuij + λbi)
11: bj ← bj − γ (−zuij + λbj)
12: end for
13: end for

Algorithm 2 Naive GENERATETRIPLETS
function GENERATETRIPLETS(Ω,N)

Require: Ω observed (u, i) pairs, N negative item mapping
for all (u, i) ∈ Ω do

Tui = {(u, i, j) : j ∈ N (u)}
end for
return T

end function

38

The next implementation is a more efficient one and does not require the entire

triplet set T to be stored in memory. It uses a two-step sampling procedure, the first

to sample the (u, i) and the second to sample the corresponding j. We note that the

specific sampling mechanism can be adjusted. We use a uniform randomly sampling

method, but as seen in (Lian, Q. Liu, and E. Chen 2020), a more sophisticated

sampling scheme may improve performance.

Algorithm 3 Random Sampling GENERATETRIPLETS
function GENERATETRIPLETS(Ω,N)

Require: Ω observed (u, i) pairs, N negative item mapping, nT number of triplets
for k = 1, . . . , nT do

(ũ, ĩ) ∼ Ω uniformly without replacement.
j̃ ∼ Nũ uniformly with replacement.
Tk = (ũ, ĩ, j̃

end for
return T

end function

One thing to note is that the resulting distributions of T from Algorithm 2 and

Algorithm 3 are slightly different. Algorithm 2 creates T using the entire triplet

space which means that each user will have ∝ |Ωu|×|N (u)|
|T | triplets while in Algorithm

3 each user will have ∝ |Ωu|
|Ω| triplets.

2.3 Computational Challenges

There were significant computational challenges faced during the development of this

model. The first was due to the large data size. This meant often meant that it was

difficult to keep the entire set of data triplets T in memory as the memory increased

quadratically with the number of ratings. The second was due to runtime on such

large amounts of data. As mentioned in previous work, training recommendation

39

Figure 2.4: Computational milestones.

models can take significant amounts of time, and well set up hyper-parameter tuning

may not be feasible if the runtime is too onerous (Dacrema, Boglio, et al. 2021). The

complexity of some previous methods meant that hyper-parameter tuning could take

days or even weeks. With this in mind we wanted to create a model that was able to

be trained efficiently.

The entire model and training code base was written in Python as it was the language

the author was most experienced in. The initial implementation of the Pairwise

Personalized Ranking model was purely using the numpy library, which is a well

known numerical multidimensional array library (Harris et al. 2020). However, due

to the complex nature of the SGD loop, performance was subpar as it required for

loops, which are much slower than vectorized operations.

To remedy the SGD hot spot, we turned to numba, a open source Just-In-Time com-

piler that can accelerate computation in Python. As shown in Figure 2.4, converting

portions of the code to leverage numba allowed significant speed ups. Converting the

40

inner SGD loop, line 9 in Algorithm 1, to numba halved the training time. Further im-

provements were made by eliminating unnecessary data copying as well as converting

the outer SGD loop, line 4, to numba as well.

Another large runtime improvement was transitioning from a single sampling process

to a two stage sampling process. Previously, all possible data triplets, (u, i, j), were

generated in the beginning and then looped through. However, by only sampling the

unique (u, i) pairs in the observed dataset and then sampling a negative time j, we

found significant performance improvements. This approached is described in line 6

in Algorithm 1.

The final computational milestones were achieved by converting the second sampling

stage to numba as well as sampling in parallel. Through all these updates we were

able to improve the runtime of the code by more than a factor of 1000. This allowed

us to efficiently tune hyper-parameters as it ran on the scale of hours rather than

weeks. The final version of the model could train in a similar amount of time as the

existing BPR model, which was mostly coded in C++ and had much simpler negative

pair sampling mechanism. A discussion regarding the computational complexity can

be found in Appendix A.1.

2.4 Extensions to Pairwise Personalized Ranking

The Pairwise Personalized Ranking model exclusively uses the explicit feedback to

learn user item preferences. In this section we cover 2 extensions to the PPR model.

Previous research indicated that utilizing both explicit and implicit feedback could

improve accuracy (Koren, Bell, and Volinsky 2009). With this in mind, in the first ex-

tension, we leverage both explicit feedback and implicit feedback in a simple way. The

41

Alternating Personalized Ranking model alternates between comparing true positive

to true negative items and comparing observed items to unobserved items.

The simplified corresponding loss function is equivalent to

min
θ
−

 ∑
(u,i,j)∈T

log(σ(ŷu,i − ŷu,j)) +
∑

(u,i,j)∈D

log(σ(ŷu,i − ŷu,j))

+
λ

2
(||θ||), (2.18)

where the underlying scoring models share the same embedding space. In this manner

the model is able to include information from missing items into its predictions while

keeping the strong signals present in the explicit feedback. The optimization approach

is similar to the PPR optimization strategy where we use SGD.

For the second extension to the PPR model, we note that ratings data can be parti-

tioned into 3 classes: true positive, true negative, and missing. One way to expand

on the Alternating Personalized Ranking idea is to use a triplet loss function that

compares those three classes to each other. We assume that an general ordering exists

between the three classes such that

True Negative < Missing < True Positive. (2.19)

Then the goal would be to optimize the ordering of the three classes simultaneously

min
θ
−

 ∑
(u,i,j,k)∈T̃

log(σ(ŷu,i,j)) + log(σ(ŷu,i,k)) + log(σ(ŷu,k,j))

+
λ

2
(||θ||), (2.20)

where (u, i, j, k) corresponds to the user, true positive item, true negative item, and

missing item respectively. We denote this model as the Triple Personalized Ranking

model (TPR). Again, we use SGD to optimize the Triple Personalized Ranking.

42

Figure 2.5: Simulation diagram.

2.5 Simulations

We conduct a variety of experiments on simulated data to compare the PPR and

APR methods to other baselines. The baselines for the simulations include BPR,

EASE, VAECF, MF, I-KNN, and U-KNN.

2.5.1 Data Generating Process

At a high level, our goal is to generate realistic simulated data from a set of user

and item factors whose ratings and probabilities of being missing depend on whether

or not the user-item interaction is a true positive or a true negative. True positive

items should have a higher probability than a true negative item to be observed.

The ratings of true positives should be on average higher than the ratings of true

negatives.

To generate the simulated data, first the latent factors P , Q, bu, and bi are generated

by sampling repeatedly from a normal distribution. Then the scores, Z are calculated

by taking PQ⊤ and adding bu row-wise and bi column-wise. The scores, Z, are passed

43

Algorithm 4 Simulated Data Generation
Require: True latent parameters: µ,Σ, k, n,m

1: for Each user and item factor do
2: pu, bu, qi, bi ∼ N(µ,Σ)
3: end for
4: Rui ∼ Bern(σ(puqi))

5: Mui ∼ Bern(p) where p =

{
p+ if Rui = 1

p− otherwise
6: Yui ∼ Cat(Rui) where Cat(Rui) = f(x = k|p) for k ∈ {1, 2, 3, 4, 5}

where
{
p1 + p2 + p3 < p4 + p5 if Rui = 1

p1 + p2 + p3 > p4 + p5 if Rui = 0

7: Xtrain = {(u, i,Yui)|Mui = 1}

8: Xtest =

{
80%− 20% random split withheld from Xtrain if not full test
{(u, i,Yui)|Mui = 0} if full test

to the logistic function σ(x) = 1
1+e−x and the resulting probabilities are used as p for

the Bernoulli distribution. This generates the binary true relevance matrix, R which

determines whether items are true positive or true negative for each user.

Then R is used to generate both the missing matrix mask M and the rating matrix

Y . We generate M using a pair of Bernoulli distributions, Bern(p+) and Bern(p−),

one for the true positives and one for the true negatives. This allows true positives to

have a higher probability of being observed compared to true negatives, i.e. p− < p+.

To generate the ratings matrix Y from R, we use a categorical distribution with five

classes corresponding to the integer ratings from 1 to 5. We assume that cu = 4 is the

true cutoff criteria for all users. This means that true positive items will be either a

4 or a 5 rating and true negatives will be a 3 or lower. The missing mask M is then

used to select elements of Y that are observed and in the training set.

We utilize two test sets. The first test set is a small test set and is created by further

splitting the training set 80-20 train-test. This mirrors what typically occurs when

you do not have the true ratings of the unobserved items. However, since these are

44

Dataset Users Items k µ σ sparsity p+
p−

p+ p−

Medium 400 800 15 -2 2 0.02 2 (0,0,0,.5,.5) (.35,.35,.3,0,0)
Large 2000 4000 20 -1 1 0.02 2 (0,0,0,.5,.5) (.35,.35,.3,0,0)
MF 943 1682 20 - - 0.02 1 - -

Hard 2000 4000 40 -3 1 0.02 3 (0,.02,.03,.5,.45) (.3,.32,.35,.03,0)

Table 2.1: Simulated dataset parameters

simulations, we have the true ratings of the unobserved items. The unobserved items

are used as the second test set. This set has a slightly different distribution than the

observed dataset and is much larger than the observed dataset.

2.5.2 Recommendation Accuracy

The parameters used for the three simulated dataset are found in Table 2.1. A lower

µ means that there is overall a larger proportion of negative ratings in the entire

dataset. A larger p+
p−

means that positive items are much more likely to be observed

than negative items.

Simulation Medium

Figure 2.7 shows the distribution of ratings for both the training and test set for the

medium simulated dataset. Figure 2.6 compare the performance of various models on

two test sets. One test set is withheld from the smaller observed data while the full

test set contains the ratings of all the missing data. We see that although performance

on the smaller test set is inconclusive, we see strong performance of both Alternating

Personalized Ranking and Pairwise Personalized Ranking on the full test set. They

both perform better than nearly all the baselines and are on par with the EASE

model.

45

Figure 2.6: Evaluation Metrics on Medium simulated dataset. The metrics used
for each row starting from the top are NDCG@5 (top), NDCG@20, Recall@5, and
Recall@20 (bottom). Using the small test set (left) shows little difference between
models, but the full test set (right) clearly shows performance differences.

Figure 2.7: Histogram of ratings for the Medium dataset with the training set (left)
and test set (right).

46

Figure 2.8: Evaluation Metrics on Large simulated dataset for the small test set (left)
and the full test set (right). The metrics used for each row starting from the top
are NDCG@5 (top), NDCG@20, Recall@5, and Recall@20 (bottom). APR and PPR
outperform other models with EASE right behind.

Simulation Large

In this simulation we use a much larger dataset (large) with a slightly different mean

and standard deviation. The large mean value means that there will be a higher

proportion of positive items in the dataset compared to the medium dataset. Figure

2.9 shows the distribution of ratings for both the train and test set and Figure 2.8

compares evaluation metrics between various models. In this larger simulated dataset,

we see that our method out performs all the other methods on the full test set.

47

Figure 2.9: Histogram of ratings for the Large dataset with the training set (left) and
test set (right).

Simulation MF

In this simulation, we recreate the ratings of the MovieLens 100K dataset. We first

fit the vanilla matrix factorization with 20 factors on the MovieLens 100K. Then

the learned user and item factors are used to create the simulated full dataset by

multiplying them, truncating to 1 to 5, and rounding to the nearest integer. As

expected, the MF model improves relative to the other simulations as it it closely

matches the data generating process. Even so, we see that our proposed methods are

on par with the best models.

48

Figure 2.10: Evaluation Metrics on MF simulated dataset for the small test set (left)
and the full test set (right). The metrics used for each row starting from the top are
NDCG@5 (top), NDCG@20, Recall@5, and Recall@20 (bottom). APR, PPR, and
MF show the strongest performance on the full test set.

49

Figure 2.11: Evaluation Metrics on Hard simulated dataset for the small test set (left)
and the full test set (right). The metrics used for each row starting from the top are
NDCG@5 (top), NDCG@20, Recall@5, and Recall@20 (bottom). Here we see that
APR and EASE are the top performing models on the full test set.

Simulation Hard

For the last simulation, the dataset is the similar to the Large simulation but we

adjust the parameters to make it more challenging for our model. By lowering the

mean, increasing p+
p−

, and allowing for some rating noise, we increase the number of

negative items, push the train and test distributions apart, and overall make it more

challenging for our model. Even in this scenario, we see that our models, particularly

the APR model performs on par with EASE.

50

Figure 2.12: Histogram of ratings for the Hard dataset with the training set (left)
and test set (right).

2.5.3 Computational Analysis

Figure 2.13 shows the training and testing time of the various models on all three

simulated datasets. We see that APR and PPR take longer to train than simpler

models like MF and KNN variants. In particular the MF model is written in C++

and trains very quickly. The EASE model also trains extremely quickly as it has

a efficient closed form solution. However, the APR and PPR models have the best

test time, which is typically more important in real world recommender systems as it

directly affects the usability.

The outliers on the training time results for our models are due to the Just-In-Time

compilation used by the numba accelerator. The first time a numba accelerated code is

run, it will take longer as it needs to be compiled. Subsequent runs are much faster.

In the test times plots we removed the much slower MF, and KNN variants to see

more detail in the faster models. Again, our proposed models show extremely fast

inference times.

51

Figure 2.13: Training times for Medium (top), Large (middle), and MF (bottom)
simulated datasets. We see that the APR and PPR models train faster than VAECF
but slower than EASE.

52

Figure 2.14: Test times for Medium (top), Large (middle), and MF (bottom) simu-
lated datasets. We see that the APR and PPR have a higher performance for testing
compared to the other models.

