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Abstract 

The inflammatory and wound healing process following myocardial infarctions causes an increase in 

populations of macrophages, fibroblasts, and monocytes in the tissue. Monocytes arrive at the infarct via 

perfused vessels and differentiate into macrophages, which in turn secrete cytokines that recruit fibroblasts 

to produce extracellular matrix proteins. The additional proteins stiffen the tissue, causing abnormal 

contractions during systole. We propose an image processing software that quickly identifies, labels, and 

counts ectodermal dysplasia 1 (ED1), ectodermal dysplasia 2 (ED2), alpha smooth muscle actin (αSMA;), 

and 4',6-Diamidino-2-Phenylindole (DAPI) positive cells to explore the dynamics of cell populations in the 

days following infarction. The purpose of this report is to describe the development of the image processing 

software rather than draw conclusions about the healing process following a myocardial infarction. A 

supervised machine learning pipeline was trained to identify ED1, ED2, αSMA, and DAPI stains. The 

image processing software was able to quantify cells across an entire tissue section as well as cells near key 

structures such as blood vessels. Three users were recruited to validate the software. Users counted cells 

manually and using the program. Analysis of variance tests showed that there was a significant difference 

between users’ manual cell counts, but there was no difference between cell counts computed by the 

program. As a result, it was possible to conclude that the image processing tool was reliable. The outputs 

from this software can be used to inform future research in tissue engineering, especially multi-cell 

computational modeling. 
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Introduction 

Nearly one third of all global deaths are a result of 

cardiovascular disease [1]. Of those deaths, 85 percent are 

caused by heart attacks and strokes, amounting to 15 million 

deaths annually [2]. The incidence rate is roughly 600 cases 

per 100,000 people [3]. Furthermore, the global economic 

burden onset by cardiovascular disease is expected to rise to 

918 billion USD by 2030, which is nearly one percent of the 

current global gross domestic product [4]. As a result, it is 

important to develop a better understanding of heart attacks. 

At the same time, about 45% of heart attacks are silent, 

meaning that damage is inflicted to the heart without the 

victim even knowing [5]. However, silent heart attacks can 

leave physical injuries in the form of scar tissue. Scar tissue 
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is fibrous tissue caused by injury. In the heart, fibrosis is 

particularly problematic because it can cause arrythmia, 

chamber dilation, and potentially heart failure [6]. In the 

case of heart attacks, 40 to 50 percent of people who die of 

one exhibit cardiac scar tissue, indicating that they have 

experienced a heart attack in the past [7].   

The healing process following myocardial infarctions (MI), 

commonly referred to as a heart attack, consists of several 

multicell interactions. As a result, it is important to 

understand the dynamics between cell populations that play 

key roles in the healing process post-MI over time. 

However, spatiotemporal dynamics between cell 

populations are not well understood. What is understood, 

however, is that cardiomyocytes, monocytes, macrophages, 

and fibroblasts all play a role in the inflammatory response 

to MI. When cardiac tissue suffers a loss of blood flow, 

cardiomyocytes, cells responsible for producing the 

contractile force in the heart, produce an adrenergic 

response [8]. The adrenergic response is comprised of 

cardiomyocytes lowering the number and function of 

cardiac beta receptors, which causes a sympathetic response 

by altering downstream mechanisms [9]. One of these 

altered mechanisms causes an increase in the production of 

monocytes as a downstream result of activated bone marrow 

niche cells [10]. Once in the circulatory system, these 

monocytes arrive at the injured cardiac tissue via blood 

vessels. Meanwhile, monocytes differentiate into M1 

macrophages and begin phagocytosing necrotic cells and 

secreting growth factors, including angiogenic ones such as 

vascular endothelial growth factor. Past research suggests 

that phagocytotic activity encourages M2 macrophage 

activation, which are resident macrophages [11]. M1 

macrophages recruit fibroblasts, which secrete extracellular 

matrix proteins [12]. Secretion of protein causes the cardiac 

tissue to stiffen, which leads to the formation of scar tissue 

which increases susceptibility to arrythmia, chamber 

dilation, and potentially heart failure. 

