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Abstract

The goal of this thesis is to give an overview on combination theorems for

Kleinian groups in 3-dimensional real hyperbolic space, H3
R, and then general-

ize these to discrete convergence groups. A combination theorem, for us, will

be a criterion under which two subgroups 𝐺1 and 𝐺2 can be combined to form

a new subgroup 𝐺 with a prescribed presentation while preserving geometrical

properties of the initial subgroups. The inspiration for the generalizations are

the two combination theorems by Maskit, which deal with amalgamated free

products and HNN extensions.

The majority of the arguments Maskit uses involve the dynamics of a

Kleinian group acting on the boundary of H3
R. In particular, he leverages

a property of Kleinian groups called convergence dynamics. The more general

setting we will introduce involves forgetting about the geometry inside H3
R

and just retaining these convergence dynamics on the boundary. This gives

rise to discrete convergence groups, which includes Kleinian groups, along with

discrete subgroups of the isometries of any rank 1 symmetric space, and many

more examples.

These new combination theorems constitute joint work with Theodore

Weisman.
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Chapter 1

Introduction

In this chapter, we start with a discussion on some of the history of com-

bination theorems and motivate our main theorems. We then give a sketch of

the main ideas behind the proof, followed by a brief overview of the structure

of the thesis.

1.1 Motivation

First introduced over a century ago, hyperbolic geometry has been a rich

area of research ever since. As opposed to Euclidean geometry, where the

spaces in question are flat (have zero curvature), hyperbolic spaces are nega-

tively curved, and so locally look like a saddle point. We will mostly consider

the real 3-dimensional hyperbolic space, H3
R, in this thesis. Such a space does

not sit nicely in our 3-dimensional world, so we instead study it using vari-

ous models. We will introduce both the upper half-space model, and the ball

model. The boundary 𝜕H3
R is topologically a sphere, which can be seen in

either model.
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Named in 1883 by Klein and Poincaré, Kleinian groups are discrete sub-

groups of Isom+(H3
R)

∼= PSL(2,C), the orientation preserving isometries of

H3
R. These groups have deep connections to hyperbolic 3-manifolds, and Teich-

müller theory. The action of a Kleinian group on H3
R extends to the boundary

sphere, and the theorems we consider here are phrased in terms of this action

on the boundary. In this thesis, we generalize the classical Klein-Maskit com-

bination theorems for Kleinian groups to the setting of discrete convergence

groups.

These theorems involve geometrical finiteness of the groups being com-

bined. For a Kleinian group 𝐺, this notion captures the idea that the geom-

etry of the quotient H3
R/𝐺 is finite in a precise sense. An intuitive definition

is that H3
R/𝐺 is obtained from gluing the faces of a hyperbolic polyhedron

with finitely many faces. Remarkably, this turns out to be equivalent to a

dynamical definition in terms of the action of 𝐺 on 𝜕H3
R, and Maskit leverages

this to prove his combination theorems respect this property.

Klein and Maskit’s combination theorems give sufficient dynamical condi-

tions for combining two Kleinian groups into a new one. The first one was due

to Klein [Kle83], and gave a “ping-pong” like setup to combine two Kleinian

groups 𝐺1 and 𝐺2 into a free product 𝐺1 *𝐺2. Maskit [Mas88] generalized this

theorem to Kleinian groups 𝐺1 and 𝐺2 with a common subgroup 𝐽 = 𝐺1∩𝐺2,

in order to form a new Kleinian group as the amalgamated free product 𝐺1*𝐽𝐺2,

which is a sort of free product while gluing along a common subgroup. He also

proved a similar theorem for HNN extensions, which is a way to extend a

group so two isomorphic subgroups become conjugate. Maskit showed that

when combining geometrically finite groups, the result is again geometrically

finite. Originally, this was very useful for building new and interesting exam-

ples of (geometrically finite) Kleinian groups. More generally, any Kleinian
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group can be built by combining some finite collection of elementary groups,

web groups, and totally degenerate groups, as shown by Abikoff and Maskit

[AM77].

Our new combination theorems deal with discrete convergence groups in-

stead, a generalization of Kleinian groups. A discrete convergence group is a

group 𝐺 which acts on a compact, infinite, metrizable space 𝑀 with conver-

gence dynamics. We will define this precisely soon, but for now know that

these dynamics were first observed for Kleinian groups acting on the sphere,

so they give an example of discrete convergence groups with 𝑀 = 𝜕H3
R. This

definition forgets about the space H3
R, though, and abstracting the dynamics

from Kleinian groups and replacing the boundary with an arbitrary 𝑀 gives

us our new setting.