53

Table 2.2: Details for real-world datasets

dataset n users n items n ratings ratings sparsity
MovieLens 100K 943 1682 100,000 integers 1 to 5 0.937
MovieLens 1M 6040 3706 1,000,209 integers 1 to 5 0.955

2.6 MovieLens Datasets

Experiments comparing our Pairwise Personalized Ranking model and Alternating

Personalized Ranking model s to other baselines were conducted on the MovieLens

100K and MovieLens 1M dataset. The baselines we compare against are the Bayesian

Personalized Ranking model (BPR), matrix factorization model, item k nearest neigh-

bors, and user k nearest neighbors. We did try other models like Neural Collaborative

Filtering and Non-Negative Matrix Factorization but found them to have much longer

training times as well as poor initial performance. NDCG and Recall at both k = 5

and k = 10 were used to evaluate performance of all models.

2.6.1 Data Exploration

As mentioned in Section 1.4.1, one of the difficulties of properly evaluating top k

item recommendation is that the set of items to rank for each user, Su is not consis-

tent between researchers. Due to the large item corpus, it is often computationally

expensive to rank the all the items for each user. Researchers resorted to sampled

metrics, where the m relevant items withheld from the training set are mixed with n

randomly sampled unobserved items to create the set of items to be ranked, Su. Then

the models would try to rank the relevant items higher than the irrelevant items.

Our experimental set up is slightly different in that instead of relevant and irrelevant

54

Figure 2.15: Diagram of how data is partitioned into train, test, and items to rank.
The set of items to rank for each user is created by taking their test set and optionally
combining with their missing items.

items, we have positive, negative, and missing items. Due to this, we use a variety of

Su to see how the performance of our model changes as more unobserved items are

added. Figure 2.15 shows how our datasets are partitioned to become the training

set, the test set, as well as the set of items to rank Su.

First, the theoretical full dataset is partitioned into the set of observed ratings data,

X and unobserved data. The observed data, X is then split into a train set, Xtrain

and test set, Xtest in a 80-20 ratio stratified by users. Given the cutoff criteria cu, the

training data is used to train PPR. The test data for user u, X u
test, contains the user’s

positive and negative items. The items in X u
test are then optionally combined with

the user’s missing data to create the final set of items to rank Su used for evaluation.

One problem is that users have different amounts of ratings and the cu used for

partition may mean that a user has a very small test set or a skewed test set. We

propose 3 variations of generating Su that range from the minimal Su to the maximal

Su. Given each user, the “mixes” of test data and missing data are as follows:

55

• Maximal Su: The entire set of the user’s missing items is mixed in with the

user’s test items. This ranks the entire item corpus while excluding positive

and negative items in the training set.

• SN
u : If |Su| < N , then N − |Su| items are randomly sample from the user’s

missing items and mixed with their test items such that all |Su| ≥ N . Values

N = 10 and N = 20 are used.

• Minimal Su: Only the user’s observed test items are used for evaluation.

The four types of Su are used to evaluate the model performance to see if there were

any changes in evaluation between the varying Su sizes as more missing items were

added to the set.

2.6.2 Analysis of Cutoff Criteria

Different values of the cutoff criteria cu will affect the performance of the PPR model

as it uses cu to determine whether an item should be considered a true positive or a

true negative. Therefore, it is important to understand how different criteria affect

the distribution of TP and TN items. Figure 2.16 shows how the distribution of the

proportion of true positive items per user changes as the cutoff criteria changes. We

see that at both cu = 5 and cu = 3 the mean proportion indicates that an majority

of users have either all positive or all negative items, which is sub-optimal for model.

On the other hand, cu = 4 and cu being the 85th quantile show a more balanced

distribution of positive and negative items per user.

56

Figure 2.16: Distribution of proportion of positive items per user. A rating threshold
of 4 or q85 give the most balanced distribution of postive to negative items while
rating threshold of 5 gives the strictest cutoff.

(a) Histogram of ML100K ratings. (b) Heatmap of ML100K ratings.

57

2.6.3 MovieLens 100K

The first of the two real world data sets used is the MovieLens 100K dataset (Harper

and Konstan 2016) which contains integer ratings from 1 to 5 that users gave to various

movies. All users rated at least 20 movies. In these experiments we compare the PPR

and APR model against BPR, MF, ItemKNN, and UserKNN models. In particular

we highlight the comparison against the BPR model as it is also a pairwise model and

is most similar to our own. We include results with the EASE and VAECF models

in Appendix A.2.1 where we see that outperform the pairwise model approaches on

the ML100k dataset.

The results in Figure 2.18 show performance on 3 cutoff values for metrics NDCG

at 5 and NDCG at 10. We see that APR and PPR outperformed all other methods

using NDCG at 5 regardless of cutoff. Using NDCG at 10 we see that BPR performs

best when the cutoff is 3. As seen in Section 2.16, a cu = 3 results in the majority of

items being considered negative, which would negatively impact our PPR model.

The general trend is that using out PPR approach is especially effective in the top few

item rankings and provides the best results when the cu used results in a balanced or

positive skewed training set. Furthermore, APR which combines aspects of both PPR

and BPR performs the best overall. The full table results including 85th quantile can

be found in the appendix in Table A.1.

Results of other sizes of Su

Varying the size of Su tells a slightly different story. As Su decreases from N = 20

to the minimal Su, the number of missing items in Su decreases to zero. Since BPR

is differentiating between observed and unobserved data, it performs relatively worse

58

Figure 2.18: Results using NDCG at 5 (top) and NDCG at 10 (bottom) for various
cutoff criteria using the Maximal Su. APR and PPR outperform other models on
most metrics.

Figure 2.19: Results of NDCG at 5 for N = 20 (top) and for N = 10 (bottom).

59

Figure 2.20: Results of NDCG at 5 for Minimal Su.

as N decreases. On the other hand, the rating prediction methods like MF, I-KNN,

and U-KNN start performing relatively better as those unobserved items get removed.

This is due to the fact that those rating prediction models are able to accurately learn

patterns in the observed data but cannot translate the information to the unobserved

data effectively.

For the APR we continue to see very strong performance in the N = 20 and N = 10

cases but it falls off in the minimal Su case. PPR performs just behind APR in

the N = 20 and N = 10 cases but outperforms it when using the minimal Su.

Furthermore, PPR does not fall off in the minimal Su case and performs just as well

as the other methods specifically used for rating prediction. This shows the flexibility

of the PPR model in using the explicit feedback to generalize patterns even in the

presence of unobserved items.

Looking at the trends in Figure 2.21, we see that the pairwise methods differentiate

themselves the most from the pointwise methods in the maximal Su case. This implies

that the 3 rating prediction models are not able to effectively rank the unobserved

items relative to the positive items. As the size of Su decreases, this gap between them

decreases. And at the minimal Su we see a small inversion of the original pattern.

Where the rating prediction methods are shown to effectively order the observed

60

Figure 2.21: Trend of model performance across different Su.

Figure 2.22: Histogram and heatmap of MovieLens 1M ratings.

positive and negative items when the unobserved items are not considered.

2.6.4 MovieLens 1M

The MovieLens 1M dataset is a larger version of the MovieLens 100K dataset. In it,

each user also has at least 20 ratings. The result in is similar to that of the MovieLens

100K dataset. Both APR and PPR outperform the best on nearly all metrics with

cu = 5 and cu = Q85 with APR performing the best. PPR does fall off as cu decreases

and is generally outperformed by BPR when the cu = 4 and cu = 3. On the other

hand, APR does not lose it’s number one spot until the cutoff decreases to cu = 3,

where BPR then outperforms other methods.

61

Cutoff: 5 NDCG at 5 NDCG at 10 Recall at 5 Recall at 10
APR 0.137 0.144 0.086 0.142
PPR 0.133 0.140 0.085 0.141
BPR 0.129 0.134 0.078 0.127
ItemKNN 0.048 0.049 0.021 0.039
MF 0.016 0.022 0.010 0.025
UserKNN 0.000 0.003 0.000 0.005
Cutoff: .85 q NDCG at 5 NDCG at 10 Recall at 5 Recall at 10
APR 0.154 0.153 0.071 0.119
PPR 0.148 0.148 0.069 0.117
OriginalBPR 0.144 0.143 0.065 0.107
MF 0.041 0.046 0.018 0.037
UserKNN 0.002 0.008 0.001 0.011
ItemKNN 0.000 0.000 0.000 0.000
Cutoff: 4 NDCG at 5 NDCG at 10 Recall at 5 Recall at 10
APR 0.182 0.172 0.051 0.088
BPR 0.185 0.172 0.051 0.085
PPR 0.171 0.163 0.049 0.085
ItemKNN 0.062 0.062 0.010 0.021
MF 0.014 0.019 0.004 0.010
UserKNN 0.000 0.003 0.000 0.002
Cutoff: 3
BPR 0.216 0.199 0.044 0.074
APR 0.205 0.192 0.042 0.073
PPR 0.187 0.177 0.036 0.065
ItemKNN 0.059 0.062 0.006 0.014
MF 0.015 0.019 0.003 0.007
UserKNN 0.001 0.004 0.001 0.003

Table 2.3: Results on MovieLens 1M dataset for various cutoff using the Maximal Su.

62

2.7 Discussions

One important finding is that PPR performs well even on in the Maximal Su case,

which includes a large number of missing items. This implies that although PPR

is only trained on the observed rating data, it is able to correctly order positive

items amongst missing items that it had never seen - even to performance better

than than BPR which does use missing items in training. This emphasizes that

fact that leveraging explicit feedback can improve model performance in the top-k

item recommendation space, which typically ignores such explicit feedback and only

considers implicit feedback. Furthermore, we see that using both explicit and implicit

feedback provides a further boost in performance. Although the Triplet loss function

we used did not lead to better results, we believe that this may be a promising area

of exploration.

63

Chapter 3

Decentralized Recommender

System

Recommender systems have witnessed significant advancements in the past decade,

impacting billions of people worldwide. However, these systems often collect a vast

amounts of personal data, raising concerns about privacy. To address these issues,

federated methods have emerged, allowing models to be trained without sharing users’

personal data with a central server. Despite these advancements, existing federated

methods encounter challenges related to centralized bottlenecks and model aggrega-

tion between users.

In this study, we present a fully decentralized federated learning approach, wherein

each user’s model is optimized using their own data and gradients transferred from

their neighboring models. This ensures that personal data remains distributed and

eliminates the necessity for central server-side aggregation or model merging steps.

Empirical experiments demonstrate that our approach achieves a 6.6% improvement

in RMSE compared to other decentralized methods like FedAvg and Gossip Learning,

across various network structures.

64

3.1 Introduction

Recommender systems have become indispensable for enhancing user experiences

with personalized content suggestions. As recommendation systems improve through

the adoption of advanced model architectures, their ability to provide accurate rec-

ommendations to users continues to grow. With the integration of deep learning

into the recommendation system (Guo et al. 2017) and the utilization of increasing

amounts of data, recommendation strategies have become adept at capturing intri-

cate user behaviors, integrating rich item information, accommodating environmental

or contextual dynamics (Adomavicius 2011), and ultimately culminating in a highly

personalized user experience.

However, with recommender systems becoming increasingly tailored to each individ-

ual, there is a growing concern for user privacy and data security. Some concerns can

be associated with the traditional approach of collecting and analyzing user data on

a central server. For example, pooling ostensibly non-confidential data, such as pref-

erences on movie watching, may reveal sensitive personal information such as one’s

political ideology (Narayanan and Shmatikov 2008). This privacy issue stemmed from

the Netflix Prize dataset, where the users were supposed to be anonymized. How-

ever, by pooling the anonymized with public facing dataset on IMDB, the entire rating

history of users could be revealed (Schneier 2007). This led to a class action lawsuit

against Netflix and highlights the difficulty of maintaining proper data security, even

with the right intentions.

Furthermore, aggregating large amounts of personal data can be misused by those

collecting the data, such as by Cambride Analytica, or through secondary means as

a data breach. In the Cambridge Analytica scandal, the British political consulting

65

firm collected the data of millions of Facebook users with their explicit consent and

used the data to create targeted political advertisements (Confessore 2018). The

2014 data breach of Yahoo, one of the largest is history, resulted in over 500 million

user accounts being compromised (Perlroth 2016). The need to protect sensitive user

information and comply with stringent privacy regulations (Radley-Gardner, Beale,

and Zimmermann 2016) has accelerated the search and investigation of decentralized

solutions. Federated Learning (FL), which aims to train a global model while keeping

data local to participating devices (Konečný et al. 2017) has been one significant

advancement in this regard and has gained momentum in recent years(C. Hu, Jiang,

and Z. Wang 2019; Jiang and L. Hu 2020).

The conventional federated learning approach has a global model in a centralized

server broadcasted to local clients, who then use their local data to update their copy

of the model. Only model updates sent back to the central server for aggregation

and merged into the global model. By transferring intermediate statistics (such as

parameters or gradients) instead of raw user data, federated learning reduces the risk

of data leakage. However, this method’s reliance on the central server has raised

concerns about its scalability, reliability, and potential single points of failure. This

central server requires very high bandwidth to not be a bottleneck for the system

(Konečný et al. 2017). And if the server experiences issues or goes offline, the entire

system’s performance and functionality may be compromised. Furthermore, existing

literature has shown that sufficient gradient sharing may reveal the original training

data (e.g., Zhu, Z. Liu, and Han 2019; Zhao, Mopuri, and Bilen 2020), which is

salient in federated learning due to the central server receiving the gradients of all of

the models.

Even in the federated learning space, which avoids sharing private information, there

66

are concerns on how to effectively utilize the distributed data while mitigating asso-

ciated risks. For instance, malicious adversaries may attempt to learn other users’

private states and deviate from the transmission protocol by corrupting, replaying,

or removing information (Bouacida and Mohapatra 2021).

To overcome the limitations of centralized structures and further improve the pri-

vacy protection of recommender systems, researchers have explored Decentralized

Federated Learning (DFL) methods. Decentralized methods are characterized by the

absence of a central server, enabling direct communication between clients. This ap-

proach mitigates the inherent problems of centralized servers, such as data privacy,

singular point of failure, and high communication costs on the server.

In general, DFL methods can be broadly categorized into two primary approaches.

