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ABSTRACT 

Computational human body models (HBMs) are important tools used in biomechanics research to 

predict human responses under external loads. To improve the predictive capabilities of HBMs in 

some loading scenarios, it becomes important to incorporate a motor control mechanism that 

affects the human response by generating active muscle forces around skeletal joints. Current 

efforts to integrate muscle control into HBMs rely on feedback-based controllers which have been 

precisely tuned for specific load cases and may not generalize to cases beyond which it has been 

tuned. The dissertation proposes a novel approach to muscle control based on deep reinforcement 

learning (RL).  

Reinforcement learning algorithms are recent advancements in the field of machine learning and 

allow for a complex system to learn how to work successfully to achieve the desired outcome and 

is analogous to how a child learns to walk by trying over and over again by constantly interacting 

with the surrounding environment. The proposed research presents a comprehensive study on the 

design of RL Muscle Activation Control (RLMAC) using detailed musculoskeletal multibody 

(MB) models and volunteer testing data. The central goal of this dissertation was to evaluate the 

utility of RL-based algorithms in muscle control for generating voluntary kinematics with eventual 

application to complex external loadings. The dissertation also examines the application of the 

trained muscle controller to changes in anthropometry, the addition of external mass to the body 

(such as helmets), and changes to the external loading environments. 

An initial proof-of-concept study on the use of RLMAC was performed using a multibody model 

of the human arm incorporating muscles responsible for motion about the elbow. The human arm 

model provided a simple model setup with a revolute joint at the elbow which made it convenient 

for the preliminary analysis. The RLMAC was trained to perform extension and flexion movement 
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of the lower arm by activating the muscles, and the trained controller could generate goal-directed 

arm movements, synthesize the same motion in the presence of an external force field, and the 

trained controller could also maintain the stability of the elbow joint to high magnitude impulse 

loads. Following the initial investigation, the RLMAC was integrated into the head and neck body 

region MB model with the anatomy of a 50th percentile male. The presence of multiple non-linear 

joints and the complex muscle orientation of the cervical spine make the head-neck complex a 

suitable body region to evaluate the ability of RL-based controls to generate coordinated muscle 

forces for joint control. At first, the RLMAC was trained assuming symmetry about the sagittal 

plane (i.e., left and right muscles were assigned identical activations). With the symmetrical 

control model, the RLMAC architecture was developed to maintain stability under gravity and 

synthesize the extension-flexion motion of the neck. The same control approach was then extended 

to all DOF models where each muscle was activated individually to maintain the desired posture. 

A series of volunteer tests were performed to finetune and calibrate the architecture of the RL 

controller. The test subjects were asked to perform fast goal-directed rotations of the head in the 

sagittal plane (extension-flexion) and transverse plane (axial rotation), and the data gathered from 

the volunteers were used as datasets for the model validation. The trained RLMAC could replicate 

the desired head movements with both the symmetry model and the all-DOF model. 

Finally, range of applicability studies were performed to gauge the ability of the RL controller to 

adapt to novel scenarios and develop responses to external loads, for which it has not been 

explicitly trained. The trained RLMAC was able to adapt to changes in anthropometry and was 

also able to maintain stability with an added mass representing a helmet. The trained model could 

also react to impact loads which provide evidence of its potential for controlling HBMs under 

novel loading environments for which it has not been previously trained. 
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The dissertation provides a detailed insight into the development of general use HBM muscle 

controller with the capability to simulate commonly encountered chaotic scenarios. The proposed 

approach can be extended to other body regions as well with the eventual application at the whole-

body level. Active HBMs will serve as important tools for the development of improved injury 

mitigation devices by accurately predicting the response and thus, the injury risks. Furthermore, 

the RLMAC framework can also be used in biomechanics applications such as gait and 

occupational health research. 
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Chapter 1 – Introduction and background 

 

1.1 Statement of Problem 

Neuromuscular motor control mechanisms in humans are responsible for voluntary body motions 

as well as involuntary reactions to external forces and loads. The desired motion responses are 

achieved when the central nervous system (CNS) generates signals that actively contract skeletal 

muscles, resulting in forces that will move or stiffen up the body joints. However, human 

neuromuscular control is complex, even for basic motor functions such as postural stability. The 

musculoskeletal system has non-linear joints with multiple kinematic degrees of freedom (DoF), 

and when active muscle function is integrated into this structure, it results in an indeterminate 

problem with an infinite number of solutions of muscle activation to produce a similar motion 

outcome. This poses a substantial mathematical challenge when developing computational human 

body models (HBMs) that incorporate active muscle behavior and muscle control schemes.  

Previous control studies have widely used two different approaches to model the active muscle 

forces. The first approach, known as open-loop control, applies a predetermined activation history 

to different muscles or muscle groups for maintaining posture under gravity and executing the 

desired motion of a joint or body segment. The open-loop control method has been effective in 

demonstrating the overall effect of muscle forces on model response or injury risks, however, the 

utility of such a simplified method is limited to cases where HBM posture or muscle activity is 

known in advance for the specific simulated load case. Thus, open-loop muscle control schemes 

need to be extrapolated to the general case, which may not represent real behavior. 

The second approach, known as the closed-loop system, incorporates a feedback controller in the 

HBM environment which formulates the muscle activity levels depending on any physical signal 

error that can be measured in the model. The model signal is compared with a reference signal 
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describing the intended position of the joint, and the error is fed to the controller that generates the 

muscle activation levels. The closed-loop controller is widely used in physiological studies and for 

predicting responses under external force fields. However, one of the major limitations of a closed-

loop controller is that they require tuning of the controller parameters based on achieving a desired 

output to a specific load case. Like open-loop controllers, they may not generalize beyond the 

scenarios for which they have been tuned or prescribed. Due to the inherent challenges of tuning 

PID controllers for multiple muscles simultaneously, researchers often simplify the muscle control 

scheme by grouping muscles around a joint by their agonist-antagonist function to reduce the 

complexity associated with joint movements. While such simplification can work reasonably well 

for simple joints such as elbows and knees, the redundant nature of more complex joints such as 

the neck vertebras makes it unsuitable for wider application. 

Over the past decade, reinforcement learning (RL) has emerged as a strong alternative to traditional 

control loops. RL algorithms are advancements in the field of machine learning, where the 

controller learns to output the best sequence of control signals based on the control objective by 

constantly interacting with the system that it seeks to control. In the Reinforcement learning 

routine, the controller, also known as an agent, receives feedback on the value of the action 

concerning the overall goal which enables it to improve the control output over multiple iterations. 

The drawbacks of current active muscle control in HBMs can potentially be addressed using RL 

approaches as the algorithms are adaptive in nature and can generate multiple coordinated control 

outputs for non-linear systems.  The major advantage of RL over conventional control systems is 

that the RL agent requires minimal input of the mechanics of the system. RL can also leverage the 

developments in supervised learning such as deep neural networks (NN) to control complex 

systems with limited domain information, which is useful for complicated body regions such as 
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the head and neck, where the muscles cannot be associated with any isolated kinematic DoF. 

Modeling the kinematics of skeletal joints by controlling the muscle actuations which can predict 

the human response under chaotic scenarios (such as automotive or sports impacts) is a complex 

problem. This dissertation seeks to explore the use of a control framework based on reinforcement 

learning to develop the active control mechanisms that are associated with humans for voluntary 

and autonomous control. 

1.2 Human Musculoskeletal System 

Specific movements in the human body happen when skeletal muscles apply forces to bones. 

Forces generated by skeletal muscles are responsible for maintaining posture and generating 

voluntary movements about joints. The magnitude of forces in muscles required to bring about a 

particular joint movement depends on the external environment and is controlled by the central 

nervous system (CNS). The skeletal muscles have varying shapes, depending upon the location of 

the muscles and the arrangement of muscle fibers. The forces produced by the skeletal muscles are 

proportional to the number of fibers across the muscle length (Figure 1-1). 

 

Figure 1-1: Anatomy of skeletal muscles. Adapted from google images (slideteam.net). 
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Skeletal muscles can only apply active tensile forces to shorten the muscle, i.e., when humans 

actuate a muscle, the muscle force attempts to pull the origin and insertion points toward each 

other. The muscle fibers are composed of long cylindrical structures called myofibrils. Myofibrils 

can further be divided into myofilaments, which are made up of repeated bands of proteins called 

actin and myosin, which results in the striated appearance of the skeletal muscles. Each band is 

known as the sarcomere, which is the primary contractile unit of the skeletal muscles. When a 

muscle is activated by the nervous system, the actin filaments slide over the myosin filaments, 

shortening the sarcomeres, which causes contraction of the muscle unit (Figure 1-2). 

 

Figure 1-2: Sarcomere in relaxed (top) and contracted (bottom) state. The actin filaments slide over the 

myosin which leads to the contraction of the muscles. Adapted from google images (brainkart.com). 
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In numerical modeling, the Hill muscle model is used to represent the mechanical characteristics 

of the skeletal muscles (Hill, 1938). Hill proposed a two-component model to numerically 

represent the active forces generated by the muscles, the first being the contractile element that 

represents the active muscle forces, and a non-damping elastic element in series that represents the 

compliance of the tendons at the muscle ends. Hill’s muscle model was later modified to include 

a passive element in parallel with the active element, which represents the tensile forces generated 

by stretching the inactivated muscle (Winters, 1995; Zajac, 1989).  

 
Figure 1-3: Hills muscle model with the active contractile element (CE), a passive element (PE), and a 

series element (SE). 

Figure 1-3 displays the three-element Hill-type muscle model (Millard et al., 2013; Zajac, 1989). 

The pennation angle (α) is the angle at which the muscle fibers attach to the tendons (Figure 1-3). 

The muscle forces (FM) are non-linear in nature and depend on the muscle physiology (length, area 

of cross-section, etc.) and the velocity of contraction. The total muscle forces are the sum of forces 

produced by the contractile element (FCE), and the passive element (FPE) (Equation 1-1) and are 

equal to the forces generated by the serial element (FSE) (Equation 1-2). 

 𝐹𝑀 = 𝐹𝐶𝐸 + 𝐹𝑃𝐸                                                                    Equation 1-1 

𝐹𝑀𝑇 = 𝐹𝑀  𝐶𝑜𝑠 𝛼 =  𝐹𝑆𝐸                                                             Equation 1-2 
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In some previous studies, the serial element and the pennation angle were ignored (Buhrmann and 

Di Paolo, 2014; Östh et al., 2012b; Panzer et al., 2011) while considering joint stabilization and 

voluntary motion. In the muscles of the upper extremities and the neck region, where the tendon 

slack lengths are comparable, such an assumption was not found to affect the overall response 

(Gribble et al., 1998; Lemay and Crago, 1996). While simulating fast arm movements, Bayer et 

al. (2017) found that the series element only contributes around 7.6 % towards the arm velocity 

using a muscle model with a serial damping element. However, in lower extremities where the 

tendon slack lengths are much longer, the effect the  of series element was found to be significant 

(Bobbert, 2001; Scovil and Ronsky, 2006).  

The active muscle forces are managed by the central nervous system (CNS), which directly 

controls the level of actuation (at) of each muscle. In Hill’s model, the activation level varies 

between 0 (passive) and 1 (fully active). Physically, the activation level for the muscle represents 

the amount of relative effort of a muscle and will depend on the desired joint movement (voluntary 

movements, stability, etc.) and external environment (gravity, added inertia like helmets, etc.). The 

total forces generated by active element is represented by Equation 1-3 (Bahler et al., 1967; 

Winters, 1995; Zajac, 1989). 

                                                𝐹𝐶𝐸 = 𝑎𝑡  x 𝐹𝑚𝑎𝑥 x 𝐹𝑙(𝑙) x 𝐹𝑣(𝑉)           Equation 1-3 

The fl and fv terms in Equation 1-3 represent the normalized force-length and force-velocity 

relationship respectively (Figure 1-4). Fmax is the maximum isometric force a muscle can generate 

and is dependent on the muscle cross-section area which is the indication of the amount of muscle 

fibers along the muscle length. 
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(a) (b) 

Figure 1-4: Hill-type muscle parameters (a) Force-length relationship of contractile (Fl) and passive (Fv) 

elements (b) Force-velocity (FV) relationship of the contractile element. 

The maximum force Fmax in the active element develops when the muscle length is equal to a 

characteristic length or optimum length lopt, and the muscle is neither shortening nor lengthening 

(isometric). The Fv curve describes the force-velocity relationship, which shows that when muscle 

elongates, the force asymptotes close to Fmax (Figure 1-4b).  

The active muscle forces only act to shorten or contract the muscles, i.e., the active muscle forces 

pull the origin and insertion points towards each other. For this reason, muscles are always 

arranged as agonist and antagonist groups for a specific DoF of a joint, and the kinetics of that 

joint depends on the balance of forces between the antagonistic pairs. When the agonist group is 

activated by the CNS, the antagonist muscles are stretched and provide passive stability. 

Sometimes under external loads, both the agonist and antagonist groups may co-contract, thus 

increasing the static stiffness (and internal load) of the joint, without undergoing any joint 

displacement. 

1.3 Human Motor Control 

Motor control in humans can be classified into two broad categories. The first category is called 

postural control, in which the nervous system tries to maintain a specific joint position. In some 

cases, like in maintaining the neutral head position under gravity, the passive stiffness of the 
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cervical spine and muscles is not enough to counteract the external force field of gravity and 

requires stabilizing muscle activations (Forbes et al., 2013; Goldberg and Cullen, 2011; Keshner 

et al., 1999). In most cases, postural maintenance does not require conscious effort and can be 

achieved through the peripheral nervous system (PNS), visual and vestibular input, and 

proprioception (Morningstar et al., 2005; Winters, 1995). Under some conditions where reflexive 

control is not sufficient, muscles can also co-contract to provide additional stability (Choi, 2003; 

de Vlugt et al., 2006; van Drunen et al., 2013). 

The motor control mechanism is also responsible for the second category, which is synthesizing 

voluntary, target-directed movements around the joints. While performing a motion, the specific 

joint target position is determined by the CNS, and accordingly, the muscle activations are adjusted 

such that the net forces and moments about the joint, including those caused by external force 

fields (such as gravity), are zero at the target position. In theory, there can be multiple muscle 

activation patterns that can cause the identical desired joint orientation due to the inherent 

redundancy of the musculoskeletal system (Bernshteĭn, 1967; Wolpert, 1997). To determine a 

single activation pattern, several cost functions have been suggested in previous control studies to 

minimize redundancy. Cost functions have included kinematics-based parameters such as linear 

(Hoff and Arbib, 1993; Nelson, 1983) and angular acceleration (Ben-Itzhak and Karniel, 2008), or 

kinetic parameters like joint torques (Nakano et al., 1999; Uno et al., 1989), joint energy (Berret 

et al., 2008a) or muscle forces and energy (Koelewijn et al., 2019; Umberger et al., 2003). 

The ability of humans to perform motor tasks also adapts to changes in external loads. Happee 

(1993) found that on repeatedly performing goal-directed movements with added inertia, the 

trajectory of the motion would adapt to the variation in the inertia. A similar trend was also 

observed by Oh et al, (2021) when stiffness and damping of the motion were also varied along 
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with the inertia. Smeets et al., (1990) argued that such complex adaptation to changes in the 

external environment cannot be easily explained by linear closed-loop control mechanisms.  

The human musculoskeletal system is also redundant in nature, i.e., there are more muscles than 

possible degrees of freedom for a joint. The complexity of isolating a group of muscles based on 

the preferred direction of motion is exacerbated by the fact that a muscle can control the motion in 

two different DoFs for the same joint and across multiple joints in some body regions like the head 

and neck. The complicated orientation of the muscles along with various non-linearities in joint 

stiffness and delays associated with the neuromuscular system makes modeling of the motor 

control process in the HBMs challenging. The ambiguity and non-linearity associated with motor 

control and planning in humans require the evaluation of alternative control strategies to accurately 

represent such mechanisms in computer models. 

1.4 Active Muscle Control in HBMs 

Hill-type muscle model with suitable insertion points is most commonly used for muscle control 

studies in HBMs. The contractile element of Hill’s model generates the active forces (Equation 

1-3) and requires the activation level (at) as input to accurately scale the force magnitude for a 

given muscle length and velocity.  

In an open-loop system, a predefined activation-time pulse is applied to each Hill muscle in the 

model. During the course of the simulation, the activation is not informed from the state of the 

model at any time step. This simplified approach was employed by de Jager et al. (1996) in a 

multibody (MB)  model of head and neck to study the effects of muscle forces on impacts. The 

model was simulated in frontal and lateral impact conditions and compared with the passive model, 

and it was found that the active model compared better with the volunteer test data. The model 
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was then improved by van der Horst et al. (1997) by modeling accurate neck muscle trajectories. 

The accuracy in muscle representation improved the rotational response of the head and neck under 

high-severity impact conditions (15g frontal). However, the model did not consider the 

gravitational field which affected its response to low-severity impacts. Brolin et al. (2005) 

developed a finite element (FE) model of the head and neck region to evaluate the effects of muscle 

activations on spinal responses to frontal and side impacts. In the study, it was found that in frontal 

impact simulations, muscle activation reduced the loads on upper spinal ligaments whereas in the 

lateral impacts, reduced the injury risk throughout the spine. Dibb et al. (2013) performed FE 

simulations to study the effect of muscle activation on the response of models of different age 

groups (6-year-old, 10-year-old, and midsize adult) against low-speed frontal impact. The study 

found that when tensed, neck kinematics correlates well when compared with the volunteer 

corridors. Iwamoto et al. (2011) developed a FE model at the full body level to study the effect of 

pre-impact muscle activity on injury outcomes. The musculature in the model was represented as 

a combination of solid elements for passive stiffness and bar elements for the active forces. The 

study concluded that bracing may constrain the thoracic region and cause more bony fractures at 

the upper and lower extremities compared to the passive condition where more rib injuries were 

observed. In a FE study of SUV-to-pedestrian impacts, Iwamoto and Nakahira, (2014) developed 

a FE model of a mid-size male with 282 muscles of the trunk, upper extremities, and lower 

extremities. The simulations demonstrated that active musculature affects the location of the head 

impact and head injury risks. While the open-loop modeling approach has been able to explain the 

differences in response between the passive models and real-world data, the methodology cannot 

be extended for general use where the exact kinematics of the HBM are unknown during the 

simulation.  
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Closed-loop controllers have become the state of the art in motor control modeling studies and 

utilize a proportional-integral-derivative (PID) controller to output the muscle activation levels 

based on the difference between the current value and the target value of a physical signal 

associated with the model. Kistemaker et al. (2006) developed a multi-body model of the upper 

arm for generating rotational motion about the elbow. The developed arm model had three 

segments and two revolute joints representing the shoulder and the elbow, however, in the 

computational study the shoulder joint was fixed. The arm musculoskeletal model was simplified 

by simplifying the muscles into two extensors and two flexors. The muscles were activated by PID 

controllers with muscle length feedback that dragged the lower arm to the desired joint angle. Östh 

et al. (2012) implemented a closed-loop control in the FE model of a human arm with a revolute 

elbow joint. The FE model incorporated seven individual Hill muscles which were then grouped 

into extensors and flexors. The PID controller was tuned with elbow angle error to rotate the lower 

arm to a target angle and stabilize it in the presence of gravity. An active MADYMO model with 

spinal torque actuators was developed by Cappon et al. (2007) with PID controllers to stabilize the 

spine under perturbations. Optimization runs were carried out to tune the control parameters. The 

model was found to correlate with the pre-rollover phase. Happee et al. (2017) developed a cervical 

spine model with reflex control representing vestibular (VCR) and muscle (CCR) afferent 

feedback along with co-contraction. The controller was fed the sagittal angle and angular velocity, 

head linear acceleration, muscle length, and muscle velocity. A control parameter was defined or 

co-contraction along with a baseline activation for postural stability. The active cervical model 

was validated with experimental head translation data.  

Prior studies have also implemented the closed-loop approach at the full body level to accurately 

predict response under impact scenarios or for physiological simulations. Meijer et al. (2008) 
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modeled an active occupant model with PID controllers at the elbow and spine for far-side impacts. 

The head kinematics with the active spine model was found to differ from the passive data. Östh 

et al. (2012) integrated three PID controllers in a Total Human Model for Safety AM50 v 3.0 

(Toyota Motor Corporation 2008) FE model to evaluate the response of a vehicle occupant to 

autonomous braking. The PID controllers were used to actuate the muscles of the head, neck, and 

lumbar regions, and it was found that the cervical muscle activities are important to capture the 

response of occupants. Walter et al. (2021) developed a control architecture to simulate an upright 

stance and squatting under gravity, using hierarchical controllers based on joint angles and muscle 

lengths. The hierarchical control model was implemented in a simplified MB model of the skeletal 

system with 20 angular DoFs with only one antagonist unit per DoF. Devane et al. (2022) modified 

the Global Human Body Model Consortiums (GHBMC) simplified model for midsize males and 

small females by incorporating skeletal muscles as beam elements. The active model consisted of 

32 PID controllers with joint angle error and 210 controllers with muscle length feedback. The 

active models were validated under pre-crash braking and low-speed impacts and were found to 

correlate with the volunteer data better. 

Another approach often employed in active control studies is the use of an optimization routine to 

determine the muscle recruitment scheme for desired postural control. Chancey et al. (2003) 

developed an MB model of the 50th-percentile male cervical spine to stabilize it under gravity. The 

model was simulated under two different optimization objectives while maintaining the head 

stability within 5o - minimizing muscle fatigue (relaxed) or maximizing muscle forces (tensed). A 

similar optimization scheme was implemented by Dibb et al. (2013) to stabilize the cervical spine 

in the FE model of 6-year-old, 10-year-old, and midsize adults constrained at T1. Two separate 

activation routines were performed corresponding to relaxed and tensed states to counter the effect 
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of gravity. At the full body level, Bose et al. (2010, 2008) performed sensitivity studies using MB 

models representing 50th percentile drivers with 1-D Hill’s muscles in the lower extremity. 

Optimizations were performed to determine the muscle actuation levels to maintain the stability 

of the joints by varying the driver anthropometries and driving positions. The study found that 

occupant statures such as posture and pre-impact bracing are important factors influencing 

collision-induced injuries.  

While closed-loop control and dynamic optimization are improvements over simple open-loop 

control architecture and have influenced the development of injury mitigation systems, both these 

methodologies have major limitations. Optimum muscle activation levels (or PID parameters) 

have to be determined using a specific load case that the system is trying to match. For instance, 

separate controllers are used in a single HBM depending on whether the user is trying to simulate 

response in frontal, lateral, or rear impact cases. The closed-loop PID models also have been tuned 

under a particular loading environment and any major change in the external force field will require 

the retuning of the model. Tuning is not a straightforward process, so the PIDs for muscles around 

a joint are often grouped into extensors and flexors to reduce the complexity associated with tuning 

multiple parameters at once. So, not only are the PID parameters tuned to specific cases, but the 

muscle recruitment scheme is also pre-defined to facilitate this process. This simplification renders 

the closed-loop control effective under a narrow band of loads and may not extend to novel loading 

scenarios. Optimizing the grouped controller parameters for adaptation to a novel load set will be 

challenging as the activations of individual muscles may need to be adjusted. 

Reinforcement learning algorithms can overcome some of the challenges commonly associated 

with closed-loop controls. The learning algorithms have been used in control problems with similar 



 

28 
 

dimensionality, and the coupling of RL algorithms with neural net frameworks make it suitable 

for approximating non-linear behavior observed in human motor control mechanisms. 

1.5 Reinforcement learning for control 

Reinforcement learning (RL) is a branch of machine learning in which the controller learns the 

control sequence for a system by interacting with the control system and exploring the action space 

over multiple interactions while receiving constant feedback. With multiple iterations, the 

controller develops an optimal control policy to achieve the desired objective, without being 

explicitly programmed to do so. RL algorithms are biologically inspired and are analogous to the 

process of how humans perfect a motor task through repeated practice and constant evaluation of 

the task which results in incremental improvement and learning over time.     

While RL algorithms are not limited to control problems, the ability to evaluate and correlate 

controller output to the system response makes them suited for control applications. A 

reinforcement learning control problem can be expressed in terms of agent, environment, state, 

action, reward, and q-value (Sutton and Barto, 2015): 

Agent – Agent refers to the RL algorithm used for a specific problem. The agent reads the 

environment parameters, outputs the control signal also called action, and while training 

receives feedback on the appropriateness of the action. 

Actions (a) – Action is the control signal that the agent outputs for a given state of the 

control system. Depending on the nature of the system, the action space can be discrete or 

continuous. 
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Environment – The control system with which the agent interacts. The agent reads the state 

from the environment and based on the state performs actions. 

State (s) – The state refers to the set of parameters that are read by the agent while 

interacting with the environment. Depending on a given state, the agent outputs the actions 

to the environment, and the environment returns the new state (s’) as input to the agent.  

Reward (r)– Reward is the feedback received by the agent after each action which 

quantifies the relative goodness of the action for a given state. The reward is generally 

calculated from a reward function that relates the different states (s’) and actions with the 

desired objective. 

Policy (π) – The control strategy that an agent formulates after multiple iterations which 

maps the actions to the state.  

Q-value (Q) – Q-value quantifies the state-action pair based on the reward function. Q 

value for a state-action pair, Q(s, a) is the expected cumulative reward that an agent 

receives during the episode when it takes an action ‘a’ starting from current state ‘s’. 

RL agents are functions that read the state (st) and output a specific action based on the policy, 

whereas the environment on receiving the action changes the current state st to the next state st+1 

and outputs the reward rt+1. The training phase of RL algorithms are iterative in nature during which 

the agent is swept through multiple state-action pairs over numerous iterations or episodes 

calculating the reward and updating the policy. Over multiple iterations, the agent learns to output 

actions at each timestep that maximizes the cumulative reward for the iteration. This process of 

simulating the agent under different states and actions until it can determine the best actions for a 
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given state is called training. A trained agent can output the sequence of actions based on the 

training, and do not require the reward function once it has been trained. 

 

Figure 1-5: Reinforcement learning training cycle. 

A standard RL algorithm is shown in Figure 1-5. The subscripts t and t+1 refer to the current 

timestep and the immediate next timestep. RL evaluates the actions for a given state (St), and the 

goal of the algorithms is to learn the best sequence of actions (at, at+1, …) to achieve the desired 

control objective which is defined by the reward function (Kakade and Langford, 2002; Sutton and 

Barto, 2015). 

Unlike supervised learning algorithms which aim to learn the behavior of a system, the focus of 

reinforcement learning is to make sequential decisions for a target-oriented system. In supervised 

learning, the model learns from a labeled dataset by minimizing the error between the model output 

and the actual outcome, whereas in RL, the agent interacts with the environment over and over 

and learns from experience using an exploration and exploitation approach. 
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1.5.1 Deep reinforcement learning 

Reinforcement learning when paired to neural networks with one or more hidden layers to improve 

the efficiency of the learning process is referred to as deep reinforcement learning. Neural 

networks (NN) are function approximations that are designed to map inputs to labeled outputs. 

Both the network inputs and the predicted outputs are in the form of numerical tensors.  

Neural networks are broadly used for regression and classification tasks (LeCun et al., 1989; 

Werbos and John, 1974). Compared to the linear learning algorithms where the inputs are 

processed once, neural networks may consist of multiple layers to process the data before 

generating the outputs. The layers between the input layer and output layer are called hidden layers, 

and the input of one layer is the output of the previous layer. The architecture of the networks 

primarily depends on the objective. The simplest network called a feedforward network has 

sequential input, hidden, and output layers and processes information in one direction (Figure 1-6). 

Output from each layer may further be processed before feeding it to the following layer to improve 

the computational efficiency during the training (Glorot et al., 2011). Depending on the size of the 

input and output tensors, multiple hidden layers can be added. 

 

Figure 1-6: Feedforward network with one hidden layer. 
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Convolutional Neural Networks (CNNs) are mostly used in image classification and pattern 

recognition tasks (LeCun et al., 1989) due to improved performance with visual imagery data. 

CNN can be fed image or audio data in form of numerical tensors, and the network architecture is 

designed to extract features from the input to learn valuable information. Recurrent neural 

networks (RNN) have a cyclic structure that is developed for time series data (Hochreiter and 

Schmidhuber, 1997; Werbos and John, 1974). The architecture of the layer is designed in a way 

that the output of a layer is saved and fed back as input which makes it suitable for predicting 

temporal patterns. Deep learning with various NN architectures has enhanced state-of-the-art 

technologies in fields such as object recognition, natural language processing, genomics, and drug 

discovery (LeCun et al., 2015). 

Neural Networks are coupled with RL algorithms when the control environment is complex in 

nature. Neural nets are particularly useful in RL problems with a large number of states and actions 

(Bengio et al., 2013). Rather than cycling through all the state and action pairs like in conventional 

RL algorithms, the NNs can sample a subset of state and action pairs to create functional 

approximations of either the Q-value or the policy. Mnih et al. (2015) introduced a deep Q-network 

(DQN) model which achieved performances comparable to professional players while playing 49 

games in a classic Atari 2600 environment. The DQN used deep convolution layers to extract raw 

pixel information which conveyed the game situation based on which the action (game control) 

was determined by the agent. 

Actor-critic methods are advancements in deep RL algorithms that can approximate Q-values and 

policy independently of each other (Peters et al., 2005; Sutton and Barto, 2015). The actor-critic 

algorithm utilizes two neural networks – the actor-network and the critic network. The actor 

network approximates the policy mapping states to the action whereas the critic network evaluates 
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the state-action pair by computing the Q-value. The critic uses the current estimated Q-value to 

guide the actor into giving better actions while learning how the Q-value varies with the state-

action combinations. 

Deep RL with further advancements in machine learning and computation has been able to solve 

a wide range of complex and decision-making problems. Silver et al., 2015 developed a novel 

algorithm based on actor-critic methods by partially differentiating the Q-values concerning 

actions called deterministic policy gradient (DPG). DRL was found to perform well for high 

dimensional control problems with continuous action space. Actor-critic networks combined with 

advanced tree search algorithms were used to develop the AlphaGo program which defeated 

professional players in the game of Go (Silver et al., 2016). AlphaGo was further modified to 

enable the RL algorithm to learn to play Go from scratch without any human interventions (Silver 

et al., 2017). Recently, a deep RL algorithm has been used to develop AlphaTensor, which 

discovered a matrix multiplication algorithm that improves upon the current state-of-the-art 

algorithms (Fawzi et al., 2022). 

The ability of deep RL algorithms to simulate physics-based control tasks (Lillicrap et al., 2019; 

Mnih et al., 2015; Silver et al., 2015) makes them attractive for human motor control studies. Deep 

RL can also scale to high-dimensional state and action spaces requiring continuous control which 

is suited to deal with the inherent redundancy present in the musculoskeletal system.  

1.6 Reinforcement learning architecture 

An advantage of RL over closed-loop control is that the algorithms are not limited to the few error 

signals as inputs. This property becomes more important for musculoskeletal systems as several 

kinematics (translation, rotation, velocity etc.) as well as dynamic (joint force, torque, muscle 

forces, fatigue etc.) need to be considered for activating the muscles. Gradient based RL can be 



 

34 
 

appropriate for such kind of control inputs as the agents can handle multiple state parameters 

simultaneously, which can be a combination of body kinematics, joint responses, and muscle 

behaviors. While motor control studies involving closed-loop controllers assume muscle grouping 

as extensors and flexors to reduce the requirement of tuning the gains for multiple controllers, deep 

RL can generate multiple control outputs by reading the states and thus, do not require any 

grouping or assumptions for generating the muscle actuations as outputs. The output generated by 

the deep RL agent depends on the states and the reward function used for training.  

During each training iteration, the RL agent reads the states and generates outputs based on the 

current policy. The objective of the training is for the agent to learn a policy that maximizes the 

cumulative reward of the system. The reward function can be defined as a function of parameters 

that can be measured from the HBM and the different components of the reward functions can be 

arranged such that control objective can be defined in terms of maximizing the reward function. 

Heess et al. (2017)  showed that RL agents can learn complex behavior with a simple reward 

function, by constantly interacting with a rich control environment. Apart from the reward 

function, the RL agents require no other user defined input on how the system should behave and 

can generate the control outputs without any assumptions. The weights and biases of the actor 

network are adjusted during the training to map the HBM measurements (both kinematics and 

dynamics) to the control actions. Additionally, the gradient based RL algorithms can output 

continuous actions and have been found to be stable for large continuous input space (Silver et al., 

2015, Lilicrap et al., 2016). As such, utilization of the developments in gradient based deep RL 

framework is ideal for muscle control studies as the framework can simultaneously handle multiple 

HBM parameters as inputs and does not require information of muscle coordination apriori.  
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1.7 Reinforcement learning for motor control in humans 

Davoodi and Andrews (1998) implemented an RL control with a sagittal plane segmental model 

of the human body with the goal of arm-assisted standing. The agent seeks to control shoulder 

forces for standing while trying to limit the upper limb forces and knee joint velocity. Micera et 

al. (1999) developed a simplified elbow model with antagonistic muscle pair to simulate the 

extension-flexion motion. Izawa et al. (2008) developed a two-joint arm model with six muscles 

to generate arm-reaching motion using RL. Thomas et al. (2008) used actor-critic networks for 

control of functional electrical stimulation (FES) of the human arm under varying system 

dynamics. Iwamoto et al. (2012) used RL with an FE model of 50th-percentile male to control 

head-neck motion in rear and frontal impacts. The agent was trained to control the head motion in 

the sagittal plane, and the activations produced by the trained agent were transferred to the FE 

model while simulating impact conditions. The active model had a better correlation to the 

volunteer data than the passive simulations, however, the agent overestimated the muscle forces 

making the head-neck region stiffer after the initial phase of the simulations. Heess et al. (2017) 

synthesized complex locomotion behavior in simplified torque-actuated bodies stimulating 6 – 21 

joints. In the study, it was shown that along with a suitable reward function, a rich environment 

can improve the learning behavior of an agent.  

In the  Neural Information Processing Systems (NIPS) 2017 conference, a ‘Learning to Run 

Challenge’ was conducted in which participants were provided a musculoskeletal multibody model 

of the human body (Delp et al., 2007) with 18 lower extremity muscles (Kidziński et al., 2018). 

The participants were asked to develop an RL-based controller to actuate the leg muscles and make 

the human model move forward. A total of nine teams were able to implement a controller that 

enabled the model to move 15 m in 10s. The winner of the competition, Jaśkowski et al. (2018) 
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used proximal policy optimization (PPO) (Schulman et al., 2017) to design the controller. In the 

following NIPS conferences (2018, 2019), contests were held to develop controllers for amputated 

leg musculoskeletal models and models to meet target velocity vectors respectively (Song et al., 

2021). Various innovative solutions were developed for RL agent architectures and reward 

functions to meet the challenges respectively (Kolesnikov and Khrulkov, 2020; Zhou et al., 2019). 

RL has also been used to develop enhanced assistive devices and exoskeletons to aid in 

rehabilitation and lead to improvement in locomotion (Luo et al., 2021; Tu et al., 2021). 