Developing a better understanding of the healing processing 

following MI is key to identification of therapeutic targets 

for enhanced cardiac tissue regenerations. Additionally, 

computational models are often used in the field of biology 

to quickly and inexpensively draw insights from virtual 

experiments. However, these models rely on accurate 

parameters used to model a given environment. A better 

idea of the spatiotemporal dynamics between cell types 

could lead to greater accuracies in parameterization of 

computational models that aim to study cardiac tissue 

fibrosis.  

 

In the past, approaches have been taken to quantify the 

spatiotemporal dynamics of MI. One method used 

vectorcardiography, but this methodology does not offer 

insight into specific therapeutic interventions in terms of 

target cells [13]. Other studies have researched 

spatiotemporal dynamics among immune cells in MI, but 

produced more results pertaining to the signaling patterns 

between cells instead [14]. Using an image processing tool 

designed for analyzing sections of infarcted cardiac tissue 

from different timepoints following MI could offer a much 

more definite portrayal of spatiotemporal dynamics 

between the aforementioned cell types. 

Image processing is an effective methodology to go about 

quantification of these cell populations. A widely accepted 

pipeline for the identification of objects in an image 

includes five steps: acquisition, filtering for noise reduction, 

segmentation, post-processing, and classification. 

Acquisition refers to obtaining images and ensuring a 

consistent standard of quality. Filtering for noise reduction 

is an important step in ensuring that data from images are 

interpretable. Segmentation is the process of dividing an 

image into disjoint regions. After an image is segmented, 

post-processing is implemented by filtering any remaining 

noise in the image. Lastly, classification refers to 

identifying artifacts in an image. A set of criteria need to be 

developed to objectively classify objects in an image [15]. 

Common criteria include pixel area, color, and shape. 

Machine learning can be used for the classification stage of 

any image processing pipeline. According to IBM, machine 

learning refers to computer algorithms that can improve 

automatically through experience [16]. Training a machine 

learning algorithm to identify objects in an image has 

potential to outperform human judgement. 

It is hypothesized that the image processing tool will 

quantify cells more consistently than humans in addition to 

being much faster than humans. In order to develop a user-

friendly image processing tool that could quantify cells 

across entire tissue sections and near key structures like 

blood vessels, three specific aims were set out for the 

project. 

 

Specific Aim #1: To create a front-end, user-friendly 

graphical user interface along with a back-end supervised 

machine learning pipeline to process, identify, classify, and 

quantify cells in images of infarcted cardiac rat tissue. 

 

Specific Aim #2: To complete validation of the image 

processing tool by recruiting users to count cells manually 
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and programmatically. Validation is necessary to ensure 

that the output of the software is reliable. 

 

Specific Aim #3: To ensure that the software is open source 

by pushing all relevant code associated with the program to 

a public platform like GitHub. Ensuring an open source 

software leaves room for collaboration in the future. 

Materials and Methods 

Prior to development of the image processing tool, in vivo 

experiments were completed to obtain images of 

immunostained cardiac rat tissue. The completed image 

processing tool had two parts: a front-end user interface 

along with a back-end machine learning pipeline. The user 

interface was used to make analysis more user-friendly 

while the back-end machine learning pipeline was used to 

identify cells in images of immunostained cardiac tissue. 

Two analyses were developed for quantification of cell 

populations. A global analysis was used to quantify all cells 

across an entire tissue section while an annular analysis was 

used to quantify cell extravasation from blood vessels. 

Lastly, validation of the image processing tool was 

completed to ensure that the tool is reliable and consistent. 

Obtaining images of immunostained cardiac rat tissue 

Our collaborators at the University of Virginia’s 

Department of Biomedical Engineering, Laura Caggiano, 

Ph.D. and Jeffrey Holmes, M.D., Ph.D., surgically 

induced MI into rats and removed the hearts at several 

timepoints following the injury. 21 rats were sacrificed. 

