
Robot Communication Systems Final Report 
 

Authors: Amelia Nist, Kailey Brown, Leila Troxell, and Shrinidhi Nadgouda  
 
Statement of Work 
 

I, Amelia Nist, contributed to this project as a member of the software team. My responsibilities 
included developing code for the robot logic, message formatting, and information transfer as well as 
creating and executing test cases for these components. I also worked extensively with the XBee 3 
microcontrollers, configuring them to align with the project’s requirements. Specifically, I tested Python 
scripts for the XBee 3s, converted the code into MicroPython, and deployed it onto the microcontrollers. I 
ensured functionality by testing the MicroPython code on the XBee 3s and making modifications to 
optimize performance.  

 
I, Kailey Brown, contributed to this project as a member of the hardware team. My main role in 

this project was designing and testing the PCB. I created the schematic and layout in KiCad, designed the 
buck converter and USB to UART converter circuits, and configured the ZigBee module connections 
using its datasheet. I verified designs using simulations, resolved a ZigBee footprint issue by rewiring 
connections to header pins, and coordinated with PCB manufacturers. After manufacturing, I soldered 
components, tested the buck converter and USB to UART chip, and debugged communication issues, 
adding an oscillator to the design. I also contributed to presentations and authored sections of the proposal 
and final report, including societal impact, external standards, test plan, and hardware technical details. 

 
I, Leila Troxell, served as the project leader. I managed the team’s gantt chart, organized team 

meetings, and ultimately ensured we were on time for any given assignment. For other team assignments, 
I took the lead on the final video, drafting, filming, and editing it.  

I was also a part of the software team for the project, involved in all decision logic, sensor 
information collection and transmission, and the medic user interface. Again I served as a leader of the 
group, outlining all classes, functions, and test functions for the code, maintaining an overarching idea for 
the code functionality and connectedness, and updating a to-do list of incomplete tasks. Specifically, I was 
responsible for the construction of the medic user interface, all code that involved the interaction between 
the robot and the microcontroller, the majority of the code responsible for the robot movement, as well as 
half of the test code. 

 
I, Shrinidhi Nadgouda, contributed to this project as a member of the hardware team. I was 

involved in all decisions around the XBee and PCB design. My responsibilities included researching and 
testing components of our circuit using the AD2 and WaveForms, and reading datasheets to make sure 
that all requirements were met for the PCB. I helped select and test the sensors in the XCTU terminal to 
make sure they transmitted information, and designed and 3D printed a custom PCB and sensor holder for 
the robot. After the PCB was manufactured I was responsible for soldering and testing components, and 
troubleshooting the voltage regulator to ensure that the output voltage had the correct frequency and 
ripple characteristics. I also provided troubleshooting support during full system testing. I contributed to 
weekly meetings and presentations, and authored sections of the final report, including physical 
constraints, hardware performance objectives, technical description, and engineering insights. 

 
 

 



Table of Contents 
Statement of Work 0 
Table of Contents 1 
Table of Figures 2 
Table of Tables 3 
Abstract 4 
Background 5 
Project Description 5 

Performance Objectives & Specifications 6 
Hardware Objectives & Specifications 7 
Software Objectives & Specifications 7 

Functional Description 8 
Hardware 8 
Software 11 

Technical Description 15 
Hardware 15 
Software 18 

XCTU 20 
Test Plan 21 

Hardware 21 
Software 23 
Full System 24 

Physical Constraints 24 
Design and Manufacturing Constraints 24 
Tools Utilized 25 
Cost Constraints 26 
Production Considerations 26 

Societal Impact 27 
External Standards 28 
Intellectual Property Issues 28 
Timeline 29 
Costs 35 
Final Results 35 
Engineering Insights 36 
Future Work 37 
References 39 
Appendix 41 

Appendix A - Budget 41 

1 



Appendix B - Full PCB Schematic 42 
Appendix C - PCB Test Plan 42 

 
Table of Figures  

Figure 1. Final Board with Xbee                                                                                                      6  
Figure 2. Micro USB Port Schematic                                                                                               8 

Figure 3. Buck Converter Schematic                                                                                                9 

Figure 4. USB to UART Conversion Chip Schematic                           9 

Figure 5. XBee Microcontroller Schematic                 10 

Figure 6. Final PCB Layout                                                      10 

Figure 7. 3D Mock-up                  10 

Figure 8. Exploratory Robot Finite State Machine                                                                         11 

Figure 9. Hub Robot Finite State Machine                                                                                     12 

Figure 10. Potential Fields Example                                                                                               13 

Figure 11. Medic UI Single Victim View                                                                                       13 

Figure 12. Medic UI All Victim Table View                                                                                  14 

Figure 13. Medic UI Completed Victims Table View                                                                    15 

Figure 14. XBee Microcontroller Ground Pin and Board Ground Discrepancy                            17 

Figure 15. Incorrect Bypass Connection                                                                                        17 

Figure 16. Corrected Bypass Connection               17 

Figure 17. First Edition of PCB Holder               18 

Figure 18. Second Edition of PCB Holder              18 

Figure 19. Potential Fields Example               19 

Figure 20. Code UML Diagram                20 

Figure 21. MicroPython REPL and UART Baud Rate Setting in XCTU           20  

Figure 22. Buck Converter Waveform Verification             21 

Figure 23. Loopback Test Result                22  

Figure 24. USB to UART Chip Verification              22 

Figure 25. Verification of XBee Microcontroller and Sensor Interaction           23 

Figure 26. September 9 - 28 Gantt Chart Comparison             29  

Figure 27. September 24 - October 8 Gantt Chart Comparison            30 

Figure 28. October 1 - 27 Gantt Chart Comparison             31 

Figure 29. October 19 - November 10 Gantt Chart Comparison            32 

Figure 30. November 10 - December 4 Gantt Chart Comparison            33 

2 



Figure 31. November 21 - December 7 Gantt Chart Comparison                                                  34 

Figure 32. Full System Prototype               36 

 
Table of Tables 

Table 1. Severity Meaning Breakdown                 12 

Table 2. Budget Overview                                                                                                               35     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3 



Abstract 
The goal of our project was to design a communication system that enables robots to share critical 

information with each other and medics during human triage or search and rescue operations. To achieve 
this, we developed a ZigBee-based communication system that allows robots to efficiently transmit and 
receive key data such as the location and priority of discovered objects. Our software team wrote Python 
programs to analyze sensor data from the robots, wirelessly communicate relevant information, and 
update robot objectives based on incoming data. A ZigBee-based microcontroller was configured and 
integrated with a PCB, designed by our hardware team, to power the communication system and convert 
data transmission between USB and Universal Asynchronous Transmitter/Receiver (UART). 
Additionally, we designed and implemented an algorithm to enable robots to navigate toward goals while 
avoiding obstacles. Our system enhances coordination between robots and medics, improving the 
efficiency and safety of operations in critical rescue scenarios.  
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Background 
During natural disasters, time is of the essence - every second wasted could cost a victim 

their life. Dr. Nicola Bezzo at the University of Virginia, with the support of Northrop Grumman, 
has been working with a group of students and professionals over the past several years to design 
and implement a team of robots that could traverse the dangerous terrain after a disaster and 
report back to nearby medics about victims and the urgency of their injuries. 

The role of our team was to create a communication system to attach to the robots so that 
they can coordinate with other robots during their search procedure, determine what information is 
the most pressing to present to the medic, and efficiently communicate with the medics. 

While robot communication systems exist, none would fulfill all of the requirements that 
a disaster zone presents. The majority of robotic communication systems rely on WIFI or 
bluetooth to send messages [1]; these systems are not communicating directly with one another, 
but rather connecting through a common network and allowing the network to direct their 
messages to the correct recipient. This is not a resource available in a disaster zone. Some robotic 
transmission media exist that do not rely on a WIFI system, but are instead reliant on near-field 
communication [2]. While this is the most viable option for our use-case, it limits efficiency as 
all robots must then travel back into the limited range of another robot or the medic before 
transmitting its data; we instead implemented a version of this technique. 

Our communication system avoids network connectivity reliance, while also 
communicating the necessary sensor information from the robots and connecting directly into 
both a medic’s computer and a robot’s processor. Our team’s experience with the UVA School of 
Engineering’s courses prepared us to engineer this solution. Specifically, Intro to Computer 
Science, Data Structures & Algorithms I, Fundamentals of Electrical Engineering I, II, and III, 
Intro to Embedded Systems, and Autonomous Mobile Robots taught us the knowledge we 
needed to complete this project. With this experience, we were able to program the robots in an 
organized and intelligent manner. We also knew how to design, simulate, and build a functioning 
PCB. In addition to these courses, among our team members we had an Applied Mathematics 
minor which helped with decision analysis algorithms and analytical PCB design. 
 