The first approach draws inspiration from federated learning, where either a surrogate

individual assumes a central role or each individual takes turns playing the surrogate

role (Warnat-Herresthal et al. 2021). The second approach employs an aggregation

and update scheme, involving the collection of information from neighboring individ-

uals and the local update of model parameters (Hegedűs, Berta, et al. 2016). Various

aggregation methods are employed in this context, including metric-based aggrega-

tion (Belal et al. 2022), as well as information extraction measured by KL divergence

(C. Li, G. Li, and Varshney 2022) or through mutual information maximization (Long

et al. 2022). Additionally, segmented model schemes have been introduced, involving

the random exchange of these segments (C. Hu, Jiang, and Z. Wang 2019) or even

the exchange of partial gradients (Jiang and L. Hu 2020).

Despite the great advancement of decentralization methods, several critical challenges

are still present. First, many existing methods include an aggregation or merge step

to reconcile the local model parameters into a global one (Konečný et al. 2017; C. Hu,

67

Jiang, and Z. Wang 2019; Belal et al. 2022; Jiang and L. Hu 2020). This heuristic

approach may enhance model performance and predictability for their algorithms,

but it adds complexity and alters the models in an arbitrary way. Our proposed

method avoids this aggregation and merging step completely allowing for a more

elegant training solution.

Second, to the best of our knowledge, many existing methods require a high level

of participant connectivity (Konečný et al. 2017; C. Hu, Jiang, and Z. Wang 2019),

the ability to send data to any other node in the network (Jiang and L. Hu 2020),

or do not provide many details about the network structure (Belal et al. 2022). In

practice, however, communications among participants can be limited due to reasons

such as geographical distance, internet connectivity, and user privacy preferences. In

other words, model aggregation can be unrealistic, and some participants may not be

able to obtain information from all other participants. In fact, it is likely that some

participants may not want to share to a large number of participants.

Third, the use of model aggregation in federated learning may lead to surges in

communications and data transfer. Nodes that receive a large number of participants

data may need a ultra-high bandwidth in order to functions without running into any

issues. Our fully decentralized approach distributes the computational requirements

more evenly throughout all the nodes in the network.

In this article, we introduce the PushGrad learning (PUG) method, a novel decen-

tralized learning method designed to tackle the previously mentioned challenges. Our

proposed method trains a fully decentralized recommender system even on a limited

connectivity network structure while bypassing the model merging step often seen in

similar approaches. This is achieved by each node training on it’s local data, and at

each iteration of stochastic gradient descent, it “pushes” its current gradient with its

68

neighbors who then also utilize that gradient step. The gradient may be re-distributed

to the neighbor’s neighbors as well. The decentralized approach allows our method

to accommodate a wide spectrum of network structures, including both centralized

and disconnected structures. Furthermore, by not requiring an aggregation step, our

method removes complexity from the training which reduces the computational bur-

den on individual nodes during the training process. Lastly, since each node is only

responsible to sending model information to its neighbors (or a subset), it avoids the

potential bottleneck of overloading one single central node. For example, in practice,

each user may directly select which other users they want to send model information

to (i.e. their trusted parties) and the target user may choose to receive or decline

the model sharing. This can allow for a sparse network where users have a stronger

control over their private data.

Secondly, we introduced a Generalized Singular Value Decomposition (SVD) archi-

tecture that allows for personalized design by customizing the dimensions and the

number of layers to meet our expectations. Furthermore, it demonstrated its adapt-

ability within our decentralized recommender system scheme.

In our experimental studies, we conducted two sets of investigations: one utilizing the

well known MovieLens 100K dataset and the other employing the H&M Personalized

Fashion Recommendations dataset, which comprises 116,733 transactions from 1,760

customers involving 8,618 fashion products. With the MovieLens 100K dataset, our

proposed method is able to achieve a Root Mean Squared Error (RMSE) within 5 to

10% of the centralized model depending on the network structure. Furthermore, it

outperformed both FedAvg and Gossip learning models. In the H&M experiments,

the PUG model performed within 8 and 12% of the centralized model depending on

the network structure and significantly outperformed the FedAvg and Gossip Learning

69

models. These results show our model’s ability to learn user-item preferences in a

decentralized manner even under sparse network conditions.

The subsequent sections of this article are organized as follows. Section 3.2 provides

an introduction to related papers in this field, while Section 3.3 outlines the Push-

Gradmethod and network structures adopted in our method. Section 3.4 offers a

description of the utilized datasets, followed by a detailed account of our experiments

in Section 3.5. In Section 3.6, we discuss the conclusion and possible future directions

of our work.

3.2 Literature Review

In this section, we present an overview of existing literature regarding recommender

systems, and decentralized federated learning. Research in recommender systems

has exploded over the past two decades. Catalyzed by the Netflix Prize in 2006

(Bennett and Lanning 2007) where Netflix released a 100 million rating dataset and

offered a one million dollar grand prize to teams who could beat Netflix’s current

recommendation engine by a certain amount, researchers have flocked to find ways

to incrementally outperform previous state-of-the-art models through a myriad of

different models (Koren, Bell, and Volinsky 2009; Steffen Rendle et al. 2009), evalua-

tion metrics (H. Li 2011), and performance optimizations (Krichene, Mayoraz, et al.

2018). These advances work together to power the highly tailored recommendation

systems that we interact with every day.

The canonical recommendation model is Matrix Factorization, where latent user and

item factors are embedded in the same embedding space and the similarity (such as

inner product) between a user and item factor represents how much the user will

70

”like” the item (Koren, Bell, and Volinsky 2009). This method adeptly captures

user-item preferences while only utilizing the interaction and data between users and

items. Despite encountering challenges such as data sparsity and cold-start issues

(Adomavicius and Tuzhilin n.d.), matrix factorization and its many varients continue

to perform effectively in various scenarios (Steffen Rendle, Krichene, et al. 2020).

Neural network based recommender systems have proliferated as well. Restricted

Boltzmann machines were one of the first tested on the recommender space (Salakhut-

dinov, Mnih, and Hinton 2007) and have been followed models incorporating Multi-

Layer Perceptrons (He et al. 2017), autoencoders (Liang et al. 2018), as well as deep

learning varieties (S. Zhang et al. 2019).

Outside of new models, a variety of new evaluation metrics have been developed

to measure the quality of a predicted user-item interaction. Root Mean Squared

Error (RMSE) is a widely used metric to evaluate the performance of recommender

systems and has been used since the Netflix Prize (Bennett and Lanning 2007). It

is especially common in the rating prediction space, where the goal of a model is

typically to predict the the exact rating a given user would give to an item. On

the other hand, for Top-k recommendation, another popular recommendation system

approach, models do not necessarily try to predict the exact score a user would give an

item. Instead, the k highest scoring items are assumed to be recommended to the user,

and the class of those recommended items (e.g. liked, disliked) determine the quality

of the recommendations. Common evaluation metrics in the top-k recommendation

literature include Recall at k and Normalized Discounted Cumulative Gain at k which

are truncated versions of their classification metrics. Lastly, metrics for properties

like serendipity (McNee, Riedl, and Konstan 2006) or fairness (Beutel et al. 2019)

have been developed.

71

Federated learning, a decentralized learning paradigm popularized by Google (Konečný

et al. 2017; Shokri and Shmatikov 2015), facilitates collaborative model training by

sharing model parameters rather than raw data, thereby encouraging privacy. Feder-

ated learning frameworks demonstrate adaptability across various model architectures

and exhibit their superiority across a range of applications. In recent developments, J.

Zhang et al. 2019 introduced a novel Federated Learning approach based on generative

adversarial networks (GANs), enabling secure and privacy-preserving model training

while enhancing model robustness against adversarial attacks. Additionally, Miao

et al. 2021 proposed a reinforcement learning-based Federated Learning framework

that incorporates personalized reward mechanisms. The FedFast model improves Fe-

dAvg with faster convergence through active sampling for clients each round through

clustering and hierarchical model merging in those clusters Muhammad et al. 2020.

Nonetheless, federated learning approaches, constrained by the presence of a central

server, may exhibit sub-optimal performance in scenarios where the central server’s

high communication cost acts as a bottleneck and leads to various associated issues.

Consequently, an increasing amount of research is concentrated on the development

of fully decentralized machine learning frameworks, facilitating direct peer-to-peer

communication.

The realm of decentralized federated learning presents diverse approaches that strive

to enhance collaboration while without the existence of a central server to keep better

privacy and release the high communication cost over server part. One of the first fully

decentralized models was a decentralized low rank matrix decomposition Hegedűs,

Berta, et al. 2016. In this method, each local model takes a random walk through

client nodes, and at each client node the traveling model would be updated using the

local data. At the start of the next round, the model is passed to the next random

72

client. An improvement to this was the gossip learning framework (Hegedűs, Danner,

and Jelasity 2020). The gossip learning approach has nodes exchange models, but

instead of simply training on the received model, the node first aggregates the models

in some way before training on local data. It also utilizes an age vector to track update

frequency, and this vector is used to take the weighted average of the local and peer

model during merging.

One method segments deep models for updates using client data, merging parts to

form a new model (C. Hu, Jiang, and Z. Wang 2019). Although efficient, it lacks

a direct link to real-world networks. Another strategy involves exchanging partial

gradients instead of full parameters, merging local and received gradients based on

dataset sizes. These methods efficiently combine models but lack aggregation and

real-world network analysis (Jiang and L. Hu 2020).

The PEPPER framework scores and groups user data, determining the weight of the

merged model (Belal et al. 2022). Another avenue aligns model layers using KL diver-

gence, leveraging insights from participant data to enhance generalization (C. Li, G.

Li, and Varshney 2022). A distinct path involves decentralized collaborative learning

for POI recommendation. Another framework refers to knowledge exchange among

neighbors enriched model information driven by mutual information maximization

(Long et al. 2022).

In the landscape of decentralized methods, aggregation has been a cornerstone for

achieving model generality. In contrast, our proposed approach adopts a simpler al-

ternative that does not utilize a model merging procedure, which could add a compu-

tational burden to client systems. Instead, we rely solely on the gradients of neighbors

and use them directly to update local model parameters. Our experiments show that

even this naive approach can result in competitive performance.

73

3.3 Methodology

3.3.1 Notation and Background

Next, we introduce the two recommender models we use to highlight our decentralized

learning method - the Matrix Factorization model and our novel Generalized SVD

model. Suppose we have a recommender system with m individuals and n items. Let

Y m×n be the utility matrix, where yij denotes the interaction (e.g., rating or purchase

quantity) of user i with item j.

The Matrix Factorization (MF) recommendation model learns to decompose the ma-

trix Y into two latent embedding matrices with rank k: Pm×k, the user embeddings,

and Qn×k, the item embeddings. P and Q are learned so that Y can be approximated

by the inner product PQT (Koren, Bell, and Volinsky 2009). Given pu = (pi1, . . . , pik)

and qi = (qj1, . . . , qjk), the inner product pT
uqj is the approximation of yij, and the

model is optimized to minimize the squared distance between the predicted and actual

values of yij.

The utility matrix Y is typically sparse since most users tend to interact with a small

proportion of the total item set. Let Ω = {(u, i) : yui is observed} be the set of

observed interactions and let |Ω| = N . To address overfitting when training a MF

model on data that is sparse, the L2 penalty is often used. This term is penalizes the

magnitude of parameter weights by α so that no parameter will grow too large. The

MF optimization function is then as follows,

L(P ,Q) =
∑

(u,i)∈Ω

(yui − p⊤
u qi)

2 +
λ

2
(||pu∥22 + ||qi||22), (3.1)

74

One approach to minimize the loss function is through the Alternating Least Squares

algorithm (ALS) (Koren, Bell, and Volinsky 2009). By updating P and Q in an al-

ternating manner, ALS simplifies the originally non-convex problem into a sequence

of quadratic problems with known optimal solutions. Another approach is stochastic

gradient descent. Given the loss function, gradients for matrices P and Q are ap-

proximated using a small sample of the data and a learning rate η is applied as a step

size to iteratively reduce the loss by following the stochastic gradient direction. Given

appropriate hyper-parameters like the learning rate, η, and λ, the model converges

noisily after a number of iterations, ultimately yielding locally optimal representations

of users and items in the form of matrices P and Q.

After obtaining the optimal matrices P and Q, we can predict the value of an inter-

action between user i and item j by computing the inner dot product between their

respective embeddings

ŷij = pi · qj. (3.2)

Matrix Factorization has proven to be a simple yet powerful model for rating predic-

tion (Steffen Rendle, Krichene, et al. 2020).

3.3.2 Decentralized System with Network Communication

Structure

The PushGrad is a fully decentralized learning method. This means that each node

maintains its local user and item embedding matrices, which serves as its dedicated

local model. The local user embeddings are never shared with other nodes, but

information on the item embeddings are shared through the gradients. While the

node is training on its local data, it will push its gradient of the item embeddings,

75

∇Q to its neighbors. When the neighbors receives the gradient they will immediately

apply it to their own item embeddings. Users can train on their data and share the

gradients in rounds or in an online manner when new observational data is generated.

In the first case, each user will go through Algorithm 5 once and wait till all other

users have gone before going again. In the second case, Algorithm 5 will be executed

on a specific node as new interaction data is generated for that node. Within each

round, each node takes turns training on their local data and sharing gradients so

race conditions are avoided.

