
UNIVERSITY OF VIRGINIA

DOCTORAL THESIS

Selection and integration of optimal
experiments for refinement of

heterogeneous conformational ensembles

Author:
Jennifer M. HAYS

Supervisor:
Dr. Peter M. KASSON

A dissertation presented to the faculty of the
School of Engineering and Applied Science

in partial fulfillment of the requirements for the degree
Doctor of Philosophy

in the

Department of Biomedical Engineering

November 25, 2019

http://www.virginia.edu
https://engineering.virginia.edu/departments/biomedical-engineering




iii

Approval Sheet
This dissertation is in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Biomedical Engineering

Jennifer M. Hays
Author

This dissertation has been read and approved by the examining committee:

Dr. Peter Kasson
Dissertation Advisor, Department of Biomedical Engineering

Dr. Craig Meyer
Committee Chair, Department of Biomedical Engineering

Dr. Michael Lawrence
Committee Member, Department of Biomedical Engineering

Dr. Linda Columbus
Committee Member, Department of Chemistry

Dr. Kateri DuBay
Committee Member, Department of Chemistry

Accepted for the School of Engineering and Applied Science

Craig Benson
Dean, School of Engineering and Applied Science





v

UNIVERSITY OF VIRGINIA

Abstract
Doctor of Philosophy

Selection and integration of optimal experiments for refinement of heterogeneous
conformational ensembles

by Jennifer M. HAYS

Multistructured biomolecular systems play crucial roles in a wide variety of cellular
processes but have resisted traditional methods of structure determination which are
often optimized to resolve only a few low-energy states. Experimental measurements
that do yield data on multiple conformational populations remain extremely challeng-
ing, largely because multiple measurements cannot be performed simultaneously. This
leads to two major limitations: the data are often sparse over atomic degrees of freedom,
making experiment selection a critical step in conformational refinement, and difficult to
integrate, particularly since separate measurements cannot provide information on the
joint distribution. This work addresses these two outstanding challenges in refining
heterogeneous conformational ensembles.

In Chapter 2, we develop a molecular simulations and information-theory based
approach to select which double electron-electron resonance (DEER) experiments best
refine conformational ensembles. The approach is tested on three flexible proteins. For
proteins where a clear mechanistic hypothesis exists, experiments that test this hypoth-
esis are systematically identified. When available data do not yield such mechanistic
hypotheses, experiments that significantly outperform structure-guided approaches in
conformational refinement are identified. This approach offers a particular advantage
when refining challenging, underdetermined protein conformational ensembles.

In Chapter 3, we develop a method to incorporate sparse, multimultimodal spectro-
scopic data into high-resolution estimates of conformational ensembles. We have tested
our method by integrating DEER measurements on the SNARE protein syntaxin-1a into
biased molecular dynamics simulations. We find that our method substantially outper-
forms existing state-of-the-art methods in capturing syntaxin’s open–closed conforma-
tional equilibrium and further yields new conformational states that are consistent with
experimental data and may help in understanding syntaxin’s function.

In Chapter 4, we develop a method to estimate conformational ensembles from mul-
tiple, separately-acquired measurements by inferring their joint distribution. We have
tested the method on a simplified model of an alternating-access transporter and find
that the method correctly estimates both the joint distribution and the conformational
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ensemble. Although the method is demonstrated on a toy system, it may be easily ex-
tended to more complex biological systems such as syntaxin.

Together, these three novel methods for refining heterogeneous conformational en-
sembles from spectroscopic data will greatly accelerate the structural understanding of
such systems.
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Chapter 1

Introduction

1.1 An overview of the challenges in studying heterogeneous
biomolecular systems

Multi-structured biomolecular systems are important in a wide variety of cellular pro-
cesses and diseases, including flexible recognition events during infection and in sig-
nal transduction pathways.1–7 For many of these systems, function depends both on
large-scale conformational change and on small-scale fluctuations. It is therefore crucial
to resolve their conformational heterogeneity at atomic resolution to understand func-
tion. Traditional methods of structure determination have not been optimized to do
this; instead, high-resolution experimental techniques, such as X-ray crystallography
and nuclear magnetic resonance (NMR), are optimized to yield information on a few
low-energy states, while techniques that do report on heterogeneity, like double electron-
electron resonance (DEER) spectroscopy and single-molecule Förster Resonance Energy
Transfer (smFRET), provide data on only a few atomic degrees of freedom. Increasing
interest in heterogeneous ensembles has driven significant effort to leverage the latter
types of experimental data to guide high-resolution refinement. Despite this effort, a
general, rigorous method for obtaining estimates of flexible ensembles using sparse,
distributional experimental data has remained elusive.

In the following chapters, we develop a general, iterative methodology that utilizes
distributional experimental data and molecular dynamics (MD) simulation to estimate
the conformational ensembles of flexible proteins (Fig. 1.1). Our approach addresses
three outstanding challenges in structural refinement which we detail in the remain-
der of the Introduction and in the subsequent three chapters: optimal selection of low-
throughput spectroscopic experiments (Chapter 2), incorporation of distributional data
into high-resolution estimates of conformational ensembles (Chapter 3), and finally, es-
timation of conformational ensembles from separately-acquired, yet correlated, exper-
imental measurements (Chapter 4). The methods are designed to be generalizable to
any experimental technique that yields non-parametric data on an ensemble, but they
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FIGURE 1.1: Schema for refining heterogeneous conformational ensem-
bles. Data from MD simulations are used to select optimal experiments
according to the methods described in Chapter 2. Data from these ex-
periments are then incorporated into MD simulation using the methods
described in Chapter 3. If it is impossible to obtain experimental informa-
tion on the correlation structure of multiple measurements, the method
developed in Chapter 4 is used to infer that correlation structure and im-

prove the ensemble estimate.

were motivated by double electron-electron resonance (DEER) experiments performed
on the two biological systems described in Section 1.2.

Broadly, there are two steps in refining flexible systems using sparse experimen-
tal data: selecting a set of experiments to perform, then integrating the resulting data
to produce an estimate of the ensemble. Existing methods for experiment selection
rely on having significant prior structural data on the ensemble. One recently devel-
oped method relies on extensive simulation to build kinetic models and has been tested
only retrospectively, serving primarily to validate computational estimates rather than
leverage computation to prospectively guide selection.8 Other selection methods re-
quire choosing one or a small set of structures for estimating optimal spectroscopic label
placement, and thus fall short as system complexity and flexibility increases.9–11 These
methods implicitly depend on having a predetermined set of structures at hand; often
it is impossible to experimentally determine and prohibitively expensive to compute a
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FIGURE 1.2: Label-based distance measurements must be performed
sequentially. If four labels are introduced simultaneously as shown in
A), then six distance variables are measured, shown in B), rather than two.
The resulting distribution becomes extremely challenging to deconvolve

into six pair-wise distributions.

well-sampled ensemble for highly flexible systems. We have addressed this problem by
developing a method that utilizes undersampled estimates of the conformational ensem-
ble to select a set of optimal experiments (Chapter 2).12

Once optimal experimental data have been acquired, they must be integrated into
an estimate of the ensemble. Current methods for doing this integration have gen-
erally focused on experimental techniques that yield ensemble-average data,13–22 ren-
dering them unsuitable for systems where the details of the underlying distributions
are critical for biological function. Methods that do integrate fully distributional data
have been optimized to capture details of side-chain fluctuations rather than backbone
heterogeneity,23–25 and, even when re-optimized to accommodate backbone fluctuation,
exhibit pathological behavior when driving sampling of systems with well-separated
backbone conformations (Fig 2.6).26 We have developed a method for integrating non-
parametric, distributional data that is specifically designed to capture large-scale con-
formational change (Chapter 3).26

In all cases, the methods used to incorporate distributional data into simulation as-
sume that the data are independent, which is often not appropriate. This assumption is
typically made because it is extremely challenging to acquire experimental information
on the correlation structure of the distributions. Label-based methods such as DEER
and smFRET must be performed sequentially; because the labels are indistinguishable,
introduction of more than two labels at a time leads to cross-talk between all labels,
making individual pair-wise distributions very difficult to recover (Fig. 1.2). Rather
than attempt to deconvolve multi-spin experimental data, which are prone to producing
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extraneous peaks,27 we have developed a method for estimating the joint distribution of
separately-acquired experimental measurements (Chapter 4). Not only can this method
estimate the correlation structure of separate experiments, but it directly enables esti-
mation of a conformational ensemble that agrees with the joint distribution.

We developed these methods in response to specific challenges that are commonly
encountered when studying two classic paradigms of heterogeneous systems: flexible
molecular recognition and assembly of heterogeneous biomolecular complexes. The
specific systems that motivated these methods are outlined below.

1.2 Common paradigms of heterogeneous ensembles

1.2.1 Molecular recognition: Opa60-CEACAM engagement

The Neisserial outer membrane protein Opa60 is a critical component in attachment
to host cells and subsequent cellular uptake of the bacterium, yet the mechanisms by
which it engages its host are still not well understood.28,29 Opa proteins consist of a β-
barrel and four highly-mobile loops which are known to engage a small surface area
of their receptor CEACAMs on host cells.30 It is also known that these loops exhibit
extreme sequence variability among Opas. Despite this combination of sequence and
conformational flexibility, Opa engages CEACAM with nM affinity.31 These findings beg
a fundamental biophysical question: how does Opa, with no apparent binding motifs or
obvious “bound state" conformation, engage its receptor? We hypothesize that the loops
remain conformationally flexible in the Opa-CEACAM bound state, thus minimizing
the entropic penalty of binding while contributing only a small enthalpic term to the
free energy (Fig. 1.3). We have begun to test this hypothesis using our methodology for
optimal selection of spectroscopic experiments.

In Chapter 2, we refine the apo Opa60 ensemble by rigorously selecting and perform-
ing a set of optimal DEER experiments. A quantitative methodology for experiment
selection is essential for this system: with over 5,000 possible inter-loop pairs to choose
from, it becomes extremely difficult to select pairs that yield important information on
the ensemble without significant prior structural data or biochemical insight, neither
of which are available for Opa60. Our preliminary results reveal a clear structural hy-
pothesis for how Opa60 might engage its receptor that would not have been apparent
with other refinement techniques. These results will be used to guide additional spec-
troscopic experiments on the CEACAM-bound ensemble.

Not only will refinement of the Opa60-CEACAM ensemble illuminate new funda-
mental properties of flexible molecular recognition, it will facilitate development of new



1.2. Common paradigms of heterogeneous ensembles 5

CEACAM 
Ig domain

Opa loop 
ensemble

FIGURE 1.3: Opa60 loop heterogeneity may minimize the entropic
penalty of binding CEACAM The twenty lowest-energy structures from
NMR experiments on Opa60 are rendered along with the Ig domain of
CEACAM1. The different variable regions of the loops are rendered in
red, green, and tan. The Opa60 loop ensemble is strikingly heterogeneous.
We hypothesize that this heterogeneity is maintained even when bound

to CEACAM, minimizing the entropic penalty of binding.

models for targeted drug delivery. Because Opas evade immune surveillance and trig-
ger phagocytic uptake of cellular contents, liposomes expressing modified Opas may be
used to deliver therapeutics to cells that have been previously difficult to target.

1.2.2 Molecular assembly: SNARE-mediated exocytosis

Soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) complexes are
composed of a four-helical bundle of proteins which drive neuronal vesicle fusion and
thus facilitate release of neurotransmitters into the synaptic cleft.32–34 Syntaxin-1a, one
of the proteins that participates in SNARE formation, exhibits a complex conformational
equilibria (Fig 1.4). NMR and Fluorescence Interference-Contrast (FLIC) studies on the
transmembrane and SNARE-binding domains of syntaxin suggest that the SNARE-
binding H3 domain is α-helical when near a membrane,35,36 yet DEER data taken on
the soluble domain suggest that H3 is disordered.37 We hypothesize that the conforma-
tional equilibrium of syntaxin is modulated by the presence of the membrane and have
begun to test this using our methodology for integrating distributional experimental
data.
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FIGURE 1.4: Syntaxin-1a participates in formation of the SNARE com-
plex and drives synaptic vesicle fusion. Formation of the SNARE in-
volves assembly of four proteins, SNAP25, synaptobrevin, VAMP, and
syntaxin. A conformational change of the SNARE drives synaptic vesicle
fusion (main panel). Prior to formation of the SNARE, syntaxin exhibits
a dynamic equilibrium, alternating between closed and open states (in-
set). This equilibrium is not well understood, particularly how it changes

upon membrane interaction. This figure is adapted from [37, 38]
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We obtained a preliminary estimate of the conformational ensemble of the soluble
domain of syntaxin-1a using experimental DEER data and found a new family of states
that may be important for SNARE complex formation. It is generally thought that syn-
taxin must be in an open state in order to participate in formation of the SNARE, but
the open state has yet to be fully characterized.35,38,39 The common understanding of the
open state, which is based on crystal structures of syntaxin in complex with the other
SNARE proteins,40,41 is that the H3 domain remains well-ordered while the linker re-
gion connecting Habc and H3 becomes flexible. Our experimentally-refined ensemble
reveals new open conformations of syntaxin-1a that differ substantially from the com-
monly proposed models (Chapter 3).26

There are two ways to further refine the soluble conformational ensemble: because
no data exist on the correlations between these measurements, we can improve the en-
semble estimate by inferring the joint distribution and appropriately reweighting the
initial ensemble (Chapter 4). Additional targeted DEER experiments could then resolve
the presence of multiple open-state populations and test whether the conformations ob-
served in simulation are indeed present. These studies would yield further insight into
the syntaxin conformational ensemble and SNARE complex assembly in general.