Project Description 
 This project has multiple components, actors, and settings. Before discussing the technical details 
of the project, we will first define the main recurring system components. 
 The first component is the environment. The end use case of our product will be disaster zones 
such as natural disasters or war torn cities. The rescue teams will enter the environment and begin to 
identify, triage, and treat victims. For our testing purposes, all testing was conducted in Professor Bezzo’s 
Autonomous Mobile Robot (AMR) lab in Rice Hall. 
 The second component is the victims in the environment. During end use, the victims will be 
analyzed through a variety of onboard vitals detection tools. For abstraction and simplification purposes, 
the victims during testing scenarios were given a severity based on their location. These relationships are 
hardcoded into the robot's onboard code. The severities given can be between 1 and 4, with 4 as the most 
severe and urgent victim. 
 The third component is the robots. The robots in our system are divided into two separate 
categories - exploratory and hub. Exploratory robots, which are the on-the-ground robots that explore a 
given area, locate and rate victims before determining whether the information is urgent enough to deliver 
back to the hub robot. The hub robot serves as an intermediary between the medic and the exploratory 
robot. The purpose of the hub is to deliver information to the medic more quickly than the exploratory 
robot would be able to.  
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 The fourth component is the medic. The medics are receiving the victim information and actively 
treating the victims. Our communication device is also connected to the medic’s laptop, which displays 
the information about any current victims. With the victim information listing severity and location, 
medics can efficiently move around and treat victims. For our testing, the medic can inform the robots of 
a new target and of their own next location, and then complete victims so they are no longer displayed on 
their UI. 
 The fifth and final component is the communication device itself. The communication device is 
composed of an external air quality sensor, a USB cord, the antenna, and the microcontroller. The 
majority of our project efforts were dedicated to developing and refining this system, which will be 
described in greater detail below. Nearly all of the decision logic for communication is done through the 
microcontroller onboard the device. The device is attached to all robots and the medic laptop and enables 
communication between the host devices. It is also capable of sending commands to the code running on 
the robots.  

 
Figure 1. Final Board with Xbee 

 
Performance Objectives & Specifications 

The goal of this project is to enable communication between a multi robot and human system, 
such that it minimizes wasted time and prioritizes the most urgent tasks. The overarching products 
specifications are as follows: 

1) Each communication system must function in long range environments without WIFI or cellular 
networks 

2) Each device must be able to send and receive messages 
3) Each communication device can be used either on a robot or connected into a computer. The type 

of robot to which a communication device is connected is determined by the position of a switch 
on the PCB 
Originally, there was an additional requirement that all devices be interchangeable between a 

medic or a robot. However, due to the requirements of the ZigBee mesh network, there must always be 
one device in every network set as a “Coordinator”. This is a setting that, once made, is not adjustable by 
code and must be done manually in the configuration of the XBee antenna. Since we are ensured to 
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always have at least one medic, we decided to have the medic be a specific device and allow the other 
devices to still be interchangeable between the hub and exploratory robot settings. 

 
Hardware Objectives & Specifications 

On the hardware side, our objective was to produce a PCB for the system that, via a microUSB 
connection, would provide power and a signal transfer path for the XBee microcontroller, ultimately 
enabling communication between XBee antennas on various hosts in the network. The intended usage of 
the system is for the user to plug all of the PCB-microcontroller systems into their respective hosts and 
turn everything on in the correct mode using the power and mode switches.  

End user features include a XBee reset button, an XBee mode switch, a PCB power switch, XBee 
microcontroller breakout pins, and a custom 3D printed PCB and sensor holder to attach onto the ROSbot. 
The reset button, connected to the XBee microcontroller, provides an easy way to reset the 
microcontroller without a full system restart. The mode switch is connected to XBee pins and enables the 
user to easily change the “mode” of the system between exploratory mode and hub mode. The power 
switch allows the user to shut down the communication system in case the host robot is to be used without 
it, such as to save the robot’s battery. Lastly, we utilized breakout pins with the XBee microcontroller to 
increase flexibility and overall ease of use when connecting a sensor or other device in the future. On the 
first iteration of our design, we incorporated a line of sockets to hold our BME 680 temperature and gas 
sensor. However, that design and those communication connections were specific to the BME680. Per 
client specifications, to add extra functionality, we adjusted the design to remove this row of sockets and 
add general breakout pins connected to the XBee microcontroller on the final prototype to enable both 
SPI (Serial Peripheral Interface)  and I2C (Inter-Integrated Circuit) communication protocols between the 
microcontroller and all compatible devices. 
 
Software Objectives & Specifications 
 The software had the following specifications and goals. These were loosely defined in the 
beginning of the project and gained definition as we continued designing. 

All messages sent through the communication device include details regarding the x and y 
coordinates and the severity of the victim. 
 The goal of the exploratory robots is to locate victims, give them a severity rating and then 
determine what next step to take. The possible next steps would be to: 1) continue exploring or 2) locate a 
hub robot to deliver the victim information. Hub robots are sought out when the exploratory robot 
contains too many victims in their list or they have located a high severity victim. If a hub robot cannot be 
located, the exploratory robot will instead search for the medic. After locating the hub or the medic, it will 
transmit all information. 
 The severity rating is determined by the location at which the robot arrives. Originally this was to 
be determined by analyzing the color of a block that is located; each color corresponding to a severity 
rating. However the computational power of the robot was not sufficient to do this analysis live. The 
delay between seeing the block in the camera vision and recognizing the color was too great, significantly 
slowing the movement of the robots. Because the color analysis was simply a proof of concept for taking 
the vitals of a victim, it was eliminated, although only after all of the functioning code was produced. 
Instead, each target location was given a hardcoded severity rating. Once arriving at a target, the robot 
would fetch the corresponding rating and continue along with its algorithm, greatly improving the 
execution speed of the robots.  
 The hub robot’s goal is similar to that of the exploratory. Hub robots rotate between their hub 
meet up points - predetermined locations where an exploratory robot will attempt to find them. If an 
exploratory robot is found and information is received, the hub robot will either continue rotating between 
meet up locations or return to the medic. Hub robots will return to the medic when they have too many 
victims in their patient list or their patient list has a high severity victim. Upon locating the medic, they 
will deliver any victim information and pick up any new messages from the medic. Originally the hub 
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robot was to be on top of a drone, however after assessing the cost to configure a drone for our 
requirements, it was deemed unnecessary. Thus, the hub robot was switched to the same robot type as the 
exploratory, with their roles staying separate. This still establishes the proof of concept, allowing it to be 
expanded in the future. 
 The medic is represented by a device connected to a laptop with an associated UI. This setup 
enables the medic to perform several key tasks: sending coordinates of new targets and their current 
location, viewing individual victims, marking victims as treated, and viewing all treated and untreated 
victims. Additionally, the medic can sort the list of available victims by severity, x coordinate, y 
coordinate, or overall distance from themselves. When new victims are received, they are populated into 
the table and sorted according to the chosen method. 

Default logic for returning to the medic when the communication device is not functioning and 
for an automatic initial test of communication devices were excluded from the final design due to time 
constraints and project priorities. Although these features would not have been overly complex to 
incorporate, they were ultimately not included. 

 
Functional Description 
 Below are the details regarding how the device functions and thus achieves the performance 
objectives listed above. The section is divided into hardware and software decisions. 
 
Hardware 

The PCB serves three primary functions: powering the system, managing USB to UART 
communication, and interfacing with sensors.  

 

 
Figure 2. Micro USB Port Schematic 

 
The micro USB port (J5 in Figure 2 above) connects the communication system to the host 

device, either a robot or computer. This connection enables data transfer and supplies power to the device. 
The host supplies 5V to the system, which is used to power the USB to UART chip and sensor.  
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Figure 3. Buck Converter Schematic 

 
That same 5V is also stepped down to 3.3V using a buck converter (U2 in Figure 3 above) to 

power the XBee microcontroller.  
 

 
Figure 4. USB to UART Conversion Chip Schematic 

 
Because the XBee microcontroller is incompatible with USB communication protocol, a USB to 

UART chip (U1 in Figure 4 above) is needed to convert data that is being transmitted to and from the 
host.  
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Figure 5. XBee Microcontroller Schematic 

 
The XBee microcontroller connects to the board via female header pins (J3 and J4 in Figure 5 

above). Additionally, all unused General Purpose Input/Output (GPIO) and I2C/SPI pins from the XBee 
microcontroller are connected to breakout pins. This design choice allows for different sensors to be 
integrated into the system.  

 

             
                      Figure 6. Final PCB Layout                                                                 Figure 7. 3D Mock-up 
 

The above figures display the final board layout and 3D model. When the on/off switch is turned 
on, a 5V supply powers the sensor, USB to UART chip, and buck converter. This then powers the XBee 
microcontroller, enabling it to transmit data to and from the USB to UART chip, which connects to the 
USB port and transmits data to and from the host system. The switch to the right of the XBee 
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microcontroller enables the robot to toggle between hub and exploratory modes. The full PCB schematic 
can be found in Appendix B. 

 
Software 

The exploratory robot will have three general states: exploring for victims, searching for the hub 
robot, and searching for the medic. A decision tree logic, as seen below in Figure 8, was used for the 
robot to determine what state to proceed to next and what steps it needs to take in order to get there. 
Victims are assessed at given locations, a change from the initial design of the system, which would 
originally determine severity based on color of object found. This change is discussed more in Design and 
Manufacturing Constraints below. An interesting adjustment that we had made in preparation for color 
recognition was the orientation of the robot when it arrived at the goal. When the severity of the rating 
was initially based on the object’s color, the victim was rated incorrectly by the robot because it arrived at 
the goal facing the wrong direction. During real exploration this would not be a concern, but due to the 
configuration of our setup, we had to adjust our code to require the robot to face the correct orientation in 
addition to going to the proper coordinates.  