Algorithm 5 PushGrad Learning
Require: Local data Yu = {(c0, y0), (c1, y1), . . . , (cnu , ynu)}, ci item, yi rating

(p,Q)← initModel()
loop

wait(∆g)
∇p,∇Q← gradients(p,Q,Yu)
p← p− α∇p
Q← Q− α∇Q
send ∇Q to neighbors

end loop

procedure ONRECEIVEGRADIENT(∇Q)
Q← Q− α∇Q

end procedure

Algorithm 6 Calculate the model gradient
procedure GRADIENTS(p,Q,Y)

Sample batch, Ỹ , from Y
∇p←

∑
(c,y)∈Ỹ −qc(y − pTqc) + λp

for (c, y) ∈ Y do
∇Qc,: ← −p(y − pTQc,:) + λQc,:

end for
return ∇p,∇Q

end procedure

Algorithm 6 shows how the model gradients are calculated given the node’s local

data, Yu. Note that the gradient can be compressed prior to transferring to reduce

76

the bandwidth required such as by only sharing the specific rows of ∇Q that were

updated by the local data Y . Information about the user embeddings, p is never

shared directly with neighbors and p is kept private to the node.

Several other algorithms were developed to try to speed up the decentralized training

process. They primarily differed in how the users were ordered in each epoch as

well as how much local data would be trained on before sharing the gradient with

neighbors. We denote the different round types as Training and describe them in the

algorithms below.

User Stratified Training

The User Stratified Train Type in Algorithm 7 loops through each user once per

round and randomly samples a fixed size N for the gradients calculation. From our

experiments, we found that this method achieved the best results.

Algorithm 7 User Stratified Train Type
Require: Set of all users U = {0, 1, . . . ,m}, batch size N .

repeat
for all u ∈ U do

Execute Algorithm 5 on node u with batch size, N
end for

until until convergence

Online Training

The Online Train Type loops through each single observation chronologically. Each

individual (u, i) pair is then used for Algorithm 5. This method allows for online

training, where new data points can be trained on as they arrive. However, we found

77

that this method works best when the models are able to cycle through the data

multiple times.

Algorithm 8 Online Train Type
Require: Set of observed data ordered chronologically, Ωt =
{(u, i)0, (u, i)1, . . . , (u, i)T}.
repeat

for j ∈ {1, . . . , T} do
Execute Algorithm 5 on node u with observation (u, i)j

end for
until until convergence

Proportional Training

Since each user u can have a varying amount of local data, we hypothesized whether

using proportion, p, of their local data instead of a fixed batch size N would lead to

better performance. This would allow users with more data to share more information

to their neighbors in a single step as opposed to waiting multiple rounds. Algorithm

9 demonstrates this method of training the decentralized recommender system.

Algorithm 9 Proportional Train Type
Require: Set of all users U = {0, 1, . . . ,m}, proportion p.

repeat
for all u ∈ U do

Execute Algorithm 5 on node u with batch size Nu = p|Y|
end for

until until convergence

Lastly, the Random Sampling Training Type (RS) is similar to the Online/One-at-a-

time Training type. However, instead of taking 1 data point at a time, it randomly

samples n data points for that user. We found that the different train types had dif-

ferent evaluation results, particularly with respect to convergence times. We present

78

those results in detail in Section 3.5.2.

The neighbors are determined by the underlying typically sparse networks structure

denoted as G. Each node within the network represents a user in our experiments,

denoted as ν. The edges, symbolized as ε, establish direct signal connections, and

serve as paths for information transfer between nodes. In our scenario, these edge

connections can facilitate the transfer of gradients between users.

Additionally, we introduce the concept of order-level for user connections within the

network. When two users communicate directly without any intermediary, we classify

this relationship as a first-order neighbor. Conversely, if their connection necessitates

transfer through an intermediary user, we classify it as a second-order neighbor, and

so on.

In the decentralized framework, each user independently manages their item embed-

dings. For user i, their j-th item embedding is represented as qij. When employing

our order selection method to select a user i, the algorithm identifies and estab-

lishes connections with neighboring users within the network, following the network

structure. Initially, our method identifies the immediate neighbors, referred to as

’first-order’ users, surrounding user i. Then, by selecting ’second-order’ users, we

extend our search iteratively to higher-order users until reaching a predefined order

limit. Users selected within a given order are denoted as ξ, facilitating the transfer

of item embedding gradients, represented as ∇qij. Neighboring user κ utilizes the

received gradients to perform gradient descent, updating their respective item em-

beddings qκj. This process iterates until the model converges, processing all users or

observations, depending on whether learning occurs in rounds or online.

The proposed algorithm is applicable to any arbitrary network structure due to the

79

(a) Local update (b) First-order transfer (c) Second-order transfer

Figure 3.1: Decentralized scheme for recommender systems.

information transfer scheme as we described above. In other words, we do not need

all individuals to be adjacent to each other by the direct edge of the network, nor do

we need certain ”hub” individuals to play a surrogate role. Information exclusively

circulates among our chosen neighbors of the specific user. This helps overcome

technical difficulties when certain individuals do not have good network connectivity

as other individuals do.

Our algorithm removes the necessity for a central server and model aggregation. In

a federated learning setup, users typically compute gradients ∇qij or parameters qij

locally. These are then uploaded to a central server, which then aggregates gradi-

ents 1
|Ω|
∑

(i,j)∈|Ω|∇qij to update the global model or directly synchronizes the model

parameters 1
|Ω|
∑

(i,j)∈|Ω| qij. In the Gossip Learning framework, nodes request and

merge model parameters from other nodes and may require two copies of the model

- one local and one global.

In contrast, our proposed method establishes a fully peer-to-peer framework, elimi-

nating the requirement for a central server and potential bottleneck issues associated

with it as well as the overhead of aggregating neighbor model parameters directly.

80

3.3.3 Generalized SVD

Our proposed Generalized SVD method is an extended architectural model based on

Matrix Factorization where each embedding now has their own sequence of layers.

This means that now pu and qi will be denoted as p0
u and q0

i and we employ two

distinct linear layers with potential activation function f to transform p0
i and q0

j into

p1
i and q1

j , respectively. The weight parameters for a given user factor at a given

layer k is denoted as W k
u , and the corresponding item weight is V k

i with activation

function g.

pk+1
u = f(W k

up
k
u) (3.3)

qk+1
i = g(V k

i q
k
i). (3.4)

This process is repeated for n layers with an optional activation function f and g

in-between the layers until we obtain the final user representation, pn
i , and item rep-

resentation, qn
j . Finally, we apply the dot product to these two final representations

to make an estimated prediction

yij = pn
i · qn

j . (3.5)

This Generalized SVD still has the property that each user and item parameters are

not mixed with other user and item parameters.

The Decentralized Generalized SVD architecture adheres to the same principles as the

Matrix Factorization, which itself is based off of the SVD method. The key distinction

being that the gradients are propagated not only from the embedding layer but also

through subsequent representational linear layers.

81

Figure 3.2: Generalized SVD architecture.

When new observations are generated, the model architecture obtains the final user

representation, pn
i , and the specific item representation for this user, qn

ij. Backprop-

agation is then performed after generating the final prediction. Mathematically, the

gradients are calculated as follows

∇pn
i = −qn

ij(Yij − pn
i qij

n) + 2λpn
i , (3.6)

∇qn
ij = −pn

i (Yij − pn
i qn

ij) + 2λqn
ij.

Following backpropagation, gradients for each representation layer are obtained, in-

cluding ∇p0
i ,∇p1

i ,…,∇pn−1
i and ∇q0

ij,∇q1
ij,...,∇qn−1

ij . Subsequently, a gradient de-

scent method is applied to update the local model parameters. To ensure user privacy,

only the gradients ∇q0
ij, ∇q1

ij,...,∇qn
ij are shared with neighboring users, while ∇p0

i

,∇p1
i ,…,∇pn

i are kept confidential for a specific user. Ultimately, neighbors receive

82

the gradients from one another to update their local model parameters layer by layer

qn
κj = qn

κj − lr · ∇qn
ij (3.7)

qn−1
κj = qn−1

κj − lr · ∇qn−1
ij

. . .

q0
κj = q0

κj − lr · ∇q0
ij.

3.3.4 Order selection

In our investigation, we examine not only the direct exchange of information among

users but also the influence of their connected neighbors, encompassing various orders

of connectivity within the network. Selection of a lower order expedites information

propagation across the network, thereby accelerating model training. However, such

choices may introduce challenges such as non-convergence and decreased accuracy,

despite the advantage of reduced communication overhead among users. Conversely,

in a scenario where all users are extensively interconnected and the order of con-

nectivity is sufficiently high, our proposed methodology demonstrates performance

more akin to centralized learning, effectively emulating data aggregation at a cen-

tral server. Our primary aim is to leverage network information to improve model

performance while minimizing communication costs within the selected order. This

necessitates active engagement with a diverse array of users to gather information

from neighboring nodes via gradient-based mechanisms.

To determine the optimal number of selected orders and the corresponding quantity

of edges that can be incorporated into the network, we introduce an order selection

method aimed at identifying the optimal number of orders, denoted as αopt for ef-

83

ficient gradient information transfer. Unlike traditional cross-validation techniques,

our proposed order selection method offers an efficient approach to circumvent com-

putationally intensive computation. In our research, we have observed that as the

number of orders α increases , the number of connected users also increases, but this

growth occurs at varying rates. Furthermore, there is a limit on how many connected

users are possible. In the undirected case, the limit is equal to the number of edges

in a fully connected graph, but in the directed case, the limit depends on the graph

structure and may stop increasing well before the fully connected value is reached.

The derivative (forward difference) can tell us the rate of change of the number of

connected users.

We identify a specific inflection point where the second derivative of the number of

edges reaches its maximum value. This observation suggests that at this critical point,

the network’s performance can surpass that of other competitive methods, while still

managing to strike a balance between model performance and communication over-

head. This pivotal point serves as the foundation for selecting the number of orders

αopt in our method for subsequent research. Through this approach, we effectively

harness data transferring between networks while mitigating issues stemming from

excessive communication costs.

For example, when selecting order in the undirected random 5-out graph as shown

in Figure 3.3 below, we refer to the maximum value of the second derivative and

choose order = 3 as the applied value. Our subsequent experiments demonstrated

that, although the number of selected orders may be only half of the total number of

orders, the performance in the dataset is superior to other competing methods.

84

Figure 3.3: Order selection for undirected graph types (top) and directed graph types
(bottom).

3.4 Data Description

In our experiments, we use two datasets: the MovieLens 100K dataset and the H&M

Personalized Fashion Recommendations dataset. The MovieLens dataset contains

movie ratings and is a widely used benchmark in recommender system studies. The

H&M dataset, on the other hand, is a recent addition, consisting of user interactions

representing purchases of fashion products.

3.4.1 MovieLens Dataset

The MovieLens 100K dataset contains a comprehensive collection of user ratings cov-

ering a diverse range of movies. Specifically, it captures users’ explicit feedback on

specific movies. Each rating entry features a timestamp, pinpointing the moment of

user-movie interaction and the corresponding rating. This dataset enables researchers

to quantitatively evaluate recommendation algorithm performance by comparing pre-

85

Figure 3.4: Distribution of MovieLens 100K data.

dicted ratings with actual user feedback. This dataset includes a total of 100,000

ratings ranging from 1 to 5, contributed by 943 users across 1,682 movies. Notably,

each user has rated a minimum of 20 movies. The distribution of these ratings is

visualized below.

The data is split 75-25 into a train and test set. We excluded users and movies from

the test dataset if they were not present in the training dataset to address cold start

issues. Consequently, the training dataset comprised a total of 75,000 entries, while

the testing dataset included 24,929 entries. In terms of user and movie counts, there

were 943 unique users and 1,628 distinct movies in the dataset. The training set was

further split 80-20 into a training and validation set, which is used for early stopping

during training.

3.4.2 H&M Personalized Fashion Recommendations Dataset

This dataset is provided by the H&M Group for a Kaggle competition available on

the website. It contains article and customer information, transaction history, and

corresponding item images.

https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/data

86

Figure 3.5: Initial five rows of Transaction data.

The article data consists of 25 columns, each representing various attributes of the

articles. The article_id column contains a total of 105,542 unique values, each

corresponding to an article with available images. Additionally, the product_code

serves as a unique 9-digit identifier, acting as a high-level product code for each

article. Other columns, such as department, type, and more, provide comprehensive

information about each article. with corresponding images available for each product.

The customer dataframe contains a total of 1,371,980 unique customers and includes

attributes such as postal_code, age, and more.

The transaction data spans from September 20th, 2018, to September 22nd, 2020,

and comprises 5 columns documenting the purchase history. This dataframe contains

31,788,324 rows, with each row representing a customer’s purchase of a specific article

at a specified price through a particular sales channel. Below are the first five rows

of this dataframe.

Our analysis focused on the top 5,000 locations where customers were situated, specif-

ically targeting customers whose purchases of certain product types exceeded 120. We

selected the six most popular categories for our analysis: ’Blouse’, ’Top’, ’T-shirt’,

’Sweater’, ’Dress’, and ’Trousers’. The target variable was the frequency of a user’s

purchase of a specific product.

To create training and testing datasets, we divided the data based on the number of

87

weeks leading up to the most recent date. The data from the most recent 50 weeks

were designated as the testing dataset, while the remaining weeks formed the training

dataset. Similar to our approach with the MovieLens 100K data, we addressed cold

start issues by excluding items not present in the training dataset from the testing

dataset. Consequently, the training dataset consisted of 86,480 transactions, while

the testing dataset comprised 30,253 transactions, representing approximately 26%

of the entire dataset. Overall, the dataset included 1,760 unique customers and 8,618

distinct products.

3.5 Experiments

In our experiments we compare a variety of federated learning models as well as the

centralized model to our decentralized method on a variety of network structures.

Since we are primarily concerned with the evaluation performance of our method, we

assume a churn-free network scenario, i.e. all nodes are available and without drop-

out. The decentralized training occurs in rounds, where each user executes Algorithm

5 one time per round. Lastly, we do not explicitly account to bandwidth connectivity

or networking delays.

3.5.1 Network Structure

We conduct experiments on a variety of network structures including sparse net-

works and compare the performance of our decentralized method to related methods.