The approach described above will be particularly powerful when used to study
the syntaxin membrane interaction. In this case, multiple types of experimental data
(DEER and FLIC) acquired under different laboratory conditions must be integrated to
obtain an estimate of the conformational ensemble. Because the methods described in
Chapters 3 and 4 obey the principle of maximum entropy, i.e., they minimally perturb
the MD Hamiltonian, we can use them to leverage the solution ensemble of Chapter 3
to estimate the membrane-bound ensemble. The details of this refinement procedure
are provided in Chapter 5.

1.3 Summary of MD simulation and DEER spectroscopy

1.3.1 MD Simulation

Molecular dynamics simulation is a computational technique that is often used to study
the physics of many-body systems at high resolution; one defines a Hamiltonian that
specifies the interactions between particles along with other thermodynamic properties
of the system such as temperature and pressure, then uses that Hamiltonian to numer-
ically integrate Newton’s laws of motion. The result of an MD simulation is a rich
dataset that describes the time-evolution of the system. However, these simulations are
limited by the accuracy of the Hamiltonian and, most significantly, by the time-scales
they can access. Typical simulations can reach microsecond time-scales, while even the
longest simulation runs barely reach a millisecond.42 Thus, standard MD simulations
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produce incomplete estimates of ensembles, particularly in the case of highly flexible
systems. We therefore incorporate DEER data into our simulations to improve sampling
of experimentally-valid regions of phase space.

1.3.2 DEER Spectroscopy

Double electron-electron resonance spectroscopy is an experimental technique that mea-
sures distance distributions in the range of 1.6 nm to 6.0 nm between pairs of electron
spins. In a manner similar to NMR experiments, interactions between spins are ob-
served in the time domain in response to a series of applied magnetic pulses.43 It is
then possible to transform the dipolar coupling times of the electron spins into distance
distribution functions.44 For proteins that do not have naturally occuring paramagnetic
centers, electron spins are introduced via site-directed spin labeling (SDSL).45,46 This
allows measurement of a wide variety of pairwise distance distributions for proteins.
However, because each measurement must be made separately, DEER data are often
sparse over atomic degrees of freedom. Thus, it becomes critical to select maximally
informative pairwise distance variables for measurement; this is the subject of the fol-
lowing chapter.
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Chapter 2

Simulation-guided spectroscopy

2.1 The mRMR algorithm: theory and applications

The contents of this section are published as a research article in:

Refinement of Highly Flexible Protein Structures using Simulation-Guided
Spectroscopy. Jennifer M. Hays, Marissa K. Kieber, Jason Z. Li, Ji In Han,
Linda Columbus, and Peter M. Kasson. Angewandte Chemie International 2018
(130) 17356 –17360.

Heterogeneous conformational ensembles play critical roles in molecular recognition
and cellular regulation, yet high-resolution structure determination has typically re-
quired reducing these ensembles to only a few states.1,2,4 Since the full equilibrium
ensemble is often key to understanding biochemical function, other experimental tech-
niques have been developed to probe the full ensemble distribution rather than either
a few low-energy states or an equilibrium average.7,13–15 However, these experiments
measure only a small number of atomic degrees of freedom:47–50 for instance, dou-
ble electron-electron resonance (DEER) and single-molecule Förster Resonance Energy
Transfer (smFRET) spectroscopy, which utilize pairs of labeled amino acids to obtain
distance distributions, typically provide data for ≈ 10 measurements per system. Thus,
experiment selection is currently the limiting factor in how much information can be
obtained on an ensemble.

Prior quantitative approaches to experiment selection have relied on pre-existing
high-resolution structural and kinetic models. Recent studies have shown, retrospec-
tively, that leveraging either Markov State Models8 or normal modes calculated from
elastic network models9 can select good labels for DEER experiments. But for systems
where traditional structural or kinetic models are incomplete or fundamentally under-
determined due to conformational flexibility, it remains challenging to determine which
pairs of residues should be chosen for labeling. We have therefore developed a general,
information-theoretic formalism to select optimal spectroscopic experiments. We sum-
marize the theory and show the application of this method to three conformationally
heterogeneous bacterial proteins.
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maxi MI(Oi ; C)
maxj MI(Oj ; C)

mini,j MI(Oi ; Oj)

Oi

Oj

FIGURE 2.1: The maximum-relevancy, minimum-redundancy (mRMR)
method applied to spectroscopic observables Oi. The optimal set of
spectroscopic experiments that report on variables Oi are maximally in-
formative of the conformation C and minimally redundant with each
other. Informativeness and redundancy are quantified via mutual infor-

mation (MI).

An optimal set of spectroscopic experiments has two properties: each experiment
yields the maximum amount of information on the conformational ensemble and min-
imally redundant information with other experiments in the set to avoid wasting label-
ing and measurement effort (Fig 2.1). The maximum-relevance, minimum redundancy
(mRMR) algorithm exactly satisfies these criteria.51,52 To select N spectroscopic experi-
ments, we maximize the mutual information (MI) between the set of spectroscopic ob-
servables Oi and the conformation C:

max
i

1
N

I(Oi, C) (2.1)

where C is the set of n(n− 1)/2 pairwise distance variables. We simultaneously mini-
mize the pairwise MI between spectroscopic variables Oi and Oj (Fig 2.1):

min
i,j

1
N2 I(Oi, Oj) (2.2)

where I(X, Y) is the mutual information between random variables X and Y:

I(X, Y) = ∑
{x}

∑
{y}

PX,Y(x, y) log
PX,Y(x)

PX(x)PY(y)
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This method is particularly useful because it identifies, by design, those observables
which are maximally underdetermined in a structural ensemble. These underdeter-
mined observables are precisely those that would be especially challenging for tradi-
tional structure determination.

In our study, we make two approximations: we use deliberately undersampled es-
timates of the protein conformational ensemble to select labels for further refinement,
and we approximate the spectroscopic variable Oi as the Cα -Cα pairwise distance dis-
tribution between labeled residues. We make the first approximation to demonstrate
the strong advantage of our method for heterogenous ensembles: by identifying un-
derdetermined degrees of freedom we can improve an incomplete estimate of the con-
formational ensemble rather than requiring a well-sampled starting model. The second
approximation is an implementation rather than theoretical concern and we will discuss
how it can be removed. The success of the mRMR method and these approximations is
demonstrated below on a set of flexible bacterial outer membrane proteins.

β-barrel membrane proteins are excellent candidates for the mRMR approach be-
cause many contain flexible regions that are difficult to characterize experimentally yet
have regions of secondary structure that make spectroscopic experiments tractable.30,31,53–55

We have performed molecular dynamics (MD) simulations on three bacterial outer mem-
brane proteins and applied the mRMR algorithm to select optimal DEER experiments.
We have chosen FhuA, an E. coli iron transporter,56 OprG, a pseudomonal small-molecule
transporter,57 and Opa60, a Neisserial virulence-associated protein that binds cell-surface
proteins but does not function as a transporter.29 The FhuA conformational ensem-
ble has been characterized via DEER experiments guided by pre-existing mechanis-
tic hypotheses that relate conformational changes of the Ton box domain to ligand
recognition;58 it is thus a good test system for determining whether the mRMR algo-
rithm identifies similar labels to those identified by spectroscopists. OprG, a more
challenging system, has been studied using a combination of NMR and mutational
experiments,53 but the mechanisms by which transport is regulated remain unknown.
Finally, Opa60 represents a particularly challenging system since it displays substan-
tial, experimentally underdetermined conformational flexibility that controls its bind-
ing mechanism.30 We have therefore studied this final system prospectively: choosing
a set of residue-residue pairs using the mRMR algorithm, measuring them with DEER,
incorporating the experimental data into MD simulation, and evaluating this ensemble
versus one refined with spectroscopist-selected pairs (SSP). Simulations alone lack the
fidelity to reliably predict structural ensembles of flexible proteins but can serve as a
good platform for hybrid refinement combining physical information with experimen-
tal data.

For each protein, we generated initial estimates of the conformational ensembles us-
ing ensemble MD simulations that were deliberately undersampled at 2 µs per protein.
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FIGURE 2.2: Capture of highly informative, minimally redundant
residues on three bacterial outer membrane proteins with mRMR. Se-
lection via mutual information alone yields informative, but redundant,
pairs (magenta). Selection via mRMR (blue) removes this redundancy.
These residues are better distributed across the structures of all three bac-
terial proteins than the top-ranking MI pairs or ones selected by spectro-
scopists according to current practice in the field (green). a–c, d–e, and

f–h show residues selected for FhuA, OprG, and Opa60, respectively.
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We used the mRMR algorithm on these data to select sets of pairwise distances that
optimally report on undersampled regions of phase space (Fig 2.2).

In the case of FhuA, spectroscopists selected label pairs near the N-terminal domain,
which is conformationally heterogeneous and regulates transport, and the periplasmic
side of the beta-barrel using a standard triangulation strategy (Fig 2.2c).58 Selection via
mRMR identifies similar residues (Fig. 2.2b), with the addition of one pair spanning
just the N-terminal domain. Label pairs not corrected for redundancy also specifically
identify distances between the N-terminal domain and one side of the barrel as most
informative (Fig 2.2a). DEER analysis independently identified this side of the barrel
as interacting with the N-terminal domain. These two findings on FhuA, a relatively
well-understood transport protein, show that the mRMR method can select label pairs
that reflect best spectroscopic understanding and yield insight into conformational het-
erogeneity.

Our method provides even greater potential benefit when less is known about trans-
port mechanism, as in the case of OprG, and may help test claims of loop involvement in
OprG transport. Both the mechanism and the substrates for OprG transport are unclear:
OprG may transport small, hydrophobic compounds via a lateral gating mechanism
or small amino acids via the barrel channel; OprG crystal structures support the for-
mer hypothesis,59 while recent NMR and mutational studies suggest the latter.53 Non-
transporting mutants studied via NMR have generally more ordered loops, and one
loop has especially restricted motion, suggesting it may be critical to transport. Interest-
ingly, this loop participates in all five informative OprG residue-residue pairs (Fig 2.2d)
and in three of the five top-scoring mRMR pairs (Fig 2.2e). Thus, mRMR analysis yields
label pairs that reflect existing mechanistic hypotheses and, most importantly, identify
experiments to test these hypotheses.

As a robust test of mRMR-based label selection, we prospectively tested its ability
to select DEER experiments and refine the conformational ensemble of Opa60, the most
challenging protein in our evaluation set. DEER data were acquired using label pairs
selected via both mRMR and traditional structure-based selection, and we assessed the
relative utility of each method in refining the ensemble. Opa60’s long, flexible loops are
both critical for function30,31 and challenging for previous DEER pair selection meth-
ods. In contrast to FhuA or OprG, no structural or functional data provide strong guid-
ance on which residues are responsible for function, in this case receptor engagement.
Prior hybrid NMR-MD refinement of the apo conformational ensemble did not provide
sufficient insight into the binding mechanism. Normal-mode approaches developed
by Zheng and Brooks have been applied to identify informative, non-redundant label
sets for DEER that differentiate pairs of structures when such structural data exist,9,10,60

but this is not the case for Opa60. Furthermore, normal-mode calculations from an
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Opa60 elastic network model do not correlate with flexibility measured via NMR re-
laxation timescales (Fig A.1). Thus, spectroscopists must choose from more than 5,000
possible inter-loop pairs. We show below that mRMR selection method radically im-
proves structural refinement compared to standard spectroscopic practice for systems
that were previously intractable.

We prospectively tested mRMR pair selection by refining the Opa60 conformational
ensemble61 using two independently identified label sets: one selected using the mRMR
algorithm and the other independently chosen by spectroscopists. The top five top-
scoring mRMR pairs span multiple combinations of inter-loop distances (Fig 2.2g), and
the top ten pairs capture all possible combinations of the loops (Table A.1). By contrast,
the top ten pairs identified using maximum relevancy alone span a single loop-loop
pair. Although the maximum-relevancy pairs define the most variable loop, they lose
important information about the other loop (Fig 2.2f). The spectroscopist-selected pairs
are primarily short barrel-loop distances because the length of the loops permits dis-
tances too long to be measured via DEER, so spectroscopic best practice is to select a
more conservative set of pairs. However, this aside, the chance of manually selecting a
loop-loop pair within the top 25% of those identified via mRMR is only 7%, showing a
strong advantage for the systematic selection methods developed here.

Because Opa60 is so conformationally flexible, approximating the label-label distance
distributions as Cα -Cα distributions introduces little error relative to the backbone mo-
tions of the protein. However, label flexibility becomes increasingly important to label
selection as protein flexibility decreases, and explicit labels may be added as follows.
First, unrestrained simulations of the wild-type protein may be used to calculate initial
mRMR estimates. Explicit labels are introduced for each top-ranked residue-residue
pair, and one additional simulation is performed per pair. The mRMR scores are recal-
culated for each simulation to determine the effects of label side-chain conformation on
the final mRMR rankings. A “forward model" can be used for the spectroscopic observ-
able, such as the predicted DEER spectrum,10 using the explicit-label simulations.