Three rats in the control group were healthy and did not  

suffer MI. There were six experimental groups, each 

consisting of three rats, that experienced surgically induced 

MI and were sacrificed one, two, three, four, five, and six 

days following MI. The rats were sacrificed in a carbon 

dioxide chamber and surgery was performed to remove the 

rat heart. The cardiac tissue was sectioned and 

immunostained. In this study, the only tissue sections that 

were considered came from the myocardium near the 

middle of the heart wall. Immunostaining was performed 

using three stains: ectodermal dysplasia 1 (ED1; M1 

macrophage marker), ectodermal dysplasia 2 (ED2; M2 

macrophage marker), alpha smooth muscle actin (αSMA; 

myofibroblast and vascular smooth muscle marker), and 

4',6-Diamidino-2-Phenylindole (DAPI; nuclear marker) 

[17]–[19]. Montaged micrographs (about 12 mm by 11 mm 

in size) of entire immunostained cross-sections of cardiac 

tissue were obtained with a 10x objective using a Leica 

Thunder microscope. Figure 1 shows an image of 

immunostained cardiac rat tissue that suffered MI three days 

before the image was taken. 

 

Front-end user interface 

A front-end GUI was developed to make the image 

processing tool user-friendly. Python (3.7) was used to 

develop this GUI. The GUI was divided into three panels, 

each with a different purpose and functionality in mind. The 

leftmost panel, panel 1, contains a “Browse” button that 

allows the user to parse through any directory on their 

computer to select an image of immunostained tissue. Once 

the image is selected, the middle panel, panel 2, displays the 

image. Panel 2 also includes user input fields. One field 

requires the user to select an immunostain of interest, either 

ED1 (M1 macrophage marker), ED2 (M2 macrophage 

marker), αSMA (myofibroblast and vascular smooth muscle 

marker), or DAPI (nuclear marker). The field above that 

requires the user to input the number of days that have 

elapsed following infarction of the imaged tissue. Another 

input field asks for the vessel identification number, which 

is useful organizational information when analyzing 

macrophage extravasation from blood vessels. The “Image 

Length” input field allows the user to specify the horizontal 

dimension of the image in microns. There are two buttons 

on the bottom of panel 2. The “Run Global Analysis” button 

Fig. 1. Image of immunostained cardiac rat tissue. This image 

shows a cardiac tissue section taken from the myocardium. The 

tissue in this image suffered MI three days before the image was 

taken. 
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runs a program that computes data for the entire tissue 

section. The “Run Annular Analysis” button runs a program 

that opens another GUI so that the user may zoom in on any 

vessel in the image and compute macrophage extraversion. 

Once the analysis is complete, a schematized image of the 

annular analysis appears at the center of panel 2. Global and 

annular analyses are discussed in a latter portion of the 

methods and materials section. The user can press the 

“Reset” button to clear the current analysis and begin a new 

one. The rightmost panel, panel 3, outputs key statistics 

about the cell densities and counts computed by either the 

annular or global analyses. Lastly, all data that is entered 

into panel 2 and output to panel 3 is recorded in an Excel 

spreadsheet. Figure 2 depicts the GUI along with the three 

referenced panels that comprise it. Packages used to make 

the GUI included PySimpleGUI, PIL, io, pandas, and 

openpyxl. 

 

 

 

 

 

Back-end machine learning pipeline 

A back-end machine learning pipeline was implemented to 

identify different cells in images of immunostained cardiac 

rat tissue. The first step of the supervised machine learning 

pipeline was to clean the data and reduce noise. Since each 

image was about a gigabyte in size, these images were 

reduced to 25% of their original size on the Leica Thunder 

computer to make analysis less computationally expensive. 

Each resized image was divided into 81 smaller image tiles 

to make analysis less intensive, computationally speaking. 

Ilastik (1.4.0b5), a Python-based program used for image 

analysis, was used for image segmentation. Cells were 

distinguishable based on the RGB pixel value in the image,  

 

 

 

 

 

 

 

 

Fig. 2. Front-end graphical user interface. The user interface is divided into three panels. Panel 1 is used to identify an image that 

will be analyzed. Panel 2 is used to perform analysis. Panel 3 shows preliminary output. A comprehensive output is written to an Excel 

spreadsheet. 
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analogous to the color of the corresponding immunostain, 

the brightness of each pixel, and the number of similar 

pixels adjacent to each other. As the “golden standard” for 

the machine learning algorithm, a human identified certain 

pixels within an image and assigned the label of ED1+, 

ED2+, αSMA+, or DAPI+ to the object. In addition, 

everything else that was not a cell type of interest in the 

labeling process was labeled as background. These human-

identified artifacts were the training data. Four image tiles 

were used to train the machine learning algorithm for each 

stain. Classifications of data obtained from this “golden 

standard” were generalized to other images so that all the 

cells within the image could be labeled as ED1+, ED2+, 

αSMA+, or DAPI+ cells. Once training was completed, all 

images were run through Ilastik to identify cell populations. 