It has been shown that discrete subgroups of the isometries of any rank 1

symmetric space is a discrete convergence group by considering the action on

the boundary. Even more generally, any discrete subgroup of the isometries

of a proper geodesic 𝛿-hyperbolic metric space is a discrete convergence group

acting on the Gromov boundary, as shown by Tukia [Tuk94]. So for even

the most flexible definitions of hyperbolicity, the discrete subgroups of the

corresponding isometry group act with convergence dynamics on the boundary.

In joint work with Theodore Weisman, we prove combination theorems

for discrete convergence groups analogous to Maskit’s theorems, which also

involve a version of geometrical finiteness. Again, our hypotheses involve dy-

namical assumptions about the action on the compact space 𝑀 , which should

be thought of as the boundary of some hyperbolic space, even though we do

not need to reference said space in the theorem. We then explore a possible

application of these theorems to investigate different types of convergence for

sequences of representations.
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1.2 Summary

Now we explore Maskit’s first combination theorem in more detail. Let

𝐺1, 𝐺2 < PSL(2,C) be Kleinian groups, where 𝐺1 ∩𝐺2 = 𝐽 is a geometrically

finite proper nontrivial common subgroup of 𝐺1 and 𝐺2. Set 𝐺 = ⟨𝐺1, 𝐺2⟩, the

subgroup generated by 𝐺1 and 𝐺2. In Maskit’s first combination theorem, we

consider the action of each group on the Riemann sphere 𝜕H3
R
∼= ̂︀C = C∪{∞}.

The main hypothesis is that we can find a 𝐽-invariant curve 𝑊 ⊂ ̂︀C splittinĝ︀C into two closed 𝐽-inveriant discs, 𝐵1 and 𝐵2, so that

𝑔𝐵1 ⊂ Int(𝐵2),∀𝑔 ∈ 𝐺1 ∖ 𝐽,

and

𝑔𝐵2 ⊂ Int(𝐵1),∀𝑔 ∈ 𝐺2 ∖ 𝐽.

There are some other more technical hypotheses which will be covered in

detail later. Part of the conclusion is that 𝐺 = 𝐺1 *𝐽 𝐺2, the amalgamated

free product of 𝐺1 and 𝐺2 amalgamated over 𝐽 . This setup is reminiscent

of the ping-pong lemma of geometric group theory, which gives a dynamical

condition for two groups acting on some space to generate a free product of

the two groups.

Maskit also concludes that 𝐺 is geometrically finite if and only if 𝐺1 and 𝐺2

are geometrically finite. This is the hardest part of the theorem to prove, and

part of the difficulty stems from the fact that geometrical finiteness is about

the geometry of the quotient H3
R/𝐺, while Maskit’s hypotheses only reference

the action on the boundary.

This difference is reconciled by a characterization of geometrical finiteness

purely in terms of the group’s action on 𝜕H3
R, due to Beardon and Maskit
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[BM74]. They prove that a Kleinian group 𝐺 is geometrically finite if and

only if every point 𝑥 ∈ Λ(𝐺), the limit set of 𝐺, is either a conical limit point

or a bounded parabolic fixed point. The limit set will be discussed in more

detail later, but for now, what is important is these conditions are checked

entirely in the boundary. Encoding interesting geometry with the dynamics

at infinity is a key theme in this thesis, and is the primary motivation for the

definition of discrete convergence groups.

A natural way to generalize these theorems is to consider the minimal nec-

essary assumptions on the dynamics at infinity. As alluded to earlier, Gehring

and Martin [GM87] showed that isometries of H𝑛
R always act on the boundary

𝜕H𝑛
R
∼= S𝑛−1 with convergence dynamics. We define this now. We say 𝐺 acts

on a compact metrizable space 𝑀 with discrete convergence dynamics if, given

any sequence of distinct elements 𝑔𝑘 ∈ 𝐺, we can find a subsequence and a

pair of points 𝑧+, 𝑧−, so that the maps 𝑔𝑘 restricted to 𝑀 ∖ {𝑧−} converge to

the constant map 𝑧 ↦→ 𝑧+ uniformly on compacts. We call 𝐺 a discrete con-

vergence group. These north-south dynamics imitate the behavior of powers

of a single loxodromic isometry acting on the boundary of hyperbolic space.