With the development of RL algorithms with higher efficiency and scalability, there is an 

increasing amount of work that has been done to combine RL and musculoskeletal modeling, 

however, some gaps remain in the field which needs to be addressed. In some locomotion studies, 

RL agents have been shown to reach the desired final position, but the physiology of the way the 

models moved was not accurate or biofidelic (Akimov, 2020; Kolesnikov and Khrulkov, 2020). 

The agent that Jaśkowski et al. (2018) trained for the 2017 Learning to Run Challenge used discrete 

action values of 0 or 1, also called the bang-bang strategy. Although the agent produced the 

intended kinematics and joint mechanics, the action space may not be feasible and lead to high 

energy expenditure and fatigue (Koelewijn et al., 2019; Umberger et al., 2003). 

Also, most of the previous work using RL for muscle control has been limited to arm reaching or 

locomotion tasks, and the ability of the RL controller to synthesize response in a more chaotic 

environment like those experienced in sports collisions or motor vehicle crashes has not been 

evaluated in detail. The challenge in simulating active motor behavior lies in developing a control 

mechanism that can generate acceptable responses under a range of external loads. It also remains 

to be studied whether an agent trained for kinematics and goal-directed movement tasks can adapt 
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to dynamic forces. This is especially necessary as generating volunteer data for validation under 

such dynamic forces is not possible due to the injurious nature of the loads.  

To summarize, the advancements in RL have not been utilized to their potential in the 

musculoskeletal modeling of active muscle behavior. The dissertation seeks to develop a 

comprehensive control framework for use of RL in active muscle control. The dissertation will 

utilize a detailed study on the design of RL based controller with a series of computations using 

detailed musculoskeletal models, volunteer testing, and validation.  

1.8 Scope of research 

The dissertation focuses on evaluating the use of RL algorithms for muscle control in HBMs. The 

simulations presented in the dissertation aim to replicate the most common scenarios generally 

experienced by humans. The research performed takes a step-by-step approach to determine the 

feasibility of RL based framework for general-use muscle controllers. 

1.8.1 Research objectives and specific aims 

The central objective of the dissertation is to employ gradient-based RL algorithms with deep RL 

to develop a muscle control framework that can synthesize physiologically accurate voluntary 

kinematics and respond to external perturbations. The dissertation is organized into four major 

tasks for incremental development of the competency, know-how, and data required to accomplish 

the underlying objectives.  

The first specific aim of the dissertation is aimed at a feasibility study to gauge the applicability of 

RL algorithms for the control of joint kinematics. In specific aim 1, the framework for 

reinforcement learned muscle actuation controller (RLMAC) is formulated for the control of 
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motion around the elbow.  The RLMAC is tested for its capability to adapt to changes in external 

forces and maintain stability under dynamic loading scenarios. 

In the second specific aim, the RLMAC is coupled with a multibody model of a head-neck complex 

to control the head motion. The RLMAC is trained to maintain the head stability under a 

gravitational field and control the head position in the sagittal plane. The various parameters for 

the development of the reward function will also be evaluated. 

The third specific aim involves performing volunteer studies to generate voluntary kinematics data 

on head extension, flexion, and axial rotation. The volunteer data will be used to calibrate the 

components of the reward function in the sagittal model. The head-neck control model will also 

be extended to all degrees of freedom to control the head kinematics in coronal and transverse 

planes as well.  

In the fourth specific aim, the RLMAC will be evaluated for its range of applicability. The RLMAC 

trained for generating goal-directed kinematics will be assessed in its ability to synthesize complex 

head movements along different axes. The head-neck model will also be simulated under added 

inertia, low-severity automotive cases, and impact loads. The RLMAC will be tested for different 

anatomies by scaling the originally developed head-neck model. Specific aim 4 will illustrate the 

feasibility of the control framework in generating a generalized response to a wide range of 

intrinsic and external conditions. The future scope of the current methodology will also be 

discussed in the final chapter. 
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 Specific Aim 1: Demonstrate that RL can be used as the basis for a muscle control scheme that 

could simulate active anatomical kinematics. 

 Specific Aim 2: Demonstrate the ability of an RL framework for maintaining the desired head 

and neck posture under gravity. 

Specific Aim 3: Validate the RL muscle control scheme using human voluntary kinematics data.  

Specific Aim 4: Quantify the range of applicability of the RL muscle control model for use in 

head and neck kinematics. 

1.8.2 Dissertation overview 

The specific aims mentioned in section 1.7.1 are organized into eight chapters in the dissertation. 

Chapter 1 of the dissertation provides a background and basic literature review of research in the 

field of musculoskeletal modeling and reinforcement learning. A more detailed literature review 

will be done in the following chapters which are relevant to the specific aims. Chapter 2 provides 

information on the development of the RLMAC and its integration with the multibody model of 

the arm. Details on the training of the RLMAC to simulate desired arm kinematics are also 

provided in chapter 2. Chapter 3 gives details on the development and validation of the head-neck 

multibody (MB) model which would be used for muscle control in later chapters. Chapter 4 will 

focus on the integration of RL-MAC with the head-neck multibody model to control kinematics 

in the sagittal plane. Components of the reward function will be evaluated relative to the goals of 

muscle control. Chapter 5 will provide information on the volunteer study and the protocols 

involved. Steps undertaken to measure the goal-directed head kinematics has been described in 

detail. Validation of the responses of the RLMAC trained in chapter 4 will also be performed and 

documented in this chapter. Chapter 6 focuses on extending the RLMAC controller for control in 
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all DoF for the head-neck model. Details on the training and validation of the RL agent for 

omnidirectional head kinematics control are provided in chapter 6. Chapter 7 focuses on evaluating 

the applicability of the agents trained for multi-DoF control for different anthropometries. Chapter 

8 analyses the ability of the trained controller to adapt to changes in inertias and impact loads. The 

different criteria on which the agents will be simulated together with the details of the simulation 

results will also be documented. 

All the multibody models that are mentioned in the dissertation are developed in MATLAB v20b 

Simscape Multibody toolbox. The MB models are integrated with MATLAB reinforcement 

learning toolbox v20b to develop and train the RLMAC. The RLMAC is trained in the parallel 

cores of UVa HPC cluster “Rivanna”. 

1.8.3 Contributions 

The dissertation proposes a novel framework to develop and tune a muscle controller for HBMs 

using the latest developments in reinforcement learning. The control framework developed in the 

dissertation addresses some of the issues that are experienced in traditional closed-loop muscle 

controllers. The major contributions of the dissertation are summarized below. 

• The work done in the dissertation shows that RLMAC can be trained for generating 

biofidelic joint motions without any prior assumptions on grouping or organization of 

muscles. 

• Development of a computationally efficient multibody model of the head and neck region 

that can be used in control and optimization studies that are iterative in nature. 

• The present study develops a deep RL control framework to generate goal-directed 

rotations of a human head-neck multibody model along the three anatomical planes. To the 
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best of my knowledge, no previous study has simulated targeted head kinematics in all 

three directions. 

• The dissertation also generates volunteer kinematics data of goal-directed head rotations 

for validation of computational models. 

The RLMAC developed in the dissertation shows the capability of RL for application in human 

motor control. With constant improvements in the field of machine learning and reinforcement 

learning, the efficiency and accuracy of the muscle controller based on RL will further improve. 

The work done in the dissertation is also an advancement towards the development of full-body 

active motor control which can generate accurate responses under loads associated with HBMs. 
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Chapter 2 – Reinforcement learning as a means of muscle control 

In this chapter, a primary evaluation of the use of reinforcement learning (RL) algorithms for 

muscle control is performed. The ability of RL algorithms to synthesize biofidelic joint movements 

has been demonstrated using a multibody (MB) human arm model. The MB model of the human 

arm provides a simplified environment for the development and integration of the RL control 

framework. The RL muscle activation control (RLMAC) developed in this chapter is used to 

control the movement of the lower arm in extension and flexion, with other directions being 

constrained for simplicity. For the extension-flexion motion of the arm, two different muscle 

activation schemes were studied – the muscles implemented in the arm MB model were recruited 

as antagonistic groups or individually. 

The RLMAC integrated with the arm MB model was trained to perform the extension-flexion 

motion of the arm. Simulations with the trained RLMAC show that the arm can perform the desired 

kinematics, even in presence of an external force field. The arm kinematics along with the muscle 

activations developed for the different ranges of extension flexion motions were measured and 

documented in this chapter. The response of the arm was compared with a previous experimental 

dataset to evaluate the biofidelity of the arm movements. 

The trained controller was also subjected to pulse loads representing automotive collisions to 

evaluate the range of applicability of the RLMAC. The RLMAC, even though trained under 

constant loads, was able to maintain arm stability under dynamic loads implying the robustness of 

the motor control approach. Results from the present chapter provide an insight into the use of 

reinforcement learning for motor control applications and the adaptation of the control framework 

to more complex body regions.  
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2.1 Introduction 

Performing a motor task involves coordinated force generation by the muscles which are activated 

by the central nervous system (CNS). The muscle forces maintain the stability of joints under 

external forces or synthesize the desired motions of the joints. Similar actuation of muscles in 

human body models (HBMs) is challenging due to the inherent complexity associated with muscle 

coordination or synergy as seen in humans. The present chapter is an attempt to apply 

reinforcement learning (RL) algorithms to the motor control problem. For this purpose, an MB 

model of the human arm was created with the anatomy of a 50th percentile male and integrated 

with the RL control framework with the intention of generating extension-flexion motion about 

the elbow joint. 

The upper extremities with the elbow joint have been the subject of many previous control studies 

due to the simple nature of the joint. Kistemaker et al. (2006) developed a control strategy based 

on PID control and implemented it into a musculoskeletal model of the human arm. The elbow 

joint was modeled as a revolute joint and was actuated by muscles represented as four lumped 

Hill-type muscles. The muscles were grouped as extensors and flexors and actuated by error 

signals based on the difference between the current and target length of the contractile element of 

muscles. Budziszewski et al. (2008) implemented a PID controller in the MB model of the arm to 

control the extension-flexion and pronation-supination motion. The PID controllers operated with 

joint angles as feedback signals. The muscles were divided into agonist and antagonist groups and 

the same activations were developed for muscles belonging to the same group. Östh et al. (2012) 

incorporated the feedback-based control loop into a finite element (FE) model of a human arm. 

The FE model included nine individual muscles, and the muscles were grouped as extensors and 

flexors. The PID controller was driven by the elbow angle error, which activated the extensors and 
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flexors for arm-reaching movements. Martynenko et al. (2019) used a similar approach while 

modeling the activations of the arm for goal-directed motion. In this study, the PID controllers 

actuated the muscles based on the error of muscle length. A pre-simulation with the passive arm 

was carried out to obtain the muscle lengths at the initial and target positions which were then used 

to actuate the muscles as groups. Bayer et al. (2017) developed an arm musculoskeletal model with 

four-element hill-type muscles (Haeufle et al., 2014). In this study, a PID controller was used to 

activate the muscles, and the effects of the parameters of the muscle model and the activation 

functions on the kinematic responses of the arm model were evaluated. 

Although the PID controllers used in previous studies were successful in synthesizing the required 

movements, some simplifications and assumptions were made while developing the control 

architectures. Muscles were grouped into agonist-antagonist pairs and identical activations were 

applied to each muscle group. Activating the muscles individually will require tuning multiple 

controllers at once which can be difficult. The controllers were also precisely tuned for a limited 

range of loads and the gains may need to be modified for a change in the loading environments 

(Happee et al., 2015, Zheng et al., 2021). Reinforcement learning can provide an alternative as it 

has been found to output multiple control actions simultaneously which can be both continuous 

(Heess et al., 2017; Silver et al., 2015) and discrete (Mnih et al., 2013) in nature. 

Iwamoto and Kato (2021) used actor-critic RL agents to stabilize a multibody model of the human 

arm under gravity. Each muscle was stimulated individually using two reward functions – one 

based on joint angle and the other based on muscle length. Min et al. (2018) integrated an RL agent 

into a simplified finite element (FE) model of the human arm. The agent was trained to maintain 

joint equilibrium while carrying a weight of mass 1 kg. The reward function was developed using 

the position difference of the end effector and the agent was also penalized for high muscle 
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activities. Jagodnik et al. (2016) used actor-critic RL algorithms to train planar arm reaching 

movements for development of functional electrical stimulation (FES) system. The study 

demonstrated that sparse rewards at the final timestep can be useful for training the control system.  

Although the RL-based control mechanisms have been used in the past, there have been some gaps 

in the research that this chapter and the dissertation in general seek to address. In the previous arm 

reaching tasks that have been modeled using RL, the human models were simulated under a similar 

environment for which the system was trained (Crowder et al., 2021; Driess et al., 2018; Fischer 

et al., 2021; Jagodnik et al., 2016). How the overall biomechanical response is affected by adding 

variability to the system, such as additional inertia or changing the external environment 

parameters, have not been studied. This is an important aspect for the application of RL in human 

body models designed for scenarios that people are not commonly exposed to, such as the event 

leading to an automotive crash. In computational control studies, such scenarios need to be defined 

in terms of the loading environment and control objectives to evaluate the utility of the controller. 

Human beings can adapt to changes in external loads (Happee, 1993; Smeets et al., 1990), and the 

ability of RL agents to replicate such adaptive response, during reaching tasks in this case, has also 

not been evaluated. Furthermore, the previous RL musculoskeletal control studies have been 

limited to kinematic tasks, and the ability of RL control mechanisms to extend to dynamic events 

such as automotive or sports environments, where the response time is relatively fast has also not 

been studied. Finally, the biofidelity of muscle activation patterns corresponding to a given joint 

movement, and the effect of change in the external environment on the muscle synergy also need 

to be investigated. 

The present chapter aims to develop a RL-based control framework and integrate it into a 

musculoskeletal model of a human arm to evaluate the range of applicability of RL algorithms in 
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muscle control problems and also study the possible applications of the RL control methodology 

in more complex body regions. 

2.2 Methodology 

A simplified MB model of the arm was created with the geometry of the scapula, humerus, radius, 

and ulna. Muscles responsible for the extension and flexion motion were also included in the 

model. The MB model was integrated with an RL agent to develop the RLMAC which was then 

trained to generate arm kinematics. 

2.2.1 Development of the arm multi-body model 

The upper extremity bones were represented as rigid bodies with radius and ulna combined as one 

body (Figure 2-1a). Mass and inertia of the lower arm were applied at the radius-ulna body. As no 

motion at the shoulder is being considered in the present chapter, the glenohumeral joint was 

constrained effectively constraining the humerus in the multibody model. The elbow joint between 

the humerus and radius was represented as a revolute joint with a stiffness of 0.6 Nm/rad 

(Martynenko et al., 2019; Östh et al., 2012b) and damping of 0.4 Nms/rad (Cannon and Zahalak, 

1982; Rack, 2011). The rotation space of the elbow revolute joint was limited between 0o (full 

extension) and 160o (full flexion). 

  

(a) (b) 

Figure 2-1: MB model of the human arm (a) Rigid bones with elbow joint (b) MB model with muscles. 
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Muscles were incorporated into the arm MB model were represented as tensile force elements 

acting between suitable origin and insertion points (Figure 2-1a) (Lieber et al., 1992; Moore and 

Dalley, 2009). The force magnitudes acting between the insertion points were calculated from 

simplified Hill-type muscle with an active contractile element and a passive element in parallel 

(Figure 2-2).  

 

Figure 2-2:  Hill-type muscle model with contractile element and passive element (Panzer, 2006). 

The active forces (FCE) are non-linear in nature and depend on the length and velocity of the 

muscles (Hill and Sec, 1938; Zajac, 1989). For this chapter, the normalized relationship between 

the force-length (Fl) and force-velocity (Fv) has been approximated as curve inputs and is 

considered the same for all the muscles (Panzer et al., 2011). The passive muscle force (FPE) was 

modeled as an exponential function of length (Equation 2-1), and only start acting when the 

muscles are stretched beyond the optimum length (Lopt) (Winters, 1995). Ksh in Equation 2-1 is a 

dimensionless parameter influencing the rise of the passive force with length. 

𝐹𝑃𝐸 = 
1

exp(𝐾𝑠ℎ) − 1
 {exp [

𝐾𝑠ℎ
𝐿𝑚𝑎𝑥

(𝐿 − 1)] − 1}  𝑓𝑜𝑟 𝐿 > 1 Equation 2-1 

The muscles in the MB arm model cause extension and flexion motion at the elbow joint. The 

muscles included in the MB model along with the muscle properties are listed in Table 2-1. 
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Table 2-1: Properties of muscles in the MB model 

Muscles Fmax (N)  

 

No. of strands in 

model 

Lopt (mm) 

Biceps brachii long head 360 1 336 

Biceps brachii short head 248 1 327 

Brachialis  568 2 166, 156 

Brachioradialis 152 1 283 

Pronator teres 320 1 157 

Extensor Carpi Rad Longus 176 1 312 

Triceps long head 456 1 324 

Triceps lateral head 360 1 296 

Triceps medial head 360 3 239, 211, 170 

The optimum length (Lopt) of the muscles is obtained at the neutral position (90o flexion angle) (Hayes 

and Hatze, 1977) 

The attachment points of the muscles to the bones have been approximated from different sources 

in the literature (Lieber et al., 1992; Moore et al., 2009). The muscles having large cross-section 

areas and long attachment points were split into multiple strands capturing the width of the muscles 

to properly distribute the muscle forces (Table 2-1). 

2.2.2 Muscle control framework 

For a movement around a joint, the central nervous system (CNS) actuates a set pattern of muscles 

(muscle synergy). In this chapter, the feasibility of using RLMAC for muscle control under a range 

of external environments is explored. Figure 2-3 shows the RL-based framework for muscle 

control. 

Deep deterministic policy gradient (DDPG) is used to develop the controller for the RLMAC 

framework in the present chapter (Lillicrap et al., 2019). DDPG belongs to the class of gradient-

based actor-critic agents (Silver et al., 2015). DDPG consists of an actor-network and a critic 

network and is suitable for muscle control because of its ability to output continuous actions 

(Lillicrap et al., 2019; Silver et al., 2015). 
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Figure 2-3: RLMAC framework for the arm MB model. 

The RL controller (Figure 2-3) reads the state from the MB model of the upper extremity and 

outputs neural stimulations (ut) that get converted into muscle activations (at) for input to the Hill’s 

muscles in the MB model. The muscle length and velocity at a particular instance of the simulation 

are obtained by measuring the Euclidian distance between the insertion points. The forces 

generated by the muscles rotate the radius-ulna towards the target position. Based on how close 

the lower arm is moved toward the target angle, the RLMAC receives a scalar reward signal. 

𝑑𝑎

𝑑𝑡
=

1

𝜏𝑎𝑐𝑡
[𝑢 − (1 −  𝛿)𝑎𝑢 − 𝛿𝑎] Equation 2-2 

 

The activation build-up in the muscles was calculated using the activation dynamics relationship 

proposed by Zajac et al. (1989) (Equation 2-2). The τact is the activation time constant which relates 

to the increase in muscle activities as a result of ut output by the RL agent. 𝛅 is the ratio τact/τdeact, 

where τdeact is the depletion time constant controlling the drop in activation level (at) after a 

decrease in ut output by the agent (Table 2-2). 

Table 2-2: Parameters of the activation function  

Parameters Values (Bayer et al., 2017; Zajac, 1989) 

τact 0.02 

τdeact 0.06 

Minimum activation (ao) 0.005 
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The architecture of the DDPG agent is shown in Figure 2-4. The DDPG agent incorporated in the 

current chapter is similar to that originally proposed by Lilicrap et al. (2016). The actor-network 

was composed of a feedforward network with one hidden layer. The inputs to the hidden layer and 

the final layer were activated with a rectified linear (ReLu) function (fx = max(0,x)) (Hara et al., 

2015). The output of the actor-network was activated using a sigmoid function to limit the action 

space between 0 and 1 (Han and Moraga, 1995). The input layer of the actor-network had nodes 

equaling the number of states whereas the final layer nodes equal the number of muscles required 

to be activated. The critic layer is comprised of a feedforward network with one hidden layer. The 

output of the hidden layer was activated by the ReLu function before passing it on to the final 

layer. The state parameters were inputs to the first layer and were processed with the ReLU 

function before connecting to the hidden layer. The actions from the actor-network were passed 

on directly to the hidden layer without being activated (Lilicrap et al., 2016). The critic layer 

outputs a scalar Q-value for the corresponding state action pair and thus has a single node at the 

final layer. The states can consist of any parameters that can be measured in the control 

environment and the values are passed on to the RL agent. The reward function is usually defined 

as a function of the environment parameters. Since the RL algorithms aim to maximize the 

rewards, the various parameters in the reward function can be calibrated to define the control 

objective. 

 

Figure 2-4: Architecture of DDPG agent used in the current chapter. 



 

51 
 

The DDPG agent is an actor-critic reinforcement learning agent that searches for an optimal state-

action value (policy) that can maximize the expected long-term reward for a training iteration. The 

DDPG agent updates the actor and critic network at each time-step during the training. At the start 

of the training, the actor and critic networks are initialized with random weights and biases. For a 

state (st) that the agent observes, the actor network takes an action (a) according to the policy 

(initially randomized). Sometimes, a noise is also added to the action to enable the agent to explore 

the possible action space better. After the action, the agent receives a reward (r) according to the 

reward function, and the current state changes to the next state (st+1). The DDPG agent keeps a 

track of the sequence (st, a, r, st+1) and this set is known as experiences. The Q-value is calculated 

as the current reward (r), and the expected future reward from the state st+1. The gradient of the Q-

value with respect to the action is used to update the actor network. The critic network is updated 

by minimizing the difference between the calculated Q-value and target Q-value (Lilicrap et al., 

2016). At the culmination of the training, the weights and biases of the actor network are finalized, 

which is then used to output the actions in use-case scenarios, without requirement of the critic 

network or the reward function. 

The control objective in this chapter was to move the lower arm (radius-ulna body) from an initial 

given position to a target position and stabilize the arm at that position. The states of the RLMAC 

were defined by the kinematics parameters – the current elbow angle, the angular error (difference 

between the target angle to the current angle), the elbow rotational velocity, and muscle activations 

from the previous timestep. The reward function was developed to minimize the angular error 

during the training (Equation 2-3). The agent was penalized proportional to the magnitude of the 

error and rewarded if it managed to maintain the angular error within 0.1 radians (<5.7o). Due to 

the redundancy of the musculoskeletal system, there are many combinations of muscle activations 
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that may lead to similar arm kinematics. To overcome the redundancy problem, minimizing muscle 

activation (Chancey et al., 2003; Pedotti et al., 1978) is considered in this chapter, however, other 

costs of motion criteria are also used in biomechanics research (Koelewijn et al., 2019). 

Reward = -α Error -β ∑a(t) + γ (|Error| < 0.1 rad) Equation 2-3 

 

The reward is calculated using Equation 2-3 at each timestep of the simulation. During the training, 

the agent tries to maximize the cumulative reward over the simulation time (Sutton and Barto, 

2015). α, β, and γ are constant scalar terms that scale the contributions of the components of the 

reward function corresponding to the overall control objective. 

2.2.3 Training and validation 

The passive response of the arm MB model was evaluated before training. The moment was 

applied at the elbow joint with a magnitude varying between 1 and -1 Nm. The humerus was 

constrained, and the resulting rotation of the radius-ulna body was measured to obtain the passive 

stiffness of the joint which was also validated with published data. 

The training of the arm MB model integrated with the RLMAC framework was carried out with 

the reward function mentioned in Equation 2-3. Noise was added with Ornstein-Uhlenbeck (OU) 

process with a standard deviation of 0.09 for adequate exploration of the action space (Lillicrap et 

al., 2019). The RLMAC was trained for desired arm kinematics in two different scenarios – bare 

arm motion control and arm motion control under an external force field (Table 2-3). 
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(a) (b) (c) 

Figure 2-5: (a) Arm parameters for training (b) Flexor muscle group (c) Extensor muscle group 

Training scenario 1 - Bare arm motion control 

The MB arm model integrated with the RL control framework (Figure 2-3) was trained to carry 

out fast-goal directed rotations of the radius-ulna about the elbow joint, in absence of any added 

mass or inertial loads to the lower arm. For each iteration of the training, the lower arm was 

positioned randomly between 0o (extension limit) and 160o (flexion limit) at the start of the 

simulation (T = 0 s) (Figure 2-5a). The target position was also randomly varied between 0o-160o 

to prevent overfitting to any particular motion. 

Two different muscle activation schemes were analyzed during the targeted rotations of the arm. 

In the first activation strategy, called Group Activated Muscle Recruitment (GAMR), the muscles 

in the MB arm model were split into extensors and flexors, and the muscles of the same group 

were activated identically. Biceps brachii long head and short head, the brachialis, the 

brachioradialis, the pronator teres, and the extensor carpi were grouped as flexors (Figure 2-5b) 

and the triceps long head, lateral head, and medial head were grouped as extensors (Figure 2-5c). 

For this muscle activation scheme, the RLMAC outputs two actions corresponding to the 

stimulation of each group. The second activation scheme was named Individual Activated Muscle 
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Recruitment (IAMR) where each muscle was actuated independent of the activations of other 

muscles. In IAMR, no assumptions were made as to how muscle will coordinate and respond to a 

target, and the RLMAC generated nine actions for stimulation of each muscle. 

The response of the trained RLMAC in both activation schemes was compared with human 

volunteer data gathered from 6 subjects (Kistemaker et al., 2006). The simplified nature of the test 

setup where the volunteers were asked to perform fast goal directed rotations of the arm in the 

horizontal plane which minimized the effect of gravity on the arm motions and made it suitable to 

replicate the arm motions in the MB model. The arm MB model was initially stabilized in the 

initial position for 100 – 125 ms before a target angle was prescribed as a step function. The angle 

time history was calculated in the goal-directed simulations and compared with the test data. 

Training scenario 2: Arm motion control under external load 

The arm model was trained to perform fast goal-directed motions under control signals similar to 

scenario 1, but in this scenario, a point mass was added to the forearm and the magnitude was 

randomly varied between 0-5 kg (Figure 2-6) in each iteration. Gravity was also implemented in 

the MB model vertically (along Z) and the magnitude was randomly flipped (Figure 2-6) to train 

the extension-flexion motion along and against gravity. The RLMAC was trained to perform the 

goal-directed motions with the same states and reward function in scenario 1, no extra information 

regarding the added mass or the gravity vector was provided to the RLMAC. The RLMAC was 

trained to formulate a response based on the kinematics data inputs from the states. 
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Figure 2-6: Arm MB model with attached point mass. The gravity was applied along Z axes and the 

magnitude was flipped in each iteration of the training. 

In this scenario, training was performed only with the IAMR muscle recruitment scheme. Results 

from this training scenario will give an insight into the use of RLMAC to represent the motor 

adaptation to external loads as seen in humans that cannot be replicated by the use of linear 

feedback gains (Happee, 1993, 1992). 

Testing scenarios: Response to novel environments 

The robustness of the RLMAC depends on its ability to generate desired responses for novel 

loading environments that have not been encountered during the training. Thus, the RLMAC 

trained in the presence of a constant force field in scenario 2 was evaluated under a crash pulse 

(Shaw et al., 2009) representative of the inertial load experienced in the upper body during a motor 

vehicle collision applied horizontally to the forearm (Figure 2-7). 

 

Figure 2-7: The trained arm model subjected to load case representing simplified automotive impact. 

The radius-ulna lower end was constrained with a revolute joint limiting any planar movement 

similar to the interaction between an occupant's hand and the steering wheel. The scapula was free 
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to move in the planar (X-Z) direction and a stiffness of 1000 N/m was applied vertically (along Z) 

at the scapula proximal end to simulate the lower body weight.  The crash pulse was applied to the 

scapula in the horizontal direction. At the start of the simulation, the arm was maintained at the 

neutral position (elbow angle 90o) and the impact force was applied at the humerus end in the 

horizontal (X) direction (Figure 2-7). Two conditions were evaluated in this chapter – in the first 

condition, the force pulse was applied in the forward direction representing a frontal collision, 

trying to flex the elbow. In the second case, the force pulse was applied in the backward direction 

representing a rear collision and trying to extend the elbow. The results from the simulation with 

trained RLMAC were compared with the passive arm model to visualize the effects of active 

muscle forces on joint stiffness under external loads. 

Table 2-3: Training and simulation scenarios 

Training/ Simulation case Load applied Model Response 

Evaluation of passive 

structural response 

Torque at the elbow revolute 

joint 

Moment-Angle response of 

the joint 

Training scenario 1 – Goal-

directed motion of the forearm 

with RL-MAC integrated MB 

model 

No external loads Angle-time response of the 

elbow joint 

Training scenario 2 – Goal-

directed motion of the forearm 

under external loads 

Point mass attached to the 

radius and gravity field 

 

Angle-time response of the 

elbow joint 

Testing scenario: Response to 

novel loads 

A crash pulse applied to the 

humerus proximal end 

Angle-time response of the 

elbow joint 
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2.3 Results 

The passive arm MB model was simulated by applying a moment varying between 1 and -1 to the 

revolute joint. The arm was initially placed at a neutral (90o elbow) position and the change in 

angle due to the application of the moment was evaluated. The passive stiffness of the muscle was 

found to be 0.955 Nm/ rad. The passive stiffness of the joint is the combination of the stiffness of 

0.6 Nm/ rad prescribed at the elbow joint and passive muscle tensile forces. The stiffness 

magnitude was found to agree with previously published stiffness values (Hayes and Hatze, 1977; 

Howell et al., 1993; Wiegner and Watts, 1986) determined in experiments as well as measured 

computationally (Östh et al., 2012b). 

The arm model integrated with the RLMAC was trained to perform the desired goal-directed 

movement. During each iteration of the training, the RLMAC was simulated for 600 ms and the 

target angle was provided to the elbow as a step function. The DDPG agent used in the RLMAC 

was updated every 5 ms during the training. In each training iteration, the initial angle and the 

target angle were varied randomly within the range of motion of the elbow. 

Training scenario 1 - Bare arm motion control 

The arm model was trained to perform goal-directed motion in the absence of any external loads. 

In this control scenario, the RLMAC was trained with both the GAMR and IAMR schemes. The 

training was assumed to converge when the average reward over 250 iterations converged, and the 

response of the trained agent at convergence was acceptable. The variation of average reward 

during the training for the GAMR and IAMR control schemes is shown in Figure 2-8. The RLMAC 

with the IAMR scheme took 3000 iterations to converge whereas the GAMR scheme took around 

6000 iterations. The average reward can vary each time the arm model with RLMAC is trained 
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due to the inherent randomness in RL algorithms, but the nature of training is likely to be the same 

for all cases as the agent tries to maximize the reward based on reward function. 

 

Figure 2-8: Plot showing the variation of average reward for individual activation (IAMR) and group 

activation (GAMR) with each episode during training. (The reward averaged over 250 episodes) 

The trained RLMAC in scenario 1 was repositioned to perform a series of goal-directed kinematics 

to evaluate the response with volunteer data. The validation case selected for scenario 1 was simple 

in nature and could easily be replicated in the MB arm model (Kistemaker et al., 2006). The elbow 

joint was rotated in the range of 45o to 145o in the goal-directed simulations and the comparison 

with the volunteer data is provided in Figure 2-9. Both the activation schemes, the IAMR and the 

GAMR, show excellent agreement with the volunteer data as the response is dependent on the 

training where objective was to minimize the elbow angular error and the stiffness of the elbow 

joint. The trained RLMAC was able to stabilize the arm at the initial position and then move the 

arm once the target signal was applied as a step function. The RLMAC was able to maintain the 

arm within 5o of the target angle in all the simulation cases for both GAMR and IAMR. The minor 

position difference at the target can be due to the reward function used, which allows for an error 

of ±0.1 rad. 
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(a) (b) 

Individual Activation Group Activation Volunteer data Target Angle 

Figure 2-9: Elbow rotation angles by trained RL controllers in response to prescribed target angles and 

comparison with volunteer data with the individual (IAMR) and group (GAMR) activation scheme (a) 

Arm in flexion (b) Arm in extension. 
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The muscle activation levels of the extensors and flexors were measured during the simulation and 

are plotted in Figure 2-10. As the RL algorithms are randomized in nature and the DDPG agent in 

this chapter uses O-U noise to explore the action space, it is likely that a different agent may lead 

to a different set of muscle activations to achieve similar arm kinematics. However, the agents will 

have similar arm rotations as the RLMAC was trained with a reward function to minimize the 

elbow angular error.  

  

  

(a) (b) 

Figure 2-10: Muscle activation plots for extensor and flexor muscles (a) Arm in flexion - 45o -145o (b) 

Arm in extension - 145o - 45o. The individual curves in the figure are from the IAMR scheme and the 

extensor and flexor group curves are from the GAMR scheme. 

The IAMR scheme outputs the activations of individual muscles as can be seen in Figure 2-10. 

Each muscle in the IAMR scheme has different peaks and a few muscles also remain inactivated 
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or with low activation during the entire simulation. The muscle activations also dropped after the 

target angle was reached. In the GAMR scheme, all the muscles have the same level of activation, 

and in the arm extension simulation, the muscle groups remain activated even after the radius-ulna 

reached the target and stabilized. 

The muscle activations follow a biphasic or triphasic pattern which has also been observed in 

previous volunteer studies (Flament et al., 1984; Marsden et al., 1983). When the target signal is 

prescribed, the agonist muscles are activated initially which declines near the target joint position 

(Wadman et al., 1979). This decline in agonist activity is not enough to stop and stabilize the joint 

motion, thus a second burst of activation is seen, this time in the antagonist muscles to dampen the 

joint movement (Hannaford and Stark, 1983). In some cases, there is a third phase of agonist 

muscle activations when the antagonist muscle activities have not declined once the target position 

is reached (Happee, 1992). In the simulations performed in this chapter, the third phase was more 

prominent when the initial prescribed error was small. The fall in the activations after the elbow 

reached the target angle was due to a small penalty applied to the muscle activations in the reward 

function. Without the penalty factor, the extensors and flexors were found to co-contract at the 

final position. 

Training scenario 2: Arm motion control under external loads 

The RLMAC with added attached mass and gravity (scenario 2) took around 9000 iterations to 

converge. The trained RLMAC was evaluated under the extension-flexion motion with varied 

added mass. The trained agent was able to perform the desired kinematics in both extension and 

flexion motion of the elbow (Figure 2-11). In both the simulations, the arm was stable at the target 

position for different magnitude point masses. 
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(a) (b) 
Figure 2-11: Rotation time history of the arm in the presence of external load against gravity (a) Arm 

in flexion - 45o -135o (b) Arm in extension - 135o - 45o. 

 

In the flexion motion, the arm was able to carry a maximum mass of 4.8 kg against gravity. Figure 

2-12a shows the activations of the bicep brachii and the brachialis at different magnitudes of point 

mass during the flexion motion. The muscle activations in scenario 2 had a similar biphasic or 

triphasic pattern. The flexor muscles had a maximum activation at 4.8 kg weight which eventually 

decreased at the target position due to the decrease in the moment arm. The trained RLMAC could 

carry up to 10 kg of mass against gravity in extension, even though the mass was limited to 5 kg 

during the training. This shows the robustness of the trained RLMAC that can operate under loads 

different than what is experienced during the training. During the extension with 10 kg, the agonist 

muscles had high activations throughout the simulation. 
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(a) (b) 
Figure 2-12: Activation time history of the agonist muscles in presence of external load against gravity 

(a) Arm in flexion - 45o -135o (solid – 1 kg, dashed – 4.8 kg) (b) Arm in extension - 135o - 45o (solid – 1 

kg, dashed – 10 kg). 