For each image, all 81 tiles were pushed through the 

algorithm. For each tile, the output from the machine 

learning algorithm was a binary, black and white image. In 

these images, white pixels corresponded to cells while black 

pixels corresponded to everything that was not a cell. Figure 

3 depicts an image tile along with the output from the 

machine learning pipeline. 

After all 81 tiles were processed for an image, the tiles were 

stitched back together to form a complete, binary image 

identifying cells in white pixels and everything else in black 

pixels. 

 

Program functionality: global analysis 

Global analysis was developed in Python to count cells 

across entire tissue sections. A program was written that 

counted the total number of cells in the image. To achieve 

this, a binary, black and white image was analyzed. Since 

there were only two colors in the image, the program was 

able to count the number of white objects in the image. An 

object was defined as any continuous region in the image 

comprised of white pixels. The perimeter of each white 

object was calculated. Any objects that had an area of less 

than five pixels were disregarded and were assumed to be 

noise in the data because these objects were too small to be 

cells. Next, the centroid of each object was computed. It was 

assumed that one centroid corresponded to one cell. 

Operating under this assumption, the total number of cells 

in a tissue section was determined by the number of 

centroids in the image. 

 

Program functionality: annular analysis 

Annular analysis computed cell extravasation from blood 

vessels. Once the user opted to perform annular analysis by 

clicking the “Run Annular Analysis” button on the GUI, a 

second GUI appeared displaying the full image. Next, the 

user could zoom in on a blood vessel. Blood vessels were 

identified by pink/red circular structures. αSMA, which 

appeared pink/red, stains for vascular smooth muscle cells 

which comprise the blood vessel walls, making 

identification of blood vessels relatively simple. Once the 

user selected a blood vessel, the user was prompted to trace 

the exterior of the blood vessel. This could be done with a 

finger or stylus on a touch screen device or a computer 

mouse. Once the vessel was traced, the program computed 

four concentric rings radiating away from the vessel. The 

diameter of each ring increased by two times the diameter 

of the traced blood vessel. Next, the cells in each annular 

region were quantified by computing the centroids of cells 

in the image and only included the ones in a specific annular 

region. These cell counts, divided by the area of the annular 

regions, yielded the cell density in the three annular regions. 

The cell densities and counts in the lumen of the blood 

vessel and three annular regions were written to an Excel 

spreadsheet along with the date that the data was collected. 

Additionally, an image of the immunostained blood vessel 

and surrounding tissue along with a schematized 

interpretation of annular analysis were saved to a specified 

directory and displayed on the middle panel of the GUI. The 

schematized interpretation of annular analysis shows cells 

as points on a plot and the annular regions are outlined with 

circular curves. Figure 4 shows the schematized 

interpretation of the annular analysis performed on a blood 

vessel. 

 

Packages used to create the two functionalities included 

PIL, numpy, cv2, math, shapely, matplotlib, and datetime. 

 

 

 

 

 

Fig. 3. Supervised machine learning pipeline input and 

output. The image on the left shows an image tile taken from a 

rat that was sacrificed four days post-MI. The image on the right 

shows the output from the supervised machine learning model that 

was used to identify ED1+ cells (M1 macrophages) which are 

green in the image on the left. 
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Validation of image processing tool 

Three users were recruited to validate the image processing 

tool. Each user was tasked with two forms of analysis: 

manual and automated analysis. Manual analysis required 

each user to perform annular analysis on specified blood 

vessels. The user would manually count the number of cells 

in each annular region near the blood vessel. The automated 

analysis required users to perform the annular analysis on 

the same blood vessel using the software, meaning that the 

data of interest was the one output by the image processing 

tool. Users were instructed to perform this analysis on 179 

blood vessels. To ensure that each user performed the 

analysis the same as other users, all users were instructed on 

how to complete the analysis using video instructions. 

Statistical tests were performed to determine whether the 

software was consistent and reliable. 

 

Making code publicly available 

Finally, all code used to develop the image processing tool 

was pushed to GitHub. The code is open source and can be 

downloaded, used, or altered by anyone. A brief user 

manual is also included, instructing users how to run the 

image processing tool. Users may access the repository at: 

https://github.com/KubaLipowski/Capstone.git. 