As mentioned earlier, this setting includes isometries of essentially any

space with hyperbolic properties. With minor modifications, there is again

a notion of a limit set Λ(𝐺) ⊂ 𝑀 , and the dynamical version of geometrical

finiteness can be restated verbatim with 𝑀 replacing the sphere. In fact,

Tukia [Tuk98] showed that geometrical finiteness of a discrete convergence

group as stated here is equivalent to having a “nice” geometric description for

the quotient Θ(𝑀)/𝐺, where Θ(𝑀) is the space of distinct triples in 𝑀 .

If 𝑀 is playing the role of the sphere, one should think of Θ(𝑀) as playing

the role of H3
R. Indeed, Θ(𝜕H3

R) has a natural projection onto H3
R obtained

by sending (𝑥, 𝑦, 𝑧) to the orthogonal projection of 𝑧 onto the geodesic from
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𝑥 to 𝑦. This is not a bijection, but it gives a quasi-isometry between the two

spaces, which is a sort of coarse equivalence.

This is the setting where our new theorems hold, and we state them now:

Theorem A (T, Weisman). Let 𝐺1 and 𝐺2 be discrete convergence groups

acting on a compact metrizable space 𝑀 . Suppose that 𝐽 = 𝐺1 ∩ 𝐺2 is geo-

metrically finite, and 𝐺1 and 𝐺2 are in AFP ping-pong position with respect

to 𝐽 . Let 𝐺 = ⟨𝐺1, 𝐺2⟩ < Homeo(𝑀), and suppose 𝐺 acts as a convergence

group. Then the following hold:

(i) 𝐺 = 𝐺1 *𝐽 𝐺2.

(ii) 𝐺 is discrete.

(iii) Elements of 𝐺 not conjugate into 𝐺1 nor 𝐺2 are loxodromic.

(iv) 𝐺 is geometrically finite if and only if both 𝐺1 and 𝐺2 are geometrically

finite.

And, secondly, the one for HNN extensions:

Theorem B (T, Weisman). Let 𝐺0 be a discrete convergence group acting

on a compact metrizable space 𝑀 , and suppose that 𝐽1, 𝐽−1 < 𝐺0 are both

geometrically finite. Let 𝐺1 = ⟨𝑓⟩ be an infinite cyclic discrete convergence

group also acting on 𝑀 , where 𝑓𝐽−1𝑓
−1 = 𝐽1 in Homeo(𝑀). Suppose 𝐺0 is

in HNN ping-pong position with respect to 𝑓, 𝐽1 and 𝐽−1. Let 𝐺 = ⟨𝐺0, 𝐺1⟩ <

Homeo(𝑀), and suppose 𝐺 acts as a convergence group. Then the following

hold:

(i) 𝐺 = 𝐺0*𝑓 .

(ii) 𝐺 is discrete.
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(iii) Elements of 𝐺 not conjugate into 𝐺0 are loxodromic.

(iv) 𝐺 is geometrically finite if and only if 𝐺0 is geometrically finite.

See Section 3.2 and Section 3.3 for the definitions of AFP ping-pong posi-

tion and HNN ping-pong position respectively. They resemble the ping-pong

assumptions made in Maskit’s two theorems. The most challenging part of

these theorems is again the geometric conclusion involving geometrical finite-

ness. We outline the main ideas for proving Theorem A below, and Theorem

B has a similar type of argument.

The thesis ends with a discussion of a possible application of these new the-

orems. There are multiple notions of convergence when discussing sequences

of representations into PSL(2,C) (or the isometries of a different hyperbolic

space), and we will consider algebraic convergence and geometric convergence.

Algebraic convergence is where one looks at the limits of a generating set and

check what those limits generate. Geometric convergence instead arises from

considering the Hausdorff distance on the space of closed subgroups, and is di-

rectly related to the corresponding sequence of quotient orbifolds. Sometimes

this results in a limiting group strictly containing the algebraic limit. When

these two limits coincide, the convergence is said to be strong.

There are examples of sequences where the convergence is not strong. In

particular, Jørgensen produced examples of representations of Z with a ge-

ometric limit isomorphic to Z2. One place to read about these is [CEG86],

but we will list the explicit elements in the last chapter of this thesis. Maloni

and Pozzetti [MP22] discuss a generalization to real and complex hyperbolic

spaces of all dimensions, and further generalized these examples to include

representations of 𝐹2, the free group on two letters, which do not converge

strongly. One might study these notions when considering different topologies
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on the representation spaces, and the existence of these examples imply that

these two notions of convergence give very different pictures.