To assess the quality of mRMR-guided versus structure-guided refinement, we esti-
mated the Opa60 conformational ensemble using DEER data on pairs selected via each
approach. We then compared the resulting ensembles using two independent metrics
which we developed to quantitatively evaluate “quality of refinement." As a first metric,
we measured how well each refined ensemble predicts DEER data held back from re-
finement as a test set. Refinement using mRMR-selected label pairs yielded significantly
better agreement with the test DEER data: seven of eight test distributions are better
captured by the mRMR-guided ensemble than the structure-guided ensemble (Fig 2.3).

We also analyzed the dimensionality of the conformational ensembles obtained from
refinement using structured-guided versus mRMR-guided DEER data. Given sufficient
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FIGURE 2.3: mRMR-guided refinement predicts test DEER distribu-
tions better than structure-guided refinement. Quality of refinement
was evaluated by ability to predict additional 8 residue–residue pairs
measured using DEER. Conformational ensembles refined using mRMR-
selected pairs predict these DEER distributions significantly better than
ones refined using spectroscopist-selected pairs (SSP) in 7 of 8 cases,
quantified as inverse Jensen-Shannon divergence. Error bars show 90%
CI from 1000 bootstrap samples; * denotes p < 0.01 via two-tailed t-tests.

sampling, a better-refined conformational ensemble will have lower dimensionality, ap-
proaching the “true” ensemble in the lower limit. We therefore developed a quantitative
measure for the dimensionality of a conformational ensemble (see A.1.1).

Because residue-residue distances yield an overcomplete basis set, we lumped to-
gether highly related distance variables at different thresholds of relatedness (ε) and
calculated the number of independent distance variables required to describe the en-
semble at each ε. At every ε tested, refinement with mRMR-selected DEER data yielded
a conformational ensemble of lower dimensionality than with spectroscopist-selected
DEER data (Fig. 2.4a). This indicates that DEER data from mRMR-selected pairs refine
the conformational ensemble more efficiently than data from pairs selected according to
current state of the art.

mRMR pair-selection also produces strikingly more informative structural results
than spectroscopist-guided selection. We determined the major loop conformations in
each ensemble by clustering loop-loop contact maps. After one iteration, mRMR-guided
refinement yields four clusters, all of which show one loop protruding laterally and two
loops closely interacting (Fig 2.4c). In contrast to mRMR-guided refinement, refinement
using spectroscopist-selected pairs yields a larger number of structural clusters with
poorly resolved loop conformations (Fig 2.4b) that also poorly predict additional DEER
measurements (Fig 2.3). The loop conformations resolved by mRMR-guided refinement
further yield a structural hypothesis for receptor recognition whereby either the two
contacting loops or the one splayed loop is primarily responsible for receptor binding.
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FIGURE 2.4: mRMR-guided refinement produces ensembles of lower
dimensionality than structure-guided refinement. a) The dimensional-
ity of the conformational ensemble (the number of independent distance
variables), is plotted at each information theoretic resolution ε. Ensem-
bles refined using mRMR-selected pairs are of lower dimensionality than
those refined using SSPs by 20–25. b) Structures identified by cluster anal-
ysis of inter-loop contacts are also shown for each ensemble. mRMR re-
finement yields conformations in which a single loop extends from the
base of the barrel while the two remaining loops interact. SSP refine-
ment yields conformations with no well-defined loop–loop interaction

patterns.
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These tests demonstrate that mRMR provides a robust approach to spectroscopic la-
bel selection, particularly for flexible proteins where structural estimates are more chal-
lenging and the difference in data quality between optimally selected labels and poorly
selected labels is greater. When strong mechanistic hypotheses have guided prior DEER
experiments, mRMR yields label pairs that would test these hypotheses. For proteins
such as Opa60 where mechanistic understanding is insufficient to guide experiment se-
lection, we show via prospective testing that mRMR selection outperforms unaided
spectroscopists. Therefore, we believe that mRMR will be of general use in guiding
spectroscopic experiment selection for DEER and for other label-based methods such
as smFRET and paramagnetic resonance enhancement. The method can also be ex-
tended to differentiate mechanistic hypotheses rather than conformations. For systems
like OprG where two mechanistic hypotheses exist, mRMR could be used to identify
which spectroscopic variables optimally distinguish conformational features specific to
one mechanism or the other. Conformational flexibility and heterogeneity are some
of the most challenging and exciting frontiers in understanding protein structure, and
mRMR will increase the ability of these experimental methods to efficiently refine such
conformational ensembles.

2.2 Preliminary refinement of the Opa60-CEACAM ensemble

The contents of this section are published as part of a research article in:

Refinement of Highly Flexible Protein Structures using Simulation-Guided
Spectroscopy. Jennifer M. Hays, Marissa K. Kieber, Jason Z. Li, Ji In Han,
Kelley W. Moremen, Linda Columbus, Peter M. Kasson. bioRxiv January 1,
2018, 319335.

2.2.1 Review of the Opa60-CEACAM interaction

Opacity associated (Opa) proteins bind to human carcinoembryonic antigenrelated cel-
lular adhesion molecules (CEACAMs) triggering cellular uptake and mediating cellular
invasion.29 Opa60 is a canonical eight-stranded β-barrel integral membrane protein with
four extracellular loops (Fig A.7) that are dynamic on the nanosecond time scale and pre-
dominantly disordered.30 The long ligand-binding loops have high sequence diversity28

and are hypothesized to be flexible in both the unbound state and during CEACAM en-
gagement, which aids in immune evasion.30 Despite high mobility and high sequence
diversity among Opa variants, the loops bind with high affinity to CEACAM1.31 Fully
understanding the nature of this molecular recognition event thus requires measuring
the conformational ensembles of both unliganded and CEACAM-bound Opa60. To help
understand this process of binding and subsequent invasion, we have further refined
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the conformational ensemble of Opa60 through additional DEER experiments directed
by MD simulations. The ensemble estimate reveals previously uncharacterized loop-
loop interaction modes and potential sites for CEACAM engagement.

2.2.2 Analysis of Opa60 loop-loop interactions

We obtained additional sampling of the Opa60 conformational ensemble by incorporat-
ing five highly informative DEER-derived distributions of pairs identified by the mRMR
algorithm into a second round of ensemble simulations. These pairs span multiple bi-
ologically significant regions of the extracellular loops, namely the hypervariable and
semivariable regions (Fig A.7), denoted HV1, HV2, and SV. The refined conformational
ensemble yields several sets of specific loop-loop interactions that potential sites for
CEACAM engagement.

To analyze these interactions systematically, we identified the most abundant loop
conformations in the structural ensemble by clustering PCA-transformed loop-loop con-
tact maps (Fig A.8). Ten well-separated clusters were formed in the projected subspace.
Strikingly, in the centroids of three of the four the most populated clusters, HV1 inter-
acts with HV2 or SV. In all conformations, HV2 does not interact with SV. HV1 and HV2
loops interact with approximately twice the likelihood than that of SV and HV1 loops.
In each of these cases, the third loop is extended and does not interact with the other
two loops. Analysis of contact maps supports these interaction patterns (Fig A.8).

2.2.3 Opa60conformations recognized by CEACAM.

HV1/HV2 chimeric Opa60 proteins have previously shown that specific HV1/HV2 com-
binations are required for CEACAM engagement, leading to a model in which HV1 and
HV2 together directly engage receptors.62 Our results on Opa60 conformations in the
absence of CEACAM are compatible with this but also yield additional structural mod-
els for CEACAM binding. Two possibilities for CEACAM engagement exist: it could
bind to one of the extended loops (SV or HV2), or it could bind to the combined surface
formed by two interacting two loops (HV1/SV or HV1/HV2). Each of these possibilities
are consistent with the structural data. The Opa extracellular loops have a surprisingly
high number of hydrophobic residues for flexible sequences, which likely mediate loop-
loop interactions and CEACAM engagement. Prior identification of two hydrophobic
residues on CEACAM essential for Opa binding further supports engagement mediated
by hydrophobic residues.62 These new hypotheses generated by the experimentally-
derived conformational ensemble can now be further tested with carefully designed
binding experiments.
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FIGURE 2.5: Binding of CEACAM selects for HV2-extended Opa con-
formations. DEER measurements of Opa-Opa residue pair distances
show substantial shifts in the distance distributions upon binding to
CEACAM (a), suggestive of conformational selection. Using these data
to interpret the apo conformational ensemble, we find that HV2-extended
conformations dramatically increased (accounting for 75% of the bound
ensemble) while SV2 and splayed-loop populations decreased (0% and
25%, respectively). Rendering of an HV2-extended Opa conformation (b)
makes the basis for this clear: the 45 Å distance between residues 28 and
159 and the 51 Å distance between 80 and 166 correspond to the major
peaks in the DEER distributions collected for the Opa-CEACAM com-

plex. Spin-echo decays and fits are given in Fig A.2.
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To determine whether CEACAM binds the SV-extended Opa conformation or the
HV2-extended Opa conformation, we performed additional DEER experiments on la-
beled Opa60 proteins with and without bound CEACAM1. The resulting data show sub-
stantial shifts in Opa60 loop-loop distance distributions upon CEACAM1 binding, con-
sistent with conformational selection: a subset of the distances present in the apo protein
increase, while others decrease (Fig 2.5a). We analyzed this quantitatively by fitting the
CEACAM-bound ensemble as a linear combination of conformational states identified
in the apo ensemble. The results were striking: HV2-extended conformations dramati-
cally increased to account for 75% of the bound ensemble, while SV2 and splayed-loop
conformations decreased to account for 0% and 25% of the bound ensemble, respec-
tively. Visual analysis of the structures supports this finding because the long HV1-HV2
distances unambiguously exclude an HV1-HV2 interface and thus the SV-extended con-
formations. Indeed, the HV2-extended conformations show robust agreement with the
increase in probability density at the 45 Å and 51 Å peaks in the CEACAM-bound dis-
tributions (Fig 2.5B). By comparison, if we had measured the spectroscopist-selected
pairs in the apo and CEACAM-bound forms, we would not have been able to differ-
entiate SV-extended and HV2-extended conformations, since the distance distributions
overlap in one pair (107-117) and the HV2-extended distances too short to measure via
DEER in the other (77-107).

These results, obtained after two rounds of mRMR-guided pair selection, would
likely not have been obtained using current state-of-the-art pair selection methods. In-
deed, mRMR-guided pair selection produces strikingly more informative results than
spectroscopist-guided pair selection after just a single round of refinement. Analysis
of the loop-loop contacts in first round of mRMR-guided refinement yields four struc-
tures, all of which show one loop protruding laterally (Fig 2.4B); the second round
of mRMR-guided refinement better resolves the conformational heterogeneity among
these extended-loop structural motifs. In contrast to the mRMR-guided refinement, re-
finement using comparator pairs predicted conformations with compact, closely inter-
acting loops to have higher probability than those with splayed loops or a single later-
ally extended loop (Fig 2.4C). Since these conformational ensembles poorly predict the
additional DEER distance measurements (Fig 2.3), they are incorrect and would have
required further DEER measurements to yield similar hypotheses for the determinants
of Opa-CEACAM binding.

2.3 The need for improved methods of incorporation: pitfalls
of restrained-ensemble simulations

Although the modified version of restrained-ensemble simulations23,61 used in Sections
2.1 and 2.2 successfully incorporated the Opa60 DEER-derived distributions, this method
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a 100 ns (1 µs aggregate) restrained-ensemble simulation sample the long
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(dashed blue lines).

exhibits pathologies when distributions have well-separated probability modes (Fig
2.6). The following chapter develops a methodology for incorporation of distributional
experimental data that is specifically intended to capture well-separated backbone con-
formational change.
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Chapter 3

Incorporation of distributional data
into high-resolution estimates of
heterogeneous ensembles

3.1 Bias-resampling ensemble refinement (BRER): theory and
applications

The contents of this section are published as a research article in:

Hybrid Refinement of Heterogeneous Conformational Ensembles Using
Spectroscopic Data. Jennifer M. Hays, David S. Cafiso, and Peter M. Kasson.
The Journal of Physical Chemistry Letters 2019 10 (12), 3410-3414.

Heterogeneous conformational ensembles play important roles in in a wide variety of
cellular processes and diseases, including flexible recognition events during infection
and in signal transduction pathways.1–3,5,6,63 The major challenges in structural refine-
ment of these flexible systems are twofold. Often, experimental data yield ensemble-
average quantities and/or the experimental data are sparse.9,13–15,64 Both of these dif-
ficulties lead to an ill-posed inverse problem: in both cases, an ensemble of structures,
which is degenerate in the experimental quantity of interest, must be enumerated with
very little other information.65–67 One way to avoid this inverse problem is to use a
forward model, such as a molecular dynamics (MD) force field, and directly integrate
the experimental data into the model such that the final ensemble reproduces the ex-
perimental data. A great deal of work has been done to develop methods for integrat-
ing ensemble-average quantities into forward models, and this work has been quite
successful.16,19–21,68–74 However, a robust strategy for integrating sparse, distributional
data has remained elusive.