 

Results 

 

Validation results 

A series of t-tests and two analysis of variance (ANOVA) 

tests were performed to determine that the image processing 

tool is reliable. Three users obtained manual and automated 

cell counts by performing annular analysis for 179 vessels. 

For each vessel, users obtained cell counts for ED1+, ED2+, 

αSMA+, and DAPI+ cells. The two-tailed, paired t-tests 

compared each individual user’s manual cell counts to 

automated cell counts for each individual stain. At a 

significance level of 0.05, it was determined that 75% of the 

time the p-value was high, meaning that there was no 

statistically significant difference between the manual cell 

counts and the automated cell counts. Two two-factor, 

without replication ANOVA tests compared the three users 

against each other. One ANOVA test was used to compare 

the manual cell counts, while the other was used to compare 

the automated cell counts. A significance level of 0.05 was 

adopted for both tests. The test comparing manual cell 

counts resulted in a p-value of close to 0.00, meaning that 

there was a significant difference between manual cell 

counts among the three users. The test comparing 

automated cell counts resulted in a p-value of 0.08, meaning 

that there was not a significant difference between 

automated cell counts.  

 

Image processing results 

The image processing tool developed preliminary insights 

into the healing process following MI. Global analysis was 

performed on each of the images coming form rats in the 

control group and all the experimental groups. It was 

determined the number of M1 macrophages over time 

steadily increased, while the number of M2 macrophages 

remained relatively constant during the healing process 

following MI. Figure 5 demonstrates this relationship. 

 

 

 

Fig. 4. Description of annular analysis. The image of the left shows a blood vessel after the user outlines it and the program computes 

the perimeters of annular regions. The four images on the right show the schematized interpretations of the annular analysis. The blue 

dots represent identified cells and the circular curves correspond to the perimeters of annular regions defined in the image of 

immunostained tissue. The title of each plot corresponds to the stain type that the blue dots represent. 
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Annular analysis was used to visualize cell extravasation 

from blood vessels. Cell densities for M1 macrophages 

(ED1+ cells), M2 macrophages (ED2+ cells), and 

fibroblasts and vascular smooth muscle cells (αSMA+ cells) 

were collected and averaged from several annular regions 

surrounding blood vessels. Figure 6 depicts a visualization 

of annular analysis over several timepoints following MI. 

Discussion 

 

Advantages of the image processing tool 

The statistical analyses have shown that the image 

processing tool is consistent across independent runs of the 

software. The t-tests comparing manual and automated 

counts for each user for each cell type yielded a p-value 

higher than 0.05 75% of the time. Generally, users agreed 

with the program’s output. The ANOVA test comparing 

manual counts computed by three different users had a p-

value below 0.05, demonstrating that human users did not 

produce consistent results when counting cells manually. 

The second ANOVA test comparing automated cell counts 

obtained by each user produced a p-value above 0.05, 

demonstrating that the program was consistent no matter 

who used it. Additionally, the software was able to save 

researchers time when quantifying cell populations. There 
were expected to be between 20,000 to 30,000 nuclei 

identified by DAPI (stained for all nuclei) markers alone 

within each individual image. Making the generous 

assumption that a human is able to count one nucleus per 

second, it would take anywhere between 5.55 to 8.33 hours 

to count the nuclei in a single image. However, the image 

processing tool can quantify all these cells in less than 

three seconds. 

 

Preliminary insights about MI 

Based on the global analysis and annular analysis insights, 

it is hypothesized that M1 macrophages initially arrive at 

the scene of the infarct via blood vessels, but then increase 

their population by proliferation. This hypothesis explains 

the steady increase in M1 macrophage populations over 

time in the global analysis along with the initial high cell 

density of ED1+ cells near blood vessels, followed by a 

decrease in cell density near blood vessels in the annular 

analysis. It makes sense that the M2 macrophage 

population is relatively stable over time because M2 

macrophages are resident macrophages, so they are always 

on site. No strong conclusions could be drawn about 

fibroblast populations because much of the αSMA+ cells 

computed were vascular smooth muscle cells comprising 

blood vessel walls. 

 

Existing cell quantification tools 

Three common existing tools for cell quantification are 

ImageJ, the hemocytometer, and the Corning Cell Counter. 