The RLMAC trained in scenario 2 was simulated for goal-directed motion in absence of any mass 

or gravity and the response was compared with the volunteer tests used for validation in scenario 

1. The radius-ulna body undershot the experiment data initially which suggests that the peak 

velocity of the arm rotation was lower than in the experiments. However, the arm stabilized at the 

target angle within 300 ms after the target signal was prescribed to the RLMAC. 

 

  

(a) (b) 

Figure 2-13:  Comparison of RL-MAC from training scenario 1 (IAMR) and scenario 2 (a) Arm in flexion 

- 45o -145o (b) Arm in extension - 145o - 45o. 
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Testing scenario: Response to novel loads 

RLMAC trained under external force fields (scenario 2) was subjected to a simplified crash pulse 

representing a driver bracing against the steering wheel during a low-speed motor vehicle collision. 

The active arm with RLMAC was stabilized at the neutral position before the crash pulse was 

applied horizontally (Figure 2-7). During the application of the load, the RLMAC was prescribed 

to maintain the initial position of the elbow joint to simulate the stiffening of the arm by an 

occupant. The objective of stiffening the elbow was used to evaluate the RLMAC response under 

extreme conditions and may not accurately represent the actual intent of the occupants during such 

impact cases. 

  

(a) (b) 

Figure 2-14:  Rotation time history comparison of the arm in the presence of an external force pulse (a) 

Load applied backward (rear-end collision) (b) Load applied forward (frontal collision). 

 

The response of the trained RLMAC has been compared with that of the arm passive model with 

baseline muscle activations in Figure 2-14. In both impact cases, the RLMAC was able to maintain 

the target angle at the elbow joint after the initial disturbance due to the application of load. The 

passive model however was unstable during the application of the impact pulse suggesting that the 

passive stiffness alone is insufficient to correctly predict the response of an occupant under such 

dynamic cases. 
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(a) (b) 

Figure 2-15:  Muscle activation of tricep long head (extensor) and bicep brachii short head (a) Load 

applied backward (rear-end collision) (b) Load applied forward (frontal collision). 

Figure 2-15 shows the activation histories of extensor and flexor muscles for rear and front impact 

cases. Initially at the onset of the force pulse, the agonist muscles begin to activate, and the 

activations drop once the force subsides. The antagonist muscles had minimal activations 

throughout, which increased slightly at the end of the run to damp the arm at the neutral position. 

2.4 Discussions 

The objective of the current chapter was to demonstrate the feasibility of the reinforcement 

learning (RL) framework for use in muscle control. The RL muscle activation control (RLMAC) 

framework implemented in this chapter was based on the DDPG agent which can output 

continuous output signals (Lillicrap et al., 2019). The RLMAC was integrated with a MB model 

of a human arm to generate goal-directed movements about the elbow. 

Before integrating with the RLMAC, the passive stiffness of the arm model was evaluated and was 

determined to be within the ranges (0.96-1.2 Nm/rad) as previously measured in experiments 

(Hayes and Hatze, 1977; Howell et al., 1993; Wiegner and Watts, 1986). The stiffness of the elbow 

joint was due to the combination of joint stiffness and the passive muscle forces. As no damping 
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was considered in the Hill’s muscle equations, the non-linearities at the joint were due to the 

constant joint damping assigned. Constant damping is a reasonable assumption as Popescu et al. 

(2003) found that the damping value was almost constant during the elbow rotations. 

The RLMAC was trained to generate responses under two different muscle recruitment schemes 

– the GAMR in which the muscles were grouped into extensors and flexors and the IAMR scheme 

in which the muscles were activated individually. The objective of the training was to move the 

radius-ulna from an initial position to a target position by considering the angular error. Few 

previous studies have also considered the error in muscle contractile length as the control objective. 

Kistemaker et al. (2006) developed a PID-based muscle controller with the CE element length as 

the target signal (λ control) to generate similar goal-directed movements as performed in scenario 

1 in this chapter. Martynenko et al. (2019) used a similar control approach to model the goal-

directed arm rotations in an arm FE model. In the simulations studies using the CE error as the 

control criteria, pre-simulations with the passive model were performed to map the CE length with 

the elbow angles. While the approach was feasible for simple body regions like the arm model 

having 1 DoF, in a more complex region like the head and neck the muscle lengths corresponding 

to the target head orientation would be difficult to determine. 

After the training, the RLMAC could generate the desired extension-flexion movements and the 

response of the RLMAC showed excellent agreement with the volunteer data (Kistemaker et al., 

2006) for both the GAMR and IAMR scheme (Figure 2-9). The GAMR scheme had identical 

activations for all the muscles belonging to the same group, and the extensors and flexor muscles 

had a small activation level when the target orientation was achieved (Figure 2-10) which may 

lead to higher muscle fatigue. Also, grouping muscles corresponding to a preferred direction was 

possible due to the simple nature of the elbow joint, in a more complex body region isolating the 
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muscles corresponding to a preferred direction would be difficult. The IAMR scheme actuates only 

those muscles which are required for arm movement while keeping the other muscles inactivated 

which reduces muscle fatigue. In the following chapters of this dissertation, the IAMR scheme 

will be used for muscle control. 

The RLMAC was also trained to synthesize the goal-directed motions in presence of a randomized 

point mass and gravity loads. Any information regarding the external force field was not included 

as a state parameter and the agent learned to generate the arm movement by the kinematics and 

muscle activation feedback based on how well the agent was performing relative to the control 

objective. Adding information on inertia and gravity to the state may improve the training process 

and the overall response of the RLMAC as the parameters are important in formulating the muscle 

response (Lacquaniti et al., 2015). However, these parameters will also result in over-fitting to the 

particular scenario (scenario 2) and would not extend well to other load cases. This kind of muscle 

response to changing loads is difficult to model using linear feedback gains as multiple muscles 

need to be modified simultaneously and the gains of all the muscles may not scale similarly 

(Happee, 1993; Smeets et al., 1990). In the RL training process, the external environment can be 

constantly changed to tune the neural networks in the agent to prevent any overfitting. The 

RLMAC in absence of any added inertia or gravity was found to undershoot the volunteer response 

(Figure 2-13) as the RLMAC has to depend on the kinematics state to formulate the response. Such 

adaptations to external loads is also seen in volunteers (Happee, 1993; Oh et al., 2021; Smeets et 

al., 1990; Wadman et al., 1979). 

The RLMAC trained with a constant force field was able to maintain the stability of the joint in 

presence of dynamic loads implying the robustness of the controller. The dynamic loads applied 

to the arm model were substantially different from the training as a higher magnitude load was 
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applied for a shorter duration (Shaw et al., 2009). The testing scenario demonstrates the ability of 

the RLMAC to respond to novel loads which were not applied explicitly during the training. This 

feature is critical for muscle control in HBMs as there is a shortage of volunteer data under 

dynamic cases for validation and tuning of controllers. Along with the controller, evaluating the 

response of passive HBM also becomes important to ensure that forces developed in the active 

muscle and the range of motion of the joints in the active model are within the physiological limits. 

The robustness of RLMAC makes for a more general-use controller than the traditional feedback-

based schemes and eliminates the requirement of constant calibrating and tuning of the controller 

based on the loading environments. 

 The objective of this chapter was to evaluate the feasibility of reinforcement learning for use in 

muscle control hence some simplifications were made in the human body model. A revolute joint 

was used to model the extension-flexion motion about the elbow and the motions in other DoFs 

were not considered. The goal-directed arm kinematics simulated in this chapter was mainly to 

compare the responses with volunteer data (Kistemaker et al., 2006) and other similar control 

studies (Kistemaker et al., 2006; Martynenko et al., 2019; Östh et al., 2012b). The series element 

representing tendon stiffness was also neglected while developing the MB model of the human 

arm. Few previous studies have included the series element while simulating goal-directed arm 

motions (Kistemaker et al., 2006; Wochner et al., 2019). However, a study conducted by Bayer et 

al. (2017) concluded that the series element contributes only 7-8% of the total forces during arm 

movements. The stiffness of the passive arm model was verified in the study ensuring that the 

assumption of a rigid tendon did not affect the response of the arm MB model or the overall 

objective of the study. 
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In this chapter, the reward function penalized the muscle activity as a means of solving the 

redundancy problem thus reducing muscle fatigue (Pedotti et al., 1978) during the simulations. 

However, other cost functions associated with the human musculoskeletal system such as muscle 

work (Margaria, 1968; Umberger et al., 2003) or joint energy expenditure (Berret et al., 2008b) 

can also be used. 

2.5 Conclusions 

The present chapter has presented a methodology to integrate a robust muscle control framework 

based on reinforcement learning for control of rotations of the elbow joint. The RLMAC developed 

in this study could generate goal-directed motion in an arm MB model, control the arm motion in 

the presence of an external force field, and also stabilize the elbow joint in presence of dynamic 

loads. Such a robust control mechanism is important for loading environments that can be injurious 

in nature and thus difficult to gather data for tuning the controller. 

The present study is a preliminary investigation into the use of RL algorithms for muscle control. 

The potential for deep RL controllers can be better understood in more complex body regions like 

the head and neck with multiple non-linear joints and random muscle orientations which make the 

control of such a body region difficult. The development of RL based control framework for the 

head and neck region will be performed in the following chapters. 
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Chapter 3 – Development of a head-neck multibody model for postural control 

The head-neck region is the most complex body region for control due to multiple skeletal joints 

and the complex arrangement of muscles. Neck physiology provides high flexibility, mobility, and 

stabilization to the head. However, due to the enormous complexity of neck geometry and muscle 

orientation, it is difficult to develop an efficient control strategy for the neck muscles. For the 

implementation of the RLMAC control framework for the head, a multibody model of the head-

neck region of the 50th percentile male in a seated position has been developed. The neck model 

consists of T1-C1 vertebrae, the head modeled as Hybrid III headform, and 46 neck muscles. The 

neck model with passive muscles was validated under the rear impact loading scenario. 

3.1 Introduction 

The development of an accurate musculoskeletal model of the head and neck is necessary for 

modeling the active control behavior. Injury to the head and neck region being one of the leading 

causes of deaths and chronic disabilities has resulted in a lot of focus on the development of 

computational models of the head and neck region. Some of the earlier developed computational 

models of the head and neck used simplified lumped mass connected with deformable links 

(Bowman et al., 1981; Goldsmith et al., 1984; Williams and Belytschko, 1983).  In these studies, 

the lumped masses were connected using non-linear springs and dampers modeled with empirical 

expressions (Huston et al., 1978; Tien and Huston, 1987). 

de Jager et al. (1996) developed an anatomically detailed model of the head and neck region with 

rigid vertebrae and nonlinear joints and representation of muscles as the line of action of forces 

along the insertion points. Van der Horst et al. (1997) modified the rigid model to enhance the 

representation of muscles for improved rotational response under automotive loading. Stemper et 

al. (2004) developed a multibody model with detailed validation of passive kinematics for 
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whiplash-type loading. Vasavada et al. (1998) developed a multibody model with detailed Hill-

type muscle representation to study the moment arm and moment generating capacity of the neck 

muscles in extension, flexion, and axial rotation. The model by Vasavada et al. was later improved 

by Mortensen et al. (2018) by adding hyoid muscles for a realistic representation of flexion 

strength. de Bruijn et al. (2016) developed a musculoskeletal model of the head-neck region with 

the non-linear representation of the intervertebral joints (T1-C1) in all 6 DoFs.  

Brolin et al.(2005, 2004) developed a finite element (FE) model of the upper cervical spine with 

1-D muscle representations to study the effect of the muscle activations on the occupant response. 

Hedenstierna et al. (2009, 2006) extended the FE model to include a continuum representation of 

the passive muscle properties for simulations under impacts. Panzer et al. (2011, 2009) developed 

a FE model of the neck region with a detailed representation of intervertebral disks and ligaments 

to predict occupant response under front crashes. 

More recently, efforts have also been made to develop head and neck models for different 

anthropometries. Dibb et al. (2013) developed hybrid FE models of pediatric (6 years and 10 years) 

along with adult neck regions for automotive simulations. A detailed FE model of the head and 

neck region with a fifth percentile female anatomy was created by Davis et al. (2016) along with 

the whole body model for use in motor vehicle environments. Östh et al. (2017) developed a FE 

model for the head and neck with a detailed representation of ligaments and soft tissues and a rigid 

head for investigating whiplash-related injuries in females. 

The development of a musculoskeletal model for integration with RLMAC poses a unique 

challenge. Due to the inherently iterative nature of the RL algorithms, the model should be fast 

running. However, the model should also represent anatomy and physiology with minimum 

simplifications for outputting acceptable responses. This chapter outlines the development process 
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of a multibody model of the 50th percentile male head and neck for use with RLMAC. The neck 

model developed in this study will also be validated under passive rear impact conditions. 

3.2 Methodology 

For this study, a previously developed 50th percentile (M50) head-neck model (Fice et al., 2011; 

Panzer and Cronin, 2009) was used for the anatomy of the neck model. The neck model consists 

of forces whose magnitude was determined from a Hill-type muscle model with an added damper 

in series (Bayer et al., 2017; Haeufle et al., 2014).  

3.2.1 Anatomy of the cervical spine 

The neck model incorporates seven cervical vertebrae (C1-C7), whose anatomy is based on 3D 

dataset by Viewpoint Datalabs (Orem, Utah) and implemented previously in a FE model (Fice et 

al., 2011; Panzer et al., 2011; Panzer and Cronin, 2009). The neck model also includes the first 

thoracic vertebra (T1) as a reference for applying the boundary conditions of the trunk. The skull 

was modeled using the shape of a Hybrid III head form and assigned the mass and inertia properties 

of the M50 skull by Panzer et al. (2011) (Figure 3-1 a). The skull was considered rigid, and the 

muscles attached to the skull applied forces to the skull as a whole. 

The vertebrae T1-C3 were modeled separately and were connected with non-linear joints 

representing the stiffness imparted by the intervertebral discs, the ligaments, and the facet joints. 

The C2 and C1 vertebrae were lumped into one body as the atlanto-axial joint limits motion in the 

sagittal plane (Nightingale et al., 2002) and further connected to the C3 and the skull.   
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(a) (b) 

Figure 3-1: Development of the UVa neck model (a) Representation of the bony anatomies with each 

vertebra’s center of masses (CoM). The combined CoM is displayed for C2-C1 combined mass. (b) 

Location of 6 DoF joints between the vertebrae and the skull. 

The mass of the skull and vertebrae and their CoM locations were adapted from the source FE 

model (Panzer et al., 2011). The head mass and moment of inertia implemented in the neck model 

are within the ranges of values reported in the literature (Walker Jr et al., 1973; Yoganandan et al., 

2009) and have been provided in Table 3-1.   

Table 3-1: Mass and inertia properties of the skull and cervical spine 

Part Mass (kg) Moment of Inertias (Kg-mm2) Center of Mass (mm) 

Ixx Iyy Izz Ixy X Z 

Skull 4.376 21060 23300 15200  -31.047 181.824 

C1 0.0226 9.606 3.759 12.259 0.4085 -16.018 128.258 

C2 0.0254 5.3329 5.3724 7.3772 1.1312 -17.328 112.225 

C3 0.0162 2.8499 2.1659 4.2767 0.3067 -18.088 91.172 

C4 0.017 3.5055 2.183 4.807 0.1967 -14.747 73.265 

C5 0.0188 3.853 2.559 5.558 0.146 -12.441 56.381 

C6 0.0191 4.1054 3.2598 6.441 0.34 -5.796 40.739 

Note: The CoM of each vertebra is measured from the T1 CoM along the coordinate system in  Figure 3-1a. 
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The intervertebral joints were allowed translation and rotation in all 6 DOFs. The location of the 

joints of the model was approximated from the literature (Chancey et al., 2007; Dibb et al., 2013; 

van Mameren et al., 1992).  

Table 3-2: Location of the center of rotations of the intervertebral joints measured from T1 CoM 

Joint X (mm) Z (mm) 

Skull – C1 15.1 144.7 

C1- C3 21.55 92.45 

C3-C4 18.81 73.94 

C4-C5 16.27 56.55 

C5-C6 11.85 37.44 

C6-C7 7.00 25.54 

C7-T1 1.6 10.24 

The location of the intervertebral joints has been shown in Figure 3-1 b and provided in Table 3-2. 

The skull-C1 joint connects the head (represented by HIII headform in the model) with the lumped 

C1-C2 vertebral mass. The seven joints in the neck model provide stiffness in all the 6 DoFs (3 

translation and 3 rotational). The stiffnesses of the joints are represented by spring-damper 

combinations with non-linear force-deflection relation. Figure 3-1 shows the characterization of 

the joint stiffness. Bilinear curves are used to represent both the linear and rotational stiffness at 

the joints to capture the non-linear nature of the joints without affecting the simulation time. 

  

(a) (b) 
Figure 3-2: Stiffness of the joint between C4 and C5 (a) Linear stiffness (b) Rotational stiffness. 
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The joint stiffness curves in the neck model were adapted from many sources of data available in 

the literature (Table 3-1). The stiffness and damping prescribed at the joints approximate the 

stiffness imparted by intervertebral discs, the facet joint, ligaments, and other soft tissues present 

between the vertebrae. The joints do not consider passive muscle stiffness. 

Table 3-3: Stiffness and damping of the intervertebral joints 

Linear stiffness 

Direction Stiffness  Damping  

Anterior-Posterior (X) Bilinear curve (Shea et al., 1991) 834 Ns/m 

Lateral shear (Y) 138 – 232 N/mm (Liu et al., 1982) 352 Ns/m 

Axial (Z) 800 – 2446 N/mm (Dibb et al., 2009; 

Shea et al., 1991) 

614 Ns/m 

Rotational stiffness 

Lateral bending (X) Bilinear curve (Yoganandan et al., 2007) 0.78 – 1.5 Nms/ rad  

Extension – Flexion (Y) Bilinear curve (Nightingale et al., 2007) 0.78 – 1.5 Nms/ rad 

Axial rotation (Z) Bilinear curve (Chang et al., 1992; Dibb 

et al., 2013; Panjabi et al., 2001) 

0.39 – 1.5 Nms/ rad 

The damping coefficient values were adjusted based on previous studies to improve the model 

behavior in impact conditions and remove noises when stabilized (de Jager et al., 1996; Dibb et 

al., 2013; Happee et al., 2017; Mortensen et al., 2018). The damping coefficient considered in the 

joint stiffness allows for reproducing the viscoelasticity of the soft tissues as well as critically 

damping any vibrations between the vertebrae and skull during simulations. 

3.2.2 Development of the cervical muscles 

The neck muscles provide stability and strength to the vertebrae and head and support voluntary 

movements of the head. The neck model consists of 46 muscles that are symmetrical about the 

sagittal plane (Figure 3-3). The muscles are represented as force vectors between two points 

throughout the muscle length representing the active and passive stiffness.  
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(a) (b) 
Figure 3-3: Neck model with muscle representation (a) Front view (b) Side view. The neck muscles are 

symmetrically located about the sagittal plane. 

The muscle forces are modeled using a modified Hill-type muscle with a serial damping element 

(Bayer et al., 2017; Haeufle et al., 2014). The muscle-tendon unit (MTU) consists of four elements 

– the contractile (CE) and passive (PE) elements representing the active and passive muscle forces, 

and the series elastic element (SEE) and damping element (SDE) which represents the compliance 

of the tendon at the attachment to the bones (Figure 3-4). The total length of the MTU (lmtu) is the 

summation of the length of the muscle (lm) and the length of the tendon unit (lt). 

 

Figure 3-4: Muscle tendon unit of modified Hill-type model with serial elastic and damping elements 

(Haeufle et al., 2014). 
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The contractile element (CE) is the active part of the muscle and represents the force generated 

when the muscle is actuated by the CNS. The CE force depends on the length (Fl) and velocity 

(Fv) of the contraction of the muscle fibers. 

𝐹𝑙 = 𝑒𝑥𝑝

{
 

 

−|

𝑙𝐶𝐸
𝑙𝑜𝑝𝑡
⁄ − 1

ΔW
|

𝑘𝑠ℎ

}
 

 

 

Equation 3-1 

Equation 3-1 describes the force-length relationship of the contractile element. ΔW controls the 

shape of the Fl curve while Ksh is the exponential parameter influencing the rise of force with the 

length of the CE. 

The relationship between the active forces and the contractile velocity (Fv) is modeled as    

𝐹𝑣(𝑉𝐶𝐸 ≤ 0) =  𝐹𝑚𝑎𝑥 {
𝑎𝑡𝐹𝑖𝑠𝑜𝑚 + 𝐴𝑟𝑒𝑙

1 − 
𝑉𝐶𝐸

𝐵𝑟𝑒𝑙𝑙𝑜𝑝𝑡

− 𝐴𝑟𝑒𝑙} Equation 3-2 

Equation 3-2 shows the force-velocity relationship during the concentric motion of the muscle. 

For the eccentric part 

𝐹𝑣(𝑉𝐶𝐸 ≥ 0) =  𝐹𝑚𝑎𝑥 {
𝑎𝑡𝐹𝑖𝑠𝑜𝑚 + 𝐴𝑟𝑒𝑙,𝑒

1 − 
𝑉𝐶𝐸

𝐵𝑟𝑒𝑙,𝑒𝑙𝑜𝑝𝑡

− 𝐴𝑟𝑒𝑙,𝑒} Equation 3-3 

The concentric and eccentric parts of the Fv are both continuous and differentiable at VCE = 0. The 

Fv curve described by Equation 3-2 and Equation 3-3 gives a realistic force-velocity relationship 

where the force increases with increase in velocity while contracting and asymptotes at a maximum 

value when the CE elongates (van Soest and Bobbert, 1993). Arel and Brel are normalized hills 

parameter with peak values of Arel,0 and Brel,0 (Haeufle et al., 2014). 
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The muscle passive stiffness is also dependent on the muscle length (lce). The passive muscle 

element (PE) exerts tensile forces when extended beyond its rest length (lPE,0). The magnitude of 

the forces generated by the PE (FPE) is given by  

𝐹𝑃𝐸  (𝑙𝐶𝐸) = {
0 𝑙𝐶𝐸 < 𝑙𝑃𝐸,0

𝐾𝑃𝐸  (𝑙𝐶𝐸 − 𝑙𝑃𝐸,0)
𝜐𝑃𝐸 𝑙𝐶𝐸 < 𝑙𝑃𝐸,0

  Equation 3-4 

 

 

KPE is the non-linear coefficient relating the FPE to elongation of the passive element from rest 

length (Günther et al., 2007). 

The serial elastic element in the Hill-type muscle model is the representation of tendon forces. The 

force exerted by the series element (FSEE) begins to increase exponentially which transitions into 

a linear relationship with the series element length (lSEE). 

𝐹𝑆𝐸𝐸 = {

0 𝑙𝑆𝐸𝐸 < 𝑙𝑆𝐸𝐸,0
𝐾𝑆𝐸𝐸,𝑛𝑙 (𝑙𝑆𝐸𝐸 − 𝑙𝑆𝐸𝐸,0)

𝜐𝑆𝐸𝐸 𝑙𝑆𝐸𝐸 < 𝑙𝑆𝐸𝐸.𝑛𝑙
𝛥𝐹𝑆𝐸𝐸,0 + 𝐾𝑆𝐸𝐸,𝑙  (𝑙𝑆𝐸𝐸 − 𝑙𝑆𝐸𝐸,𝑛𝑙) 𝑙𝑆𝐸𝐸 ≥ 𝑙𝑆𝐸𝐸.𝑛𝑙

 Equation 3-5 

 

The parameters in Equation 3-5 are derived below (Günther et al., 2007; Haeufle et al., 2014) 

𝑙𝑆𝐸𝐸,𝑛𝑙 = (1 + ∆𝑈𝑆𝐸𝐸,𝑛𝑙)𝑙𝑆𝐸𝐸,0 Equation 3-6 

𝜐𝑆𝐸𝐸 = 
∆𝑈𝑆𝐸𝐸,𝑛𝑙
∆𝑈𝑆𝐸𝐸,𝑙

 
Equation 3-7 

 

 𝐾𝑆𝐸𝐸,𝑛𝑙 = 
∆𝐹𝑆𝐸𝐸,0 

(∆𝑈𝑆𝐸𝐸,𝑛𝑙  𝑙𝑆𝐸𝐸,0)
𝜐𝑆𝐸𝐸

 
Equation 3-8 

𝐾𝑆𝐸𝐸,𝑙 = 
∆𝐹𝑆𝐸𝐸,0

∆𝑈𝑆𝐸𝐸,𝑙  𝑙𝑆𝐸𝐸,0
 

Equation 3-9 

 

 

lSEE, 0 is the rest length of SEE, ∆USEE, nl is the relative stretch of SEE at the transition between non-

linear and linear regions, ∆FSEE,0 is the force at transition, and ∆USEE,l is the additional linear stretch 

causing a force increase of ∆FSEE,0. 
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The Hill-type muscle model used in the study also incorporates a serial damping element (SDE) 

modeled similarly to a viscous dashpot (Mörl et al., 2012). The force of the damping element 

(FSDE) is characterized by  

𝐹𝑆𝐷𝐸 = 𝐷𝑚𝑎𝑥 ((1 − 𝑅𝑆𝐷𝐸)
𝐹𝐶𝐸 + 𝐹𝑃𝐸
𝐹𝑚𝑎𝑥

+ 𝑅𝑆𝐷𝐸) . (𝑉𝑀𝑇𝐶 − 𝑉𝐶𝐸) Equation 3-10 

RSDE is the damping at 0 muscle force and its maximum value is 1. Dmax is the maximum damping 

coefficient when the force in the muscle equals the maximum force Fmax. 

The cervical muscle origin and insertion points were adapted from the source FE model by Panzer 

et al. (2011, 2009). The muscles with large cross-sectional areas and wide origins or insertions 

were separated into multiple strands with suitable vertebral insertion points for each strand. The 

forces developed by the muscles were divided among the muscle strands (Figure 3-5 a). 

  

(a) (b) 

Figure 3-5: Muscles in the UVa neck model (a) The trapezius muscles are divided into multiple strands 

(b) The intermediate vertebral attachment points of the left sternocleidomastoid to model the changing 

load directions. 
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For maintaining a biofidelic force path between the endpoints, the muscle strands were split into 

segments in series, and the intermediate points were attached to the nearest vertebra (Figure 3-5 

b). The splitting of the muscle strand across length accounted for maintaining the physiologically 

accurate muscle forces that follow the neck curvature during different neck motions (Dibb et al., 

2013; Fice et al., 2011; van der Horst et al., 1997). Without considering the routing of the Hill’s 

muscles along vertebrae, the muscle forces will act along a straight path between the origin and 

the insertion which may not be biofidelic (van der Horst et al., 1997). The muscle mass was divided 

between the origin and insertion points, as well as between the bony attachment points (Figure 

3-6). 

  

(a) (b) 

Figure 3-6: Muscle mass elements (a) Distribution of muscle mass in the model (b) Attachment points 

at the C4 vertebra. 

The muscles in the neck model, which attach to the anatomical landmarks not included in the 

model, like the thoracic vertebrae other than T1, ribs, or the clavicle, were attached at T1. The 

cervical muscles along with the different muscle anatomical and physiological parameters used in 

the neck model are summarized in Table 3-4. 
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Table 3-4: Muscle parameters used in the neck model 

Muscle (with strands) Origin Insertion Fmax (N) LMTU (mm) Lopt (mm) 
Pennation 

angle – α (o) 

Oblique Capitis Superior C1 Skull 43.98 21.879 12.0335 10 

Rectus Capitis Major C2 Skull 83.977 49.224 30.0266 5 

Rectus Capitis Minor C1 Skull 46.025 14.477 7.7 5 

Rectus Capitis Anterior C1 Skull 64.955 22.742 12.1 0 

Rectus Capitis Lateral C1 Skull 64.955 11.877 6.3 0 

Longus 

Capitis 

A C3 

Skull 

 

17.167 

62.042 31.021 

5 B C4 86.302 43.151 

C C5 103.678 51.839 

D C6 121.179 60.589 

Longus Colli 

superior 

A C3 
C1 11.50 

40.849 20.424 
5 B C4 64.550 32.275 

C C5 81.104 40.552 

Longus Colli 

inferior 

A 
T1 

C5 
17.259 

63.742 31.871 
5 

B C6 61.050 30.525 

Longus Colli 

vert 

A C5 C2 
22.827 

76.368 38.184 
5 B C6 C3 73.237 36.628 

C C7 C4 76.933 38.466 

Anterior 

Scalene 

A C3 

T1 23.476 

128.878 56.706 

10 B C4 104.727 46.079 

C C5 88.200 38.808 

D C6 72.043 31.698 

Middle 

Scalene 

A C2 

T1 11.321 

122.847 55.035 

10 

B C3 116.027 51.980 

C C4 97.067 43.486 

D C5 80.895 36.241 

E C6 69.288 31.041 

F C7 54.142 24.255 

Posterior 

Scalene 

A C5 
T1 17.538 

84.746 38.983 
10 B C6 73.107 33.629 

C C7 57.230 26.326 

Sternocleido 

Mastoid 

A 
T1 Skull 123.04 

170 103.7 
10 

B 202.335 123.424 

Iliocostalis 

Cervicis 

A 

T1 

C3 

12.991 

120.073 91.736 

0 B C4 102.708 78.469 

C C5 91.457 69.873 

D C6 79.826 60.987 

Longissimus 

Capitis 

A C4 

Skull 9.836 

67.146 52.378 

0 
B C5 84.165 65.648 

C C6 97.635 76.155 

D C7 116.596 90.945 

E T1 118.281 92.259 

Longissimus 

Cervicis 

A 

T1 

C2 

14.94 

85.844 64.984 

0 
B C3 99.044 74.976 

C C4 98.128 74.283 

D C5 103.286 78.187 

E C6 108.995 82.509 
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Multifidus 

A C4 C2 

10.02 

42.102 31.8712 

0 

B C5 C3 33.992 25.732 

C C6 C4 33.954 25.703 

D C7 C5 44.449 33.648 

E 
T1 

C6 38.750 29.334 

F C7 45.557 34.487 

Semispinalis 

Capitis 

A C4 

Skull 30.622 

65.937 39.562 

10 

B C5 82.398 49.438 

C C6 97.014 58.208 

D C7 114.356 68.613 

E 

T1 

118.095 70.857 

F 135.879 81.527 

G 153.812 92.287 

H 188.814 113.288 

I 207.966 124.779 

Semispinalis 

Cervicis 

A 

T1 

C2 

38.23 

80.538 57.423 

5 B C3 79.908 56.974 

C C4 83.750 59.713 

D C5 88.646 63.204 

Splenius 

Capitis 

A C7 

Skull 38.602 

119.273 64.407 

0 B 
T1 

139.859 75.524 

C 156.124 84.307 

D 169.640 91.606 

Splenius 

Cervicis 

A 
T1 

C1 
23.848 

169.979 91.788 
0 B C2 169.472 91.515 

C C3 184.296 99.512 

Levator 

Scapula 

A C1 

T1 38.973 

135.657 73.255 

0 B C2 120.238 64.928 

C C3 116.244 62.772 

D C4 99.601 53.784 

Trapezius 

A Skull 

T1 76.27 

176.061 95.073 

20 

B C1 168.366 90.917 

C C2 156.787 84.665 

D C3 148.039 79.941 

E C4 147.822 79.824 

F C5 151.457 81.787 

G C6 144.849 78.218 

H C7 140.500 75.870 

Omohyoid T1 Skull 58.738 124.066 86.846 0 

Sternohyoid T1 Skull 58.738 141.174 98.822 0 

The LMTU in Table 3-4 refers to the length of the muscle-tendon unit, measured as the Euclidian 

distance between the original and insertion points of the muscles at the initial position. Fmax is the 

maximum force that can be exerted by each strand of the muscle. The pennation angles (α) of each 

muscle have been adapted from Kamibayashi and Richmond, (1998) and Vasavada et al. (1998). 
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As the mass of the muscles was distributed at the bony attachment points of the muscles (Figure 

3-6), the segmental mass and the inertia got modified from the prescribed magnitudes. The updated 

mass of each segment is provided in Table 3-5.  

Table 3-5: Mass at each segment with muscles 

Segment Mass (kg) 

Head 4.449 

C2-C1 0.207 

C3 0.101 

C4 0.112 

C5 0.119 

C6 0.124 

C7 0.123 

Total mass 5.235 

The mass of each muscle was calculated by Panzer et al. (2011), considering a density of 1.06 

g/cm3 (Ward and Lieber, 2005). The total mass of the neck model, including the mass of the 

vertebra and the muscles was 5.235 kg, which was near to the average head and neck mass of 5.1 

kg as reported by Dempster and Gaughran (1967). 

3.2.3 Passive model validation 

The fundamental objective of the neck model is to integrate it with RLMAC for active muscle 

control under voluntary kinematics and impact scenarios. However, to utilize the model for such 

purposes, it is necessary to validate the response of the passive model.  

The neck model was evaluated under a load case resembling a rear impact scenario performed by 

Stemper et al. (2004). In the tests, the head-neck complexes from the cadavers were segmented 

and potted at T1. The extracted head-neck complexes were installed in a mini sled apparatus to 

impart the rear impact loading to accelerate the T1 in the anterior direction. Photo reflective 

markers were attached to cervical vertebras from C2 to C7 to track the relative angles between the 

vertebrae throughout the testing. The rear displacement of the head (retraction) and the pitch angle 
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with respect to T1 were also measured during the forward motion of the sled. Validation corridors 

were calculated and reported in the study for the sagittal angle between the adjacent vertebrae as 

well as for the head retraction and the pitch angle. 

To impart a similar motion at the T1 in the neck model, the vertical and lateral translations, and 

rotations in all the DoFs were constrained. Sled acceleration corresponding to an impact velocity 

of 2.6 m/s was applied at the T1 in the anterior direction (Figure 3-7). 

  

(a) (b) 

Figure 3-7: Application of rear impact load to the head model (a) The acceleration pulse applied to T1 

horizontally in anterior direction (b) Acceleration pulse corresponding to 2.6 m/s impact velocity applied 

to T1. 

The neck model was instrumented to output the sagittal angles at the intervertebral joints as well 

as the head angle and pitch rotations during the simulations. The overall kinematics of the head as 

well as the segmental angulations were compared with the test data to evaluate the biofidelity of 

the passive response of the head model.  
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3.3 Results 

The neck model with acceleration boundary condition at the T1 was simulated for 110 ms, tracking 

the motion of the CoM of the skull and the vertebrae, as well as the joint angles. Figure 3-8 shows 

the response of the neck model under the 2.6 m/s acceleration pulse.  