In order to abstract away the exploration logic, which falls under the authority of a separate team 
of Systems Engineers, we gave the robots specific locations to navigate to rather than having them search 
for targets on their own. After the robot either a) locates a victim of high severity (has a rating of 3 or 
higher) or b) has a victim list that has reached capacity (a length of 4 or more), it will search for the hub at 
a known meet up location. If the hub is not detected in a certain period of time after arriving at the meet 
up, the robot will continue on to search for the medic at its stored medic location. Once locating the hub 
or medic, it will transmit the victims list and return to locating and assessing the remainder of its target 
list.  

 

 
Figure 8. Exploratory Robot Finite State Machine 

 
 The hub robot will have two states: traveling to a meet up location, or searching for the medic. 
The logic can also be seen below in Figure 9. The hub will rotate between two preset hub meet up 
locations, another simplification in order to abstract away the exploration logic. At each location, the 
robot will wait for a predetermined period of 20 seconds before leaving for the other meet up location. If 
an exploratory robot is found at either meet up location, the exploratory robot will transmit its victim list. 
If the hub’s victim list now either a) contains a victim of high severity (has a rating of 3 or more) or b) has 
reached capacity (a length of 5 or more), it will search for the medic at its known medic location. Once 
reaching the medic, it will transmit the victims and return to rotating between hub meet up locations. 
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Figure 9. Hub Robot Finite State Machine 

 
 All messages sent between the communications devices take the following format 
  { 
   "severity": int, 
                 "x-coordinates": double, 
                 "y-coordinates": double 
  } 
This message format is used to send multiple kinds of messages, beyond just the victim information. The 
value of severity is varied depending on the meaning of the message. The table below describes the 
correlation between the severity ratings and their meanings. 
 

Severity Rating Meaning 

1-4 Victim rating 

-1 Coordinates are an updated medic location 

-2 Robot has arrived hub location 

-3 Robot has arrived at medic location 

-5 Coordinates are a new goal from the medic 

 
Table 1. Severity Meaning Breakdown 

 
This format is also used when sending and receiving messages within the robot internal system to 

consolidate the logic for robot decision making. Information from both the robot system and from other 
robots’ communication devices are pertinent to the next decision, which is why the logic is executed in 
one place. 
 For navigation and the go-to-goal functionality, we implemented a potential fields algorithm. This 
is done by having obstacles exert a negative force and the goal exert a positive force on the robot. The 
robot will then flow between the negative and positive forces to eventually reach its target. The figure 
below is a photo of the forces at work on our robot from a simulation of the algorithm, where the red line 
is the negative force, the green line is the positive force, and the light orange line to the left is the resultant 
movement.  
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Figure 10. Potential Fields Example 

 
 As described above in the project objectives, the medic’s UI has multiple functionalities. The 
figures below are examples of the interface at various stages in the UI usage. The first image below is the 
page to which the UI opens. It contains the information of the current most urgent victim - if there are 
multiple victims with that same severity rating, the most urgent victim is then the closest of those with 
that rating. From here the medic can mark the victim as completed and see a new one, or they can go to 
the all victim table view. 

 
Figure 11. Medic UI Single Victim View 

 
Figure 12 is the list of all victims about which the medic currently has information. The column 

names are all selectable; if a category name is selected, the table will sort in ascending or descending 
order of that category. If the category name is clicked once, the table displays the information in 
descending order, and if you click it again, the table switches to ascending.  
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Figure 12. Medic UI All Victim Table View 

 
If you select one victim from the table, you can then use the buttons at the bottom of the page to 

go back to single victim view mode, a less overwhelming view for the medic. The medic is also able to 
complete a victim from this view. 

The final page view is the table of completed or assisted victims. These are all the victims that 
have been “completed” and are available for review of who has been assisted and where they were, 
possibly for post catastrophe analysis. 
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Figure 13. Medic UI Completed Victims Table View 

 
Technical Description 

Below we break down the technical decision making that went into the construction of the device. 
Hardware and software sections are divided accordingly. 
 
Hardware 
 To demonstrate the functionality of our communication system, we utilized two ROSbot 2.0 
robots by Husarion - one serves as an exploratory robot to locate and assess patients and the other as a 
hub robot, routing information between the exploratory robot and the medic. These robots were provided 
by the AMR lab and were chosen for their integrated LiDAR sensors and compatibility with the lab’s 
Vicon system, which enabled the retrieval of location data. Additionally, the robots were appropriately 
sized, being small enough to navigate the AMR lab while still large enough to carry the communication 
system.  

The robots’ LiDAR systems detect obstacles in their path, while the Vicon motion capture 
cameras provide precise positional information. Communication between humans and robots is facilitated 
via a ZigBee communication protocol, selected for its reliability, low-cost, and ability to cover a large 
communication radius with minimal power consumption. This wireless protocol was particularly suitable 
for our project, which is intended to be used in high-risk or power-deficient environments. Furthermore, 
ZigBee’s mesh network further enhances efficiency by enabling information to be routed and rerouted 
through nodes [3].  

To implement ZigBee, our team selected the Digi XBee 3 ZigBee 3 RF Module. This module was 
chosen for its micro-form factor, which minimizes bulk and weight, making it ideal for smaller robots or 
drones. Additionally, the Digi XBee 3 can be configured for ZigBee using the Digi XCTU software and 
directly programmed with MicroPython, an implementation of Python 3 designed to run on embedded 
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hardware [4]. These features eliminate the need for a separate microcontroller, simplifying the design 
while reducing bulk, power consumption, and cost.  

Data transmission between components was achieved using UART through the microcontroller 
pins specified in the Digi XBee® 3 RF Module Hardware Reference Manual [5]. The XBee 
microcontroller does not accept USB inputs so we utilized a USB to UART converter chip to enable 
transmission and reception of serial communication data between the robot and communication system. A 
XBee 3 development board was used to connect the microcontroller to personal laptops for programming. 
Once the required files were uploaded to and tested on each XBee 3 microcontroller, the devices were 
connected to a printed circuit board (PCB) for final operation. 

The through-hole XBee module was chosen for this project primarily due to its flexibility. This 
model allows the XBee to be easily attached and re-attached to the board for programming updates and 
PCB re-design. The alternative surface mount option would require the XBee microcontroller to be 
permanently connected to the PCB, making the testing and debugging process very difficult.  

According to the XBee microcontroller hardware reference manual [5], the power requirements 
for the module are as follows: 

1) Supply voltage range: 2.1V to 3.6V 
2) When using a switching regulator, the switching frequency must exceed 500kHz, and the voltage 

ripple must be below 50mV 
The manual also provides the XBee microcontroller pinout description and recommends placing three 
capacitors of varying values near the VCC connection to reduce noise. Using this information, two GPIO 
pins, 13 and 15, were chosen to connect to the mode switch, as they were not already being used for 
communication protocols and were conveniently located for wiring. A reset button was also connected to 
pin 5, the designated reset pin (see Appendix B for full PCB schematic). 

Using the XBee microcontroller’s power specifications, a buck converter was designed. The 
chosen converter, Texas Instruments’ LMR14206, was selected for its high output current capacity, wide 
input/output voltage range, high switching frequency, compact size, and cost-effectiveness [6]. 
The input and bootstrap capacitor values were provided by the datasheet, while the resistors were 
calculated using the following equation from the datasheet: 

 𝑅
1

= 𝑅
2

* (
𝑉

𝑜𝑢𝑡

0.765 − 1)
Initially, the resistor values selected were 24k and 8.2k. However, to reduce noise, these values were 
adjusted. Setting R1  to 1kΩ resulted in R2 being 3313Ω, which was rounded down to the practical value 
of 3.3kΩ. Following the buck converter datasheet instructions, the ripple current was set to be 30% of the 
DC output current (600mA), yielding a ripple current of 0.18A. Using a 12V maximum input voltage and 
a 3.3V output, the inductor value was calculated with: 
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Using the numbers provided above, a 10μH inductor was calculated. The output capacitor was determined 
based on a maximum allowable voltage ripple. Assuming an Effective Series Resistance (ESR) of 0.1 for 
a 100μF capacitor, the voltage ripple was calculated with: 

 𝑉
𝑟𝑖𝑝𝑝𝑙𝑒

= 𝐼
𝑟𝑖𝑝𝑝𝑙𝑒 

* (𝐸𝑆𝑅 +  1
8*𝐹

𝑆𝑊
*𝐶

𝑜𝑢𝑡
)

At a switching frequency (FSW) of 1.25MHz, this yielded a theoretical ripple of 2mV. As the capacitor 
datasheet did not list the ESR value, it was found experimentally. It was then discovered that the 
purchased capacitors had an ESR of 0.3, resulting in a ripple of 54mV, exceeding the maximum of 50mV. 
Fortunately, the bypass capacitors at XBee VCC helped to reduce this ripple to approximately 40mV. 
Lastly, a 60V 1A diode was selected was chosen using the formula: 

 𝐷
𝑣𝑜𝑙𝑡𝑎𝑔𝑒 

=  0. 25 * 𝑉
𝑖𝑛

+ 𝑉
𝑖𝑛

The micro USB port was chosen for its simplicity, ease of integration, and extra shield pins for 
stability [7]. The USB to UART protocol converter chip enables communication between the host device 
and the XBee microcontroller. Powered by the USB bus (5V), this chip was selected for its compatibility 
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with the board design. Reset functionality is managed via a power-on reset configuration, initializing the 
chip whenever power is supplied. A 12MHz crystal oscillator provides an internal clock for the chip, 
ensuring proper detection by the host device. 