ImageJ is a free image processing tool made available by 

the NIH. For the purposes of cell counting, it provides two 

Fig. 5. Global analysis summary. Each M1 macrophage is 

represented by a green point, while each M2 macrophage is 

represented by a blue point. All macrophage counts were divided 

by the total number of cells in the tissue section. ‘Day 0’ refers to 

the control group of healthy rats. Days 1, 3, and 5 include only 

two samples per cell type because these images had too much 

noise. 

Fig. 6. Annular analysis summary. The red circle in the middle 

of each plot represents a blood vessel. The annuli surrounding 

each vessel correspond to annular regions. The shading of each 

annulus, representing cell density, is relative to other shades of 

annuli in the same row. Therefore, shadings of annuli in different 

rows are independent of each other. Days 2 and 5 were omitted 

because not enough large blood vessels were visible in the images 

that were collected. 
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main functionalities: thresholding and a manual cell 

counting tool [20]. Thresholding is not reliable because it 

solely relies on pixels’ RGB values causing several artifacts 

in an image that are not truly cells to slip through the 

threshold. A hemocytometer is generally used for blood 

samples and is not equipped with the latest visualization 

technologies [21]. The Corning Cell Counter is more 

accurate than a hemocytometer, but is very expensive, with 

prices as high as $8,000 [22]. Therefore, it made sense to 

develop an open-source image processing tool to quickly 

and inexpensively quantify large cell populations. No 

software products exist for annular analysis of blood 

vessels. To our knowledge, no image processing software 

currently exists for the purpose of analyzing extraversion of 

cells from blood vessels. Since monocytes arrive at the 

region of the infarct via perfused blood vessels, it is 

important to quantify cell populations within the vicinity of 

these key structures. 

 

Limitations 

The front-end GUI and the back-end machine learning 

pipeline were disjoint, meaning that users must push all 

images through the machine learning pipeline and save 

outputs to a specified directory before analyzing the images 

using the GUI. Another limitation was that the back-end 

machine learning pipeline was only adapted to 

immunostained images. Other stains, such as hemoxylin 

and eosin or picrosirius stains, were not covered by the 

image processing tool. Lastly, when an image had several 

cells within close proximity to each other, the fluorescent 

label made it challenging to distinguish individual cells. 

Occasionally, the classification algorithm would consider a 

clump of cells as one large cell. Although this resulted in an 

underestimate of total number of cells, the naked eye would 

also struggle to distinguish the number of cells in these 

fluorescent clusters. During the development of the image 

processing tool, images from only the myocardium were 

used. However, to get a more complete analysis of the 

healing process post-MI, images from other regions of the 

heart wall need to be included as well. Lastly, it was difficult 

to distinguish which αSMA+ stain corresponded to vascular 

smooth muscle cells and fibroblasts, making analysis of 

these cell types less meaningful. 

 

Implications for future work 

Next steps for the image processing program are based 

around developing a user community to improve the 

software. Now that the code is pushed to GitHub, 

researchers have the opportunity to edit the software as they 

see fit. This includes adding functionalities to the software 

to quantify image properties or editing existing 

functionalities. Another important step for future work 

would be to train the machine learning algorithm to identify 

other types of stains. The infrastructure for the machine 

learning is already there, it is just a matter of training the 

algorithm to identify cells in new images. For the purposes 

of studying the healing process post-MI, it is necessary to 

obtain images from the endocardium and epicardium to 

develop a more complete understanding of the healing 

process follow MI. Ultimately, a peer review board will 

need to review the image processing tool to ensure its 

credibility by publishing in a journal in the future. 

 

Conclusion 
 

The image processing tool detailed in this report is versatile, 

scalable, and can be adapted easily to contexts outside of 

MI. By way of automation, the image processing tool saves 

researchers time during the data collection phase of 

research, allowing for quick generation of hypotheses and 

conclusions that drive research initiatives forward. The 

image processing tool introduced a novel annular analysis, 

which can help uncover spatiotemporal dynamics between 

cell populations in MI. Results output from this image 

processing tool can be applied to preliminary steps in 

studies within the emerging fields of regenerative medicine 

and computational modeling to help identify targets for 

enhanced regeneration and parameterization of models, 

respectively. 

 

End Matter 
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