  

T = 0 ms T = 30 ms 

  

T = 60 ms T = 100 ms 

Figure 3-8: Behavior of the neck model during 2.6 m/s rear impact simulation at different points of 

time. 
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Similar to the tests, the spine in the simulation developed a S curvature – extension in the lower 

cervical joints followed by flexion in the upper intervertebral segments (Figure 3-8 T = 60 ms). 

The S pattern was followed by gross extension of the spinal column (Figure 3-8 T = 100 ms). At 

no point of the simulation, there was any lateral motion of any of the structure in the model. 

3.3.1 Validation of the head kinematics 

The kinematics of the head was measured in the simulation and the kinematics data of the head 

was compared with the corridors developed in the tests. The head trajectory measured from T1 has 

been plotted along with the test corridors in Figure 3-9. 

  

(a) (b) 

Figure 3-9: Head kinematics measured relative to T1 (a) Head angle in the sagittal plane (b) Head 

posterior displacement.  

In general, the head kinematics time history in the simulation agreed well with the experimental 

response. The head pitch angle was within the test corridors as demonstrated in Figure 3-9 a. The 

head displacement also displayed realistic response compared to the experiment data (Figure 3-9 

b). Despite the simulation curve being close to the lower bound of the test corridor, no major 

differences can be seen between the experiment and model response with regards to the posterior 

displacement of the head relative to the T1. 
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3.3.2 Validation of the intervertebral segment motion 

The relative angle between the adjacent vertebrae was tracked in the simulation and compared with 

the test corridors in Figure 3-10. The overall trajectory of the sagittal angulation of the 

intervertebral angle were found to be within the test corridors. 

  

(a) (b) 

  

(c) (d) 

 

(e) 
Figure 3-10: Intervertebral joint angle in the sagittal plane (a) C2-C3 angle (b) C3-C4 angle (c) C4-C5 

angle (d) C5-C6 angle (e) C6-C7 angle. 
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The nature of the angle-time history of the intervertebral joints also followed the trends of the 

experiments. The C4-C5, C5-C6, and C6-C7 joints were all in extension throughout the simulation. 

The C2-C3 joint was in flexion for close to 90 ms which was followed by extension of the joint, 

causing the spine of the neck model to form an S curvature. Although the test corridor showed that 

in some specimens, C3-C4 segment was in flexion for a portion of the test, the simulation showed 

no flexion of the C3-C4 joint. In the later part of the simulation, the predicted C6-C7 joint angle 

was marginally outside of the lower test bound. However, the angle-time responses of the vertebral 

joints were within the test corridors for most of the simulation time. 

3.3 Discussion 

This chapter summarizes the development of the neck model which is a MB model of the head and 

neck region of a 50th percentile male. The neck model incorporates rigid vertebrae from T1 to C1, 

and the skull. The rigid bony structures are attached to each other with joints 6 DoF joints. The 

muscles of the neck are modeled with Hill-type force characterization, with the line of action of 

the forces following the curvature of the spine during movements. The main intention behind 

development of the neck model was to integrate it with the RLMAC framework to generate head 

motions under various loading environments. 

The neck model does not include soft tissues like the ligaments, facet joints, cartilage, and the 

intervertebral discs. The stiffness of these components has been accounted for while assigning the 

stiffness-damping parameters at the intervertebral joints. The joint stiffnesses were approximated 

from the values that have been reported in the literature. The Y and Z translation force-

displacement relationship could be approximated with a linear stiffness value, however the X 

translation stiffness and the rotational stiffness in all DoFs were modeled with a bilinear 

relationship to effectively capture the non-linear force-displacement relationship (Figure 3-2). The 
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bilinear approximation of the stiffness curves allows for faster simulation times and symmetrical 

responses in absence of any lateral loads or moments.  

The 6 DoF joints have been modeled between all the rigid structures in the model except C1-C2 

which are combined into one part as not much relative movements happen between them (Dibb et 

al., 2013; Nightingale et al., 2002). The seven intervertebral joints effectively provide 42 DoFs to 

the spine. Some of the recent neck models developed for control studies have not considered any 

motion between the C2 vertebra and the skull (de Bruijn et al., 2016; Happee et al., 2017b) or have 

neglected translational motion at the joints (Mortensen et al., 2018). However, incorporating the 

joint compliance is necessary to accurately model the spine behavior. 

The muscles have been modeled using a modified Hill-type muscle which considers a damping 

element for calculating the muscle forces (Haeufle et al., 2014). The Hill-type muscle was found 

to improve the joint kinematics by considering the eccentric force-velocity relationship and 

damping which reduce disturbances and vibrations at a stable joint position (Martynenko et al., 

2018; Wochner et al., 2019). Muscles with wide physiological cross-sections were divided into 

multiple strands to improve the physiological representation and distribute the forces at the rigid 

vertebrae more accurately. Muscle wrapping around the bones were considered by splitting the 

strands and attaching the intermediate strands to the nearest vertebrae. For the force calculation 

using the Hill’s muscle equations, the summation of change in length of each segment in a muscle 

strand is considered.  

The passive responses of the neck model were validated under a rear impact loading scenario. The 

head kinematics as well as the joint angles were found to be within the test corridors. Under the 

impact scenario, the response of the model depends on the inertia of the rigid structures, the joint 

stiffness as well as the passive forces developed in the muscles. During the rear impact simulations 
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considerable passive forces developed in the sternocleidomastoid, the omohyoid, and the 

sternohyoid muscles, which is expected as the head angle respect to T1 was in extension. There 

was no lateral displacement of any structure during the simulation, which demonstrates that the 

neck model with non-linear joints and the muscles is symmetrical about sagittal plane. 

The major limitation of the neck model is that the model does not consider the contacts between 

the different muscles included in the model. Contacts between the neighboring vertebrae are not 

explicitly modeled but the interaction between the cartilages and facets have been incorporated as 

the increase in stiffness in the intervertebral joints. The model responds sufficiently well under the 

validation case (Figure 3-9 and Figure 3-10), implying the simplifications do not affect the overall 

functionality and utility. 

3.5 Conclusions 

The neck model developed in this chapter contains the required stiffness and muscle properties for 

utilization in the control study using reinforcement learning. The developed neck model is 

representative of the cervical spine of a 50th percentile male and capable of generating biofidelic 

responses under impact loads. The fast-running passive model will be integrated with 

reinforcement learning muscle controller (RLMAC) in the following chapters to simulate head 

kinematics under voluntary and impact cases. 
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Chapter 4 – Neck muscle control for postural stability and voluntary 

kinematics 

The human head-neck region is a highly redundant control structure with several joints along the 

cervical spine and the skull. The head is stabilized at its upright position under gravity by the 

cervical muscles, which generate active forces to counteract the effects of gravity. The neck 

muscles also stabilize the head in the presence of external dynamic perturbations and are 

responsible for carrying out the desired voluntary motions of the head and cervical spine. The CNS 

generates the coordination of the muscle forces required for the desired orientation of the spine 

and head based on the external loading environments and sensory and proprioceptive feedback.    

The current chapter outlines the integration of reinforcement learned muscle actuation controller 

(RLMAC) with the neck model developed in chapter 3 to simulate the control of neck muscles in 

humans. The RLMAC was trained to actuate the muscles in the neck model individually to perform 

voluntary head motions in the sagittal plane. The head motions performed include stabilization 

under gravity and goal-directed extension and flexion. The components of the reward function for 

the control objective were also evaluated and confirmed, aiming to eventually extend the 

methodology of the head control to all DoFs. 

The RLMAC post-training could move the head and stabilize it at the target position. The muscle 

activation patterns developed by the controller for the head movements have been measured during 

the simulation and presented in the chapter. The ability of the controller to respond to novel target 

signals which were not included in the training process was also evaluated. Results from this 

chapter will provide the required information for the development and integration of neck muscle 

controllers into the neck model for omnidirectional control.  



 

92 
 

4.1 Introduction 

Maintaining a stable head position requires constant activation of the neck muscles by the CNS 

(Crowninshield and Brand, 1981). Continuous control of the neck musculature happens due to 

various sensory and reflexive loops present in the nervous system (Bove et al., 2009; Keshner, 

2009; Keshner et al., 1989). The CNS modulates between the different feedback control loops to 

cause voluntary motion and maintain head stability under external perturbations (McCrea et al., 

1999). The neck muscles may also co-contract to increase the spinal stiffness as a reaction to 

changes in head inertia like wearing helmets (Bowman et al., 1981; Kumar et al., 2000). The neck 

muscles have a complex orientation about the spine and as such, it is difficult to associate the 

muscles to the corresponding head motion direction as a single muscle may be responsible for 

motion along different directions at different levels of activations (Lee et al., 1990; Vasavada et 

al., 2002). Fice et al. (2018) found that electrically activating muscles produced moment directions 

inconsistent with that produced during voluntary isometric contractions. 

Active neural control of the head is possible due to the synchronized actuation of the neck muscles 

by the CNS; however, the phenomenon is not well understood for modeling purposes. Apart from 

the general redundancy of the system, the non-linearity of the structure and various delays 

associated with the muscle force generation add to the complexity of modeling the neuro-muscular 

control. Some previous computational studies used open-loop control for stiffening the neck under 

dynamic external loads (Brolin et al., 2005; de Jager et al., 1996; van Lopik and Acar, 2004). 

Chancey et al. (2003) performed an optimization study for the development of active muscle forces 

in a computational model of the head and neck of an average male to stabilize it under gravity. A 

similar optimization approach was extended to the anthropometries of six and ten-year-old 

children by Dibb et al. (2013). Peng et al. (1996, 1999) developed a lumped parameter model to 
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incorporate neural reflex loops through feedforward and feedback control for head kinematics. 

Cappon et al. (2007) used PID controllers with a MB human model to control the moment at spinal 

joints for roll-over automotive impacts. Brolin et al., (2015) used the moment control methodology 

with a MB model of a 6 year old child. Initially, an open-loop controller was used to stabilize the 

spine under gravity. PID controllers were used to stiffen the spine by generating torque to counter 

any external disturbances. 

Fraga et al. (2009) used three PID controllers to control head kinematics for pitch and yaw in 

motorcycle riders. The controllers were tuned to maintain the head’s vertical stability and found 

that the control approach could maintain the target head posture in simplified loading scenarios. 

Nemirovsky and van Rooij (2010) used three PID controllers for the roll, pitch, and yaw motions 

of the head with respect to T1. The control strategy involved grouping of muscles in a previously 

developed model of the head-neck complex (van der Horst et al., 1997) and activating each group 

with an individual PID to obtain the pure rotations of the head. The control model was validated 

in extension-flexion DoF at different levels of muscle co-contractions to simulate different levels 

of bracing by the occupants. 

Östh et al. (2015) implemented PID control for head stability along with control of the upper 

extremities and shoulder to study restraints under autonomous braking conditions. Two separate 

controllers were used for the head and neck to maintain a vertical position relative to the vehicle 

coordinates. Feller et al. (2016) implemented a muscle strain-based controller for GHBMC male 

50th percentile HBM. The response of the control sub-routine was validated with volunteer head 

fall tests in supine position under gravity (Feller et al., 2016), and the final head displacements 

were found to agree with the test data.  
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Happee et al. (2017) implemented a feedback control mechanism in a MB model of a head-neck 

complex with a deformable spine (de Bruijn et al., 2016) to stabilize the head in the sagittal plane.  

In the study, the authors found that while the head kinematics feedback alone can stabilize the 

head, it may result in a non-biofidelic spinal shape. To prevent the buckling of the neck, Happee 

et al. considered the feedback of muscle length and velocity in the controller.  A similar approach 

was employed by Zheng et al. (2021) for postural control using an MB model of the head and neck 

with a detailed implementation of muscles (Mortensen et al., 2018).  After the control loop was 

implemented, the model could maintain the stability of the head under gravity in the neutral sitting 

posture and when placed in prone and supine posture. Apart from maintaining stability, the control 

model could also respond to impact loads. 

Correia et al. (2021) implemented the kinematics and muscle stretch-based feedback control in the 

GHBMC v5.1 50th percentile male model. The reflex responses by the controller could 

successfully simulate impact conditions at different severities. Putra et al. (2019) individually 

implemented the closed-loop feedback for head kinematics and muscle lengths in a FE model of 

50th percentile female. It was observed in the study that the head and neck response to rear impact 

loading is different for the two control schemes. While the head kinematics controller could output 

head and neck motion similar to tests, buckling of the cervical spine was observed. The muscle 

length controller could not accurately capture the neck kinematics but reduced cervical spine 

buckling was predicted by the model. Ólafsdóttir et al. (2019) modified the THUMS v3.0 50th 

percentile male model with updated skin and muscle representation to simulate neck stability under 

omnidirectional loading. The control model incorporated feedback on the head kinematics and 

muscle spindle length. The active THUMS neck was simulated under gravity in the transverse 

plane in five different directions. When compared with the passive model, the active model was 
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found to reduce head translation and rotation for all the applied loading directions. Table 4-1 

summarizes the various control strategies implemented for the cervical spine. 

Table 4-1: Summary of neck control studies 

Study Model Actuators Control type Control signal 

de Jager et al. 

(1996) 

Multibody 

(MADYMO) 

1-D Hill-type 

muscles 

Open-loop NA 

van der Horst 

et al. (1997) 

Multibody 

(MADYMO) 

1-D Hill-type 

muscles 

Open-loop NA 

Brolin et al. 

(2005) 

FE (LS 

Dyna) 

1-D (spring) Hill-

type muscle 

Open-loop NA 

Brolin et al. 

(2008) 

FE (LS 

Dyna) 

1-D (spring) Hill-

type muscle 

Open-loop NA 

Panzer et al. 

(2011) 

FE (LS 

Dyna) 

1-D (beam) Hill-

type muscle 

Open-loop

  

NA 

Chancey et 

al. (2003) 

FE (LS 

Dyna) 

1-D (spring) muscle Optimization  Head motion less than 5o 

and 10 mm under 

relaxed and tensed 

activation states 

Dibb et al. 

(2013) 

FE (LS 

Dyna) 

1-D (spring) muscle Optimization  Head CG displacement 

less than 0.3o and 0.5 

mm under relaxed and 

tensed activation states 

Correia et al. 

(2020) 

FE (LS 

Dyna) 

1-D Hill-type active 

muscles with solid 

passive elements 

Optimization Head CG kinematics 

Nemirovsky 

and Van 

Rooij (2010) 

Multibody 

(MADYMO) 

1-D Hill-type 

muscles 

Closed-loop Head roll, pitch, and yaw 

van Rooij 

(2011) 

Multibody 

(MADYMO) 

Joint torques/ 1-D 

Hill-type muscles 

Closed-loop Thoracic vertebrae 

angles/ Neck pitch angle 

Östh et al. 

(2012) 

FE (LS 

Dyna) 

1-D Hill-type 

muscles 

Closed-loop Head and neck pitch 

angle 

Östh et al. 

(2015) 

FE (LS 

Dyna) 

1-D Hill-type 

muscles 

Closed-loop Head and neck pitch 

angle 

Happee et al. 

(2017) 

Multibody 

(MADYMO) 

1-D Hill-type 

muscles 

Closed-loop Head angle, angular 

velocity, linear 

acceleration, muscle 

length  

Ólafsdóttir et 

al. (2019) 

FE (LS 

Dyna) 

1-D Hill-type 

muscles 

Closed-loop Head angle, angular 

velocity, muscle length 

Putra et al. 

(2019) 

FE (LS 

Dyna) 

1-D Hill-type 

muscles 

Closed-loop Head angle, angular 

velocity, muscle length 
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Study Model Actuators Control type Control signal 

Putra et al., 

(2021) 

FE (LS 

Dyna) 

1-D Hill-type 

muscles 

Closed-loop Head angle, angular 

velocity 

Correia et al. 

(2021) 

FE (LS 

Dyna) 

1-D Hill-type active 

muscles with solid 

passive elements 

Closed-loop Head angle, angular 

velocity, muscle length 

Zheng et al. 

(2021) 

Multibody 

(OpenSim) 

1-D Hill-type 

muscles 

Closed-loop Head angle, angular 

velocity, linear 

acceleration, muscle 

length 

 

Most of these studies have limited the development of the control architecture for postural control 

in the sagittal plane. Nemirovsky and Van Rooij (2010) developed a controller for rotation along 

all three anatomical planes, however, the model was only validated for sagittal motion. Other 

models which have considered omnidirectional control of the spine have grouped muscles 

according to response in different directions (Correia et al., 2021; Ólafsdóttir et al., 2019). The 

control parameters in the feedback models also need to be adjusted with external loads which are 

not suitable for dynamic events as loads acting on the model may change during the course of the 

simulation (Happee et al., 2017; Zheng et al., 2021). 

In the previous neck control studies, control models were developed to maintain the neutral posture 

of the spine under external loads. To the best of my knowledge, only one optimization study 

(Silvestros et al., 2021) has tried to perform voluntary extension-flexion and lateral bending with 

a multibody head and neck model. In the study, two different optimization schemes were used for 

extension and flexion with two different muscle groupings. Grouping muscles may be suitable for 

motion about isolated axes, but for a model to perform omnidirectional voluntary motion, the  

muscles need to be activated individually as a single muscle may cause motion about two planes 

(Keshner et al., 1989).    
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In chapter 2, we demonstrated that reinforcement learning (RL) can generate voluntary kinematics 

by individually activating the muscles in a simplified arm model. The applicability of the trained 

RLMAC was also evaluated under static and dynamic forces. In the current chapter, the RL muscle 

activation controller (RLMAC) will be extended to maintain stability and synthesize voluntary 

kinematics in the neck model. 

The nature of control required for the neck model, however, poses additional challenges. In the 

arm model, a revolute joint was used for the extension-flexion motion, neglecting any translation 

or supination and pronation motion at the elbow. The physiology and anatomy of the elbow 

muscles make it easier for the RLMAC to arrive at a functional activation scheme. The neck model 

however has seven 6-DoF joints sequentially stacked on top of each other. Moreover, for the neck 

model, both the state parameters and actions will be more in number due to the omnidirectional 

feedback and numerous neck muscles incorporated into the model. The complex nature of the neck 

model will make the RL controller computationally expensive as a large action space needs to be 

explored before forming an effective activation scheme.  

In this chapter, the RLMAC control architecture will be explored for implementation in the neck 

model. As RLMAC will require high computational effort, the neck model was made symmetrical 

by mirroring the muscle activations about the sagittal plane for the initial study. The symmetrical 

model will allow for the fine-tuning of control parameters as well as the reward function before 

the RLMAC is eventually implemented for all-DOF control of the head and neck. RLMAC will 

be trained to maintain the stability of the spine under gravity and synthesize goal-directed 

voluntary extension-flexion of the neck. The activation pattern for the neck muscles generated for 

the voluntary motion will also be analyzed and compared with the direction preferences of the 

neck muscles that have been observed in the literature.  
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4.2 Methodology 

This section details the implementation of a reinforcement learning controller (RLMAC) to the 

neck model. The neck model consists of a rigid representation of the vertebrae and the skull. 6 

DoF joints were inserted between adjacent vertebrae to allow limited relative movements between 

the structures. The neck model contains 46 neck muscles represented as Hill-type muscles. The 

RLMAC aims to develop an activation pattern for the muscles to generate the desired kinematics 

of the head. In this chapter, detailed studies are performed to develop the control parameters for 

the neck model. To tune the state and reward function for the RLMAC, simulations are performed 

by considering symmetry along the sagittal plane. Simulations with different control objectives 

were performed to evaluate the effects of the control parameters on the trained response of the 

control model.     

4.2.1 Muscle control framework 

The head is stabilized under gravity by neck muscles which are activated by the CNS. To develop 

a biofidelic muscle response to an external force field in the neck model, a gradient-based actor-

critic network is used for the RLMAC which is then coupled with the MB model. The RLMAC 

can read the force, energy, and kinematics data from the MB model. Based on the input data, the 

RLMAC outputs the muscle neural stimulation (ut) for each muscle. As symmetry is being 

considered along the sagittal plane, equal stimulation was developed for the corresponding muscles 

on either side of the mid-sagittal plane. The neural stimulation was transformed into muscle 

activation (at) using the activation dynamics equation by Zajac (1989) (Equation 2-2). The 

activation was fed to the muscles in the neck model along with the length and velocity magnitudes 

that were used to generate the muscle active forces. Identical activations were applied to the strands 

belonging to the same muscle, which limited the controller action to 23 stimulations. 
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Figure 4-1: RLMAC framework integrated with UVa neck model. 

Figure 4-1 displays the RLMAC framework for control of head motion. A twin-delayed deep 

deterministic policy gradient (TD3) is used as the agent for RLMAC in this case (Fujimoto et al., 

2018). The TD3 agent is a development over the DDPG agent that was used in chapter 2 for the 

arm rotation control. It was found that the DDPG agent overestimates the long-term efficiency (Q-

value) of the actions for a given state, a problem which was decreased in the TD3 architecture 

(Fujimoto et al., 2018). In an over-actuated system such as the head-neck region, overestimation 

of the Q-value may lead to the learning of sub-optimal policies. TD3 agent implemented in the 

chapter tries to reduce value overestimation by using two critic networks. Each critic network 

individually evaluates and quantifies the long-term efficiency of the actions, and the lower Q-value 

is used for updating the agent networks. TD3 agent was found to outperform the DDPG agent in 

control tasks that require continuous outputs (Fujimoto et al., 2018). 

The actor network in the RLMAC consists of an input layer, an output layer, and a hidden layer. 

Inputs to the hidden layer and the final layer were activated by the rectified linear unit (ReLU) 
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function (Hara et al., 2015). The output of the actor network was bound between 0 and 1 

representing the neural stimulations using a tanh and a scaling function. The state values constitute 

the inputs of the actor network. The final layer has 23 nodes, one for stimulation of each muscle. 

Both the critic networks have identical architectures with one hidden layer between the input and 

the final layer. The state parameters are read by the input layer and processed using the ReLU 

function before passing to the hidden layer while the actions are directly read by the hidden layer 

(Lillicrap et al., 2019). Output from the hidden layer is again activated by ReLU before being read 

by the final layer. The final layer of the critic outputs the Q-value and the lesser of the two Q-

values is used for updating the agent’s policy. 

The policy is updated every two timesteps of the simulation, i.e., the policy of the agent is updated 

once for every two outputs of the Q-value by the critic networks. Ornstein–Uhlenbeck (OU) 

process was used to add noise with a standard deviation of 0.09 for adequate exploration of the 

action space (La Barbera et al., 2022; Lillicrap et al., 2019). The schematic of the TD3 agent used 

in the study is shown in Figure 4-2. 

 

Figure 4-2: Schematic of the TD3 agent.  
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4.2.2 State and reward  

The neck and head are stabilized by the voluntary contraction of the muscles as well as the various 

reflexive feedbacks and involuntary co-contraction. The central nervous system controls the 

contribution of reflexes to activate the muscles in synergy to stabilize the head. The postural 

reflexes are attributed to maintaining the orientation of the spine under gravity and external 

perturbations. Two major postural reflex loops are hypothesized to contribute towards head 

stability – the vestibulocollic reflex (VCR) and cervicocollic reflex (CCR) (Cullen, 2012; 

Goldberg and Cullen, 2011; Keshner, 2009).  

The vestibular system consists of the semicircular canals and otolith organs which are located in 

the inner ear. The vestibular system senses the rotation and translation kinematics of the head and 

generates compensatory activations to stabilize the head. The cervicocollic reflex stabilized the 

spine in relation to the trunk and responds to the neck proprioceptive signals. The states for the 

RLMAC were defined considering both the VCR and CCR inputs. The agent receives input 

regarding the translation and rotation kinematics of the head for the vestibular feedback. In the 

symmetrical model, the kinematics were limited to the sagittal plane, i.e., displacement and 

velocity along X and Z, and rotation and angular velocity along Y. Due to the redundant nature of 

the head-neck region, kinematics-only feedback may not yield the desired result as there is no 

feedback regarding the nature of the spine and muscles to the agent, and this may result in 

stabilization of the head but a non-optimal and non-biofidelic position of the spine. Thus, CCR 

inputs are also included in the state. The agent was trained under two different state parameters 

concerning the CCR. In the first scenario, the length and velocity of the muscles were included in 

the states corresponding to the feedback by the muscle spindles. For the second condition, the joint 

kinematics feedback was added to the state corresponding to the combination of the muscle 
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afferent feedback and joint proprioceptors in the cervical spine. In both the CCR scenarios, muscle 

activations were included in the state for information regarding the muscle tension which is sensed 

by the golgi tendons. 

In RL, the reward function quantifies the efficacy of an action relative to the overall control 

objective. In this chapter, the intention for the RLMAC is to perform voluntary head motions and 

maintain the stability of the head at the final position in presence of external forces. Thus, the 

reward function was formulated based on the stated objective. The agent was awarded for moving 

the head towards the target head angle and reducing the head angle error. The reward function can 

be described using the voluntary kinematics and contributions from VCR and CCR (Equation 4-1). 

Reward function = Voluntary kinematics + VCR parameters + CCR parameters Equation 4-1 

The voluntary kinematics factor in the reward function is correlated to the error between the current 

angle and the target angle of the head (ε). The VCR parameters are included to stabilize the head 

kinematics in space, whereas the CCR parameters stabilize the spine and ensure a biofidelic 

movement of the head relative to the trunk. 

For the voluntary kinematics along the sagittal plane, the agent received a reward proportional to 

the square of sine of twice the angular error (1 - sin(2ε))2. Higher order was considered rather than 

a linear relationship to minimize the error when the head is near the target angle. To maintain the 

stability of the head at the target position, and to attenuate any vibration or disturbances to the 

skull at the target position, the agent was penalized proportional to the linear velocities (Vx and 

Vz) and angular velocity (ωy). The CCR parameters in the reward function were varied for the two 

state parameters considered for training. In the scenario in which muscle length is considered as a 

state, the agent was penalized proportional to the muscle energy expenditure for motion. When the 
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joint motion was accounted for in the state, the agent was penalized for cumulative joint energy 

expenditure for the motion. 

Table 4-2: State and reward considerations for training 

 State Reward 

VCR parameters 

• Skull CoM translation (Sx and Sz) 

• Skull CoM linear velocity (Vx and Vz) 

• Skull CoM angle (θy) 

• Skull CoM angle error (εy) 

• Skull CoM rotational velocity (ωy) 

(1 – Sin(2ε y))
2 – α (Vx + Vz) 

– β ωy 

Equation 4-2 

CCR scenario 1 

• VCR parameters 

• Muscle length 

• Muscle velocity 

• Muscle activation  

(1 – Sin(2ε y))
2 – α (Vx + Vz) 

– β ωy – γ ∑Muscle energy 

Equation 4-3 

 

CCR scenario 2 

• VCR parameters 

• Joint displacement 

• Joint velocity 

• Muscle activation  

(1 – Sin(2ε y))
2 – α (Vx + Vz) 

– β ωy – η ∑Joint energy 

Equation 4-4 

 

Table 4-2 summarizes the state and reward parameters used for training the agent. α, β, γ, and η 

are non-negative scalar values that are used to scale the VCR and CCR parameters relative to the 

voluntary parameter in the reward function. A simple relationship between the components of the 

reward function is used as it is generally considered that agents can learn complex behavior from 

simple reward functions by constantly interacting with the environment (Heess et al., 2017). For 

the purpose of training, the head kinematics is calculated with the T1 CoM as reference. 

The muscle energy (EM) for state parameters is calculated using the metabolic energy costs from 

Margaria (1968) that states that muscles while shortening are only 25% efficient compared to 

120% efficient while lengthening (Equation 4-5).  
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𝑀𝑢𝑠𝑐𝑙𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 (𝐸𝑀) =  {

𝐹𝑀 𝑥 𝛥𝑙𝑀
0.25

𝑉𝐶𝐸 < 0

𝐹𝑀 𝑥 𝛥𝑙𝑀
1.2

𝑉𝐶𝐸 > 0

 

 

Equation 4-5 

 

The joint energy (Ej) is calculated as the summation of the product of joint forces (Fj) and joint 

displacements (sj) from the neutral position in X and Z translation and Y rotation (Equation 4-6). 

𝐽𝑜𝑖𝑛𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 (𝐸𝑗) = ∑𝐹𝑗 𝑥 𝑠𝑗 Equation 4-6 

With the rewards described in Equation 4-2, Equation 4-3, and Equation 4-4, the neck model 

initially was trained to maintain stability (0o sagittal angle relative to T1) under gravity. In the 

stabilization simulation, the relative effects of different parameters of the states and the reward 

function on the overall kinematics of the model were evaluated. Following the stabilization 

simulation, the RLMAC was trained to perform voluntary goal directed head motions in the sagittal 

plane. During the training, the target angle was randomly varied for each iteration between 25 

degrees in flexion to 35 degrees in extension in increments of 5. The target angle was maintained 

at 0o to train the RLMAC to maintain the head stability under gravity for 40% of the iterations. In 

the remaining iterations, the target angle was varied to train the RLMAC to perform the goal 

directed motions of the head. Each iteration ran for 500 ms with an agent time-step of 1.0 ms, and 

the agent was updated every two time-step. The control system was considered converged when 

the average reward plateaued and the response of the trained agent at the plateau was reasonable.  

4.3 Results 

At first, the neck model was simulated under gravity without muscle control to determine the 

kinematics of the head in the passive condition. A baseline activation of 0.005 was applied to each 

muscle during the passive simulation, and the head angular displacement was measured from the 

initial head orientation at which the model was developed. The simulation was run for 1 s until the 
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head was stabilized at the final position under gravity. The simulation shows that the passive 

muscle and joint properties are not enough to maintain the upright posture in the neck model under 

gravity and require active muscle forces to maintain the neutral head and spine position of 0o head 

sagittal angle (Figure 4-3). 

  

T = 25 ms T = 1 s 

Figure 4-3: UVa neck model under gravity (a) At 25 ms the head compressed the spine under gravity  

(b) Shape of the spine at the end of the simulation.  

At the start of the simulation, the head compressed against the spinal column (Figure 4-3a) with 

the T1 fixed. After the initial compression, both the head and the spine deformed to flexion under 

the effect of gravity (Figure 4-3b, Figure 4-4a). During the bending of the spine, passive forces 

developed in the splenius capitis, splenius cervicis, semisplenius capitis, semisplenius cervicis, 

levator scapula, and longissimus capitis (Figure 4-4b). 

  

(a) (b) 
Figure 4-4: (a) Angle time history of Head CoM under gravity (b) Passive forces developed in the 

muscles during the head motion. 

(a) (b) 
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4.3.1 Contribution of VCR toward head stabilization  

Following the passive simulation under gravity, the neck model was integrated with RLMAC 

architecture for active muscle control. First, RLMAC was trained only with VCR feedback to 

gauge the contribution of the vestibular system towards the head stabilization under gravity with 

state and rewards mentioned in VCR parameters in Table 4-2. The simulation was run for 4600 

iterations before convergence. 

  

(a) (b) 
 

(c) 

Figure 4-5: Control response with vestibular system (a) The final stabilized configuration of the head 

and spine (b) Head and vertebrae CoM position for initial and stabilized posture from T1 CoM. (c) Head 

angle with respect to T1 in the sagittal plane. 



 

107 
 

The neck model was simulated with the trained agent to obtain the response of the RLMAC with 

vestibular control. Figure 4-5a shows that although the RLMAC could maintain the desired head 

angle in presence of an external force field, the posture of the spinal column was non-biofidelic. 

The location of the vertebrae and the head CoM has been compared for the initial posture and the 

stabilized posture in Figure 4-5b. Under the presence of gravity, the head and neck were stabilized 

but the muscle forces developed by the RLMAC caused buckling of the spinal column. The head 

was stable at the final position with a head sagittal angle of around 1.2o in flexion (Figure 4-5c) 

which displays the influence of the linear and angular velocity terms in the state and the reward 

function for head motion control.  As no term regarding the shape of the spinal column was 

included in the state or reward function, buckling of the spinal column with compression of the 

upper vertebrae was observed. 

4.3.2 Contribution of CCR toward head stabilization 

VCR alone was unable to elicit the stability of the spinal column even though head stability was 

achieved (Figure 4-5). To stabilize the cervical spine and the vertebral joints, the cervicocollic 

response needs to be considered while developing the architecture of RLMAC (Keshner, 2009). 

In this chapter, two separate pieces of training were performed with different considerations of 

CCR parameters for the state of the RLMAC. In the first scenario, the muscle spindle length was 

taken into account for the state and in the second scenario, the joint displacements of the cervical 

spine were included (Table 4-2) as a state parameter. Under both scenarios, the RLMAC was 

trained to maintain the neutral posture of the head CoM (0o head angle) in the sagittal plane and 

the effect of  the CCR parameters on the response of the head and the cervical spine was evaluated. 

Under both CCR scenarios the RLMAC took around 5200 iterations for convergence for stability. 
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(a) (b) 

 

(c) 

Figure 4-6: Final posture of neck model under gravity with CCR consideration at 500 ms of the 

simulation (a) Muscle spindle length (b) Joint displacement as a state (c) Head and vertebrae CoM 

position for initial and stabilized posture from T1 CoM. 
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Figure 4-6 shows the stabilized posture of the head and spinal column under gravity for the two 

CCR cases. In the simulation of RLMAC trained with CCR scenario 1 (muscle length), the upper 

vertebrae moved anteriorly towards the T1 reducing the eccentricity, thus reducing the effective 

moment due to gravity. In this scenario, the head was stabilized by a combination of active muscle 

forces and passive stiffness of the spinal column, while compressing the upper spinal joints in this 

process (Figure 4-6a). When the joint displacements were considered for the CCR parameter, the 

head achieved a stable position maintaining a biofidelic posture of the spinal column (Figure 4-6b). 

 

CCR as muscle spindle length CCR as joint displacement 

Figure 4-7: Head sagittal angle for the two CCR scenarios. 

Figure 4-7 shows the time history of the head sagittal angle for the CCR scenarios including the 

muscle spindle length and joint displacements. In both the cases, the head was stabilized below 

1.5o angle, even though the shape of the spine at the final time-step in both simulation conditions 

vary. Under both CCR conditions, there was no buckling or collapsing of the spinal column, 

however, in the CCR scenario 1, compression of the upper spine was observed. In CCR scenario 

2, there was no major deformation of the cervical spine or the vertebral joints. 
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(a) (b) 

CCR as muscle spindle length CCR as joint displacement 

Figure 4-8: Response of the neck model with CCR parameters (a) Average muscle energy (b) Average 

joint energy. 

Figure 4-8 displays the average energy response of the CCR control models while maintaining 

neck stability. Average muscle energy (Figure 4-8a) is the mean of the energy cost of motion by 

the muscles (Equation 4-5) over all the muscle strands in the model (86 on each side). The joint 

energy in Figure 4-8b is averaged for the seven intervertebral joints in the neck model. Due to the 

nature of the reward function associated with each CCR scenario, the average muscle energy was 

lower in scenario 1 while the average joint energy was lower in scenario 2. 

The joint displacement proprioception as the cervicocollic parameter (CCR scenario 2) achieved 

a more stable shape of the spine with less compression of the spinal joints at the neutral stance, as 

such it was used in further control studies to synthesize voluntary kinematics in the sagittal plane. 