There are also examples of surface group representations which do not con-

verge strongly, due to Kerckhoff and Thurston [KT90]. These examples are

constructed using deep results about Kleinian groups, such as the simultane-

ous uniformization theorem of Bers [Ber60], and so there is no clear way to

generalize their methods to other settings. Our goal was to use our new com-

bination theorems to combine free groups from Maloni and Pozzetti’s work

into a sequence of representations of a genus 2 surface group which does not

converge strongly. This could give a path to finding such examples in other

settings, such as complex hyperbolic geometry. We did not have time to com-

plete this application, but some pictures of limit sets generated from Python

code give some evidence that one could find a simple closed curve in the sphere

determining two discs 𝐵1 and 𝐵2 so that Theorem A applies.

1.3 Theorem A Proof Ideas

Parts (i) - (iii) are standard arguments relying on the ping-pong setup, and

so we focus on part (iv), which the majority of the proof is dedicated towards.

Supposing 𝐺1 and 𝐺2 are geometrically finite, we will discuss how one shows

𝐺 is geometrically finite. The other direction is similar, but less complex.

First, we will sketch how Maskit proves this, and then we will consider the

changes necessary to adapt his strategy to the setting of discrete convergence

groups. The goal is to show that every 𝑥 ∈ Λ(𝐺), the limit set of 𝐺, is a

conical limit point or a bounded parabolic fixed point. One way to define the

limit set Λ(𝐺) is by taking the accumulation points of any infinite 𝐺-orbit in̂︀C. To simplify this discussion, assume we have no parabolic elements, and so
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we wish to show every limit point is a conical limit point.

A limit point 𝑥 is a conical limit point if there is a sequence (𝑔𝑘) in 𝐺 of

distinct elements such that for every 𝑧 ∈ ̂︀C ∖ {𝑥}, the pair (𝑔𝑘𝑥, 𝑔𝑘𝑧) stays

inside a compact subset of (̂︀C × ̂︀C) ∖ ∆, where ∆ ⊂ ̂︀C × ̂︀C is the diagonal

subspace. We will call the sequence (𝑔𝑘) a conical limiting sequence for the

point 𝑥. So, roughly speaking, we wish to find a sequence (𝑔𝑘) so that 𝑔𝑘𝑧

stays far away from 𝑔𝑘𝑥 for any 𝑧 ̸= 𝑥.

The first observation is the following. Since we are assuming 𝐺1 and 𝐺2

are geometrically finite, it follows that Λ(𝐺1)∪Λ(𝐺2) consists of conical limit

points. Even better, 𝐺-translates of these points will still be conical limit

points for 𝐺, since we simply need to alter the given sequences by a fixed

element of 𝐺. So, we must show points in Λ(𝐺) ∖ 𝐺(Λ(𝐺1) ∪ Λ(𝐺2)) are

conical limit points for 𝐺, where the notation 𝐺(𝑈) denotes the union of the

𝐺-translates of 𝑈 .

Elements of 𝐺∖𝐽 can be expressed using normal forms, words 𝑔 = 𝑔1 · · · 𝑔𝑛
where the 𝑔𝑖 alternate between 𝐺1 ∖ 𝐽 and 𝐺2 ∖ 𝐽 . We define the length of a

normal form to be 𝑛 (length 0 elements are in 𝐽), and we say 𝑔 is an (𝑖, 𝑗)-

form if 𝑔1 ∈ 𝐺𝑖 ∖ 𝐽 and 𝑔𝑛 ∈ 𝐺𝑗 ∖ 𝐽 . By results in the combinatorial group

theory section, the ping-pong dynamics imply that if 𝑔 is an (𝑖, 𝑗)-form, then

𝑔𝐵𝑗 ⊂ 𝐵𝑖. We define certain ping-pong sets recursively, as follows. We let 𝑇1,𝑖

be the union of 𝐺𝑖 ∖ 𝐽 translates of 𝐵𝑖, and set 𝑇1 = 𝑇1,1 ∪ 𝑇1,2. Then we let

𝑇2,𝑖 be the 𝐺𝑖 ∖ 𝐽 translates of 𝑇1 ∩ 𝐵𝑖, and set 𝑇2 = 𝑇2,1 ∪ 𝑇2,2. We continue

this process, and get a sequence of nested sets. See Figure 1.3.1.