We utilize the Python library networkx (Hagberg, Schult, and Swart 2008) to work

with the network structures in this paper. Although we primarly focus our work on

88

Figure 3.6: Random 5-out graph and degree distribution.

undirected graphs, we include experimental results on directed graphs as well.

Random K-Out Graph

The random k-out graph is a type of directed graph where each node has a k out degree

and an unconstrained in-degree. Given a source node ni, the simplest implementation

has the target nodes nj selected uniformly at random. We utilize a weighted target

node selection that includes a slight preferential attachment. This means that nodes

with more in-degrees will have a higher probability of becoming a target node. In

our experiments we use both a random 5-out graph and a random 2-out graph. To

create the undirected version of the random k-out graph, we first create the directed

version, and then convert all the directed edges to become undirected edges.

Scale-Free Graph

Scale-free graphs exhibit a characteristic where a small subset of nodes has signif-

icantly higher connectivity compared to the remaining nodes, which exhibit lower

connectivity. In this network, there are three controlled parameters. The first pa-

89

Figure 3.7: Scale-free graph and degree distribution

rameter, alpha, represents the probability of adding a new node that is connected

to an existing node chosen randomly based on the in-degree distribution. The sec-

ond parameter, beta, controls the probability of adding an edge between two existing

nodes. The last parameter, gamma, determines the probability of adding a new node

connected to an existing node chosen randomly based on the out-degree distribution.

We use values of α = 0.5, β = 0.25 and γ = 0.25. Similar to the random k-out

graph, the undirected version of the scale-free graph is created by converting the all

the edges to be undirected.

Cycle graph

The cycle graph depicts a configuration of cyclically connected users, facilitating

sequential connections among them. The corresponding figures below show the cycle

graph used in experiments as well as a simple cycle graph for reference. We do not

use the optimal order selection for the cycle graph as it’s specialized structure forces

the number of increased user connections to grow linearly as the order increases. The

undirected cycle graph has connections to both neighbors.

90

Figure 3.8: Cycle graph and simple example

Figure 3.9: Comparison of Training Types for ML100K (left) and H&M (right).

3.5.2 Comparing Train Types

Next, we show the results comparing the various train types in Algorithm 7, 8, and 9.

To deduce which training methodology was the most efficient we conducted various

experiments involving hyper-parameter search on the train types using the random

5-out network structure. The RS method is similar to the OAAT method but instead

of taking a single data point, it randomly samples N data points to use for training.

The results of these experiments in Figure 3.9 show that although most of the meth-

ods eventually achieve a comparable performance, the User Stratified (User) method

achieves it at the fastest rate, closely followed by the RS method. For the experiments

in the next section, we use the User Stratified training method with a batch size of

91

10.

3.5.3 Performance Evaluation

In this section, we compare the proposed method with four competing decentralization

schemes. For the proposed method and each of the four schemes, we use matrix

factorization as the underlying recommender system. Below, we provide detailed

descriptions of each scheme. For our decentralized method, we use 3 factors for each

user’s model.

Central Learning (CL)

Central learning assumes that the central server has all individuals’ data. The imple-

mentation of the central learning is therefore independent of the network structure.

Whenever a new interaction occurs, the updated item embedding is shared with all

users, ensuring that all users have access to the latest information. The CL matrix

factorization model uses 10 factors for the user and item embeddings. It serves as the

best possible performance a decentralized model could reach.

Federated Averaging (FL)

Federated Avgeraging is a canonical federated learning scheme (McMahan et al. 2017),

where the central server collects and aggregates model information from clients, up-

dates the global model parameters, and shares the updated parameters back to clients.

When combining the client models into the global model, a simple average is used

92

such that

θt+1 =
1

St

∑
k∈St

θkt+1, (3.8)

where θt+1 is the updated global model, θk are the local models, and St is the set of

randomly chosen clients for that round.

Using the notation of Federated Averaging, C is the fraction of clients per round, E is

the number of local epochs trained on by the clients selected each round, and B is the

local minibatch size used during the local training. We use C = 500
n_users , E = 1, and

B = 10. The model used is matrix factorization model with 3 factors. In each round

the average of model parameters from these users and utilize this average to update

the model parameters across all users. To imitate the real-world scenario, we assume

that only a portion of the individuals respond to the central server’s quest at one

time. In our experiments we set this number to be 500, which gave the best results.

We found that using a small value for C resulted in extremely slow convergence.

Gossip Learning (GL)

In the gossip learning approach (Hegedűs, Danner, and Jelasity 2020), a node uses

its local data to update the model. Then it sends a potentially compressed copy of

its model to a random peer in the network. Once a node receives a neighbor’s model,

it merges it with its local model. Various merging approaches are possible. The

simplest approach is to use completely replace the local model with the neighbor’s

model. This is the the random walk approach seen in (Hegedűs, Berta, et al. 2016).

Another merging approach is to take the average of both sets of model parameters,

where an age vector is used to weight parameters that have been updated more

frequently. We use the weighted averaging approach, but restrict the peer sampling

93

Table 3.1: PushGrad results on the MovieLens dataset (top) and the H&M dataset
(bottom) over various undirected networks compared to 4 other methods.

ML100K | Graph Max Order Opt Order 1st Order CL FL GL LL

Random 2-Out 1.026 1.036 1.069 0.930 1.110 1.120 1.141
Random 5-Out 1.026 1.037 1.054 0.930 1.110 1.113 1.141
Scale-Free 1.026 1.039 1.104 0.930 1.110 1.114 1.141
Cycle 1.026 — 1.073 0.930 1.110 1.230 1.141

H&M | Graph Max Order Opt Order 1st Order CL FL GL LL

Random 2-Out 1.030 1.034 1.036 0.999 1.087 1.158 1.129
Random 5-Out 1.030 1.044 1.039 0.999 1.087 1.178 1.129
Scale-Free 1.030 1.039 1.054 0.999 1.087 1.194 1.129
Cycle 1.030 — 1.039 0.999 1.087 1.353 1.129

mechanism to the same network as our method.

Local Learning (LL)

In this approach, we assume that communication between nodes is not allowed. Each

user’s model is trained on their local data only.

We compare the performance of each method by evaluating the root mean square

error (RMSE), on the test set created from before. The RMSE provides a quantitative

measure of the average squared difference between the predicted and actual values.

Given Ω′ is the set of user item pairs (i, j) to be evaluated over, the RMSE is

RMSE =

√
1

|Ω′|
∑

(i,j)∈Ω′

(yij − ŷij)2. (3.9)

Among the competing methods assessed using the MovieLens 100K and H&M per-

sonalization datasets, Central learning exhibited the highest performance as expected

due to global data access. Central learning achieves this by assuming that all indi-

viduals’ data are stored at the central server, thereby ignoring the network structure.

94

Table 3.2: PushGrad results on the MovieLens dataset over various directed networks
compared to 3 other methods.

Graph Max Order 2nd Order 1st Order CL FL GL

Random 2-Out 1.161 1.088 1.089 0.930 1.154 1.196
Random 5-Out 1.037 1.060 1.064 0.930 1.154 1.123
Scale-Free 1.110 1.138 1.159 0.930 1.154 1.502
Cycle - - 1.101 0.930 1.154 1.201

In contrast, gossip learning demonstrated the weakest performance among all the

methods. In both MovieLens and H&M, the FL method outperformed GL by a small

margin.

The poor performance of GL may be due to the fact that the network structure is

quite sparse. The original GL algorithm has each node sampling peer from a larger

number of neighbors but in these experiments we restricted it to be just the direct

neighbors of the nodes which was often in the single digits. On the other hand, for

the FL method, we used a larger client sample size each epoch as using a smaller size

led to poor performance. The larger sample size may also contribute to the longer

performance time required by FL.

Figure 3.10: Comparing performance of various orders of the decentralized method
to the centralized method over networks in MovieLens dataset(top) and H&M per-
sonalization dataset(bottom).

95

Figure 3.10 compares the validation loss curves of different orders of our method.

We see that as the the order increases, the performance tends to improve as well.

However, this often comes at the cost of training time. One interesting thing to note

is that the loss curve particularly for the optimal order sharing method decreases

inconsistently.

Our proposed decentralized method achieved significant performance gains even at

lower orders compared to the other federated methods, and performed up to 6.6%

better than FedAvg and 9.2% better than Local Learning on the MovieLens dataset.

Our method also outperformed FedAvg by around 5% and Local Learning by 8.4%

in the H&M dataset. Our decentralized method performed worst on the scale-free

graph, which is more sparse than the Random K-Out graphs and has an extremely

skewed node degree distribution. Particularly in the scale-free order 1 scenario, many

nodes are only connect to one other hub-like node which may negatively impact

their training. Once the order increases, the performance on scale-free improves

significantly as now all nodes are much more connected than before. The scale-free

directed graphs show unusual behavior as many nodes that do no have any in-degrees,

which likely results in the poor performance. Furthermore, as seen in Figure 3.3, we

see that increasing the order of the directed scale-free network does not result in a

significant increase in connected users.

Finally, Figure 3.11 and Figure 3.12 compare the validation loss curves for all the

models using order 1 and the optimal order respectively. The plots use a log scale for

time. This allows to see the large runtime differences between FedAvg and the other

models. However, in the optimal order plot we also see that our method can also take

a significantly longer time than if the order was just 1.

In our proposed Generalized SVD architecture, we utilize a single representation layer

96

Figure 3.11: Validation losses with first order sharing for ML100K (left) and H&M
(right). Gossip takes longer than 1st order and FedAvg takes an order of magnitude
more time to achieve similar performance.

Figure 3.12: Validation losses with optimal sharing for ML100K (left) and H&M
(right). Gossip takes a similar amount of time but FedAvg takes an order of magnitude
more time to achieve similar performance.

97

Graph 1st Order CL FL GL

Random 2-Out 1.133 0.930 1.110 1.120
Random 5-Out 1.129 0.930 1.110 1.113
Scale-Free 1.302 0.930 1.110 1.114
Cycle 1.237 0.930 1.110 1.230

Table 3.3: Generalized SVD performance using the decentralized scheme on the
MovieLens dataset.

which still results in a much larger model than that of simple Matrix Factorization.

This model architecture still exhibits a substantial improvement over other federated

methods. However, due to it’s size, it does take considerably longer than MF and is

therefore more difficult to perform hyper-parameter turning as well as challenging to

run on larger datasets. The results on the MovieLens data show that the method can

work with even larger models that contain an order of magnitude more parameters

than MF. However, the performance is not quite on par as the previous simpler

models.

One issue with the GSVD model is that it’s large size combined with the large number

of users results in a large amount of memory required to train. Even with memory

optimizations to reduce the required memory we reached limits on a typical consumer

device. Table 3.4 show the estimated memory required to train the GSVD on various

dataset on a single device.

3.6 Discussion

Our PushGrad describes a fully decentralized learning scheme that requires minimal

information sharing in a network structure. Nodes share local model gradients with

neighbor nodes to facilitate diffusion of local data effects. This means that no model

98

Table 3.4: Memory Used for Experiments

Model Dataset Memory Peak (GB) k Layer Size
GSVD HM 60.001 7 5
GSVD HM Subset 19.00 7 5
GSVD ML100K 8.93 30 10
GSVD ML100K 6.74 7 5

Table 3.5: Predicted memory usage for model initialization.

merging step is taken within the nodes during training. We also provide a efficient

method to select the optimal order of neighbors to share data to.

Our proposed decentralized scheme significantly improves the accuracy of content

recommendations through the incorporation of neighbors’ gradient information com-

pared to other federated methods. Importantly, this scheme exhibits remarkable

versatility, as it can adapt to a wide range of networks. Due to the limited nature

of information transfer, our approach places a strong emphasis on safeguarding user

privacy and data security without the need to share user information with neigh-

bors, which is particularly important in today’s digital landscape. Furthermore, the

elimination of central server dependency streamlines the operational infrastructure,

reducing complexities and potential points of failure. This optimization not only

enhances system reliability but also simplifies the management of recommender sys-

tems. Lastly, our specially designed Generalized SVD method can integrate into

this decentralized scheme while maintaining privacy safeguards, and demonstrates

our methods ability to scale to larger models. This method offers the flexibility to

be tailored according to specific requirements, adding customized layers to model

architecture.

99

The PushGrad shows strong results in our experiments. We conjecture that this is

due to a combination of a amenable model structure as well as the sparseness of data

and network structure. The model structure for the matrix factorization model neatly

isolates the large number item parameters by separating them into individual rows.

This means that the shared gradient from a neighbor will only affect a small number

of rows. Combined with the fact that each node typically does not have a lot of data,

this means that the gradient data shared can update the factors of items that the

user would otherwise never have updated themselves. This results in a information

gained through neighbors since that data was not present on the node itself.

The relative sparseness of the network structure may also work in our favor. The worst

case scenario for our PushGrad would be if two neighboring nodes had the same set of

items but with different preferences (ratings). This could result in poor convergence

as the gradients shared would take the neighbor model parameter in the opposite

direction they would want them to go. However, the sparseness of the network means

that such a situation is relatively rare as the number of neighbors is small. Therefore,

we hypothesize the the strong performance of our model is due to the combination of

model structure, low amount of data per user, and the sparsity of the network. The

ideal case of our PushGrad would be when two neighbors have similar preferences, but

completely different data points. This would allow non-overlapping gradient sharing

to maximize the number of items an single node could learn about while avoiding the

non-convergence issue from opposing preferences. Finally, our decentralized gradient

sharing may be similar in effect to a noisy SGD where neighbors eventually converge

to local minima that are potentially distinct but close together.