Each iteration with the CCR scenario 2 also took lesser time compared to muscle spindle feedback 

(CCR scenario 1) as scenario 1 uses muscle length and velocity feedback for 86 individual strands 

which increase the input layer nodes of both the actor and critic network and as a result, increasing 

the processing and computation time.  



 

111 
 

4.3.3 Voluntary head kinematics in the sagittal plane 

The CCR scenario 2 with joint displacement feedback (Table 4-2) was used to train the RLMAC 

for generating voluntary extension and flexion motion of the head. During the training, the target 

angle was varied to train the RLMAC over a range of possible head motions. The starting position 

was always the neutral posture of the head, i.e., 0o head angle. The training was distributed over 

40 CPUs in the Rivanna cluster using the parallel computing toolbox. The training was performed 

in 6500 iterations. Figure 4-9 shows the variation of the average reward over the training period. 

The cumulative reward over 250 iterations were averaged to obtain the average reward. 

 

Figure 4-9: Average reward during the training.  

The neck model was initially stabilized under gravity for 200 ms before the voluntary goal-directed 

motion was simulated. The simulation results show that the trained RLMAC could stabilize the 

head under gravity and generate both extension and flexion motion of the head (Figure 4-10). 
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(a) (b) 

Figure 4-10: Head goal-directed motion along the sagittal plane (a) Extension (b) Flexion.   

Figure 4-11 shows the angle time histories of the head during the voluntary rotation of the head. 

The final head angles are within 1.5o of the target values while simulating both the extension and 

flexion motion from the neutral position. 

  

(a) (b) 
Head rotation angle Target angle 

Figure 4-11: Head CoM angle measured during the goal-directed simulation (a) Extension (b) Flexion.   
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The activations of the neck muscles were measured for the head stabilization and the sagittal 

rotation cases. All the muscles in the neck model were individually activated without any 

consideration of predefined strategy or grouping based on the direction preference. The neck 

muscles were considered symmetrical about the mid-sagittal plane leading to 23 muscle activation 

outputs from the RLMAC. 

 

Semispinalis cervicis Sternohyoid 

Figure 4-12: Co-contraction of the neck muscles in the stabilization simulation. 

 

During the head stabilization run, the semispinalis cervicis and the sternohyoid muscles co-

contract maintaining the stability of the spine and the head (Figure 4-12). The initial increase in 

the activations is due to the sudden application of gravity at the start of the simulation, requiring 

the muscles to apply forces. After 200 ms, the activations maintained a constant magnitude after 

securing the stability of the head and neck. Apart from the two muscles plotted in Figure 4-12, 

there were also minor activations in splenius capitis, longissimus capitis, omohyoid, and 

sternocleidomastoid, however, activations in these muscles were less than 0.1. 
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(a) (b) 
  

(c) 

Semispinalis cervicis Sternohyoid 
Longissimus capitis Omohyoid 

Figure 4-13: Activations of the neck muscles during head rotation (a) 0-20o Extension (b) 0-20o Flexion. 

The dotted line indicates the time at which the goal-directed motion starts (c) Muscles activated during 

extension-flexion of the head. 

The muscle activations for the head extension-flexion motion are shown in Figure 4-13. The head 

rotations follow an initial period of stabilization which is indicated by the dotted line in the plots 

in Figure 4-13. The muscle activations during the goal-directed head motion follow a biphasic or 

triphasic pattern which is characterized by successive bursts of agonist and antagonist activities to 

reach a target and subsequently damp the joints at that position (Hannaford and Stark, 1983; 

Happee, 1992; Marsden et al., 1983). Similar tri-phasic activation patterns were also observed in 

the arm movement study in chapter 2. 
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In the extension motion, the activity of all the muscles reduced to the minimum value except the 

Omohyoid, whose activity level was around 0.2, possibly to support the head at the 20o extension 

position (Figure 4-13a). In the flexion motion, the sternohyoid had high activations near the target 

position. The 20o flexion angle is beyond the range of the passive model (Figure 4-4a) therefore 

extra force from the flexor, in this case, the sternohyoid  is required to settle the head at the flexion 

target (Figure 4-13b). The sternocleidomastoid was activated during the flexion and splenius 

capitis and trapezius were activated during the extension at different points, however, their 

activations remain low throughout the simulation.  

4.3.4 Response to novel targets 

To evaluate the ability of the RLMAC to synthesize motions under novel targets, the neck model 

was first simulated to 20o flexion and from the flexion position, the target angle was set to 20o 

extension. Similarly, in a separate simulation, the head was first simulated to 20o extension, and 

from that position, the head was made to undergo a target posture of 20o flexion.  

  

(a) (b) 
Head rotation angle Target angle 

Figure 4-14: Head motion under novel target signals (a) 20o flexion to 20o extension (b) 20o extension 

to 20o flexion. 
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The trained RLMAC could generate the desired head kinematics from extension to flexion and 

flexion to extension (Figure 4-14) and the head remained in a stable posture at the end of the 

simulations. While performing the end-to-end kinematics, the head moved through the same 

eccentricity (horizontal distance between T1 and head CoM), however, at the same eccentricity, 

the head angle was 11.28o in extension while performing the flexion to extension motion and 7.16o 

in flexion while performing the extension to flexion motion (Figure 4-15). The shape of the spine 

at the neutral eccentricity was also different for both motions. The results show that the trained 

RLMAC can generate activations for head kinematics based on the target angle signal even if 

similar motions were not included in the training.  

  

(a) (b) 

Figure 4-15: The head and spine alignment of the UVa neck model near the rest position (a) 20o flexion 

to 20o extension (b) 20o extension to 20o flexion. 

The RLMAC was also evaluated under ramped target signals. During the training, a step signal 

was used to define the target head orientations, thus, in this chapter the ability of RLMAC to follow 

a ramped target was also evaluated. The head model was initially stabilized for 200 ms, following 
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which a ramped target was prescribed to move the head to 20o extension in 400 ms.  The head was 

stabilized in the rotated position for 200 ms, and a target signal was again applied to bring the head 

back to the neutral position. 400 ms was used as the duration of the ramped signal as it was twice 

the time the RLMAC takes to rotate the head to 20o extension from neutral under step signal 

(Figure 4-11a). A similar process was also followed for moving the head to 20o flexion and back 

to neutral using ramp signals. 

Figure 4-16 shows the head CoM angle-time history following a ramped target. The head was 

moved and was able to follow the target signal to 20o angle and back under both the extension and 

flexion cases. 

  

(a) (b) 

Head rotation angle Target angle 

Figure 4-16: The head CoM angle following a ramped target signal (a) Extension (b) Flexion.   

 

Figure 4-17 shoes the response of the neck model when the ramped flexion target signal is 

applied to the RLMAC (Figure 4-16b). 
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T = 0 ms T = 200 ms 

  

T = 600 ms T = 800 ms 

  

T = 1.2 s T = 1.4 s 

Figure 4-17: Simulation of the neck model in flexion under the ramped target signal 
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4.4 Discussion 

The present chapter provides an overview of the incorporation of RLMAC with the head model. 

As the neck region is an over-constrained system, a twin-delayed deep deterministic policy 

gradient (TD3) was used to develop the RLMAC for muscle control of the neck (Fujimoto et al., 

2018). As a first step towards the control of the head and neck motion, the muscle activities were 

made symmetrical about the mid-sagittal plane and only the motion about the plane was modeled. 

The control objective of the RLMAC was to stabilize the head and spine under gravity as well as 

to produce goal-directed motion of the head. The state of the RLMAC included parameters that 

were representative of the sensory inputs, vestibulocollic reflex (VCR), and cervicocollic reflex 

(CCR). When the RLMAC was trained for the stability of the head in absence of the CCR terms, 

it was found that the agent could maintain the head stability, but in the process lead to the buckling 

of the spine (Figure 4-5). A similar trend was reported by Happee et al. (2017), who found that 

maintaining static stability with only VCR feedback leads to an unstable posture of the spine.  

CCR provides feedback on the relative position and movement of the head with respect to the 

trunk (Goldberg and Peterson, 1986). The neck muscle spindles have been shown to be the major 

contributors towards neck proprioception (Richmond and Abrahams, 1979). Joint afferent neurons 

also affect the proprioceptive feedback when rotated beyond the ranges of motion (Grigg, 1994). 

Previous neck control studies have considered the neck muscle lengths as the CCR parameters 

corresponding to the neck proprioceptors (Happee et al., 2017; Ólafsdóttir et al., 2019, Zheng et 

al., 2021). In the present study, the position and the movement of the joints have also been 

evaluated as the CCR parameters (Table 4-1). This training and simulations performed in the study 

show that the RLMAC with joint displacements as CCR was able to stabilize the head and spine 

at the initial neutral position better (Figure 4-6). With the muscle length error as the CCR, the head 
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had to rely on the passive stiffness of the spine along with the muscle forces to be stabilized, as 

the reward function associated with the muscle length feedback tries to minimize the muscle 

energy (Table 4-1). In this study, a simplified muscle energy formulation is used (Margaria, 1968). 

There exist other more complex calculations of the muscle energy expenditure (Umberger et al., 

2003), however, due to computational constraints, the simple formulation was used in the reward 

function of CCR scenario 1. The CCR parameters used in the present study are simplified 

assumptions of the various proprioceptive loops of the human reflex controls and have been used 

to inform the RLMAC of the relative position of the head and vertebrae compared to the trunk (T1 

in the model). 

The posture of the spinal column under the final stable state was different for the two different 

CCR scenarios that have been considered for the study. Although it is not uncommon for 

individuals to have different alignments of the cervical spine (Newell et al., 2018), the CCR 

scenario 2 (Table 4-2) was employed for further study as it maintained an upright, non-compressed 

shape of the spine. The reward function in the two CCR scenarios includes penalty terms for 

muscle energy and joint energy respectively (Table 4-2). Previous studies that have incorporated 

CCR parameters for muscle control in the head and neck region have used changes in muscle 

length and velocity as feedback control gains (Correia et al., 2021; Happee et al., 2017b; 

Olafsdottir et al., 2013; I. Putu A. Putra et al., 2019). As the objectives in the previous studies were 

to maintain the head and spine posture, muscle length error could be used. Since the focus of the 

present study was also to generate the goal-directed motion of the head, muscle length error or 

joint deflections couldn’t be used in the sensory (target) reward as it is very difficult to correlate 

the muscle lengths or joint displacements to the target head angle. Therefore, we hypothesized that 
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the CNS tries to move the head to a target head angle and stabilize it such that the muscle energy 

or the joint displacements at the target state is minimum. 

In the CCR scenario 1, muscle length feedback of individual strands was considered for the state, 

thus increasing the input size of the actor-network and the critic networks of the TD3 agent which 

also increased the training time. On the other hand, CCR scenario 2 considered the displacements 

of 7 intervertebral joints in 3 DoFs, reducing the CCR parameter size from 86 in scenario 1 to 21 

in CCR scenario 2. Attempt was also made to combine the CCR parameters (muscle lengths and 

joint displacements) for training purposes but there was no major change in the output of the 

trained model from CCR scenario 2, and the computational cost of training increased with an 

increase in the size of the CCR parameters. 

Next, RLMAC with the CCR scenario 2 was used to train the neck model to generate goal-directed 

head motions in the sagittal plane. The CCR scenario 2 (Table 4-2) state and reward were used for 

training the RLMAC and the target angle was varied in each iteration. 

Post training the RLMAC was able to formulate a muscle synergy that allows for the goal-directed 

head movements, and the ability of the trained agent to move the head was verified in both flexion 

and extension (Figure 4-10), as well as in neutral position. Only one previous computational study 

has tried to generate head kinematics in the sagittal plane (Silvestros et al., 2021), however, in that 

study, a predefined control strategy was used based on electromyography data. Even in some of 

the previous stability simulations that include both VCR and CCR, assumptions were made on the 

muscle synergy. While maintaining stability under impact cases, Correia et al. (2021) split the neck 

muscles into four groups and maintained a predetermined ratio between the activations of muscles 

grouped as extensors and flexors. Olafsdottir et al. (2013) grouped the neck muscles into eight 

units and assumed a pre-defined contribution of each group towards neck stability. No such 
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assumptions are made regarding flexors or extensors in the present chapter, and the RLMAC 

actuates the 23 muscle pairs individually. 

The muscle activation patterns generated by RLMAC have also been analyzed for the sagittal 

rotations. For the stability simulation, most of the muscles have low activity, while the semispinalis 

cervicis and the sternohyoid co-contract. This minimum level of co-contraction is required to 

maintain the head and spine posture under gravity (Choi, 2003; Vasavada et al., 2002). Due to the 

redundant nature of the musculoskeletal system, the trained controller at different levels of training 

may actuate the muscles differently for the identical target signals as no assumptions on the muscle 

activation levels were made in the reward function. In the arm control study in chapter 2, the 

muscle activations were minimized to reduce the muscle fatigue, which resulted in a drop in 

activation levels at the target elbow angle. Unlike the elbow model which was simplified as a 

revolute joint with constant stiffness, the vertebral joints in the neck model were modeled as 6 DoF 

joints with non-linear stiffnesses. High activation levels would lead to compression of the spine 

and thus high joint energy, thus penalizing joint energy reduces the muscle co-contraction at the 

neutral position to some extent. Penalizing the joint energy was also seen to reduce the muscle 

activations at the extension and flexion positions as can be observed from Figures 4-12 and 4-13.       

During the flexion or extension motion of the spine, the neck muscle activations showed a biphasic 

or triphasic behavior. For a redundant system like the head and neck region, there can be many 

activation patterns that can lead to similar head motion. An experiment performed on cats showed 

that the voluntary kinematics muscle patterns differed between individual cats (Peterson et al., 

1989). Keshner et al. (1989) also found that during voluntary kinematics in the sagittal plane in 

humans, the splenius muscles were activated during extension for half of the volunteers and during 

flexion in the other half. Siegmund et al. (2006) also found that the response of posterior muscles 



 

123 
 

in voluntary or sled movements varied among volunteers. With separate training hyperparameters, 

the stimulation output from the agent may be different for the same target kinematics, but the head 

kinematics synthesized would be similar as that depends on the state and the reward functions. 

During the training, the head was always maintained at the neutral position (0o) sagittal angle at 

the start of the iteration (T = 0 ms), and it was moved to a target angle from the neutral position. 

However, when the target angle was varied to move the head from initial extension or flexion 

position, the head could follow the target signals from flexion to extension or from extension to 

flexion (Figure 4-14). This demonstrates the robustness of the RLMAC, which can formulate a 

muscle activation pattern based on the current angle and the angular error, even though those 

values for the parameters were not explicitly used in the training. 

It was observed in the simulations that when the head CoM approached the initial position from 

either direction, the spine shape, and the head angle were both different from that in the neutral 

posture (Figure 4-15). This phenomenon was tested by Newell et al. (2018), who found that the 

spinal alignment and the head angle differ for dynamic and static conditions. It was also found in 

the experiments that the shape of the spinal column during the motion near the stable rest position 

depends on the movement direction of the head. Similar trends of head and spinal orientation were 

seen in the end-to-end simulations.     

The RLMAC was also able to move the head reacting to a ramped target angle (Figure 4-16). The 

head CoM followed the target angle under both the extension and flexion motion. There was a 

time delay between the onset of the target signal and the actual head motion, and the delay was 

present during head movement up to stabilization. The latencies observed in following the target 

signals result from the time required by the RLMAC to update the outputs based on the state as 
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well as delays associated with activating the muscles after receiving the neural stimulations from 

the activation dynamics (Zajac, 1989).   

4.5 Conclusion 

The training and simulations performed in this chapter show that muscle control frameworks based 

on deep reinforcement learning are effective for the control of head and neck motion. The RLMAC 

trained for control of head motion in the sagittal plane was able to stabilize the head and generate 

flexion and extension motion of the head and the spine. The trained RLMAC could also produce 

head kinematics under target signals that were not used during the training, verifying the 

robustness of the RLMAC. In the following chapters, the outputs from the RLMAC will be 

validated with testing data and the RLMAC will be extended for omnidirectional head motion 

control. 
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Chapter 5 – Measurement of goal-directed head motions in humans 

The previous chapter outlined a framework for using reinforcement learning agents for 

synthesizing and control of head kinematics by selectively activating the neck muscles. While it 

was demonstrated in chapter 4 that the RLMAC can generate the desired head kinematics, it is 

important to evaluate the biofidelity of the response of RLMAC with human head kinematics data. 

Thus, a limited volunteer study has been performed to characterize target-specific head kinematics 

in humans and the protocol followed for the testing has been described in detail in this chapter.  

The present volunteer study aimed to measure fast goal-directed head kinematics in eight study 

subjects. The volunteers had to perform ten targeted head motions in extension, flexion, and axial 

rotation. The head targets were set such that the targets are below the physiological limits 

previously measured and the trunk, as well as the T1 have minimum motion while the subjects 

perform the head rotations. The head was instrumented with a sensor to measure the angular 

velocity of the head movements. The head kinematics data were used to validate the response of 

the trained RLMAC in its ability to synthesize biofidelic head kinematics.     

The simulation results of the neck model with the RLMAC trained in chapter 4 all lie within the 

ranges measured in the volunteer tests. The results suggest that the control architecture for 

RLMAC that was used for generating a response in the sagittal plane is biofidelic and can be 

extended for omnidirectional control of head kinematics. 
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5.1 Introduction 

Gathering head movement data is important for validating a computer model because it allows for 

the comparison of the model's predictions to real-world observations. This helps to determine the 

accuracy and biofidelity of the model. Head movement data is particularly important for 

computational models that are designed to simulate human voluntary head motions, as it enables 

the assessment of how well the model can capture the complexity and variability of human head 

movements. 

Many previous volunteer studies have analyzed the stabilization behavior of the head and neck 

under external loads. Keshner et al. (1989) performed human subject tests to observe the 

contribution of four neck muscles to the overall stability of the head under omnidirectional external 

loads. The authors found that the splenius muscles have different direction preferences among the 

test subjects.  In another study, Keshner and Peterson (1995) measured the response while the 

human subjects tried to stabilize their heads under the presence and absence of visual inputs. 

Kuramochi et al. (2004) assessed the head kinematics when impacted by a 4 kg mass in the 

anterior-posterior direction at the mid-sagittal level. During the perturbations, the EMG data of the 

sternocleidomastoid and trapezius were measured, and it was observed that the activity of the 

sternocleidomastoid was higher in eyes closed condition than in eyes open. In a volunteer study 

by Siegmund et al. (2006), a 50 N sweeping force was applied to the head of the human subjects 

who maintained the head stability against the force. The muscle activities of the three subjects 

were measured during the application of the load and compared for the subjects. Eckner et al. 

(2014) applied impulsive loads along the extension, flexion, lateral bending, and axial rotation in 

passive and anticipatory conditions to evaluate the effect of neck strength and muscle activation 

level on the neck kinematics. Reynier et al. (2020) performed padded lateral impacts on human 
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volunteers and measured the head kinematics in three conditions – Passive, co-contraction, and 

unilateral activation. The head angular velocity and linear acceleration were measured during the 

impacts and the magnitudes were highest for the passive case followed by the unilateral case. 

Homayounpour et al. (2021) applied impulsive impacts on human subjects in anterior, posterior, 

and lateral directions under three muscle conditions – passive, directional, and co-contraction. 

During the impacts, the head kinematics and muscle activations were measured and reported for 

each condition. 

Past studies have also focused on characterizing the head motion and muscle activities during 

voluntary head and neck rotation. Foust et al. (1973) measured the range of motion in the sagittal 

plane in 180 human subjects. Zangemeister et al. (1982, 1981) measured the head kinematics and 

muscle activities of human subjects while attempting rotations of the head in the horizontal plane. 

Mayoux-Benhamou et al. (1997) measured the activations of the dorsal muscles in 19 volunteers 

for head rotations in the sagittal plane. Margulies et al. (1998) compared the neck response of 5 

male volunteers under voluntary and forced flexion of the head and found that the maximum neck 

flexion did not differ significantly under the two conditions. However, the head retractions and 

rotational velocity were higher in the forced flexion of the head. Lantz et al. (2003) measured and 

quantified the range of motion for rotations in all three anatomical planes. Siegmund et al. (2001) 

evaluated 20 human subjects in their ability to respond to two different auditory stimuli. The 

authors found that the muscle response time in presence of a startling signal was half of that 

observed in a standard “go” stimulus. Cheng et al. (2008) quantified the effect of muscle co-

contraction during fast voluntary movements of the head in extension, flexion, and lateral bending. 

The muscle co-contraction patterns were different for flexion and extension motion, however, they 

were similar during the lateral bending in both directions. Siegmund et al. (2006), performed a 
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study that characterized the muscle activations during voluntary flexion-extension movements 

along with isometric stability and seated forward acceleration scenarios. Hernandez and Camarillo 

(2019) measured the maximum velocity at which humans can rotate their necks in the three 

anatomical planes. 

Many volunteer studies have also been performed to investigate the effects of muscle forces in 

automotive impact scenarios. Matsushita et al. (1994) conducted volunteer tests in conditions 

imitating frontal, rear-end, and side impact scenarios while performing X-ray studies of the neck 

motions. Geigl et al. (1995) performed sled tests to analyze the response of human subjects, Hybrid 

III dummies, and cadavers in a rear-impact environment. Ono et al. (1997) performed a test series 

to obtain the response of human volunteers under four different conditions evaluating the effects 

of muscle tension, neck alignment, and seat stiffness. van den Kroonenberg et al. (1998) measured 

the head and neck kinematics for 19 subjects under low-speed impacts with ΔV ranging between 

6.5 and 9.5 km/h. Siegmund et al. (2003) replicated whiplash-like conditions to compare the 

response of aware and surprised volunteers. The response of aware subjects was found to differ 

from that of surprised subjects. The studies also found that the muscle activities and the 

corresponding head kinematics changed with multiple whiplash-like perturbations. Siegmund et 

al. (2004) also evaluated the head-neck kinematics and muscle forces to changes in impact 

conditions. The study found that the neck muscle response correlated with the sled acceleration 

and change in velocity. Ejima et al. (2008, 2007) analyzed the response of volunteers under frontal 

impacts and emergency braking conditions. The volunteers were tested under relaxed and tensed 

muscle conditions and it was found that the reflex time for the head, neck, and torso region was 

between 70 ms – 200 ms for volunteers. Arbogast et al. (2009) conducted sled tests under frontal 

impact conditions to compare the response of children under such conditions to adults. The main 
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factor affecting the kinematics of the head and spine kinematics was found to be the anatomy of 

the head and neck with increasing age. Beeman et al. (2011) conducted human volunteer studies 

to evaluate the effect of bracing in low and medium-severity impacts. The authors found that the 

effect of bracing was more significant in low severity cases (ΔV = 4.8 km/h) where the forward 

excursions of different body parts were reduced by 35-70 %, compared to 18-26 % reduction in 

the case of medium severity impacts (ΔV = 9.7 km/h). Carlsson and Davidsson (2011) compared 

the response of 50th percentile male and female volunteers under rear impact scenarios. The study 

found that at impact velocities of 4 and 8 km/h, females had lesser rear translation and angular 

motions of the head and T1. Beeman et al. (2016) compared and quantified the neck forces and 

moments of relaxed and braced occupants against cadavers in low-speed frontal sled conditions. 

The study found that bracing did not significantly affect the magnitudes for peak neck forces or 

moments, however, the muscle activation did affect the timing at which the peak forces were 

obtained. Fice et al. (2021) evaluated the effect of bracing against the steering wheel on the head 

kinematics and neck muscle activity. The study found that bracing of arms against the steering 

wheel doesn’t lead to an increase in neck muscle activations during the impacts. 

Few studies have measured the neck response to automotive lateral impact scenarios. Ejima et al. 

(2012) conducted experiments to measure the response of humans under pre-crash lateral impact 

conditions. The contribution of muscle forces to the overall behavior of the test subjects was 

evaluated in detail. Ólafsdóttir et al. (2015) performed human volunteer studies to determine the 

muscle activation patterns in seven neck muscles in multi-direction seated perturbations. Eight 

volunteers were subjected to seated perturbations in eight directions, the corresponding muscle 

activities were measured to determine the reflex direction preference of the neck muscles. Chan et 

al. (2022) quantified the occupant behavior of 5th percentile females and 50th percentile males in 
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low-speed frontal and oblique impacts. The study found that both the male and female subjects 

have similar kinematic responses under braced conditions, but some of the kinematic data differed 

in the relaxed state. 

All these volunteer studies have been useful in developing active muscle controllers in isolated 

head-neck models (Cappon et al., 2007a; Correia et al., 2021; Happee et al., 2017b; Panzer et al., 

2011; Zheng et al., 2021) or full body models (Devane et al., 2022; Iwamoto et al., 2012; Iwamoto 

and Nakahira, 2015; Östh et al., 2015, 2012a). However, only one study has characterized goal-

directed head movements in the axial rotation (Zangemeister et al., 1982). As one of the objectives 

of the RLMAC is to generate voluntary head motions in all three rotational DoFs, a limited 

voluntary study has been performed as a part of this dissertation to characterize fast goal-directed 

head motions in human volunteers. As the neck model is representative of the anatomy of a 50th 

percentile male, the volunteer study has targeted human subjects of similar populations. The data 

gathered from the human subjects will be used as validation cases for the neck model coupled with 

RLMAC trained in chapter 4.  

5.2 Methodology 

Eight volunteers, all males participated in the study. The subjects did not have any prior history of 

injury or a neuromuscular condition that may have affected their normal day-to-day movement of 

the neck. The subjects were also screened for any auditory or visual issues which may affect their 

participation in the study. The study was approved by the University of Virginia Institutional 

Review Board, and the recruited subjects signed a consent form before participating in the study 

or any kind of data collection. The volunteers were required to undergo 10 different goal-directed 

voluntary motions of the head. 
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5.2.1 Protocol 

The subjects sat in a Honda Odyssey second-row captain’s chair rigidly placed on the ground and 

facing a flat wall at a distance of 5 feet from the wall. A centerline was drawn on the chair to 

provide an estimation of the mid-sagittal plane and a line parallel to the chair center was also 

marked at the wall using a laser level (Bosch GLL2-80). After being seated, the subjects were 

asked to put on headgear mounted with a laser pointer (Class 3R, wavelength – 642 nm, power – 

2 mW) and a three-axis gyro sensor (Figure 5-3a). The subject’s Frankfort plane was aligned with 

the ground using a digital protractor (PRO360, Level Development ltd, Chicago, Il). After the 

alignment, the laser was adjusted so that the beam was parallel to the Frankfort plane. The laser 

pointer on the headgear was turned on and the spot on the wall along the sagittal plane line where 

the laser was pointing was marked as the neutral position. The distance of the neutral spot on the 

wall was measured from the laser tip and this distance was used to place different target markers 

– 20o extension, 30o extension, 20o flexion, and 30o left axial rotation (Figure 5-1, Figure 5-3b). 

These values of the head target rotations were chosen from a pilot study and enabled the fast head 

rotations without much movement of the trunk or T1. 

  

(a) (b) 

Figure 5-1: Placement of targets on the wall (a) Extension-Flexion (b) Axial rotation (c) Marker 

position on the wall. 
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(a) (b) 
Figure 5-2: (a) Volunteer with head gear containing the laser pointer and sensors (b) The targets for 

goal directed head movements. 

The head-mounted laser was turned on and subjects were asked to point the laser to a specific 

initial marker on the wall (marker 1) (Figure 5-3c). The subjects were instructed to move the head 

toward a different target marker (marker 2) as fast as possible on hearing an auditory signal (a beep 

sound). The beep sound would go on for 4 seconds and at the end of the beep sound, the subjects 

were asked to move their head back to marker 1 from marker 2. Subjects were allowed to practice 

the movement before the actual recording of data to get habituated to the movement pattern and to 

prevent any out-of-plane movements. Analysis of the pilot data showed that there was no 

observable difference between the latency and peak velocities while combining two movements 

(marker 1 to marker 2 and back) or while performing the movements separately. The volunteers 

were given a 2s warning before the triggering of the auditory signal to make them aware of the 

signal and prepared for the corresponding movement. The 4s gap between the to and fro motion 

between the two markers allowed enough time for the volunteers to stabilize and was similar to 

the timeframe used in Cheng et al. (2008) study. Each movement pair was performed twice and 

there was a small gap of approximately 5 minutes between two successive movements. The 
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subjects were informed about the initial and target markers before each trial along with the warning 

of the onset of the auditory signal. Table 5-1 summarizes the different head movements performed 

by the subjects. All the goal-directed head motions were performed one after another in a single 

sitting. 

Table 5-1: Targets for goal-directed motions 

Marker 1 Marker 2 

Neutral 20o Extension 

Neutral 30o Extension 

Neutral 20o Flexion 

20o Extension 20o Flexion 

Neutral 30o Left Axial 

 

5.2.2 Instrumentation 

The head angular velocities during each motion were measured by an accelerometer, mounted on 

a headgear that the subjects had to wear during the study (Figure 5-3a). The headgear was adjusted 

according to each subject such that it fits tightly to the subjects’ head with no relative motion 

between the subjects’ head and the head gear during the head rotations. Initially, in the pilot 

studies, a 6 DX cube (DTX Seal Beach, CA) was used for measuring the head kinematics data. As 

the head angular velocity range was much lower than the maximum range of the accelerometer 

(18000 o/s) (Hernandez and Camarillo, 2019; Siegmund et al., 2006a; Zangemeister et al., 1982), 

the output from the sensors was noisy. Thus, for the tests, a three-axis gyro sensor (IES 3103-600, 

Braunschweig, Germany) with a max range of 600 o/s was used to measure the head rotation data.  

All the sensor output signals were collected at 1000 Hz, using the DTS slice data acquisition 

system (DTX Seal Beach, CA). The position of the sensor was manually adjusted to place it at the 
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posterior side of the head along the sagittal plane (Figure 5-3a). The head angular velocity signals 

along the three anatomical planes were directly measured by the gyro sensor, which was then 

integrated to obtain the head angle-time data (Siegmund et al., 2001). The angle-time data were 

used for comparison with the output of the trained RLMAC.  

  

Figure 5-3:  The initial and final head position for Neutral – 20o Extension. The location of the laser 

pointer in the wall is highlighted. 

Table 5-2: Information of the study subjects 

Subject Age (years) Height (cm) Weight (kg) 

Pilot 1 30 175.26 79 

Pilot 2 43 180.34 93 

Subject 1 29 180.34 89 

Subject 2 23 172.72 64 

Subject 3 27 177.8 86 

Subject 4 28 177.8 74 

Subject 5 25 190.5 100 

Subject 6 27 182.88 95 
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5.2.3 Comparison with the simulation data 

The simulation outputs from the trained RLMAC were compared with the experiment rotation-

time results obtained from the volunteer study. In the simulation, the head of the model was moved 

to the initial position (Marker 1 from Table 5-1) before simulating the goal-directed motion. The 

head was stabilized at the initial position for 400 ms before prescribing the target position (Marker 

2 from Table 5-1). For the simulations, a step signal was provided to the RLMAC as the target 

head position from the initial position, from which the angular error required for the state was 

calculated. The objective of the simulations was to compare the head kinematics during the goal-

directed motion, and the latencies which are generally associated with a reaction to the sensory 

(auditory or visual) signals in the volunteer studies have not been considered in the present chapter 

as more information is required for model building to represent such responses. 

5.3 Results 

The head velocities in each trial were recorded using the 3-axis gyro for 10 seconds. After 2 

seconds of the data recording initiation, an auditory beep signal was sounded, indicating the 

volunteer to start performing the head motions, which went on for 4 seconds. The volunteers 

moved their head back to the initial marker at the end of the beep sound. The velocity-time signal 

measured for a volunteer while performing neutral to 20o extension motion is provided in Figure 

5-4. The first vertical line in the figure indicates the start of the beep sound, signaling the volunteer 

to move the head in extension from neutral and stabilize. The second vertical line indicates the end 

of the beep sound, signaling the volunteer to move the head back to the neutral position. 
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Head rotation velocity Auditory signals 

Figure 5-4: An example of the velocity-time profile of head angular velocity measured by the 3-axis gyro 

sensor for neutral to 20o extension and back.  

A pilot study was performed initially which showed that the velocity profile while moving the 

head independently from extension to flexion (marker 2 to marker 1) was similar to the head 

kinematics while performing the combined motion (Figure 5-4). In both situations, the velocity 

curve had similar latencies and peaks. Figure 5-5 compares the velocity time history of head 

velocity while performing the 20o extension to neutral motion. 

 

 

Combined movement Independent movement 

Figure 5-5: An example of head rotational velocity in 20o extension to neutral motion in combined 

movement and individual movement. The start time (0 s) has been adjusted for the auditory signal.  
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The pilot study was performed with the 6-axis DTX cube and the measured signals in Figure 5-5 

have been filtered using a lowpass Butterworth filter at a sampling frequency of 300 Hz. The 

analysis of the pilot data shows that the sensor measurements obtained from the combined head 

kinematics situation while returning (marker 2 to marker 1) is comparable in nature to the sensor 

readings when a similar head motion is performed independently, and hence can be used as a 

validation data set for comparison with the simulation results. 

  

(a) (b) 
Figure 5-6: Velocity time history for 4 volunteers after the start of the buzzer sound (a) 0-20o Extension 

(b) 0-30o Left axial rotation. 

The head velocity onset times for volunteers had latency between 150 – 250 ms. The peak velocity 

and the duration of the head movements differed between the subjects (Figure 5-6). The 0 s in 

Figure 5-6 is the start of the buzzer sound, informing the volunteers to move their heads to the 

target position. The velocity profile of the volunteers was adjusted for the latency is plotted in 

Figure 5-7. 

The plots in Figure 5-7 have been adjusted such that the head reaches 2o of angular displacement 

at 0s. Out of the 16 curves for each head kinematics, 4 were measured using the 6-Dx cube and 

hence have been filtered using a lowpass Butterworth filter. The measurements from the 3-axis 
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gyro have been presented without filtering. All the signals have been debiased by the mean of the 

measurements 500 ms before the start of the motion. 

  

Neutral – 20o Extension 20o Extension - Neutral 

  

Neutral – 30o Extension 30o Extension - Neutral 

  

Neutral – 20o Flexion 20o Flexion - Neutral 
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Neutral – 30o Axial rotation 30o Axial rotation - Neutral 

  

20o Extension - 20o Flexion 20o Flexion - 20o Extension 

Figure 5-7: Velocity profiles of the goal-directed head motions for every volunteer. The velocity profiles 

have been adjusted for the latency for the initiation of head movement. 

The axial movements - both neutral to 30o left rotation and back, had the highest average rotational 

velocities, while neutral to 20o flexion had the lowest angular velocity. It was commonly observed 

in the volunteers that the movements from the extremities to the neutral position had a higher 

velocity than the neutral to extremity motion, and the head also overshot while coming back to the 

neutral before stabilizing. 