Let 𝑇 =
⋂︀
𝑇𝑛. It turns out that points of Λ(𝐺)∖𝐺(Λ(𝐺1)∪Λ(𝐺2)) lie in 𝑇 .

By construction, the points 𝑥 ∈ 𝑇 correspond to a sequence of elements (𝑔𝑘)

whose lengths go to infinity, where 𝑥 ∈ 𝑔𝑘𝐵𝑗 for one of 𝑗 = 1, 2. The sequence

(𝑔−1
𝑘 ) is our initial candidate for a conical limiting sequence for the point 𝑥.
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𝐵1 𝐵2

Λ(𝐽)𝑇1,2 𝑇1,1

Figure 1.3.1: Part of the sets 𝑇1 and 𝑇2.

The key technical lemma that Maskit uses now is a contraction property for

such sequences. Namely, anytime there is a sequence 𝑔𝑘 ∈ 𝐺 of distinct (𝑖, 𝑗)-

forms, the translates 𝑔𝑘𝐵𝑗 converge to a singleton. To prove this, Maskit uses

a geometric argument inside H3
R.

With the contraction property proved, we have that 𝑔𝑘𝐵𝑗 necessarily con-

verges to 𝑥, and so the sequence (𝑔−1
𝑘 ) maps increasingly smaller discs around

𝑥 to 𝐵𝑗. We modify this sequence so that 𝑔−1
𝑘 𝑥 ∈ 𝐵𝑗 does not accumulate on

𝜕𝐵𝑗. Now, given any 𝑧 ̸= 𝑥, eventually 𝑧 ̸∈ 𝑔𝑘𝐵𝑗, and so 𝑔−1
𝑘 𝑧 ̸∈ 𝐵𝑗. Since

𝑔−1
𝑘 𝑥 ∈ 𝐵𝑗 does not accumulate on 𝜕𝐵𝑗, we find that (𝑔−1

𝑘 𝑧) cannot accumulate

on the sequence (𝑔−1
𝑘 𝑥). This is precisely what it meant for 𝑥 to be a conical

limit point.

In the setting of discrete convergence groups, we needed to replace the

geometric argument in H3
R with an argument using a cusped space for 𝑀 , a

hyperbolic metric space whose boundary naturally identifies with Λ(𝐺). The-

orem 2.2.17 of Yaman [Yam04] states that such a cusped space can be found
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for any discrete convergence group 𝐺 acting geometrically finitely on its limit

set. This allows the necessary geometric argument to prove the technical

Lemma 2.2.24, which is then specialized to the necessary contraction property

for Theorem A in Lemma 3.2.4. This was the biggest change from Maskit’s

argument, and is the only time we need to appeal to the geometry of some

space, rather than using topological arguments in 𝑀 .

The proof for Theorem B uses a lot of similar ideas, but is somewhat more

technical since the normal forms for HNN extensions are more complicated.

1.4 Overview

In Chapter 2, we develop the necessary background for the various com-

bination theorems. This starts with a brief treatment of hyperbolic geometry

and Kleinian groups, that is, discrete subgroups of Isom+(H3
R), in Section 2.1.

We define and prove several equivalent characterizations for a Kleinian group

to be geometrically finite in Section 2.1.4. In Section 2.2, we introduce dis-

crete convergence groups. This is followed by a brief discussion on relatively

hyperbolic groups and some important results on these, which we use to prove

Lemma 2.2.24, the “technical lemma.” We end this background chapter with

a discussion of combinatorial group theory in Section 2.3.1 and Section 2.3.2.

There are two versions of the combination theorem we prove, one involving

amalgamated free products, and the other involving HNN extensions. These

sections discuss the structure of these groups algebraically, and give dynamical

conditions ensuring a given pair of groups generates a group isomorphic to ei-

ther an amalgamated free product or an HNN extension involving the original

two groups.

In Chapter 3, we start discussing combination theorems, starting with the
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classical ones of Klein and Maskit in Section 3.1. After some examples of these

classical theorems, we state and prove our main results, starting with the case

of amalgamated free products in Section 3.2, and following with the case of

HNN extensions in Section 3.3.

Finally, in Chapter 4, we consider an application of these combination the-

orems. We start with a discussion of algebraic and geometric convergence,

along with some examples of sequences of representations where the conver-

gence is not strong. We conclude with various pictures of limit sets generated

via Python scripts, which provide reasons to believe that one can find a sim-

ple closed curve in 𝜕H3
R separating the sphere into two discs satisfying the

hypotheses of the combination theorem for amalgamated free products.
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Chapter 2

Background

This chapter introduces the necessary background for the rest of the thesis.