An unexpected problem with the PCB design arose due to the XBee microcontroller ground pin 
being assigned to ‘GND’ instead of 0, causing it to be in a different net. Thus, when the XBee 
microcontroller was plugged into the system, it did not function as expected. To remedy this, this pin was 
shorted to a nearby ground pin. The figure below illustrates this problem; the nets are shown in green 
boxes. 

 
Figure 14. XBee Microcontroller Ground Pin and Board Ground Discrepancy 

 
Another issue occurred with the USB to UART chip, where the bypass capacitor was mistakenly 

connected in series with the VCC pin instead of being connected to ground (see Figure 15 below). This 
was resolved by reconnecting the capacitor to a nearby ground net and shorting the 5V connection to the 
chip VDD pin, enabling the USB to UART chip to be powered correctly. This new connection is shown in 
Figure 16 below.  

            
                  Figure 15. Incorrect Bypass Connection                          Figure 16. Corrected Bypass Connection 

 
The Adafruit BME680 temperature, humidity, pressure and gas sensor was selected for its ability 

to measure environmental parameters, its flexibility, and overall low cost. This data is then used as an 
additional metric for determining severity of a victim in the field. The Adafruit BME680 is a development 
board that incorporates a Bosch surface mount sensor with a voltage regulator, ports for a STEMMA QT 
connection, and through holes for I2C and SPI communication protocols [8]. STEMMA QT is a special 
four wire cable that enables I2C communication; it was used to initially burn the boards. The header pins 
were later soldered in to create a secure connection between the sensor and the PCB breakout pins. 
Finally, in order to set up the sensor and correctly collect environmental data, the MicroPython code from 
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a git repository called “Pure MicroPython Bosch BME680 sensor driver” from GitHub user Salvatore 
Sanfilippo (username - ‘antirez’) was repurposed [9]. 
 There are 2 PCB and sensor holders, with slightly different dimensions but both suitable for the 
XBee microcontroller and sensor system. The dimensions of the final holder are 97.5x73.0x20.0 mm. The 
first version of the final holder had no excess space for the microUSB port and cable, so in the second 
design, the opening was widened. The first version also fit tightly with PCB due to tolerances with 3D 
printing, and a corner of the XBee microcontroller made contact with the wall. While this was not a fatal 
error, in the final design, the height of that wall was dropped and the inner cavity was slightly widened. 
Despite the snug fit with the PCB and sensor, both prototypes were functional and were used for full 
system testing and the final demonstration.  
 

 
Figure 17. First Edition of PCB Holder 

 

 
Figure 18. Second Edition of PCB Holder 

 
Software 

The Robot Operating System (ROS) was used to program the ROSbots from the AMR Lab. ROS 
was selected not only for its compatibility with the provided robots but also for its flexibility, code 
reusability, extensive pre-existing libraries, and open-source software [10]. To write and interface code 
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with ROS topics, services, and parameters, we used RosPy, a Python client library for ROS [11]. Python 
was chosen for its ease of use and team member familiarity. Additionally, Python code could be easily 
translated into MicroPython, which was utilized to program our XBee 3 microcontroller.  

To implement the robot’s go-to-goal functionality, we designed an artificial potential fields 
algorithm within ROS. This algorithm was selected due to its compatibility with the ROSbot’s LiDAR 
sensor, enabling the robot to navigate around obstacles while moving to its designated goal. The potential 
fields algorithm subscribed to a ROS node linked to the robot’s LiDAR to detect objects and measure 
distances. Additionally, it subscribed to a Vicon node to obtain positional data for both the robot and its 
target destination. Vicon consists of 8 cameras positioned around the upper corners of the AMR lab. With 
these cameras, in combination with a complex and intelligent location processor, Vicon is capable of 
accurately tracking and publishing the location of multiple items in their field of vision. 

 
Figure 19. Potential Fields Example 

 
For our code architecture, the project was organized into modular Python files and classes, each 

focusing on specific functionalities, such as exploratory and hub robot logic, message transmission and 
reception, medic logic and user interface, and robot interaction. This separation of roles and code 
decoupling was selected because it enables functional independence of the code, enhancing the 
refactoring, testing, and code expansion process. At the core of this structure was a Robot Logic interface, 
which organized and compiled message interpretation, command transmission to robots, and interaction 
between almost all classes. To differentiate the functionality between the hub and exploratory robots, we 
developed two specialized classes, inheriting from the Robot Logic interface, both dependent on a 
ROSNode class. Additional classes were implemented for ROSNode, Medic Logic, and a 
MessageSenderReceiver, which enabled communication with the ROSBot, presented information to 
medics, and wirelessly transmitted and received messages, respectively. The interaction of all of these 
classes can be seen in Figure 20 below. After comprehensive testing with Pytest and the XBee 3 
microcontroller development board, the Python code was adapted to be compatible with XBee’s 
MicroPython environment. Using the mpy-cross compiler utility to save memory on the microcontroller, 
the code was pre-compiled into MicroPython files and subsequently uploaded to the XBee 3’s Files 
Systems Manager for further testing.  
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Figure 20. Code UML Diagram 

 
XCTU 
 To configure, upload, and test code on the XBee 3 microcontroller, we relied on Digi’s XCTU 
software. This tool, provided alongside the microcontroller, facilitated device configuration and the 
establishment of a ZigBee mesh network. Digi XCTU also allowed us to run code directly in the XBee 3’s 
MicroPython terminal, a capability especially useful during debugging.  
 To put code onto the XBee microcontroller and run any code, we used a development board and 
later our PCB [12]. The Radio Configuration (shown in Figure 21), is intense as it requires setting pins 
and enabling and disabling various parameters for I2C or UART connection. To access the MicroPython 
terminal, we enabled MicroPython REPL in the API Enable section. To enable the mesh network, we 
verified that all ZigBee firmware and functions were updated to XBee 3 ZigBee. For a more thorough 
view of all the settings, see Appendix D.  
 

 
Figure 21. MicroPython REPL and UART Baud Rate Setting in XCTU  
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Test Plan 
 The testing of the device was separated into three steps: the board testing, the software testing, 
and finally, the full system testing. The division of testing helped maximize the functionality of each 
component before conducting the full system testing. This allowed us to more quickly narrow down 
problems to specific parts of the system.  
 
Hardware 

To thoroughly verify the hardware functionality, the PCB was split into 3 subsections. Each 
section was initially tested in isolation.  

The first subsection was the buck converter. To set up testing, an AD2 was used to supply power 
and measure output waveforms. The supplies were set to 5V, and the board ground plane was connected 
to AD2 ground to establish a common ground. The 3 main criteria used to verify the buck converter 
function were a measured average voltage of 3V, a voltage ripple under 50mV, and a switching frequency 
of 1.25MHz. A measurement channel was connected to the output node of the buck converter and the 
oscilloscope was used to take the measurements. The oscilloscope's measurement tool was used to record 
the peak-to-peak voltage (voltage ripple), average voltage, and frequency. This is shown in the 
measurement tab in Figure 22. Verifying the voltage ripple and frequency for the buck converter quickly 
proved difficult. The voltage ripple was consistently higher than the 50mV max, and the frequency was 
lower than the expected 1.25MHz. To combat these issues additional output capacitors were added in 
parallel to help decrease the ripple. The original resistors were also switched out for ones with lower 
resistance values to help lower noise. The experimental verification of the buck converter is shown in the 
waveform image below (Figure 22).  

 

 
Figure 22. Buck Converter Waveform Verification 

  
The second subsystem was the USB to UART chip. To set up testing, the AD2 was used to 

simulate UART communication. A loopback test was conducted to verify that the Tx and Rx channels 
were wired correctly. To do this a message was sent through the Tx channel and received in the Rx 
channel without connecting the board to a computer. This result is shown in Figure 23.  
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Figure 23. Loopback Test Result  

 
To verify that messages could be successfully sent through the USB to UART chip, the Tx and Rx 

XBee sockets were connected to the Tx and Rx channels of the AD2. When the board is connected to a 
computer via the micro USB port, the computer is supposed to recognize the connection and create a 
virtual port. This was not successful during initial testing and an oscillator needed to be added to the USB 
to UART chip to help establish a clock signal within the chip. This modification allowed the computer to 
recognize the board and create a virtual port when testing the second iteration of the PCB. Using the 
computer terminal, the virtual port was configured to allow messages to be written and read. Messages 
were successfully sent and read from the terminal to WaveForms, verifying the functionality of the chip 
(verification shown in Figure 24). Lastly, the chip was configured with a baud rate of 9600 using the 
downloaded configuration utility. 

 

 
Figure 24. USB to UART Chip Verification 

 
 

The third subsystem was the sensor. We first had to burn the sensor before integrating it with our 
system, a process that included running the sensor for a total of 48 hours. The sensor was then connected 
to the XBee microcontroller via the development boards. Using the MicroPython terminal in the XCTU 
software, data was read from the sensor and displayed. A can of compressed air was used to verify the 
sensor's ability to detect harmful gasses. This process verified the sensor function as well as the XBee 
microcontroller’s ability to interface with the sensor. Within the MicroPython terminal, the XBee reads 
the correct address of the sensor, and can access the data that the sensor collects and sends it back to the 
computer. 
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Figure 25. Verification of XBee Microcontroller and Sensor Interaction 

 
After verifying these 3 subsystems, full system testing was conducted. The step-by-step test plan 

used for the PCB verification can be found in Appendix C.  
 