Here we describe a hybrid maximum-entropy–stochastic-resampling approach for
biasing molecular simulation ensembles toward experimental distributions rather than
ensemble averages. We apply this method to double electron–electron resonance (DEER)
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FIGURE 3.1: Estimation of a conformational ensemble {X} by stochas-
tic resampling of experimental data. An iterative update framework for
bias resampling ensemble refinement from an initial estimate is schema-
tized as follows: (1) a set of N conformations is drawn from the confor-
mational ensemble estimate {̂X}, and (2) each conformation is refined
against a single target which is stochastically resampled from an experi-
mental distribution. At each iteration, the estimated distribution calcu-
lated from {̂X} is compared against the experimental distribution. If
the distribution P{X}(d) is significantly different from Pexperimental(d), the

conformational estimate {̂X} is updated with the refined structures and
the refinement procedure is repeated.

data, but the method is extremely general and may be used for nearly any experimen-
tal method yielding distributional data. The method exhibits no instabilities in regions
of zero probability and can sample important backbone conformational change. We
describe how to incorporate a single distribution first; we then discuss a simple gener-
alization to multiple distributions.

Our hybrid approach, which we call bias-resampling ensemble refinement (BRER),
uses an iterative refinement scheme to update an estimate of the conformational en-
semble {̂X} based on a DEER distribution PDEER(d) (Fig 3.1). The simplest formulation
of BRER is described here, while a more complex variant is given in Appendix B.1.1.
During refinement, each conformation x ∈ {̂X}i−1 is updated using a biased MD sim-
ulation such that the updated estimate {̂X}1...i better reproduces PDEER(d). Thus, over



3.1. Bias-resampling ensemble refinement (BRER): theory and applications 25

the course of multiple rounds of refinement, the conformational estimate {̂X} should
yield a distribution P{̂X}(d) that converges on PDEER(d). The initial estimate {̂X}0 may
be obtained using experimental data (an NMR ensemble, a single-crystal structure) or
an experimentally informed model.

The stochastic-resampling approach is implemented as follows: because any distri-
bution PDEER(d) may be represented as a sum of Gaussians, let the experimental distri-
bution be a linear combination of M Gaussians with centers located at dm:

PDEER(D) =
M

∑
m=1

pi√
2πσ2

e−(d−dm)2/2σ2
(3.1)

with weighting factor pi. During the ith round of refinement, we randomly sample a set
of N structures from the conformational estimate of the previous round, {̂X}i−1. Each
structure is assigned one target distance dn via a probability-weighted draw from the
set of experimental distances dm. A maximum-entropy biasing potential is then applied
to each ensemble member, driving the member toward its target distance.17,75,76 We al-
low the ensemble to relax at the target distribution (which has been resampled from
PDEER(d)) for some time t, at which point the resampling procedure is repeated. Be-
cause this approach is equivalent to performing Monte Carlo with an acceptance proba-
bility of one, the simulation ensemble distribution should converge on the experimental
distribution after sufficient repetitions of the resampling procedure.

The two components of this method are demonstrated separately in Figure 3.2. In
Figure 3.2A, we show how stochastic resampling converges on a complex target dis-
tribution demonstrated using a Gaussian stub in place of the biased MD. Figure 3.2B
shows the results of an MD simulation biased to a single target. The biasing poten-
tial successfully drives the simulation distance to the target distance without disrupting
secondary structural elements experimentally known to be preserved.37 Details of the
biased MD, implemented using the gmxapi package,77 are provided in Appendix B.1.2.

This method is trivially extensible to multiple distributions because resampling can
be performed on a joint distribution. If information on the correlation structure of the
distributions is unavailable, they are assumed to be independent, and draws are per-
formed on the convolution of the distributions. Our approach is especially powerful
because information about correlation structure can be recovered from the ensemble; be-
cause the coupling constants are first trained using a maximum-entropy formalism, we
can measure the work needed to drive the ensemble to its target distances. This quan-
tity reports on the correlation between the particular distributional modes that have
been sampled (see Chapter 4). However, in this Chapter we focus on the effectiveness
of the fundamental method.

We have used the BRER methodology to refine the conformational ensemble of the
soluble domain of syntaxin1-a using previously published DEER data.37 We find that
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FIGURE 3.2: Bias-resampling ensemble refinement has two compo-
nents: stochastic resampling and a maximum-entropy biasing poten-
tial. Iterative stochastic resampling of the target distribution yields an
excellent approximation after 500 targets have been drawn (A). Here,
the more complex MD engine has been replaced with a Gaussian stub
such that each ensemble member samples a simple Gaussian distribution
around its target. An example of the maximum-entropy biasing potential
for a single target is shown in panel B. First, a maximum-entropy cou-
pling constant is trained, which ensures that a minimally perturbative
quantity of energy is introduced into the system. The simulation is then
restarted using the pretrained coupling constant and converges to its tar-
get without excessively disrupting the secondary structure of the biased

conformation.
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BRER substantially outperforms current state-of-the-art methods at reproducing the ex-
perimental distributions and identifies previously unknown structural substates. These
substates suggest that the open state of syntaxin may be more conformationally diverse
than previously thought and thus have direct implications for formation of the soluble
N-ethylmaleimide-sensitive factor attachment receptor (SNARE) complex.

We obtained three experimentally derived distributions from residue–residue pairs
52/210, 105/216, and 196/228 and used these distributions to refine the conforma-
tional ensemble of soluble syntaxin via three different methods: BRER, EBMetaD,78

and restrained-ensemble MD.61 The BRER-derived distributions reproduce the exper-
imental distributions significantly better than either EBMetaD or restrained-ensemble
(Fig 3.3A), quantified by Jensen–Shannon divergence (Fig 3.3B). BRER performs partic-
ularly well at reproducing the 52/210 distribution; the well-separated bimodal peaks in
this distribution are important because they directly report on syntaxin’s open–closed
equilibrium.37,79–81 Because EBMetaD and restrained-ensemble MD suffer from numer-
ical instabilities in regions of zero probability, these methods fail to accurately repro-
duce this distribution. EBMetaD samples the open and closed states but with incorrect
relative probabilities, and restrained-ensemble simulations simply fail to sample the
open state. The 105/216 and 196/228 distributions pose a less challenging problem
for EBMetaD and restrained-ensemble MD because neither distribution has very well-
separated modes, yet they are still better reproduced by BRER. Thus, BRER is a top-
performing, general method for refining conformational ensembles using DEER data.

Refinement of the syntaxin conformational ensemble with these pairs yields a pre-
viously unobserved family of structures that are partially open. It is generally thought
that syntaxin must be in an open state to participate in formation of the SNARE com-
plex and thus perform its critical role in neuronal exocytosis.34,80–83 No experimental
structures of the apo syntaxin open state exist, but it has been hypothesized that the
open state is characterized by complete dissociation of the H3 domain from the Habc
domain and an unwinding of the linker region between Hc and H3 (Fig 3.4A).35,38,39

The BRER-refined ensemble identifies additional structures in which the H3 domain is
only partially dissociated from Habc and the linker region retains is secondary structure
(Fig 3.4B), with tight contacts remaining between residues 146–156 and 187–198. These
BRER-refined structures are in close agreement with the DEER-derived distributions,
as are structures in which H3 completely dissociates (Fig 3.4C). These results suggest
a testable hypothesis: the syntaxin conformational ensemble is more diverse than was
previously thought, and both the partially open and fully open states contribute to the
ensemble. In this scenario, formation of the SNARE complex could result from a fur-
ther conformational selection process. Additional DEER experiments informed by the
BRER-refined ensemble could elucidate whether the open-state ensemble is indeed con-
formationally diverse and whether a conformational selection process takes place to
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FIGURE 3.3: BRER outperforms current state-of-the-art methods for re-
fining conformational ensembles against DEER distributions. Three
sets of ensembles were refined against the three experimental distri-
butions (shown in black in panel A). Distributions calculated from the
BRER, EBMetaD, and restrained-ensemble conformational estimates are
shown in color. BRER both qualitatively (A) and quantitatively (B)
outperforms these other state-of-the-art methods for all three distribu-
tions. Agreement with the experimental distributions is quantified as

Jensen–Shannon divergence (B).
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Both sets of distances agree with the DEER data, suggesting that the syn-
taxin open state may be more conformationally diverse than previously

thought.
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form the final SNARE bundle.
Preliminary refinement of the syntaxin conformational ensemble illustrates the im-

portance of heterogeneous ensembles and of having refinement methods that treat them
rigorously. Because bias-resampling ensemble refinement is explicitly designed to refine
highly heterogeneous conformational ensembles, it significantly out-performs current
refinement methods in estimating such ensembles from distributional data. Further-
more, bias-resampling ensemble refinement could be combined with other methods
(such as metaynamics,84 Rosetta,50,85,86 or other non-MD sampling) to improve their
treatment of heterogeneous data. Applied to syntaxin, where the DEER data reveal sub-
stantial heterogeneity, our new method uncovers previously unreported heterogeneity
in the syntaxin open state. These new conformations may play an important role in
mechanisms of SNARE complex assembly.

3.2 Further application of BRER methodology: solving the cor-
relation structure of separately-measured distributions

When no information is available on the correlation structure of separately-measured
DEER distributions, the methods developed in both the preceding and remaining chap-
ters become extremely useful. The mRMR experiment-selection method of Chapter 2 is
explicitly designed to select minimally-redundant (i.e., minimally correlated) measure-
ments. This selection procedure thus mitigates the error introduced when independence
is assumed. In the following chapter, a rigorous approach is developed which explicitly
calculates the joint distribution of separate measurements. When combined, these meth-
ods should provide a powerful way to estimate conformational ensembles from sparse,
separately-acquired experimental measurements.
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Chapter 4

Solving the correlation structure of
separately-measured distributions

Flexible proteins play a critical role in a wide variety of cellular processes, including
flexible recognition events during infection and in signal transduction pathways, and
this flexibility is essential to biological function.1–7 Experimental methods that have tra-
ditionally been used to study the structural ensembles of biological systems, like X-
ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, tend to re-
duce the ensemble to just a few low energy states in order to achieve high-resolution
structures. As awareness has increased of the fundamental role structural heterogeneity
plays in biological function, new experimental methods have been developed to report
directly on full ensembles. Methods such as double electron-electron resonance (DEER)
spectroscopy and single molecule Förster resonance energy transfer (smFRET) provide
distance distributions between labeled amino acids, and thus yield quantitative infor-
mation on conformational populations in a sample. However, these methods come with
an important set of challenges, described below.

Label-based experiments that yield distributional data are severely restricted in the
number of labels that can be measured simultaneously, leading to two major limitations:
since each distribution requires a separate, time-consuming experiment, the data tend to
be sparse over atomic coordinates, and the data do not provide information on the joint
distribution. Recent efforts have ameliorated the former limitation by optimizing label
placement to ensure maximally informative measurements,8,9,12 but little progress has
been made in handling the latter. Here we present a general method for inferring joint
probability distributions from separately-acquired measurements. The method not only
estimates the correlation structure of the experimental distributions, but also provides a
direct way to infer the conformational ensemble of interest.

We first lay out the theoretical underpinnings of the approach, then apply the method
to a model of an alternating-access transporter. In the case of the alternating transporter,
where the joint distribution is known, we find that our method accurately reproduces
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the joint distribution and correctly estimates the true conformational ensemble. Al-
though we have chosen to demonstrate the approach using a toy model, the method
is general enough to be applied to any system for which distributional data can be ob-
tained.

Let us denote a set of separately measured probability distribution functions {p (Oi)},
where Oi is a random variable representing the observable of interest. In this conven-
tion, particular values of Oi are denoted oi. In the applications presented later, each
p (Oi) is a single DEER distribution and Oi is the distance variable of the ith pair of
atoms. We wish to estimate not only the joint probability distribution p(O1, O2, . . . , ON),
but the conformational ensemble {X} that optimally reproduces the joint distribution.
This inference problem can be stated in terms of conditional probabilities: what is the
probability of an ensemble {X} given a set of observed distances, i.e., what is p ({X}|O1, O2, . . . , ON)?
The joint probability distribution is proportional to the free energy difference of the de-
sired ensemble from some (arbitrary) reference ensemble:

p ({X}|O1, O2, . . . , ON) ∝ e−β∆G({X}|O1,O2,...,ON) (4.1)

If each random variable Oi can take on values {oi}with probability p(oi), then the prob-
ability of observing a particular conformation given a specific set of distances is trivially:

p (x|o1, o2, ..., oN) ∝ e−β∆G(x|o1,o2,...,oN) (4.2)

The challenge then lies in determining the free energy landscape ∆G as a function
of the experimental observables. In some cases, it may be possibly to calculate this free
energy analytically or via thermodynamic integration, but in general, it is prohibitively
expensive to directly calculate the equilibrium free energy because of the large number
of degrees of freedom and the slow relaxation timescales involved. Instead, the most
robust and general method for calculating this free energy is via the Jarzynski equal-
ity: e−β∆G = 〈e−βW〉.87 In the remainder of this section, we detail how to leverage the
Jarzynski equality and the experimental data to estimate the free energy landscape.