In particular, we review some basic facts from the theory of Kleinian groups.

Then we examine different ways of ensuring the geometry of a given Kleinian

group is ‘finite’ in some sense: this gives rise to the notion of geometrical

finiteness. This notion has has many equivalent characterizations. The first

that we will introduce is the most intuitive, and the last one is less intuitive

but is the most useful for our generalizations. Next, we introduce discrete

convergence groups, which is the setting where our new theorems hold. Finally,

we establish the notation and basic facts for amalgamated free products and

HNN extensions, which are a key ingredient in the combination theorems.

2.1 Kleinian Groups

We start by compiling necessary results about Kleinian groups. The main

reference for this is Maskit’s book [Mas88].
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2.1.1 Hyperbolic Geometry

The setting for Maskit’s combination theorems is the 3-dimensional real

hyperbolic space, H3
R. This is the unique simply connected 3-dimensional

Riemannian manifold with constant real sectional curvature equal to −1. We

start by defining the model for H3
R which we will primarily use.

Definition 2.1.1. The upper half-space model for H3
R is given by the set

{(𝑧, 𝑡) | 𝑧 ∈ C, 𝑡 > 0}, equipped with the metric

𝑑𝑠2 =
|𝑑𝑧|2 + 𝑑𝑡2

𝑡2
.

The boundary 𝜕H3
R is then given by ̂︀C = C ∪ {∞}.

In this model, the geodesics are circular arcs perpendicular to the boundary

and vertical lines. Given any circle or line 𝐶 ⊂ ̂︀C, the collection of geodesics

connecting points of 𝐶 form a totally geodesic copy of H2
R ⊂ H3

R. All totally

geodesic planes arise in this way. We will oftentimes think of 𝑡 as the ‘height’

of a point, and points in C as ‘finite points’ in the boundary. We will refer to

the hyperbolic distance as 𝑑, regardless of the model we are working in.

We now introduce the other model of H3
R which we will occasionally need.

Definition 2.1.2. The ball model for H3
R is {(𝑥, 𝑦, 𝑧) | 𝑥2 + 𝑦2 + 𝑧2 < 1},

equipped with the metric

𝑑𝑠2 =
4|𝑑𝑟|2

(1− 𝑟2)2
, 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2

The boundary 𝜕H3
R is then given by S2.

It will sometimes be convenient to work in the ball model so we can use the

Euclidean distance on the closed ball, which identifies with H3
R = H3

R ∪ 𝜕H3
R.
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We will denote this distance by 𝑑𝐸. The geodesics in this model are circular

arcs perpendicular to the boundary and diameters.

Recall that PSL(2,C) is the projectivization of complex 2×2 matrices with

determinant 1. There is a natural action of PSL(2,C) on ̂︀C by Möbius maps.

Given

𝑔 =

⎛⎝𝑎 𝑏

𝑐 𝑑

⎞⎠ ,

we act by

𝑔(𝑧) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
.

It is natural to define 𝑔(∞) = 𝑎/𝑐 and 𝑔(−𝑑/𝑐) = ∞. This gives a well-defined

map from PSL(2,C) into the conformal automorphisms of the Riemann sphere,

and in fact, this map is an isomorphism. We will oftentimes describe elements

of PSL(2,C) in terms of the corresponding Möbius map acting on ̂︀C. Any

such conformal automorphism of 𝜕H3
R extends uniquely to an isometry of H3

R,

and this map is again an isomorphism.

Theorem 2.1.3 ([Mas88] IV.B.7). We have an isomorphism PSL(2,C) ∼=

Isom+(H3
R).

There is a natural topology on PSL(2,C) as a subset of R4, which allows

us to consider discrete subgroups. We note some equivalent characterizations

of discrete subgroups now.

Proposition 2.1.4 ([Mas88] II.C.2). Let 𝐺 < PSL(2,C) be a subgroup. Then

the following are equivalent:

(i) 𝐺 is discrete.

(ii) 𝐺 has no accumulation points.
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(iii) The identity is not an accumulation point of 𝐺.

Note that the only implication requiring an argument is (𝑖𝑖𝑖) ⇒ (𝑖), which

is provided in the citation. We give a special name to these discrete subgroups.

