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Abstract 
In order to survive, cells must sense and respond to countless internal and external 

stimuli. Some stimuli will induce stress, which triggers variable responses depending on the 
type, severity and duration of stress. For cells living in an aerobic environment, reactive oxygen 
species (ROS) are a continual source of stress that must be dealt with. ROS are reactive 
derivatives of oxygen produced by normal cellular metabolism and in response to various 
microenvironmental factors. Depending on concentration and context, ROS can promote cell 
signaling and proliferation or cause oxidative damage to biomolecules and apoptosis or 
senescence. To deal with these pervasive, potentially harmful species, cells are equipped with 
several pathways to sense and detoxify ROS.  

In this dissertation, we use systems biology approaches to interrogate a stress-
associated transcriptional state in breast mammary epithelial cells. Using several bioinformatic 
and analytical approaches, we identify the antioxidant transcription factor NRF2 as a candidate 
regulator of the group of transcripts. From there, we use molecular and cellular biology 
techniques, image processing, and computational modeling to decipher the broader NRF2 
network responsible for oxidative stress handling. We uncover that NRF2 is activated together 
with another stress-responsive pathway, the p53 pathway, in single cells to mount a coordinated 
response to oxidative stress in 3D spheroid culture. NRF2–p53 coordination is retained in 
normal primary breast tissue and hormone-negative DCIS. However, the two pathways are 
largely uncoupled in triple-negative breast cancers, where p53 is usually mutated.  

We then develop a computational systems model of NRF2–p53 signaling in response to 
transient perturbations in oxidative stress. Using the model, we robustly test hypotheses 
regarding NRF2–p53 network architecture and coordination during different stages of breast 
cancer. The integrated NRF2–p53 model predicts variable extents of uncoupling among TNBCs 
lines, and high uncoupling coincides with the most-severe 3D growth alterations upon NRF2 
knockdown, suggesting a reduced tolerance for oxidative stress. 

While previous research has focused on NRF2’s direct interaction with mutated TNBC 
tumor suppressors, our work describes an important systems-level role for wild-type NRF2 and 
p53 in oxidative-stress tolerance of normal breast–mammary epithelia and hormone-negative 
premalignancies. 
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Chapter 1 Introduction 

1.1 Foreword 

In order to survive, cells must sense and respond to countless internal and external 

stimuli. Some stimuli will induce stress, which triggers different responses depending on the 

type, severity and duration of stress. One particularly ubiquitous stressor cells must deal with 

are reactive oxygen species (ROS), which are highly reactive byproducts of normal cellular 

metabolism. Low to moderate levels of ROS facilitate intracellular signaling and can promote 

cell proliferation (1–4),  while high levels cause oxidative damage to biomolecules and induce 

cell death (5). High levels of ROS are also implicated in the pathogenesis of multiple diseases, 

including cancer (6,7). Several processes associated with cancer initiation and progression 

induce ROS production, including oncogenic signaling, increased metabolic rate, and matrix 

detachment, and thus cancer cells must devise ways to survive in a prooxidant environment (8–

14). Understanding the complex intracellular effects of ROS and their regulation in cells are key 

to understanding cancer initiation and progression (15,16). 

In this chapter, we provide background on the intrinsic subtypes of breast cancer and the 

heritable lesions associated with each, emphasizing the triple-negative/basal-like subtype which 

is the focus of the research presented in this dissertation. We give a brief introduction of ROS 

and the types of stress they cause in the cell. Next, we discuss the NRF2 pathway, the main 

pathway that detoxifies oxidative stress, and its role in cancer. Finally, we discuss the p53 

pathway, the main pathway that deals with genotoxic stress in the cell, and its role in cancer.  

1.2 The intrinsic subtypes of breast cancer 

Gene expression profiling has classified breast cancer into four intrinsic subtypes: 

luminal A, luminal B, HER2-enriched, and basal-like (17,18). The subtypes are very distinct in 

terms of clinical and pathologic features and therefore have different prognostic and therapeutic 

implications (19). Luminal A and B comprise the hormone-receptor positive subtype defined by 
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expression of estrogen receptor (ER) and/or progesterone receptor (PR). Luminal breast tumors 

are treated with ER or PR antagonists (20) and patients with these tumors generally have better 

prognosis than those with hormone-negative tumors (21–23). HER2-enriched tumors 

overexpress the human epidermal growth factor receptor 2 and are treated with HER2 receptor 

antagonists, mainly monoclonal antibodies that bind HER2 and interfere with signaling (24). 

Basal-like tumors, so named because of their expression of basal cytokeratins 5/6, 14 and 17 

(25,26), are mostly “triple-negative” (18), meaning they lack ER/PR expression and do not 

overexpress HER2 (27,28). Patients with basal-like breast cancer have the worst prognosis of 

the four subtypes, partly because of a lack of treatment options (29). Since most basal-like 

tumors do not depend on hormone signaling or HER2 overexpression for growth, they do not 

respond to the standard of care targeted therapies that inhibit these receptors and receptor 

pathways, leaving chemotherapy as the only treatment option (30). In addition, basal-like tumors 

are highly heterogeneous, both inter- and intra-tumorally, contributing to their poor prognosis 

and lack of treatment options (25,26,31,32).  

An omics analysis of breast cancer sequencing data from the Cancer Genome Atlas 

revealed that the mutational profile of basal-like breast cancers is variable within the subtype 

and compared to the other subtypes of breast cancer (33). The predominant genetic lesions in 

basal-like tumors are in the tumor suppressors BRCA1 and TP53 (33,34). Germline BRCA1 

mutations are present in 10% of basal-like tumors, compared to 1% in other subtypes (33). 

Epigenetic inactivation of BRCA1 through promoter hypermethylation occurs in another 50% of 

basal-like tumors, compared to 50-28% in other subtypes (35). TP53 mutations are present in 

80% of basal-like tumors, compared to 12-29% of luminal tumors (33). The enrichment of 

BRCA1-inactivation in the basal-like subtype (36) is thought to be linked to the high prevalence 

of TP53 mutations. TP53  loss makes cells more resistant to apoptosis (37), and thus more 

tolerant of BRCA1 loss (38,39). Loss of two of the main coordinators of the DNA damage 

response leave cells susceptible to mutation, and contributes to the increased genomic 
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instability associated with basal-like tumors (33). Besides BRCA1 and TP53, no other genes are 

mutated in more than 10% of basal-like breast tumors, emphasizing the genetic heterogeneity 

within the subtype. 

While sequencing studies have given a clearer picture of the genetic landscape of breast 

tumors, they have done little to uncover any druggable oncogenes for the basal-like subtype. 

More research is needed to discover genes and pathways that are not explicitly mutated, but 

required for maintenance of the tumorigenic state (40). 

1.3 Reactive oxygen species (ROS) 

Reactive oxygen species are chemically reactive species derived from the incomplete 

reduction of oxygen. ROS can be categorized into radicals, molecules with at least one unpaired 

electron, or non-radicals. Radicals, including the superoxide anion (O2
-) and the hydroxyl radical 

(HO⋅), are more reactive than non-radicals such as hydrogen peroxide (H2O2) (41). For most 

cell types, ROS production mainly occurs through mitochondrial oxidative phosphorylation. 

Inherent leakiness of the electron transport chain (ETC), specifically from complex I and 

complex III, causes some electrons to flow out of the pathway and partially reduce oxygen to the 

superoxide anion. From here, superoxide is rapidly converted to hydrogen peroxide by 

superoxide dismutase enzymes (42). H2O2 is a small, diffusible, and relatively stable form of 

ROS, making it particularly important for intracellular signaling (43). Other endogenous sources 

of ROS include the membrane-bound enzyme NADPH oxidase, which produces ROS in 

response to various ligands, along with other enzymes such as xanthine oxidase, 

cyclooxygenases, and nitric oxide synthase. To detoxify excess ROS, cells are equipped with 

antioxidants, including the thiols glutathione and thioredoxin, which are regulated by the 

transcription factor NRF2 (44,45). Tight regulation of ROS by antioxidant systems is necessary 

to balance the generation of ROS and to curtail oxidative damage to biomolecules.  
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An in-depth review of ROS production and its role as a signaling intermediate from a 

computational modeling perspective is provided in Chapter 2. In the next section, we discuss 

oxidative damage caused by ROS.  

1.4 Damaging effects of ROS 

ROS pose a problem to the cell because they readily react with biological molecules. 

The hydroxyl radical, the most powerful oxidant among the ROS (46), has strong affinity for 

electron-dense sites such as aromatic or sulfur-containing compounds (41). For example, 

cysteine residues in proteins are preferential targets because of their nucleophilic sulfhydryl 

group (43). Chemical modification of biomolecules alters the charge of regions of the molecule 

and can lead to structural changes that interfere with normal functioning. Oxidative stress 

occurs when there is an imbalance between the production of ROS and elimination by 

antioxidants, causing increased damage to DNA, lipids, and proteins. 

Genotoxic stress refers specifically to DNA damage by endogenous or exogenous 

chemical agents. Most endogenous DNA damage results from ROS (47), which can react with 

nucleobases or the 2-deoxyribose moiety (48). Approximately 100 different oxidative lesions 

have been identified in DNA, most occurring at double bonds and methyl groups of base pairs 

(49). One of the most common oxidative DNA lesions results from the oxidation of guanine, 

generating 8-hydroxydeoxyguanosine (8-OHdG), which is a biomarker for oxidative stress and 

some types of cancer (50,51). If unrepaired, 8-OHdG can cause G-T or G-A transversion 

mutations during DNA replication (52). The genome is estimated to suffer as many as 103 

oxidative lesions per day (53), which if unrepaired, can go on to cause heritable damage (54). 

Due to the harmful effects of ROS, the cell is armed with multiple mechanisms to 

detoxify ROS and repair the damage they cause. The next two sections will cover two of the 

main pathways responsible for sensing and responding to ROS.  
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1.5 NRF2 

1.5.1 The role of NRF2 in normal cells  

Redox imbalance triggers the cellular detoxification system, a two-stage process of 

metabolism. Phase I involves oxidation of xenobiotics. Oxidation is carried out mainly by the 

cytochrome P450 superfamily of enzymes (55), which use oxygen and NADH as a cofactor to 

add a reactive group to the toxin. Phase II, involves the transfer of hydrophilic compounds to the 

now reactive xenobiotic, carried out by a variety of enzymes including sulfotransferases, 

glutathione transferase, amino acid transferases, N-acetyl transferases, and methyltransferases 

(56). Conjugation reactions decrease the reactivity of the toxin, minimizing harmful effects to 

other biomolecules. 

NRF2 coordinates the detoxification system by activating transcription of various Phase I 

and II enzymes (44,57). It is a member of the cap ‘n’ collar subfamily of basic region leucine 

zipper transcription factors and regulates gene expression through the antioxidant response 

element, a 9 base pair promoter sequence resembling the NRF2 binding motif 

[TGA[C/G]T[C/T][A/G]GCA] (58–60). Under normal conditions, NRF2 is maintained at low basal 

levels by its repressor KEAP1, a substrate adaptor protein for a Cul3-dependent E3 ubiquitin 

ligase (61,62). KEAP1 binds two motifs within the N-terminal Neh2 domain of NRF2 to enable 

ubiquitin conjugation and proteasomal degradation (63). The higher affinity ETGE motif is 

necessary for KEAP1 binding and the lower affinity DLG motif is necessary for proper 

orientation to facilitate polyubiquitination of lysine residues between the two motifs (64–66). 

Under conditions of electrophilic or oxidative stress, several cysteine residues of KEAP1 are 

modified causing a decrease in the affinity of KEAP1 for the Neh2 domain (67–69). The nature 

of the stress determines which cysteine residues are modified. Electrophilic compounds such as 

sulforaphane (SF) react with any of the three sensor cysteines Cys151/Cys273/Cys288 (70), 

whereas the oxidative stress-inducer hydrogen peroxide (H2O2) reacts with 
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Cys226/Cys613/Cys622/Cys624 (71). SF, a potent electrophile derived from cruciferous 

vegetables, reacts with KEAP1 cysteines through its sulfur-containing isothiocyanate group to 

form thionoacyl adducts (72,73). These modifications alter KEAP1 conformation and impair 

association with both Cul3 and NRF2 (63,74). 

Once NRF2 is stabilized, it translocates to the nucleus, heterodimerizes with small Maf 

proteins (75) and binds to AREs to induce expression of cytoprotective genes (44,76,77). NRF2-

induced genes mediate the antioxidant response by several mechanisms including drug 

metabolism, synthesis of reducing factors, regeneration of oxidized cofactors and proteins, 

synthesis of antioxidants, and iron sequestration (Table 1.1).  

Table 1.1 The NRF2-regulated antioxidant system. 
Category Gene Name/Function 
ROS and xenobiotic 
detoxification 

CYP2A6 (78) 
ALDH3B1 (79) 
NQO1 (80) 

Cytochrome P450 
Aldehyde dehydrogenase 
Quinone detoxification 

NADPH production G6PD (81) 
 
PGD (81) 
 
ME1 (45) 
IDH1 (81) 

Glucose-6-phosphate 
dehydrogenase 
6-phosphogluconate 
dehydrogenase 
Malic enzyme  
Isocitrate dehydrogenase  

Glutathione antioxidant 
system 

GCLC (82,83) 
GCLM (82,83) 
GPX2 (84) 
GSTA1, GSTA2, GSTA3 (76) 
GSTM1, GSTM2, GSTM3 (76) 
GSR (85) 
SLC7A11 (86) 

Glutathione synthesis 
Glutathione synthesis 
Glutathione peroxidase 
Glutathione S-transferase 
Glutathione S-transferase 
Glutathione reductase 
Cysteine/glutamate transporter 

Thioredoxin 
antioxidant system 

TXN (87) 
TXNRD1 (45) 
PRDX1 (88) 

Thioredoxin 
Thioredoxin reductase 
Peroxiredoxin  

Heme and iron 
metabolism 

HMOX1 (89) 
FTL (45) 
FTH (45) 

Heme oxygenase 
Detoxifies Fe(II) 
Detoxifies Fe(II) 

1.5.2 NRF2 and cancer 

ROS and antioxidants have a complex role in cancer development and progression. 

ROS can damage DNA, which increases mutation rate and promotes oncogenic transformation 

of cells (47). This fact has motivated antioxidant treatment for the prevention and therapy of 
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cancer (90). However, cancer cells are also known to produce more ROS than normal cells (12) 

due to oncogenic signaling, increased metabolic activity, and mitochondrial dysfunction (91). 

Increased ROS generation leads to higher amounts of oxidative stress, which can cause 

apoptosis and senescence (92,93). These findings have motivated using ROS inducers or 

antioxidant inhibitors to promote ROS-induced apoptosis of cancer cells (94–96). Thus, as the 

main regulator of the antioxidant response, NRF2’s role in cancer is not straightforward. 

In some cancers, excessive ROS levels cause activation of the NRF2 pathway to 

counteract the toxic side effects of chronic oxidative stress (97). In lung cancer, activating 

mutations in the NRF2 pathway are common. Biallelic inactivation of NRF2’s negative regulator 

KEAP1 occurs in up to 25% of non-small cell cancers (NSCLCs) (98), and activating mutations 

in NRF2 are found in 10% of tumors (99). Alternatively, NRF2 pathway activation can result 

from oncogenic KRAS, a mutation found in 20-30% of NSCLCs that activates NRF2 

transcription through a TPA response element in the promoter region (100). Constitutive 

activation of NRF2-mediated gene expression confers a high antioxidant capacity to lung cancer 

cells, increasing survival and proliferation in the presence of high levels of oxidants and 

chemotherapies (101–104). However even within lung cancer, NRF2’s effects can vary based 

on stage of tumor development. Using genetic knockout models, studies have shown that Nrf2-

deficient mice are more susceptible to mutagen-induced lung carcinogenesis, but develop less 

proliferative tumors than wild-type mice (105,106), emphasizing NRF2’s context-dependent role 

in cancer. 

Compared to lung cancer in which NRF2 is a bona fide oncogene, less is known about 

NRF2’s role in breast cancer. NRF2 is not mutated in breast cancers (98), but has been linked 

to important breast cancer oncogenes and tumor suppressors. These interactions promote 

various cancer cell phenotypes, including metabolic reprogramming (81), chromosomal 

instability (107), and oxidative stress. Activating mutations in breast cancer oncogene PIK3CA, 

occurring in 20% of breast cancers (98), activate the NRF2 pathway to support cancer cell 
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proliferation and survival (81,108). Loss of function mutation of the tumor suppressor BRCA1, 

found in 5-10% of breast cancers (109), downregulates NRF2 expression leading to increased 

ROS levels (108,110). Higher ROS levels together with loss of DNA repair increase genomic 

instability and mutational load in BRCA1-mutated breast tumors (111). Missense mutants of the 

tumor suppressor p53 can bind NRF2 to activate a pro-tumorigenic proteasome gene program 

in breast cancer cells (112).  

Due to the numerous examples of oncogenes and tumor suppressors leveraging wild-

type NRF2 to promote cancer cell phenotypes, NRF2 must be studied in the context of its 

interacting partners to delineate its role in cancer.  

1.6 p53 

1.6.1 The role of p53 in normal cells   

 p53 is a transcription factor activated by a variety of cell-physiologic stresses including 

DNA damage, hypoxia, oncogene activation, ribosomal stress, and oxidative stress (113). p53 

consists of a N-terminal transcriptional activation domain, a central DNA-binding domain, and a 

C-terminal tetramerization domain (114). In its active state, p53 exists as a tetramer (115,116) 

and binds to a consensus sequence consisting of two copies of the decamer 

[A/G][A/G][A/G]C[A/T][A/T]G[C/T][C/T][C/T] separated by up to 13 base pairs (117). p53 controls 

the expression of hundreds of genes that are involved in many different protective functions 

(118–120), a subset of which are listed in Table 1.2. p53’s control over cell cycle arrest, DNA 

damage repair, and induction of apoptosis make it one of the most important tumor suppressor 

genes.  

Due to the diversity of functions covered by p53 target genes (Table 1.2), the choice of 

which genes become activated in response to a stressor is important. The temporal dynamics of 

p53 signaling is one factor that determines target gene activation and cell fate (121,122). 

Certain stresses, such as ionizing radiation, cause pulses in p53 abundance, which induce 
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genes involved in cell cycle arrest and DNA repair (123). In contrast, sustained p53 signaling 

activates genes involved in apoptosis and senescence. Concentration of p53 is another cue 

cells use to differentiate between severity of damage and decide which genes to activate. In 

response to high concentrations of H2O2, p53 activates its pro-oxidant gene targets, TP53I3 and 

BBC3, leading to apoptosis. Lower concentrations of H2O2 induce low levels of p53 and 

activation of antioxidant gene targets SESN2, SESN1, and GPX1 (124). In general, the choice 

between repair of damage and apoptosis depends on the type and severity of stress, the cell 

type, and the presence of other pro- and anti-apoptotic signals in the cell.  

Under normal conditions, p53 is maintained at low basal levels by its negative regulator 

MDM2, an E3 ubiquitin ligase that targets it for degradation (125). Under conditions of genotoxic 

or oxidative stress, upstream kinases ATM and Chk2 phosphorylate p53, disrupting MDM2-p53 

binding and allowing p53 to accumulate and activate target genes (126–128). MDM2 itself is a 

p53 target gene, creating a negative feedback loop that controls p53 abundance after activation. 

In addition, p53 target gene PPM1D dephosphorylates upstream kinases ATM and Chk2, 

creating another negative feedback loop (129). These and other feedback loops ensure that p53 

molecules are degraded soon after their synthesis to avoid inappropriately shutting down cell 

proliferation or inducing apoptosis in transiently perturbed cells.  

Table 1.2 Examples of p53 target genes according to function. 
Category Gene Name/Function 
DNA damage repair DDB2 (130) 

 
XPC (131) 
 
PCNA (132)  

DNA damage-binding 
protein 2 
DNA damage recognition 
and repair factor 
Proliferating cell nuclear 
antigen 

Antioxidant PA26 (133) 
HI95 (124)  
 
GPX (134) 
SOD2 (135) 

Sestrin 1 
Hypoxia-induced gene 95 
(Sestrin 2) 
Glutathion peroxidase 
Superoxide dismutase 2 
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Cell cycle control CDKN1A (136)  
 
GADD45A (137) 
 
CCNG1 (138) 

Cyclin-dependent kinase 
inhibitor 1 (p21) 
Growth arrest and DNA 
damage inducible alpha 
Cyclin G1 

Apoptosis BAX (139)  
BID (140) 
 
Noxa (141)  
PUMA (142) 
 
FAS (143) 
 
CASP6 (144) 

Bcl-2-associated X  
BH3-interacting domain 
death agonist 
Bcl-2 family protein 
p53 upregulated 
modulator of apoptosis 
Fas cell surface death 
receptor 
Caspase-6 

Metabolism TIGAR (145) 
 
ALDH1A3 (146) 

TP53-induced glycolysis 
and apoptosis regulator 
Aldehyde dehydrogenase 
family 1 member A3 

Post-
translational 
regulators of p53 

MDM2 (147,148)  
 
PPM1D (149) 

Mouse double minute 2 
(negative regulator of p53) 
Protein phosphatase 1D 

1.6.2 p53 and cancer 

Inactivation of p53 is a common strategy used by cancer cells to avoid apoptosis and a 

prerequisite for the development of many cancers. The most common method of inactivation is 

mutation of the TP53 gene, which occurs in over half of all cancers (150,151). Unlike other 

tumor suppressors, which are typically inactivated by deletions or truncating mutations, the 

majority of TP53 mutations are missense mutations that result in a full-length, non-functional 

protein (152,153). This is important because most full-length TP53 missense mutants can still 

form tetrameric complexes with copies of wild-type p53 remaining in the cell (154). Hetero-

tetramers lack some or all of the transcriptional activity of wild-type p53, causing a potent 

dominant-negative effect (155). Since p53 mutants cannot activate transcription of genes, the 

p53-MDM2 negative feedback loop is no longer engaged and mutant p53 accumulates to high 

levels. 

Many p53 mutants not only lose tumor-suppressive function and acquire dominant-

negative activity, but also exhibit oncogenic properties that are independent of wild-type p53. 
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Gain of function (GOF) p53 mutants can bind and activate genes with tumor-promoting 

functions including multidrug resistance gene (156), MYC (157), EGFR (158), IGF2 (159), and 

many others in a mutant-specific manner (160). Numerous mutants with GOF properties have 

been identified, including hotspot mutations R280K, R273H, and R248Q (161). GOF p53 

mutants have also been found to cooperate with other transcription factors to regulate a diverse 

set of genetic programs (162–164). In fact, GOF p53 mutants have been found to interact with 

or regulate the NRF2 pathway. One study found that multiple p53 GOF mutants, but not wild-

type p53, bind to NRF2 to activate proteasome gene transcription in triple-negative breast 

cancer cells, resulting in resistance to chemotherapeutics (112). p53 GOF mutants have also 

been found to attenuate the expression of NRF2 antioxidant genes in response to oxidative 

stress (112,165).  

While there are several links between NRF2 and mutated p53, in this dissertation we 

examine NRF2’s regulation in coordination with wild-type p53 during key transitions in the 

progression of breast cancer.  

1.7 Dissertation preview 

In this dissertation we present a systems analysis of the stress-activated transcription 

factor NRF2 during normal mammary gland development, premalignancy, and invasive triple-

negative breast cancer. We use image processing, molecular and cellular biology techniques, 

and computational modeling to decipher the broader NRF2 network responsible for oxidative 

stress handling. This systems-level approach uncovers a stress responsive network in which 

NRF2 is activated together with the tumor suppressor p53 in single cells in response to 

oxidative stress in normal breast epithelial cells and hormone-negative premalignancies. This 

work is detailed in the manuscript, Sporadic activation of an oxidative stress-dependent NRF2–

p53 signaling network in breast epithelial spheroids and premalignancies (166), which is 
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accepted pending minor revisions at Science Signaling. The work in the manuscript has been 

divided and rearranged for clarity in Chapter 4 and 5 of this dissertation.  