The velocity profiles in Figure 5-7 were integrated to obtain the head angle-time history 

corresponding to every goal-directed head motion case. The head kinematics that was performed 

in the sagittal plane were compared with the simulation results with the RLMAC trained in chapter 
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4. Comparisons of the simulation results of the RLMAC in the training scenarios have been 

presented in Figure 5-8. For the goal-directed kinematics in the sagittal plane, that were used for 

training in chapter 4, the RLMAC results were similar to the volunteer head kinematics. The angle-

time plots in Figure 5-8 have been adjusted such that at 0 s time, the head sagittal angle is 2o for 

all the plots. The target angle in Figures 5-8 and 5-9 provide an approximation of initiation of the 

target step function at t = 0s.  

  

Neutral – 20o Extension Neutral – 30o Extension 

 

Neutral – 20o Flexion  

Figure 5-8: Comparison of the output of trained RLMAC with volunteer data for the training scenarios. 

The curves are adjusted such that the test and simulation curves are at 2o at time 0s.  

 

Simulation  

Volunteer data  

Target angle  
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The simulation results of the trained RLMAC were also performed with the targeted head 

kinematics that was not a part of the training and has been compared with the volunteer data in 

Figure 5-9.  

  

20o Extension - Neutral 30o Extension - Neutral 

  

20o Extension - 20o Flexion 20o Flexion - 20o Extension 

 

20o Flexion - Neutral  

Figure 5-9: Comparison of the output of trained RLMAC with volunteer data for the scenarios not 

included in the training. 

Simulation  

Volunteer data  

Target angle  
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5.4 Discussion 

In the current chapter, goal-directed head responses of male subjects with anatomy close to the 

50th percentile males have been characterized. Three head movements – extension, flexion, and 

axial rotation have been measured with the intention of using the data as a validation case for the 

neck model coupled with RLMAC. Only one previous study, Zangemeister et al. (1982) has 

previously measured the targeted head rotations in human subjects in the axial plane, thus the data 

gathered in this chapter can be used as a validation dataset in other control studies as well. 

Head kinematics have been measured using a 6-axis DTX cube or a 3-axis gyro sensor attached to 

the head of the human subject in the posterior direction. The goal-directed head motions have been 

measured by placing a laser pointer at the forehead of the volunteers and asking them to move 

their heads as fast as possible while pointing the laser between a set of markers indicating the 

targets. The study was approved by the UVA Institutional Review Board, and the use of laser for 

the study was permitted by UVA Laser Safety Officer, Environmental Health and Safety. 

The head rotation targets have been chosen such that minimum motion of the T1 takes place while 

rotating the head. The magnitudes of the rotation targets were selected from a pilot study. The 

volunteers were asked to rotate their heads by reacting to an auditory signal (beep sound), and they 

were made aware of the sound 2 s before the onset. The auditory signal was similar to the “go” 

sound used in a volunteer study by Siegmund et al. (2001). The volunteers performed a total of 

five head movements in the sagittal and axial planes. Although the volunteers were instructed to 

start the head motion immediately after the auditory signal, a latency of 150-250 ms was observed 

before the sensors started recording any signals. The rotation velocity data measured by the sensors 

were used to obtain the angle-time profile for each head motion which was then used to compare 

with the simulations data. 
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On average, the rotational velocity during the axial rotations was highest. The volunteers also 

moved their heads towards the neutral position faster than from the neutral position to the 

extremities. Many volunteers found moving the head to 20o flexion difficult and slowed down 

considerably before finally pointing towards the flexion marker. The head angle values measured 

by the sensors were within 2.5o of the target head angle. Zangemeister et al. (1981) reported the 

head angular velocity of volunteers while performing 20o to 40o axial rotations between 3 – 5 rad/s 

which was within the velocity ranges measured in the study, and the velocity-time profile measured 

for the velocity ranges were also similar. Further analysis can be done to study the effect of 

physiological parameters on the head response in the volunteers. 

The angle-time history data gathered from the subjects were used to validate the RLMAC which 

was coupled with the neck model. In chapter 4, the neck model was trained with muscle symmetry 

along the sagittal plane, i.e., muscles on the right side and the left side of the sagittal plane were 

considered symmetrical and the training was carried out such that the head in the neck model 

reached an extension or a flexion target position from the neutral upright position. Initially, the 

response of the RLMAC was compared with the volunteer response. The response of the RLMAC 

was comparable to the test data, as can be seen in Figure 5-8. The neck model was also tested 

under conditions different from that encountered in training to verify the extent to which the 

control model can follow the target signal. Figure 5-9 shows that the RLMAC can formulate the 

required muscle activations under novel control scenarios as well just from the states. The RLMAC 

can move the head similar to volunteers under target conditions that were not explicitly included 

in the RLMAC training (Figure 5-9). These results are important for general purpose use of 

RLMAC as it is tedious and computationally very expensive to train the RLMAC for all the 

possible head movement scenarios.   
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In the present chapter, the latencies in human response due to the time taken to process the sensory 

information before initiation of the muscle activations have not been considered while evaluating 

the response of the RLMAC. Similar latencies were also observed in previous volunteer studies 

for the normal responses in previous studies (Siegmund et al., 2001; Valls-Solé et al., 1999). The 

current study is focused on producing goal-directed head movements, and the effect of delays 

between the sensory input and initiation of the response was outside the scope of the current study. 

Incorporating the latencies in the RLMAC response will require the definition of such latencies in 

terms of RL state, reward, and control objectives. Siegmund et al. (2001) reported that the latencies 

when reacting to startle responses were shorter compared to the latencies observed in the present 

chapter. Recreating such human response to different sensory signals requires modifications in the 

MB model (activation dynamics parameter τact can be made to reduce the activation build time) as 

well as control architecture to capture such behavior. Future efforts can be focused on including 

the latencies for both ‘go’ and ‘startle’ signals on the overall control response. 

5.5 Conclusions 

The present chapter was focused on generating a dataset on volunteer head kinematics for 

validation of the response generated by the RLMAC for the neck model. The neck movements 

were characterized for extension, flexion, and axial rotations in eight male volunteers. The 

gathered data was used for validating the RLMAC in the present chapter and can serve as a source 

for future control studies as well. The simulation results show that RLMAC with the symmetric 

control architecture can synthesize a robust control response to a target signal. The control 

architecture will be incorporated for omnidirectional head and neck control in the neck model in 

the following chapter and the model responses will be evaluated with the data generated in the 

present chapter. 
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Chapter 6 – Control of head kinematics in multiple anatomical planes 
 

In chapter 4, RLMAC was integrated with the neck model for head motion control along the 

sagittal plane. In the present chapter, the control framework developed in chapter 4 will be 

expanded for controlling the head kinematics of the neck model in all three anatomical planes. The 

control tasks involve stabilizing the head under gravity, as well as generating omnidirectional 

voluntary head kinematics – head flexion, extension, axial rotation, and lateral bending. The state 

and reward function were updated accordingly to include parameters required for the 

omnidirectional control of head rotations. 

The RLMAC post training could perform the required control objectives, and the agent outputs 

were compared with the human subject data generated in chapter 5. The muscle activations 

developed by the RLMAC for different head positions were also evaluated and have been 

discussed. The ability of the trained RLMAC to generate head rotations different than what was 

used in training was also verified and presented in the current chapter. The training and simulation 

results demonstrate the feasibility of the use of reinforcement learning algorithms for postural 

stability and motor control in humans.  

6.1 Introduction 

The neck muscle forces control the movement and stabilize the cervical spine under various 

external loads, yet there is a very limited effort toward replicating the dynamic movements in 

computational studies. Very few studies have tried controlling head kinematics in multiple 

directions. Nemirovsky and Van Rooij (2010) implemented a feedback postural controller for roll, 

pitch, and yaw kinematics in head neck complex. The neck muscles were identified into groups 

based on an independent muscle pre-simulation study. Three PID controllers were used to control 
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the extension-flexion, axial rotation, and lateral bending of the head, and the gains for each 

controller were weighed to obtain the muscle synergy required for the head rotations. An open-

loop co-contraction ratio was also used in the controller which could be adjusted depending on the 

state of the volunteers. However, the controller was only simulated for stabilizing the head in the 

sagittal plane, at different co-contraction ratios. 

Ólafsdóttir et al. (2019) implemented a feedback control mechanism in the THUMS v3 50th 

percentile male model for postural control in presence of a constant 1g force field in the transverse 

plane. The neck muscles were divided into eight groups and the groups were activated based on 

the direction of the applied force and a predefined weighing function. The feedback-based muscle 

controller implemented in the study could limit the displacement of the head CoM under the 

applied forces and maintain spinal stability. 

Correia et al. (2021) developed a feedback controller for regulating head movements in different 

impact scenarios. The muscles in the neck were grouped into four units responsible for movements 

in sagittal and lateral planes, and the groups were activated based on head angle and muscle length 

feedback. The gains of the controller were optimized considering different impact scenarios and 

could generate acceptable head kinematics for a range of impact severities. 

Although the control models described above could generate the desired responses, the controller 

gains were tuned for the specific control tasks in these studies. The muscles were also assigned to 

different groups and the muscle synergy was predefined. However, previous volunteer studies have 

shown that the muscles behave differently based on the external loads and specific tasks, and thus 

it is not always accurate to generate identical activations for the grouped muscles (Keshner et al., 

1989; Siegmund et al., 2006). The control objectives in the previous studies that considered 
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omnidirectional head kinematics were only limited to stabilizing the head, and the control 

mechanisms were not tested for the ability to generate voluntary rotations of the head. 

In the present chapter, the RLMAC architecture developed in chapter 4 will be extended for control 

of head kinematics in the three anatomical planes (extension, flexion, axial rotations, and lateral 

bending). The RLMAC will independently activate each muscle in the neck model, and the muscle 

responses and the directional preferences will be compared with the data available from previous 

volunteer studies.  

6.2 Methodology 

The RLMAC developed previously (chapter 4) was updated to include the parameters essential for 

omnidirectional control. For the all-DoF study, both the vestibulocollic reflex (VCR) and 

cervicocollic reflex (CCR) were considered (Cullen, 2012; Goldberg and Cullen, 2011; Keshner, 

2009). The RLMAC was trained to output the muscle activations for all 46 muscles of the neck 

model to rotate the head to the desired position in all the three anatomical DoFs. 

6.2.1 Muscle control framework 

Similar to the symmetrical control framework, a twin-delayed deep deterministic policy gradient 

(TD3) is used as the agent for the RLMAC (Fujimoto et al., 2018). The TD3 agent incorporates 

one actor network and two critic networks. The actor-network takes the state parameters as inputs 

and outputs the neural stimulations (ut) of all 46 muscles. The activation dynamics relation 

transforms neural stimulations into muscle activations (at) (Zajac, 1989). The two critic networks 

of the TD3 agent have identical architecture and both of them map the network inputs to the Q-

value. The network input consists of the state parameters and actions from the previous time step, 

and the lower of the two Q-values is used to update the networks every two time-step. The state is 
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defined by the sensory, VCR, and CCR parameters, including the head kinematics terms and neck 

proprioceptor information (Table 6-1). 

Table 6-1: State and reward considerations for training 

 State Reward 

VCR 

parameters 

• Skull CoM translation (Sx, Sy, Sz) 

• Skull CoM linear velocity (Vx, Vy, Vz) 

• Skull CoM angle (θx, θy, θz) 

• Skull CoM angle error (εx, εy, εz) 

• Skull CoM rotational velocity (ωy, ωy, 

ωy) 

(1 – Sin(2ε y))
2 + (1 – Sin(2ε y))

2 + 

(1 – Sin(2ε y))
2 – α (Vx + Vy + Vz) – 

β (ωx +  ωy +  ωz ) – η ∑Joint energy 

+ μ (symmetric factor) 

Equation 6-1 CCR 

parameters 

• Joint displacement 

• Joint velocity 

• Muscle activation  

 

6.2.2 State and reward  

The VCR terms in the state include head translation and rotational kinematics in the three planes 

of motion. The VCR parameters consist of the head CoM translation displacements and velocities, 

rotational displacements and velocities, and head position errors (Table 6-1). In the present 

chapter, the RLMAC attempts to move the head to target positions in all three DoFs, therefore the 

angular error of all three planes is being considered for the state. 

The CCR stabilizes the spine during head movements or in the presence of any external loads. For 

the all-DoF study, only the CCR scenario corresponding to the joint receptors is being considered. 

Although some previous studies have considered muscle spindle lengths for CCR (Correia et al., 

2021; Happee et al., 2017a; Olafsdottir et al., 2013; Zheng et al., 2021), we found that using joint 

displacements and velocities as state parameters of the RLMAC improve the spinal stability of the  

neck model (chapter 4). The muscle length feedback method also requires the length change 

information of all the muscle strands in the neck model, increasing the sizes of the actor and critic 

network of the TD3 agent and as a result, will require more exploration and training time. Thus, 
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joint displacement and velocity information have been considered as the CCR parameters for the 

all-DoF control. The agent is also provided information on the muscle activation corresponding to 

the muscle tendons feedback. 

The reward function was formulated such that it enables the RLMAC to minimize the position 

error in the three directions (∑(1 – Sin(2ε i))
2| i = X, Y, Z). The reward function also penalizes the 

RLMAC for velocity (both translation and rotation) to stabilize the head at the target position. The 

joint energy minimization term of the reward function accounts for the CCR and stabilizes the 

spine during movement and considers the joint energy expenditure along all the 6 DoFs.  

The symmetry term (minimize |uright – uleft|) is required to equally actuate the muscles on the left 

and right side during sagittal motion and mirror the activations while turning left or right or during 

lateral bending. In some previous studies, the symmetry term was included as a loss function of 

the actor network (Yu et al., 2018), however, for the current study, the symmetry term is considered 

in the reward function, and evoked while moving the head in the sagittal plane.  

6.2.3 Architecture of the actor and critic networks 

Both the actor and the critic networks in the sagittal control model (chapter 4) used a feedforward 

network with one hidden layer. A single hidden layer actor and critic networks was found to be 

insufficient in the initial training runs as both the state parameters and the action space in the all-

DoF control in this chapter was larger than that during the sagittal control that used parameters for 

only 3 DoFs. Therefore, an additional hidden layer was added between the initial and the final 

layers in the actor network. In the actor network, the outputs of the initial and the hidden layers 

were activated by the rectified linear unit (ReLU) function (Hara et al., 2015), and the output 

(neural stimulation) values were limited within the 0-1 range using tanh and scaling functions in 
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series. The final layer of the actor network had 46 nodes outputting the stimulations for all the 

muscles in the neck model. In the critic layer, the state parameter values were activated with the 

ReLU function before passing to the first hidden layer, whereas the actions were directly input to 

the hidden layer without any processing or activation. Both the critic networks have the same 

architecture and output the scalar Q-value individually. 

 

(a) 

 

(b) 

Figure 6-1: Architecture of the (a) Actor network (b) Critic network for all-DoF control. Both the critic 

networks in the RLMAC have identical architecture. 

6.2.4 Training for omnidirectional control 

The training was carried out to move the head to a desired angle in the sagittal, lateral, and 

transverse planes. The head was trained to stabilize under gravity in 20% of the iteration and bend 

laterally in another 20%. The RLMAC was trained for sagittal and axial rotations of the head in 



 

151 
 

30% of the iterations respectively. In one iteration, the RLMAC was tasked to rotate the head in 

only one plane, i.e., the training was carried out such that while the target angle in one plane was 

set to a non-zero value, the other two planes had 0 set as the target angle. For the sagittal plane, 

the target angles were set between -25 degrees (flexion) to 30 degrees (extension). For the axial 

rotations, the targets were set between -30 degrees to +30 degrees and between -20 degrees to +20 

degrees for lateral bending. For each scenario, the target angles were sampled in multiples of 5 

degrees from the target space. 

6.3 Results 

The neck model with RLMAC for all-DOF control was run for 15000 simulations. The RLMAC 

was trained to move the head to a target position from the neutral upright posture. No prior 

assumptions were made on the muscle synergy, the actor network of the RLMAC actuated all the 

muscles in the neck model individually. Figure 6-1 displays the variation of the average reward 

during the training. 

 

Figure 6-2: Average reward during the training for all-DoF control. 
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6.2.1 Stabilization under gravity 

The trained agent (Figure 6-2) could maintain the neutral posture of the head under gravity. The 

head was stable with minimum compression or buckling of the spinal column. Figure 6-3 displays 

the orientation of the head and spine at the stable position. The head displacements at the final 

stabilized position were less than 2 mm from the neutral position in all directions. For the 

stabilization run, the angle errors (εx, εy, εz) were measured from 0o in all three anatomical planes, 

and at the final position, the maximum error was 2.2o in the axial rotation (Figure 6-4). The head 

took around 400 ms to completely stabilize. 

   

(a) (b) (c) 

Figure 6-3: The stable posture of the head under gravity (a) Frontal (b) Rear (c) Side view.  
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Figure 6-4: The head angle-time history during the stabilization run in the three planes. 
 

The activation profiles of the sternohyoid and trapezius muscles during the simulation are shown 

in Figure 6-5. Apart from these muscles, the sternocleidomastoid, splenius cervicis, and splenius 

capitis were also actuated by the RLMAC. The muscles have nearly symmetric activations as the 

symmetry factor was prescribed in the reward. 

 

Sternohyoid Trapezius  

Figure 6-5: Co-contraction of the neck muscles (bold – left, dotted – right) in the stabilization simulation. 
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In the stabilization run, the rectus capitis and the multifidus were also activated, as the muscles are 

mostly associated with stabilizing the gaze and the spine. The rectus capitis muscle in general has 

high activations for most of the simulation (Figure 6-6). 

 

Rectus capitis minor  Multifidus 

Figure 6-6: Activation in the rectus capitis minor and the multifidus during the stabilization simulation. 

6.2.2 Extension of the head and neck 

Initially, the head was stabilized for 400 ms before the target of 20o extension was prescribed. The 

trained agent could generate the extension motion of the head (Figure 6-7). The head could reach 

the final position without much lateral deflection (Figure 6-7a-b). Figure 6-7c shows the angle-

time history of the head in the three planes when a target of 20o extension was prescribed. The 

head could move to the target angle in the sagittal plane while maintaining the neutral position in 

the other two axes. 
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(a) (b) 
 

(c) 
Figure 6-7: Extension motion of the head (a) Side view (b) Rear view (c) Angle-time profile of the motion 

(bold – head angle, dotted – target angle). 
 

The activation histories of the sternohyoid and trapezius muscles for the extension head movement 

are shown in Figure 6-8. The trapezius muscles, splenius capitis, and splenius cervicis act as the 

agonist during the head extension whereas the omohyoid, sternohyoid, and sternocleidomastoid 

act as the antagonist. The activation patterns follow a triphasic pattern where activation of the 

antagonist and a second burst of the splenius capitis activation are required to dampen the head 

motion at the 20o target (Hannaford and Stark, 1983; Happee, 1992; Marsden et al., 1983). During 
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the extension, the agonists and antagonist muscles were activated on either side of the midsagittal 

plane, however, there were some minor differences in the magnitudes of the activation on the left 

and right muscles. 

 

 Sternohyoid Trapezius Splenius capitis  

Figure 6-8: Neck muscle activations (bold – left, dotted – right) during the 20o extension. The horizontal 

line at 0.4 s highlights the onset of the extension target signal. 

The trapezius and rectus capitis minor were the other muscles activated during the extension 

simulations (Figure 6-9). While the rectus capitis minor had high activation throughout the 

simulation, the multifidus was fully activated by the RLMAC when the extension target was 

prescribed at 0.4s. 
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Rectus capitis minor Multifidus 

Figure 6-9: Activation in the rectus capitis minor and the multifidus during 20o extension. The extension 

target was prescribed at 0.4 s. 

6.2.3 Flexion of the head and neck 

Similar to the extension simulation, the neck model was stabilized for 400 ms before applying the 

20o flexion target as a step function. The head reached the final position while maintaining the 

stability of the spine. The final posture of the neck model after completing the 20o flexion motion 

is shown in Figure 6-10. 

  

(a) (b) 
Figure 6-10: Final position of the head for the flexion motion (a) Side view (b) Rear view. 
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The angle time profile of the head CoM during the simulation is shown in Figure 6-11. The 

RLMAC stabilized the head at the target sagittal position while maintaining the initial angle (error 

< 1.5o) in the transverse and lateral planes. 

 

Figure 6-11: Angle-time profile of the 20o flexion (bold–head angle, dotted–target angle). 

 

 

Sternohyoid Trapezius Omohyoid 

Figure 6-12: Neck muscle activations (bold – left, dotted – right) during the 20o flexion. The horizontal 

line at 0.4 s highlights the onset of the flexion target signal.  
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Figure 6-12 shows the activation profiles of the neck muscles during the 20o flexion. The 

sternohyoid, omohyoid and sternocleidomastoid are the agonists, while the trapezius, splenius 

capititis, and semispinalis capitis are the antagonists for flexion. Although for most muscles, the 

activations are symmetrical during the head movements, at the final flexed position the activations 

of the left sternohyoid and the right omohyoid were higher than that of the other sides.  

6.2.4 Axial rotation 

A target angle of 30o was assigned in the transverse plane whereas 0o target was maintained at the 

other two planes. Before assigning the axial target, the head was stabilized for 400 ms. The trained 

model could synthesize the axial rotations of the head at either side of the sagittal plane.  The spine 

was stable while rotating the head axially on both the left and right sides, and the head was stable 

at the target in both rotation cases (Figure 6-12). 

  

(a) (b) 

Figure 6-13: 30o axial rotation of the head in front view (a) Left rotation (b) Right rotation. 
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Figure 6-14 show the angle time profile of the head CoM during the axial rotation simulation for 

both the left and right sides. The head could reach the target angle in the transverse plane while 

maintaining an almost neutral angle in the other two planes. While turning left, the head was within 

2.5o of the target position after stabilizing, whereas the final head angle while turning right was 

closer to 30o. 

  

(a) (b) 
Figure 6-14: Angle-time profile of the 30o axial rotation (a) Left turn (b) Right turn (bold–head angle, 

dotted–target angle). 

 

  

Anterior scalene Sterno-cleido mastoid 

(a) (b) 

Figure 6-15: Neck muscle activations (bold – left, dotted – right) during the 30o flexion (a) Left turn (b) 

Right turn. The horizontal line at 0.4 s highlights the onset of the target signal. 
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Figure 6-15 displays the activation profiles of the left and right anterior scalene and 

sternocleidomastoid. The muscles on the left of the sagittal planes act as agonists for the left turn 

and the right muscles act as antagonists, and the roles of the muscles reverse during the left turn. 

The agonist and the antagonist muscles follow a tri-phasic pattern. Iliocostalis cervicis, 

sternohyoid, mid-scalene, and levator scapula were other muscles that were activated during the 

simulations. The trapezius muscles acted only as antagonists, i.e., the left muscles were activated 

to dampen the right turn and the right muscles were activated to dampen the left turn. The right 

post-scalene was activated during the right turn but similar activation of the left post-scalene was 

not observed during the left turn. 

6.2.5 Lateral bending 

The ability of the trained RLMAC to produce lateral bending was also evaluated. The neck model 

after stabilizing, was assigned a target angle of 20o in the lateral lane, while still maintaining the 

neutral target of 0o in the other planes.  

  

(a) (b) 
Figure 6-16: 20o lateral bend of the head in front view (a) Left bend (b) Right bend. 
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The angle time history of the head CoM is shown in Figure 6-17. The head could reach the target 

angle on both sides in the lateral planes. The trained agent stabilized the head within 2.3o of the 

target of 20o. For the left turn, the head undershot the target, whereas the head overshot the target 

during the right turn. 

  

(a) (b) 

Figure 6-17: Head CoM angle time history of 20o lateral bend (a) Left bend (b) Right bend (bold–head 

angle, dotted–target angle). 
 

  

Trapezius Sterno-cleido mastoid Splenius capitis 

(a) (b) 

Figure 6-18: Neck muscle activations (bold – left, dotted – right) during the 30o flexion (a) Left turn (b) 

Right turn. The horizontal line at 0.4 s highlights the onset of the target signal. 
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Figure 6-18 shows the activation profiles of the neck muscles during the head lateral bending. The 

trapezius, sternocleidomastoid, and splenius capitis were the major muscles active during the 

lateral bending on both sides. The right mid-scalene was activated during the bending on the right 

side, however, the corresponding left muscle was not activated during the left bend. The 

sternohyoid and omohyoid muscles also had minor activations during the bending simulations. 

Overall, the trained RLMAC could rotate the head to the desired position in the primary axes of 

motion while maintaining the head stability at the final position. 

6.2.5 Comparison with test data 

The head angular response from the trained RLMAC was compared to the human subject data 

obtained in chapter 5. The head kinematics data were obtained for extension, flexion, and left axial 

rotation. During the training, the RLMAC was assigned to move the head from the neutral upright 

posture to a target position. The neck model was initially stabilized for 400 ms before prescribing 

the target head angle as a step function.  

In a training iteration, the target angle for the head movement was specified along individual axes, 

while the target angle in the other two axes was maintained at neutral position (0o). Figure 6-19 

shows the response of the RLMAC while simulating the goal-directed head movements when the 

prescribed target angle was similar to the training scenarios. The output angle-time curve was 

compared with the test data. As the human subjects were tested while rotating the head only on the 

left side in the transverse plane, the angle-time history obtained from the right axial simulation 

was flipped before comparing it with the test data. The overall kinematics of the head in the 

simulations with the trained RLMAC while replicating the training kinematics is similar to the 

tests (Figure 6-11). 
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Neutral – 20o Extension Neutral – 30o Extension 

  

Neutral – 20o Flexion Neutral – 30o Axial rotation 

Volunteer data  Simulation – Sagittal plane 

Simulation – Axial left Simulation – Axial right Target angle  

Figure 6-19: Comparison of the output of trained RLMAC with volunteer data for the training scenarios. 

The angle-time plots have been adjusted such that at 0 s time, the head sagittal angle is 2o.  

The trained RLMAC was able to generate the target head movements even for those situations that 

the head did not encounter during the training. The initial and target head positions prescribed to 

the RLMAC along with the head CoM angle time profile are shown in Figure 6-12. From the plots 

in Figure 6-12, it is evident that the head in the neck model could follow the target signals even if 

the RLMAC was not trained for a similar scenario. 
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20o Extension - Neutral 30o Extension - Neutral 
  

20o Flexion - Neutral 20o Extension - 20o Flexion 
  

20o Flexion - 20o Extension 30o Axial rotation – Neutral 

Volunteer data Simulation – Sagittal plane 

Simulation – Axial left Simulation – Axial right Target angle 

Figure 6-20: Comparison of the output of trained RLMAC with volunteer data for the scenarios not 

included in the training. The angle-time plots have been adjusted such that at 0 s time, the head sagittal 

angle is 2o.  
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The head angle time curve while rotating back to the neutral from the initial position of the right 

30o axial was flipped before comparing it with the test data. The head moved to the neutral position 

from the right side faster than from the left side. The axial to neutral runs took a longer time to 

stabilize than the simulations in the sagittal plane. 

6.2.5 Combined head movements along multiple axes  

In the training, the head rotation was prescribed in one of the three axes. In this section, the ability 

of the RLMAC to respond to scenarios where the target signals are prescribed in more than one 

axes was evaluated. Figure 6-21 shows the response of the RLMAC when a combination of axial 

rotation and flexion is assigned at different times as step functions during the simulation. When 

the axial and flexion targets were applied simultaneously (time between 0.5s to 1.5s in Figure 

6-21), the RLMAC response undershot the targets in both planes.  

 

Figure 6-21: Angle time history for prescribed axial rotation and flexion (bold–head angle, dotted–target 

angle). 
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Figure 6-22 shows the response of the RLMAC in combined axial rotation and extension. While 

in extension, the RLMAC could maintain the axial head position nearer to the target signal. The 

head angle in the lateral plane was maintained near the prescribed target angle of 0o. 

 

Figure 6-22: Angle time history for prescribed axial rotation and flexion (bold–head angle, dotted–target 

angle). 

Figure 6-23 displays the head kinematics in the combined extension axial rotation case. The 

RLMAC could respond to the change in the target signals during the simulation. Between 0.5 to 

1.5 s of the simulations, the head could rotate from left to right while being flexed (Figure 6-21) 

or extended (Figure 6-22). During the simulations, the neck was upright and stable even when the 

head was responding to the target signals in the sagittal and transverse planes. The head could 

return to the neutral position at the end of the simulation. 
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T = 0 s T = 0.5 s 

  

T = 1 s T = 1.5 s 

  

T = 2 s T = 2.5 s 

Figure 6-23: The head kinematics at different points of time during the combined extension and axial 

rotation simulation. 
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6.4 Discussion 

The present chapter details the use of reinforcement learning (RL) controller for generating human 

head kinematics in multiple directions. The RLMAC integrated with the neck model in chapter 4 

was modified to include the state parameters that could make it possible to control head kinematics 

in the three anatomical planes (Table 6-1). The architecture of the actor and critic network was 

also modified to add one additional hidden layer considering the large state parameters that the 

networks had to process (Figure 6-1). The reward function was also expanded to account for the 

change in state parameters and the overall control objective (Equation 6-1). 

The RLMAC was devised to individually output the neural stimulations of the 46 muscles in the 

neck model. No predefined grouping or synergy of the muscles was considered in the RL 

architecture. A symmetry term was added to the reward function to ensure symmetry in the neck 

activations when the target signal prescribed in the sagittal plane during training (Equation 6-1). 

Without the symmetry term, the RLMAC was found to learn to output the correct kinematics 

response, but the activation patterns on the left and right muscles of the mid-sagittal planes were 

completely different. 

With the systems of state and reward in Table 6-1, the RLMAC was trained to generate fast goal-

directed kinematics in the three anatomical planes. Previously, very few studies have tried to 

develop a control model for omnidirectional head kinematics (Correia et al., 2021; Ólafsdóttir et 

al., 2019).  However, these studies were mostly limited to maintaining head stability under external 

perturbations and did not focus on synthesizing targeted head kinematics. La Barbera et al. (2022) 

previously used an RL-based control strategy to control the neck posture in an Ostrich MB model, 

however, in that study the control task was mainly performed to fine-tune the stiffness of the neck 

joints, and the accuracy of the neck movements was not verified. 
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The RLMAC took nearly 15000 iterations to arrive at a desired control strategy. The RLMAC after 

training was able to maintain the stability of the neck model with minimum co-contractions of the 

neck muscles. The RLMAC could also produce the goal-directed motion of the neck in the three 

planes. The target angles used in the study varied from 20o flexion to 30o extension, 20o lateral 

bending, and 30o axial rotation on either side. The target angles were selected such that the angles 

could be reached while the T1 is constrained. Previously in a volunteer study, it was found that 

axial rotations are accompanied by a slight lateral bend, and similarly, lateral bends are 

accompanied by rotations in other planes (Schneider et al., 1975). To reduce the dependencies 

between rotations in the independent planes, the lower target positions were used.  

The activations of the neck muscles were also analyzed for motion along each plane. While the 

muscle activations were largely symmetrical, there were a few inconsistencies observed in the 

symmetry. During the 20o flexion movement, the activations of the left sternohyoid were balanced 

by the right omohyoid, although muscles on either side were responsible for initially generating 

the flexion of the neck. The right sternohyoid and the left omohyoid forces damped after the head 

reached stability, whereas the left sternohyoid and right omohyoid remained activated for 

maintaining head flexion. In the motion along the transverse plane, the right post-scalene was 

activated during the right head rotation, whereas similar activation of the left post-scalene was not 

observed in the left axial rotation. In the lateral bending as well, the right mid-scalene was activated 

in the right bend simulations but the left mid-scalene remains inactivated during the left bending. 

The asymmetries in the activation patterns were observed even though the reward function 

penalized the RLMAC for asymmetry in the muscle activations around the mid-sagittal plane 

(Equation 6-1). Some of the asymmetries can be reduced by increasing the coefficients of the 

symmetry parameter in the reward function, however, that may cause an increase in the iterations 



 

171 
 

required by the RLMAC for learning muscle synergy. The rectus capitis minor had high activations 

while stabilizing and while performing sagittal and lateral kinematics. The multifidus also had high 

activation values during extension and lateral bending (Figure 6-9). The high forces in these 

muscles compensate for the passive stiffness provided by some soft tissue which is not included 

in the neck model. The high muscle activations can also be due to the absence of any term 

penalizing the high activations. Also, the multifidus extends from the sacrum (T1 in the present 

model) to the C1, however same activation level has been considered throughout the length of the 

multifidus, which can also result in high activations for some neck movements.   

The final head positions were within 2.3o of the target position in all three planes, the maximum 

angle error occurring for the left lateral bending. The higher error in the lateral bending scenarios 

can be due to the agent being trained less in the lateral plane compared to the other two planes 

(20% of the iterations in the lateral plane compared to 30% in sagittal and transverse planes). The 

errors in the simulation can be reduced by further training or by decreasing the time step during 

the training, however, the error of 2.3o in one of the head movement directions was considered 

satisfactory for the present study as the error in all the directions were less than 10% of the head 

movement range (50o in sagittal plane, 60o in transverse, and 40o in the lateral plane). 

The kinematics output from the RLMAC in the sagittal and the transverse planes were compared 

with the human volunteer data gathered in chapter 5. The simulation outputs correlated well with 

the tests for the scenarios that were encountered by the RLMAC during the training (Figure 6-19) 

as well as for novel target signals (Figure 6-20). During the training, the head was assigned to 

move from the neutral position to flexion, extension, axial rotation, or lateral bending. However, 

the trained RLMAC could also move the head from the extremities back to the neutral position. 

The RLMAC could also produce head motions by reacting to the target signals prescribed along 
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the sagittal and transverse planes at once (Figure 6-21 and Figure 6-22), even though the head was 

trained to move along only one DoF. The RLMAC could move the head towards the target signal, 

however, in the two cases in which the RLMAC was tested, the target could not be reached when 

the target signals were applied in 2 directions simultaneously. Similar observations were made by 

Schneider et al. (1975) in human subjects. In the study, it was found that the ranges of motion in 

the sagittal plane decrease while the head is rotated. These simulations show the robustness of the 

trained RLMAC for synthesizing biofidelic head kinematics by being able to learn the complex 

relationships between the actions required and the state parameters of the control model.  

6.5 Conclusions 

Reinforcement learning was used to simulate omnidirectional fast movement in a multibody model 

of the head and neck. To the best of my knowledge, this is the first study in which goal-directed 

rotations of the head in all three anatomical planes have been performed. The response of the 

RLMAC was verified with volunteer test data and the RLMAC could also generate physiologically 

accurate movements under novel target signals. The results from this chapter show the robustness 

of the RLMAC, that can be trained to adapt to the complex relationships between the passive 

structures, the muscle synergy, and the target positions, which can be difficult by linear feedback 

gains as used in previous studies. 
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Chapter 7 – Evaluation of the trained RLMAC to changes in anthropometry 

The  neck model was developed with the anatomy of a 50th-percentile male (Fice et al., 2011; 

Panzer et al., 2011). As the mass, stiffness, and inertia properties were assigned for rigid vertebrae, 

skull, and joints it was possible to scale the values to represent a different anthropometry. In this 

chapter, the neck model was scaled to represent the anatomy of a small (5th percentile) female and 

95th percentile male. The accuracy of the scaling parameters was verified by validating the passive 

response of the scaled 5th percentile female model with the cadaver data. 