Definition 2.1.5. A Kleinian group 𝐺 is a discrete subgroup of PSL(2,C). A

Kleinian group which is conjugate into PSL(2,R) is called a Fuchsian group.

Note that a Fuchsian group necessarily preserves a totally geodesic H2
R

inside H3
R.

These isometries satisfy a trichotomy in terms of their traces and/or fixed

points. Note that the trace of an element in PSL(2,C) is only defined up to

its sign, which we can fix by taking the square.

Proposition 2.1.6 ([Mas88] I.B.5). Let 𝑔 ∈ PSL(2,C) be different from the

identity. Then 𝑔 falls into exactly one of the following categories:

1. Elliptic: 𝑔 fixes a point in H3
R and (tr 𝑔)2 ∈ (0, 4).

2. Parabolic: 𝑔 fixes exactly one point in 𝜕H3
R and (tr 𝑔)2 = 4.

3. Loxodromic: 𝑔 fixes exactly two points in 𝜕H3
R and none in H3

R and

(tr 𝑔)2 ∈ C ∖ (0, 4].

We typically only care about properties of Kleinian groups preserved under

conjugation. It is a fact that PSL(2,C) acts simply transitively on ordered

triples of distinct points in ̂︀C, and so, by conjugating appropriately, we can

choose the fixed points for a given element in our group 𝐺. We will usually

use 0, 1, or ∞. This process is called normalization.

As a consequence of this trichotomy, we have the following.

Proposition 2.1.7 ([Mas88] I.D.4). If 𝑓 has exactly two fixed points and 𝑓

and 𝑔 share exactly one fixed point, then the commutator [𝑓, 𝑔] is parabolic.
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Proof. Normalize ⟨𝑓, 𝑔⟩ so that the common fixed point is ∞, and the other

fixed point of 𝑓 is 0. Then

𝑓 =

⎛⎝𝑡 0

0 𝑡−1

⎞⎠ , 𝑔 =

⎛⎝𝑎 𝑏

0 𝑎−1

⎞⎠ ,

and

[𝑓, 𝑔] =

⎛⎝1 −𝑎𝑏+ 𝑡2𝑎𝑏

0 1

⎞⎠ .

Since 𝑎, 𝑏 ̸= 0 and |𝑡| ≠ 1, we have that 𝑎𝑏(𝑡2 − 1) ̸= 0, so the commutator is

parabolic.

When we want to work with explicit matrices, we will always use the upper

half-space model, since it is easiest to think about the action on ̂︀C. We next

prove two propositions related to discreteness which we will need later. First is

a condition we will use when considering the stabilizer of ∞. This is sometimes

called the Shimizu-Leutbecher lemma.

Proposition 2.1.8 ([Mas88] II.C.5). Let 𝐺 be Kleinian, where 𝐺 contains

𝑓𝑧 = 𝑧 + 1. Then for every

𝑔 =

⎛⎝𝑎 𝑏

𝑐 𝑑

⎞⎠ ∈ 𝐺,

either 𝑐 = 0, or |𝑐| ≥ 1.

Proof. Assume by contradiction that we have a 𝑔 ∈ 𝐺 with 0 < |𝑐| < 1. Let

𝑔0 = 𝑔, and inductively define 𝑔𝑚 by 𝑔𝑚+1 = 𝑔𝑚𝑓𝑔
−1
𝑚 . Write

𝑔𝑚 =

⎛⎝𝑎𝑚 𝑏𝑚

𝑐𝑚 𝑑𝑚

⎞⎠ ,
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then

𝑎𝑚+1 = 1− 𝑎𝑚𝑐𝑚

𝑏𝑚+1 = 𝑎2𝑚

𝑐𝑚+1 = −𝑐2𝑚

𝑑𝑚+1 = 1 + 𝑎𝑚𝑐𝑚.

It follows that |𝑐𝑚| = |𝑐|2𝑚; hence 𝑐𝑚 → 0. An induction argument gives us

that |𝑎𝑚| and |𝑑𝑚| are both bounded by

𝐾
2𝑚∑︁
𝑗=0

|𝑐|𝑗,

where 𝐾 = max(|𝑎|, 1). Since this is sum is geometric and 𝑏𝑚+1 = 𝑎2𝑚, we now

see that all entries of 𝑔𝑚 are bounded. This gives us a convergent subsequence,

which contradicts discreteness; in fact 𝑔𝑚 → 𝑓 , although the result holds

independent of the value of this limit.