This introduction chapter included a brief overview of ROS and the oxidative damage 

they inflict on a cell. Chapter 2 presents an in-depth review of ROS production and modulation 

of signaling pathways from a computational modeling perspective. The review provides detail on 

ROS’ role as a signal transducer and takes inventory of existing computational models of ROS, 

helping contextualize the mechanistic model of oxidative stress handling presented in Chapter 

5. This work was published in Frontiers in Pharmacology in November 2016 with me as first 

author (167). 

Early on in my thesis I used image processing techniques to analyze the spatial 

association of two proteins in triple-negative breast cancer tissue. This work led to a coauthored 

publication and laid the technical groundwork for computational image analyses presented later 

in this dissertation (Chapter 4). Chapter 3 describes the coauthored work and additional image 

processing work on cancer tissue I completed during an internship at digital pathology startup 

company Proscia. This internship was sponsored by BME’s Going Pro program and served as 

one of my Educational Elective Experiences.  

In Chapter 4, we describe the experimental work which uncovered NRF2–p53 

coordination in response to oxidative stress in breast epithelial cells and how coordination is 

altered along the progression to invasive triple-negative breast cancer. In Chapter 5, we use 

computational modeling to further characterize the NRF2–p53 network and predict oxidative 

stress tolerance in triple-negative breast cancer cell lines. In Chapter 6, we conclude with future 

applications of this work, focusing on areas where the NRF2–p53 computational model could 

provide valuable insight.  

Together, this research discovers a novel stress-induced coupling between NRF2 and 

p53 in a wild-type setting. This coordination is important for normal glandular morphogenesis 

and maintenance, but could provide a redundancy that makes cells more tolerant to p53 
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mutation. Combining experimental and computational approaches, we developed a systems 

model of NRF2–p53 signaling with both explanatory and predictive power. More broadly, this 

dissertation demonstrates the power of using multidisciplinary approaches to holistically 

understand signaling networks, which can have important context-specific behavior.  
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Chapter 2 Computational Models of Reactive Oxygen 
Species as Metabolic Byproducts and Signal-Transduction 
Modulators 

2.1 Abstract 

Reactive oxygen species (ROS) are widely involved in intracellular signaling and human 

pathologies, but their precise roles have been difficult to enumerate and integrate holistically. 

The context- and dose-dependent intracellular effects of ROS can lead to contradictory 

experimental results and confounded interpretations. For example, lower levels of ROS promote 

cell signaling and proliferation, whereas abundant ROS cause overwhelming damage to 

biomolecules and cellular apoptosis or senescence. These complexities raise the question of 

whether the many facets of ROS biology can be joined under a common mechanistic framework 

using computational modeling. Here, we take inventory of some current models for ROS 

production or ROS regulation of signaling pathways. Several models captured non-intuitive 

observations or made predictions that were later verified by experiment. There remains a need 

for systems-level analyses that jointly incorporate ROS production, handling, and modulation of 

multiple signal-transduction cascades. 

2.2 Introduction 

Reactive oxygen species (ROS) play a complex role in cellular biology. Initially viewed 

merely as harmful byproducts of metabolism, ROS are now known to serve additional functions 

as intracellular regulators of various signaling pathways. At low levels, ROS function as a 

reactive second messenger mainly by reversible oxidation of key amino acids of target proteins. 

High ROS levels, by contrast, cause damage to various biomolecules (lipids, proteins, and 

DNA) and have been linked to pathologies including neurodegeneration (168,169), 

atherosclerosis (170,171), and renal disease (172,173). ROS play an especially complex role in 
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cancer, with various oncogenes and tumor suppressors influencing, and influenced by, the 

redox environment of the cell (174,175). 

It is challenging to study experimentally how endogenous and exogenous sources of 

ROS are handled by the cell. In addition, the context- and dose-dependent intracellular 

consequences of ROS can result in confounding observations. ROS has been found to 

stimulate proliferation in some cell types under certain experimental conditions (176,177) and 

inhibit proliferation (178) or induce apoptosis (179) in others. Such contextual and experimental 

complexities make it difficult to understand ROS holistically by experimentation alone. 

Computational modeling approaches can tackle this problem by simulating the 

concurrent dynamics of many variables, including those that are difficult to access 

experimentally (180). In this chapter, we cover the handful of models described thus far for ROS 

production and ROS regulation of signaling pathways (Figure 2.1). We start with experimental 

and computational approaches to measure ROS production. We next focus on models that 

simulate ROS production by the mitochondria, the predominant intracellular source of ROS, and 

by membrane-bound enzymes, which link extracellular signaling to intracellular ROS production. 

We also discuss models that simulate ROS regulation of various signaling pathways, giving a 

broader view of the influence ROS have on intracellular signaling. Finally, we discuss the need 

for a systems-level analysis of ROS signaling to provide a generalizable framework that 

accounts for the many downstream cellular effects of ROS.  
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Figure 2.1 Computational models of reactive oxygen species (ROS) production and 
signal-transduction modulation.   
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2.3 Challenges of Measuring ROS 

Reactive oxygen species are difficult to measure reliably within cells. For example, early 

measurements of cellular oxidative state used dyes such as 2′,7′-dichlorofluorescin (DCFH) 

which were later shown to create additional radical species (181). The secondary reactions and 

instability of the dye made long-term imaging with DCFH impossible. To address these 

deficiencies, researchers engineered fluorescent reporter proteins such as HyPer, RoGFP, and 

RxYFP (182–184), which undergo redox-sensitive conformational changes that elicit a change 

in fluorescence. Genetically encoded fluorescent proteins enable live-cell imaging and are 

further capable of localizing ROS production to specific sub-cellular compartments (185,186). 

Nevertheless, these sensors might miss low concentrations of H2O2 due to the endogenous 

enzyme peroxiredoxin, which is ∼100-fold more active toward H2O2 compared to introduced 

probes (187). 

Given these challenges, some groups have taken a more computational approach to 

calculating the kinetics associated with H2O2 (188). Lim et al. built a reaction-diffusion model to 

study localization of H2O2, which is important for control and specificity of redox signaling. They 

incorporated cytoplasmic diffusion into their reduced kinetic model of H2O2 clearance, in which 

peroxiredoxin is the dominant scavenging molecule (189). Using modeled concentration profiles 

obtained after bolus addition of H2O2 to the extracellular medium, the authors determined order-

of-magnitude estimates for intracellular H2O2 diffusion through the cytosol, with a length scale of 

4 μm and a time scale of 1 ms (190). The short length scale and rapid time scale indicate that 

H2O2 degradation and signaling are localized to the area where H2O2 is produced, contradicting 

the common modeling assumption of a well-mixed cytoplasm. This finding could explain 

discrepancies observed between bolus addition versus steady intracellular generation of H2O2 

(191,192). Rapid H2O2 scavenging also has implications for intracellular signaling, as H2O2 

reactivity is limited to molecules in the subcellular vicinity. 
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2.4 Computational models of ROS production 

2.4.1 ROS Production By Complex III of the ETC 

Physiologically, ROS production increases under hypoxic conditions. Hypoxia causes a 

decrease in the maximum reaction rate of complex IV, which is thought to cause excess 

electron leakage from other components of the ETC, such as complex III (193). After a return to 

normoxic conditions, ROS remain at higher hypoxic levels. The stable switch in ROS production 

is relevant during organ transplantation and other surgeries requiring an ischemic period. To 

better understand the mechanism behind this bistability, Selivanov et al. (194) modeled the Q 

cycle mechanism of Complex III in the mitochondrial respiratory chain as the primary 

mechanism of ROS generation. Complex III can take on as many as 400 redox states due to its 

binding to quinones. The authors elaborated a system of differential equations describing the 

evolution of all of the redox states of Complex III. Model simulations predicted that Complex III 

can exist in two different steady states, a low ROS-producing state and a high ROS-producing 

state. This bistability is dependent upon the initial conditions of the system, specifically the 

redox state as predicted by levels of semiquinone and free ubiquinol. If starting in a highly 

reduced state, the overall system remains reduced, whereas if it starts in a less reduced state, 

Complex III progresses to a steady state with low semiquinone concentration and thus low ROS 

production. The overall system evolves to the high ROS producing state either by an increase in 

succinate concentration, causing the reduction of ubiquinone to ubiquinol, or a decrease in 

oxygen content. Once switched to this high ROS-producing state, Complex III persists in that 

state even after a return to lower succinate concentration or normoxic conditions. The sustained 

increase in ROS production provides a mechanism that may contribute to reperfusion injury 

after ischemia. 

The model predictions were experimentally validated in isolated rat brain mitochondria 

incubated with succinate with or without the addition of ADP. The addition of ADP, and 
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subsequent synthesis of ATP, switches mitochondria to a low ROS-producing state and thereby 

lowers mitochondrial membrane potential. Once all the ADP is consumed, membrane potential 

increases to pre-ADP levels, but ROS production remains at the lower initial level. These results 

agree with model predictions that two levels of ROS production could coexist under the same 

set of parameters and give rise to metabolic heterogeneity in an isogenic population of cells. 

2.4.2 ROS Production By Complexes I and III of the ETC 

Reactive oxygen species are also produced by Complex I of the ETC. Gauthier et al. 

(195) built a computational model of the ETC focusing on ROS production by both complex I 

and III (Figure 2.1). Simulations were used to study the control of ROS production in cardiac 

myocytes under different metabolic conditions. The model is composed of non-linear ordinary 

differential equations describing the oxidation states of the various forms of ubiquinone, 

produced by complex I electron transfer, and the three subunits of complex III: cytochrome b, 

cytochrome c1, and the iron sulfur protein. The authors investigated how mitochondrial 

membrane potential, matrix pH, and ROS scavenging affect ROS production and control. When 

membrane potential increased 20 mV higher than unstressed cells to above ∼150 mV (196), the 

model predicted that complex III ROS production as a function of membrane potential switches 

from zeroth order (constant production) to first order (exponential production). Increased 

membrane potential leads to a reduction in the Q cycle reaction rate, or conversion of ubiquinol 

to ubiquinone, causing a substantial increase in ROS production rate. 

The model predictions agree with experimental results reporting a threshold membrane 

potential of 153 mV, above which ROS production increases dramatically (197). When 

simulating an increase in mitochondrial matrix pH, the model predicted that ROS production 

from complexes I and III increases during forward electron transport. This pH-dependent 

mechanism of ROS generation was experimentally observed by Selivanov et al. (198) who 

found that an increase in pH from 6 to 7 caused a threefold increase in ROS production rate. 
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During reverse electron transport, where electrons flow toward complex I in the presence of a 

weak reducing agent, complex I ROS production also increased with matrix alkalinization. The 

model therefore correctly predicted the dependence of ROS production on both mitochondrial 

membrane potential and matrix pH. 

ROS levels are governed not only by production, but also by clearance through 

scavenging mechanisms. To gain a more complete picture of ROS dynamics, Gauthier et al. 

added glutathione and thioredoxin-mediated ROS scavenging mechanisms to the model (199). 

ROS production decreased to a minimum level as the mitochondrial environment became more 

oxidized and then rose again as the scavenging systems became depleted. This result agrees 

with the redox-optimized ROS balance hypothesis (199), which states that ROS levels are 

lowest at an intermediate mitochondrial redox potential. Together, the authors’ minimal model of 

ROS regulation produced results that matched many independent experiments describing 

different regimes of ROS production, providing support for the hypothesis that the cellular redox 

state influences the rate of ROS production. 

Applying their model, Gauthier went on to investigate ROS production and scavenging in 

the context of heart failure (200). Integrating the ETC-ROS model discussed above into a 

mitochondrial energetic-redox model (201) allowed the authors to test the hypothesis that 

mitochondrial Ca2+ mismanagement leads to high levels of ROS during heart failure. In 

agreement with this hypothesis, their model showed that under conditions of mismanaged 

mitochondrial Ca2+, NADH levels decrease drastically under simulated cardiac pacing, 

highlighting the link between compromised Ca2+ and NADH regulation. Lower amounts of 

NADH lead to lower NADPH levels and a decreased ability to reduce scavenging enzymes for 

reuse, causing ROS to accumulate. ROS levels in mitochondria increase under increased load 

(202), but surprisingly the model predicted that ROS production actually decreases under these 

conditions. The net increase in ROS abundance stems from an even-further reduction in ROS 

scavenging, which causes ROS accumulation in the cell. Therefore, in the setting of heart 
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failure, preservation or restoration of scavenging enzymes may prove more effective than efforts 

to block ROS production (203). 

In another model of ROS production by ETC complexes I and III, Bazil et al. (204) 

described ROS generation by oxidative phosphorylation coupled to ATP demand. They updated 

an existing kinetic model of oxidative phosphorylation (205) to include ROS generation by 

complexes I and III and first-order scavenging by superoxide dismutase and peroxidase. Model 

simulations agreed with previous findings that free radical production by complex III is higher 

than complex I production under physiological conditions (195). As ATP demand increases, the 

steady state production of ROS also increases, in line with experimental observations (206). 

The authors further applied their model to study reverse electron transport that is seen during 

reperfusion. Simulating ischemia/reperfusion led to bistability in ROS production (194,207) only 

when the activity of complex II was increased. Complex II activity requires electrons to be 

supplied to the quinone pool by the dehydrogenation of succinate to fumarate. The predicted 

importance of complex II agrees with work by Chouchani et al. (208) showing that succinate is a 

main driver of mitochondrial ROS production upon reperfusion (208). Therefore, complex II 

inhibition during reperfusion could prove useful to decrease ROS production and reperfusion 

injury (209). 

2.4.3 ROS Production By the Mitochondrial Network 

In a phenomenon known as ROS-Induced ROS Release (RIRR), damaged mitochondria 

produce an increased amount of ROS, which causes surrounding mitochondria to increase ROS 

production through a positive-feedback loop. Park et al. (210) used an agent-based model 

describing inter-mitochondrial signaling to study the role of mitochondrial network dynamics in 

mitochondria-driven ROS production (Figure 2.1). Simulations were performed with three 

different mitochondrial networks: uniformly distributed mitochondria, as seen in cardiomyocytes; 

irregularly distributed mitochondria, as in neurons; and sparsely distributed mitochondria, as 

found in white blood cells (211). The simulations introduced hydrogen peroxide as an initial 
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oxidative stress, causing mitochondria in the surrounding area to produce more ROS. 

Mitochondrial ROS diffuse stochastically by random walk in 2D space, amplifying the local ROS 

response. Depending on the initial oxidative stress insult and the mitochondrial network 

dynamics, ROS production is blocked by antioxidant enzyme systems or becomes amplified by 

RIRR, which propagates ROS through the entire cell. The goal of the model was to predict the 

percent reactive mitochondria resulting from an initial oxidative stress input and the initial 

hydrogen peroxide concentration that causes RIRR. 

The model indicated that ROS propagation is faster in the cardiomyocyte model than in 

the irregular distribution model, as shown by a higher dose dependence of reactive 

mitochondria as a function of initial oxidative stress. In addition to mitochondrial distribution, the 

model predicted that the density of mitochondria affects the response to oxidative stress inputs. 

Cells with a low density of mitochondria have considerable ROS propagation after low levels of 

oxidative stress, while cells with a high density of mitochondria only show strong ROS 

propagation after high levels of oxidative stress. The authors hypothesized that these differing 

responses to oxidative stress are due to differences in ROS signal transduction between 

mitochondrial networks. They further simulated the addition of different antioxidants to find that 

superoxide-scavenging antioxidants block ROS propagation more effectively in the 

cardiomyocyte model, while antioxidants that detoxify hydrogen peroxide are more effective in 

the irregular-distribution and low-density models of mitochondria. These results suggest that 

mitochondrial network configuration influences which molecular species is used to propagate 

ROS in the cell. 

2.4.4 ROS Production in Relation to Antioxidant Signaling 

Cyclosporin A (CsA) is an immunosuppressant, which indirectly causes oxidative stress 

(212) and adaptively activates the NRF2 pathway in the kidney. Hamon et al. (213) fused an in 

vitro pharmacokinetic model (214) of CsA distribution in cultured renal epithelial cells with a 

dynamical model of NRF2 signaling originally designed to capture the cellular response to 
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xenobiotics (215). The authors adapted the NRF2 model to accommodate ROS as a state 

variable generated in proportion to cytosolic CsA (213). In the revised model, ROS are 

detoxified by glutathione peroxidase and further act as an oxidant and inhibitor of KEAP1, which 

degrades NRF2. Last, CsA was forbidden from interacting with the aryl hydrocarbon receptor as 

xenobiotics do in the original model, because experimental data was lacking for such an 

interaction. To parameterize the fused model, Bayesian inference was used together with 

transcriptomic, proteomic, and metabolomic data collected from cells treated with different 

concentrations of CsA dosed daily for 2 weeks. The model predicted that low doses of CsA 

yielded widespread oscillations throughout the network as cells metabolized the administered 

CsA and detoxified ROS before the next administration. At high doses, however, the cell is 

overwhelmed and the modeled network locks into an elevated state of ROS adaptation. These 

predictions were not followed up experimentally, but the work of Hamon et al. (213) nonetheless 

illustrates how toxicologic models can be repurposed for ROS specifically. 

2.4.5 ROS Production in the Phagosome Membrane By NADPH Oxidase 

Aside from the ETC, ROS also play a key role in pathogen clearance. Neutrophils utilize 

ROS to attack bacteria engulfed within a phagosome. The source of this ROS burst is not from 

mitochondrial respiration but from the NADPH oxidase complex at the plasma membrane (216) 

(Figure 2.1). Levels of ROS oscillate in the neutrophil (217), however, the mechanism behind 

these oscillations was unclear. Olsen et al. (218) proposed that the oscillations arose from 

interactions among myeloperoxidase, melatonin, NADPH, and NADPH oxidase. To explore the 

oscillatory behavior, they built a two-compartment, differential equation model of the phagosome 

and the cytoplasm (218). Without NADPH oxidase activity, model simulations exclusively 

produced damped oscillations that converged to a steady-state; by contrast, addition of NADPH 

oxidase elicited sustained oscillations similar to those reported experimentally (219). The 

authors triggered ROS oscillations in neutrophils with the activating chemotactic peptide FMLP 

and showed that pre-incubation with an inhibitor of NADPH oxidase blocked oscillations. Their 
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model further predicted that melatonin would change the amplitude of the ROS oscillations 

measured. Pre-incubation of FMLP-activated neutrophils with melatonin confirmed the predicted 

increases in ROS amplitude. Computational and experimental modeling of NADPH oxidase in 

this setting allowed the authors to understand the basis of melatonin “priming” previously 

observed in neutrophils (220), underlining the power of pairing in silico and in vitro experiments. 

2.5 Computational models of ROS as signal transduction modulators 

2.5.1 ROS Production During WNT/β-Catenin Signaling 

Reactive oxygen species are also generated as a secondary byproduct of multiple signal 

transduction cascades (221,222). Haack et al. (223) built a model of the WNT/β-catenin 

signaling pathway that included membrane-related processes as well as ROS signaling. The 

authors sought to explain experimental results showing that disruption of membrane lipid rafts 

inhibits WNT/β-catenin signaling, and also that ROS activate WNT signaling in the context of 

differentiation of human neural progenitor cells (224,225). The three-compartment model is 

based on mass-action kinetics and includes: a membrane model, in which WNT binds to 

receptor LRP6 causing its phosphorylation within lipid rafts; an intracellular model, in which 

AXIN binds phosphorylated LRP6 to prevent degradation of β-catenin; and a redox model, in 

which ROS increase the concentration of DVL-bound AXIN, making AXIN unable to degrade β-

catenin. Simulations were initiated with a burst of ROS that was shown experimentally to 

coincide with the beginning of neural progenitor differentiation induced by growth-factor 

withdrawal. The model predicted an immediate, transient β-catenin stabilization resulting from 

redox-dependent DVL/AXIN binding, followed by a sustained β-catenin response arising from 

lipid raft-dependent canonical WNT signaling. The immediate β-catenin accumulation was 

observed experimentally by the authors in lipid raft-deficient cells that maintained a transient β-

catenin response. By including ROS signaling, the extended WNT/β-catenin signaling model 
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correctly captured experimental β-catenin nuclear dynamics during early neuronal 

differentiation. 

2.5.2 ROS Modulation of IL-4 Signaling 

Dwivedi et al. (226) looked at modulation of cell signaling by ROS in another setting, 

using the IL-4 signaling pathway as a redox-regulated case study. The authors sought to identify 

the most important mechanisms of redox regulation in the IL-4 pathway, which is important for 

regulating the effector T-cell response. The activated IL-4 receptor complex upregulates ROS 

through NADPH oxidase (227) , which influences signal transduction that proceeds through 

JAKs and culminates in the phosphorylation of STAT6. To identify the combination of regulatory 

mechanisms that best recapitulated the dynamics of IL-4 induced STAT6 phosphorylation, the 

authors turned to Monte Carlo analysis of an IL-4 ordinary differential equation model. 

Phosphorylated STAT6 dynamics were best captured by a model that incorporated a protein 

tyrosine phosphatase whose activity and nucleocytoplasmic shuttling were ROS sensitive. ROS 

regulation of phosphatase activity and localization, along with other ROS-independent 

mechanisms, were included in the systems-level model of IL-4 signaling, with parameters fit to 

experimental data in IL-4-stimulated Jurkat cells. The model predicted diminished STAT6 

phosphorylation following IL-4 stimulation and ROS inhibition, which was confirmed 

experimentally by NADPH oxidase inhibition of IL-4-stimulated cells. Transient oxidation of 

protein tyrosine phosphatases was also observed experimentally by oxidized protein tyrosine 

phosphatase immunoprecipitation of extracts from IL-4-stimulated Jurkat cells. The authors’ 

systems-level model provides a framework for investigating additional modes of receptor-

initiated oxidation not previously explored. 

2.5.3 ROS Crosstalk with Insulin Signaling 

Smith and Shanley (228) adapted an existing differential equation model of insulin 

signaling (229) to incorporate ROS and study the interplay between insulin signaling and 
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oxidative stress (Figure 2.1). Insulin-stimulated ROS production was assumed to occur through 

activation of NADPH oxidase and is about fivefold higher than the background level of 

mitochondrially produced ROS (230). ROS deactivate the phosphatases PTEN and PTP, 

activate the kinases JNK and IKK, and are detoxified by cytoplasmic SOD2. This model was 

used to make predictions about ROS, FOXO, SOD2, and insulin receptor abundances over long 

time scales. 

When hydrogen peroxide was added as an oxidant to the system with or without insulin 

stimulation, the model predicted surprisingly different responses. Hydrogen peroxide alone 

caused modest glucose uptake and insulin alone caused strong glucose uptake, but hydrogen 

peroxide and insulin stimulation together were antagonistic, causing only moderate glucose 

uptake. In the model, this dampening effect of oxidative stress occurs because hydrogen 

peroxide and insulin together activate protein kinases (e.g., JNK, IKK), which cause 

hyperphosphorylation of IRS1 and decrease its ability to form the IRS1-PI3K complex that 

stimulates glucose uptake. The model also predicted that the FOXO-mediated antioxidant 

response depends critically on the extent of oxidative stress. With low oxidative stress, the 

antioxidant enzyme SOD2 is upregulated by FOXO through a JNK-mediated mechanism, but 

SOD2 is downregulated at higher levels of stress through an IKK-mediated mechanism. 

Although simplified in its handling of ROS and antioxidant pathways, this integrated systems 

model captures some of the complexities of oxidative stress for an important metabolic pathway. 