Software 
The software testing was first completed using Pytest. Pytest is a python framework that enables 

small, scalable testing with function and class stubbing capabilities [13]. This was used to test each 
individual function within every class. Each function was tested with a variety of possible inputs; 
dependencies on other classes, packages, or functions were stubbed, which ensures that only the desired 
function is being tested. This testing allowed us to debug any individual functions. After this stage was 
complete, we continued on to complete integration testing with the XBee microcontrollers. The XBee 
antennas were tested via a development board connected to the laptop. The code was run from our laptops 
and transmitted to the XBee microcontrollers via USB-C connection. These tests ensured the interactions 
between the classes and functions were working properly. At this same level, we tested the user 
interaction with the medic UI - this involved both valid and invalid UI interactions to identify and 
eliminate potential bugs. Throughout these two stages, no major redesigns were needed as a result of 
found bugs.  

Finally, the last component of software testing was uploading the code onto the XBee 
microcontrollers and testing their interactions without manual triggering from a laptop. This step 
identified issues with the MicroPython transferability of our code and tested all automatically triggered 
scripts. Numerous changes were made so that the code was compatible to run on the XBee 
microcontrollers themselves. First, the XBee microcontrollers needed to be reconfigured to run in 
MicroPython mode rather than Application Programming Interface (API) mode, which was used to test 
the initial Python code. When transitioning from Python to MicroPython, XBee devices no longer needed 
to be initialized, opened or closed. We also had to replace the send_data() and read_data() methods from 
the XBee Python library with the MicroPython methods transmit() and receive(). Additional changes 
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included adjusting the UART technique, as the expected class was not available on the microcontroller. 
Instead of “import UART from machine”, we used the system stdin and stdout, the Digi recommended 
UART interface. While making the code a little more complicated, it ultimately solved our problem, 
enabling the essential UART connection that we needed for success.  

 
Full System 
 Full system testing was the culminating test of our entire device and focused on the interaction 
between the PCB, the new sensor, the XBee antenna and microcontroller, and the robot itself. Our testing 
procedure was to first test that the boards could send a message independent of a XCTU interaction. Upon 
this initial test, some major bugs were found with the power supply into the XBee 3 itself. After various 
tests, we determined that there was an issue with the Xbee’s ground, resulting in the XBee microcontroller 
not receiving the power it needed to function. In order to fix this we shorted the Xbee’s ground over to 
another nearby ground source. In the second stage, we assessed the UART capabilities of the PCB by 
sending messages from the PCB and reading them through the terminal. After solving the UART import 
issues during software testing, as described above, this step went quickly. The third stage was connecting 
the devices to both the robots and to the laptop. We ensured that both devices were acknowledging each 
other and receiving the desired messages. Once confirmed, we were able to continue with scenario 
testing. 

Several combinations of potential scenarios were constructed, each with a main actor as the focus 
of the test: either the exploratory robot, the hub robot, or the medic. Each test had a combination of 
finding multiple low level victims, finding an urgent victim, and either finding or not finding another 
robot to communicate this information with. This effectively tested all routes through the decision tree, 
ensuring that all potential code outputs were properly carried out by the robot and antenna. This testing 
process was slow and tiresome. One issue that we encountered was the variability in the UART 
transmission from the PCB. A pain point of these problems was discovered to be our print statements 
within the microcontroller code. Because we are using stdout for UART transmission and all print 
statements are also sent to stdout, several bugs occurred when the variable messages were received by the 
robots. Additionally, every minor change in the code would require it to be converted to MicroPython 
then uploaded to the microcontroller, a process taking about 60 seconds. While this does not sound like a 
long time, after adjusting several changes, the time quickly accumulated. Another issue we faced was the 
functionality of the robots that we were using. Specifically, one robot that we had been using stopped 
functioning on the final day of testing, requiring us to shift the entirety of the code to a new robot. This 
new robot also required setup and was dealing with its own internal issues that we then had to fix. 
Ultimately, the full system was proved functional. 
 
Physical Constraints 
 In the following sections, we break down the design and manufacturing constraints, the tools we 
utilized, cost constraints and their effects on the prototype and a production version, and any 
considerations that would be necessary for a production version of the design. 
 
Design and Manufacturing Constraints 

We faced the following design constraints for our project: 
1) The battery life of the ROSbot 
2) Designing a stable power supply 
3) Ensuring signal integrity on the PCB 
4) Robot size, thus affecting the size and shape of the PCB  
5) Computational capability of the ROSbot onboard system 

 
The battery life of the ROSbot is extremely short. So, to avoid draining the robot’s battery life, 

our XBee microcontroller and PCB design had to consume as little power as possible. At the end of the 
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PCB design process, we dealt with power supply and signal integrity issues, where the power supply 
coming out of the buck converter was unstable in terms of voltage ripple and frequency. We solved this by 
decreasing the voltage divider resistor values, reducing noise in the signal output and increasing stability 
and robustness of the output waveform. Lastly, we had to design the PCB and the PCB holder around the 
dimensions of the available flat surfaces on the ROSbot, the height of the central lidar, and the various 
Vicon triangulation markers on the robot. 

We dealt with multiple manufacturing delays and setbacks over the course of the project. These 
constraints included shipping timelines set by PCB manufacturers and component companies, as well as 
the turn around time of the electronics company who soldered our surface mount components. The main 
limitation for our project was the shipping delays and inconsistent communication from PCB 
manufacturers. Even when we paid for expedited shipping, manufacturing the boards took much longer 
than expected. Additionally, they did not inform us when the boards had shipped, requiring us to 
consistently follow up for status updates. With a short timeline, it was often necessary to get the PCBs 
back within a week of submitting the design, and these delays resulted in a slow down in our testing and a 
decrease in our available budget as we ultimately paid for faster shipping to minimize the delay we 
experienced.  

An additional issue that was discovered, as discussed above, was the computational capacity and 
speed of the onboard ROSbot microcontroller. After designing and perfecting the block color recognition 
code, it was found to be functionally too slow when implemented only on the ROSbot’s internal 
microcontroller. There was a greater than 60 second delay between arriving at a location and finally 
seeing and recognizing the color of the block. For demonstration purposes, this was too great of a slow 
down, so the complexity was extrapolated away by assigning severity levels to each target location. 
Additionally, issues arose from the differences between MicroPython and Python’s capabilities. The 
documentation online is extremely variable about what is possible in MicroPython, ultimately leading to 
many instances of debugging and needing to generate alternative implementations of a certain piece of 
code. 

 
Tools Utilized 
 Multiple tools were utilized over the course of the project, each solving a different problem and 
assisting with a separate part of the project. 

For the preliminary design of the buck converter, we utilized the TI calculator available on the TI 
site for voltage regulator design. For final buck converter calculations, we used Python in Visual Studio 
Code (VSCode). A script was written that calculated the component values of the inductor, capacitors, 
and resistors based on input and output voltage values and other parameters (ripple current, voltage ripple, 
ESR, etc). PSpice for TI software was used to simulate the buck converter before physical implementation 
[14].  

We heavily utilized KiCad for its schematic editor and PCB editor. We designed all components 
of our original circuit schematic in KiCad, and used the available components to finalize our PCB for ease 
of designing footprints and simulation. As we were previously only familiar with Multisim and Ultiboard, 
using KiCad and all of its features was a learning experience, but ultimately the software was intuitive, 
smooth, and worked well for our needs. 

We also used the Digi XCTU IDE software to connect to and configure the XBee microcontroller 
and antenna (set the baud rate, upload and test code), and utilized the MicroPython terminal within XCTU 
to verify that the sensor (connected by I2C) successfully outputted temperature, humidity, and gas 
information. This IDE was the only free application that offered all of the necessary tools for ZigBee 
setup. Learning to use and work with XCTU was difficult, since it is a relatively slow and outdated piece 
of software, but it was the best option for our needs. To construct our code, we had to understand the 
syntax for MicroPython, learn how to convert Python to MicroPython, and had to be aware of 
MicroPython’s and the XBee microcontroller’s computation constraints.  Digi MicroPython 

25 



documentation was often consulted, and mpy-cross compiler utility converted Python to MicroPython 
while saving memory. 

The group utilized GitHub as an easy means of sharing and storing code. This was extremely 
helpful over the course of the project, as multiple people were working on the software at a given time. 
Some of the best features of GitHub include branching, which allows different users to have a separate 
version of the code that they are working on. This lowers the risk of destroying the source, or main, 
branch and also eases the incorporation of new code into another person’s code base. We also found the 
ability to view past versions imperative, as occasionally some code would be overwritten or removed by 
another user. 

To configure the USB to UART conversion chip with the needed baud rate, a configuration utility 
was downloaded from the microchip technology website [15] . This again was the best choice for our 
needs because it had all of the desired capabilities, as it was made by the manufacturer. 
  We utilized the open source Robot Operating System (ROS) to access robot sensor data, control 
motion, and determine positioning. Employing ROS required learning its architecture, including the ROS 
Master, ROS Messages, message buses referred to as ROS Topics, and ROS Nodes that can subscribe and 
publish to these topics. Additionally, we had to configure the network to link our code with the robot and 
learn the ROS specific command line tools, such as roslaunch, which enables the execution of packages.  