Potential avenues for future research lies in the exploration of a more efficient gradient

transfer mechanism to further enhance user privacy or by conditioning the use of

100

neighbor gradients during training. There is a trade-off between efficient yet small

gradient transfers. Currently, neighbor models utilize the gradient shared with them

immediately. It may be beneficial to condition the use of the gradient by ensuring it

always improve the loss, or at least does not increase the loss by a certain threshold

to reduce variance in the SGD process. Additionally, assumptions in Section 3.5 may

be relaxed to demonstrate performance in more challenging scenarios. For example,

a fully asynchronous set up would be ideal as then we could include the inherent

parallelism in the federated and decentralized approaches. Furthermore, realistic

network activity could be incorporated

Another idea is to have a probabilistic approach to chained gradient sharing rather

than a fixed order selection. For example, each node could have a fixed probability of

re-sharing a gradient it just received to its own neighbors. This would allow for further

decentralization as now the nodes do not need to communicate how information on

how many more steps a gradient needs to be shared. Further the number of chained

gradient shares could be modeled using a geometric distribution. We hope to also

apply our Pairwise Personalized Ranking model from Chapter 2 to the decentralized

case. One advantage a pairwise model like PPR can have is that it can continue to

create new data points by sampling different negative times for each positive items.

This could allow the model to overcome problem of having a small amount of data

on each node.

101

Bibliography

Goldberg, David et al. (Dec. 1992). “Using collaborative filtering to weave an informa-

tion tapestry”. In: Communications of the ACM 35.12, pp. 61–70. ISSN: 0001-0782,

1557-7317. DOI: 10.1145/138859.138867. URL: https://dl.acm.org/doi/10.

1145/138859.138867 (visited on 02/18/2021).

Herlocker, Jonathan L. et al. (Jan. 2004). “Evaluating collaborative filtering recom-

mender systems”. In: ACM Transactions on Information Systems 22.1, pp. 5–53.

ISSN: 1046-8188, 1558-2868. DOI: 10.1145/963770.963772. URL: https://dl.

acm.org/doi/10.1145/963770.963772 (visited on 02/10/2021).

McNee, Sean M., John Riedl, and Joseph A. Konstan (Apr. 21, 2006). “Being accurate

is not enough: how accuracy metrics have hurt recommender systems”. In: CHI

’06 Extended Abstracts on Human Factors in Computing Systems. CHI06: CHI

2006 Conference on Human Factors in Computing Systems. Montréal Québec

Canada: ACM, pp. 1097–1101. ISBN: 978-1-59593-298-3. DOI: 10.1145/1125451.

1125659. URL: https://dl.acm.org/doi/10.1145/1125451.1125659 (visited

on 08/24/2021).

Bennett, James and Stan Lanning (2007). “The Netflix Prize”. In: URL: https://www.

cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf (visited

on 02/17/2021).

Marlin, Benjamin M et al. (2007). “Collaborative Filtering and the Missing at Random

Assumption”. In: p. 9.

Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton (2007). “Restricted Boltz-

mann machines for collaborative filtering”. In: Proceedings of the 24th interna-

https://doi.org/10.1145/138859.138867
https://dl.acm.org/doi/10.1145/138859.138867
https://dl.acm.org/doi/10.1145/138859.138867
https://doi.org/10.1145/963770.963772
https://dl.acm.org/doi/10.1145/963770.963772
https://dl.acm.org/doi/10.1145/963770.963772
https://doi.org/10.1145/1125451.1125659
https://doi.org/10.1145/1125451.1125659
https://dl.acm.org/doi/10.1145/1125451.1125659
https://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf
https://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf

102

tional conference on Machine learning - ICML ’07. the 24th international con-

ference. Corvalis, Oregon: ACM Press, pp. 791–798. ISBN: 978-1-59593-793-3. DOI:

10.1145/1273496.1273596. URL: http://portal.acm.org/citation.cfm?

doid=1273496.1273596 (visited on 02/21/2021).

Schneier, Bruce (Dec. 13, 2007). “Why ’Anonymous’ Data Sometimes Isn’t”. In:

Wired. Section: tags. ISSN: 1059-1028. URL: https://www.wired.com/2007/

12/why-anonymous-data-sometimes-isnt/ (visited on 03/26/2024).

Hagberg, Aric A, Daniel A Schult, and Pieter J Swart (2008). “Exploring Network

Structure, Dynamics, and Function using NetworkX”. In.

Koren, Yehuda (2008). “Factorization Meets the Neighborhood: a Multifaceted Col-

laborative Filtering Model”. In: p. 9.

Narayanan, Arvind and Vitaly Shmatikov (May 2008). “Robust De-anonymization

of Large Sparse Datasets”. In: 2008 IEEE Symposium on Security and Privacy

(sp 2008). 2008 IEEE Symposium on Security and Privacy (sp 2008). ISSN: 1081-

6011. Oakland, CA, USA: IEEE, pp. 111–125. ISBN: 978-0-7695-3168-7. DOI: 10.

1109/SP.2008.33. URL: http://ieeexplore.ieee.org/document/4531148/

(visited on 03/04/2024).

Salakhutdinov, Ruslan and Andriy Mnih (2008). “Bayesian probabilistic matrix fac-

torization using Markov chain Monte Carlo”. In: Proceedings of the 25th interna-

tional conference on Machine learning - ICML ’08. the 25th international confer-

ence. Helsinki, Finland: ACM Press, pp. 880–887. ISBN: 978-1-60558-205-4. DOI:

10.1145/1390156.1390267. URL: http://portal.acm.org/citation.cfm?

doid=1390156.1390267 (visited on 02/17/2021).

Zhou, Yunhong et al. (2008). “Large-Scale Parallel Collaborative Filtering for the Net-

flix Prize”. In: Algorithmic Aspects in Information and Management. Ed. by Rudolf

Fleischer and Jinhui Xu. Vol. 5034. ISSN: 0302-9743, 1611-3349 Series Title: Lec-

https://doi.org/10.1145/1273496.1273596
http://portal.acm.org/citation.cfm?doid=1273496.1273596
http://portal.acm.org/citation.cfm?doid=1273496.1273596
https://www.wired.com/2007/12/why-anonymous-data-sometimes-isnt/
https://www.wired.com/2007/12/why-anonymous-data-sometimes-isnt/
https://doi.org/10.1109/SP.2008.33
https://doi.org/10.1109/SP.2008.33
http://ieeexplore.ieee.org/document/4531148/
https://doi.org/10.1145/1390156.1390267
http://portal.acm.org/citation.cfm?doid=1390156.1390267
http://portal.acm.org/citation.cfm?doid=1390156.1390267

103

ture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg,

pp. 337–348. ISBN: 978-3-540-68865-5 978-3-540-68880-8. DOI: 10.1007/978-3-

540-68880-8_32. URL: http://link.springer.com/10.1007/978-3-540-

68880-8_32 (visited on 03/27/2024).

Cremonesi, Paolo, Yehuda Koren, and Roberto Turrin (2009). “Performance of rec-

ommender algorithms on top-N recommendation tasks”. In.

Koren, Yehuda, Robert Bell, and Chris Volinsky (Aug. 2009). “Matrix Factoriza-

tion Techniques for Recommender Systems”. In: Computer 42.8, pp. 30–37. ISSN:

0018-9162. DOI: 10.1109/MC.2009.263. URL: http://ieeexplore.ieee.org/

document/5197422/ (visited on 02/17/2021).

Rendle, Steffen et al. (2009). “BPR: Bayesian Personalized Ranking from Implicit

Feedback”. In: p. 10.

Adomavicius, Gediminas (2011). “Context-Aware Recommender Systems”. In: p. 14.

Last.FM (2011). URL: https://grouplens.org/datasets/hetrec-2011/.

Li, Hang (2011). “A Short Introduction to Learning to Rank”. In: IEICE Transactions

on Information and Systems E94-D.10, pp. 1854–1862. ISSN: 0916-8532, 1745-

1361. DOI: 10.1587/transinf.E94.D.1854. URL: http://www.jstage.jst.

go.jp/article/transinf/E94.D/10/E94.D_10_1854/_article (visited on

08/17/2021).

Ning, Xia and George Karypis (Dec. 2011). “SLIM: Sparse Linear Methods for Top-N

Recommender Systems”. In: 2011 IEEE 11th International Conference on Data

Mining. 2011 IEEE 11th International Conference on Data Mining. ISSN: 2374-

8486, pp. 497–506. DOI: 10.1109/ICDM.2011.134. URL: https://ieeexplore.

ieee.org/document/6137254 (visited on 03/30/2024).

https://doi.org/10.1007/978-3-540-68880-8_32
https://doi.org/10.1007/978-3-540-68880-8_32
http://link.springer.com/10.1007/978-3-540-68880-8_32
http://link.springer.com/10.1007/978-3-540-68880-8_32
https://doi.org/10.1109/MC.2009.263
http://ieeexplore.ieee.org/document/5197422/
http://ieeexplore.ieee.org/document/5197422/
https://grouplens.org/datasets/hetrec-2011/
https://doi.org/10.1587/transinf.E94.D.1854
http://www.jstage.jst.go.jp/article/transinf/E94.D/10/E94.D_10_1854/_article
http://www.jstage.jst.go.jp/article/transinf/E94.D/10/E94.D_10_1854/_article
https://doi.org/10.1109/ICDM.2011.134
https://ieeexplore.ieee.org/document/6137254
https://ieeexplore.ieee.org/document/6137254

104

Davenport, Mark A. et al. (July 1, 2014). “1-Bit Matrix Completion”. In: Information

and Inference. arXiv: 1209.3672. URL: http://arxiv.org/abs/1209.3672

(visited on 03/11/2021).

Sedhain, Suvash et al. (May 18, 2015). “AutoRec: Autoencoders Meet Collaborative

Filtering”. In: Proceedings of the 24th International Conference on World Wide

Web. WWW ’15: 24th International World Wide Web Conference. Florence Italy:

ACM, pp. 111–112. ISBN: 978-1-4503-3473-0. DOI: 10.1145/2740908.2742726.

URL: https : / / dl . acm . org / doi / 10 . 1145 / 2740908 . 2742726 (visited on

02/17/2021).

Shokri, Reza and Vitaly Shmatikov (Oct. 12, 2015). “Privacy-Preserving Deep Learn-

ing”. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security. CCS’15: The 22nd ACM Conference on Computer and

Communications Security. Denver Colorado USA: ACM, pp. 1310–1321. ISBN:

978-1-4503-3832-5. DOI: 10.1145/2810103.2813687. URL: https://dl.acm.org/

doi/10.1145/2810103.2813687 (visited on 03/06/2024).

Wang, Hao, Naiyan Wang, and Dit-Yan Yeung (Aug. 10, 2015). “Collaborative Deep

Learning for Recommender Systems”. In: Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. KDD ’15:

The 21th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. Sydney NSW Australia: ACM, pp. 1235–1244. ISBN: 978-1-4503-

3664-2. DOI: 10.1145/2783258.2783273. URL: https://dl.acm.org/doi/10.

1145/2783258.2783273 (visited on 02/25/2021).

Bonawitz, Keith et al. (Nov. 14, 2016). Practical Secure Aggregation for Feder-

ated Learning on User-Held Data. DOI: 10.48550/arXiv.1611.04482. arXiv:

1611.04482[cs,stat]. URL: http://arxiv.org/abs/1611.04482 (visited on

03/05/2024).

https://arxiv.org/abs/1209.3672
http://arxiv.org/abs/1209.3672
https://doi.org/10.1145/2740908.2742726
https://dl.acm.org/doi/10.1145/2740908.2742726
https://doi.org/10.1145/2810103.2813687
https://dl.acm.org/doi/10.1145/2810103.2813687
https://dl.acm.org/doi/10.1145/2810103.2813687
https://doi.org/10.1145/2783258.2783273
https://dl.acm.org/doi/10.1145/2783258.2783273
https://dl.acm.org/doi/10.1145/2783258.2783273
https://doi.org/10.48550/arXiv.1611.04482
https://arxiv.org/abs/1611.04482 [cs, stat]
http://arxiv.org/abs/1611.04482

105

Harper, F. Maxwell and Joseph A. Konstan (Jan. 7, 2016). “The MovieLens Datasets:

History and Context”. In: ACM Transactions on Interactive Intelligent Systems

5.4, pp. 1–19. ISSN: 2160-6455, 2160-6463. DOI: 10.1145/2827872. URL: https:

//dl.acm.org/doi/10.1145/2827872 (visited on 02/17/2021).

Hegedűs, István, Árpád Berta, et al. (July 14, 2016). “Robust Decentralized Low-

Rank Matrix Decomposition”. In: ACM Transactions on Intelligent Systems and

Technology 7.4, pp. 1–24. ISSN: 2157-6904, 2157-6912. DOI: 10.1145/2854157. URL:

https://dl.acm.org/doi/10.1145/2854157 (visited on 04/10/2024).

Perlroth, Nicole (Sept. 22, 2016). “Yahoo Says Hackers Stole Data on 500 Million

Users in 2014”. In: The New York Times. ISSN: 0362-4331. URL: https://www.

nytimes . com / 2016 / 09 / 23 / technology / yahoo - hackers . html (visited on

03/06/2024).

Radley-Gardner, Oliver, Hugh Beale, and Reinhard Zimmermann, eds. (2016). Fun-

damental Texts On European Private Law. Hart Publishing. ISBN: 978-1-78225-

864-3 978-1-78225-865-0 978-1-78225-866-7 978-1-78225-867-4. DOI: 10 . 5040 /

9781782258674. URL: http://www.bloomsburycollections.com/book/fundamental-

texts-on-european-private-law-1 (visited on 03/06/2024).

Bi, Xuan (2017). “A Group Specific Recommendor System”. In: Journal of the Amer-

ican Statistical Association. DOI: https://doi.org/10.1080/01621459.2016.

1219261. URL: https://doi.org/10.1080/01621459.2016.1219261.

Guo, Huifeng et al. (Mar. 13, 2017). DeepFM: A Factorization-Machine based Neural

Network for CTR Prediction. DOI: 10.48550/arXiv.1703.04247. arXiv: 1703.