2.5.4 ROS Production As One Node in A Larger Network of Cardiac Fibroblast 

Signaling 

The previously discussed models incorporated ROS into a single canonical signaling 

pathway, but the generation and handling of ROS pervades multiple pathways and can lead to 

counterintuitive cell outcomes (231). Zeigler et al. (232) incorporated ROS as part of a much 

larger signaling network to identify regulators of cardiac fibrosis. A cardiac fibroblast signaling 
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network was designed to study drivers of fibrosis, which is implicated in many cardiac 

pathologies (233). The network was compiled from experimental data on 10 pathways that are 

known to be important in cardiac injury, such as the IL-1 and TGFβ pathways. The model was 

formed using a logic-based differential equation approach (234), whereby species are 

represented as differential equations with rates of change dictated by Hill functions and truth 

tables comprised of interacting biomolecules. ROS production is controlled by the activity of 

NADPH oxidase and feeds into the truth tables of JNK and ERK activation, linking ROS 

generation at the plasma membrane to downstream intracellular responses. 

In the model, reducing ROS levels had far-reaching and context-dependent effects on 

the network. Under baseline conditions, reductions in ROS caused a decrease in matrix 

metalloproteinase 9 (MMP9), which is important for the breakdown of extracellular matrix. By 

contrast, in an environment with high TGFβ signaling, like in a myocardial infarction, reducing 

ROS led to an increase in MMP9 activity. Therefore, a therapeutic prediction of the model is that 

antioxidant treatment for fibrosis would be more beneficial in the high TGFβ environment of 

myocardial infarct. 

2.6 Conclusion and Future Outlook 

The computational models of ROS biology covered in this review largely focus on ROS 

handling within the cell or on ROS modulation of canonical signaling pathways. In the future, we 

anticipate more sophisticated models that combine ROS handling and signaling concurrently. A 

prime test bed for such an integrated approach would be the NF-κB pathway, which is activated 

by ROS (235) and is responsible for inducing scavenging enzymes such as SOD2 (236). Finn 

and Kemp (237) have assembled a provisional model of IKKβ S-glutathionylation in the setting 

of antioxidants and chemotherapy-induced ROS. The coupling of signaling, production, and 

scavenging could give rise to feedback networks that explain the variable oxidative stress 

observed in some settings among single cells in very similar microenvironments (231). 
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There is also a need to build multiscale models that place ROS in the broader context of 

developing tissues, tumors, and infections (238–240). The dynamics of proliferation and death 

impinge on metabolism and signal transduction, which culminate to impact the redox state of 

cells in the population. Crosstalk between these cellular pathways may require different classes 

of modeling than those implemented so far (241,242). Advances in measurement will likewise 

expand the scope of targets modified by ROS (243) and reveal the extent to which molecular 

crosstalk is underappreciated. 

Integration of ROS signaling into larger networks may allow researchers to predict 

outcomes of drug treatments that affect ROS generation, which causes drug resistance in some 

cancer contexts (244,245). A deeper understanding of ROS network dynamics could generate 

combinatorial treatments that avoid neutralizing drug efficacy. In the broader human population, 

there are many polymorphisms that affect ROS generation and scavenging, such as p22phox 

C242T and SOD2 A16V (246,247). These variants may tune how ROS interacts with other 

signaling networks, contributing to heterogeneous patient responses during therapy. 

ROS are a fact of life that cannot be ignored. Like a living cell, investigators must find 

ways to deal with ROS holistically and achieve our goals despite their presence. The tools for 

pharmacologic modulation of ROS are predominantly limited to antioxidants. Systems modeling 

of ROS may one day provide a venue for exploring more-precise interventions that account for 

the complex biological processes involved. 
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Chapter 3 Techniques and approaches for biological image 
processing 

3.1 Introduction  

Biological images contain a vast amount of information, only a fraction of which can be 

accessed by the human eye. Image processing can extract quantitative information from pixels, 

which can be used to quantify patterns noted manually, or even to discover non-linear, complex 

patterns present in large imaging datasets (248). 

Two main tasks of image processing are image segmentation and image classification. 

Image segmentation is the process of partitioning a digital image into multiple regions or sets of 

pixels with similar attributes (249). Image classification is the process of classifying what 

appears in an image into one of a set of predefined classes (250). Image processing pipelines 

begin with segmentation to extract meaningful regions of an image for analysis. A variety of 

analysis techniques can follow depending on the type of image and purpose of the study. 

 In this chapter I discuss two image processing pipelines using different types of 

biological images. Both pipelines incorporate image segmentation with different downstream 

analyses. The first deals with multicolor immunofluorescent images and uses staining 

quantification to measure paracrine signaling in triple-negative breast cancer cells. This work 

was included in a co-authored publication in Developmental Cell (251) and is presented in this 

chapter with permission by and in accordance to the author rights stated by Elsevier Publishing. 

I also discuss a generalized approach to analyze immunofluorescent images, as these 

techniques are used heavily throughout this dissertation (Chapter 4). The second pipeline deals 

with whole slide images (WSIs) of hematoxylin and eosin (H&E) stained cancer tissue and uses 

deep learning algorithms for tissue classification. I discuss the steps of a deep learning pipeline 

including image preprocessing, model training, and model validation and a pipeline designed to 
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classify a particular type of skin pathology, squamous acanthoma. This work was completed 

during a two-month internship at digital pathology company Proscia.  
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3.2 An image processing pipeline to quantify GDF11-ID2 association in 

TNBC tissue 

3.2.1 Background 

In “Tumor-suppressor inactivation of GDF11 occurs by precursor sequestration in triple-

negative breast cancer”, Bajikar et. al identify a tumor-suppressive role for growth-differentiation 

factor 11 (GDF11) in triple-negative breast cancer. GDF11 promotes an epithelial, anti-invasive 

phenotype when triple negative breast cancer cells are grown as 3D breast epithelial cultures 

and intraductal xenografts. GDF11 function is lost in TNBC due to deficient protein maturation, 

an uncommon mechanism of tumor suppressor inactivation. Interestingly in clinical TNBC 

samples, residual pockets of mature GDF11 were observed by immunohistochemistry using an 

antibody (GDF11-1E6) specific to GDF11’s mature form (Figure 3.1C,E). Thus, the defect in 

GDF11 maturation in tumors was incomplete, with some cells still able to properly process 

GDF11 to its active form. GDF11-1E6 foci were almost never found in normal specimens or in 

adjacent noncancerous tissue, where GDF11 function is presumably unaltered (Figure 3.1A,E). 

However, a TNBC-like pattern was noted in ~40% of basal-like DCIS cases (Figure 3.1B,E), 

raising the possibility that a shift in GDF11 regulation might coincide with the premalignant-to-

malignant transition.  

To determine if sporadically matured GDF11 in TNBC tissue remained functional, I used 

image processing techniques to measure the association of GDF11 and its effector, inhibitor of 

differentiation 2 (ID2), in immunostained tissue. ID2 is a transcription factor that was found to be 

required for GDF11’s tumor-suppressor functions in multiple in vitro and in vivo experiments. If 

mature GDF11 was associated with elevated levels of ID2 it would support that GDF11 remains 

functional when sporadically matured in TNBC.   
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Figure 3.1 Maturation of GDF11 in TNBC progression. 
(A-C) H&E staining and GDF11-1E6 immunohistochemistry for representative cases of normal 
breast tissue, ductal carcinoma in situ (DCIS) lesions, and TNBC specimens. GDF11-1E6 
immunoreactive foci are indicated with pointed arrows. (D and E) Normal-DCIS-TNBC 
progression is not associated with altered overall GDF11-1E6 staining (D) but rather with the 
appearance of heterogeneous immunoreactive foci (E). 
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3.2.2 Design of an image processing pipeline to assess GDF11-ID2 association in 

TNBC tissue 

To measure the association of focal GDF11 and ID2 staining, I developed a pipeline to 

acquire images of multicolor immunostained clinical tissue, locate GDF11 foci, and quantify ID2 

intensity in regions adjacent to and outside of foci. First, TNBC clinical samples were 

immunostained for GDF11-1E6 and ID2 with DAPI as a nuclear counterstain. Fluorescent 

images were taken such that there was at least one example of GDF11-1E6 focal staining per 

image.  

For image processing, the steps were as follows: 1) Locate regions of focal GDF11 

staining, 2) expand outwards to define a local region around the focus, 3) quantify ID2 staining 

within the local region and 4) quantify ID2 staining outside of the focal region for comparison.  

To find GDF11 foci, GDF11-1E6 channel grayscale images were segmented using 

Otsu’s method of thresholding (Figure 3.2A,B). Thresholding is a means of image binarization in 

which every pixel above a certain threshold is classified as foreground and every pixel below the 

threshold value is classified as background. Otsu’s method of thresholding iterates through all 

possible threshold values and chooses the value that minimizes the variance of the pixels in 

each class (249). Otsu’s method worked well due to the roughly bimodal distribution of gray-

tone values in GDF11-1E6 channel images, where the GDF11 foci had distinctly higher staining 

intensity compared to elsewhere in the image. 

After thresholding, the binary image was filtered to exclude any objects classified as 

foreground that resulted from nonspecific binding of the antibody. Nonspecific staining 

presented as small, bright immunoreactive spots. Objects comprising less than 300 pixels were 

assumed to result from nonspecific binding and were excluded (Figure 3.2C). The mask now 

corresponding specifically to the GDF11 focus was dilated by a one-cell radius (Figure 3.2D) 

and the dilated mask was applied to the corresponding ID2 channel image to capture local ID2 
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staining around the GDF11 focus. For each image, a null distribution of ID2 staining intensity 

was created by randomly placing the dilated mask 1000 times outside of where the true focus 

was located. The ID2 immunoreactivity was quantified as the average ID2 fluorescence intensity 

within each mask. 

Since all images were autoexposed to most accurately capture staining intensity, 

staining measurements were standardized before fusion across images. Nonparametric 

standardization was used as it is more robust to outliers (252) which are present in IF images 

from nonspecific antibody binding, photon noise arising from the emission and detection of light, 

and read noise arising from inaccuracies in quantifying numbers of detected photons (253). For 

each image, the ID2 immunoreactivity was standardized by subtracting the median ID2 

fluorescence intensity of the randomly placed foci for that image and dividing by the associated 

interquartile range.  

3.2.3 Mature GDF11 foci associate with elevated levels of GDF11 effector ID2 in 

TNBC  

Once GDF11 foci has been isolated and ID2 staining quantified adjacent to and outside 

of foci, differences in ID2 fluorescence intensity could be statistically assessed. The distribution 

of ID2 fluorescence intensity around 46 foci (in 43 images) from 10 TNBCs was compared to 

1000 random placements of the same mask outside of 1E6 foci on the same image by 

Kolmogorov-Smirnov test (Figure 3.3). GDF11–1E6 immunoreactive foci associated with 

significantly elevated ID2 immunoreactivity, supporting that TNBC-derived GDF11 remains 

bioactive when sporadically matured.   
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Figure 3.2 GDF11 foci identification and dilation. 
(A) Raw GDF11-1E6 channel image. Merged (magenta) with DAPI nuclear counterstain (blue) in 
the upper left inset. Scale bar is 20 µm. (B) Binarized image after global Otsu thresholding with 
the graythresh MATLAB function. (C) Filtered image after removing objects with fewer than 300 
pixels. White region is mask corresponding to GDF11-1E6 focus. (D) Mask dilated by a one-cell 
radius.  
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Figure 3.3 GDF11–1E6 immunoreactive foci associate with elevated ID2 
immunoreactivity.  
TNBCs were stained by immunofluorescence for GDF11-1E6 (magenta), ID2 (green), and DAPI 
as a nuclear counterstain (blue) (upper). Distribution of ID2 fluorescence intensity around 46 foci 
(in 43 images) from 10 TNBCs compared to 1000 random placements of the same mask 
outside of 1E6 foci on the same image (lower). Scale bar is 20 µm.  
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3.2.4 A generalized pipeline to quantify protein distribution patterns in IF images  

The GDF11-ID2 processing pipeline was designed to study the association of two 

proteins in local regions of tissue. In this section I will discuss a generalized approach to 

analyze protein distribution and association in immunofluorescent images. 

 The first step of image processing is to isolate regions of interest (ROI) using image 

segmentation. Image segmentation strategies can be classified broadly into edge-based and 

region-based (249). Edge-based methods segment an image into objects based on edges 

detected by gray level discontinuities. Edge-based methods work best in images with good 

contrast between objects and background, including bright-field and differential interference 

contrast images (254,255). Region-based methods segment an image into various regions 

having similar characteristics and work well on fluorescent images (256). One of the simplest 

and most commonly used region-based techniques is thresholding, which segments an image 

based on a threshold intensity value. Thresholding is best for images in which the region of 

interest has different intensity properties than other areas of the image. Often, however, multiple 

segmentation techniques must be combined to isolate the desired region.  

For single-cell analysis, objects can be easily isolated by thresholding a nuclear or cell 

membrane stain. To isolate other types of objects, such as foci of staining, a feature of the 

object that makes it visually distinct from the rest of the image must be leveraged to isolate it. In 

the example presented in this chapter, foci were isolated by thresholding on their concentrated, 

intense immunostaining pattern.  

The next step is to define any secondary regions of interest for stain quantification. For 

example, if proximal neighboring cells are to be analyzed, the original ROI can be dilated by a 

fixed distance such as a one-cell radius to define a secondary ROI. If more distant neighbors 

are to be analyzed, the secondary ROI can be an annulus with inner and outer radii defined to 

capture cells within a desired distance. 
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Once ROIs are defined, staining is quantified within segmented objects using central 

tendency metrics such as the mean or median pixel value. If the original fluorescent images 

were taken at the same exposure, measurements can be combined across images for 

downstream analysis. If images were taken at different exposure times, measurements must be 

standardized so that pixels arising from different images have similar mean and variance to 

enable comparison (257). Standardization is achieved by subtracting a measure of central 

tendency (mean, median) and dividing by a measure of spread (variance, interquartile range).  

Many segmentation pipelines can be created using the modules available in CellProfiler, 

an open-source software for cell image analysis (258). CellProfiler provides various methods of 

primary object identification and stain quantification in an easy-to-use graphical user interface. 

However, if a higher level of customization is required, pipelines can be created using MATLAB 

or another programming language. This can be useful if primary and secondary objects are not 

specifically defined by stains, as was the case in this chapter.   
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3.3 An image processing pipeline for tissue classification in digital 

histopathology slides 

3.3.1 Background 

Advancements in image digitization have made it possible to create high resolution 

images of entire glass pathology slides (259). Each image contains gigabytes of clinically 

relevant biological data, including complex morphometric features that are not visually 

discernable by the human eye. Automated image analysis is needed to extract quantitative data 

from these large, complex imaging datasets. Quantitative analysis of H&E-stained tissue 

features such as nuclear architecture and shape, epithelial morphology, and immune cell 

infiltration can aid in clinical diagnosis and tissue biomarker discovery (260–262). 

Extracting and interpreting quantitative information from H&E images are challenging 

tasks that require algorithms that can learn and adapt to differences in tissue morphology 

across and within specimens. Machine learning algorithms have the flexibility required for these 

tasks due to their ability to learn from data without being explicitly programmed. For the purpose 

of this section, I will discuss deep learning, a subset of machine learning that has had much 

success in processing multidimensional imaging data (263,264). 

Deep learning algorithms use layers of neural networks to learn high-level feature 

representations from data (265). A neural network consists of layers of neurons, or nodes, that 

perform transformations on input data (266). A neuron takes the weighted sum of inputs, adds a 

constant “bias” term and returns the output. Each layer of neurons processes information from 

the previous layer to learn increasingly complex features of an image. Features learned by deep 

learning algorithms are similar to those used in image segmentation algorithms described earlier 

in this chapter. For example, the learned features in the first layer of a model are usually basic, 

such as edges at a specific orientation in the image (265). Subsequent layers build in 

complexity, grouping similar features into motifs that are then detected as objects in final layers. 
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An important advantage of deep-learning algorithms is that they learn image features from the 

raw data without requiring manual feature engineering, making them adaptable to diverse 

datasets.  

Deep learning models, also called convolutional neural networks (CNNs), can have 100s 

of layers of neural networks, made up of convolutional layers, activation layers, pooling layers 

and fully connected layers. Each convolution layer multiplies the pixel values of small regions of 

the input image by a sliding matrix of numbers called a feature. Convolution detects where a 

particular image feature is, such as a curve or a straight line, and produces a feature map. The 

feature map is then passed through an activation layer to add nonlinearity which allows the 

system to learn increasingly complex features. A common activation function is the rectified 

linear unit (ReLU), which maps negative values to zero. ReLU activation decreases model 

training time compared to other non-linear functions such as sigmoid or hyperbolic tangent 

(267,268). Pooling layers downsample the input by combining similar features in nearby areas 

of the image.  Common strategies take the maximum or average value of local regions. Pooling 

decreases computational load and makes feature detection more robust by making it invariant 

to scale. Fully connected layers are the last layers of neural networks. A fully connected layer is 

unique in that each neuron within the layer is connected to each neuron in the previous layer. 

This allows high-level reasoning to happen because information is synthesized from the total 

input, rather than just from local regions as in the convolutional layers. For a classification 

problem, the output of the last fully connected layer is passed through a softmax function. 

Softmax transforms the output to produce an N dimensional vector of probabilities that sums to 

1, where N is the number of class options (269). The order and number of layers in a CNN can 

be tailored to a particular image processing task depending on the type of input and desired 

output (270).   
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3.3.2 Steps of a deep learning algorithm for H&E tissue classification  

To start, digital images of H&E-stained pathology slides are generated by a whole slide 

scanner. The scanner performs line or tile scanning to produce multiple high-resolution images 

that are stitched together to produce a final copy of the whole slide. Due to the gigapixel size of 

each image, WSIs require multiple processing steps before input into a machine learning 

algorithm (271).  

A single slide has multiple tissue sections on it, and thus the first step is locating and 

extracting areas of tissue from background. Areas of tissue are found using thresholding to 

identify foreground (regions of tissue) from background. Tissue sections are divided into smaller 

subpatches to create square tiles of smaller, fixed dimension. The tiled dataset is then 

partitioned into training and test sets, with about two-thirds of the data reserved for training and 

one-third for testing (272). The training dataset is used to fit the parameters of the model and 

the test dataset to evaluate the performance of the model once it is trained. Training and test 

datasets must include tiles from all types of images the model will be used for. It’s important to 

note that all training and testing images must be annotated by a pathologist to classify the type 

of tissue and define regions of tumor and normal tissue. This is so each tile has a ground truth 

for error calculation and performance evaluation during training and testing, respectively. 

Training, or supervised learning, of the model consists of initialization of parameters, 

forward propagation, error calculation, and backward propagation to update parameters until the 

model achieves a specified accuracy (273,274). Parameters are initialized with random values 

(275) and the input data is propagated forward so that all neurons apply a transformation to the 

data. Once the final layer is reached and a classification of the input data is produced, the error 

is calculated between the model prediction and the ground truth using a loss function such as 

mean-squared error or cross-entropy loss (276,277). The gradient of the loss function with 

respect to each parameter is calculated during backpropagation and parameters are updated 

using a gradient descent optimization method to minimize the loss function (278). One epoch of 
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training is completed when an entire training dataset has been passed through the network. At 

the end of each epoch, model accuracy is calculated as the sum of true positives and false 

negatives divided by the total number of samples (279). The process of forwardpass, error 

calculation, parameter update, and backward pass continues until model accuracy has 

converged to a specified percentage.  

3.3.3 Convolutional neural networks (CNNs) for pixel-wise classification of skin 

cancers 

The diagnosis of skin cancer, the most common type of cancer (280–282) would benefit 

from computer-aided classifiers due to the large volume of biopsies taken yearly and the variety 

of skin pathologies. Over 500 distinct skin pathologies exist (283), presenting a uniquely 

challenging classification problem.  

To design a deep learning system to classify skin pathologies, we started from the U-Net 

model, which is composed of a contracting path and an expanding path (284). The contracting 

path follows the usual architecture of a CNN, using convolution and downsampling to reduce the 

size of the input while increasing the number of feature maps. The expanding path uses 

convolution and upsampling to recover the object details and spatial resolution lost in the 

contracting path. The output of U-Net is a heatmap of the same dimension as the input image 

that indicates the probability that each pixel belongs to a certain class or not. Pixel-level 

classification is useful for histopathology images because most tissue biopsies contain regions 

of normal and cancer tissue. A pixel-wise classification, rather than a single class label for the 

whole section, makes the results more interpretable by allowing the user to visualize which 

areas of the section were labelled tumor.  

In the process of training U-Net models to learn various pathologies, one pathology, 

squamous acanthoma, was consistently being classified incorrectly as normal tissue. Squamous 

acanthoma (SA) is a benign neoplasm composed of squamous cells (285). The main 



 51 

distinguishing feature is the elongation and broadening of rete ridges, the epithelial extensions 

that project into the underlying connective tissue (outlined in blue in Figure 3.4A) (286). 

Disregarding the morphology of the rete ridges makes SA almost indistinguishable from normal 

skin epithelium (Figure 3.4B). The large-scale nature of SA features poses a challenge for CNN 

classification since models learn from small segments (tiles) of images. To provide contextual 

information, we created a pipeline with an additional classification model based on the whole 

tissue image. The whole tissue classification was used to amplify the results of the U-Net model, 

giving more confidence and context to the pixel-wise classification. 

The tissue-level classification model required a slightly different architecture because the 

input images were whole tissue sections of varying dimension (Figure 3.4C) rather than tiles of 

fixed dimension (Figure 3.4D). Fully-connected layers require fixed-length vectors as input, so a 

spatial pyramid pooling (SPP) layer was added before the last fully connected layer (287). SPP 

pools values in local spatial bins that have sizes proportional to the image size, which fixes the 

number of bins regardless of the image size.  

After adding contextual information in the form of whole tissue level classification, 

squamous acanthoma prediction increased to 97% accuracy (Figure 3.4E).  
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Figure 3.4 Training and testing a squamous acanthoma classification model. 
 (A) A representative squamous acanthoma tissue section. Blue outlined region indicates rete 
ridges. (B) A representative normal skin epithelium tissue section included in the training dataset 
of images. (C) A whole slide image (left) with individual tissue sections (right) that are fed into 
whole tissue classification model. (D) Representative 512x512 tiles fed into U-Net model. (E) SA 
classification model performance results. Model including tissue-level and tile-level input has 97% 
accuracy.  
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3.4 Discussion 

In this section, I described two applications of automated image processing used to 

extract meaningful information from different types of biological images. In the first, multicolor 

immunofluorescent images of TNBC tissue were analyzed to determine the spatial association 

of a tumor suppressor and its effector. In the second, digital H&E images of pathology slides 

were analyzed to classify diseased tissue. Both applications demonstrate the use of image pixel 

data to generate clinically-relevant interpretations of cancer tissue. 

Immunofluorescence paired with image processing can be used to achieve spatially 

resolved, quantitative measurements of biological molecules in cultured cells or tissue sections. 

Recently, advancements in iterative immunofluorescence imaging techniques have facilitated 

the measurement of upwards of 40 proteins in the same biological sample (288–290). 

Multiplexed datasets of this size require image processing techniques to align, quantify, and 

normalize images at single-cell resolution (288). Machine learning algorithms would be useful 

for these large, multivariate imaging datasets to uncover protein properties that emerge at the 

single-cell and cell population levels. For example, unsupervised clustering techniques such as 

k-means clustering could be used to infer cell state or functional response to a drug based on 

compiled protein measurements per cell (291). Similar image processing techniques can be 

applied to other experimental pipelines, such as iterative fluorescence in situ hybridization 

(FISH) or single-molecule FISH, to measure RNA localization and cell-to-cell variability in gene 

expression (292–294). 