Lastly, we used TinkerCAD to design a custom holder to attach the PCB and sensor on top of the 
robot. Due to constraints with MacOS, TinkerCAD was the strongest CAD option. It provided a simple, 
online interface for designing the custom PCB holder according to robot and PCB dimensions. It also 
allowed the files to be properly exported for printing on the 3D printers in the UVA Shannon Library 
Makerspace and National Instruments (NI) Lounge. 
 
Cost Constraints 

Despite our best efforts, delays and unpredicted costs arose. Some of the cost constraints that 
affected the price of our final prototype, along with the projected price of a production version, were the 
cost of the XBee microcontrollers, the price of the PCBs and components, and the price to solder smaller 
surface mount components, mainly our voltage regulator, UART chip, and microUSB port. The XBee 
modules were about $23 each, but after purchasing multiple, these began to eat into the budget. While we 
ordered the first iteration of our PCBs from OSHPark, which was a relatively inexpensive company, we 
later switched to Advanced PCB, as it is a more reliable vendor for PCB manufacturing. This reliability 
came with higher associated costs, especially for shipping. Shipping accounted for a significant portion of 
our budget. We also had to account for PCB component prices, along with the cost to solder three surface 
mount components per board. While we had originally hoped to solder all components ourselves, upon 
arrival we realized the surface mount parts were too small to be done by anyone without professional 
experience and equipment. Outsourcing the surface mount components was relatively inexpensive, as 
were many of the components, but when producing a small quantity of boards, the unit price per board 
added up between the cost of manufacturing, shipping, and soldering.  

Ideally for a production version the budget would not be so tight. As we describe in the following 
section, several improvements would need to be made on the board in order for it to be ready for 
manufacturing, including increasing the quality of materials and purchasing a higher quality Xbee. In the 
Costs section later in the report we describe the project cost of a mass produced product, coming out to 
between $66-76. While this price may seem high, the product is extremely adaptable and durable, making 
it capable to adjust to any new situations the devices might be introduced to. To maximize the efficiency 
of the system, a more powerful Xbee can be purchased, further increasing the price.  
 
Production Considerations 

To make a production ready version of this prototype, several improvements would have to be 
made. The PCB size, components, and layout should be optimized for ease of use; we have already taken 
steps towards this with the incorporation of breakout pins, along with power and mode switches. We 
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would improve the PCB component and chip labels to maximize consistency and readability for the user. 
We would also have all components professionally soldered, or invest in a resolder oven to make 
soldering individual components much faster, decreasing labor costs. Additional time would be spent 
testing the board and all components, and conservative component values and components with extremely 
low tolerances and ESRs would be used to decrease possibilities of noise or error. These conservative 
values would also help account for host device differences so that the consumer does not have to test or 
troubleshoot the board. The production device would simply be purchased, plugged in, and ready to go. 
We would create a comprehensive and digestible schematic, datasheet, and how-to guide to accompany 
our PCB-microcontroller system, with notes regarding components and troubleshooting options, as well 
as setup. Included in this how-to guide would be steps to run the medic UI for the first time and the link to 
an open source repo of the code, so that users can make adjustments that they see fit. Finally, an ideal 
adjustment would be to make the code running on all robots available for other robot operating systems as 
well, rather than just ROS. This would be a massive undertaking, but would maximize the product’s 
audience.  

 
Societal Impact 

The robot communication system is part of a broader effort to improve the efficiency of triage 
during mass casualty events. Ideally, this technology will reduce the stress on first responders by 
providing automated assessments, allowing them to perform their jobs more efficiently while also 
enhancing victim care through initial one-on-one evaluations. To effectively assess the societal impact of 
this technology, its effects on individuals, benefits, risks, and economic implications must be considered. 

First responders are the ideal end users for this project. Since they are the primary users, first 
responders will be interviewed to determine how this technology can best assist them during mass 
casualty incidents. These types of conversations are very important to the future development of this 
project, as Lieutenant Colonel Joel Herness answered questions regarding triaging logic and gave advice 
regarding practical future implementation of this system. He mentioned the importance of keeping full 
control of decision making and treatment in the hands of the field medic. Because of this, it is important 
to note that this technology is not designed to provide care but to support it, thus posing no risk of 
replacing first responders or threatening the current efficiency of their work. He expressed excitement for 
this project as robots have the potential to complete tasks more efficiently than humans can: carrying 
bodies, entering combat or contaminated zones, and covering ground in efficient times. 

The communication system streamlines the transfer of data between the robots and first 
responders, improving coordination and response time during a mass casualty event. This efficient 
communication allows first responders to make more informed decisions while reducing their physical 
and cognitive load. Additionally, patient care is enhanced, as each victim will receive an individual 
assessment, regardless of their proximity to the majority of victims. 

While the potential positive impacts are numerous, this technology does present significant 
challenges. The first concern is privacy. As personal data is stored and transmitted via the communication 
devices, there is a risk of the devices being stolen or hacked, leading to the unwanted release of personal 
information. Allowing autonomous robots to make triage decisions also raises the risk of exacerbating 
existing biases in healthcare, particularly if AI is involved. If the data used to determine health status is 
biased against marginalized groups, it could result in inaccurate assessments. This issue was found in 
Watson for Oncology (WFO). WFO is an artificial intelligence used to produce evidence-based treatment 
for oncologists [16]. This technology has been found to not be suitable for use on Chinese patients, as the 
AI was trained with a small dataset of cancer patients that did not reflect diverse patient populations. 
Additionally, robots are unable to obtain consent from patients in the same way that first responders can, 
creating uncertainty around how consent will be managed. Furthermore, hardware errors due to inclement 
weather or malfunctions could potentially injure patients and worsen their conditions. In a study done by 
the Canadian Urological Association Journal, 4.97% of robotic surgeries performed over a 3 year span 
logged robotic malfunctions [17]. For this project, robots are not performing a high level of medical care 
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to potential victims. This data is relevant in expressing the possibility of hardware error of robots in the 
medical field, thus validating the potential concern. 

From an economic perspective, the financial burden of this technology could potentially fall on 
the victims it aims to assist. Hospitals may choose to impose additional fees for robot assessments 
alongside regular first responder fees. Hospitals could also encounter a financial burden due to this 
technology, as they would possibly need to train staff to operate, maintain, and interpret data from triage 
robots. While the end user is clear, the target buyer is not. Whether this technology is purchased by the 
government, hospitals, or private emergency services, the financial impact on victims could vary 
significantly. 

This product would be the most impactful in countries that encounter a lot of natural disasters. 
The XBee module used in this project is only certified for use in 7 countries [18], significantly limiting 
the product's usability in countries that might need it the most. This raises ethical concerns about 
equitable access to life-saving technology and highlights the need to address certification barriers to 
ensure broader implementation in disaster-prone areas. 

 
External Standards 

The PCB was manufactured by Advanced Circuits. This company complies with the IPC 
Acceptability of printed boards standard [19]. This standard was considered during the design phase to 
ensure the PCB met industry requirements for quality and reliability. The buck converter and XBee 
module used in this project both comply with ROHS environmental standards, which influenced the 
selection of components to ensure an environmentally safe design [20]. This was especially important 
since this system would be interacting with harsh environments. The XBee complies with FCC standards 
for antennas, which is important to ensure that this system can be used and tested in the United States [5]. 
The “IEEE Standard for Low-Rate Wireless Networks” outlines the regulations for low power, low cost 
wireless communication devices, including the Xbee [21]. This standard guided the selection and 
implementation of the XBee module to ensure compatibility and efficient performance along with the 
project's communications requirements [22]. The USB port is compatible with the USB 2.0 standard, 
ensuring reliable data transfer and broad compatibility with multiple devices. This standard was 
considered during the design phase to guarantee proper functionality and support the required data 
transfer rates for the project.  

 All code conformed to general Python standards, which include indentation, naming conventions, 
comments, and file organization [23]. 
  
Intellectual Property Issues 

Our project integrates existing technologies in an innovative way to demonstrate a proof of 
concept. Specifically, we designed a PCB and developed software for a ZigBee communication device to 
enable communication between autonomous robots and humans. ZigBee, an open standard that operates 
on the IEEE 802.15.4 specification, is not patented. While our capstone design focuses on ZigBee-based 
communication and networking, the broader goal of the project is to enable robots to operate 
autonomously even when out of range of other robots or humans. Patent US20210302956A1, held by 
Intel Corp, addresses challenges in wireless communication methods for AMR, such as network 
performance inconsistencies caused by interference, shielding, and roaming, with applications in AMR 
path planning [24]. Future goals of our project include developing algorithms for AMR motion planning 
that can predict the locations of patients and other robots. However, unless we create new algorithms or 
implement a novel process for using these algorithms, existing path planning methods may limit 
patentability.  