We previously developed a methodology, bias-resampling ensemble refinement (BRER),
to incorporate distributional data into molecular dynamics (MD) simulation.26 The orig-
inal method assumes that all {p (Oi)} are independent, but a simple extension of this
formalism enables estimation of the joint distribution. The original BRER method is an
iterative approach as follows:

1. randomly sample a conformation x from the current ensemble estimate {̂X}

2. select a set of observables {O1 = o1, ..., Oi = oi, ..., ON = oN} via probability-
weighted draws from the experimental distributions {p (Oi)}.

3. run a biased MD simulation to constrain the conformation x such that all Oi = oi
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4. update the estimate {̂X} with the final conformation x

The method is trivially parallelized by drawing multiple conformations {x} in a single
iteration and applying the constraints to each x.

To estimate the free energy of a set of conformations {x} given a set of observables
{oi}, we can leverage the data from the biased MD runs of step (3). Because we use a
simple linear biasing potential, it is trivial to calculate the work done on the ensemble to
enforce the constraints. We can thus apply this simple linear bias to drive the system out
of equilibrium, then use the nonequilibrium work to estimate equilibrium free energy
via Jarzynski’s equality. Specifically:

e−β∆G(x|o1,o2,...,oN) =
〈

e−βW(x(eq)→x|o1,o2,...,oN)
〉

x(eq)∈{X(eq)}
(4.3)

where {X(eq)} is an equilibrium ensemble.
The general method for calculating both the joint distribution and the conforma-

tional ensemble from simulation, which we call Ensemble Estimation from Separate
Measurements (EESM), can be summarized as follows:

1. Draw a set of conformations {x(eq)} from an equilibrium ensemble.

2. Select a set of specific observable values {oi} via stochastic draws from each p (Oi).

3. Apply a linear biasing potential such that Oi = oi for all x(eq).

4. Calculate the work done in (3) and, consequently, the probabilities p (x|o1, o2, ..., oN).

5. Repeat 1-4 until the distribution p ({X}|O1, O2, . . . , ON) has been estimated.

This method is demonstrated below for a simplified alternating-access transporter.
Alternating-access transporters are a class of membrane proteins that transport their

substrates by switching between outward-facing and inward-facing conformations.88–93

In order to test EESM, we studied a toy model of a “flexible” alternating transporter
(Fig 4.1A). The transporter consists of two rigid rods connected at their midpoints by a
spring with constant α. The rods rotate about their midpoints subject to two constraints:
they mirror each other’s rotation (the “channel" of the transporter is a symmetry axis)
and the angle of rotation θ is constrained to a range [θmin, θmax]. For a given channel
width x, all permitted values of θ have equal energy, while those outside the permitted
range have infinite energy.

We can imagine performing three separate experiments on the transporter to try to
estimate its conformational ensemble: one that measures the width of the channel mid-
point `, one that measures the distribution of the “inward-facing" mouth of the channel
(D1 of Fig 4.1A), and one that measures the “outward-facing" mouth of the channel (D2
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of Fig 4.1A). The results of these “experiments" are shown in Fig 4.1B. Without any ad-
ditional information, we would assume that the separately measured variables D1 and
D1 are independent and we would estimate the joint probability distribution as shown
in Fig 4.1. However, because of the constraints imposed on the channel, the true joint
distribution is dramatically different (Fig 4.1D).

In order to estimate the true distribution from only the experimental observables, we
performed 500 aggregate iterations of EESM. As the number of iterations increases, the
estimate of the joint distribution approaches the true distribution. This is quantified as
Kullback-Liebler divergence in Fig 4.1E and illustrated as plots of the joint distribution
in Fig 4.1F. This simple but powerful example demonstrates that the method can indeed
recover the correlation structure of separately-measured distributions.

We have thus developed a method, ensemble estimation from separate measure-
ments, that can be used to infer the joint distribution of separately-acquired measure-
ments and the conformational ensemble which optimally reproduces that distribution.
The method was tested on a simplified model of an alternating-access transporter. We
found that EESM converged to the correct distribution within relatively few iterations
(Fig 4.1E), confirming that EESM can be used to calculate the correlation structure of
separately-measured distributions. EESM is particularly designed to estimate the con-
formational ensembles of systems where it is impossible to obtain a ground truth en-
semble and joint distribution, as is the case for the SNARE protein syntaxin-1a. The
application of EESM to syntaxin-1a is presented in Chapter 5.

Label-based measurements that provide pair-wise distributions are an incredibly
useful source of experimental data on heterogeneous ensembles. However, the utility
of these measurements has been limited because each label pair must be introduced
and measured separately. EESM can greatly improve our ability to leverage these sep-
arate experiments to refine complex, flexible conformational ensembles by successfully
inferring their correlation structure.

Methods

Analysis of the toy alternating-access transporter

To validate the EESM approach, we performed 500 iterations of the method on the toy
model shown in Fig 4.1 and compared the estimated joint distribution with the true
distribution. The true distribution was calculated analytically as described below in
Analytical methods. Details of EESM simulations follow in EESM estimation of the joint
distribution.
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Parameter Value

α 3 kBT
x0 1

Length of each rod 2
θmin −π/6
θmax π/6

TABLE 4.1: Parameter choices for toy model. All distance values are
unitless. Angles are given in radians.

Analytical Methods

We analytically calculated the probability distributions shown in Fig 4.1B-D using the
parameters in Table B.1 and the following equations. The probability of observing a
particular channel width is given by

p(`) ∝ e−
3
2 (`−1)2

(4.4)

and the probability of observing a particular distance d at either mouth of the channel
given a particular channel width ` is:

p(d|`) ∝

e−
3
2 (`−1)2

`− 1 ≤ d ≤ `+ 1

0 otherwise
(4.5)

To calculate p(d), we integrate over the channel widths. The joint probability distribu-
tion shown in Fig 4.1C is then the convolution of Equation 4.5 with itself.

The probability of observing a pair of distances (d1, d2) given a channel width ` is:

p(d1, d2|`) = p(d1|d2, `)p(d2|`)p(`) (4.6)

The symmetry constraint determines the probability p(d1|d2, `):

p(d1|d2, `) ∝

1 d1 = d2 + 2 sin θ

0 otherwise
(4.7)

From combining equations 4.4-4.7 and marginalizing over the channel widths, we can
calculate the joint probability distribution in Fig 4.1D.

EESM estimation of the joint distribution

To estimate the toy model’s joint distribution, we iteratively:
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1. Selected a set of distances (d1, d2) by sampling from the distribution shown in Fig
4.1C.

2. Determined the conformation c associated with (d1, d2) using the constraints.

3. Calculated the work required to drive the conformation of the previous iteration
to the conformation of (2).

When the EESM iterations are performed sequentially, the work is a function of the
previous iteration’s initial state and the final state:

W(xi → x f ) =
1
2

α
(
` f − `i

)2

If the iterations are performed entirely in parallel and the initial conformation is drawn
from equilibrium, then the work is simply

W(xi → x f ) =
1
2

α
(
` f − `0

)2

Once we obtained a set of work estimates from this resampling procedure, we cal-
culated the free energy as a function of the distance variables D1, D2 using the Jarzynski
equality. To obtain the free energy ∆G({x}|D1 = d1, D2 = d2), we average the exponen-
tial work values over all trials where x f has D1 = d1, D2 = d2:

e−β∆G({x}|d1,d2) = 〈e−βW(xi→x f |d1,d2)〉

After approximately 500 iterations, both the sequential and parallel procedures con-
verge on the analytically determined joint distribution (Fig 4.1F).
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Chapter 5

Conclusions and future directions

5.1 Review: iterative refinement of flexible systems

5.1.1 Selection of experiments

We have demonstrated a method for selecting label locations to obtain distance distri-
butions that optimally refine the conformational ensembles of flexible proteins (Chap-
ter 2). Our method was developed and tested using DEER spectroscopy but applies
equally well to other methods that can provide distance distributions between pairs of
labels. The method was tested on three flexible bacterial outer membrane proteins, then
prospectively validated for refinement of Opa60 Neisserial virulence-associated protein.
We are actively using this method to refine bimolecular complexes in flexible molecular
recognition such as occurs in the binding of CEACAM receptors by Opa60.

In the case of Opa60 engagement of CEACAM1, we identified a set of loop con-
formations that account for the apo conformational ensemble. Further DEER measure-
ments indicated a conformational selection event upon CEACAM1 binding, and we
have shown that HV2-extended Opa conformations are the only ones consistent with
the CEACAM1-engaged complex (Fig 2.5). Previous mutational data showed that spe-
cific HV1/HV2 loop sequence combinations were required for CEACAM1 engagement.62

Our data suggest a new interpretation of these findings: we speculate that since HV1
and HV2 contact each other in a much higher proportion of unbound conformations
than bound conformations, certain HV1/HV2 sequence combinations could overstablize
unproductive conformations and thus interfere with binding. Neither this structural
hypothesis nor the underlying identification of the Opa60 conformations recognized by
CEACAM1 would have been possible without the use of the mRMR method.

High-resolution refinement of flexible proteins is anticipated to require several rounds
of the procedure described in Section 2.1. Indeed, one of the advantages of this proce-
dure is that it can be initiated using undersampled MD trajectories in early rounds of
refinement rather than requiring a well-converged computational estimate to begin. At
each iteration, the mRMR algorithm identifies under-determined regions of the free en-
ergy landscape and specifically selects pairs that improve the hybrid estimator of the
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ensemble. In later rounds of the procedure, the MD trajectories will converge to the
experimentally-determined ensemble. Convergence is established when no additional
refinement is required after mRMR prediction and measurement of a set of residue-
residue pairs provides no new information compared to the current estimate of the con-
formational ensemble.

Our results demonstrate that current state-of-the-art techniques for selecting spin-
label sites for spectroscopic experiments are suboptimal and can be improved with our
methodology. The DEER-derived distributions of mRMR-selected pairs reveal critical
information about conformational heterogeneity of flexible proteins and, when incorpo-
rated into simulations, are more efficiently matched by the MD ensemble (Fig 2.3, A.5).
Finally, incorporation of the distributions of mRMR pairs leads to improved refinement
of the conformational ensemble by reducing the effective dimensionality of the ensem-
ble (Fig 2.4, A.6). Ultimately, the same information can be obtained about an ensemble
with significantly fewer spectroscopic measurements.

5.1.2 Incorporation of distributional data into estimates of conformational
ensembles

We have demonstrated a method, bias-resampling ensemble refinement (BRER), for in-
tegrating heterogeneous, distributional data to refine the conformational ensembles of
flexible ensembles (Chapter 3). The method was tested using DEER-derived distribu-
tions, but is sufficiently general to be used for any non-parametric data. We tested the
method on the SNARE protein syntaxin-1a and compared it to two other state-of-the-
art methods for data integration, EBMetaD78 and restrained-ensemble MD.61 BRER sub-
stantially outperformed both alternate methods at reproducing the experimental distri-
butions (Fig 3.3).

BRER also enabled identification of previously unresolved set of open-state confor-
mations that could elucidate the nature of SNARE assembly and function. The H3
SNARE-binding motif of syntaxin is known to be well-structured when in complex
with the other SNARE proteins,34,80–83 yet little is known about the unbound open state
ensemble.35,38,39 Our data suggest that the open state is actually quite heterogeneous and
that the H3 domain is unstructured. This open-state heterogeneity suggests that SNARE
complex formation may be the result of a conformational selection event: during assem-
bly, conformations which retain a helical H3 domain are preferentially selected to form
the final SNARE.

We are currently testing for the presence of these new open-state conformations us-
ing the mRMR algorithm developed in Chapter 2. We selected a set of pairs based on
their ability to distinguish between the canoncial open state and the novel open state
(Fig 3.4B). Measurements of these new pairs should reveal whether this new open state
is present in the solution ensemble.
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High-resolution refinement of the syntaxin conformational ensemble will likely re-
quire more sophisticated treatment of the correlation structure of the DEER distribu-
tions. Thus, in addition to measuring new mRMR-selected residue-residue pairs to con-
firm the presence of this new open state, we also developed a method to improve the
estimate of the conformational ensemble by inferring the joint distribution of separate
measurements.

5.1.3 Inferring joint distributions from separately-acquired measurements

We have demonstrated a method, ensemble estimation from separate measurements
(EESM), that can be used to infer the joint distribution of separately-aquired measure-
ments and improve the conformational ensemble estimate using that distribution (Chap-
ter 4). The method was tested on a simplified model of an alternating-access transporter
and converges to the correct joint distribution within relatively few iterations (Fig 4.1E).
Here, the conformational ensemble and the joint distribution are known a priori, so it
is possible to rigorously compare the EESM estimate with ground truth. In cases where
no ensemble estimates exist, such as with syntaxin, we can evaluate the method based
on two criteria: its convergence behavior and its ability to predict DEER measurements
not used for refinement. This is discussed in detail in Section 5.2.

5.1.4 Summary

Together, the methods developed in Chapters 2-4 can be used to refine the conforma-
tional ensembles of biological systems that have challenged even the most sophisticated
refinement procedures. We have tested the methods by refining the apo Opa60 ensem-
ble and the soluble domain of syntaxin-1a, two systems which had otherwise been
nearly impossible to characterize. In the future, the iterative approach shown in Figure
5.1, which leverages all three methods, may be used to refine the ensembles of signifi-
cantly more complex systems: the Opa60-CEACAM1 interaction and membrane-bound
syntaxin-1a. Specific suggestions for refinement of these systems are described below.