While immunofluorescence is primarily a research tool, many imaging modalities used in 

the clinic, such as histopathology, also benefit from image processing techniques. Deep 

learning algorithms have been very successful at automatically learning complex 

representations of multidimensional data (264,295–297), but there are still important limitations 

to consider when building and using a model. Deep learning model performance relies heavily 
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on the size and composition of the training dataset (298,299). Complex classification problems 

require hundreds of thousands of labelled images spanning all classes a model must distinguish 

between (300–302). Models trained on datasets that are too small or homogenous will overfit 

and not generalize well to new, unseen data (303). The scarcity of large labelled datasets limits 

the areas in which deep learning can currently be applied. Data augmentation is one approach 

that artificially increases the size and diversity of datasets by cropping, translating, and flipping 

training images (304–306). This is a convenient approach to reduce overfitting, as no new data 

or annotations must be collected. 

While one of the main advantages of deep learning models is that they do not require 

feature engineering as traditional machine learning algorithms do, there is still a substantial 

amount of manual effort required to design accurate models (307). The architecture of the 

model, including the number and order of layers, the number of neurons per layer, and which 

activation function to use, is chosen in a mainly empirical manner depending on the model task. 

Aspects of model training including the error function and metrics to evaluate model 

performance also must be chosen from various options. The large number of tunable factors 

can make designing and training a deep learning model very time consuming and can also 

result in models that lack generalization. 

Despite these limitations, deep learning is becoming the algorithm of choice for image 

analysis due to drastic improvements in accuracy over traditional machine learning approaches 

(308). Technological advancements in image acquisition, management, and sharing are 

facilitating the accessibility of data, relieving the constraints of training data curation. For 

example, the Cancer Imaging Archive is an open-access database that hosts an archive of 

medical images for over 40 types of cancer (309). Many of the image sets include pathologist 

annotations and clinical information to facilitate training of models to make clinically-relevant 

predictions. Open-source image analysis software, like the digital pathology analysis package 
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QuPath, is also available to allow users with less coding experience to apply machine learning 

techniques to their own datasets (310). 

Image processing techniques have turned biological images into rich sources of data by 

removing the bottleneck of manual scoring and enabling identification and quantification of 

subtle patterns missed by the human eye. Biologists and clinicians would benefit by becoming 

conversant in image processing techniques to identify when and how to apply methods to 

extract data embedded in biological images.   
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Chapter 4 Sporadic activation of an oxidative stress-
dependent NRF2–p53 signaling network in breast epithelial 
spheroids and premalignancies 

4.1 Abstract 

Breast–mammary epithelial cells experience different local environments during tissue 

development and tumorigenesis. Microenvironmental heterogeneity gives rise to distinct cell-

regulatory states whose identity and importance are just beginning to be appreciated. Cellular 

states diversify when clonal 3D spheroids are cultured in basement membrane, and prior 

transcriptomic analyses identified a state associated with stress tolerance and poor response to 

anticancer therapeutics. Here, we examined the regulation of this state and found that it is jointly 

coordinated by the NRF2 and p53 pathways, which are co-stabilized by spontaneous oxidative 

stress within the 3D cultures. Inhibition of NRF2 or p53 individually disrupts some of the 

transcripts defining the regulatory state but does not yield a notable phenotype in 

nontransformed breast epithelial cells. In contrast, combined perturbation prevents 3D growth in 

an oxidative stress-dependent manner. Similar coordination of NRF2 and p53 signaling is 

observed in normal breast epithelial tissue and hormone-negative ductal carcinoma in situ 

lesions. However, the pathways are uncoupled in triple-negative breast cancer, a subtype in 

which p53 is usually mutated. Here, we find an oxidative stress-tolerance network that is 

important for single cells during glandular development and the early stages of breast cancer. 

4.2 Introduction 

Among glandular tissues, the breast–mammary epithelium is unique because of the 

dramatic expansion and reorganization that occurs after birth (311). During puberty, a branched 

network of epithelial ducts is pioneered by terminal end buds (TEBs), which emerge from the 

rudimentary gland and extend into the surrounding mesenchyme (312). TEBs contain a mixture 

of proliferating stem–progenitor cells and differentiating cells fated to the secretory luminal-
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epithelial or contractile basal-myoepithelial lineages. During morphogenesis, TEB cells are 

dynamically exposed to different microenvironments that inform final organization of the gland 

(313). Some microenvironmental cues are supportive or instructive to cells [hormones (314), 

growth factors (315), basement membrane (316)]. Others are deleterious or lethal [loss of 

polarity (317), detachment (318), ER stress (319)]. All of these cues are reconfigured aberrantly 

and heterogeneously during the early stages of breast–mammary cancer (320–322). 

Stress and survival signals also juxtapose when breast–mammary epithelial cells are 

grown in 3D culture with reconstituted basement membrane ECM (323,324). Combining the 

appropriate adhesive and soluble cues yields TEB-like behavior in 3D-cultured multicellular 

epithelial fragments from the mammary gland (317). For single-cell cultures that reliably 

organize as 3D structures, clones or progenitors must iteratively proliferate, maintain cell-cell 

adhesions, and coordinate function to establish a multicellular ecosystem (325,326). Cell-

regulatory states diversify within 3D organoids of primary breast–mammary epithelia (327–329) 

and also in the simplest 3D spheroids of isogenic cell lines (11,330–332). Identifying such cell-

regulatory heterogeneities is important, because there are parallels to in situ lesions of the 

breast, where premalignant cells must survive and proliferate in the duct (333,334). 

Previously, we identified a cluster of transcripts (Figure 4.1A) that covaries 

heterogeneously among hormone-negative, basal breast epithelial cells grown as 3D spheroids 

(333). The cluster contains KRT5 (a PAM50 classifier for basal-like breast cancer) (19) along 

with multiple stress-tolerance genes, including JUND (335), CDKN1A (336), MUS81 (337), and 

HSPE1 (338). The transcripts in this cluster were among the strongest and most-negative 

predictors of breast-cancer response to chemotherapy and targeted agents in an independent 

clinical trial (339). We reported that individual genes in the cluster have complex time- and 

microenvironment-dependent relationships in 3D spheroids, animal models of ductal carcinoma 

in situ (DCIS), and clinical hormone-negative premalignancies (333). However, the overarching 

regulation of the cluster was not determined. 
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Here, we find that regulatory-state heterogeneity emerges from the coordinated action of 

two stress-responsive transcription factors—NRF2 (340,341) and p53 (342)—which become 

stabilized posttranslationally when breast-epithelial cells variably experience oxidative stress in 

3D culture. Genetic disruption of NRF2 signaling alters the transcriptional cluster, but 3D 

phenotypes are buffered or redirected by compensatory increases in p53 signaling. Disabling 

p53 function synergizes with NRF2 deficiency, suppressing normal 3D proliferation and 

promoting irregular hyperproliferation in a transformed-yet-premalignant derivative. Among 

clinical specimens, NRF2–p53 coordination is retained in normal primary breast tissue and 

hormone-negative DCIS. However, the two pathways are largely uncoupled in triple-negative 

breast cancers (TNBCs), where p53 is usually mutated. Past work on NRF2 in breast cancer 

has focused on its direct interactions with TNBC tumor suppressors (110,162). Our results 

suggest a broader systems-level role for NRF2 and p53 in oxidative-stress tolerance of normal 

breast–mammary epithelia and hormone-negative premalignancies. 

4.3 Results 

4.3.1 Statistical bioinformatics links gene-cluster regulation to NRF2 and p53 

We began by looking within the gene cluster (Figure 4.1A) for potential regulatory 

mechanisms. The only transcription factor in the cluster is JUND, and we showed previously 

that its chronic knockdown in MCF10A-5E cells (330) causes specific morphometric defects 

during spheroid growth (333). We revisited these results by acutely knocking down JUND with 

inducible shRNA and measuring transcript abundance of cluster genes by quantitative PCR 

(see Materials and Methods). Surprisingly, other than JUND itself, no transcripts were reliably 

altered by knockdown (Figure 4.2A), supporting a regulatory role for other factors outside of the 

cluster. 

We constrained the search for candidate regulators by using maximum-likelihood 

inference (343) to estimate a frequency of bimodal transcriptional regulation (344) for the gene 
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cluster. Given the 10-cell-averaged fluctuations from the original study (Figure 4.1A) (330), the 

maximum-likelihood approach inferred two lognormal regulatory states defined by transcript 

abundance (Figure 4.1B). The data supported a low-abundance regulatory state predominating 

in 58% of ECM-attached cells along with a second, high-abundance subpopulation in the 

remaining 42%. The frequency estimates placed quantitative bounds on the bimodal 

characteristics of upstream regulatory mechanisms. 

Next, we applied a panel of bioinformatics approaches to search for transcription factors 

that might impinge upon the gene cluster (see Materials and Methods). The informatic methods 

adopt different strategies for assessing binding-site overrepresentation (345–348). Therefore, 

we intersected their respective outputs to arrive at predictions that were robust to algorithmic 

details. The analysis converged upon two transcription factors: the G1/S regulator E2F1 and the 

stress-response effector NRF2 (Figure 4.1C). We assessed the relative activation of the NRF2 

and E2F1 pathways in single cells by quantitative immunofluorescence for total stabilized NRF2 

protein or hyperphosphorylated RB (pRB = disinhibited E2F1; see Materials and Methods). In 

3D spheroid cultures, pRB immunostaining was bimodal, but high-pRB cells were far rarer than 

the inferred regulatory frequency of the gene cluster (Figure 4.1D, upper). In 2D cultures, pRB 

staining was over twice as immunoreactive and nearly twice as prevalent in the population 

(Figure 4.1D, middle). The reduced proportion of high-pRB cells in 3D is consistent with the 

proliferative suppression of late-stage spheroid cultures (332). A 3D-like distribution of pRB was 

achieved in 2D cultures upon addition of dilute ECM (Figure 4.1D, lower) stemming from soluble 

proliferation-suppressing factors in the reconstituted basement membrane preparation (349). By 

contrast, NRF2 stabilization was only distinctly bimodal in 3D spheroids, and the observed 

frequency of low- and high-NRF2 states almost exactly coincided with that inferred for the gene 

cluster (Figure 4.1E). The results built a strong statistical argument for NRF2 as a covarying 

regulator of the gene cluster. 
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The NRF2-associated gene cluster (Figure 4.1A) was originally identified by quantitative 

analysis of transcriptomic fluctuations among 4557 genes profiled by oligonucleotide microarray 

(330). Recently, the same samples were reprofiled by 10-cell RNA sequencing (10cRNA-seq) 

(350), creating an opportunity to look more deeply at covariates with the NRF2-associated gene 

cluster. We used the median ranked fluctuations of the cluster across 10-cell samples (Figure 

4.1A) and surveyed the 10cRNA-seq data for genes that covaried (Spearman ρ > 0.5, q < 0.10), 

identifying 633 candidates (Figure 4.3A). When this expanded cluster was assessed for 

functional enrichments by Gene Ontology (GO) (351), we noted multiple GO terms linked to cell 

stress (“Response to stress”, “Oxidative stress”) and the transcription factor p53 (“DNA damage 

response”, “p53 pathway”; q < 0.05 by hypergeometric test). p53 is sporadically stabilized in 

regenerating epithelia such as the intestine and skin, but p53 activation in quiescent tissues is 

rare (352). Recognizing the residual proliferation observed in 3D cultures (Figure 4.1D), we 

immunostained for p53 and found nonuniform stabilization associated with the abundance of 

NRF2 in single cells (Figure 4.3B, estimated mutual information: MI = 0.15 [0.12–0.18]; see 

Materials and Methods). The analysis raised the possibility of a coordinated NRF2–p53 

regulatory event triggered heterogeneously when breast epithelial cells proliferate and organize 

in reconstituted ECM. 

NRF2 co-immunoprecipitates with p53 in triple-negative breast cancer cells harboring 

gain-of-function p53 mutations, but this complex is absent in MCF10A cells with wildtype p53 

(162). Loss of wildtype p53 function in MCF10A cells yields only minor 3D culture defects, but 

gain-of-function p53 mutants strongly perturb 3D architecture (353). Suspecting that some of 

p53’s effects could be explained through NRF2, we inducibly knocked down NRF2 with shRNA 

and inducibly coexpressed a truncated p53 (354) that acts as a dominant negative (DNp53; 

Figure 4.3C). Compared with the gene-cluster response to JUND knockdown or constitutive 

E2F1 activation through RB inhibition with overexpressed human papillomavirus E7 protein, we 

observed substantially more alterations upon NRF2 knockdown (66%) or inhibition of p53 (31%; 
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Figure 4.3D and 4.2, B to D). Compound perturbation of NRF2 and p53 elicited further 

nonadditive changes to multiple genes in the cluster, including synergistic reduction of the 

cyclin-dependent kinase inhibitor, CDKN1A, and the basal cytokeratin, KRT5 (interaction p < 

0.01 by two-way ANOVA). Although p53 can antagonize certain NRF2 target genes in reporter 

assays (355), significant antagonism was detected for only one transcript in the cluster 

(MRPL33, Figure 4.2C). Phenotypically, disruption of NRF2 reduced mean 3D growth by 10–

13% (Figure 4.4), but dual perturbation with p53 gave rise to a surprising increase in aborted 

spheroids unable to grow in the culture (Figure 4.3E). The penetrance of the phenotype (37%; 

range: 34–44%) was remarkably close to the percentage of cells showing stabilized NRF2 at the 

same time point of 3D culture (43%, Figure 4.1E). For this clonal basal-like breast epithelial line 

(330), we conclude that 3D culture heterogeneously elicits NRF2- and p53-inducing stresses, 

which must be withstood for extended proliferation. 
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Figure 4.1 Transcriptomic fluctuations of ECM-cultured breast epithelial spheroids reveal 
a gene cluster associated with heterogeneous NRF2 stabilization in a 3D-specific 
environment. 
(A) Microarray profiles of ECM-attached basal-like MCF10A-5E breast epithelial cells randomly 
collected as 10-cell pools (n = 16) from 3D-cultured spheroids after 10 days (330). (B) Maximum-
likelihood inference (343) parameterizes a two-state distribution of transcript abundances for the 
gene cluster in (A). Inferred expression frequencies are shown as the maximum likelihood estimate 
with 90% confidence interval (CI). (C) Promoter-bioinformatics methods converge upon NRF2 and 
E2F1 as candidate regulators of the gene cluster. (D and E) Quantitative immunofluorescence of 
(D) hyperphosphorylated RB (pRB, an upstream proxy of active E2F1) and (E) NRF2 in 3D culture 
with ECM (upper), 2D culture (middle), and 2D culture with ECM (lower). Expression frequencies 
for a two-state lognormal mixture model (preferred over a one-state model by F test; p < 0.05) were 
calculated by nonlinear least squares of 60 histogram bins collected from n = 1100–1600 of cells 
quantified from 100-200 spheroids from two separate 3D cultures. For each subpanel, 
representative pseudocolored images are shown in the upper right inset and merged (magenta) 
with DAPI nuclear counterstain (blue) in the lower right inset. Scale bar is 10 µm. 
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Figure 4.2 Abundance of the heterogeneously regulated gene cluster is perturbed by 
NRF2 knockdown or p53 disruption but not by JUND knockdown or human 
papillomavirus (HPV) E7-induced inhibition of RB.  
(A) Inducible JUND knockdown does not reliably affect transcripts within the gene cluster other 
than JUND. (B) Constitutive inhibition of RB with HPV E7 does not significantly affect transcript 
abundance within the gene cluster. The E2F1 target gene CCNE1 was used as a control for 
efficacy of ectopic E7 expression. (C) Single and combined perturbations of NRF2 and p53 have 
complex effects on the gene cluster. The NRF2 target gene NQO1 was used as a control for 
efficacy of shNRF2. (D) E7 expression elicits hyperproliferation (332) compared to a ΔDLYC 
control that does not bind RB (356) For (A) and (C), MCF10A-5E cells with or without JUND or 
NRF2 knockdown or DNp53 were treated with 1 μg/ml doxycycline for 48 hr, grown as 3D 
spheroids for 10 days, and profiled for the indicated genes by quantitative PCR. For (B) and (D), 
MCF10A-5E cells stably expressing E7 or E7ΔDLYC were grown as 3D spheroids for 10 days 
and profiled for the indicated genes by quantitative PCR or imaged by brightfield microscopy and 
segmented after 22 days. For (A) to (C), data are shown as the log2 geometric mean relative to 
the negative control (shGFP (A and C) or E7ΔDLYC (B) with or without FLAG-tagged LacZ (C)), 
with asterisks indicating significant changes or interaction effects (rightmost column of (C)) by 
two-way ANOVA of n = 8 (A and C) or 4 (B) independent 3D-cultured samples and a false-
discovery rate of 5%. For (D), size histograms were compared by K-S test and scale bars are 200 
μm. 
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Figure 4.3 Transcriptome-wide covariate analysis of the NRF2-associated gene cluster 
suggests a coordinated adaptive-stress response involving p53. 
(A) Transcripts covarying with the median NRF2-associated fluctuation signature (Figure 4.1A) 
measured by 10-cell RNA sequencing (350) of ECM-attached MCF10A-5E cells grown as 3D 
spheroids (n = 18 10-cell pools from GSE120261). Selected Gene Ontology enrichment analysis 
(green and purple) is shown for the transcripts with a Spearman correlation (ρ) greater than 0.5. 
(B) Stabilization of NRF2 and p53 proteins is coordinated in ECM-attached MCF10A-5E cells 
grown as 3D spheroids. Representative pseudocolored images for NRF2 (upper left) and p53 
(middle left) are shown merged with DAPI nuclear counterstain (lower left). White arrows indicate 
concurrent NRF2 and p53 stabilization. Median-scaled two-color average fluorescence intensities 
are quantified (right) along with the log-scaled and background-subtracted mutual information (MI) 
with 90% CI for n = 1691 cells segmented from 50–100 spheroids from two separate 3D cultures. 
(C) Genetic perturbation of NRF2 by inducible shRNA knockdown (upper) and p53 by inducible 
expression of a FLAG-tagged carboxy terminal (residues 1-13, 302-390) dominant-negative p53 
(DNp53, lower) (354). MCF10A-5E cells were treated with 1 µg/ml doxycycline for 72 hr (upper) 
or 24 hr (lower) and immunoblotted for NRF2 or FLAG with vinculin, tubulin, and p38 used as 
loading controls and p21 used to confirm efficacy of DNp53. The negative control for shNRF2 was 
an inducible shGFP, and the negative control for DNp53 was FLAG-tagged LacZ. (D) Single and 
combined perturbations of NRF2 and p53 have complex effects on the associated gene cluster 
(Figure 4.1A). NQO1 was used as a control for efficacy of shNRF2, CDKN1A shows efficacy of 
DNp53. MCF10A-5E cells with or without NRF2 knockdown or DNp53 were treated with 1 µg/ml 
doxycycline for 48 hr, grown as 3D spheroids for 10 days, and profiled for the indicated genes by 
quantitative PCR. Data are shown as the log2 geometric mean relative to the negative control 
(shGFP + FLAG-tagged LacZ), with asterisks indicating significant changes (left and middle 
columns) or interaction effects (right column) by two-way ANOVA of n = 8 independent 3D-
cultured samples and a false-discovery rate of 5%. The complete set of transcripts in the gene 
cluster is shown in Figure 4.2C. (E) Dual inactivation of NRF2 and p53 causes synergistic 
proliferative suppression in MCF10A-5E 3D spheroids. Black arrows indicate proliferation-
suppressed spheroids. Data are shown as the mean percentage of proliferation-suppressed 
spheroids ± s.e.m. of n = 8 independent 3D-cultured samples after 10 days. Statistical interaction 
between NRF2 and p53 (pint) was assessed by two-way ANOVA with replication. Scale bars are 
20 µm (B) and 100 µm (E). 
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Figure 4.4 NRF2 knockdown and 3D phenotype quantification in MCF10A-5E cells. 
(A) Knockdown of endogenous NRF2 by shRNA in doxycycline-treated MCF10A-5E cells. 
MCF10A-5E cells were treated with 1 µg/ml doxycycline for 72 hr and immunoblotted for NRF2 
with vinculin and tubulin used as loading controls. (B) Densitometry from replicated NRF2 
knockdown. Data are shown as the mean ± s.e.m. of n = 4 biological replicates. (C) Inducible 
knockdown of NRF2 causes mild growth inhibition of MCF10A-5E 3D spheroids. Data are shown 
as the mean ± s.e.m. of n = 8 independent 3D-cultured samples after 10 days. 
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4.3.2 NRF2 disruption in basal-like premalignancy causes similar p53 adaptations but 

different 3D phenotypes 

We next asked how the cellular, molecular, and phenotypic relationships between NRF2 

and p53 change in basal-like premalignancy by using isogenic MCF10DCIS.com cells (357) as 

a proxy for ductal carcinoma in situ (358). MCF10DCIS.com cells express oncogenic HRAS 

(359) and hyperproliferate as 3D spheroids (Figure 4.5A), but they retain wildtype p53 function, 

albeit at reduced levels compared to parental MCF10A cells (Figure 4.5 B,C). By two-color 

immunostaining, we found that NRF2–p53 co-stabilization was even more pronounced in 

MCF10DCIS.com cells (Figure 4.7A, MI = 0.30 [0.27–0.33]). To identify common adaptive 

programs downstream of NRF2 deficiency, we inducibly knocked down NRF2 and profiled 3D 

spheroids by RNA sequencing (see Materials and Methods). Among transcripts consistently 

increased or decreased in both MCF10A-5E and MCF10DCIS.com spheroids, there was a 

significant enrichment in gene signatures encompassing p53, including transcriptional programs 

downstream of BRCA1, ATM, and CHEK2 (Figure 4.7B). Consistent with these results, NRF2 

knockdown in MCF10DCIS.com cells was sufficient to stabilize p53 significantly (Figure 4.6A). 

Stabilization of wildtype p53 upon NRF2 knockdown was also observed in premalignant 

CHEK21100delC SUM102PT cells (360) and became even more pronounced when these cells 

were reconstituted with inducible wildtype CHEK2 (Figure 4.6 B,C) (361). Thus, NRF2 

impairment promotes p53 pathway activity in basal-like breast epithelia without the need for 

specific oncogenic drivers. 