Another related patent, US8708903B2 by Bao Tran, describes a wearable device for recording 
patient data, analyzing it, and transmitting it to a remote individual such as a nurse, doctor or other 
caregiver [25]. While this design overlaps with our project in terms of monitoring and transmitting patient 
information, Tran’s design does not incorporate path planning logic for autonomous mobile robots. 
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Finally, patent US11381271B1 granted to Gary M. Zalewski and Albert S. Penilla explores methods to 
harvest and store power to enable wireless communication devices to sense, process, and send or receive 
data [26]. In contrast to our device, which routes power from the robot battery using a PCB, this device 
harvests power using a power pump and stores it in a storage cell. Since this design aims to wirelessly 
transmit information, it could potentially be useful for reducing the rate at which robot batteries are 
drained in future iterations of our communication system. All of the mentioned patents are dependent 
claims as they cite other patents that contributed to their design. 

For our code design, we leveraged existing client libraries such as RosPy and utilized GitHub 
resources to integrate additional sensors with our PCB and microcontroller. Given the existing patents on 
AMR path planning, wireless networking, and data transmission, it is unlikely that our project qualifies 
for patent protection. Its primary innovation lies in integrating components through our software and PCB 
design rather than inventing a new device or process. In the 2007 Supreme Court case KSR v. Teleflex, it 
was ruled that combining elements, techniques or devices in a way where each component performs its 
intended function does not meet the criteria for patentability [27]. While our project integrates 
components in a novel way, the individual components operate as designed. Therefore, our 
communication system likely does not satisfy the requirements for a “combination” patent.  

 

Timeline 
The team’s division into two sub-teams worked remarkably well in terms of parallel work and 

minimizing stoppages from one sub-team’s delays. There were a few delays that occurred over the course 
of the semester which are discussed below. Initially noticeable is our transition to a new Gantt chart tool. 
It was not originally recognized that the tool that we were using was on a trial basis. Instead of paying for 
the subscription, we copied all tasks onto another gantt chart and continued use from there. 

Figure 26. September 9 - 28 Gantt Chart Comparison  
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In the above photo you can see a comparison of the beginning weeks of research and planning. In 

the beginning, we stayed on schedule as it was still near when we created our projected timeline. As we 
got farther from the gantt charts initial construction, the projected timeline became less accurate, as we 
will see below.  

 
Figure 27. September 24 - October 8 Gantt Chart Comparison 

 
 In the images above, larger differences in the anticipated versus actual timelines can be seen. 
Besides a reordering of the events, certain tasks took much longer than initially planned, specifically 
designing the go-to-goal system. Additionally, theoretical PCB board design began close to a week later 
than initially predicted, but did not take as long as was initially allotted. 
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Figure 28. October 1 - 27 Gantt Chart Comparison 

 
 This section of the Gantt chart displays when our plans were the least accurate. Starting at the top, 
analytical board design started on time but took longer than expected, while the board design and 
simulation testing were completed quickly and were much more in parallel than anticipated. One of the 
largest delays or slow downs in the plan was the microcontroller code, being completed over the course of 
nearly three weeks instead of the initially allotted 1.5 weeks. The midterm design started on time but the 
deadline was earlier than originally logged, resulting in its quicker completion. Updating of the 
documentation was done on time, and can be seen in the top portion of Figure 29 below. 
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Figure 29. October 19 - November 10 Gantt Chart Comparison 

 
 For this section of the Gantt chart, we created more detailed tasks as we progressed. The largest 
delay over the course of the project occurred with the arrival of the PCB. Due to manufacturer issues, the 
board arrived close to 3 weeks after it was ordered, roughly 2 weeks later than expected. This caused a 
delay in board testing, board reordering, and full system testing, as seen in the following figures. 
Ultimately this put us about a week behind schedule. Code testing started on schedule but exceeded the 
initially allocated time frame because more comprehensive testing functions were developed for each 
section of the code than originally anticipated. 
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Figure 30. November 10 - December 4 Gantt Chart Comparison 

 
The week-long delay from manufacturing can again be seen here, with the new board ordered 

eight days after planned. This again delayed full product testing, along with some of the final deliverables 
of the project. It was discovered that there was no poster assignment due, even though it was on the 
original timeline, which increased our time for other tasks. While waiting for the second iteration of 
boards to be delivered, we outlined the final video and filmed two sections of it.  
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Figure 31. November 21 - December 7 Gantt Chart Comparison 

 
The final section of the project can be seen above. The delay in the original board delivery can 

again be seen, along with a much longer final testing window. Upon delivery of the board, we had to 
identify a faulty ground within the Xbee header pins. Due to the resources required for board testing and 
board adjustments, little work was completed over Thanksgiving break. Instead during that time our team 
focused on the final report. Although it took up until the last day, we were able to do a full system test and 
verify our system. Despite the delays, we were able to maximize our time from delays and use it to begin 
work on the final report ahead of time, maximizing our time available to work on the device at the 
conclusion of the semester. 
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Costs 
The tables below outline our budget for the entire semester. A portion of our funding, specifically 

for ordering the final PCBs, came from Professor Bezzo’s lab. This allowed us to be under budget for the 
allotted Capstone budget, but over budget in terms of total spent. A specific component and supplies 
breakdown is given in Appendix A. 
 

Date Item(s) Total Price Funding Source 

9/25/2024 2 XBees 47.04 Capstone Budget 

10/8/2024 2 Development Boards + 20 XBee 
Header Pins 74.2 Capstone Budget 

10/8/2024 2 Adafruit Sensors 46.42 Capstone Budget 
10/9/2024 Parts order 114.37 Capstone Budget 

10/15/2024 Osh Park 3 PCBs 45.15 Capstone Budget 
10/27/2024 Dev Board + XBee $50.76 Capstone Budget 
11/14/2024 Mouser parts order 31.4 Capstone Budget 
11/14/2024 Canned air 13.15 Capstone Budget 
11/04/2024 3W Manufacturing( 1st board iteration) 5.9 Capstone Budget 
11/21/2024 3W manufacturing( final Board iteration) 6.8 Capstone Budget 

 Advanced PCB Final Boards 122.41 Prof. Bezzo's Lab 

Total Spent 435.19  

Budget 
Remaining: $64.81   

Table 2. Budget Overview 
 

When considering the cost to mass produce our final product, the unit prices drop significantly. 
For example, Mouser and Digikey offer lower prices for bulk purchases, anywhere from 40-75%. 
However, the unit price of our chosen XBee3 Module and BME680 (temperature sensor) do not decrease 
with quantity. Thus, the price of our product, even scaled to 10,000+ units, will have a base cost of $41 
from the XBee and sensor alone. Without considering the XBee, the cost of components per board would 
amount to $10-15, depending on the quality and availability of specific components. Our PCB is 
double-layered and about ~9 square inches; prices can go below $1 per square inch for mass production. 
We also have to account for professional soldering of components. A reasonable unit price for a 
manufactured and professional soldered PCB would be in the range of $25-35 per board plus the extra 
costs of the XBee and temperature (or other compatible) sensor brings the unit price to $66-76. 
 
Final Results 
 In the end, our device functioned as anticipated. After thorough testing, the robots follow their 
intended path - the exploratory going to given victim locations and the hub rotating between meet up 
points. If at any point the exploratory robot’s victim list is urgent, meeting the requirements described 
earlier in the document, it travels to its known hub robot location. From there, it waits for a predetermined 
length of time. If it does not successfully transmit the information, the exploratory robot will travel to the 
medic instead. The hub robot, similarly, waits at a meeting point. If it does not receive any messages, it 
continues on to the next meeting point. If the hub robot does receive messages, it travels to the medic’s 
location, transmits those messages, and then travels to the next meeting point.  
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 Our original criteria for an A included the following: 
1. Communication between all of the following pairs is fully functional without the use of WIFI or 

Bluetooth: exploratory robot and hub robot, hub robot and computer, exploratory robot and 
computer 

2. All systems send and receive an initial test message to both the medic and the aerial vehicle 
before beginning exploration.  

3. Default backup procedures occur as expected (robot travels until it finds the human using only the 
predictive algorithms) 

4. If hub robot intercepts an exploratory robot, the exploratory robot continues exploration instead 
of returning to the human 

5. A functional PCB and microcontroller communication system is delivered and demonstrated. 
Of this criteria, we met requirements #1, #3, #4, and #5.  

A slight change was made to #3 - our robots do not use predictive algorithms, but instead go to a 
known medic location. Predictive algorithms were not within the scope of the ECE one semester 
capstone, as the systems students were tasked with that portion and they are on a two semester capstone 
schedule as opposed to one.  

For #2 we did not create an initial test message as we ran out of time. As stated in the beginning 
of the report, this would be a relatively simple addition, but given our time constraints and the delays we 
experienced, the initial test message was not a priority.  

Figure 32 shows the full system prototype, integrating the ROSbot, PCB holder, XBee, and 
temperature sensor. 
 