04247[cs]. URL: http://arxiv.org/abs/1703.04247 (visited on 03/04/2024).

He, Xiangnan et al. (Apr. 3, 2017). “Neural Collaborative Filtering”. In: Proceedings

of the 26th International Conference on World Wide Web. WWW ’17: 26th Inter-

national World Wide Web Conference. Perth Australia: International World Wide

https://doi.org/10.1145/2827872
https://dl.acm.org/doi/10.1145/2827872
https://dl.acm.org/doi/10.1145/2827872
https://doi.org/10.1145/2854157
https://dl.acm.org/doi/10.1145/2854157
https://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html
https://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html
https://doi.org/10.5040/9781782258674
https://doi.org/10.5040/9781782258674
http://www.bloomsburycollections.com/book/fundamental-texts-on-european-private-law-1
http://www.bloomsburycollections.com/book/fundamental-texts-on-european-private-law-1
https://doi.org/https://doi.org/10.1080/01621459.2016.1219261
https://doi.org/https://doi.org/10.1080/01621459.2016.1219261
https://doi.org/10.1080/01621459.2016.1219261
https://doi.org/10.48550/arXiv.1703.04247
https://arxiv.org/abs/1703.04247 [cs]
https://arxiv.org/abs/1703.04247 [cs]
http://arxiv.org/abs/1703.04247

106

Web Conferences Steering Committee, pp. 173–182. ISBN: 978-1-4503-4913-0. DOI:

10.1145/3038912.3052569. URL: https://dl.acm.org/doi/10.1145/3038912.

3052569 (visited on 02/10/2021).

Konečný, Jakub et al. (Oct. 30, 2017). Federated Learning: Strategies for Improving

Communication Efficiency. arXiv: 1610.05492[cs]. URL: http://arxiv.org/

abs/1610.05492 (visited on 03/06/2024).

Li, Dongsheng, Chao Chen, Wei Liu, et al. (2017). “Mixture-Rank Matrix Approxima-

tion for Collaborative Filtering”. In: Conference on Neural Information Processing

Systems.

McMahan, H. Brendan et al. (2017). Communication-Efficient Learning of Deep Net-

works from Decentralized Data. DOI: 10.48550/arXiv.1602.05629. arXiv: 1602.

05629[cs]. URL: http://arxiv.org/abs/1602.05629 (visited on 03/04/2024).

Confessore, Nicholas (Apr. 4, 2018). “Cambridge Analytica and Facebook: The Scan-

dal and the Fallout So Far”. In: The New York Times. ISSN: 0362-4331. URL:

https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-

scandal-fallout.html (visited on 03/06/2024).

Krichene, Walid, Nicolas Mayoraz, et al. (July 18, 2018). “Efficient Training on Very

Large Corpora via Gramian Estimation”. In: arXiv:1807.07187 [cs, stat]. arXiv:

1807.07187. URL: http://arxiv.org/abs/1807.07187 (visited on 02/25/2021).

Li, Dongsheng, Chao Chen, Qin Lv, et al. (2018). “AdaError: An Adaptive Learning

Rate Method for Matrix Approximation-based Collaborative Filtering”. In: Pro-

ceedings of the 2018 World Wide Web Conference on World Wide Web - WWW

’18. the 2018 World Wide Web Conference. Lyon, France: ACM Press, pp. 741–

751. ISBN: 978-1-4503-5639-8. DOI: 10.1145/3178876.3186155. URL: http://dl.

acm.org/citation.cfm?doid=3178876.3186155 (visited on 03/28/2024).

https://doi.org/10.1145/3038912.3052569
https://dl.acm.org/doi/10.1145/3038912.3052569
https://dl.acm.org/doi/10.1145/3038912.3052569
https://arxiv.org/abs/1610.05492 [cs]
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492
https://doi.org/10.48550/arXiv.1602.05629
https://arxiv.org/abs/1602.05629 [cs]
https://arxiv.org/abs/1602.05629 [cs]
http://arxiv.org/abs/1602.05629
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://arxiv.org/abs/1807.07187
http://arxiv.org/abs/1807.07187
https://doi.org/10.1145/3178876.3186155
http://dl.acm.org/citation.cfm?doid=3178876.3186155
http://dl.acm.org/citation.cfm?doid=3178876.3186155

107

Liang, Dawen et al. (Feb. 15, 2018). Variational Autoencoders for Collaborative Fil-

tering. arXiv: 1802.05814[cs,stat]. URL: http://arxiv.org/abs/1802.05814

(visited on 03/29/2024).

Beutel, Alex et al. (Mar. 2, 2019). “Fairness in Recommendation Ranking through

Pairwise Comparisons”. In: arXiv:1903.00780 [cs, stat]. arXiv: 1903.00780. URL:

http://arxiv.org/abs/1903.00780 (visited on 02/23/2021).

Dacrema, Maurizio Ferrari, Paolo Cremonesi, and Dietmar Jannach (Sept. 10, 2019).

“Are We Really Making Much Progress? A Worrying Analysis of Recent Neural

Recommendation Approaches”. In: Proceedings of the 13th ACM Conference on

Recommender Systems, pp. 101–109. DOI: 10.1145/3298689.3347058. arXiv:

1907.06902. URL: http://arxiv.org/abs/1907.06902 (visited on 02/05/2021).

Hu, Chenghao, Jingyan Jiang, and Zhi Wang (Aug. 21, 2019). Decentralized Federated

Learning: A Segmented Gossip Approach. DOI: 10.48550/arXiv.1908.07782.

arXiv: 1908 . 07782[cs , stat]. URL: http : / / arxiv . org / abs / 1908 . 07782

(visited on 03/04/2024).

Ma, Wei and George H Chen (2019). “Missing Not at Random in Matrix Completion:

The Effectiveness of Estimating Missingness Probabilities Under a Low Nuclear

Norm Assumption”. In: p. 10.

Rendle, Steffen, Li Zhang, and Yehuda Koren (May 3, 2019). “On the Difficulty of

Evaluating Baselines: A Study on Recommender Systems”. In: arXiv:1905.01395

[cs]. arXiv: 1905.01395. URL: http://arxiv.org/abs/1905.01395 (visited on

02/10/2021).

Steck, Harald (May 13, 2019). “Embarrassingly Shallow Autoencoders for Sparse

Data”. In: The World Wide Web Conference, pp. 3251–3257. DOI: 10 . 1145 /

3308558.3313710. arXiv: 1905.03375[cs, stat]. URL: http://arxiv.org/

abs/1905.03375 (visited on 03/30/2024).

https://arxiv.org/abs/1802.05814 [cs, stat]
http://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1903.00780
http://arxiv.org/abs/1903.00780
https://doi.org/10.1145/3298689.3347058
https://arxiv.org/abs/1907.06902
http://arxiv.org/abs/1907.06902
https://doi.org/10.48550/arXiv.1908.07782
https://arxiv.org/abs/1908.07782 [cs, stat]
http://arxiv.org/abs/1908.07782
https://arxiv.org/abs/1905.01395
http://arxiv.org/abs/1905.01395
https://doi.org/10.1145/3308558.3313710
https://doi.org/10.1145/3308558.3313710
https://arxiv.org/abs/1905.03375 [cs, stat]
http://arxiv.org/abs/1905.03375
http://arxiv.org/abs/1905.03375

108

Zhang, Jiale et al. (Aug. 2019). “Poisoning Attack in Federated Learning using Gener-

ative Adversarial Nets”. In: 2019 18th IEEE International Conference On Trust,

Security And Privacy In Computing And Communications/13th IEEE Interna-

tional Conference On Big Data Science And Engineering (TrustCom/BigDataSE).

2019 18th IEEE International Conference On Trust, Security And Privacy In Com-

puting And Communications/13th IEEE International Conference On Big Data

Science And Engineering (TrustCom/BigDataSE). ISSN: 2324-9013, pp. 374–380.

DOI: 10.1109/TrustCom/BigDataSE.2019.00057. URL: https://ieeexplore.

ieee.org/document/8887357 (visited on 03/04/2024).

Zhang, Shuai et al. (Feb. 28, 2019). “Deep Learning based Recommender System:

A Survey and New Perspectives”. In: ACM Computing Surveys 52.1, pp. 1–38.

ISSN: 0360-0300, 1557-7341. DOI: 10.1145/3285029. arXiv: 1707.07435. URL:

http://arxiv.org/abs/1707.07435 (visited on 02/21/2021).

Zhu, Ligeng, Zhijian Liu, and Song Han (Dec. 19, 2019). Deep Leakage from Gradients.

DOI: 10.48550/arXiv.1906.08935. arXiv: 1906.08935[cs,stat]. URL: http:

//arxiv.org/abs/1906.08935 (visited on 03/04/2024).

Harris, Charles R. et al. (Sept. 17, 2020). “Array programming with NumPy”. In:

Nature 585.7825, pp. 357–362. ISSN: 0028-0836, 1476-4687. DOI: 10.1038/s41586-

020-2649-2. URL: https://www.nature.com/articles/s41586-020-2649-2

(visited on 04/01/2024).

Hegedűs, István, Gábor Danner, and Márk Jelasity (2020). “Decentralized Recom-

mendation Based on Matrix Factorization: A Comparison of Gossip and Feder-

ated Learning”. In: Machine Learning and Knowledge Discovery in Databases.

Ed. by Peggy Cellier and Kurt Driessens. Vol. 1167. Series Title: Communications

in Computer and Information Science. Cham: Springer International Publishing,

pp. 317–332. ISBN: 978-3-030-43822-7 978-3-030-43823-4. DOI: 10.1007/978-3-

https://doi.org/10.1109/TrustCom/BigDataSE.2019.00057
https://ieeexplore.ieee.org/document/8887357
https://ieeexplore.ieee.org/document/8887357
https://doi.org/10.1145/3285029
https://arxiv.org/abs/1707.07435
http://arxiv.org/abs/1707.07435
https://doi.org/10.48550/arXiv.1906.08935
https://arxiv.org/abs/1906.08935 [cs, stat]
http://arxiv.org/abs/1906.08935
http://arxiv.org/abs/1906.08935
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://doi.org/10.1007/978-3-030-43823-4_27

109

030-43823-4_27. URL: https://link.springer.com/10.1007/978-3-030-

43823-4_27 (visited on 03/04/2024).

Jiang, Jingyan and Liang Hu (2020). “Decentralised federated learning with adap-

tive partial gradient aggregation”. In: CAAI Transactions on Intelligence Technol-

ogy 5.3. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1049/trit.2020.0082,

pp. 230–236. ISSN: 2468-2322. DOI: 10 . 1049 / trit . 2020 . 0082. URL: https :

//onlinelibrary.wiley.com/doi/abs/10.1049/trit.2020.0082 (visited on

03/04/2024).

Krichene, Walid and Steffen Rendle (Aug. 23, 2020). “On Sampled Metrics for Item

Recommendation”. In: Proceedings of the 26th ACM SIGKDD International Con-

ference on Knowledge Discovery & Data Mining. KDD ’20: The 26th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining. Virtual Event CA USA:

ACM, pp. 1748–1757. ISBN: 978-1-4503-7998-4. DOI: 10.1145/3394486.3403226.

URL: https : / / dl . acm . org / doi / 10 . 1145 / 3394486 . 3403226 (visited on

02/25/2021).

Lian, Defu, Qi Liu, and Enhong Chen (Apr. 20, 2020). “Personalized Ranking with

Importance Sampling”. In: Proceedings of The Web Conference 2020. WWW ’20:

The Web Conference 2020. Taipei Taiwan: ACM, pp. 1093–1103. ISBN: 978-1-4503-

7023-3. DOI: 10.1145/3366423.3380187. URL: https://dl.acm.org/doi/10.

1145/3366423.3380187 (visited on 04/21/2022).

Muhammad, Khalil et al. (Aug. 23, 2020). “FedFast: Going Beyond Average for Faster

Training of Federated Recommender Systems”. In: Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD

’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Min-

ing. Virtual Event CA USA: ACM, pp. 1234–1242. ISBN: 978-1-4503-7998-4. DOI:

https://doi.org/10.1007/978-3-030-43823-4_27
https://doi.org/10.1007/978-3-030-43823-4_27
https://link.springer.com/10.1007/978-3-030-43823-4_27
https://link.springer.com/10.1007/978-3-030-43823-4_27
https://doi.org/10.1049/trit.2020.0082
https://onlinelibrary.wiley.com/doi/abs/10.1049/trit.2020.0082
https://onlinelibrary.wiley.com/doi/abs/10.1049/trit.2020.0082
https://doi.org/10.1145/3394486.3403226
https://dl.acm.org/doi/10.1145/3394486.3403226
https://doi.org/10.1145/3366423.3380187
https://dl.acm.org/doi/10.1145/3366423.3380187
https://dl.acm.org/doi/10.1145/3366423.3380187

110

10.1145/3394486.3403176. URL: https://dl.acm.org/doi/10.1145/3394486.

3403176 (visited on 04/16/2024).

Rendle, Steffen, Walid Krichene, et al. (Sept. 22, 2020). “Neural Collaborative Filter-

ing vs. Matrix Factorization Revisited”. In: Fourteenth ACM Conference on Rec-

ommender Systems. RecSys ’20: Fourteenth ACM Conference on Recommender

Systems. Virtual Event Brazil: ACM, pp. 240–248. ISBN: 978-1-4503-7583-2. DOI:

10.1145/3383313.3412488. URL: https://dl.acm.org/doi/10.1145/3383313.

3412488 (visited on 02/05/2021).

Zhao, Bo, Konda Reddy Mopuri, and Hakan Bilen (Jan. 8, 2020). iDLG: Improved

Deep Leakage from Gradients. DOI: 10.48550/arXiv.2001.02610. arXiv: 2001.