Despite many transcriptomic alterations in common with MCF10A-5E cells (Figure 4.7B), 

MCF10DCIS.com cells yielded very different 3D phenotypes when NRF2 or p53 were 

perturbed. NRF2 knockdown did not detectably alter 3D growth (Figure 4.8A) but instead gave 

rise to more round, organized MCF10DCIS.com spheroids of high circularity compared to 

control (Figure 4.7C), which reverted upon addback of an RNAi-resistant NRF2 mutant (Figure 
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4.8B). NRF2 deficiency also increased rounding in 3D cultures of SUM102PT cells with or 

without CHEK2 reconstitution (Figure 4.8C). By contrast, p53 disruption in MCF10DCIS.com 

cells with either DNp53 or a gain-of-function p53R280K mutant increased the prevalence of 

hyperenlarged outgrowths (Figure 4.7D). Combined NRF2–p53 perturbation elicited a 

synergistic increase in non-spherical hyper-enlargement (Figure 4.7E, interaction p < 0.05 by 

two-way ANOVA), starkly contrasting the proliferative suppression observed with the same 

combination in nontransformed MCF10A-5E cells (Figure 4.3E). The data suggested that the 

coordinate transcriptional adaptations of NRF2 and p53 are conserved in premalignant cells but 

insufficient to buffer the cellular phenotypes caused by single-gene perturbations in either 

pathway.  
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Figure 4.5 Proliferation differences and signaling similarities between MCF10A-5E and 
MCF10DCIS.com cells. 
(A) MCF10DCIS.com cells show sustained RB phosphorylation (pRB) in 3D cultures compared 
to MCF10A-5E spheroids. pRB staining was quantified after 10 days of 3D culture collected from 
n = 1350 cells from 60–70 spheroids per cell line. (B and C) Both MCF10A-5E and 
MCF10DCIS.com cells stabilize NRF2 in response to the electrophile sulforaphane (SF) and 
stabilize p53 in response to the MDM2 inhibitor Nutlin-3. (D) p53 is not stabilized by SF for up to 
eight hours in MCF10A-5E cells. Cells were treated with 10 µM SF for two hours or 10 µM Nutlin-
3 for four hours (B and C) or 10 µM SF for the indicated times (C) and immunoblotted for NRF2 
and p53 with Hsp90, tubulin, and p38 used as loading controls. Representative immunoblots are 
shown from biological duplicates.   
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Figure 4.6 NRF2 knockdown causes p53 stabilization in premalignant breast epithelial 
cell lines. 
(A) Inducible knockdown of NRF2 causes p53 stabilization in MCF10DCIS.com cells. 
MCF10DCIS.com cells were treated with 1 µg/ml doxycycline for 72 hr and immunoblotted for p53 
with vinculin and tubulin used as loading controls. Representative immunoblots are shown of n = 
4 biological replicates. (B) Reconstituted CHEK2 expression in CHEK21100delC SUM102PT cells. 
Note that reconstituted CHEK2 is upshifted upon H2O2-induced oxidative stress and doxorubicin-
induced DNA damage, suggesting modification by upstream kinases. (C) Inducible knockdown of 
NRF2 causes p53 stabilization in SUM102PT cells and becomes more pronounced upon 
reconstitution of wild-type CHEK2. SUM102PT cells were treated with 1 µg/mL doxycycline for 72 
hr and immunoblotted for p53 and CHEK2 with tubulin and p38 used as loading controls. 
Representative immunoblots are shown as the mean ± s.e.m. of n = 4 biological replicates. 
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Figure 4.7 NRF2–p53 co-stabilization is enhanced and shNRF2-induced p53 adaptations 
are preserved in basal-like premalignancy but have different morphometric 
consequences. 
(A) Stabilization of NRF2 and p53 proteins is coordinated in ECM-attached MCF10DCIS.com 
cells grown as 3D spheroids. Median-scaled two-color average fluorescence intensities are 
quantified along with the log-scaled and background-subtracted mutual information (MI) with 90% 
CI for n = 1832 cells segmented from 70–110 spheroids from two separate 3D cultures. (B) 
Common changes in transcript abundance identified by RNA sequencing of MCF10A-5E (5E) and 
MCF10DCIS.com (DCIS.com) cells grown as 3D spheroids with or without NRF2 knockdown. The 
negative control for shNRF2 was an inducible shGFP (5E) or shLacZ (DCIS.com). Data are shown 
as log2-transformed Z-scores for genes detected at >5 transcripts per million from n = 4 biological 
replicates. Enriched gene sets for the BRCA1, ATM, and CHEK2 networks are indicated, with 
black denoting multiple enrichments. The complete list of enrichments is available in file S2. (C) 
NRF2 knockdown elicits a rounding phenotype in 3D-cultured MCF10DCIS.com cells. (D) p53 
perturbation causes hyper-enlargement of 3D-cultured MCF10DCIS.com cells. (E) Dual 
inactivation of NRF2 and p53 synergistically increases the percentage of non-spherical, hyper-
enlarged structures in 3D-cultured MCF10DCIS.com cells. For (C) to (E), cells with or without 
inducible perturbations were treated with 1 µg/ml doxycycline for 48 hr, grown as 3D spheroids 
for 10 days, imaged by brightfield microscopy, and segmented. For (C) and (D), data are shown 
as the mean ± 90% bootstrap-estimated CI from n = 8 biological replicates. For (E), data are 
shown as the mean ± s.e.m. of n = 8 biological replicates. Statistical interaction between NRF2 
and p53 perturbations (pint) was assessed by two-way ANOVA with replication. Scale bars are 
100 µm.  
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Figure 4.8 Premalignant breast epithelial cell lines have similar adaptations to NRF2 
knockdown in spheroid culture. 
(A) NRF2 knockdown in MCF10DCIS.com cells does not alter spheroid growth. (B) NRF2 
knockdown in MCF10DCIS.com cells causes an increase in rounded spheroids (Figure 4.7C) that 
is reverted upon addback of an RNAi-resistant version of NRF2. (C) NRF2 knockdown in 
SUM102PT cells causes increased rounding with or without wild-type CHEK2 reconstitution. Data 
are shown as the mean ± s.e.m. of n = 8 independent 3D-cultured samples after 8 days (A and 
B) and n = 6 independent 3D-cultured samples after 16 days (C). For (C), cultures were treated 
with 1 µg/ml doxycycline at day 8 and analyzed at day 16. For (B) and (C), rounded spheroids 
were gated as in Figure 4.7, C and E.   
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4.3.3 NRF2 and p53 are coordinately stabilized by sporadic oxidative stress 

Coordination of the NRF2–p53 pathways could be achieved if they shared the same 

inducer. We thus considered various potential upstream-and-intermediate triggers for NRF2 and 

p53 stabilization in basal-like breast epithelia. Inhibition of KEAP1 with the electrophile 

sulforaphane (362) stabilized NRF2 but not p53, and pharmacologic inhibition of MDM2 with 

nutlin-3 (363) stabilized p53 but not NRF2 (Figure 4.5, B to D), suggesting they act as parallel 

pathways downstream of a common inducer. An obvious candidate was DNA damage given 

CDKN1A and MUS81 in the gene cluster (Figure 4.1A) and the most-recognized function of p53 

(364). However, chemotherapy-induced double-strand breaks did not appreciably stabilize 

NRF2 in cells with wildtype p53 (Figure 4.9A), and genetically driving hyperproliferation (365) 

did not detectably impact regulation of the gene cluster in 3D spheroids (Figure 4.2 B,D). The 

lack of NRF2–p53 co-induction by conventional agonists prompted a search for less canonical 

activators. 

One shared inducer of the KEAP1–NRF2 and ATM–CHEK2–p53 pathways is oxidative 

stress (71,366). In human breast tissue, elevated levels of reactive oxygen species are 

generated and tolerated by basoluminal progenitors (367), which are the cells of origin for basal-

like breast cancer (368). We documented local niches of Nrf2 stabilization in the murine 

mammary gland during puberty (Figure 4.10), potentially linking NRF2 and oxidative stress in 

expanding progenitor(-like) cells, such as MCF10A. When MCF10A-5E cells were exogenously 

stimulated with H2O2, NRF2 was rapidly stabilized and, importantly, p53 also accumulated after 

several hours (Figure 4.9B). Recognizing oxidative-stress heterogeneities in 3D spheroids 

(11,331,369), we used the genetically-encoded sensor HyPer-2 (370) together with a novel 

mRFP1-NRF2 reporter (NRF2rep) to colocalize intracellular H2O2 with stabilized NRF2 (see 

Materials and methods and Figure 4.11). We observed a small-but-nonzero mutual information 

between HyPer-2 fluorescence ratios and NRF2rep (Figure 4.9C, MI = 0.05 [0.02–0.10]; 

randomized MI = 0.0004 [0.0001–0.0007]), suggesting a weak (or complex) connection between 
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the two. Next, we evaluated whether oxidative stress resided upstream of NRF2–p53 

coordination by using the vitamin E analog Trolox to quench reactive oxygen species in the 3D 

cultures. Trolox treatment halved the mutual information between stabilized NRF2–p53 and 

significantly reduced the synergistic proliferative suppression caused by dual perturbation of 

NRF2 and p53 (Figure 4.9D,E and 4.12). Together, the data strongly suggested that NRF2 and 

p53 pathway co-regulation involves upstream heterogeneities in oxidative stress.  
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Figure 4.9 NRF2–p53 signaling coordination and 3D phenotypes arise from spontaneous 
and oncogene-induced oxidative stress. 
(A and B) NRF2 and p53 are jointly activated by oxidative stress but not by DNA double-strand 
breaks. MCF10A-5E cells were treated with 5 µM doxorubicin (double-strand breaks) or 200 µM 
H2O2 (oxidative stress) for the indicated time points, and NRF2 (magenta) or p53 (green) protein 
abundance was estimated by quantitative immunoblotting. Data are shown as the mean ± s.e.m. 
of n = 3 (A) or 4 (B) independent perturbations. (C) Endogenous oxidative stress is associated 
with NRF2 stabilization in 3D spheroids. MCF10A-5E cells stably expressing HyPer-2 (370) and 
mRFP1-NRF2 reporter (NRF2rep) were grown as 3D spheroids for 10 days and imaged by laser-
scanning confocal microscopy. Representative pseudocolored images for HyPer-2 ratio (upper 
left) and mRFP1-NRF2 reporter (lower left) are shown. HyPer-2 ratios and mRFP1-NRF2 reporter 
fluorescence are quantified (right) along with the log-scaled mutual information (MI) with 90% CI 
for n = 605 cells segmented from 10–25 spheroids from four separate 3D cultures. (D) The 
antioxidant Trolox suppresses endogenous NRF2–p53 coordination during 3D culture. 
Representative pseudocolored images for NRF2 (upper left) and p53 (middle left) are shown 
merged with DAPI nuclear counterstain (lower left). White arrows indicate concurrent NRF2 and 
p53 stabilization. The log-scaled and background-subtracted MI (right) is shown with 90% CI 
estimated from n = 1000 bootstrap replicates. (E) Trolox interferes with the synergistic proliferative 
suppression caused by dual inactivation of NRF2 and p53 in MCF10A-5E cells. Data are shown 
as the mean percentage of proliferation-suppressed spheroids ± s.e.m. of n = 8 independent 3D-
cultured samples after 10 days. The overall effect of Trolox on spheroid size is shown inFigure 
4.12. Statistical interaction between Trolox and NRF2–p53 (pint) was assessed by three-way 
ANOVA with replication. For (D) and (E), MCF10A-5E cells cultured for 10 days in 3D with or 
without 50 µM Trolox supplemented every two days. Scale bars are 10 µm (C) and 20 µm (D). 
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Figure 4.10 Local niches of NRF2 stabilization in MCF10A-5E 3D spheroids and pubertal 
murine mammary glands. 
(A to C) Quantification of neighboring NRF2 stabilization in MCF10A-5E 3D spheroids. (D to F) 
Quantification of neighboring NRF2 stabilization in murine mammary glands during puberty. In 
(A) and (D), representative merged images for NRF2 (magenta) with DAPI nuclear counterstain 
(blue) are shown (top). DAPI stain is shown below with magenta rings defining neighboring annuli 
used for mutual information (MI) calculations. In (B) and (E), MI is shown between NRF2 staining 
in single cells and surrounding cells within a radius equal to 1.5x the median cell diameter for n = 
737 MCF10A-5E cells and 10316 mammary epithelial cells. In (C) and (E), MI is shown between 
NRF2 staining in single cells and surrounding cells that fall within annuli of different radius from a 
single cell. MI is shown with 90% CI estimated from n = 1000 bootstrap replicates. 
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Figure 4.11 Description and validation of the HyPer-2 probe for H2O2 and the mRFP1-
NRF2 reporter. 
(A) Schematic of HyPer-2. Increases in intracellular H2O2 cause an increase in 530 nm 
fluorescence upon excitation at 500 nm and a reduction upon excitation at 420 nm. (B) HyPer-2 
fluorescence ratios increase in MCF10A-5E cells treated with 200 µM H2O2. (C) HyPer-2 
fluorescence ratios are decreased in MCF10A-5E cells cultured with the antioxidant Trolox (50 
µM for 48 hours). (D) HyPer-2 fluorescence ratios are significantly elevated in transformed 
MCF10DCIS.com (DCIS.com) cells compared to MCF10A-5E cells. (E) Schematic of the mRFP1-
NRF2 reporter (NRF2rep). NRF2 is fused to mRFP1 at its N-terminus, and the DNA-binding 
domain is mutated (C506S) along with four leucines (L4A) in the leucine zipper region of the bZIP 
domain. NRF2rep remains targeted by KEAP1 through its DLG and ETGE binding motifs. (F) 
NRF2rep increases in MCF10A-5E cells treated with 10 µM sulforaphane for 2 hours. 
Representative pseudocolored images for NRF2rep (left) are shown merged with DAPI nuclear 
counterstain (right). For (B) to (D) and (F), HyPer-2 fluorescence ratios and mRFP1-NRF2 
fluorescence are summarized as cumulative density plots. Scale bars are 20 µm. 
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Figure 4.12 Antioxidant treatment causes an overall increase in MCF10A-5E spheroid 
size. 
MCF10A-5E cells were treated with 50 µM Trolox for two days before 3D culture, and Trolox was 
included in media refeeds and supplemented every two days between refeeds. Data are shown 
as the mean ± s.e.m. of n = 8 independent 3D-cultured samples after 10 days. 
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4.3.4 NRF2–p53 co-regulation occurs in normal breast tissue and hormone-negative 

DCIS but not invasive TNBC 

The regulatory heterogeneities observed in 3D culture often reflect adaptations in 

hormone-negative premalignancy (333) that become further disrupted in TNBCs (334). We thus 

sought to quantify NRF2–p53 coordination in TNBC and premalignant DCIS lesions, using 

adjacent-normal tissue as a comparator. The TP53 gene is frequently mutated in TNBC (33) 

and gives rise to loss of p53 protein or hyperstabilization of a dominant-negative mutant in 

tumors (371). By contrast, prior immunohistochemistry of NRF2 abundance in breast 

carcinomas was inconclusive (372), owing to an anti-NRF2 antibody that was later shown to be 

non-specific (373). There was an opportunity to revisit NRF2–p53 abundance heterogeneities 

from the perspective of co-stabilization, with a focus on TNBC and its precursor lesions. 

Using a knockout-verified commercial antibody (374), we immunoblotted with our production lot 

and confirmed detection of basal and induced NRF2 with only ~35% immunoreactivity attributed 

to nonspecific bands (Figure 4.13, A to C). By immunohistochemistry, the antibody detected 

endogenous NRF2 stabilized with electrophiles in paraffin sections of cell pellets (Figure 4.13D). 

The antibody has also been used independently to track NRF2 abundance in other solid tumors. 

However, when we stained adjacent-normal epithelium immunohistochemically, NRF2 was not 

clearly discernible (Figure 4.14A, upper). In MCF10A 3D spheroids, stabilized p53 is not 

detected by immunohistochemistry either (375), and yet we readily visualized it by 

immunofluorescence (Figure 4.3B). Therefore, to improve signal-to-background and facilitate 

multiplex quantification, we used two-color immunofluorescence after antigen retrieval, 

segmenting 24,949 normal and transformed epithelial cells in 15 cases of TNBC and hormone-

negative DCIS. 

In adjacent-normal epithelium, we observed local niches of stabilized NRF2 in lobules 

and ducts, which often corresponded with stabilized p53 (Figure 4.14A, lower, and 4.15). 
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Stabilized NRF2 was frequently detected in the cytoplasm, consistent with the prolonged 

cytoplasmic localization observed in H2O2-treated cells compared to cells stressed with an 

electrophile (Figure 4.16). The results corroborated recent findings that KEAP1 senses oxidative 

stress differently than electrophilic stress (71). The patterns of NRF2–p53 co-accumulation were 

largely preserved in hormone-negative DCIS (Figure 4.14B and 4.17A), even in cases with 

hyperstabilized p53 that was likely mutated (see below). Nuclear localization of NRF2 was also 

more prominent, perhaps reflecting the stronger ROS generation rates of transformed cells 

(376). Strikingly, NRF2 and p53 were almost completely uncoupled in invasive TNBCs (Figure 

4.14 and 4.17), reflecting a profound shift in single-cell regulation. We quantified NRF2–p53 

coordination by mutual information and found that it was largely eliminated in regions of invasive 

TNBC, irrespective of whether p53 was chronically stabilized or not (Figure 4.14D). Such 

alterations were not apparent in regional estimates of protein abundance by cell population-

averaged fluorescence, where neither NRF2 nor p53 were reproducibly different among groups 

(Figure 4.14E,F). We conclude that 3D culture in reconstituted basement membrane co-

stimulates the NRF2–p53 pathways akin to that observed in normal breast tissue and hormone-

negative premalignancy. Full-blown TNBC, by contrast, evokes a different set of dependencies. 
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Figure 4.13 Anti-NRF2 antibody validation for immunohistochemistry. 
(A) NRF2 is the predominant band induced with the electrophile sulforaphane (SF) in SUM102PT 
cells. Similar results were obtained with various cell lines. (B) Specificity of the ~100 kDa NRF2 
immunoreactive band confirmed by shRNA-mediated knockdown in MCF10DCIS.com cells. 
Similar results were obtained with various cell lines. (C) NRF2 abundance varies across triple-
negative cell lines. Breast cancer lines with gain-of-function p53 are indicated (†). (D) Increased 
immunohistochemical staining in MDA-MB-231 cell pellets treated with sulforaphane as indicated. 
Scale bar is 20 µm. For (A) to (C), asterisks indicate minor nonspecific bands that are likely 
denaturation-induced epitopes based on the staining of control cell pellets in (D). 
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Figure 4.14 NRF2 and p53 are co-stabilized in breast epithelial tissue and premalignant 
lesions but uncoupled in triple-negative breast cancer. 
(A) Immunohistochemistry (upper) and immunofluorescence (lower) for NRF2 and p53 in tumor-
adjacent normal breast lobules. Hematoxylin and eosin (H+E, upper right) histology is from a 
serial paraffin section for p53. Images from a tumor-adjacent normal breast duct are shown in 
Figure 4.15 (B and C) Multicolor immunofluorescence for NRF2 and p53 in (B) hormone-negative 
ductal carcinoma in situ and (C) triple-negative breast cancer. (D) NRF2–p53 mutual information 
(MI) is lost in triple-negative breast cancer. (E and F) Overall NRF2 and p53 immunoreactivity is 
not consistently altered during triple-negative breast cancer progression. n.s., not significant (p > 
0.05). For (A) to (C), immunofluorescence is shown as representative pseudocolored images for 
NRF2 (left) and p53 (middle) are shown merged with DAPI nuclear counterstain (right). White 
arrows indicate concurrent NRF2 and p53 stabilization, and magenta or green arrows indicate 
stabilization of NRF2 or p53 separately. Scale bars are 20 µm. For (D) to (F) data are shown as 
the mean ± s.e.m. of n = 14 cases with tumor-adjacent normal epithelium (Normal), 8 cases with 
ductal carcinoma in situ (DCIS), and 7 cases of triple-negative breast cancer (TNBC). 
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Figure 4.15 NRF2 and p53 are co-stabilized in breast epithelial ducts. 
Immunohistochemistry (upper) and immunofluorescence (lower) for NRF2 and p53 in tumor-
adjacent normal breast ducts. Hematoxylin and eosin (H+E, upper right) histology is from a serial 
paraffin section for p53. Immunofluorescence is shown as representative pseudocolored images 
for NRF2 (left) and p53 (middle) are shown merged with DAPI nuclear counterstain (right). White 
arrows indicate concurrent NRF2 and p53 stabilization. Scale bar is 20 µm. 
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Figure 4.16 Oxidative stress stabilizes NRF2 in the cytoplasm more so than electrophilic 
stress. 
(A to C) Time course of NRF2 stabilization in MCF10A-5E cells were treated with 200 µM H2O2 
or 10 µM sulforaphane for the indicated times and analyzed by immunofluorescence for NRF2 
from n = 400–800 cells per time point. For each subpanel, representative pseudocolored images 
for NRF2 are shown on the top and merged with DAPI nuclear counterstain on the bottom. Scale 
bar is 20 µm. Cytoplasmic and nuclear NRF2 immunoreactivity is summarized as cumulative 
density plots.  
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4.4 Discussion 

Our results posit ROS as an endogenous, spatially heterogeneous trigger of dual NRF2–

p53 activation in breast–mammary epithelia surrounded by basement membrane ECM. NRF2 

and p53 regulate target-gene abundance—both cooperatively and independently—to promote 

stress tolerance and adaptation. NRF2 deficits are buffered by compensatory increases in p53 

signaling, and dramatic ROS-dependent phenotypes arise when both pathways are perturbed. 

In hormone-negative premalignant lesions, stabilization of NRF2–p53 remains coordinated, 

even in cases where p53 has likely mutated. At this preinvasive stage, NRF2–p53 coordination 

should be most important for tumorigenesis. After invasion through basement membrane and 

progression to TNBC, the stromal microenvironment reduces overall NRF2 signaling and 

uncouples it from (now-mutant) p53. Our results describe a robust stress-responsive network 

important for mammary gland morphogenesis and the early stages of breast cancer.  

The mammary gland is unique in its regenerative capacity, with the majority of 

development happening postnatally. Breast tissue goes through numerous cycles of 

proliferation and reorganization throughout puberty and lactation, requiring many mechanisms 

essential for tumor formation such as invasion (312), reinitiation of proliferation (377), resistance 

to apoptosis (378), and angiogenesis (379). Therefore, it is of no surprise that breast cancer 

cells reengage cellular programs normally used during development. The coordination of NRF2 

and p53 in cell culture models and clinical cases of DCIS (Figure 4.7A and 4.14D) provides one 

example of a normal glandular development processes repurposed by premalignant cells to 

survive stresses associated with transformation. Other examples of this phenomenon include 

premalignant breast cells using autophagy, a protective mechanism activated during normal 

alveolar formation (380), to survive anoikis within the hypoxic, nutrient-deprived intraductal 

environment (381–383). In fact, NRF2 transcriptionally regulates the autophagy substrate p62 

(384) and induces autophagy in response to oxidative stress in multiple disease contexts 
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including breast cancer (385–387), suggesting that multiple NRF2-regulated processes can be 

useful during premalignancy.  

Our work begins to uncover a group of genes jointly regulated by NRF2 and p53. 

Compound perturbation of NRF2 and p53 caused non-additive changes in multiple transcripts in 

the NRF2-associated gene cluster, including CDKN1A and KRT5 (Figure 4.3D), suggesting 

complex regulation by the two stress-responsive transcription factors. CDKN1A, the canonical 

p53 target gene (388), also contains an NRF2 binding site in its promoter region (389), providing 

further evidence of its dual regulation. Regulation of the cyclin-dependent kinase inhibitor (p21) 

by multiple stress-responsive pathways is advantageous, as it provides multiple checks before a 

cell commits to senescence (122). Evidence of KRT5 transcriptional regulation by p53 

(390,391), but not NRF2, exists in the literature. Our findings suggest that the basal-like 

cytokeratin could be important for stress tolerance, as has been shown for other keratins 

(392,393). Further research to identify genes dually regulated by NRF2 and p53 could define a 

core genetic program important for the oxidative stress response in breast epithelial cells.  

NRF2’s role as master transcriptional activator of hundreds of enzymes that detoxify 

oxidative and electrophilic stressors make the pathway distinctly important for handling 

oncogenesis-associated cellular stresses. It would seem that targeting the pathway could re-

sensitize cancer cells to their environment and make them more susceptible to stress-induced 

apoptosis. However, NRF2 pathway perturbation in breast cancer cells has yielded conflicting 

results in the literature, in which both NRF2 stabilization (394,395) and NRF2 inhibition 

(396,397) has suppressed growth and migration of cancer cells. Our results suggest that the 

effects of NRF2 pathway targeting will vary based on tumor stage, as suggested elsewhere 

(105), and is unpredictable based on NRF2 levels alone (Figure 4.14E).  