5.2 Future directions

5.2.1 Refinement of the Opa60-CEACAM ensemble

We have shown in Chapter 2 that the Opa60 likely engages CEACAM through a confor-
mational selection process. Restrained-ensemble simulations performed with a set of
five high-scoring mRMR pairs revealed a striking pattern of loop-loop interactions: in
60% of the resulting conformations, a single loop extended laterally from the base of the
barrel while the two remaining loops formed multiple contacts. Further DEER exper-
iments performed with and without CEACAM revealed that Opa engages its receptor
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FIGURE 5.1: Schema for refining heterogeneous conformational ensem-
bles using mRMR, BRER, and EESM. Data from MD simulations are
used to select optimal experiments using the mRMR algorithm (Chapter
2). Data from these experiments are then incorporated into MD simu-
lation using BRER (Chapter 3). EESM (Chapter 4) is used to infer that
correlation structure of separate measurements and estimate the confor-

mational ensemble.
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through a subset of these particular conformations (Fig 2.5). However, it remains un-
known whether Opa engages CEACAM through the single extended loop or through
the interface formed by the contacting loops.

In order to further refine the conformational ensemble of Opa bound to CEACAM,
we will perform additional DEER experiments using Opa60-CEACAM1 pairs. These
experiments will be selected via the mRMR algorithm on a set of unrestrained MD
simulations of Opa60:CEACAM1 using HV2-extended conformations as initial states.
These pairs will be measured and incorporated into subsequent round of MD simu-
lation using BRER simulations. Convergence of the ensemble can be estimated using
cross-validation among DEER pairs not used in the refinement. Loop flexibility will be
estimated using time-autocorrelation of the loop residues.

The proposed hybrid-refinement method and analysis will illuminate whether or
not the Opa loops remain conformationally flexible upon binding to CEACAM. This
would provide significant evidence in support of the hypothesis that Opa remains con-
formationally flexible in order to reduce the entropic penalty of binding (Fig 1.3).

5.2.2 Further refinement of the syntaxin-1a soluble domain and membrane
interation

Although structures exist for the closed state of syntaxin,81,94–96 few definitive structural
data exist on the open state, and even fewer data provide conclusive insight into exactly
how the conformational equilibrium of these states shifts in the presence of a membrane.
Where data do exist, it has been particularly difficult to integrate the information since
it has been acquired for different constructs of the protein. DEER data taken on just the
soluble domain of syntaxin-1a indicate that the H3 domain is disordered in solution,
yet NMR and FLIC data acquired in the presence of a membrane suggest that H3 is
ordered near a membrane.35,37,94 The BRER methodology developed in Chapters 3 and
4 is especially well-suited to integrate these data. We can use it to determine the syntaxin
membrane interaction as follows.

We will first improve the conformational estimate of the syntaxin soluble domain
using the method developed in Chapter 4. We can infer the correlation structure of the
three separately-aquired DEER distributions which we used to obtain a prelimary es-
timate of the soluble ensemble (Chapter 3). We can reweight this ensemble estimate
using the estimated joint distribution. Because no experimentally-validated joint dis-
tribution exists a priori, we will evaluate the EESM approach based on two criteria: its
convergence behavior and its ability to predict DEER measurements not used for re-
finement. We anticipate that EESM will converge smoothly to a final estimate of the
joint distribution that is distinct from the convolved distributions, as in the case of the
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FIGURE 5.2: Sequentially-trained BRER for determining the
membrane-bound syntaxin-1a conformational ensemble. Sequentially-
trained BRER first learns the solution ensemble using DEER data, then
the membrane ensemble using FLIC data, by minimally perturbing the

solution ensemble with some perturbing Hamiltonian term H′.

alternating-access transporter. Most importantly, we expect that the EESM-refined en-
semble will better approximate additional DEER distributions than an ensemble refined
by assuming independent measurements.

Once we have obtained an improved estimate of the solution ensemble, we can
leverage this estimate to elucidate the syntaxin membrane interaction. Because BRER
obeys the maximum-entropy principle,17,26,75 the solution ensemble incorporates ex-
perimental DEER data with minimal perturbation to the MD Hamiltonian. The FLIC
measurements may then be incorporated via a subsequent round of BRER and EESM;
these newly integrated measurements will minimally perturb the solution ensemble’s
Hamiltonian. With sufficiently many iterations, sequentially-trained BRER will yield an
estimate of the membrane conformational ensemble that is “most compatible with," or
minimally perturbed from, the solution ensemble (Fig 5.2). The quality of that refine-
ment can then be determined by how well the estimated membrane ensemble predicts
FLIC measurements not used for refinement.

Thus, sequentially-trained BRER and EESM leverage one ensemble to refine a dis-
tinct but related ensemble and will allow us to compare the solution and membrane-
bound ensembles of syntaxin. A refined ensemble will provide insight not only into the
general behavior of syntaxin-1a near and far from a membrane, but also how modula-
tion of the conformational ensemble by the presence of a membrane may affect SNARE
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complex formation and assembly.
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Appendix A

Supplementary material for
simulation-guided spectroscopy

A.1 mRMR theory and applications

The contents of this section are published as Supplementary Material to a research
article in:

Refinement of Highly Flexible Protein Structures using Simulation-Guided
Spectroscopy. Jennifer M. Hays, Marissa K. Kieber, Jason Z. Li, Ji In Han,
Linda Columbus, and Peter M. Kasson. Angewandte Chemie International 2018
(130) 17356 –17360.

A.1.1 Methods

mRMR-based selection of optimal DEER measurements

For each bacterial protein, we selected residue-residue pairs using the mRMR algorithm
on 2 µs MD ensemble simulations per protein. A Cα -Cα distance matrix was calculated
using conformational snapshots at 500 ps intervals and these were histogrammed using
1 Å bins. Normalized histograms were used to calculate pair-configuration and pair-
pair MI (Eqs 2.1 and 2.2) as follows:

Typically, a conformation is represented as a 3N dimensional vector of atomic posi-
tions where N is the number of atoms. For selecting DEER pairs, however, a more natu-
ral choice of coordinate system is the set of distances between all possible residueresidue
pairs. If the protein has n residues, there are (n2− n)/2 possible pairs, and we can define
the following conformation variable:

~C =
(

X1 X2 · · · Xi · · · X(n2−n)/2

)
where Xi is the distance between the ithpair of residues. For mutual information calcula-
tions, these real-valued variables are then binned, such that each conformation variable
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TABLE A.1: Ranking of top residue-residue pairs via mRMR and mutual
information alone for Opa60.

Rank mRMR Pairs mRMR score MI Pairs MI score

1 36 171 4.110195 36 171 4.110195
2 91 165 3.203021 37 164 4.109671
3 25 167 3.156535 36 161 4.098168
4 39 158 3.141428 35 171 4.095264
5 85 170 3.105476 36 164 4.094354
6 32 163 3.11782 37 171 4.091122
7 36 91 3.099664 34 169 4.089396
8 34 168 3.121006 37 168 4.089102
9 94 167 3.106743 36 172 4.087823
10 38 154 3.096239 37 165 4.087248
11 85 163 3.105664 37 162 4.087004
12 39 164 3.112969 38 164 4.086218
13 36 175 3.091163 37 166 4.085327
14 30 167 3.094117 36 165 4.08458
15 89 158 3.090069 36 170 4.084023
16 39 171 3.082419 35 166 4.081497
17 91 173 3.084754 37 169 4.080652
18 26 163 3.078114 36 168 4.079957
19 35 95 3.07494 37 161 4.078506
20 35 165 3.089347 36 162 4.078061

is represented as a vector of integers, with each integer being a bin number. We thus
have a set of observed conformations~c.

In order to determine the most informative pairs, we calculate the mutual informa-
tion (MI) between a pair Xi and the conformation variable C:

Ii(Xi, C) = ∑
{xi},{c}

P(xi, c) log
P(xi, c)

P(xi)P(c)

where P(xi, c) is the joint probability function of pair i and conformation c and P(xi)

and P(c) are the marginal probability distribution functions of pair i and conformation
c, respectively.

An ordered list of highest-ranking mRMR pairs was then generated using greedy
mRMR selection (Table A.1).51 Code implementing mRMR selection of residues for
DEER experiments is available from: https://github.com/kassonlab/mRMR-DEER. The
implementation also provides the ability to exclude user-defined residue-residue pairs,
such as residues where spin label placement might disrupt function, but that feature
was not needed here.

https://github.com/kassonlab/mRMR-DEER
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Setup and equilibration of MD simulations

FhuA Because the Ton box motif is highly mobile and thus poorly resolved with NMR
and X-ray crystallography, no full-length apo structures of FhuA exist. We therefore
used a previously published ensemble modeled using NIH-XPLOR to initialize our
simulations.58 This ensemble incorporated a set of MTSL spin-labels. The spin-labels
were removed via a homology model with an incomplete apo structure (PDB ID 1BY3).97

The final full-length apo structure was inserted into a membrane of 756 DLPC lipids us-
ing the Gromacs tool g_membed.In order to improve sampling of the heterogeneous Ton
box motif, we ran an initial pulling simulation to extend the N-terminal domain into the
periplasm. The simulation incorporated four harmonic, pairwise restraints between the
Cβ of the residue pairs 13-161, 13-228, 13-373, and 13-663. Each residue pair was pulled
to a distance of approximately 5 nm over the course of 12 ns. This short simulation time
is reasonable since this was intended only to generate initial states. Conformations were
then sampled every ns to obtain 12 structures for subsequent unrestrained simulations.
Finally, a brief 100 ps equilibration was run on each of the structures using the NPT con-
ditions described in Production MD simulations below. The final ensemble consisted of
two replicates of these 12 states for a total of 24 ensemble members.

OprG The 20 lowest energy structures previously identified (PDB ID 2N6L) were
chosen as initial states. They were inserted into a DLPC membrane as follows: first,
CHARMM-GUI was used to equilibrate a single OprG state obtained from the Orien-
tations of Proteins in Membranes (OPM) database.98 Then, each of the 20 low energy
structures was aligned to the β-barrel of this single structure. Each system was solvated
independently with approximately 40,000 TIP3P water molecules and ions were added
to obtain a system with 150 mM NaCl and no net charge. The final systems were inde-
pendently energy-minimized using steepest-descent for 5000 steps or until the largest
force was less than 1000 kJ mol nm2. Finally, a brief 100 ps equilibration was run using
the NPT conditions described in Production MD Simulations below. Of these initial 20
systems, only six fully relaxed in the membrane; many of the initial loop conformations
extend downward into the plane of the membrane and thus are unlikely to be true con-
formational states.99 The final ensemble consisted of four replicates of these six states
for 24 total ensemble members.

Opa60 The 20 lowest free-energy structures of Opa60previously identified30 (PDB ID
2MAF) were selected as initial states. Each Opa60molecule was inserted into a mem-
brane of 494 DMPC molecules as follows: the beta-barrel was aligned to previously em-
bedded β-barrel of a single structure from the Fox simulations. The protein and mem-
brane were energy-minimized using the steepestdescent integrator for either 5000 steps
or until the largest force was less than 1000 kJ mol nm2, whichever occurred first. Each
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system was solvated independently with approximately 300,000 TIP3P water molecules,
and ions were added to obtain a system with 150 mM NaCl and no net charge. The final
systems were independently energy-minimized again using steepest-descent for 5000
steps or until the largest force was less than 1000 kJ mol nm2. Finally, a brief 100 ps
equilibration was run using the NPT conditions described in Production MD Simulations
below.

Initial states for the second iteration of mRMR were obtained by resampling the
mRMR-restrained ensemble simulations according to the joint distribution of the un-
derlying DEER distributions (the individual distributions were assumed to be inde-
pendent). The solvation, energy minimization, and initial equilibration protocols were
identical to those of the ensembles described above.

Production MD simulations

All production simulations were performed using a modified version of Gromacs 5.2
available at https://github.com/kassonlab/reMDgromacs-5.2 and the CHARMM36100,101

forcefield. Simulations were run under NPT conditions using the velocity-rescaling
thermostat at 310 K with a 2 ps time constant and pressure maintained at 1 bar using
the Parrinello-Rahman barostat with a 10 ps time constant.102 Covalent bonds were con-
strained using LINCS, and long-range electrostatics were treated using Particle Mesh
Ewald.103 For each protein, ensemble simulations were run until a total of 2 µs of data
were collected.