02610[cs,stat]. URL: http://arxiv.org/abs/2001.02610 (visited on 03/04/2024).

Bouacida, Nader and Prasant Mohapatra (2021). “Vulnerabilities in Federated Learn-

ing”. In: IEEE Access 9, pp. 63229–63249. ISSN: 2169-3536. DOI: 10.1109/ACCESS.

2021.3075203. URL: https://ieeexplore.ieee.org/document/9411833/ (vis-

ited on 03/04/2024).

Chen, Jiawei et al. (Dec. 29, 2021). “Bias and Debias in Recommender System: A

Survey and Future Directions”. In: arXiv:2010.03240 [cs]. arXiv: 2010.03240.

URL: http://arxiv.org/abs/2010.03240 (visited on 04/21/2022).

Dacrema, Maurizio Ferrari, Simone Boglio, et al. (Feb. 3, 2021). “A Troubling Analysis

of Reproducibility and Progress in Recommender Systems Research”. In: ACM

Transactions on Information Systems 39.2. version: 3, pp. 1–49. ISSN: 1046-8188,

1558-2868. DOI: 10.1145/3434185. arXiv: 1911.07698. URL: http://arxiv.org/

abs/1911.07698 (visited on 02/05/2021).

Miao, Qinyang et al. (Oct. 9, 2021). “Federated deep reinforcement learning based

secure data sharing for Internet of Things”. In: Computer Networks 197, p. 108327.

ISSN: 1389-1286. DOI: 10.1016/j.comnet.2021.108327. URL: https://www.

https://doi.org/10.1145/3394486.3403176
https://dl.acm.org/doi/10.1145/3394486.3403176
https://dl.acm.org/doi/10.1145/3394486.3403176
https://doi.org/10.1145/3383313.3412488
https://dl.acm.org/doi/10.1145/3383313.3412488
https://dl.acm.org/doi/10.1145/3383313.3412488
https://doi.org/10.48550/arXiv.2001.02610
https://arxiv.org/abs/2001.02610 [cs, stat]
https://arxiv.org/abs/2001.02610 [cs, stat]
http://arxiv.org/abs/2001.02610
https://doi.org/10.1109/ACCESS.2021.3075203
https://doi.org/10.1109/ACCESS.2021.3075203
https://ieeexplore.ieee.org/document/9411833/
https://arxiv.org/abs/2010.03240
http://arxiv.org/abs/2010.03240
https://doi.org/10.1145/3434185
https://arxiv.org/abs/1911.07698
http://arxiv.org/abs/1911.07698
http://arxiv.org/abs/1911.07698
https://doi.org/10.1016/j.comnet.2021.108327
https://www.sciencedirect.com/science/article/pii/S1389128621003285

111

sciencedirect.com/science/article/pii/S1389128621003285 (visited on

03/04/2024).

Rendle, Steffen (Jan. 21, 2021). “Item Recommendation from Implicit Feedback”. In:

arXiv:2101.08769 [cs]. arXiv: 2101.08769. URL: http://arxiv.org/abs/2101.

08769 (visited on 02/25/2021).

Tamm, Yan-Martin, Rinchin Damdinov, and Alexey Vasilev (Sept. 13, 2021). “Quality

Metrics in Recommender Systems: Do We Calculate Metrics Consistently?” In:

Fifteenth ACM Conference on Recommender Systems, pp. 708–713. DOI: 10.1145/

3460231.3478848. arXiv: 2206.12858[cs]. URL: http://arxiv.org/abs/2206.

12858 (visited on 03/30/2024).

Warnat-Herresthal, Stefanie et al. (June 2021). “Swarm Learning for decentralized

and confidential clinical machine learning”. In: Nature 594.7862. Number: 7862

Publisher: Nature Publishing Group, pp. 265–270. ISSN: 1476-4687. DOI: 10.1038/

s41586-021-03583-3. URL: https://www.nature.com/articles/s41586-021-

03583-3 (visited on 03/04/2024).

Belal, Yacine et al. (Sept. 6, 2022). “PEPPER: Empowering User-Centric Recom-

mender Systems over Gossip Learning”. In: Proceedings of the ACM on Interac-

tive, Mobile, Wearable and Ubiquitous Technologies 6.3, pp. 1–27. ISSN: 2474-9567.

DOI: 10.1145/3550302. arXiv: 2208.05320[cs]. URL: http://arxiv.org/abs/

2208.05320 (visited on 03/04/2024).

Li, Chengxi, Gang Li, and Pramod K. Varshney (Jan. 15, 2022). “Decentralized Fed-

erated Learning via Mutual Knowledge Transfer”. In: IEEE Internet of Things

Journal 9.2, pp. 1136–1147. ISSN: 2327-4662, 2372-2541. DOI: 10.1109/JIOT.

2021.3078543. URL: https://ieeexplore.ieee.org/document/9426904/ (vis-

ited on 03/08/2024).

https://www.sciencedirect.com/science/article/pii/S1389128621003285
https://www.sciencedirect.com/science/article/pii/S1389128621003285
https://arxiv.org/abs/2101.08769
http://arxiv.org/abs/2101.08769
http://arxiv.org/abs/2101.08769
https://doi.org/10.1145/3460231.3478848
https://doi.org/10.1145/3460231.3478848
https://arxiv.org/abs/2206.12858 [cs]
http://arxiv.org/abs/2206.12858
http://arxiv.org/abs/2206.12858
https://doi.org/10.1038/s41586-021-03583-3
https://doi.org/10.1038/s41586-021-03583-3
https://www.nature.com/articles/s41586-021-03583-3
https://www.nature.com/articles/s41586-021-03583-3
https://doi.org/10.1145/3550302
https://arxiv.org/abs/2208.05320 [cs]
http://arxiv.org/abs/2208.05320
http://arxiv.org/abs/2208.05320
https://doi.org/10.1109/JIOT.2021.3078543
https://doi.org/10.1109/JIOT.2021.3078543
https://ieeexplore.ieee.org/document/9426904/

112

Long, Jing et al. (July 31, 2022). Decentralized Collaborative Learning Framework for

Next POI Recommendation. DOI: 10.48550/arXiv.2204.06516. arXiv: 2204.

06516[cs]. URL: http://arxiv.org/abs/2204.06516 (visited on 03/04/2024).

Adomavicius, Gediminas and Alexander Tuzhilin (n.d.). “Towards the Next Gener-

ation of Recommender Systems: A Survey of the State-of-the-Art and Possible

Extensions”. In: ().

sgd-vs-gd (n.d.). URL: https://i.stack.imgur.com/G7BBG.png.

https://doi.org/10.48550/arXiv.2204.06516
https://arxiv.org/abs/2204.06516 [cs]
https://arxiv.org/abs/2204.06516 [cs]
http://arxiv.org/abs/2204.06516
https://i.stack.imgur.com/G7BBG.png

113

Appendices

114

Appendix A

Pairwise Personalized Learning

A.1 Computational Complexity

In this section, we use Big O notation to briefly discuss the computational costs of

the matrix factorization model, which is at the core of our work. Training the matrix

factorization model using stochastic gradient descent is not a deterministic process

and depends on the data size, number of users, number of items, number of factors,

and the number of epochs among other things. With this in mind we first describe

the complexity of a single forward pass on the matrix factorization model. A single

forward pass of the simple MF model can be described as the following:

ŷui = p⊤
u qi (A.1)

Using this equation we can see that the complexity of a single forward pass is O(k)

where k is the number of factors. Then the complexity of predicting the ratings for

the set of observed data Ω is O(|Ω| · k).

To train the MF model using SGD we refer the update steps within each iteration.

Given that the error term is

eui ≡ yui − p⊤
u qi, (A.2)

115

the parameter update step equations are

pu ← pu + γ(euiqi − λpu) (A.3)

qi ← qi + γ(euipu − λqi) .

Then, for a single data point the number of operations is (1 + k) + 2(5k). If we

consider one epoch, the complexity will be O(|Ω| · (1 + k)). Finally, the algorithm

may take several epochs to converge. Given N epochs, the total complexity to train

the matrix factorization model becomes O(N · |Ω| · (1 + k)).

Next, we discuss the complexity of the Pairwise Personalized Ranking model. In

these discussions we consider the PPR using the simple matrix factorization model

seen in A.1. Given a set of triples T , we see in Algorithm 1 that the SGD loop is very

similar to that of MF. Calculating ŷuij takes (2k + 1) operations which is O(k + 1)

and further calculating zuij will also be O(k+1). Finally update steps only add O(k)

operations so the final complexity of the PPR model for a single training point is

O(k + 1). Again, assuming N epochs where the entire T is used per epoch we see

that it will be O(N · |T |(k + 1)). One nice quality of the matrix factorization model

is that although there are a total of (k × (n + m)) parameters, only a small fixed

number of parameters will be updated for each training point.

Finally, we discuss how T might grow depending the size of the dataset. In the implicit

case, T is generated by pairing observed items for each user with their unobserved

items. If we assume that the observed data scales proportionally with the total size

of the dataset for each user - i.e. that a fixed proportion pu of the total dataset is

observed for each user, then |T |, is O(|U|×|I|2). For the PPR model, we split the set

of observed data into true positive and true negative triplets per user. With the same

116

proportionality assumption as before, we see the T is also O(|U| × |I|2), albeit with

a much smaller constant factor. However, as we note in Section 2.3, we do not opt to

use the entire T for training for each epoch and use a sampling method instead.

A.2 ML100K Results

Plots for the results on the ML100K were included in Chapter 2. Table A.1 shows

the full results including the various Su sizes.

A.2.1 Results Including EASE and VAECF

Results including the EASE and VAECF models are included in Figure A.1. We

see that EASE and VAECF are the strongest performers with our proposed methods

coming close when the rating threshold is equal to 5.

A.3 Models

A.3.1 Rating Weighted PPR

We hypothesized that in the PPR model, a weighting scheme could be used to that

depended directly on the ratings of the true positive item and the true negative item.

A pair of items that were far apart, like 1 and 5 would be easier for the model to

differentiate than a pair of items that were closer together like 3 and 4. Therefore, we

tested a weighting scheme that gave more weight to the loss when the ratings were

117

Table A.1: MovieLens 100K Results of Maximal Su for rating cutoffs 3, 4, 5, and the
85th user-quantiles.

Cutoff: 5 NDCG at 5 NDCG at 10 Recall at 5 Recall at 10
APR 0.143 0.154 0.107 0.168
PPR 0.136 0.146 0.104 0.161
BPR 0.116 0.136 0.097 0.146
ItemKNN 0.029 0.036 0.021 0.043
MF 0.018 0.025 0.015 0.034
UserKNN 0.001 0.004 0.001 0.008
Cutoff: 85 quantile
APR 0.157 0.159 0.095 0.149
PPR 0.149 0.146 0.087 0.133
BPR 0.129 0.143 0.084 0.144
MF 0.053 0.053 0.028 0.045
UserKNN 0.001 0.003 0.000 0.004
ItemKNN 0.000 0.001 0.000 0.001
Cutoff: 4 NDCG at 5 NDCG at 10 Recall at 5 Recall at 10
APR 0.190 0.175 0.071 0.112
PPR 0.177 0.159 0.064 0.096
BPR 0.170 0.169 0.074 0.130
ItemKNN 0.042 0.043 0.012 0.025
MF 0.022 0.027 0.009 0.019
UserKNN 0.001 0.004 0.001 0.005
Cutoff: 3
APR 0.221 0.197 0.059 0.092
PPR 0.211 0.186 0.050 0.079
BPR 0.207 0.204 0.073 0.122
ItemKNN 0.048 0.049 0.009 0.020
MF 0.024 0.029 0.006 0.015
UserKNN 0.001 0.005 0.000 0.004

118

Figure A.1: Results on ML100K dataset including EASE and VAECF for cutoffs 3,
4, and 5.

closer together to help the model learn the difficult pairs more quickly.

min
θ

∑
(u,i,j)∈T

−w(yui, yuj) log(σ(ŷu,i,θ − ŷu,j,θ)) +
λ

2
(||θ||) (A.4)

However, preliminary results showed no performance gain while training was slowed.

119

Appendix B

Code

The codebases for the Pairwise Personalized Ranking model and the Decentralized

Recommender Method was a large part of our work as we spent significant effort to

make the model high performance and easy to update. The entire codebase for the

Pairwise Personalized Ranking model can be found on github in the rec-sys repository

and the code for the decentralized learning method can be found here.

	Titlepage
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Recommendation Systems
	Different Data Frameworks
	Explicit Feedback
	Implicit Feedback

	Rating-based Recommendation
	Content-based Recommender Systems
	Collaborative Filtering
	Latent Factor Models
	Drawbacks of Rating-based Framework

	Top-k Recommendation
	Ranking-based Recommendation
	Item Recommendation Literature Review
	Challenges in Top-k Item Recommendation

	Pairwise Personalized Ranking
	Matrix Factorization Model
	Pairwise Personalized Ranking Model
	Optimization Strategy

	Computational Challenges
	Extensions to Pairwise Personalized Ranking
	Simulations
	Data Generating Process
	Recommendation Accuracy
	Computational Analysis

	MovieLens Datasets
	Data Exploration
	Analysis of Cutoff Criteria
	MovieLens 100K
	MovieLens 1M

	Discussions

	Decentralized Recommender System
	Introduction
	Literature Review
	Methodology
	Notation and Background
	Decentralized System with Network Communication Structure
	Generalized SVD
	Order selection

	Data Description
	MovieLens Dataset
	H&M Personalized Fashion Recommendations Dataset

	Experiments
	Network Structure
	Comparing Train Types
	Performance Evaluation

	Discussion

	Bibliography
	Appendices
	Appendix Pairwise Personalized Learning
	Computational Complexity
	ML100K Results
	Results Including EASE and VAECF

	Models
	Rating Weighted PPR

	Appendix Code