Cancer mutations engage and cooperate with cell signaling in ways that are not 

captured by DNA sequencing (398). The coupling of the NRF2 and p53 pathways described 

here provides a robust oxidative stress-handling network for glandular morphogenesis and 
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maintenance. But, this same coupling creates a redundancy upon which p53 mutations can 

occur and neoplasms can evolve. Our results give pause to the nutraceutical use of 

sulforaphane as a potent NRF2 stabilizer (395)—in lung cancer, where KEAP1–NRF2 mutations 

are common and TP53 is secondary, antioxidants accelerate tumor progression (399). Effective 

therapeutic targeting will require a holistic evaluation of NRF2 signaling in relation to p53 and 

other tumor suppressors and oncogenes that impinge on the pathway.   
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4.5 Materials and methods 

4.5.1 Plasmids 

shRNA targeting sequences from the RNAi consortium (400) were cloned into tet-

pLKO.1-puro as previously described (343) for shLuc (TRCN0000072250, Addgene #136587), 

shNRF2 #1 (TRCN0000281950, Addgene #136584), shNRF2 #2 (TRCN0000284998, Addgene 

#136585), shJUND #1 (TRCN0000416347, Addgene #136581), shJUND #2 

(TRCN0000416920, Addgene #136583). 

 For the mRFP1-NRF2 reporter (Addgene #136580), the DNA binding domain of NRF2 

was mutated (C506S) along with four leucines (L4A) in the leucine zipper region of the bZIP 

domain by site-directed mutagenesis of the pBabe mRFP1-NRF2 hygro plasmid (Addgene 

#136579) originally prepared by subcloning into pBabe mRFP1 hygro. The RNAi-resistant (RR) 

version of NRF2 (Addgene #136522) was prepared by introducing four silent mutations into the 

sequence targeted by shNRF2 #1 in pEN_TT 3xFLAG-NRF2 (Addgene #136527). Site-directed 

mutagenesis was performed with the QuikChange II XL kit (Agilent). 

 pDONR223 CHEK2 was obtained from the human Orfeome V5.1 (401). CHEK2 amplicon 

was prepared with XbaI and MfeI restriction sites and cloned into pEN_TTmiRc2 3xFLAG 

(Addgene #83274) that had been digested with SpeI and MfeI (Addgene #136526). BirA* was 

cloned out of pcDNA3.1 mycBioID (Addgene) (402) with XbaI and SpeI restriction sites and 

cloned into pEN_TTmiRc2 digested with SpeI and Mfe1 (Addgene #136521). CDKN1A and 

NRF2 PCR amplicons were prepared with SpeI and MfeI restriction sites and cloned into 

pEN_TTmiRc2 BirA* (Addgene #136521). Luciferase PCR amplicon was prepared with SpeI 

and EcoRI restriction sites and cloned into pEN_TTmiRc2 3xFLAG digested with SpeI and MfeI 

sites (Addgene #136519). p53DD (p53DN) and p53(R280K)-V5 PCR amplicon was prepared 

with SpeI and MfeI restriction sites and cloned into pEN_TTmiRc2 (Addgene #25752) digested 

with SpeI and MfeI (Addgene #136520, #136525). 
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 pEN_TT donor vectors were recombined into pSLIK neo (Addgene #25735), pSLIK zeo 

(Addgene #25736), or pSLIK hygro (Addgene #25737) by LR recombination to obtain pSLIK 

3xFLAG-Luciferase zeo (Addgene #136533), pSLIK p53DD zeo (Addgene #136534), pSLIK 

3xFLAG-Luciferase hygro (Addgene #136528), pSLIK 3xFLAG-NRF2(RR) hygro (Addgene 

#136535), pSLIK BirA* hygro (Addgene #136537), pSLIK BirA*-CDKN1A hygro (Addgene 

#136538), pSLIK BirA*-NRF2 hygro (Addgene #136539), pSLIK p53(R280K)-V5 hygro 

(Addgene #136540) and pSLIK 3xFLAG-CHEK2 neo (Addgene #136536). 

 pLXSN HPV16E7 (403) and the ΔDLYC mutant (Addgene #136588) were provided by 

Scott Vande Pol. pCDH-Hyper2-puro (369) was provided by Joan Brugge. 

4.5.2 Cell lines 

The MCF10A-5E clone was previously reported and cultured as described for MCF-10A 

cells (323,330). MCF10DCIS.com cells were obtained from Wayne State University and cultured 

in DMEM/F-12 medium (Gibco) plus 5% horse serum (Gibco). SUM102PT cells were obtained 

from Asterand Biosciences and cultured in Ham’s F-12 (Gibco) plus 10 mM HEPES (Gibco), 10 

ng/ml epidermal growth factor (Peprotech), 5 mM ethanolamine (Sigma), 50 nM sodium selenite 

(Sigma), 5 µg/ml apo-Transferrin (Sigma), 10 nM Triiodo-L-Thyronine (VWR), 5 µg/ml insulin 

(Sigma), 1 µg/ml hydrocortisone (Sigma), and 5% fatty acid free bovine serum albumin (VWR). 

All cell lines are female, were grown at 37°C, authenticated by short tandem repeat profiling by 

ATCC, and confirmed negative for mycoplasma contamination. 

4.5.3 Viral transduction and selection 

Lentiviruses were prepared in human embryonic kidney 293T cells (ATCC) by triple 

transfection of the viral vector with psPAX2 + pMD.2G (Addgene) and transduced into MCF10A-

5E, MCF10DCIS.com, HCC1937, SUM159PT, MDA-MB-231, HCC1806, and MDA-MB-468 as 

previously described (334). Retroviruses were prepared similarly by double transfection of the 

viral vector with pCL ampho (Addgene) and transduced into MCF10A-5E cells as previously 
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described (331). Transduced cells were selected in growth medium containing 2 µg/ml 

puromycin, 300 µg/ml G418, 100 µg/ml hygromycin, or 25 µg/ml zeocin until control plates had 

cleared. For RNAi-resistant addback, viral titers were adjusted to match the endogenous protein 

abundance as closely as possible. For mRFP1-NRF2 fluorescent reporter, we used the 

minimum viral titer that gave sufficient signal in sulforaphane-treated cells compared to DMSO-

treated cells. 

4.5.4 3D culture 

3D overlay cultures were performed on top of Matrigel (BD Biosciences) as described 

previously for MCF-10A cells (404) with culture media previously optimized for each cell line 

(334). For each culture, 45 µl of Matrigel was spread with a pipette tip on the bottom of an 8-well 

chamber slide. A suspension of 5000 single cells per well was laid on top of the Matrigel in 

culture media supplemented with 2% Matrigel. 3D culture medium was replaced every four days 

as originally described (404). For antioxidant supplementation, cells were treated with 50 µM 

Trolox (Calbiochem) for two days before 3D culture, and Trolox was included in media refeeds 

and supplemented every two days between refeeds. For long-term knockdown experiments, 

cells were treated with 1 µg/ml doxycycline (Sigma) for three days before 3D culture, and 

doxycycline was maintained in the 3D culture medium throughout the experiment. For 

experiments with long-term knockdown and inducible overexpression, cells were treated with 1 

µg/ml doxycycline for two days before 3D culture, and doxycycline was maintained in the 3D 

culture medium throughout the experiment. 

4.5.5 RNA purification 

RNA from cultured cells was isolated with the RNeasy Plus Mini Kit (Qiagen) according 

to the manufacturer’s protocol. RNA from 3D cultures at day 10 was extracted by lysing 

individual wells in 500 µl RNA STAT-60 (Tel-Test) and purified as described previously (334). 
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4.5.6 RNA sequencing and analysis 

Total RNA was diluted to 50 ng/µl and prepared using the TruSeq Stranded mRNA 

Library Preparation Kit (Illumina). Samples were sequenced on a NextSeq 500 instrument with 

NextSeq 500/550 High Output v2.5 kits (Illumina) to obtain 75-bp paired-end reads at an 

average depth of 15 million reads per sample. Adapters were trimmed using fastq-mcf in the 

EAutils package (version ea-utils.1.1.2-537) with the following options: -q 10 -t 0.01 -k 0 (quality 

threshold 10, 0.01% occurrence frequency, no nucleotide skew causing cycle removal). Quality 

checks were performed with FastQC (version 0.11.7) and multiqc (version 1.5). Datasets were 

aligned to the human (GRCh38.86) genome using HISAT2 with the option: --rna-strandness RF 

(for paired end reads generated by the TruSeq strand-specific library). Alignments were 

assembled into transcripts using Stringtie (version 1.3.4) with the reference guided option. 

Transcripts that were expressed at greater than five transcripts per million across all samples 

were retained for downstream analysis. Differential gene expression analysis was carried out 

using edgeR (version 3.8) (405) on raw read counts corresponding to transcripts that passed 

the abundance-filtering step. Trimmed Mean of M-values normalization (TMM) normalization 

using the calcNormFactors function was done before differential expression analysis using 

exactTest in edgeR. The 1,132 transcripts that were commonly differentially expressed (5% 

FDR) between MCF10A-5E shControl and shNRF2 #1, shControl and shNRF2 #2, and 

MCF10DCIS.com shControl and shNRF2 #1 are shown in Figure 4.7B. Gene Set Enrichment 

Analysis was done on transcripts that were differentially upregulated or downregulated in 

shNRF2 compared to shControl using the Molecular Signatures database collections C1-C4, 

C6, C7 (406,407).  

4.5.7 Quantitative PCR 

cDNA synthesis and quantitative PCR were performed as previously described 

(334,408). Human samples were normalized to the geometric mean of ACTB, HINT1, PP1A, 
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and TBP (Figures 4.3D and 4.2C); B2M, GAPDH, GUSB, HINT1, PRDX6 (Figure 4.2A); or 

ACTB, B2M, GUSB, PPIA, PRDX6 (Figure 4.2B). 

4.5.8 Brightfield imaging and quantification of spheroid phenotypes 

Brightfield 3D images were acquired on an Olympus CKX41 inverted microscope with a 

4× Plan objective (four fields per chamber) and a qColor3 camera (Qimaging). Images were 

segmented using OrganoSeg (409) to produce morphometric measures for each segmented 

spheroid. ‘Rounded’ spheres were classified as having circularity greater than 0.9 (Figures 4.7, 

C,E, and 4.8 B,C). ‘Hyper-enlarged’ spheres were classified as having an area greater than e8.5 

~ 5000 µm2 (Figure 4.7 D,E). ‘Proliferation suppressed’ spheres were classified as having an 

area less than 1600 µm2 for MCF10A-5E cells after 10 days of 3D culture (Figures 4.3E and 

4.9E). 

4.5.9 Clinical samples 

Cases were identified from the pathology archives at the University of Virginia and build 

upon a cohort of samples previously described (333,334). Hormone-negative DCIS lesions were 

deemed negative (less than 10% expression frequency) for estrogen receptor and progesterone 

receptor by clinical immunohistochemistry, and TNBC cases were additionally scored negative 

for HER2 amplification by clinical DNA chromogenic in situ hybridization. All clinical work was 

done according to IRB-HSR approval #14176 and PRC approval #1363 (502-09). 

4.5.10 Immunofluorescence 

MCF10A-5E and MCF10DCIS.com 3D cultures were embedded at day 10 of 

morphogenesis, and 5-µm sections were cut and mounted on Superfrost Plus slides (Fisher). 

For clinical samples, paraffin tissue sections were dewaxed and antigens retrieved on a PT Link 

(Dako) with low-pH EnVision FLEX Target Retrieval Solution (Dako) for 20 min at 97°C. 

Immunofluorescence on cryosections and antigen-retrieved slides was performed as previously 

described (330) with the following primary antibodies: NRF2 (Santa Cruz #sc-13032, 1:100), 
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phospho-Rb (Cell Signaling #8516, 1:1600), p53 (Santa Cruz #sc-126, 1:200). Slides were 

incubated the next day for 1 hr in the following secondary antibodies: Alexa Fluor 555-

conjugated goat anti-rabbit (1:200; Invitrogen), Alexa Fluor 647-conjugated goat anti-mouse 

(1:200; Invitrogen). 

4.5.11 Image acquisition–analysis and mutual information calculation 

Fluorescent images were collected on an Olympus BX51 fluorescence microscope with 

a 40× 1.3 numerical aperture (NA) UPlanFL oil-immersion objective and an Orca R2 CCD 

camera (Hamamatsu) with no binning. Images were segmented in CellProfiler (258) using DAPI 

to identify nuclei. Nuclear objects were dilated to a median diameter of 15 µm to capture 

approximately one whole cell. NRF2 staining was quantified in the nucleus, the whole cell, and 

the cytoplasm (whole cell area – nuclear area). p53 and pRB staining was quantified in the 

whole cell. Immunoreactivity was quantified as the median fluorescence intensity of the whole 

cell unless otherwise noted. 

 For pRB and NRF2 immunofluorescence (Figure 4.11 D,E), log-transformed distributions 

were analyzed with the MClust function in R using the unequal variance model with either one 

or two mixture components specified. Model fit was evaluated by F test. 

 MCF10A-5E cells stably expressing pCDH-HyPer2-puro were imaged at 37°C in Hank’s 

Balanced Salt Solution (Gibco) with a 40× 1.3 NA EC Plan Neofluar oil-immersion objective on a 

Zeiss LSM 700 laser scanning confocal microscope. 405 nm and 488 nm lasers were used to 

sequentially excite two excitation peaks of HyPer-2 and collect fluorescence emission from 500– 

550 nm. To calculate HyPer-2 ratios on a pixel-by-pixel basis, 488-nm images were divided by 

405-nm images and thresholded in ImageJ to remove background pixel values (~10%). For 

quantification of cells cultured in 2D (Figure 4.11, B to D), the mean HyPer-2 ratio per image 

was used for analysis. For quantification of cells cultured as spheroids (Figure 4.9C), cells were 

manually segmented to calculate the median HyPer-2 ratio per cell. 
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 Clinical samples were imaged on an Olympus BX51 fluorescence microscope with a 40× 

1.3 NA UPlanFL oil-immersion objective and an Orca R2 CCD camera (Hamamatsu) with 2×2 

binning and fixed exposure times for NRF2 (150 msec) and p53 (50 msec). Images were 

autoexposed in the DAPI channel for nuclear segmentation and in the unlabeled FITC channel 

for autofluorescence estimation. Image fields were classified as follows: Normal—bilayered 

epithelium, intact basement membrane (visualized by FITC autofluorescence), and normal 

cytoarchitecture; DCIS—multilayered and disorganized epithelium (with partial or complete 

luminal filling), intact basement membrane, cytologic atypia; TNBC—invasive carcinoma cells 

with cytologic atypia and no discernable basement membrane. All images were segmented in 

CellProfiler as described above. After nuclear identification, nuclei outside of the ductal 

epithelium (fibroblasts, endothelial cells, and immune cells) were manually removed using the 

IdentifyObjectsManually module. Because paraffin fixation of tissue increases autofluorescence 

(410), the analysis excluded images that were dominated by autofluorescent bleedthrough into 

the Alexa 555 channel localizing NRF2. Spearman correlation was calculated between cellular 

FITC–555 channels and FITC–DAPI channels on a pixel-by-pixel basis for each image. Images 

with a FITC–555 correlation coefficient above the 95th percentile for FITC–DAPI correlation (in 

which autofluorescent artifacts were negligible due to the low exposure time) were excluded 

from further analysis. 

 For NRF2 quantification in neighboring cells (Figure 4.10), spheroid and mouse 

mammary gland images were loaded into CellProfiler and the IdentifyObjectManually module 

was used to manually identify regions of ductal epithelium. The images were cropped manually, 

and cell nuclei within the cropped area were identified by DAPI staining. Nuclear area was 

dilated to a median diameter of ~15 µm to define a cell. Position, area, and median NRF2 

staining intensity were measured for each cell. Measurements were loaded into MATLAB, and 

single-cell NRF2 intensities were normalized to the median intensity of all exposure-matched 

cells. Neighboring cells were defined as cells located within a radius of 1.5 times the median cell 
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diameter. For more distant neighbors, annular areas of 3–5 and 5–10 times the median cell 

diameter were used. Cells that fell within the applied search area were used to calculate the 

median neighbor NRF2 intensity. The original cell at the center of the search area was not 

included in the intensity calculations, and cells with NRF2 intensity values equal to 0 or lacking 

neighboring cells within the defined search area were excluded from calculations. 

 To quantify the association between fluorescence channels, we used mutual information 

in lieu of standard correlation measures (Pearson, Spearman). After appropriate transformation 

and binning into discrete high-low states, mutual information provides greater flexibility to 

capture nonlinear relationships (411) and more stringency to detect compressions in dynamic 

range (412). Median fluorescence intensity distributions were transformed by their respective 

cumulative distribution functions (probability integral transform) to produce uniformly distributed 

random variables (413). The uniform distributions were split into low and high states at the 67th 

percentile, and the joint–marginal state probabilities estimated for the two fluorescence 

channels (R, G) were used to calculate the mutual information (MI) as follows: 

𝑀𝐼 = 𝑝%&𝑙𝑜𝑔
𝑝%&
𝑝%𝑝&

 

 MI confidence intervals were estimated by bootstrapping the segmented cell population 

1000 times. To create a randomized (null) dataset, the values of one fluorescence channel were 

randomly shuffled before analysis. 

 Clinical samples often had fewer areas of classified cells for imaging, which require an 

added analysis step in the mutual information calculation. For a classification (normal, DCIS, 

TNBC) comprised of two images from one case, we evaluated batch effects by hypergeometric 

test to determine if the two images separated by high-vs.-low staining intensity. If so, the case 

for that classification was excluded. 
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4.5.12 Quantitative immunoblotting 

Quantitative immunoblotting was performed as previously described (334). Primary 

antibodies recognizing the following proteins or epitopes were used: NRF2 (Santa Cruz 

Biotechnologies, #sc-13032, 1:1000), p53 (Santa Cruz Biotechnology #sc-126, 1:1000), p21 

(Proteintech #10355-1-AP, 1:1000), total Chk2 (Cell Signaling #2662, 1:1000), GAPDH (Ambion 

#AM4300, 1:20,000), tubulin (Abcam #ab89984, 1:20,000), p38 (Santa Cruz Biotechnology #sc-

535, 1:5000), Hsp90 (Santa Cruz Biotechnology #sc-7947, 1:5000). 

4.5.13 Promoter bioinformatics 

The 36 transcripts of the Figure 4.1A gene cluster (20, 24) were assessed with four 

promoter analysis algorithms to identify recurrent transcription factor (TF) candidates (242). 

First, distant regulatory elements (DiRE) analysis was conducted using the DiRE website 

(https://dire.dcode.org) (345) searching evolutionary conserved 5’ untranslated regions (5’ UTR 

ECRs) and promoter regions (promoter ECRs) for genes on the human genome (hg18). A 

random set of 7500 genes was selected as background control genes. Second, 

Expression2Kinases (X2K) software was used to identify upstream TFs for the Figure 4.1A gene 

cluster (41). The potential TFs were selected from ChIP-X Enrichment Analysis (ChEA) 

database using “mouse + human” as the background organisms (414). The p value from the 

Fisher Test and Z-score were used for sorting and ranking. Third, from the National Center for 

Biotechnology Information (NCBI), we collected the proximal promoter of each transcript— 

defined as 1416 base pairs (bp) upstream and 250 bp downstream of the transcription start site 

to remain within the 60 kb sequence limit—for use as an input set for MEME (415,416). Using 

MEME-defined motifs from classic discovery mode, the top three enriched motifs were searched 

against the JASPAR CORE (2018) database (containing 1404 defined TF binding sites for 

eukaryotes) (417) or HOCOMOCO Human (v11) database (containing 769 TF binding motifs) 

(418) using TOMTOM (125) to identify transcription factor recognition sequences. Last, 
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oPOSSUM (43) was used to identify potential TFs targeting transcripts in the cluster. We 

selected Single Site Analysis – Human mode and used all 24,752 genes in the oPOSSUM 

database as a background. All vertebrate profiles with a minimum specificity of 8 bits in the 

JASPAR CORE Profiles were selected as TF binding sites sources. oPOSSUM was run with the 

following parameters: conservation cutoff of 0.4, matrix score threshold of 85%, amount of 

upstream/downstream sequence: 2000/0, and sort results by Fisher score. 

  



 101 

Chapter 5 Integrated systems modeling of NRF2–p53 
oxidative stress handling  

5.1 Abstract 

In Chapter 3, we used experimental methods to examine the regulation of a stress 

tolerance transcriptional state in breast epithelial 3D spheroids. We found the state to be jointly 

coordinated by the antioxidant response regulator, NRF2, and the tumor suppressor, p53, in 

response to spontaneous oxidative stress. NRF2–p53 signaling remains coordinated in 3D 

spheroid models and clinical cases of ductal carcinoma in situ, but becomes uncoupled when 

cells invade into the surrounding mesenchyme in triple-negative breast cancer. In this chapter, 

we fuse together separate computational models of NRF2 and p53 regulation to create an 

integrated systems model of oxidative-stress handling. The integrated model captures NRF2–

p53 coordination and the oxidative-stress capacity of cells with disrupted NRF2 or p53 seen 

experimentally. For triple-negative breast cancer lines, of which almost all have mutated p53, 

model predictions of stress tolerance coincide with 3D-growth phenotypes when NRF2 is 

perturbed. This work builds a simple network model that allows for abstraction to different 

genetic and transcriptomic backgrounds to make clinically relevant predictions about the 

oxidative stress capacity of TNBC tumors. 

5.2 Introduction 

Reactive oxygen species (ROS) play a complex role in cancer initiation, progression, 

and treatment. ROS can act as carcinogens by damaging nucleic acids (8,419,420) and have 

been shown to increase cancer cell proliferation and metastasis (421,422). In contrast, ROS can 

also induce cancer cell senescence and apoptosis (93) and lowering ROS levels through 

endogenous antioxidant signaling can promote tumorigenesis (376,423). Perhaps a reason for 

this paradox is the dual nature of ROS as a damaging oxidant but also a secondary messenger 
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for intracellular signaling (421,424). The extent to which ROS play a tumor-promoting or tumor-

suppressing role is both context- and dose-dependent (425), and thus hard to predict.  

Despite the uncertainty regarding the effects of ROS on cancer cells, ROS are 

undoubtedly linked to tumorigenesis. Many of the processes involved in transformation, such as 

survival of extracellular matrix detachment, increased metabolic activity, and oncogene 

activation cause increased ROS generation (11,426). Cancer cells have developed numerous 

strategies to survive higher levels of oxidative stress, including developing an enhanced, 

endogenous antioxidant response.  

Previously, we found that two stress-responsive transcription factors, NRF2 and p53, are 

coordinately activated by spontaneous oxidative stress encountered by normal and 

premalignant breast epithelial cells. Premalignant breast epithelial cells engaged the NRF2–p53 

network more frequently than normal cells due to their increased ROS levels (Figures 4.3B, 

4.7A, 4.9, 4.11D). Perturbing both pathways led to dramatic, ROS-dependent phenotypes of 

normal and premalignant cells grown in basement membrane (Figures 4.3E and 4.7E). In triple-

negative breast cancer (TNBC) tissue, NRF2–p53 coordination was significantly reduced 

regardless of p53 mutation status (Figure 4.14D). These results suggested that oxidative stress 

handling by the coordinated response of NRF2 and p53 is essential during the early stages of 

hormone-negative breast cancers.  

To more robustly test the connections between NRF2, p53, and oxidative stress in 

multiple non-transformed and transformed settings, we set out to build a computational systems 

model of NRF2–p53 signaling. We use elements from separate models of NRF2 and p53 

signaling in the literature to build a fused network model activated by oxidative stress. After 

calibrating based on quantitative protein measurements of various pathway species, the model 

recapitulates relative pathway coordination observed experimentally and reconciles 3D 

phenotypes upon dual NRF2–p53 perturbation. TNBC-specific systems models predict 

differential oxidative stress capacities among cells with mutated p53, which corresponds to 
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growth phenotypes upon genetic perturbation of the NRF2 pathway in 3D basement membrane 

cultures. Our results show that even in the setting of p53 mutation, different levels of residual 

NRF2–p53 coordination exist that predict susceptibility to NRF2 pathway perturbation. More 

broadly, this suggests the utility of NRF2–p53 coordination in predicting clinical response to 

oxidative stress-inducing cancer therapies.  