Expression, purification, labeling, and refolding of Opa60

The opa60 gene was sub-cloned into a pET28b vector (EMD chemicals, Gibbstown,
NJ) containing N and C terminal His6 – tags. Cysteine residues were introduced at
regions of interest on Opa using PIPE Mutagenesis, and gene sequencing confirmed
the mutations (Genewiz Inc., South Plainfield, NJ). The pET28b vectors containing a
mutated opa60 gene were transformed into BL21(DE3) E. coli cells, and cultures were
grown in Luria-Burtani (LB) media. Opa protein expression to inclusion bodies was in-
duced with 1 mM isopropyl-β-thio-D-galactoside (IPTG). Cells were harvested and re-
suspended in lysis buffer [50 mM Tris-HCl, pH 8.0, 150 mM NaCl, and 1 mM TCEP-HCl
(tris(2-carboxyethyl)phosphine hydrochloride)]. Following cell lysis, insoluble fractions
were pelleted and resuspended overnight with lysis buffer containing 8 M urea. Cell de-
bris was removed via centrifugation and unfolded Opa proteins in the soluble fraction
were purified using Co2+ immobilized metal affinity chromatography, eluting in 20 mM

sodium phosphate, pH 7.0, 150 mM NaCl, 680 mM imidazole, 8 M urea, and 1 mM TCEP.

https://github.com/kassonlab/reMDgromacs-5.2
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Purified Opa proteins were loaded on a PD-10 column (GE Healthcare Biosciences, Pitts-
burg, PA) to remove TCEP. Opa proteins were eluted with buffer (20 mM sodium phos-
phate, pH 7.0, 150 mM NaCl, and 8 M urea) directly into five molar excess MTSL/R1 spin
label [S-(2, 2, 5, 5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl methanesulfonothioate,
Toronto Research Chemicals Inc., Toronto, Canada, stored as 100 mM stock in acetoni-
trile] for proteins containing a single cysteine and ten molar excess MTSL for Opa pro-
teins with two cysteine residues. The proteins were spin labeled overnight at room
temperature. Excess spin label was removed using a second PD-10 column, and the
eluted protein was concentrated to approximately 150 µM to 200 µM. The labeled pro-
teins were rapidly diluted 20-fold into 20 mM TrisHCl, pH 8.0, 500 mM NaCl, 3 M urea,
and 4.6 mM n-dodecylphosphocholine (FC-12, Anatrace), upon which Opa proteins fold
into the detergent micelles over the course of three days at room temperature.30,104 Fold-
ing efficiency was assessed with SDS-PAGE. Samples were dialyzed against 3×4L of
20 mM sodium phosphate, 150 mM NaCl for an hour each, removing any free spin. Opa
proteins were concentrated to approximately 200 µM to 400 µM.

Double electron-electron spectroscopy of Opa60micelles

Double-labeled Opa60proteins in detergent micelles were measured using pulsed EPR
with a Q-band Bruker E580 Spectrometer fitted with an ER5106-QT Q-band Flexline Res-
onator (Bruker Biospin) at 80 K. The spectrometer was connected to a 10 W solid-state
amplifier (Bruker AmpQ). All samples were prepared to a final protein concentration
between approximately 100 µM to 200 µM with 10% deuterated glycerol. The samples
were loaded into quartz capillaries with a 1.6 mm od x 1.1 mm id (Vitrocom) and flash
frozen in liquid nitrogen. A four pulse DEER sequence was used with one 16 ns π/2,
two 32 ns π observed pulses (at an observed frequency ν1), and a π pump pulse (at a fre-
quency ν2) optimized at approximately 32 ns.105 The pump frequency (ν2) was set at the
maximum of the nitroxide spectrum and the observed frequency (ν1) is set to 75 MHz
lower. Increasing inter-pulse delays at 16 ns increments were used with a 16-step phase
cycle during data collection. Accumulation times were typically between 18 h to 24 h,
with a dipolar evolution time between 2 µs to 3 µs. Dipolar evolution data were pro-
cessed using DEERAnalysis2016 software106 using Tikhonov regularization to generate
distance distributions. Background subtraction of the distance distribution yielded er-
ror at each distance which was plotted as ranges representing fits that are within 15%
root-mean-square-deviation of the best fit.

Restrained-ensemble biasing potentials

To compare the quality of mRMR-guided versus spectroscopist-guided refinement of
Opa60, two ensemble refinements were run. The first incorporated experimental DEER



52 Appendix A. Supplementary material for simulation-guided spectroscopy

distance distributions from high-ranking mRMR label pairs 31-166 and 88-162, while the
second incorporated those from spectroscopist-selected label pairs 77-107 and 107-117.
Restrained-ensemble biasing potentials previously developed by Roux were applied to
match MD distance histograms to DEER-derived distance distributions (Fig A.3). Re-
finement was performed via restrained-ensemble simulation using a modified version
of Gromacs 5.2 available at https://github.com/kassonlab/reMD-gromacs-5.2. Both
DEER-derived and MD-derived distance distributions were smoothed with a Gaussian
filter. The smoothing parameter σ was chosen to reflect the experimental uncertainty
in the fine modes of the DEER-derived distance distributions, 2 Å for the high-scoring
mRMR pairs and 1 Å for the spectroscopist-selected pairs (SSP). Histograms were cal-
culated using 1 Å bins. Rather than updating the bias potential Ubias at every MD step,
distance data were collected for all ensemble members for a period of 100 ps followed
by a Ubias update. Additionally, a boxcar averaging filter was applied so that the sim-
ulation distance distributions were calculated using the last 10 ns of data for the first
round of simulations and 25 ns for the second round of simulations. These modifica-
tions were implemented in order to obtain sufficient sampling for generating the MD
distance distributions. Final distance distributions were calculated using the last 25 ns
of data, while convergence monitoring using the Jensen-Shannon divergence was per-
formed on a 10 ns window prior to the referenced time point (Fig A.3). An initial spring
constant K =10 kJ mol−1 nm−2 was used for the first 40 ns in all three sets of simulations.
After 40 ns, K was increased to 100 kJ mol−1 nm−2 in the mRMR-guided simulations in
order to reverse the increase in J-S divergence observed from approximately 30 ns to
40 ns.

Information-theoretic clustering

The final trajectories of both the mRMR-restrained and SSP-restrained ensembles were
sampled at 0.5 ns intervals, and all Cα -Cα distances were calculated using Gromacs.
Histograms of each Cα -Cα pair were constructed using 1 Å bins, and all pairwise mu-
tual information values were calculated as:
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tion, it is possible to obtain an approximation of the Opa60ensemble by knowing the
distributions of only a subset of all Cα -Cα distances; that is, by grouping together sets
of highly related pairs, one can obtain an approximation of the dimensionality ensem-
ble. The quality of the approximation depends on how much information is lost by

https://github.com/kassonlab/reMD-gromacs-5.2
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grouping together more and more diverse Cα -Cα pairs.
In order to quantitatively evaluate the dimensionality of the ensemble after incorpo-

ration of the mRMR or spectroscopist-selected pairs, we clustered closely related sets of
Cα -Cα pairs using complete-linkage hierarchical clustering with an MI-based distance
metric
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The maximum cluster diameter after each clustering step may be thought of as a mea-
sure of resolution, or quality of the approximation: as the cluster diameter increases,
information about the ensemble is lost as increasingly more independent Cα -Cα pairs
are grouped together and considered redundant.

The information-theoretic resolution is reported in Fig 2.4 as 1− ε, i.e., 1 – max(cluster
diameter).

Analysis of loop conformations

Contact matrices were calculated for all inter-loop contacts in snapshots taken at 500 ps
intervals using a distance cutoff of 6 Å. Principal components analysis was performed to
obtain a new orthogonal basis set for loop-loop contacts. For restrained-ensemble simu-
lations performed using mRMR-guided DEER data, all snapshots formed four compact
and well-separated clusters in the subspace formed by the first three principal compo-
nents (Fig A.9). Similarly, for restrained ensemble simulations performed using SSP
DEER data, all snapshots formed five well-separated clusters (Fig A.10). These clusters
and their corresponding centroids thus reflect the major contact modes between loops.
This contact-matrix-based analysis was chosen because the loops are highly flexible,
making the rigid-body alignment that underlies RMSD-based clustering less accurate.

A.1.2 Additional Figures
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FIGURE A.1: ENM-based scoring of flexibility correlates poorly with
NMR data and identifies less informative loop regions. Elastic net-
work models provide a computationally efficient means of approximat-
ing some protein motions. To assess this approach for Opa loop predic-
tion and DEER pair selection, a Gaussian Network Model was used to
predict Cα B-factors for Opa60. The ten top-scoring residues are shown
on the structure in (A). Many of the residues are located near the base of
a single loop, while only two are located on a different loop in a more
flexible region. Additionally, the ENM does not accurately reproduce the
relative loop residue motion observed via NMR. The ENM-predicted B-
factors correlate poorly with experimentally determined T1 decays2 (B);
r < 0.2. The “high flexibility” residues identified by the ENM ends up
closely resembling standard spectroscopist-guided pair-selection, with
one residue in a region of high stability and one residue in a region of
higher flexibility. Thus, mRMR-based pair selection on molecular dynam-
ics trajectories, although computationally more expensive, yields more

informative DEER pairs for Opa60.
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FIGURE A.2: Measured spin-echo decays and fitted distributions. Fits
are superimposed in red on the decays. The red error bars in the dis-
tance distributions represent uncertainty due to the background subtrac-

tion form factor that produce fits within 15% RMSD of the best fit.
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FIGURE A.3: Restrained-ensemble simulations converge rapidly to ex-
perimental distributions.. Convergence of restrained-ensemble simula-
tions to DEERderived distributions over 100 ns is plotted in (a) for both
the high-scoring mRMR pairs and spectroscopist selected pairs. Conver-
gence of both ensembles is quantified in (b) using Jensen-Shannon diver-

gence.
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FIGURE A.4: Top mRMR-predicted pairs and measured pairs have near-
identical pair-configuration mutual information and mRMR values.
For operational reasons, the residue-residue pairs measured via DEER
were slightly different than the top mRMR-predicted pairs. As shown
in the histogram in a) and mRMR table b), the predicted and measured
pairs are closely linked, having near-identical pair-configuration MI and
mRMR scores. The mRMR table shows values of the mRMR statistic for
the second residue-residue pair selected over all combinations of pre-

dicted and measured pairs. These statistics vary by less than 5%.
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FIGURE A.5: A second round of mRMR better refines the
Opa60conformational ensemble. Conformational ensembles refined
using mRMR-selected pairs predict these new DEER distributions
significantly better than conformational ensembles refined using
spectroscopist-selected pairs (SSP) in seven of eight cases, quantified as
inverse J-S divergences. Three of these DEER pairs were used for a second
round of mRMR refinement; the resulting conformational ensemble out-
performs both 1st-round ensembles in predicting the five pairs not used
for refinement. Error bars represent 90% confidence using 1000 bootstrap

replicates.
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FIGURE A.6: A second round of mRMR elucidates conformational het-
erogeneity of “two-and-one" loop configurations. The same “two-and-
one" interaction patterns observed in the first round of mRMR-guided
refinement (C) predominate in a second round of refinement (D). The
conformational heterogeneity of the two-and-one interaction pattern is
better resolved in the second round as evidenced by the additional single-
loop extension in (D) and the unchanged dimensionality in (A). Confor-
mational clusters from SSP-guided refinement are shown in (B) for com-

pleteness.

A.2 Preliminary refinement of the Opa60-CEACAM interaction

The contents of this section are published as Supplementary Material to a research
article in:

Refinement of Highly Flexible Protein Structures using Simulation-Guided
Spectroscopy. Jennifer M. Hays, Marissa K. Kieber, Jason Z. Li, Ji In Han,
Kelley W. Moremen, Linda Columbus, Peter M. Kasson. bioRxiv January 1,
2018, 319335.

A.2.1 Methods

Expression and purification of glycosylated N-terminal domain CEACAM1 proteins.

An expression and purification protocol for glycosylated N-CEACAM1 proteins was
adapted from previously published work.107 A 250 mL suspension culture of HEK293S
cells was transfected with the NCEACAM1-pGEn2 plasmid using polyethyleneimine
(linear 25 kDa, Polysciences Inc., Warrington PA) as described previously, where NCEA-
CAM1 is the human ceacam1 gene encoding the N-terminal domain of CEACAM1
(residues 34-141). Cysteine residues were introduced into ceacam1 via site-directed
mutagenesis and confirmed by sequencing. Glycosylated NCEACAM was produced
over five days at 37 ◦C, after which cell debris was removed via centrifugation (20 min,
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150 x g, 4 ◦C). Glycosylated NCEACAM1 was purified from the supernatant via Co 2+
immobilized metal affinity chromatography (IMAC), eluting in ten column volumes of
elution buffer (25 mM HEPES, 300 mM NaCl, 680 mM imidazole, pH 7.0) at 4 ◦C. The
eluent was dialyzed into 4L of 25 mM HEPES, 300 mM NaCl,10% glycerol, pH 7.0 con-
taining approximately 3.5 µM tobacco etch virus (TEV) protease and endoglycosidase
F1 (EndoF1). Excess GFP was removed using Co 2+ IMAC, and the flow-through con-
taining CEACAM was collected. NCEACAM1 was further purified from GFP, TEV,
and EndoF1 using a HR Sephacryl S-200 Gel Filtration column (GE Healthcare) equili-
brated with 20 mM HEPES, pH 7.0, 150 mM NaCl, and 10% glycerol. Opa and CEACAM
samples were concentrated to approximately 200 µM and mixed at a 2:1 CEACAM:Opa
molar ratio. Samples were incubated for 30 minutes with gentle nutation at room tem-
perature prior to adding 10% deuterated glycerol and flash freezing.

Analysis of Opa conformations selected for by CEACAM.