The RLMAC which was trained to perform fast goal-directed head movements with the 50th 

percentile neck model was integrated with the scaled models and the ability to perform similar 

kinematics was verified. The extension, flexion, and axial rotation responses were obtained in the 

scaled models and compared with the response of the neck model. The results of this chapter are 

important to determine the applicability of a trained RLMAC when used with different 

anthropometries, which will reduce the requirement of training and validation of the RLMAC 

individually for each case. 

7.1 Introduction 

Most of the previous control studies on the head and neck body region have been performed for 

50th percentile male models (Brolin et al., 2008; Cappon et al., 2007; Chancey et al., 2003; Happee 

et al., 2017; Ólafsdóttir et al., 2019; Zheng et al., 2021). Very few past studies have considered 

different anthropometries for modeling the muscle control strategy. Dibb et al (2013) performed 

optimization studies to maintain the stability of the head under gravity in FE models of 6 year old 

and 10 year old pediatric subjects. Brolin et al. (2015) implemented PID control for the spine and 

hip joint in a 6-year-old child MB model. The active child model was used to study the effects of 



 

174 
 

postural control on the responses of a child during automotive braking and steering events. 

Recently, there has been a push towards the development of female-specific human body models  

(Davis et al., 2016; John et al., 2022; Östh et al., 2017b) as it was found that females are more 

susceptible to injuries during motor vehicle crashes (Bose et al., 2011; Forman et al., 2019).  

Devane et al. (2022) implemented feedback controllers in a 5th percentile female FE model. The 

neck PID controllers included one controller for the neck sagittal angle and 210 controllers for 

neck muscles. The model was simplified by assuming identical controller gains for all the neck 

muscles. The active 5th percentile female FE model improved the response in pre-crash braking 

and low-speed frontal tests. Putra et al. (2019)  compared feedback control strategies based on 

head and neck kinematics (vestibulocollic control) and muscle length (cervicocollic control) in a 

head-neck FE model of 50th percentile female developed previously by Östh et al. (2017). Putra 

and Thomson (2022) then expanded the study to incorporate the vestibulocollic and cervicocollic 

parameters into a single feedback control mechanism. In the study, the neck muscles in the FE 

model were divided into eight groups and each group was assigned similar vestibulocollic control 

gains based on spatial tuning studies. The muscle controllers were separate for each muscle and 

sought to reduce the change in length from the initial value. 

In previous studies, the controller was developed with the objective of maintaining the head 

stability. The controllers had the same gains throughout the simulations assuming a linear 

relationship between the control errors and the external environment. However, a previous study 

by Zheng et al. (2021) demonstrated that gains used for stabilization under gravity cannot be used 

for higher magnitudes of external loads. 

In the present chapter, the RLMAC trained for omnidirectional control was analyzed for control 

of head kinematics in different anthropometries. The neck model was scaled to represent the 
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anatomy of a small (5th percentile) female (henceforth known as the F05 model) and a large (95th 

percentile) male (henceforth known as the M95 model). The RLMAC trained in chapter 6 was 

integrated with the scaled models to generate the goal-directed head kinematics response. The 

response of the scaled model with trained RLMAC was compared with the responses of the neck 

model obtained in chapter 6. The evaluation of the ability of RLMAC to control the head 

kinematics for different anthropometry is important because a robust controller eliminates the 

computational cost associated with training for every new anthropometry. 

7.2 Methodology 

The neck model consists of rigid vertebrae, the skull (represented as Hybrid III headform), 

intervertebral joints, and 46 neck muscles. The neck model was scaled with appropriate scaling 

factors to represent the 5th percentile female and 95th percentile male anatomies. The scaled 

geometries were integrated with the trained RLMAC to obtain the kinematics responses while 

reacting to target signals. 

7.2.1 Scaling to different anatomies 

In the  neck model, the mass and inertia were assigned to each vertebra and the head, and the values 

were obtained from the source FE model (Fice et al., 2011; Panzer et al., 2011). The stiffness of 

the intervertebral joints was adapted into bilinear curves from different sources of data (Chang et 

al., 1992; Dibb et al., 2013; Liu et al., 1982; Shea et al., 1991; Yoganandan et al., 2007). The 

muscles were added as line forces between origin and insertion, with multiple routing points along 

the length to account for the bending of the spine during movements (Panzer et al., 2011). 

As the different parameters required were prescribed during the development of the neck model, 

all these parameters can be scaled to arrive at a different anthropometry. For the analysis in this 
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chapter, the neck model was scaled to 5th percentile female and 95th percentile male anatomies. 

The scaling factors were derived from the equal stress-equal velocity scaling derived by Eppinger 

et al. (1984). The anisometric scaling method was used to determine the length scaling factors (λx, 

λy, λz)  in the different anatomical planes (Dibb et al., 2013; Forman et al., 2006). The characteristic 

length (λz) for scaling was measured from the center of mass (CoM) of the T1 vertebra to the CoM 

of the head (Figure 7-1). The density of the neck model and the scaled models were considered 

constant; therefore, the mass scale factor (λm) can be calculated by Equation 7-1.  

λm =  λx . λy . λz Equation 7-1 

The mass scale factor can be determined by comparing the average masses between different 

anthropometries found in the literature. The length scaling factors in the transverse plane were 

considered equal and can be obtained using Equation 7-2. 

λx = λy = (λm / λz)1/2 Equation 7-2 

All the other scaling factors could be derived from the length and mass scale factors, considering 

velocity scaling (λv) to be 1 (Eppinger et al., 1984; Forman et al., 2006).  

 

Figure 7-1: Measurement of the characteristic length scaling factor.  
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Table 7-1: Scaling factors for the model parameters 

Scaling parameter  F05 model M95 model 

Mass λm 0.667  1.31 

Characteristic length  λz 0.787 1.132 

Time λt = λm
1/3 0.9233 1.094 

Transverse length λx = λy = (λm/ λz)1/2 0.921 1.076 

Moment of Inertia λI [0.538, 0.533, 0.564] [1.488, 1.501, 1.470] 

Product moment of Inertia λPI [0, 0.483, 0] [0, 1.595, 0] 

Stiffness λK [0.787, 0.787, 1.077] [1.132, 1.132, 1.022] 

Damping λb = λK . λt [0.726, 0.726, 0.994] [1.045, 1.045, 0.943] 

Rotational stiffness λRK = λm 0.923 1.094 

Rotational damping λD  = λRK . λt 0.852 1.197 

Muscle force (Fmax) λF = λx . λy 0.848 1.158 

The mass and length factors for the F05 model were obtained by comparing the imaging data 

between the anatomies analyzed by Davis et al. (2016) and Gayzik et al. (2011, 2009) for the 

purpose of building a FE human body model. A similar mass scaling factor of 0.667 was used by 

Nie et al. (2019) to scale the response of the 5th percentile female foot and ankle model for 

validation purposes. The primary scaling factors for the M95 model were derived from the imaging 

study of 95th percentile males performed by Vavalle et al. (2014) and compared with the 50th 

percentile male data (Gayzik et al., 2009). The maximum muscle forces and the translation 

stiffnesses were scaled assuming constant stress (Eppinger et al., 1984).  The rotational stiffness 

(and in turn moment) and time were assumed to be scaled equally for all directions with a scaling 

factor equal to the mass scaling (Forman et al., 2006; Nie et al., 2019). The inertia scaling was 

difficult to determine based just on the other scaling parameters for anisotropic scaling and hence 
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was considered to be the average value of the ratios of inertias of the vertebrae from the imaging 

studies (Davis et al., 2016; Gayzik et al., 2009; Vavalle et al., 2014). However, in the absence of 

imaging data, mass and time factors (λm . λt
2) can also be used to approximate the scaling value. 

7.2.2 Validation of the scaled F05 model 

To evaluate the accuracy of the scaling method, the F05 model was obtained by scaling with the 

factors mentioned in Table 7-1 and the passive response of the F05 model was evaluated in a rear 

impact scenario using the data gathered by Humm et al. (2021) for female head and neck 

specimens. The head-neck complex was isolated from the female specimens in the experimental 

studies. The T1 was potted and an acceleration pulse approximating a rear impact of 2.6 m/s was 

applied. The sagittal angles between adjacent vertebrae were measured and reported. 

To replicate the testing conditions, the acceleration pulse as measured in the study was applied at 

the T1 of the F05 model in the horizontal direction and all the other DoF at the T1 were constrained. 

The angular motion between the vertebrae was outputted during the simulation and was compared 

with the test data to evaluate the biofidelity of the scaled F05 model and the overall scaling process. 

7.2.3 Integration with the RLMAC to generate voluntary head kinematics 

The F05 model and M95 model obtained by scaling were integrated with the RLMAC trained for 

the omnidirectional control of head kinematics (chapter 6). The RLMAC was then used to generate 

goal-directed kinematics in both the scaled models in the three anatomical planes. The models 

were stabilized under gravity for 400 ms, after which the target head position was prescribed in 

one of the anatomical planes. The kinematics of the head CoM was measured during the 

simulation, and the angle time history of the F05 model and the M95 model were analyzed and 

compared with the angle time data of the neck model. 
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7.3 Results 

The mass and inertia of the rigid bodies, the stiffness and damping of the intervertebral joints, and 

the maximum muscle forces were scaled with scaling factors mentioned in Table 7-1 to obtain the 

head-neck model of two different anthropometries – a 5th percentile female (F05 model) and a 95th 

percentile male (M95 model).  

7.3.1 Validation of the scaled F05 model 

The accuracy of the scaling methodology was evaluated by comparing the passive responses of 

the F05 model with the test corridors in a rear impact scenario. The simulation results are compared 

with the test corridors in Figure 7-2. 

  

(a) (b) 
  

(c) (d) 
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(e) (f) 

Figure 7-2: Validation of passive response of the F05 model in rear impact scenario (a) Acceleration 

pulse applied at T1 in the anterior direction (b) C2-C3 angle (c) C3-C4 angle (d) C4-C5 angle (e) C5-

C6 angle (f) C6-C7 angle. The intervertebral angles are measured in the sagittal plane. 

Figure 7-2a shows the acceleration profile imparted at T1 to replicate a 2.6 m/s rear impact scenario 

(Humm et al., 2021).  The angles between the adjacent vertebrae in the sagittal plane were within 

the test corridors except for C6-C7. The C6-C7 joint was slightly stiffer compared to the test data, 

with the sagittal angle-time history near the lower bound of the test corridor.  

7.3.2 Control of the scaled models 

The scaled F05 and M95 models were integrated with the RLMAC to generate the desired head 

kinematics. The trained RLMAC was first used to stabilize the scaled models, followed by 

generating goal-directed motions in the sagittal, transverse, and lateral planes.  

Figure 7-3 shows the head angle while stabilizing the F05 model and M95 model under gravity, 

i.e., when the target angle was set to 0 for all three planes. The RLMAC could stabilize the head 

in both scaled models. In the F05 model, the final angles in the three planes were less than 1o 

(Figure 7-3a). In the M95 model, the maximum error was 2.2o in the axial plane, whereas the errors 

in the other two planes were below 1o (Figure 7-3b). In the F05 model, the head took 0.5s to 

completely stabilize compared to 0.4s in the M95 model. 
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Axial rotation Sagittal rotation Lateral rotation 

(a) (b) 
Figure 7-3: The head angle-time history during the stabilization run in the three planes (a) F05 model 

(b) M95 model. 

Following the stabilization run, the scaled models were simulated for goal-directed head 

kinematics. The target angle was prescribed in the preferred plane, while targets in the other two 

directions were maintained at 0o. 

Figure 7-4 shows the angle time history of the F05 model in each of the anatomical planes. The 

F05 model could reach the target orientations in the sagittal and lateral planes with a maximum 

error of 2.2o in the lateral left rotation. In the transverse planes, the head CoM reached 26o when a 

target step of 30o was applied. The F05 model undershot the target in both left and right rotations. 

Figure 7-5 shows the angle-time plots for M95 model under goal-directed head motions. In the 

M95 model, the head could follow the target signals in the three anatomical planes with maximum 

error less than 1.5o. There was very little out of plane motion in the other directions as can be seen 

from the graphs (Figure 7-4 and Figure 7-5).  
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Neutral – 20o Extension Neutral – 20o Flexion 

  

Neutral – 30o Axial right Neutral – 30o Axial left 

  

Neutral – 20o Lateral right Neutral – 20o Lateral left 

Axial rotation Sagittal rotation Lateral rotation 

Figure 7-4: Response of the head of F05 model under goal directed head motion (bold–head angle, 

dotted–target angle). 
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Neutral – 20o Extension Neutral – 20o Flexion 

  

Neutral – 30o Axial right Neutral – 30o Axial left 

  

Neutral – 20o Lateral right Neutral – 20o Lateral left 

Axial rotation Sagittal rotation Lateral rotation 

Figure 7-5: Response of the head of M95 model under goal directed head motion (bold–head angle, 

dotted–target angle). 
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Neutral – 20o Extension Neutral – 20o Flexion 

  

Neutral – 30o Axial right Neutral – 30o Axial left 

  

Neutral – 20o Lateral right Neutral – 20o Lateral left 

 neck model F05 model M95 model 

Figure 7-6: Comparison of response of the neck model and the scaled models while performing goal 

directed kinematics in the three planes. The blue dotted lines represent the target angles. 
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Figure 7-6 compares the response of the F05 and the M95 models with the neck model. The angle-

time profile of the M95 model was similar to that of the neck model with very little to distinguish 

between the responses. The F05 model’s head angle was also within 1o of the neck model in the 

sagittal and lateral planes. However, the angle at stabilization in the axial plane was lower in the 

F05 model with the difference being 2o in left turn and around 3o in right turn. 

To understand the cause of the differences in the response of the F05 model from the neck model, 

a sensitivity study was performed evaluating the effect of each parameter on the overall response. 

Initially, simulation was performed by scaling the mass and the inertia of the head and the vertebra. 

Next, the distance between the vertebrae and the muscle lengths were also scaled to the anatomy 

of the 5th percentile female. Finally, the muscle forces and joint stiffness were scaled to arrive at 

the response of the F05 model. 

 

mass scaling mass and length scale F05 model  neck model 

Figure 7-7: Sensitivity study of scaling parameters on the overall response of the F05 model in 30o left 

axial rotation. The blue dotted lines represent the target angle.  
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Figure 7-7 show the effects of various scaling parameters on the response of the F05 model. 

Scaling only the mass has little effect on the head rotation. In fact, scaling only the mass improves 

the stabilization of the neck model in the transverse plane as can be seen in the first 400 ms in 

Figure 7-7. Scaling the coordinates of the vertebra CoMs to the respective position representing 

fifth percentile female has the major effect on the model response. After the structural scaling, 

scaling the muscle forces and the joint stiffness again have little effect on the response of the F05 

model. 

7.4 Discussions 

The ability of the RLMAC to adapt to changes in anthropometries have been evaluated in this 

chapter. The neck model was scaled to anatomies representative of a 5th percentile female (F05 

model) and a 95th percentile male (M95 model). Anisotropic scaling methodology was used with 

the distance between the T1 CoM and head CoM as the characteristic length. The stress, density, 

and velocity were considered constant across the anthropometries, and the scaling factors of the 

other parameters were derived from the three primary parameters (Eppinger et al., 1984; Forman 

et al., 2006). The values of scaling factors and their calculations are provided in Table 7-1. 

The accuracy of the scaling methodology was verified by evaluating the passive response of the 

F05 model under rear impact scenario. An acceleration pulse representative of 2.6 m/s rear impact 

was applied at the T1 and the pitch angle between the adjacent vertebrae were instrumented during 

the simulation. The simulation results show that the vertebral angles were within the test corridors. 

Only the C6-C7 angle was lower than the corridor, however it was within 1o of the lower bound at 

the conclusion of the simulation. The results show that the scaling methodologies is biofidelic for 

the purpose of using the scaled models for postural control. 



 

187 
 

The RLMAC trained in chapter 6 was integrated with the F05 model and the M95 models for the 

purpose of generating goal-directed head kinematics. The RLMAC could stabilize both the F05 

model and the M95 model under gravity (Figure 7-3). Following the stability run, the targeted 

motions in the three planes were simulated. The scaled models were stabilized for 400 ms 

following which the target signal was prescribed at the preferred direction. The M95 model could 

synthesize the desired kinematics and the angle time response of the M95 model was comparable 

to the neck model in the head rotations performed (Figure 7-6). The F05 model could produce the 

head rotations within 1o of the neck model in the sagittal and lateral plane. However, the head 

angle in the F05 model was lower than the neck model in axial rotations. In the left axial rotation, 

the difference in head angle between the models was 1.5 whereas the error was 3o in the right axial 

rotation. 

Sensitivity study was carried out to evaluate the effects of different scaling parameters on the 

response of the neck model. Scaling just the mass and inertia to that of the F05 model was found 

to have little effect on the head kinematics response. However, scaling the structural dimensions, 

i.e., the distance between the vertebra and head CoM as well as the muscle length was the major 

contributor to the difference in the head response observed (Figure 7-7). This can be explained as 

there was no reward component controlling the translation of the head, and as a result, the moment 

arm for the muscle forces, which may result in the minor differences observed in the F05 model. 

Further analysis may be required on eliminating the error, however with the current training 

framework the RLMAC was robust enough to keep the max error below 10% over the range of 

motion in the F05 model. In the M95 model, the RLMAC could reproduce the desired kinematics 

with angle time profile very similar to that of the neck model. 
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7.5 Conclusions 

In this chapter, the trained RLMAC has been tested for a 5th percentile female and a 95th percentile 

male anatomy. The RLMAC could synthesize the desired kinematics for both the scaled models, 

however the F05 model fell short of the target angle in the axial rotation case. The ability of the 

RLMAC to reproduce the desired kinematics for change in anthropometries will drastically reduce 

the requirement of training. The trained RLMAC agent can be further trained for the modified 

anatomy without starting from scratch which reduces the computational cost associated with 

training a RL agent. 
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Chapter 8 – Exercising of the RLMAC to inertial and impact loads 

In chapter 6, the RLMAC was trained to maintain the stability of the neck model under gravity 

and synthesize goal-directed kinematics of the head. In this chapter, the ability of the trained 

RLMAC to react to added inertia and impact loads will be verified. This step is important to 

determine the overall applicability of the trained RLMAC in different scenarios. 

Inertial loads were introduced in the neck model by adding the mass and inertia of an American 

football helmet to the head of the model. The trained RLMAC was then coupled with the updated 

model to reproduce the targeted motions that were encountered during the training.  The RLMAC 

was also incorporated to predict the motions of the head under low-speed frontal and rear impact 

scenarios, and lateral padded impacts to the head. 

The trained RLMAC was found to be robust and was able to control the head kinematics under the 

mentioned load cases. Results from this chapter demonstrate the general applicability of 

reinforcement learning-based muscle control for static as well as dynamic loads. 

8.1 Introduction 

In many situations including sports or while operating a motorcycle, individuals are required to 

wear helmets for added safety. Helmets add inertia to the head, causing an increase in forces and 

moments on the neck (Harrison et al., 2015; Thuresson et al., 2005). Few previous computational 

studies have demonstrated the effect of muscle activation on the response of a helmeted human 

body model. Jin et al. (2017) performed a finite element (FE) study to evaluate the effects of 

muscle activations on head kinematics while wearing American football helmets. The study 

simulated a head-to-head lateral impact situation in passive condition in addition to two different 

activation scenarios: In the first scenario, all the muscles were activated to 100% around 55 ms 
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after the impact (late impact scenario), and in the second activation scenario, the muscles were 

activated at 73% at the time of impact and the activation was increased to 100% 15 ms post-impact 

(early impact scenario). The results showed that in the early activation simulation, the peak 

rotational velocity reduced by around 16% compared to the passive case. However in the late 

activation case, the peak rotational velocity decreased only by 8% from the passive condition. 

Bruneau and Cronin (2020) performed impact simulations using a helmeted 50th-percentile male 

FE model and a deformable impactor. Muscles were grouped as extensors and flexors and the FE 

model was impacted in three separate directions. A ‘balanced’ activation state was used for the 

impact simulations, in which the flexors were assigned 87% activation and a ratio of 0.15:1 was 

maintained between the extensor and flexor activations. The muscle activations were found to have 

small effect of the overall kinematics of the head with only 2% decrease of the peak rotational 

velocity in the 9.3 m/s lateral impact case. These studies show the importance of activation onset 

time as well as the muscle activation synergy on the kinematics response of a head FE model with 

helmet. However, the effect of adding the helmet on the voluntary motion of the head, neck, and 

spine has not been assessed. The relevance of such a study is related to athletes’ and soldiers’ 

inclination to wear lighter helmets that typically offer less restriction to head movement and less 

neck fatigue than a heavier helmet, but usually at the cost of a decrease in safety.  

In dynamic events such as vehicle impact scenarios, volunteers respond differently to cadavers 

due to the presence of active muscle forces. Iwamoto et al. (2012) compared the results of the 8 

km/hr rear impact sled test using cadavers (White et al., 2009) to a volunteer study performed 

under a similar condition (Ono et al., 1997) and found that the peak sagittal head angle was 14o 

higher in cadavers compared to the human volunteers. A robust control model should be able to 

effectively control the kinematics of the head while stabilizing under gravity as well as under such 
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dynamic scenarios where muscle activations alter the body kinematics, without the need to update 

the control parameters. Previous control studies using feedback controllers have used different 

gains for different loading cases. Happee et al. (2017) optimized the values of feedback gains based 

on the perturbation frequency at T1. Zheng et al. (2021) implemented feedback control based on 

CCR and VCR to stabilize the head under gravity and used the same architecture to predict head 

kinematics under impact scenarios. However, for high amplitude impact cases, the gains were 

modified from the stabilization condition to obtain the desired kinematics response. The 

methodology of varying the gains corresponding to impact loads can be useful in some cases, but 

not robust enough for complex impact scenarios that may involve loads of varying magnitudes that 

need to be accounted in the control model. 

In this chapter, the ability of the trained RLMAC to adapt to changes in inertia and external impact 

loads has been evaluated. RLMAC trained in chapter 6 to perform omnidirectional head kinematics 

is subjected to added head inertia representing an American football helmet and the goal-directed 

head motions performed in chapter 6 are repeated. The response of RLMAC is also evaluated for 

dynamic environments representing automotive and lateral impacts to the head, without any 

modification to the controller. The RLMAC was simulated under low speed sled conditions (Fice 

et al., 2021b) representative of frontal and rear impact scenarios. For evaluating the control in 

lateral direction, the neck model was simulated under lateral padded head impacts (Reynier et al., 

2020). The external boundary conditions used in this chapter will help determine the general 

robustness of the RLMAC in scenarios that are generally simulated with computational human 

body models. 
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8.2 Methodology 

The neck model with trained RLMAC was used to evaluate the response of RLMAC to changes 

in inertial and dynamic loads. Mass and inertia representing an American football helmet were 

added to the head model to observe the effects of change in inertia on the overall response of the 

RLMAC. For dynamic loads, kinematics and forces obtained from various sources of volunteer 

data were applied to the head model to obtain the response. The responses of the RLMAC were 

compared with the test data to determine the applicability of the RLMAC in such scenarios. 

8.2.1 Response to added inertia 

Funk et al. (2018) measured the mass and inertia of 37 American football helmets. Out of the 

helmets measured, the Vicis zero 1 2017 model had the highest mass of 2.193 kg. For the analysis 

in this chapter, the mass and inertia of Vicis were added to the head of the neck model. The center 

of mass (CoM) of the helmet was measured with respective to the head CoM of a hybrid III dummy 

(Funk et al., 2018). The properties of the Vicis zero 1 helmet are provided in Table 8-1.  

Table 8-1: Mass, inertia, and CoM location of the Vicis zero 1 

Mass (kg) 2.193  

(1.796 kg helmet shell and 0.397 kg facemask) 

Inertia (kg – m2) Ixx = 0.0245, Iyy = 0.0271, Izz = 0.0277 

Ixz = 0.0278 

CoM location (mm) X = 13.7 anterior, Z = 20 superior 

              Note: The helmet CoM coordinates have been measured from the head CoM.  

The helmet was assumed to be symmetric about the sagittal plane, thus the CoM of the helmet was 

considered to lie in the sagittal plane (i.e., Y = 0). For this reason, the product moment of inertias 

Ixy and Iyz were also assumed to be 0. The head model with the representation of helmet CoM 

location is shown in Figure 8-1. 
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Figure 8-1: The relative position of Vicis Zero 1 center of mass with respect to head CoM. 

The helmeted neck model was stabilized under gravity to evaluate the ability of the RLMAC to 

react to the added mass. The energy cost of stabilization (joint energy), along with the muscle 

activations and the compression (along Z axes or in the superior-inferior direction) of the vertebral 

joints were compared with the neck model in the same stabilized scenario without a helmet. The 

joint energy cost is calculated for all 6 DoFs (Equation 8-1). 

𝐽𝑜𝑖𝑛𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 (𝐸𝑗) = ∑𝐹𝑗  𝑥 𝑠𝑗  Equation 8-1 

Following the head stabilization, head extension and right axial rotations were also performed as 

a reaction to step target signals. The head was stabilized for initial 0.4 s before applying the step 

target. The angle time history of the head CoM was measured and compared with that of the 

bareheaded neck model obtained in chapter 6. The energy cost of the head motion (Equation 8-1) 

was also calculated and compared for both goal-directed motions. 
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8.2.2 Response to automotive impact scenario 

The neck model was simulated in conditions resembling low speed frontal impacts and rear 

impacts. Fice et al. (2021) performed volunteer sled tests to measure the head and neck kinematics 

in frontal and rear automotive impacts. The volunteers were seated in an automotive seat mounted 

over a sled and the responses were measured with their arms placed on a steering wheel under two 

conditions – relaxed and braced. The sled was operated with a peak acceleration of 19.9 m/s2 with 

the sled pulse representative of 8 km/h frontal and rear impacts. In the experiments, the kinematics 

of the head CoM were measured using accelerometers. The torso kinematics were measured at the 

C7-T1 vertebral joints. 

2.5 

 

 

(a) (b) 

 

(c) 
Test data Average curve prescribed at T1 

Figure 8-2: The boundary condition prescribed at T1 for relaxed frontal impact (a) T1 horizontal 

acceleration (b) T1 vertical acceleration (c) T1 rotation.  
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In the simulations, the torso kinematics resolved at the T1-C7 joint were used as the boundary 

conditions for the four test cases. The translation and rotations measured at the sagittal plane (X 

and Z translation, Y rotation) were averaged for the volunteers and prescribed at T1 of the neck 

model (Figure 8-2). The head CoM rotation and the head retraction, defined as the horizontal 

displacement of the head as measured from T1, was measured in the model and compared with the 

test data. Simulations were carried out for the active neck model using the RLMAC and also 

without the RLMAC (i.e., the passive model). The active model was stabilized for the first 400 ms 

before imparting the boundary conditions at T1. In the impact simulations, the target angular error 

was set to 0o in all planes. A sensitivity study was also carried out to observe the effect of T1 

rotation on the overall response of the RLMAC when simulated in the anterior-posterior direction. 

8.2.3 Response to padded lateral impacts 

To evaluate the response in the lateral direction, the neck model was simulated under padded 

impacts with boundary conditions adapted from human subject tests conducted by Reynier et al. 

(2020). In the experiments, 20 male volunteers were subjected to lateral head impacts with a steel 

ball weighing 3.7 kg and covered with foam at a horizontal velocity of 2m/s. The impact area on 

the volunteers was also padded with foam and the impacts were carried out under three muscle 

conditions – passive, unilateral, and co-contracted (Reynier et al., 2020). The ball was 

instrumented to measure the acceleration at the time of the impact. The head kinematics of the 

volunteers were measured using an instrumented mouthguard. To simulate the impact conditions, 

a horizontal force was applied to the head, 15 mm above the head CoM. The force magnitude was 

derived from the average impact acceleration of the steel sphere (Figure 8-3). In the volunteer 

studies the torso was not restrained (although a shoulder support was present to reduce the gross 

motion of the thorax). Thus, the T1 of the neck model was allowed to translate and rotate in the 
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lateral plane and stiffness of translation and rotation between the global reference and the T1 were 

determined from a sensitivity analysis performed on the neck model without muscle activation 

(passive) and compared to the volunteer response under passive muscle conditions. 

 

Experiment accelerations Mean curve used as the boundary condition 

Figure 8-3: Mean acceleration of the impactor used as the boundary condition for lateral impacts. 

8.3 Results 

8.3.1 Response to added inertia 

RLMAC trained in chapter 6 was able to stabilize the neck model with the added helmet inertia. 

Figure 8-4 shows the rotation of the helmeted head under gravity. The head was stabilized around 

400 ms and the maximum angular error was 2.8o in the transverse plane. In the other two planes, 

the angular errors were within 1o. 

 

Figure 8-4: The head CoM angular rotations during the stabilization simulation. 
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The joint energy cost of the stabilization simulation was calculated during the simulation and 

compared with the response of the neck model without the helmet. During the head stabilization, 

the helmet increased the joint energy by 25% (Figure 8-5).  

 

Without helmet With helmet 

Figure 8-5: Joint energy cost during the head stabilization simulation. 

The vertical compression of the spinal column at the final stabilized position was also measured 

and compared to the case without a helmet (Figure 8-6). The application of the helmet was found 

to increase the compression of the joints by around 15-20 %. While the maximum compression 

was seen in the C2-skull occipital joint, the joint compressions with added inertia of the helmet 

were still lower than 1 mm. 

 

Without helmet With helmet 
Figure 8-6: Vertical compression of the intervertebral joints during the head stabilization simulation. 
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The response of the RLMAC under helmeted conditions has been compared with that of the neck 

model without the helmet in Figure 8-7. The angle time history of the head CoM rotation has been 

compared for 20o extension and 30o right axial motion. The kinematics of the helmeted model was 

very similar to that of the bare-head model in the 20o extension motion, with the helmeted model 

stabilized within 1o of the target angle. In the axial rotation case, there was a small latency in the 

helmeted model’s initial response concerning the model without a helmet. The helmeted model 

also overshot the response of the neck model before stabilizing at the target position around the 

same time. 

  

Without helmet With helmet 
Neutral – 20o Extension Neutral – 30o Axial rotation 

Figure 8-7: Comparison of the response of the UVa neck model while performing goal-directed head 

motions with and without a helmet. The dotted line shows the target angle prescribed to the RLMAC. 

Figure 8-8 compares the joint energy while carrying out goal-directed kinematics. In the extension 

motion, the joint energy for the helmeted model at the stabilized target position was around 30% 

higher than the model without a helmet. The joint energy in the axial motion case was higher 

during the head movement in the helmeted model. Once the head stabilized, the joint energy was 

almost the same with less than a 10% difference at the target position.  
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Without helmet With helmet 
Neutral – 20o Extension Neutral – 30o Axial rotation (right) 

Figure 8-8: Comparison of the joint energy expenditure of the UVa neck model while performing goal-

directed head motions with and without a helmet. 

 

8.3.2 Response to automotive impact scenario 

The response of the head model with RLMAC was evaluated under dynamic conditions resembling 

low-speed frontal and rear impacts. The response was simulated under two conditions – arm 

relaxed and braced against the steering wheel. The response of the RLMAC was compared with 

the test data as well as with the response of the passive model. As the control objective was to 

minimize the error between the rotation of T1 and head CoM (i.e., target head angle of 0o when 

measured relative to the T1), the rotation prescribed at the T1 as boundary condition was also 

plotted along with the head rotations for reference. The Head CoM and T1 rotation angles have 

been plotted in the global reference frame. 

Figure 8-9 shows the response of RLMAC and the passive neck model in frontal impact conditions. 

The RLMAC maintained the head within the test ranges. The passive model on the other hand was 

unstable in both conditions with the peak angle much higher compared to the experiments. The 

head CoM was also able to follow the T1 angle closely in the active case as the control target was 

set to minimize the angular error between the head CoM and the T1. 
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Head CoM rotation T1 rotation Head CoM rotation (passive) 
(a) (b) 

Figure 8-9: Response of the active and passive model under low-speed frontal impact condition (a) arm 

relaxed (b) arm braced. 

Figure 8-10 displays the response of RLMAC and the passive model under the rear impact 

conditions. In the relaxed state, the response of the RLMAC is similar to the tests whereas the 

response of the passive model is outside the test bounds (Figure 8-10a). The RLMAC was initially 

stiff in the braced condition compared to the test data (Figure 8-10b).  

  

Head CoM rotation T1 rotation Head CoM rotation (passive) 
(a) (b) 

Figure 8-10: Response of the active and passive model under low-speed rear impact condition (a) arm 

relaxed (b) arm braced.  
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In the impact simulations, the head retraction was also measured, defined as the horizontal 

displacement between the atlantooccipital joint (AOJ) and the T1. Similar to the measurements in 

the tests, the AOJ was fixed at 24 mm posterior and 37 mm inferior from the head CoM. Figure 

8-11 shows the comparison of the active and passive neck model with the test data. The simulation 

curves both active and passive condition have been resolved at the T1 reference. 

  

(a) (b) 

  

(c) (d) 

Active response with RLMAC Passive response 

Figure 8-11: The head retraction measured for RLMAC and the passive UVa neck model (a) frontal 

impact arm relaxed (b) frontal impact arm braced (c) rear impact arm relaxed (d) rear impact arm 

braced. 
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The neck model with RLMAC was able to control the head motion and maintain the stability of 

the spine during the simulations. The active neck model was slightly stiffer in the initial part of the 

front impact condition with the arm relaxed, however, in all four cases the head retraction response 

of the active model was within the test measurements and reduced near the end of the simulation 

time. The passive model however was unstable in all the simulations as can be seen in the head 

retraction curves in Figure 8-11. 

In the volunteer sled studies, the kinematics of the torso was measured between the sternal notch 

and the C7 spinous process (Fice et al., 2021). In the simulations, the torso kinematics was used 

as boundary conditions for T1. As there can be some minor difference between the kinematics 

measurement and the actual rotation of  the T1 in the volunteers, a sensitivity study was carried 

out to analyze the effect of the rotation of the T1 to the head CoM rotation. The T1 rotation was 

scaled by a factor of 1.25 and 0.75 in the frontal and rear impact cases and the four simulations 

were repeated with the scaled boundary conditions (BCs). Figure 8-12 shows the T1 angle as well 

as the head CoM rotation with respect to the global coordinates. The control signal was set to 

maintain 0o error between the T1 and the head CoM. The RLMAC was able to control the head 

motion even when the rotations applied at T1 were scaled. The head rotations in the model 

followed the trend of the T1 rotations. The onset time of the peak head rotations remained almost 

the same in the three T1 BCs and stabilized near the end of the simulation when the T1 was also 

near stability. This shows that the trained RLMAC can maintain the head and neck stability even 

in case if the rotations at the T1 is higher than what is measured at the torso.  
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(a) (b) 

  

(c) (d) 

T1 baseline T1 rotation scaled 1.25 T1 rotation scaled 0.75 

Figure 8-12: Sensitivity of head CoM rotation to the T1 rotation (a) frontal impact arm relaxed (b) 

frontal impact arm braced (c) rear impact arm relaxed (d) rear impact arm braced. 
 