5.3 Results 

5.3.1 An integrated NRF2–p53 model of oxidative stress reconciles pathway 

coordination with 3D phenotypes 

To connect NRF2 and p53 co-stabilization with spontaneous heterogeneities in oxidative 

stress, we assembled an integrated computational-systems model. The model expands or 

condenses isolated modules of NRF2 and p53 signaling from the literature, fusing them through 

known or reported mechanisms of crosstalk and convergence (Figure 5.1A). For the NRF2 

pathway, we streamlined the detailed model of Khalil et al. (427) at several points. Instead of 

relying on ill-defined kinetic parameters for KEAP1-mediated ubiquitination, KEAP1:NRF2 

complexes were modeled as separate oxidized or reduced species with distinct half-lives 

estimated by experiment (see Materials and Methods). We likewise abandoned the elaborate 

multistep encoding of thioredoxins, peroxiredoxins, and glutathione transferases (427) by 

substituting a simpler, lumped pool of antioxidant enzymes in the model. The resulting 

architecture is similar to the general negative-feedback control scheme of stress-response 

gene-regulatory networks described by Zhang & Anderson (428). Last, we retained the 

nucleocytoplasmic trafficking of stabilized NRF2 to account for observations that H2O2 

stimulation retains NRF2 in the cytoplasm longer than treatment with the electrophilic stress, 

sulforaphane (Figure 4.16). Oxidative stress feeds directly into the NRF2 module according to a 

basal production rate of reactive oxygen species (ROS), which was adjusted in the final model 

to yield steady-state intracellular H2O2 concentrations consistent with the literature (429). 
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For the p53 pathway, we built upon the base model of Batchelor et al. (430), which was 

originally used to describe oscillations in p53 abundance after ionizing radiation. In this model, 

the kinases ATM and CHEK2 act as aggregate sensors–transducers of the DNA damage 

response (Figure 5.1A). They phosphorylate and stabilize p53 against degradation triggered by 

the ubiquitin ligase MDM2, which is also directly phosphorylated and inactivated by ATM. 

Stabilized p53 promotes its own degradation by inducing MDM2 transcripts and deactivates 

ATM–CHEK2 by enhancing transcription of the phosphatase PPM1D. For the integrated model, 

oxidative stress replaced DNA double-strand breaks as the pathway trigger, recognizing that 

ATM autoactivates in the presence of oxidants (128). Further, in response to oxidative stress, 

proper induction of many antioxidant enzymes requires p53 (124), which contributes to the 

overall antioxidant pool along with ARE target genes (Figure 5.1A). As a final candidate for 

NRF2–p53 crosstalk, we considered reports that the p53 target gene, p21 (CDKN1A), directly 

stabilizes NRF2 by interfering with KEAP1-catalyzed turnover (431,432). Together, the 

modifications provided an integrated model of NRF2–p53 signaling downstream of oxidative 

stress with enough molecular detail to enable kinetic and functional predictions. 

We revisited the oxidative stress time course (Figure 4.9B) to append immunoblot 

quantification of ATM–CHEK2 phosphorylation and p21 abundance after H2O2 addition (Figure 

5.2A). Exogenous H2O2 was encoded as an extracellular spike-in that decayed rapidly and 

spontaneously (433) amidst a basal ROS generation rate yielding a realistic intracellular H2O2 

burden at steady state (429). The H2O2 partition coefficient in the model was calibrated to 

capture the magnitude of NRF2 stabilization (see Materials and Methods). Likewise, the 

parameters for H2O2-induced autoactivation of ATM–CHEK2 and signal inactivation were 

defined to align with the time-delayed kinetics and duration of p53 stabilization (Figure 5.2B). In 

this model, addition of p53–p21–NRF2 crosstalk (431) caused NRF2 stabilization to peak earlier 

and deactivate faster than observations (Figure 5.2C). We were also unable to detect even 

transient short-range interactions between inducible BirA*-fused versions of p21 or NRF2 and 
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endogenous NRF2 or p21 by proximity ligation (Figure 5.3). The results thus argued against 

p53–p21–NRF2 crosstalk during oxidative stress in these cells. 

With the provisionally calibrated base model, we sought to test whether the encoded 

mechanisms of regulation were sufficient to capture prior observations relating NRF2, p53, and 

oxidative stress. The data obtained by quantitative fluorescence microscopy (Figures 4.3B, 

4.7A, and 4.9C) presumably arose from spontaneous oxidative stress that was occurring 

transiently and asynchronously during imaging. We mimicked oxidative-stress transients by 

triggering a step increase in the rate of ROS production for two hours followed by relaxation of 

the system for an additional 10 hours (Figure 5.1B). The magnitude of the step was sampled 

lognormally to elicit intracellular H2O2 concentrations within the range of HyPer-2 ratios 

observed experimentally (see Materials and Methods). We represented the asynchrony of 

image acquisition by randomly selecting ten snapshots of the network for each model iteration. 

This collection of 1000 snapshots (100 random generation rates x 10 random time points) was 

used to quantify coordination of species within the model. 

For connecting oxidative stress to NRF2 stabilization (Fig. 4.9C), we expanded the base 

model to include the mRFP1-NRF2 reporter, which does not bind DNA or interact with MAF 

proteins and requires ~1 hr to mature fully (434) (see Materials and Methods). By contrast, 

HyPer-2 becomes fully oxidized within ~1 min of H2O2 addition (370), enabling intracellular H2O2 

concentration in the model to be used directly as a surrogate of HyPer-2 fluorescence ratio. We 

calculated the mutual information from 1000 simulated snapshots and found that the two 

reporters were statistically coupled in the model (Figure 5.1C, MI = 0.14 [0.10–0.19]; 

randomized MI = 0.001 [2.8×10−6–0.0005]). Associations were stronger than those observed by 

experiment (Figure 4.9C) due to the early time points sampled in the model (yellow-orange 

times in Figure 5.1C), suggesting that peak H2O2 transients may be difficult to observe in 

practice. We next compared endogenous NRF2–p53 co-stabilization between MCF10A-5E and 

MCF10DCIS.com cells. The base MCF10A-5E model was adjusted to reflect i) proportional 



 106 

differences in species abundance estimated from RNA-seq (see Materials and Methods) and ii) 

an increased ROS generation rate estimated from HyPer-2 imaging (Figure 4.11D). NRF2–p53 

mutual information was much less dependent on signaling transients, and coupling was 

substantially higher in MCF10DCIS.com cells. The simulations are consistent with 

immunofluorescence data (Figures 4.7A, 4.9C, 5.1, D and E) and support that NRF2–p53 

pathway kinetics are accurately encoded in the base model. 

We asked whether the base model could also relate to the synergistic phenotypes 

observed upon dual NRF2–p53 perturbation in MCF10A-5E and MCF10DCIS.com cells (Figure 

4.3E and 4.7E). We mimicked shNRF2 by reducing the NRF2 production rate fivefold in the 

model (Figure 4.3C) and encoding secondary transcriptional adaptations in other components 

by using the associated RNA-seq data (Figure 4.7B). For DNp53, the p53 species was rendered 

unable to induce transcription of MDM2, PPM1D, p21, and its share of the antioxidant enzyme 

pool. After re-establishing steady state, the perturbed models were challenged with the random 

step increase in ROS production described above. We used the time-integrated intracellular 

H2O2 concentration as the overall measure of oxidative stress experienced during simulation 

with either the MCF10A-5E or MCF10DCIS.com initial conditions. For both cell lines, the base 

model predicted synergistic increases in oxidative stress beyond the linear superposition of 

shNRF2 and DNp53 effects (Figure 5.1F). Encouragingly, the same conclusions were reached 

with models that simply encoded the reduced NRF2 production rate without secondary 

adaptations (Figure 5.1G). Beyond oxidative-stress inducers and antioxidant target enzymes, 

we conclude that the NRF2– p53 network does not require any additional mechanisms to 

capture signaling coordination or phenotypic interactions.  
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Figure 5.1 NRF2–p53 pathway coordination and synergistic phenotypes are captured by 
an integrated-systems model of oxidative stress. 
(A) Connecting NRF2 and p53 signaling models (427,428,430) through oxidative-stress 
activators and antioxidant target enzymes. Additional crosstalk linking p53 to NRF2 through p21 
(435) is conditionally incorporated (gray). (B) Simulation strategy for quantifying association 
between signaling intermediates. The model was challenged with various ROS production rates 
and randomly sampled at multiple intermediate time points (yellow to blue). Integrated 
intracellular H2O2 (gray) is used for phenotype predictions related to NRF2 and p53 
perturbation. (C) Intracellular H2O2 concentration is associated with a reporter of NRF2 
stabilization (NRF2rep). (D and E) Coordination of NRF2 and p53 stabilization is high in the 
oxidative-stress model and increases further in simulations of premalignancy. (F and G) 
Modeling NRF2 knockdown by reduced synthesis captures the synergistic oxidative-stress 
profile of cells harboring dual perturbation of the NRF2 and p53 pathways. In (F), transcriptional 
changes secondary to NRF2 knockdown were added to the model according to the results in 
Figure 4.7B. For (C) to (E), simulated time points are shown as the log-scaled and background-
subtracted mutual information (MI) with 90% CI for ten time points from n = 100 random ROS 
generation rates. For (F) and (G), time-integrated intracellular H2O2profiles are scaled to the 
unperturbed simulations and shown as the mean oxidative stress with 90% CI from n = 100 
random ROS generation rates. 
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Figure 5.2 Calibration of an integrated NRF2–p53 systems model for oxidative stress. 
MCF10A-5E cells were treated with 200 µM H2O2 for the indicated times. (A) Quantitative 
immunoblotting for phospho-CHEK2 (pCHEK2 Thr68), phospho-ATM (pATM Ser1981), total 
p53, total p21, and total NRF2. Data are shown as the mean ± s.e.m. of n = 4 biological 
replicates. The maximum of pCHEK2 or pATM (max) was taken as the pATM/CHEK2 value for 
model calibration. (B) Calibration of the integrated base model to experimental data. (C) 
Addition of p53–p21–NRF2 crosstalk to the base model in (B). For (B) and (C), model results 
are shown as the median (solid) ± 90% confidence interval (dashed) from n = 50 simulations of 
initial conditions varied with a lognormal distribution of 10% about the geometric mean. 
Experiments and simulations are shown as the max-normalized increase above baseline, which 
was set to zero. The shaded region indicates the kinetic discrepancies between the two models 
relative to experiments. 
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Figure 5.3 Endogenous NRF2 and p21 are not proximity labeled by BirA* fusions of each 
other. 
(A) BirA*-NRF2 labels endogenous KEAP1 but not p21. (B and C) BirA*-p21 labels endogenous 
CDK4 and CDK2 (B) but not NRF2 (C). MCF10A-5E cells were treated with 1 µg/ml doxycycline 
for 48 hours, 10 µM sulforaphane, 10 µM Nutlin-3 and 1 mM biotin for 24 hours (A and B) or 2 
and 4 hours as indicated (C). Dashed lines indicate noncontiguous lanes on the same 
immunoblot. Input and biotin immunoprecipitated lysates were immunoblotted for NRF2, p21, 
KEAP1, CDK4, and CDK2. Representative immunoblots are shown for n = 3 biological 
replicates for (A) and (C). 
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5.3.2 TNBC adaptations to p53 disruption predict variable NRF2 miscoordination, 

NRF2-deficient oxidative-stress profiles, and 3D growth responses 

TP53 is the most-frequently mutated gene in TNBC (33), and transcriptomic analyses 

support it as a prevalent founder mutation in the disease (28). Disrupting p53 would 

undoubtedly impact transcriptional feedback and the overall cellular response to oxidative stress 

(Figure 5.1A). Conversely, neither NFE2L2 nor KEAP1 are mutated in breast cancer (28), but 

unclear is whether wildtype NRF2 might serve as a transient “non-oncogene” (40) that promotes 

stress tolerance during early tumorigenesis. Compared to in situ lesions, the stromal 

environment of invasive tumors is stiffer and more mesenchymal (436), which may render NRF2 

signaling dispensable at later stages. We wondered whether the fragmentation of the NRF2–

p53 network in TNBC cells and its origins could be reconciled with the systems model. 

Using RNA-seq data from the NIH LINCS consortium (437) on 15 TNBC lines with 

mutated p53 (six claudin-low subtype, nine basal-like subtype), we adjusted initial conditions 

from the original MCF10A model and removed all transcriptional processes downstream of p53 

(Figure 5.3A; see Materials and Methods). The individual TNBC models were run to steady 

state and then challenged with increased ROS generation rates as in Figure 5.1B. The 

coordination between NRF2 and mutant p53 was calculated by mutual information, and the 

integrated H2O2 response was scaled to that of MCF10A-5E cells as a relative measure of ROS 

tolerance. The goal was to associate the model-derived predictions with NRF2-knockdown 

phenotype in ROS-generating environments such as 3D culture. To the extent possible, we 

hoped that 3D growth in reconstituted basement membrane might quantify any vestigial 

requirements for NRF2 signaling from the in situ stage of the TNBC lines. 

For all TNBC lines, the model predicted significantly reduced covariation between 

mutant p53 and NRF2 compared to MCF10DCIS.com cells with wildtype p53 (Figure 5.4B, MI < 

0.25). We noted a spectrum of residual NRF2–p53 co-stabilization from weak (e.g., HCC1937, 
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SUM159PT) to virtually nonexistent (MDA-MB-468, MDA-MB-231). Despite complete p53 

deficiency in the model, this residual NRF2–p53 mutual information correlated strongly with the 

simulated relative increase in oxidative stress when ROS generation was increased (Figure 

5.4B). Neither of these predictions mapped directly to specific transcripts in the TNBC-specific 

RNA-seq data (Figure 5.4A), reinforcing that the models were making nonobvious predictions 

about oxidative-stress handling. 

To connect the model predictions with a continued role for NRF2 signaling in TNBC 

behavior, we selected five lines along the spectrum of mutual information and ROS tolerance. 

HCC1937 and SUM159PT cells were both predicted to have residual NRF2–p53 coordination 

and moderate ROS tolerance (Figure 5.4B). Accordingly, inducible knockdown of NRF2 in these 

lines did not lead to any consistent changes in 3D growth (Figure 5.4, C and D). By contrast, 

MDA-MB-231, HCC1806, and MDA-MB-468 cells were predicted to have among the least 

NRF2–p53 co-stabilization and ROS tolerance (Figure 5.4B). Knockdown of NRF2 in these lines 

with two different shRNAs caused significant increases or decreases in overall cell growth 

(Figure 5.4, E to G). Thus, model and experiment support that, despite p53 mutation, residual 

NRF2–p53 coupling indicates the primordial susceptibility of triple-negative malignancies to 

perturbations in the NRF2 pathway. 
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Figure 5.4 TNBC-specific signatures of the oxidative-stress network predict NRF2–p53 
coupling and the response to NRF2 perturbations. 
(A) Transcripts per million for the indicated TNBC cell lines scaled to MCF10A cells from the 
NIH LINCS dataset (437). The clustered transcripts were used to adjust the initial conditions of 
the model simulations for each cell line. (B) NRF2–p53 mutual information (MI) correlates with 
ROS tolerance in TNBC simulations. ROS tolerance was defined as the integrated intracellular 
H2O2 concentration in each cell line compared to that of MCF10A-5E cells in response to an 
increased ROS production rate as in Figure 5.1B. (C and D) 3D growth of TNBC cells with 
higher ROS tolerance and NRF2–p53 MI is unaffected by NRF2 knockdown. (E to G) TNBC 
cells with lower ROS tolerance and NRF2–p53 coordination show changes in 3D growth upon 
NRF2 knockdown. For (C) to (E), data are shown as the mean ± s.e.m. of n = 4–8 biological 
replicates. 
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5.4 Discussion 

In this work, we use computational modeling to tackle the complexities of a dynamic 

oxidative stress response network in breast–mammary epithelia surrounded by basement 

membrane ECM. We use aspects of published computational models describing the NRF2 and 

p53 pathways individually to create a fused model to study pathway cooperation in response to 

oxidative stress at different stages of cancer progression. Despite the overall complexity of 

NRF2- and p53-mediated transcriptional programs (438,439) and the numerous reported 

mechanisms of pathway interaction (431,440–443), the coordinated response to oxidative stress 

is captured by a relatively simple mathematical encoding. Known core mechanisms of NRF2–

p53 regulation are brought together by a shared ROS inducer and a common pool of detoxifying 

target genes without the need for any further crosstalk. Therefore, oxidative-stress handling in 

breast–mammary epithelia is usefully abstracted as two stability-regulated transcription factors 

working independently toward a common homeostatic goal. 

Oxidative stress perturbations to the encoded NRF2–p53 network recapitulated the 

differing levels of signaling coordination observed experimentally in normal and premalignant 

breast epithelial cells. For TNBC cell lines with mutant p53, model predictions of residual NRF2–

p53 coordination correlated with ROS tolerance in response to increased ROS generation. 

These measures coincided with TNBC growth phenotypes in reconstituted basement membrane 

upon NRF2 perturbation, suggesting that the model could predict which cell lines were 

dependent on NRF2 signaling during the in situ stage of growth.   

Although NRF2 is not an oncogene for breast cancer, it has been connected with 

multiple breast-cancer tumor suppressors previously. In mammary epithelial cells, loss of Brca1 

(a predisposing event for basal-subtype TNBC) destabilizes Nrf2 and causes an increase in 

ROS favoring the future acquisition of p53 mutations (108,110). In human breast cancer cells, 

gain-of-function p53 mutants interact directly with NRF2 and may help retain NRF2 in the 
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nucleus (112). If certain p53 mutations were also to promote NRF2 stabilization, then it would 

provide a two-for-one benefit to cancer progression by relieving tumor suppression and 

conferring ROS tolerance constitutively. However, we did not note any association between 

gain-of-function p53 mutants and NRF2 abundance in TNBC lines (Figure 4.13C), suggesting 

that KEAP1 regulation predominates as indicated by the TNBC models. Chronic activation of 

the NRF2 pathway (for example, by activating NFE2L2 mutation or KEAP1 loss) may be 

disfavored if elevated intracellular ROS is not permanent. The models suggest that 

supraphysiological activation of NRF2 would lead to runaway induction of antioxidant enzymes, 

causing reductive stress as documented for NRF2 in other tissues (444). Wildtype NRF2 

function must be sufficient to buffer cells from the early stresses of premalignancy and p53 

disruption, allowing invasive TNBCs to deactivate the pathway when it is no longer needed. 

There are parallels to FOXO transcription factors (445), which are reversibly inactivated by 

mitogenic signals yet provide critical oxidative-stress tolerance when the breast-cancer tumor 

suppressor RUNX1 is disrupted (446–448). 

Breast cancer cell lines organize very differently in 3D culture (449), but their response 

to perturbations is often less disparate. For example, gain-of-function p53 mutations cause 

luminal filling in MCF10A 3D cultures (353), similar to the delay in mammary-gland involution 

observed with mutant p53 in vivo (450). Reciprocally, knockdown of mutant p53 in MDA-MB-468 

cells promotes luminal hollowing (451). Among p53-mutant TNBC lines, the impact of NRF2 

knockdown on 3D growth was nonuniform but explainable through the oxidative-stress profiles 

inferred from TNBC-specific systems models. The balance of complexity and tractability make 

3D spheroid–organoid cultures a compelling platform for systems-level dissection of cell-state 

heterogeneity and early tumorigenesis. 

The 3D behavior of breast–mammary cancer cells is highly dependent on the 

surrounding ECM (452). Invasive cancers no longer encounter basement membrane ECM but 

must have bypassed it upon progression to carcinoma. Interestingly, although multiple TNBC 
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lines will grow as 3D colonies in reconstituted basement membrane, others cannot, suggesting 

a type of cellular “amnesia” toward that past encounter. For cancers that do grow in 3D, the use 

of reconstituted basement membrane (as a more normal-like microenvironment) may give rise 

to cellular changes reminiscent of premalignancy. We exploited these changes to evaluate the 

relative importance of NRF2 signaling in different TNBC backgrounds. There are likely other 

opportunities to examine hurdles of premalignancy by using basement-membrane 3D cultures. 

For 3D-organoid biobanks (329), however, it is a reminder that such cultures are not 

propagating the primary breast tumor but rather tumor-derived cells in a more-primitive state. 

Leveraging cellular redox alterations to develop effective cancer therapeutics requires 

the holistic understanding of redox signaling events. Our results suggest that levels of residual 

oxidative stress handling could identify ductal carcinoma in situ lesions that would benefit from 

NRF2 pathway perturbation, or more generally, oxidative stress-inducing therapeutics. The 

extraordinary complexity of ROS generation and its contextual effects reinforce the value of 

modeling redox networks at a granularity suited to a given physiology or pathology (167). 
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5.5 Materials and methods 

Methods related to plasmids, viral transduction and selection, and mutual information calculation 

are exactly as in Chapter 4.5 Materials and methods.   

5.5.1 Cell lines 

SUM159PT cells were obtained from Asterand Biosciences and cultured in Ham’s F-12 

(Gibco) plus 10 mM HEPES (Gibco), 5 µg/ml insulin (Sigma), 1 µg/ml hydrocortisone (Sigma), 

and 5% fetal bovine serum (Hyclone). All other cell lines were obtained directly from ATCC. 

MDA-MB-231 and MDA-MB-468 cells were cultured in L-15 medium plus 10% fetal bovine 

serum without supplemental CO2. HCC1806 and HCC1937 cells were cultured in RPMI 1640 

medium plus 10% fetal bovine serum. All base media were further supplemented with 1× 

penicillin and streptomycin (Gibco). 

5.5.2 3D culture 

3D overlay cultures were performed on top of Matrigel (BD Biosciences) as described 

previously for MCF-10A cells (404) with culture media previously optimized for each cell line 

(251). In addition, HCC1806 cells were cultured in MCF10A assay media (404), and SUM159PT 

cells were cultured in SUM159PT growth media (described above) plus 2% fetal bovine serum. 

For each culture, 45 µl of Matrigel was spread with a pipette tip on the bottom of an 8-well 

chamber slide. A suspension of 5000 single cells per well was laid on top of the Matrigel in 

culture media supplemented with 2% Matrigel. 3D culture medium was replaced every four days 

as originally described (404). For long-term knockdown experiments, cells were treated with 1 

µg/ml doxycycline (Sigma) for three days before 3D culture, and doxycycline was maintained in 

the 3D culture medium throughout the experiment. 

5.5.3 Quantitative immunoblotting  

Quantitative immunoblotting was performed as previously described (25). Primary 

antibodies recognizing the following proteins or epitopes were used: NRF2 (Santa Cruz 
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Biotechnologies, #sc-13032, 1:1000), p53 (Santa Cruz Biotechnology #sc-126, 1:1000), p21 

(Proteintech #10355-1-AP, 1:1000), total Chk2 (Cell Signaling #2662, 1:1000), phospho-Chk2 

(Thr68, Cell Signaling #2197, 1:1000), phospho-ATM (Ser1981, Abcam #ab81292, 1:1000), 

KEAP1 (Santa Cruz Biotechnology #sc-15246, 1:1000), CDK4 (Cell Signaling #12790, 1:1000), 

CDK2 (Santa Cruz Biotechnology #sc-6248, 1:200), vinculin (Millipore #05-386, 1:10,000), 

GAPDH (Ambion #AM4300, 1:20,000), tubulin (Abcam #ab89984, 1:20,000), p38 (Santa Cruz 

Biotechnology #sc-535, 1:5000), Hsp90 (Santa Cruz Biotechnology #sc-7947, 1:5000). 