Opa residue-residue distance distributions measured in the presence of CEACAM were
fitted as a linear combination of the SV-extended, HV2-extended, and splayed-loop en-
sembles resulting from final analysis of the apo Opa conformational ensemble. The dis-
tributions of residue-residue pairs 28-159 and 80-166 from restrained-ensemble simu-
lations were calculated for the SV-extended, HV2-extended, and splay-loop ensembles
by sampling at 0.5 ns intervals and smoothing the resulting distributions via a Gaus-
sian filter with bin size 1 Å and σ =2 Å. The experimental distributions were similarly
smoothed. The experimental distributions were fit as a linear combination of the three
ensembles using a least-squares optimization procedure:

min
[(

αPSV(x) + βPHV2(x) + γPsplay(x)− PDEER(x)
)2
]
∀x

subject to the constraints

α, β, γ ≥ 0

α + β + γ = 1

The best approximation for the bound conformational ensemble is therefore the set of
conformations defined by re-weighting the apo ensembles by the parameters α, β, γ.

A.2.2 Additional figures
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SV

FIGURE A.7: Loop nomenclature and variable regions of Opa60. Loops
1, 2, and 3 are shown in red, light green, and teal, respectively, on an
Opa60structure. Cα of the hyper-variable regions (HV1 and HV2) as well

as the semivariable region (SV1) are rendered as spheres.
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FIGURE A.8: Loop-loop contact modes identified by second-round re-
finement using mRMR-selected DEER pairs. Principal components
analysis was performed on loop-loop contact matrices from restrained-
ensemble simulations of the second-round mRMR-selected residue pairs.
The first three of principal components separate restrained-ensemble
snapshots into ten well-separated clusters, rendered in different colors
(a). Average contact maps for each of the three conformational states
formed by these ten clusters are shown in (b). The centroids, rendered in
(c), clearly show three types of loop-loop interactions: 40% of the confor-
mational ensemble, represented by four leftmost cluster centroids, show
HV1 (green) and HV2 (red) in contact, while the SV (tan) region is ex-
tended. 20% of the conformational ensemble shows the HV2 loop ex-
tended with contacts between HV1 and SV. The remainder of the ensem-

ble is conformationally heterogeneous.
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FIGURE A.9: Loop-loop contact modes identified by first-round refine-
ment using mRMR-selected DEER pairs. Principal components analysis
was performed on loop-loop contact matrices from restrained-ensemble
simulations of mRMR-selected residue pairs. The first four principal
components, which account for 25% of the total variance, are rendered in
panel (a); the first three of these separate restrained-ensemble snapshots
into four non-overlapping clusters (b). The centroids of these clusters are
rendered in panel (c), showing different loop-loop contact modes. Strik-
ingly, the HV2 loop (red) protrudes laterally in all of these structures,
while the SV and HV1 form multiple distinct sets of contacts. As above,
hydrophobic residues are rendered as spheres and loops are colored with

HV2 in red, HV1 in light green, and SV in tan, respectively.
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FIGURE A.10: Loop-loop contact modes identified by first-round re-
finement of spectroscopist-selected DEER pairs. Principal components
analysis was performed on loop-loop contact matrices from restrained-
ensemble simulations of spectroscopist-selected residue pairs. The first
four principal components, which account for 25% of the total variance,
are rendered in panel (a), and snapshots are plotted in a projection onto
the first three principal components in panel (b). The centroids of these
clusters are rendered in panel (c); in contrast to the mRMR-based refine-
ment, these centroids primarily identify structures with all loops closely
interacting and only two with the HV2 loop extended, thus requiring ad-
ditional DEER pairs to yield a clear structural hypothesis regarding recep-
tor recognition by Opa60. As above, hydrophobic residues are rendered
as spheres and loops are colored with HV2 in red, HV1 in light green, and

SV in tan, respectively.
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Appendix B

Supplementary material for
integrating distributional data on
heterogeneous ensembles

B.1 Bias-resampling ensemble refinement (BRER): theory and
applications

The contents of this section are published as Supplementary Material to a research
article in:

Hybrid Refinement of Heterogeneous Conformational Ensembles Using
Spectroscopic Data. Jennifer M. Hays, David S. Cafiso, and Peter M. Kasson.
The Journal of Physical Chemistry Letters 2019 10 (12), 3410-3414.

B.1.1 Theory

A more complex formulation of bias-resampling ensemble refinement (BRER) may be
used to perform more advanced sampling. Rather than draw each conformation x
from the previous conformational estimate {̂X}, a history is maintained of k refinement
rounds, so that the conformation x is drawn from the union of {̂X}i−1, {̂X}i−2, . . . , {̂X}i−k.
The conformational estimate {̂X} is then obtained as before: the conformations are up-
dated using a biased MD simulation such that the updated estimate {̂X}1...i will opti-
mally reproduce PDEER(d). Just as with the formulation provided in the main text, over
the course of multiple rounds of refinement, the conformational estimate {̂X} should
yield a distribution P{̂X}(d) that converges on PDEER(d).
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B.1.2 Methods

Molecular dynamics simulations

Set up and equilibration of syntaxin-1a In order to best demonstrate the ability of
our method to sample backbone conformational change and rare conformational states,
we started all simulations of syntaxin-1a from its closed state. We obtained an initial
structure of closed syntaxin by extracting the soluble domain from the crystal struc-
ture of syntaxin in complex with Munc-18 (PDB ID 3C98).108 Simulations were run
in Gromacs100 using the CHARMM36101 force field. The system was solvated with
approximately 90,000 TIP3P water molecules and ions were added to obtain a sys-
tem with 150 mM NaCl and no net charge. The system was energy minimized using
the steepest-descent integrator for 5000 steps or until the largest force was less than
500 kJ mol−1 nm−2, whichever came first. A brief 100 ps equilibration was run using
NPT conditions using the velocity-rescaling thermostat102 at 310 K with a 2 ps time con-
stant and pressure maintained at 1 bar using the Parrinello-Rahman barostat with a 10 ps
time constant.109 Covalent bonds were constrained using LINCS, and long-range elec-
trostatics were treated using Particle Mesh Ewald.103 For each set of ensemble simula-
tions, we generated 50 identical replicas from the equilibrated structure and used these
replicas as initial states for production runs.

Production simulations All production simulations were run under the same NPT
conditions described above. DEER-derived distance distributions were smoothed with
a Gaussian filter. The smoothing parameter σ was chosen to reflect the experimental un-
certainty in the fine modes of the DEER-derived distance distributions, 2 Å for all three
distributions. Histograms were calculated using 1 Å bins. These distributions were then
incorporated into MD simulation using each of three ensemble methods, detailed below.
Production simulations were carried out using 50 ensemble members and 5 µs of sim-
ulation data were collected for each refinement method except EBMetaD. The reason
for this exception is described in “EBMetaD simulations." Simulations were run using
Gromacs100 and the gmxapi Python API77, which permits introduction of user-defined
biasing potentials.

BRER simulations To sample the syntaxin conformational ensemble, we performed
five iterations of BRER for each of 50 ensemble members. Each iteration is performed as
follows: first, one target distance is chosen from each of the smoothed DEER distribu-
tions, then a linear biasing potential

Ubias =
Ndistributions

∑
n=1

αi
d(n)MD

d(n)target
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is applied to drive the simulation distance to the target.
Convergence to the target is achieved in two phases. During the training phase, the

Hamiltonian coupling constants α are learned for each target using a modified version
of the method described by White and Voth.17 Each constant α is updated every 50 ps
according to

ατ = ατ−1 − ητgτ

where η is the learning rate and g is the gradient:

gτ = −2β

(
〈dMD〉τ
dtarget

− 1
) (
〈d2

MD〉 − 〈dMD〉2
)

,

ητ =
A√

∑τ
i=1 gi

At the end of the training phase, we select the maximum value of α to prevent under-
estimating α if the ithdegree of freedom converges much faster than the others. During
the convergence phase, the simulation is restarted from the beginning of the iteration
and a time independent potential (α fixed) is applied until the simulation converges to
the target. The parameter A was chosen so as to achieve convergence between 1 ns to
5 ns (A = 150β). Once the simulation has converged to the target, a 20 ns production
run is performed to relax the remaining degrees of freedom. The full procedure is then
repeated, beginning with random resampling from the DEER distributions.

A python package to run BRER ensemble simulations is available at https://github.
com/jmhays/run_brer and documentation can be found at https://jmhays.github.

io/run_brer. A singularity container is also available at https://singularity-hub.
org/collections/1761.

EBMetaD simulations EBMetaD simulations were implemented using the same mod-
ified version of gromacs and gmxapi77 version as the BRER simulations. Because the
EBMetaD potential is ill-defined in regions of zero probability, we add a small uni-
form prior to all experimental distributions: using the same notation as Marinelli and
Faraldo-Gomez,78 the modified EBMetaD potential is

V (ξ, t) =
t

∑
t′=τ,2τ,...

w exp
{
−
[
ξ − ξ f (Xt′)

]2 /2σ2
}

exp
{

Sρ

} (
ρexp

[
ξ f (Xt′)

])
+ δuniform

where we have added the term δuniform. As δuniformincreases, the simulations become
more numerically stable, but the solution approaches standard metadynamics. There-
fore, δuniformshould be chosen carefully so as to maintain information about the DEER
distributions but still produce stable simulations. We selected δuniform=0.1. Even with

https://github.com/jmhays/run_brer
https://github.com/jmhays/run_brer
https://jmhays.github.io/run_brer
https://jmhays.github.io/run_brer
https://singularity-hub.org/collections/1761
https://singularity-hub.org/collections/1761
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this choice of δuniform, the method exhibited a high rate of stochastic failure: all 50 en-
semble members failed in the range of 10 ns to 50 ns of simulation time. Because of this,
we were only able to collect ∼3 µs of data.

This version of the EBMetaD method is available at https://github.com/jmhays/
run_ebmetad. A singularity container is also available at https://www.singularity-hub.
org/collections/1994.

Restrained-ensemble simulations Restrained-ensemble biasing potentials previously
developed by Roux23,61 were applied to match MD distance histograms to DEER-derived
distance distributions. Refinement was performed via restrained-ensemble simulation
using a modified version of Gromacs 5.2 available at https://github.com/kassonlab/
restrained-ensemble. This method exhibits numerical instabilities when distributions
are very tightly peaked, such as when an ensemble is started from copies of a single
initial state. Thus, we initially used a very broad smoothing parameter, σ=10 Å for both
the MD and DEER-derived distributions, which we modified to σ=1 Å once the ensem-
ble had sampled enough of the distribution to be stable for small σ. Distance data were
collected for all ensemble members for a period of 100 ps followed by an update of the
biasing potential with a spring constant of K=100 kJ mol−1 nm−2. Additionally, a boxcar
averaging filter was applied so that the simulation distance distributions were calcu-
lated using the last 10 ns of data. These modifications were implemented in order to
obtain sufficient sampling for generating the MD distance distributions as previously
described in Hays et al.12

Calculation of final distributions and Jensen-Shannon divergence

For each ensemble, production simulations were sampled at 500 ps intervals and dis-
tances between the Cβ of each residue-residue pair measured by DEER were calculated
using MDAnalysis.110 The distributions plotted in Fig. 3 of the main text were calcu-
lated using a Gaussian filter with smoothing parameter σ=2 Å and 1 Å bins for all three
distributions. This was done for consistency with the experimental data, which was
also smoothed with σ=2 Å and 1 Å bin width. J-S divergence was calculated using the
smoothed experimental and simulation distributions.

Conformational ensemble analysis

We clustered the BRER-refined structures as follows: final, relaxed structures from each
stochastic-resampling iteration were collected and the distances between the Cβ of each
residue-residue pair measured by DEER were calculated using MDAnalysis. Distances
were calculated from Cα for glycine residues. We performed k-means clustering on
these distance coordinates for a broad range of cluster numbers (2 – 50 clusters). We

https://github.com/jmhays/run_ebmetad
https://github.com/jmhays/run_ebmetad
https://www.singularity-hub.org/collections/1994
https://www.singularity-hub.org/collections/1994
https://github.com/kassonlab/restrained-ensemble
https://github.com/kassonlab/restrained-ensemble
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selected the smallest cluster number (20) for which the average intra-cluster RMSD was
substantially higher than the average inter-cluster RMSD (7 Å and 9 Å, respectively).
Clusters were classified as “open" if the 52/210 distance was > 40 Å. The structure
rendered in Fig 4 of the main text is the centroid of the most populated open cluster.

B.2 Summary of restrained-ensemble MD, EBMetaD, and BRER
methods: properties of their biasing potentials

Method Ubias

Behavior
when
pDEER = 0

Exchange
between
well-
separated
modes of
pDEER

Obeys
maxEnt
principle

BRER
stochastic resampling with lin-
ear potential α

dMD−dtarget
dtarget

stable yes yes

EBMetaD ∑t
t′=τ,2τ,...

w exp
{
−[ξ−ξ f (Xt′ )]

2
/2σ2

}
exp{Sρ}(ρexp[ξ f (Xt′ )])

unstable

Ubias → ∞ no yes

restrained-
ensemble

1
2 k (PDEER(d)− PMD(d))

2 stable no

only in the
limit of
k → ∞ or
an infinite
number of
ensemble
members

TABLE B.1: Summary of the differences between BRER, EBMetaD, and
restrained-ensemble
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