 
Figure 32. Full System Prototype 

 
Engineering Insights 

In this project, we applied foundational skills from our introductory electrical and computer 
engineering (ECE) courses while also developing new technical and soft skills.  
 During the PCB development process, we gained extensive experience with the schematic and 
PCB editing tools with KiCad, having to create the PCB schematic from scratch and follow it through 
until generating the Gerber files for manufacturing. We improved our ability to read and analyze 
datasheets for integrated circuits (ICs), having to pay attention to external required components, 
tolerances and other specifications. Additionally, we developed our soldering and problem solving skills, 
particularly in addressing challenges like replacing or correcting incorrectly soldered parts. If a part 
needed to be replaced or modified, we utilized a combination of the solder sucker, solder wicks, clamp, 
and heat gun, depending on part complexity and size. Over the course of the device holder design, we 
strengthened our CAD skills, along with our familiarity with the various 3D printers on grounds. Overall, 
through the PCB manufacturing and holder 3D printing processes, we learned about the importance of 
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setting early deadlines and planning for multiple iterations of a design while working to ensure that every 
design is the best it can be.  
 Throughout the software development process, we gained experience in creating software from 
scratch and learned lessons about teamwork and communication. Being in control of the product design 
from start to finish provided us flexibility to structure and organize our code as we saw fit. Originally, we 
intended to maintain a straightforward and well structured code architecture, with classes separated into 
strict purposes with minimal dependencies between classes or repeat code. However, while we began the 
project with a strong focus on maintaining a clear and well defined code structure, we found that this 
intention was difficult to sustain under the pressure of completing tasks and making progress with our 
project. Over time, the code design became more convoluted as we shifted our focus toward code 
functionality rather than maintainability. This process also revealed the challenges of dividing tasks in a 
collaborative environment. At times, one team member would make a change without fully explaining the 
intent, leading to delays and confusion. As a result, we learned to prioritize communication when 
constructing our code. Despite these challenges, our coding and software development skills grew 
significantly. We strengthened our Python skills, explored tools like Pytest and MicroPython, and applied 
software engineering principles learned in CS 3140. To stay organized and set achievable goals, we 
implemented a to-do list system for tracking team member functions or tests still needed. This approach 
was crucial for maintaining our week-to-week progress.   

With regards to the engineering process, we learned about time and resource management, along 
with teamwork, communication, and maintaining morale. We had to manage our time and account for 
delays in designing and manufacturing, while juggling our capstone with other classes and commitments. 
This sometimes proved difficult as capstone deadlines could feel less urgent than other courses. We had to 
manage our budget and funding, determining how to minimize our costs while accounting for extra parts 
and selecting reliable, quality components. We also developed skills in teamwork; when we decided to 
split the work among members, it allowed everyone to do a similar amount, helping prevent any one 
person feeling extremely overwhelmed. This also created the opportunity for others to provide support 
when necessary. However, due to this divided structure, it was extremely important to communicate 
updates and delays to the rest of the team immediately to help others adequately plan next steps. Lastly, 
we learned the importance of balancing dedication with self-care. While pushing through to complete a 
task late into the night can boost morale and provide a sense of accomplishment, recognizing when to rest 
and recharge is equally vital for maintaining productivity and well-being. 

If we had to give advice to future capstone students, it would have to be to set deadlines earlier 
than expected, because delays are guaranteed, and to maximize your planning and outlines. While things 
are guaranteed to change, it is much easier to make progress when you have a fleshed out goal to work 
towards, regardless of whether they are small or large. 
 
Future Work 

For future expansion on this project, we recommend modifying the code to improve scalability 
and adaptability for use across different systems. Currently, the project code is specifically designed for 
the XBee 3 ZigBee antenna and microcontroller and ROS for the ROSbot 2.0 by Husarion. However, the 
project’s primary aim is to develop a communication system to be utilized by robots and medics in 
large-scale human triage scenarios. It is unlikely that the autonomous robots and antenna used for our 
proof of concept will be the same as those ultimately used for the triage. Therefore, the code should be 
made more flexible for easy adaptation to various devices and systems.  

Numerous components of this project were designed separately - the robot’s goal-to-goal 
navigation mechanism, message interpreter and logic, the XBee3 microcontroller, and the PCB - before 
being integrated together. While designing each component individually was manageable, integrating 
them together proved more challenging, both conceptually and practically. Thoroughly mapping out the 
code structure and the relationships between components in advance could help make future integration 
smoother.  
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Our capstone focused on designing a communication system to enable the robots to communicate 
with each other and the medics. However, the overarching project also aims to implement algorithms that 
1) allow the robots to categorize the severity of the casualties they find and 2) use epistemic logic to 
determine the robots’ next target location as well as where other parties are likely to be. Future students 
interested in joining this larger project could contribute by integrating the severity categorization and 
epistemic logic algorithms with the communication system developed for our capstone.  

Initially, our test plan included an aerial robot, or drone, to serve as the hub robot and quickly 
route information between the ground robots and medics. However, due to time constraints and the added 
complexity of configuring the available drones in the AMR lab, we were unable to include an aerial 
vehicle in our testing. Future iterations of this project could incorporate this element.  

In our tests, the severity ratings were determined using the locations of objects of interest. In 
real-world applications, robots would assess the vitals of human patients. Therefore, developing a system 
to measure patient vitals is a crucial next step in the larger project. Additionally, enhancing the 
communication system to operate over greater distances, such as by selecting a higher-range XBee device 
and using GPS data instead of Vicon, would further improve the system’s capabilities.  

Finally, the last addition that we would recommend is the creation of thorough documentation, 
both about the PCB construction and the software. This would allow for greater flexibility in the future, as 
well as widen the audience for both engineers working on the product and users looking to implement the 
product on their devices.   
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Appendix A - Budget 
  

 
Figure A1. Weekly Parts Order Record  
 

 
Figure A2. Personal Purchases Record 
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Figure A3. Previously Paid For, or On Loan Materials Record 
 
Appendix B - Full PCB Schematic 

 
Figure B1. Full PCB Schematic 
 
Appendix C - PCB Test Plan 
Buck Converter 

1. Physical connection check 
a. Make sure that soldering is done properly: No shorts or loose connections  

2. Using WaveForms generator, place a 5 volt input into the Buck converter input(pin 2, header pin 
J8)  

a. Use supplies tab pos 5V 
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3. Connect header header pin J8 (pin 3)  to ground using Waveform generator 
4. The buck converter powers the Microcontroller.  
5. Connect a waveform channel to pin 2, J7 
6. Using the oscilloscope, measure the voltage of that pin, and check that voltage ripple is under 

50mV 
7. If Voltage is incorrect: 

a. Check R4 and R5, ensure that the correct resistor values are soldered in 
b. Use formulas found in the Buck Converter data sheet to check if values theoretically 

produced desired 3V output voltage.  
8. If Voltage ripple is incorrect: 

a. Check that the correct inductor value is soldered in.  
b. Refer to formulas given in the data sheet to ensure that values are producing the correct 

theoretical ripple.  

 
9. Place a probe on the SW pin of the Buck converter, and verify that the switching frequency is 

1.25MHz.   
10. Finally, once all separate component testing has been completed connect the loads( Chip, XBee) 

to the buck converter to check that they are properly being powered.  
 
 USB to UART Chip 

1. Connect AD2 to a computer, open WaveForms and use the digital logic sensor in WaveForms 
2. Use the digital logic sensor and select UART mode. Match settings to ZigBee UART settings.  
3. Send message through Tx line on waveform, if loopback setup is correct, this message should 

appear on the Rx line  
4. Next verify that a full message can be sent through the USB chip and delivered to a computer.  

a. For windows devices drivers for the USB to UART chip can be downloaded here:  
i. https://www.microchip.com/en-us/product/MCP2200  

b. Use the instructions found here 
(https://learn.sparkfun.com/tutorials/terminal-basics/command-line-windows-mac-linux ) 
to configure your terminal for serial communication  

c. Configure UART communication using the WaveForms logic generator 
d. Send text phrases from Waveforms on the RX line and those phrases should be seen in 

the terminal.  
e. Send phrases from the terminal and make sure they are seen on the Tx line in Waveforms. 

   
Ada-Fruit BME 680 Sensor 

1. Burn sensor 
2. Verify sensor is communication via I2C correctly 

a. Configure waveforms for I2C communication using the logic generator  
b. Connect the AD2 to the Sensor,  and see that values can be read from the sensor 

3. Verify that sensor can correctly detect temperature 
a. Using the same connections described in part 2, take the sensor outside and see that it 

reads a temperature value within the expected error range given in the data sheet.  
b. Place sensor near an open freezer and see if it can detect a colder temperature 
c. Make note of how fast temperature readings change  

4. Verify that sensor can correctly detect harmful gasses 
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Switches and Buttons 

1. The following switches and buttons need to be tested 
a. SW1 
b. SW2 
c. S1 

2. For SW1 *Starting with buttons on Breadboard* 
a. Connect one side of the button to pull up resistor to 3 volts 
b. Connect the other side to a voltmeter  
c. Press the button and check that the voltage on the voltmeter is 3V 
d. Release the button and check that the voltage goes back to 0V 
e. Solder button into PCB and Repeat the testing process 

3. For SW2 *Starting with Switch soldered into board* 
a. Connect switch to a pull up resistor to 5V 
b. Place a voltmeter on the other side of the switch  
c. Before moving the switch note the voltage. Is it 5V or 0V? This will help determine the 

on/off positioning for the switch  
d. Slide the switch over and check that the voltage changes. If it was originally 5V it should 

now be 0V. If it was originally 0V it should now be 5V.  
4. For S1 *Starting with Switch soldered into board* 

a. Connect Switch to a pull up resistor to 5V  
b. Place voltmeters on the 2 output pins of the switch  
c. Note which output pin has a 3V output at the initial switch position 
d. Slide the switch over and check that the voltage on one output goes to 0V and the voltage 

on the other goes to 3V. Slide the switch again and observe the opposite effect.  
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