5.5.4 Proximity ligation using BirA*-fusions of p21 and NRF2 

MCF10A-5E cells inducibly expressing the promiscuous biotin ligase BirA* (453), BirA*-

NRF2, or BirA*-CDKN1A were plated on 10-cm plates and induced with 1 µg/ml doxycycline at 

50% confluency. After 24 hours, media was refed with 1 µg/ml doxycycline, 10 µM sulforaphane 

(Sigma), 10 µM Nutlin-3 (Calbiochem) and 1 mM biotin (Sigma). After 24 hours, cells were lysed 

in 200 µl RIPA buffer (50 mM Tris (pH 8.0), 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 0.1% 

SDS, 0.5% sodium deoxycholate). Anti-biotin antibody enrichment of biotinylated peptides was 

performed as previously described (454). Briefly, biotin antibody bound agarose beads 

(ImmuneChem Pharmaceuticals Inc., #ICP0615) were washed three times in IAP buffer (50 mM 

MOPS (pH 7.2), 10 mM sodium phosphate and 50 mM NaCl). 500 µg (50 µl) of antibody was 

added to each RIPA lysate on ice. Ice-cold IAP buffer was added up to 1 ml and samples were 

incubated on a nutator overnight at 4°C. The next day, beads were washed four times with ice-

cold IAP buffer, boiled in dithiothreitol-containing 2× Laemmli sample buffer, and used for 

immunoblotting against the indicated targets. 

5.5.5 Computational modeling 

The NRF2 pathway was encoded as first- and second-order rate equations for KEAP1 

oxidation and NRF2 stabilization; NRF2-mediated transcription of antioxidant enzymes was 

modeled as a Hill function (427,428). The p53 pathway was reconstructed from a delay 
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differential equation model of p53 signaling in response to DNA damage (69). Abundances in 

original p53 model were unitless, but abundances were cast as concentrations in the earlier 

NRF2 models. Consequently, the integrated model adopted unitless abundances in its initial 

conditions and second-order parameters (table S2). To adapt the p53 DNA-damage model to 

respond to oxidative stress, we changed the ‘Signal’ activation (representing activation of 

upstream kinases p-ATM and p-CHEK2) from a Heaviside step function to a first-order oxidation 

reaction of ATM/CHEK2 by intracellular H2O2 (128). A basal ROS generation rate was added 

yielding a realistic intracellular H2O2 burden at steady state (429). Transcription of antioxidant 

enzymes by p53 (124) was modeled using the same model parameters describing the p53-

mediated induction of MDM2 (430). p53- and NRF2-mediated antioxidant gene transcription 

contribute to a shared pool of antioxidant enzymes, which catalytically reverse the oxidation 

states of KEAP1 and p-ATM/CHEK2. Transcription of CDKN1A by p53 (455) was included for 

model calibration (Figure 5.2) and for testing the relevance of p53–p21–NRF2 crosstalk (see 

below). The integrated base model of NRF2–p53 oxidative-stress signaling contains 42 

reactions and 22 ordinary differential equations (ODEs). The model was simulated with dde23 in 

MATLAB to reach steady state before the addition of oxidative stress. 

The integrated model was calibrated to capture the dynamics of MCF10A-5E cells 

stimulated with 200 µM H2O2 (Figure 5.2). Bolus addition of H2O2 was simulated as an impulse 

of intracellular H2O2. We used an H2O2 partition coefficient that gave rise to NRF2 stabilization 

levels comparable to immunoblot quantification (extracellular / intracellular partition = 3). We 

approximated p-ATM/CHEK2 in the integrated model as the maximum normalized increase of p-

ATM or p-CHEK2 over baseline at each experimental time point. Robustness of the system 

output to initial conditions was evaluated by randomly varying the concentration of model 

species with a log coefficient of variation of 10% taking the base model as the geometric mean. 

For simulations involving the mRFP1-NRF2 reporter (NRF2rep, Figure 5.1C), NRF2rep 

and mature fluorescent species (Nrf2repmat) were added to the MCF10A-5E base model. Both 
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reporter species were allowed to react with KEAP1, but neither could bind Maf proteins or 

antioxidant response elements in the model (Figure 4.11E). We used an mRFP1 maturation 

time of one hour (434) to model the conversion of NRF2rep to NRF2repmat. The modifications 

added 19 additional reactions and eight additional ODEs to the MCF10A-5E base model. 

For simulations involving p53–p21–NRF2 crosstalk (Figure 5.2C), we added reactions 

involving p21 binding to NRF2 to the MCF10A-5E base model. p21 was assumed to interact 

with NRF2 like KEAP1 and compete with KEAP1 for binding NRF2 through its DLG and ETGE 

domains (431). The p21:NRF2 complex was assumed to degrade at the same reduced rate as 

when NRF2 is bound to oxidized KEAP1 (k_nrf2degox). These modifications added eight 

additional reactions and two additional ODEs to the MCF10A-5E base model. 

For simulations involving MCF10DCIS.com cells (Figure 5.1, E to G), RNA-sequencing 

data (Figure 4.7B) was used to estimate proportional differences in model species abundance 

between MCF10DCIS.com and MCF10A-5E cells. Average gene expression in transcripts per 

million (TPM) from the four biological replicates of MCF10DCIS.com and MCF10A-5E control 

cell lines was calculated for each gene. Fold changes in model species of MCF10DCIS.com 

relative to MCF10A-5E were used to adjust each initial condition in the model. For the ‘MAF’ 

species, we used the median fold change in NRF2-binding small Mafs MAFF, MAFG, and 

MAFK (456). For the antioxidant species, we used the median fold-change in TXN, SOD1, 

PRDX1, and HMOX1 to include antioxidants that react with both free radicals and oxidized 

proteins (457). Additionally, the MCF10DCIS.com model included a 1.4-fold increase in the 

basal ROS generation rate, informed by the increased median HyPer2-ratio in MCF10DCIS.com 

cells compared to MCF10A-5E cells (Figure 4.11D). The increased ROS generation rate was 

paired with an increase basal turnover of the antioxidant pool to arrive at steady-state 

antioxidant gene expression levels consistent with MCF10DCIS.com RNA-seq data. 

For simulations involving bursts of oxidative stress, an increased ROS production rate 

was added for two hours to match the duration of transient stabilizations of JUND (a gene in the 
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NRF2-associated gene cluster) in 3D (333). We selected the minimum increase in ROS 

generation that gave rise to a detectable stabilization of both the NRF2 and p53 pathways in the 

MCF10A-5E base model. For MCF10DCIS.com and TNBC models, the mean ROS generation 

rate was scaled 1.4-fold to reflect the increased basal ROS generation rate described above. 

NRF2 knockdown was encoded by decreasing the net synthesis rate of NRF2 fivefold to mimic 

the fivefold decrease in NRF2 protein resulting from short-hairpin knockdown (Figure 4.3C). To 

account for secondary transcriptional adaptations (Figure 5.1F), initial conditions were also 

adjusted by RNA-seq-based fold changes in model species for shNRF2 cells relative to 

negative-control cells (Figure 4.7B). Dominant negative p53 was encoded by removing all 

reactions downstream of p53 (transcriptional activation of MDM2, PPM1D, CDKN1A, and the 

p53 share of the antioxidant enzyme pool). 

For the control case and all genetic perturbations (shNRF2, DNp53, and 

shNRF2+DNp53), 100 simulations were run with random ROS generation rates varied with a 

log coefficient of variation of 25% to capture the variability of HyPer-2 ratios observed 

experimentally (Figure 4.9D). Each simulation was run for two hours with increased ROS 

production rate and then an additional 10 hours to allow relaxation back to steady state. For 

assessment of species coordination (Figure 5.1, C to E, and 5.4B), species abundances were 

captured at 10 random timepoints from each simulation and mutual information was calculated 

as it was for quantitative immunofluorescence datasets. For oxidative stress analysis (Figure 5.1 

F,G, and 5.4B), the time-integrated intracellular H2O2 concentration was used as an overall 

measure of oxidative stress. 

For simulations involving TNBC cells (Figure 5.4, A,B), RNA-seq data from the NIH 

LINCS consortium (437) (HMS dataset ID: 20348) was used to estimate proportional differences 

in model species abundance between 15 TNBC cell lines and MCF10A cells. Reads per 

kilobase per million mapped reads values were normalized as transcripts per million before fold-

change calculation. MAF and antioxidant species were estimated as described above. TNBC 
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models used the same increased basal ROS generation rate as in the MCF10DCIS.com model 

(12). To simulate p53 mutation in the 15 p53-mutant TNBC cell lines, all reactions downstream 

of p53 were removed.  
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Chapter 6 Discussion and Future Directions 

6.1 Summary of Dissertation 

In this dissertation, we use systems-biology approaches to interrogate a heterogeneous 

stress-associated transcriptional state in breast mammary epithelial cells. In-depth knowledge of 

ROS (Chapter 2) and image processing techniques (Chapter 3) facilitated discovery that the 

transcriptional state was coordinated by the joint action of two stress-responsive transcription 

factors, NRF2 and p53. NRF2 and p53 are co-stabilized by spontaneous oxidative stresses in 

3D culture.  Perturbation of NRF2 and p53, both individually and jointly, has complex effects on 

target gene abundance and growth phenotypes. NRF2 disruption is compensated by p53 

signaling, and disruption of both pathways results in context-dependent ROS-induced growth 

phenotypes. 

Extending our analysis to clinical samples revealed that NRF2–p53 coordination is 

present in both normal breast epithelial tissue and hormone-negative ductal carcinoma in situ. 

However, in triple-negative breast cancers, NRF2 and now mutated p53 are largely uncoupled, 

suggesting invasive cancers rely on different mechanisms for oxidative stress tolerance.  

To further characterize the stress response network and robustly assess NRF2–p53 co-

stabilization during different stages of breast cancer, we built an integrated computational-

systems model. Connecting the NRF2–p53 pathway through only a common ROS inducer and 

pool of antioxidant target genes recapitulated experimental measures of relative NRF2–p53 co-

stabilization in normal and premalignant breast epithelial cells. The model was adapted to 

simulate p53 mutation in TNBC cell lines and predicted a spectrum of reduced NRF2–p53 

coordination and tolerance to oxidative stress that coincided with growth phenotypes in 

reconstituted basement membrane. 

Together, this work describes a novel linkage between the antioxidant transcription 

factor NRF2 and tumor suppressor p53 in detoxifying oxidative stresses. These results present 
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an interesting paradigm in which cooperation of wild-type NRF2 and p53 provides a robust 

response to stress important for normal breast morphogenesis, but also creates a redundancy 

which could facilitate p53 loss en route to tumorigenesis. Besides the novel biological insight, 

this work provides a computational model which will hopefully be of use to the NRF2 and p53 

cell signaling fields and a starting point for researchers seeking to holistically evaluate cellular 

response to oxidative stress. 

6.2 Mechanistic insight on NRF2–p53 gene regulation 

One of the questions that remains from this work is the exact mechanism behind gene 

cluster (Figure 4.1A) regulation by NRF2 and p53.  Also, if this dual regulation extends to a 

broader network of genes important for the oxidative stress response. We began to address the 

first point by analyzing publically available NRF2 and p53 ChIP-SEQ datasets for binding sites 

within promoter regions of the cluster genes (see Materials and methods). Of the transcripts 

decreased upon NRF2 knockdown by short hairpin (blue in first column of Figure 6.1A), 8 

contained an NRF2 binding site (Figure 6.1B). This data supports NRF2’s, mainly positive, 

regulation over several cluster genes. Of the transcripts whose abundance increased upon 

NRF2 knockdown (red in first column of Figure 6.1A), 6 contained a p53 binding site, while only 

2 had an NRF2 binding site. The presence of p53 binding sites in a portion of the genes 

upregulated upon NRF2 knockdown bolsters the claim that p53 compensates when NRF2 

signaling is disrupted (Figure 4.6A,C and 4.7B). It also provides mechanistic evidence that p53 

compensates through direct regulation of a number of these genes. Additionally, CDKN1A, one 

of the genes synergistically reduced upon compound NRF2–p53 perturbation, has binding sites 

for both NRF2 and p53, providing further evidence for its complex regulation.  

Ideally, future work would involve performing NRF2 and p53 ChIP-SEQ experiments on 

MCF10A-5E spheroids, with identical experimental and computational workflows for each. This 

would allow a more accurate comparison of NRF2 and p53 binding sites throughout the 



 126 

genome. Also examining the intersection of NRF2 and p53 ChIP-SEQ datasets could define a 

broader network of genes dually regulated by NRF2 and p53 in response to spontaneous 

oxidative stresses in 3D cultures.   
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Figure 6.1 NRF2 and p53 binding sites from ChIP-SEQ analysis provide explanation for 
transcript level changes upon genetic perturbation of NRF2 and p53. 
(A) Single and combined perturbations of NRF2 and p53 have complex effects on the gene 
cluster. The NRF2 target gene NQO1 was used as a control for efficacy of shNRF2. Figure 4.2C 
subpanel reprinted. (B) NRF2 and p53 ChIP-SEQ binding sites annotated for cluster genes. ChIP-
SEQ datasets included 3 cell lines per transcription factor. + indicates the presence of a peak in 
at least 1 cell line.  
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6.3 Applications of the NRF2–p53 network model  

In Chapter 5, we built an integrated systems model of the NRF2–p53 in response to 

transient oxidative stresses. Incorporating RNA sequencing data as inputs, the model captured 

signaling coordination across multiple stages of breast tumorigenesis and made experimentally-

validated predictions about oxidative-stress handling. Simulated features, including residual 

NRF2–p53 coupling and ROS tolerance, predicted susceptibility to perturbations in the NRF2 

pathway when grown in basement membrane.  

6.3.1 TNBC tumors from The Cancer Genome Atlas 

To see if similar relationships between simulated features existed in the in vivo context, 

we used data from the Cancer Genome Atlas (https://www.cancer.gov/tcga) to predict NRF2–

p53 coupling and ROS tolerance for individual TNBCs. The TNBC dataset comprises 122 

tumors that were scored estrogen-receptor and progesterone-receptor negative and not HER2-

enriched by a pathologist. RNA-sequencing profiles for all 122 tumors were downloaded, TPM-

normalized, and used to estimate proportional differences in model species abundance between 

tumors and MCF10A cells. Simulations were carried out identically to how they were for TNBC 

cell lines (Chapter 5.5.5 Materials and methods).  

Analyzing and displaying the model transcript levels in TNBC cell lines and tumors side-

by-side revealed differences between the two contexts. Levels of certain species were 

consistently lower and more variable among tumors compared to cell lines (CHEK2, ATM, 

MAFK, MDM2). Decreased abundance of CHEK2, ATM, and MDM2 suggest p53 pathway 

deficiency in tumors compared to cell lines. Since all cell lines and tumors alike had mutated 

p53, the difference is likely influenced by the in vivo context. Desmoplastic stroma, 

characteristic of most breast carcinomas, is stiffer than normal stroma and exerts tension on 

breast cancer cells (458,459). Matrix stiffening and tensile forces alter gene expression, 

including the activity of many adhesion and growth-factor dependent transcriptional networks 
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(460–462). In fact, matrix stiffening causes increased phosphorylation of focal adhesion kinase 

(FAK) (459), which inhibits p53 through enhanced ubiquitination and degradation (463–465). 

Thus, characteristics of the tumor microenvironment could explain some of the tumor-specific 

transcriptional differences observed (Figure 6.2A). 

In TNBC cell lines, residual NRF2–p53 mutual information correlated with the simulated 

increase in oxidative stress compared to MCF10A cells when ROS generation was increased. 

Among TNBC tumors, however, the relationship is more complex (Figure 6.2B). NRF2–p53 

mutual information no longer correlated with ability to tolerate increased ROS generation. 

Tumors also displayed a wider range of NRF2–p53 mutual information. The majority were within 

the range seen among cell lines (MI < 0.25), but there were several tumors having much greater 

simulated MI than cell lines (colored dark green in heatmap). These differences, including the 

larger range of NRF2–p53 MI observed, could be attributed to the heterogeneous tumor 

microenvironment and its influences on signaling pathways. Complexities in TNBC results aren’t 

surprising, however, as model predictions of overall lower NRF2–p53 MI compared to normal 

breast epithelia and premalignancies suggested that full-blown TNBC evokes a different set of 

dependencies for stress tolerance.  

The relatively simple NRF2–p53 computational model appears useful in the in vitro 

setting, where it correctly predicted levels of NRF2–p53 coordination and stress tolerance. 

However, interpreting predictions from patient data is more difficult, as these cannot be 

experimentally tested as they could for cell lines. It remains to be determined if the 

computational model can capture the complexities of an in vivo environment.   
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Figure 6.2 Tumor-specific differences in model transcript abundance and NRF2–p53 MI-
ROS tolerance mapping. 
(A) Transcripts per million for TNBC cell lines (in Figure 5.4A) and tumors from The Cancer 
Genome Atlas database scaled to MCF10A cells. (B) A complex relationship exists between 
NRF2–p53 mutual information (MI) and ROS tolerance in TNBC tumor simulations. ROS 
tolerance was defined as the integrated intracellular H2O2 concentration in each cell line 
compared to that of MCF10A-5E cells in response to an increased ROS production rate as in 
Figure 5.1B. 
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6.3.2 Gain-of-function p53 mutations 

An important area which we did not delve into in this dissertation is the role of gain-of-

function p53 mutants in NRF2 pathway regulation and response to oxidative stress. While the 

prevalence of GOF p53 mutations in TNBC is difficult to ascertain due to oncogenic properties 

of p53 mutants continually being discovered, a recent manual annotation of TCGA tumors we 

performed found that ~22% of TNBC tumors harbored mutants with published oncogenic 

properties. This represents a substantial portion of tumors in which mutant p53 has more than 

just a dominant-negative effect, as discussed earlier (Chapter 1.6.2).  

There have been multiple reports of gain-of-function p53 mutants regulating NRF2 target 

genes (162,165). Both studies found evidence that GOF p53 mutants repressed NRF2-

regulated genes in response to oxidative stress. Walerych et al. showed that five p53 missense 

mutants co-immunoprecipitated with NRF2 (162), indicating direct interaction of the two 

molecules. The computational NRF2–p53 systems model presented in Chapter 5 provides a 

platform to test hypotheses about NRF2-GOF p53 regulation. For example, to simulate the 

findings published by Walerych et al, reactions involving p53 binding NRF2 would be added to 

the TNBC model (used in Figure 5.4). As the exact location of GOF p53 binding to NRF2 is 

unknown, for simplicity we could model p53 binding and inhibiting NRF2 activity as its negative 

regulator KEAP1 does. Less antioxidant production by NRF2 due to GOF p53 binding should 

further decrease oxidative stress tolerance and have an unpredictable effect on NRF2–p53 MI. 

However, since GOF p53 is known to regulate multiple pathways besides NRF2 that could 

impinge upon the oxidative stress response, the current architecture might not be able to 

accurately capture all relevant signaling dynamics. For example, GOF p53 is known to activate 

the NF-κB pathway (466,467), which is responsible for inducing ROS scavenging enzymes such 

as SOD2 (236). An expanded model including additional ROS-mediating signaling pathways 

might be necessary to most accurately capture GOF p53 effects on oxidative-stress handling. 
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6.3.3 Hormone-positive breast cancers 

The NRF2–p53 oxidative stress handling network may be relevant for other subtypes of 

breast cancer. While the network was discovered in a basal-like breast epithelial cell line, 

NRF2–p53 coordination was observed in normal breast epithelial tissue (Figure 4.14D), thus not 

necessarily limiting its relevance to the basal-like subtype. It would be interesting to evaluate 

NRF2–p53 coordination in hormone-positive premalignancies and breast cancers. As opposed 

to basal-like breast cancer, of which 80% are TP53 mutated, hormone-positive subtypes 

comprise less TP53 mutated tumors (33). NRF2–p53 coordination by mutual information was 

significantly diminished in TNBC tissue regardless of whether p53 was hyperstabilized 

(presumably mutated) or not (Figure 4.14D). However, computational modeling predicted a 

spectrum of residual co-stabilization observed among TNBC cell lines (Figure 5.4B) and tumors 

(Figure 6.1B). It would be hard to thoroughly evaluate the effect of TP53 mutation on NRF2–p53 

coordination within TNBC tumors because the vast majority are mutated (in fact, all tumors 

analyzed in Figure 6.1 for which somatic mutation data was available had TP53 mutations).  

Luminal A or luminal B tumors, of which only 12% and 29% harbor TP53 mutations 

respectively (33), are a useful testbed to robustly evaluate the effect of TP53 mutation on 

NRF2–p53 coordination within the same tumor subtype. I would expect that NRF2 and p53 

would remain coupled in hormone-positive premalignancies to detoxify increased levels of 

oxidative stress, as they were in hormone-negative lesions. Luminal breast cancers might 

exhibit a wider range of NRF2–p53 coordination as compared to TNBCs, as tumors with wild-

type p53 might rely more heavily on the intact NRF2–p53 oxidative stress response. In addition, 

estrogen generates ROS through its metabolism by cytochrome P450 enzymes, which gives 

rise to reactive semiquinones and quinones (468–471). ER+ breast cancers exhibit higher levels 

of 8-hydroxydeoxyguanosine, a marker of oxidative DNA damage, compared to TNBC cells, 

indicating a higher oxidative burden (472,473). Increased ROS levels could potentially make the 

NRF2–p53 oxidative stress response more important for ER+ breast cancer cell survival. 
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Collectively, experimental and computational analysis of NRF2–p53 coordination in luminal 

tumors would help to determine if the NRF2–p53 stress response is 1) a conserved mechanism 

used by breast premalignant cells regardless of hormone receptor status and 2) relevant in 

breast cancer cells with wild-type p53 that have invaded into the stroma.  

6.4 Concluding remarks 

This dissertation demonstrates the power of a systems biology approach to discover 

biological meaning from large datasets. Starting from a group of heterogeneously expressed 

transcripts found by microarray profiling, analytical methods identified NRF2 as a candidate 

regulator of a stress-associated gene cluster. These results guided experiments to validate 

candidate regulators, assess potential coregulation with another stress-activated transcription 

factor, and evaluate upstream coordinators of the regulatory state. Immunofluorescence was 

heavily used to assess pathway coactivation in multiple settings, and image processing 

techniques were crucial to produce quantitative metrics from fluorescence images. Experimental 

evidence that NRF2 and p53 were coordinately activated by oxidative stress led us to build an 

integrated systems model to robustly test hypotheses of network architecture and NRF2–p53 

coordination during different stages of breast cancer. Finally, the model made nonobvious 

predictions about oxidative stress tolerance in TNBC cell lines, which we tested using 3D 

spheroid–organoid cultures. The synergistic blend of experimental and computational 

approaches allowed us to address a hypothesis from multiple angles and, ultimately, to 

integrate individual cellular mechanisms into a stress-handling network model that is both 

explanatory and predictive.  

6.5 Materials and methods 

NRF2 ChIP-SEQ raw data files were downloaded from ENCODE (Accession 

#ENCAB800OND), consisting of fastq files from 3 cell lines (K562, A549, HepG2) with 2 

biological replicates each. Quality of the sequenced reads was analyzed using FastQC. Reads 
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were aligned to the human genome (hg19) using BWA with the -M option. Peaks were identified 

using MACS2 (version 2.1.0) with a FDR cutoff of 0.01 to reduce the number of spurious peaks. 

Irreproducibility discovery rate analysis was performed on biological replicates and a cutoff of 

0.05 was used to generate a list of high confidence peaks for each cell line. Peaks were 

annotated using the Homer annotatePeaks program.  

p53 ChIP-SEQ binding sites were used from a recently published ChIP-SEQ dataset 

(474). Briefly, ChIP-SEQ was performed on 3 cell lines (HCT116, MCF7, SJSA) treated with or 

without the MDM2 inhibitor Nutlin. Reads were mapped to hg19 using Bowtie2 and peaks were 

identified and annotated using the Homer suite.  

Binding site is indicated (Figure 6.1B) if a peak was present for a gene in at least 1 of 3 

cell lines analyzed for each ChIP-SEQ dataset.  
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