8.3.3 Response to padded lateral impacts 

Padded lateral impacts were simulated by applying the impact forces measured in the experiments 

(Reynier et al., 2020) to the side of the neck model, 15 mm above the head CoM. A stiffness of 

250 N/m and damping of 10 Ns/m were applied in the vertical (Z) direction to simulate the lower 

body weight. Damping of 10 Ns/m and 0.5 Nms/deg was applied along the lateral (Y) direction 
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and sagittal (X) rotation. The stiffness values were finalized after performing a sensitivity study 

with the passive model to match the volunteer data under passive conditions (Reynier et al., 2020).  

 

Figure 8-13: Response of the active and passive UVa head model to lateral padded impacts. 

Figure 8-12 compares the angular velocity of the passive neck model and the RLMAC with the 

passive and unilateral corridors from the human subject tests. The stiffness at the T1 was adjusted 

for the passive simulation curve to match with the volunteer head kinematics under passive 

conditions. The response of the active model was similar to the unilateral case, however, the peak 

angular velocity generated by the RLMAC was lower than the test peaks. 

8.4 Discussions 

The ability of the RLMAC to develop responses under novel environments like added inertial loads 

and impact loads was evaluated in this chapter. Inertial loads were applied by adding the mass and 

inertial properties of an American football helmet (Vicis zero 1) weighing 2.193 kg. Helmets affect 
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the kinematics and injury risks at the head and neck region in both helmet-to-helmet impacts and 

impacts with stationary objects such as ground (Funk et al., 2018). Helmets also increase neck 

loads resulting in a greater chance of fatigue (Funk et al., 2018; Harrison et al., 2015; Thuresson 

et al., 2005). 

In the present chapter, the inertial properties of the Vicis zero 1 helmet were added at a distance 

from the head CoM measured previously by Funk et al. (2018). With the added inertial loads of 

the helmet, the neck model with RLMAC was simulated for stability under gravity. The trained 

RLMAC was able to stabilize the head with the added helmet mass (Figure 8-5). The helmeted 

model had higher joint energy at the stabilized state however the joint energy was still lower 

compared to when the extension or flexion of the head was carried out. The addition of the helmet 

lead to 15 % higher vertical compression of the vertebral joints. Simulations were performed to 

rotate the head to 20o extension and 30o axial rotation angles. The simulations showed that during 

goal-directed rotations of the head, the addition of a helmet increases the joint energy. The joint 

energy was significantly (30%) higher at the final position in the helmeted model in the case of a 

20o head extension, as addition of the helmet inertia increased the moments required to stabilize 

the head thus putting higher load at the joints. The inclusion of added mass to the head like helmets 

for long term may lead to joint and muscle fatigue, causing discomfort and neck strain. Previous 

studies have found that adding the helmet mass shifts the combined center of mass of the head 

forward thus putting moment loads at the neck (Gallagher et al., 2008). Additional mass may also 

affect the ability of the wearer to discharge duties properly along with neck fatigue (Gaur et al., 

2013). The RLMAC framework provides a tool to study the effect of added mass on the spine at 

different postures which can be used while developing helmets for specific purposes. 
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The trained RLMAC was also simulated in low-speed impact scenarios. T1 translation and rotation 

measured in the sagittal plane in human subject studies (Fice et al., 2021) were applied at the T1 

of the neck model and the resulting translation and rotations were measured. Simulations were 

carried out to minimize the angular error of the head CoM with the T1 as the control objective. 

The RLMAC was able to control the head motion and maintain the head stability throughout the 

application of load, compared to the passive model which was unstable. The RLMAC was able to 

maintain the stability of the head in both the frontal and rear impact scenarios when the T1 

kinematics corresponding to the relaxed and braced conditions were applied. The head angular 

response in one of the loadcaes – rear impact with arm braced was found to be stiff compared to 

the volunteer responses. The RLMAC was tasked to minimize any angular rotations between the 

head and the T1 during the simulations. It is possible that the prescribed control target differed 

from the intent of the volunteers in the specific case. Also, the boundary condition that was applied 

at T1 was averaged for the volunteers and was measured in the sternal notch. It is possible that the 

rotation at the T1 was slightly higher than what the accelerators measured in the volunteers. The 

RLMAC was also able to control and stabilize the head motion when the rotations at the T1 were 

scaled. The evaluation of the RLMAC to control the head movements in impact conditions is 

important as the RLMAC was trained while T1 was fixed and in the impact cases, the T1 is both 

rotated and translated. The results show that training the neck model under common everyday 

activities like head rotations can be extended to low speed impact conditions in which muscle 

activities play an important role (Iwamoto et al., 2012; White et al., 2009) and where the both the 

load magnitude and the boundary conditions are different than what the RLMAC was trained for. 

The neck model was simulated in padded impact conditions to evaluate the response when the 

impact load is applied laterally. Forces representing the impact conditions were applied to the head 
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and appropriate stiffness was applied at the T1 to simulate the lower body inertia during the 

impacts. The response of the RLMAC was similar to that of the volunteers in the unilateral 

conditions. However, the angular velocity was lower than that observed in the tests. The stiffness 

at the T1 was calibrated with the passive neck model by comparing it with the response of the 

human subjects in passive conditions. However, even in the passive conditions, the volunteers may 

be having a baseline level of activation which may have stiffened the T1, thus leading to the lower 

peaks observed in the active model (Figure 8-13).  

In some previous studies, the linear gains were varied depending on the external load cases 

(Happee et al., 2017; Zheng et al., 2021). However, no changes to the trained RLMAC were made 

in this chapter. The RLMAC trained in chapter 6 for generating goal-directed head movements 

was used in the present chapter to predict the head and neck responses in impact cases.  

8.5 Conclusions 

The ability of the trained RLMAC has been evaluated to generate responses under inertial and 

impact loads. The RLMAC was only trained for generating goal-directed motions, therefore the 

load-cases mentioned in this chapter were novel to the RLMAC controller. The RLMAC was able 

to control the head motions in both scenarios showing the robustness of the reinforcement learning 

framework. RLMAC can be further used to design and develop improved helmets and injury 

countermeasures by studying the effects of muscle activations in such scenarios. Reinforcement 

learning also gives us an opportunity to train human body models under scenarios where collecting 

data is convenient like goal-directed movement and weightlifting scenarios and then use the data 

train and predict responses where gathering data is difficult due to risk of injury. The results from 

this chapter show that RLMAC does not require trainings for multiple load cases which can be 

computationally expensive, rather, it can extrapolate the trained responses to novel loads. 
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Chapter 9 – Conclusions 

Active muscle forces can affect the biomechanical response of humans to external forces caused 

by impact events and as a result, need to be considered while simulating human body models 

(HBMs) in certain impact conditions. From the perspective of automotive safety, active muscle 

forces have the most effect on occupant biomechanics in relatively low-acceleration events where 

the occupant has time to react. Thus, incorporating the active muscle forces in HBMs may be 

critical for accurate predictions of the kinematics and resulting injury risk of an occupant in 

scenarios such as pre-impact autonomous braking and rollover. Accuracy in predicting the 

occupant response in these types of scenarios is important for the proper development of injury 

countermeasures. Active muscle control using the closed-loop feedback mechanisms are the 

current state-of-the-art for HBMs used for automotive safety research, but this approach has 

limitations; the closed-loop controllers rely on linear feedback gains which are tuned for a narrow 

band of loads, and they require pre-assigned grouping of muscles as agonists and antagonists which 

is not always obvious to identify beforehand. Moreover, the closed-loop controllers cannot account 

for the adaptation of muscles to changes in external loads that result in a change in activation levels 

across muscles. The relationship between change in muscle activation levels to external loads is 

complex in nature and cannot be accurately represented with linear feedback gains. 

Hence, the goal of the dissertation was to explore the use of reinforcement learning (RL) for muscle 

control in HBMs. To achieve this objective, a comprehensive evaluation of RL algorithms was 

performed for synthesizing the desired joint kinematics in HBMs. Initially, the RL muscle 

activation control (RLMAC) was implemented on a simplified multibody (MB) model of the 

elbow joint to demonstrate the feasibility of this approach. After the utility of this method was 

proved on the elbow MB model, the RLMAC was tested in its ability to generate biofidelic head 
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kinematics in the more complex head and neck body region. For this purpose, an MB model of the 

head and neck region was developed, and the passive responses of the model were validated. The 

RLMAC was then integrated with the neck model and trained for generating goal-directed head 

motions in the three anatomical planes. Human subject testing was performed to generate head 

rotation data to validate the response of the trained RLMAC. Finally, the ability of the RLMAC 

trained for generating targeted head rotations to produce acceptable responses was evaluated under 

different anthropometries, added inertial loads, and in motor vehicle environments. 

9.1 Major contributions 

9.1.1 Development of fast-running multibody mode of the human head and neck region 

A fast-running MB model of the head and neck region was developed in MATLAB multibody 

toolbox for the present dissertation. The neck model had an anatomy of a 50th percentile male and 

was based on scanning data from previous finite element (FE) studies (Fice et al., 2011; Panzer et 

al., 2011). The neck model was composed of eight rigid vertebrae and the head was represented 

visually using the Hybrid III headform; these structures were assigned inertial properties taken 

from the 50th percentile male FE model. The stiffness between each vertebra, representing the 

intervertebral soft tissues (disks and ligaments), was represented using 6 degrees of freedom (DoF) 

non-linear joints (Chang et al., 1992; Dibb et al., 2013; Liu et al., 1982; Shea et al., 1991; 

Yoganandan et al., 2007). Forty-six Hill-type muscles (Bayer et al., 2017; Haeufle et al., 2014) 

were added into the MB model using origin and insertion data from the FE model. The passive 

response of the neck model was validated under a rear impact scenario (Brian D. Stemper et al., 

2004). The utility of the neck model was extended to include the ability to scale the geometry and 

material properties to represent different anthropometries, as demonstrated in chapter 7. The 
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response of the neck model scaled to the anatomy of  5th percentile females was validated under 

the rear impact dataset generated on female specimens (Humm et al., 2021). 

The developed MB model can be used to simulate response under a range of loading scenarios for 

quick analysis of head and neck response and injury analysis. The neck model can also be 

integrated with other toolboxes of MATLAB for statistical analysis and optimization studies which 

require multiple iterations. 

9.1.2 Development of RLMAC for muscle control 

A reinforcement learning-based muscle control framework (RLMAC) was developed in this 

dissertation. A deep deterministic policy gradient (DDPG) agent (Lillicrap et al., 2019) was 

initially used to develop the RLMAC and integrate it with a MB model of a human arm. The 

RLMAC could generate the desired kinematics about the elbow joint and could generate 

reasonable responses to novel loading environments. 

The RLMAC was then integrated with the neck model for synthesizing goal-directed motions of 

the neck. Due to the complexity of the head and neck region, a twin-delayed deep deterministic 

policy gradient (TD3) agent was used for the RLMAC as it has been shown that the TD3 agent is 

more efficient for outputting continuous control signals (Fujimoto et al., 2018). The RLMAC was 

initially trained while constraining the neck model to move only in the sagittal plane. The trained 

RLMAC was able to rotate the head to the prescribed target angles. The RLMAC could also 

generate the desired head kinematics when the prescribed target signals were different from what 

was used in the training. 

The RLMAC architecture was expanded to include rotations in the three anatomical planes. The 

trained RLMAC could maintain the stability of the neck model under gravity and control the 
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movements of the head along the three rotational DoFs. The neck model was within 3o of the target 

signal and stable at the final position. The muscle activity was also instrumented during the training 

and found to follow a triphasic activation pattern which is generally associated with fast goal-

directed motions (Hannaford and Stark, 1983; Happee, 1992; Marsden et al., 1983). To the best of 

my knowledge, no previous control studies have produced voluntary neck kinematics using human 

body models.   

9.1.3 Experimental dataset for goal-directed head kinematics in human subjects 

A human volunteer study was conducted on healthy male subjects to gather data on voluntary head 

kinematics. The data gathered was used for tuning and validation of the RLMAC control 

framework with the neck model. The fast goal-directed head rotations of human subjects were 

characterized by extension, flexion, and axial rotations. The rotational velocity–time history was 

measured using accelerometers placed on the head’s posterior end and the velocity data were used 

to generate the angle-time history curve. The volunteer testing was performed to complement the 

modeling and simulation efforts for this dissertation and the gathered dataset can also be used as 

validation cases for future control studies. 

9.1.4 Applicability of the RLMAC to novel loading scenarios 

The range of applicability of the RLMAC was demonstrated in this dissertation. The neck model 

was scaled to the anatomy of a 5th-percentile female and 95th-percentile male, and the trained 

RLMAC was used to control the head kinematics in the scaled models. The RLMAC could 

stabilize the head and synthesize goal-directed head kinematics in the scaled models. 

The RLMAC was simulated by attaching additional mass and inertia to the head model 

representing the properties of an American football helmet (Funk et al., 2018). The RLMAC was 

able to stabilize the head and could also generate goal-directed head movements with the added 
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inertial loads showing that RLMAC could adapt to external inertial loads. The effects of the added 

inertia on the head and spinal responses were also evaluated. 

Finally, the trained RLMAC was also evaluated under dynamic conditions to maintain head 

stability. The neck model was simulated under automotive impact scenarios representing frontal 

and rear collisions by applying boundary conditions at T1 (Fice et al., 2021).  Padded lateral 

impacts were simulated by applying forces measured in human volunteer experiments (Reynier et 

al., 2020). The trained RLMAC was able to control the head motions in the dynamic scenarios and 

maintain head stability throughout the simulation. The response of the RLMAC was compared 

with the passive neck model with baseline muscle activation. While the RLMAC could control the 

head kinematics of the neck model, the passive simulation had unstable kinematics. The 

simulations performed in this dissertation show the importance of incorporating active muscle 

behavior in HBM simulations. 

9.2 Assumptions and limitations 

Reinforcement learning algorithms are iterative in nature and hence require a lot of computational 

resources. As a result, some simplifications were made while developing the models used in this 

dissertation. 

9.2.1 Implementation of RLMAC on the MB model of the human arm 

The arm model used for preliminary analysis of RL algorithms for muscle control was simplified 

with the rigid representation of bones and a revolute joint. Only the extension-flexion motion was 

considered at the elbow neglecting any translation movement or rotation in any other DoFs. The 

muscles were modeled as force elements between the insertion points without considering the 

changing load directions due to the rotation of the elbow. The series element which accounts for 
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the tendon stiffness was neglected in the Hill-type muscles incorporated in the elbow.  However, 

the passive response of the elbow was validated with available data in the literature illustrating 

that the simplifications in the model did not affect the overall response. The arm control analysis 

was a proof-of-concept study aimed at demonstrating the utility of RL algorithms for muscle 

control, and the assumptions of revolute joint and rigid tendons did not affect the overall objective 

of the analysis. 

9.2.2 Development of the MB model of the human head and neck 

The neck model was developed for integration with the RLMAC framework as a part of this 

dissertation. To some extent, the neck model was also simplified for training purposes. The non-

linearities at the vertebral joints were simplified as bilinear curves for both translational and 

rotational degrees of freedom. No interaction or contact between the muscles was considered. The 

muscles with wide insertion points were split into multiple strands to capture the behavior at the 

attachment area to bones. However, the maximum forces (Fmax) at each strand was considered the 

same. Strands belonging to the same muscle were also activated identically without considering 

the relative location or the length of each strand. The passive neck model, however, responds well 

under automotive loading scenario (Brian D. Stemper et al., 2004) and also could be integrated 

with the RLMAC to generate goal-directed responses which was the objective of the present study. 

9.2.3 Training and muscle activation output by the RLMAC 

The RLMAC was trained to generate goal-directed head kinematics in the three rotational DoFs. 

The training of the RLMAC took around 15000 iterations to converge, taking approximately 168 

hours on 100 computer cores of the UVa high performance Rivanna cluster. Although the RLMAC 

took considerable computation time to converge in this scenario, the total iterations were less than 

what is typical in similar RL control studies (Akimov, 2020; La Barbera et al., 2022). The control 
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model can be further trained to improve the response of the neck to loading scenarios beyond the 

scope of this dissertation. 

The muscle activations that were generated by the trained RLMAC were also analyzed. The muscle 

activations that generated the desired head and neck kinematics followed the three phase activation 

pattern that have been observed in various goal directed head movements (Happee, 1992; Wadman 

et al., 1979). However, the multifidus and the rectus capitis minor had high activations during the 

goal-directed head simulations. For most part of the fast head movements, the activation level of 

the multifidus was higher than 0.8.  

  

(a) (b) 
Figure 9-1: Neck muscles (a) Multifidus (b) Trapezius. 

The multifidus muscle is located at the back of the spine and extends from sacrum to the skull. In 

the neck model, the multifidus runs parallel to the spine from T1 to the back of the head and is 

divided into six strands across the length of the muscle (Figure 9-1a). The maximum force (Fmax) 

and the activation (at) of every strand is considered identical in the model. Morimoto et al. (2013) 

measured the muscle activations in rugby tackle position and found that the trapezius had different 

activation levels at the upper, middle, and lower position. The multifidus may also have different 
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activation levels depending upon the location of the muscle segment which was not considered in 

this study. The effects of activating long muscles like trapezius and multifidus (Figure 9-1b) with 

different at depending on the location along the spine can be considered in future studies. The 

rectus capitis minor is a small muscle at the back of the neck. The muscle may have high 

activations to compensate for the lack of some of the hyoid group of muscles in the model, but 

more investigation is needed in this area. 

While training the RLMAC for rotations in three DoFs, a symmetry factor was included in the 

reward function which ensured muscle activations were symmetrical for head kinematics about 

the sagittal plane. Increasing the weight of the symmetry factor can improve the symmetric 

response of the RLMAC, however, changing the relative weights of the reward components will 

increase the iterations required for training and convergence. 

9.3 Future work 

A reinforcement learning-based muscle control framework was developed for this dissertation. 

The RLMAC was able to control the head kinematics for goal-directed head motions even for 

novel target signals. The trained RLMAC was also able to stabilize the head under dynamic 

scenarios and could be used with scaled anthropometrics. However, this is the first iteration of the 

RLMAC, and the response of the head and neck controlled by the RLMAC can be improved in 

future studies.  

9.3.1 Improvement in the reward function and training 

The reward function developed and used in this dissertation was successful in training the neck 

model for goal-directed head kinematics. The function rewards the RLMAC for reducing the 

angular error of the head CoM concerning a prescribed target signal. However, to reduce the 
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iterations required for convergence, the target signals were varied in multiples of 5. In future 

training, the target signals could be varied in finer increments to improve the training of the 

RLMAC. In this dissertation only the head rotations are considered, in future studies the head CoM 

translations could also be implemented in the reward function for incorporating the ability to move 

the head without changing the head CoM orientation. Also in the dissertation, it is assumed that 

reducing the joint energy will also result in the reduction of muscle activations, and thus muscle 

fatigue. However, penalizing the high muscle activities as a part of the reward in the neck muscles 

also needs to be evaluated in the future. 

The RLMAC was developed and trained for stabilizing the head as well as performing goal-

directed head movements. However, the RLMAC cannot adjust the initial activation state into 

relaxed or co-contracted at the stable position. Relaxed and co-contracted state of the neck muscle 

have showed difference in head kinematics under application of external loads (Homayounpour et 

al., 2021; Reynier et al., 2020). In future studies, the state of the RLMAC and the reward function 

can be modified to enhance the capability of the RLMAC in implementing a relaxed or co-

contracted state in the neck model at the stabilized position.  

In the current study, the TD3 algorithm was used for the development of the RLMAC for 

omnidirectional control of head kinematics. In future training, some recently developed RL 

algorithms like soft-actor critic (SAC) can also be implemented that have been claimed to produce 

better results for continuous control tasks (Haarnoja et al., 2018). 

9.3.2 Implementation of the RLMAC with finite element (FE) models 

While the simplified MB model of the head and neck is suitable for training and preliminary 

analysis, the trained RLMAC can be transferred to a more detailed FE model of the head and neck 

region to obtain the tissue-level responses for the prescribed control scenario. There have been 

some previous attempts at linking FE models with RL codes for biomechanics simulations 
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(Iwamoto et al., 2012; Joos et al., 2020; Min et al., 2018). But due to the iterative nature of the RL 

algorithms, the FE models needed to be simplified for training purposes. With RLMAC, the 

training can be performed on fast-running models like the neck model developed in the current 

dissertation, and the training can be transferred to a more complex and detailed FE ‘twin’ capable 

of predicting injurious responses. 

9.3.3 Implementation of the RLMAC in full-body HBM 

Reinforcement learning-based muscle control frameworks can be also incorporated into a full-

body HBM. Multiple agents can be used to control kinematics around different joints of the HBM. 

The agents can be either trained simultaneously or the agents can be trained independently in 

isolated joints like the arm MB model and the neck model, and the trained agents can be combined 

into the HBM to simulate joint responses at the whole-body level (Zhang et al., 2021). The multi-

agent RLMAC can act as an improved tool for the prediction of responses under scenarios like 

low-speed automotive impacts where the responses of the occupants are dependent on the 

interaction with peripheral components which is difficult to reproduce at the joint-only level. 

Multi-agent HBMs will also aid in the development of assistive devices for rehabilitation  (Luo et 

al., 2021) that may require modeling the kinematics of two or more joints for accurate 

representation. 

9.4 Summary 

For accurate prediction of responses under some external loading environments, the incorporation 

of active muscle forces in HBMs becomes important. In this dissertation, the muscle control 

framework has been developed using reinforcement learning algorithms. The RLMAC developed 

in this dissertation was able to actuate the muscles individually without any user input of muscle 

coordination or synergy. The RLMAC was implemented in the MB model of the head and neck 
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for control of kinematics in three rotational DoFs. An experimental dataset on the head rotations 

in human subjects was generated to validate the response of the trained RLMAC. The trained 

RLMAC was able to generate biofidelic responses under novel external loads for which the 

RLMAC was not specifically trained. Reinforcement learning can be used to train the HBMs in 

scenarios that have the potential for generating human subject data, like in a weightlifting scenario 

(Denizdurduran et al., 2022) and the trained agent can provide a good generalization in situations 

where data generation is difficult (like in impact scenarios). Reinforcement learning can be 

implemented to study the effect of long-term exposure to inertial loads on muscle and joint fatigue 

as well as aid in the development of improved injury countermeasures and assistive devices for 

rehabilitation. 

The results in this dissertation can be further improved by modifying the architecture of the 

RLMAC to include new state parameters and updated reward functions. It can be worthwhile to 

explore how the state parameters and components of the reward function affect the control 

response and potentially improve the RLMAC architecture. Volunteer studies can also be 

performed to gather data that can aid in the development of the improved control architecture. 
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APPENDIX 
 

APPENDIX A: RLMAC architecture with arm MB model  

Deep deterministic policy gradient (DDPG) (Lillicrap et al., 2019) was used as the reinforcement 

learning (RL) agent for the initial feasibility study with the arm MB model (Chapter 2). The DDPG 

agent is composed of two neural networks (NNs) – an actor network and a critic network.  

The actor network (Figure A-1a) maps the states to actions. The input of the actor network equals 

the number of state parameters defined for the control environment. In the arm motion control 

study, the states were defined with the kinematics properties – current elbow angles, elbow 

velocity, elbow angular error (current and last 2 timesteps), and network action (muscle 

activations) from the last timestep. In the Group Activated Muscle Recruitment (GAMR) scheme, 

there were seven input state parameters, whereas, in the Individual Activated Muscle Recruitment 

(IAMR) scheme, the input size was fourteen. 

  

(a) (b) 

Figure A-1: (a) Actor and (b) Critic network for the DDPG agent coupled with arm MB model for elbow 

kinematics. The number of nodes at each layer is provided corresponding to the layer. 
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The critic network (Figure A-1b) inputs state and actions, and outputs the Q-value. In the RLMAC 

developed for the arm MB model, the state parameters in the critic network were activated by Relu 

function before passing on to the hidden layer, whereas the actions were added to the hidden layer 

without any activation. The parameters of the DDPG agents are provided in Table A-1. 

Table A-1: Training parameters for the DDPG agent 

Actor network learn rate 0.0001 

Critic network learn rate 0.001 

Timestep (sample time) 2.5 ms 

Max steps in one iteration 240 

Agent discount factor 0.99 

Agent standard deviation 0.09-0.1 

 The objective of the RLMAC was to move the elbow from an initial position to a target position 

within the range of motion of the arm. The reward function was devised such that the reward is 

maximized at the target position. The reward function penalized the RLMAC proportional to the 

error (target angle – current angle). The reward function awarded the agent for each timestep the 

error was maintained within 0.1 rad, to encourage the agent to stabilize at the target position. 

Muscle activations were also penalized to ensure that the muscles do not co-contract at the target 

position of the elbow. The coefficients of the reward function are provided in Equation A-1. n in 

Equation A-1 equals 2 in case of GAMR and 9 for IAMR scenario to reduce the average activation 

across muscles. 

Reward = -5 Error - 
2

𝑛
 ∑a(t) + 5 (|Error| < 0.1 rad) Equation A-1 
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APPENDIX B: Muscle model parameters in the neck model 

The coefficient of non-linearity parameter (KPE) in the parallel element is given by  

𝐾𝑃𝐸 = 𝐹𝑃𝐸𝐸  
𝐹𝑚𝑎𝑥

(𝑙𝑜𝑝𝑡(𝛥𝑊𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 + 1 − 𝐿𝑃𝐸,0))
𝜐𝑃𝐸

 
Equation B-1 

LPE,0 is the normalized rest length of parallel element respect to the optimal contractile element 

length. FPEE is the force developed in the parallel element when the length is stretched beyond ΔW 

(descending). 

The maximum damping coefficient Dmax is calculated as 

𝐷𝑚𝑎𝑥 = 𝐷𝑆𝐸
𝐹𝑚𝑎𝑥 𝐴𝑟𝑒𝑙,0
𝑙𝑜𝑝𝑡  𝐵𝑟𝑒𝑙,0

 
Equation B-2 

 

Table B-1: Muscle parameters used in the neck MB model (Haeufle et al., 2014) 

ΔW (descending) 0.35 

ΔW (Ascending) 0.35 

ksh (Ascending) 3.0 

ksh (Descending) 1.5 

Arel,0 0.25 

Brel,0 2.25 

υPE 2.5 

FPEE 2 

DSE 0.3 

RSDE 0.01 

∆USEE, nl 0.0425 

∆USEE, l 0.017 
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APPENDIX C: Parameters of the neck model RLMAC 

A twin-delayed deep deterministic policy gradient (TD3) (Fujimoto et al., 2018) agent was used 

for RLMAC in the neck control model. The TD3 agent requires two critic networks along with the 

actor network. In this dissertation, the RLMAC was initially implemented for control of head 

kinematics in the sagittal plane, which was eventually extended to control of kinematics in the 

three anatomical planes. 

The input of the actor networks consists of the head kinematics (translation and rotation), joint 

displacement of current and previous two timesteps, and muscle activations of the previous time-

step. The input parameters were normalized to reduce the magnitude of the states to a similar scale 

(approximately between -2 to 2) (LeCun et al., 2002). The normalizing factors of the state 

parameters are provided in Table C-1. 

Table C-1: Normalizing parameters 

State Normalizing factor 

Displacement (x, y, z) 0.05 

Velocity (x, y, z) 1 

Rotation (x, y, z) 1 

Rotational velocity (x, y, z) 5 

Sine of errors (x, y, z) 1 

Cosine of errors (x, y, z) 1 

Joint translation (x, y, z) [0.00027, 0.0015, 0.0003] 

Joint rotations (x, y, z) [0.0792, 0.087, 0.0648] 

Joint forces (x, y, z) [16.74, 175, 500] 

Joint torques (x, y, z) [0.4, 1.14, 0.6] 

The sagittal control model, the kinematics was limited to the x-z plane. The RLMAC of the control   

model had head kinematics corresponding to the x and z translation and y rotation state parameters. 

The total state parameters were 96 in the sagittal neck model. The actions were considered 

symmetrical about the mid-sagittal plane, limiting the output of the actor network to 23. The state 

in the omnidirectional neck model included parameters for the 3 DoFs, increasing the actor input 
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size to 193. No assumptions regarding the grouping or symmetry of the muscle actuations were 

made, thus 46 actions were output from the actor network. 

  

(a) (b) 

Figure C-1: (a) Actor and (b) Critic network for the TD3 agent coupled with neck MB model for 

generating head kinematics. The number of nodes at each layer is provided corresponding to the layer. 

An additional hidden layer was added in the actor network for the omnidirectional control model. 

Figure C-1 shows the actor and critic networks of the RLMAC for the neck model. The outputs 

from the actor network were scaled using a combination of tanh and scaling functions to bound 

the muscle activations between 0 and 1. In the omnidirectional model, two hidden layers were used 

to process the state data before the final layer, while in the sagittal control model, only one hidden 

layer was present in the actor network. The critic network was the same for both the neck control 

models (Figure C-1b). The state parameters were processed and activated before the hidden layer 

whereas the actions were directly input to the hidden layer. 
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The objective of the RLMAC was to generate goal-directed motion of the head, i.e., move the head 

to a specific target orientation in the head kinematic space. The reward function was developed 

such that the reward is maximized if the head reaches a target orientation (Equation C-1). 

(1 – Sin (2ε y))2 – 0.2 (|Vx| + |Vz|) – 0.1 |ωy| – 
0.05

21
 ∑Joint energy Equation C-1 

The translation and rotational velocity in Equation C-1 were normalized with factors in Table C-

1. The joint energy was the product of normalized joint forces and displacements in the x-z plane 

and joint torque and rotation along the y axes. Translation and rotational velocities were penalized 

to damp the head at the target position. The joint energy was included in the reward to stabilize 

the spine under gravity.  

1

3
 [(1 – Sin (2ε x))2 + (1 – Sin (2ε y))2 + (1 – Sin (2ε z))2] – 0.2 (|Vx| + |Vy| + |Vz|) 

– 0.1 (|ωx| + |ωy| + |ωz|) – 
0.05

42
 ∑Joint energy – 0.5 symmetry 

Equation C-2 

The reward function was expanded to include parameters in the three anatomical planes (Equation 

C-2). The force, displacement, and velocities used for the reward function were normalized. The 

symmetry factor in the reward function was defined as Equation C-3. 

|Neural stimulation left – Neural stimulation right| when the training objective 
was stability or target was prescribed in the sagittal plane 

Equation C-3 

The symmetry factor was included in the reward function to train the RLMAC to develop a 

symmetric muscle activation strategy. Without the symmetry factor, the RLMAC would learn to 

generate the desired kinematics, however, when the RLMAV was prescribed to maintain the head 

stability or generate kinematics in the sagittal plane, the activation patterns of left and right side 

were completely different. 

The training parameters of the TD3 agent for both the control model are given in Table C-2 
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Table C-2: Training and simulation scenarios 

Actor network learn rate 0.001 

Critic network learn rate 0.001 

Timestep (sample time) 1.0 ms 

Max steps in one iteration 500 

Agent discount factor 0.99 

Agent standard deviation 0.09 

Both the control models, the sagittal control as well as the omnidirectional control model could 

generate the desired kinematics. Figure C-2 shows the weight distribution in the input layer of the 

trained actor network for the state parameters in the RLMAC for the sagittal and the 

omnidirectional control model. 

  

(a) (b) 
Figure C-2: Weight distribution in the first layer of the actor network (a) Sagittal control model (b) 

Omnidirectional control model. 

The weight distribution plots show that the head rotational kinematics (translation and rotation) 

along with the sine and cosine of the angular errors are denser, which suggests that the head 

rotational kinematics are the most important factors in the RLMAC states. The rotational 

kinematics and error are followed by muscle actuations (action from the actor network in the 

previous timestep), which have low weights. It can be assumed that compared to the other state 

parameters, the muscle activations from previous timestep have less impact on the response. The 

translation kinematics and the joint displacements follow the activations, were found to be 
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important for the RLMAC response as can be seen by the dense representation in the plots (Figure 

C-2).  

The trained actor networks of both the control models show a similar trend when the weights of 

the state parameters are plotted for each input node, even though the relative importance of the 

parameters in the model may differ. The muscle activation feedback to the actor network was 

found to have low weights. However, the reward function for the training did not have any term 

penalizing or awarding the muscle forces or activations. A different reward function with the 

actuation term may increase the contribution of the activations to the overall response, therefore 

further consideration is required before removing the activation terms from the state. 

Another observation from the weight distribution plot is that the sagittal actor network weight 

matrix is sparse (Figure C-2a). Therefore, the size of the input and the hidden layer may be 

decreased in the actor network (and the critic network) for faster training. 
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APPENDIX D: Reward function components for the neck control model 

The reward function for the control of the neck model in the sagittal plane was developed so that 

the cumulative reward in a training iteration is maximized when the head moved to the target 

orientation and stabilized at that position. The reward function developed for the head motion 

control in the sagittal pane is provided in Equation D-1. 

(1 – Sin (2ε y))2 – 0.2 (|Vx| + |Vz|) – 0.1 |ωy| – 
0.05

21
 ∑Joint energy Equation D-1 

The first component of the reward function represents the sensory feedback that seeks to reduce 

the position error of the head. The sensory term is maximized when the error is close to 0. The 

head angular error is penalized to minimize any head disturbances at the target angle. Adjusting 

the coefficient of the angular velocity is important as high influence of the angular velocity on the 

reward will not let any motion of the head even if the training time is increased (Crowder et al., 

2021). The coefficient of 0.1 was sufficient to damp any rotations at the final position. 

The translation velocities were penalized to remove any linear noise or disturbances of the head 

when stable. Without penalizing the linear velocities, the head will move to the target orientation, 

however the head CoM will have some linear disturbances which will not be reported in the head 

angle or angular error plots. Some previous study have considered a feedback on head acceleration 

corresponding to the otolith organs (Happee et al., 2017; Zheng et al., 2021), however minimizing 

the head acceleration did not completely remove the disturbances of the head at the target 

orientation. A sensitivity study was performed with different coefficients to analyze the effects of 

the relative importance of the velocity parameter on the response of the neck model. 

Figure D-1 compares the training of the RLMAC for the different values of the velocity penalty 

coefficient. In the plots it can be seen that for the coefficient of 0.2, the training converges faster, 

and thus was used for the training in this dissertation. 
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Figure D-1: Average reward plots for training of the sagittal neck model for different coefficients of 

velocity penalty in the reward function. The ‘α’ in the legend refers to the coefficient. 

 

  

(a) (b) 
Figure D-1: Goal directed head motion for 20o extension with (a) Velocity coefficient = 0.2 (b) Velocity 

coefficient = 1.0. 
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Figure D-2 shows the comparison of the final orientation of the head for a prescribed target of 20o 

extension with the RLMAC trained with different coefficients of velocity penalty. The trained 

RLMAC with coefficient 1.0 for velocity penalty had the head CoM nearer to the neutral head 

position but compresses the spine more.  
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