Lastly, a criterion for non-discreteness which will allow us to rule out certain

types of elements in stabilizers.

Proposition 2.1.9 ([Mas88] II.C.6). If 𝑓, 𝑔 ∈ PSL(2,C) are nontrivial, where

𝑓 is loxodromic and 𝑓 and 𝑔 have exactly one fixed point in common, then ⟨𝑓, 𝑔⟩

is not discrete.

Proof. By Proposition 2.1.7, we can assume 𝑔 is parabolic by replacing it with

[𝑓, 𝑔] if necessary. Normalize so that the common fixed point is at ∞, and the

second fixed point of 𝑓 is at 0. We can replace 𝑓 by 𝑓−1 if necessary so that
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∞ is the attracting fixed point of 𝑓 . Write

𝑓 =

⎛⎝𝑡 0

0 𝑡−1

⎞⎠ , |𝑡| > 1, 𝑔 =

⎛⎝1 𝑏

0 1

⎞⎠ ,

then

𝑓−𝑚𝑔𝑓𝑚 =

⎛⎝1 𝑏𝑘−2𝑚

0 1

⎞⎠ → 1.

Hence ⟨𝑓, 𝑔⟩ is not discrete.

Isometric Circles

We next list some facts about isometric circles for Möbius transformations

which we will need later. These tools allow us to prove nice convergence

results for sequences of elements (which will motivate the definitions of discrete

convergence groups). Let

𝑔 =

⎛⎝𝑎 𝑏

𝑐 𝑑

⎞⎠ ,

and assume that 𝑔(∞) ̸= ∞, or equivalently, that 𝑐 ̸= 0. Then 𝑔′(𝑧) =

(𝑐𝑧 + 𝑑)−2.

Definition 2.1.10. Let 𝑔 ∈ PSL(2,C) so that 𝑔(∞) ̸= ∞. Then the isometric

circle 𝐼(𝑔) of 𝑔 is the set of points where |𝑔′(𝑧)| = 1.

Möbius transformations preserve cicles and lines, and 𝑔−1 has isometric

circle 𝐼(𝑔−1) = 𝑔(𝐼(𝑔)). The radius of both circles is 𝜌 = |𝑐|−1. Note that the

center is 𝛼 = −𝑑/𝑐 = 𝑔−1(∞), and the center of 𝐼(𝑔−1) is 𝑎/𝑐 = 𝑔(∞). There

is a nice decomposition of Möbius maps in terms of these isometric circles.
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Proposition 2.1.11 ([Mas88] I.C.2). Every 𝑔 ∈ PSL(2,C) can be written in

the form 𝑔 = 𝑟𝑞𝑝, where 𝑝 is reflection in the isometric circle of 𝑔, and 𝑟 and

𝑞 are Euclidean motions of C.

Using this decomposition, we can prove an estimate which will be used

later when studying dynamics on the boundary.

Proposition 2.1.12 ([Mas88] I.C.7). Let 𝑔 ∈ PSL(2,C) so that 𝑔(∞) ̸= ∞,

and let 𝑇 be a closed set which may contain ∞, but does not contain 𝛼 =

𝑔−1(∞). Let 𝛿 be the distance from 𝛼 to 𝑇 , and let 𝜌 be the radius of the

isometric circle 𝐼 of 𝑔. Then

diam(𝑔𝑇 ) ≤ 2𝜌2/𝛿,

where we are using the Euclidean diameter in C, and if ∞ ∈ 𝑇 , then

𝜌2/𝛿 ≤ diam(𝑔𝑇 ).

Proof. Let 𝑥 be the point of 𝑇 closest to 𝛼. Then 𝛿 = |𝑥 − 𝛼|, and 𝑇 lies

outside the circle of radius 𝛿 centered at 𝛼. If 𝑝 is reflection in 𝐼(𝑔), then this

implies 𝑝𝑇 lies inside the circle of radius 𝜌2/𝛿 centered at 𝛼, from which the

first inequality follows since 𝑔 = 𝑟𝑞𝑝 for 𝑟, 𝑞 Euclidean motions. The second

inequality follows from the fact that 𝛼 ∈ 𝑝𝑇 , since |𝑝𝑥− 𝛼| = 𝜌2/𝛿.

2.1.2 Dynamics on the Boundary

We now turn our attention to the dynamics on the boundary of H3
R, which

identifies with ̂︀C. A recurring theme in this thesis will be forgetting about the

geometry and just working in the boundary.
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Definition 2.1.13. Let 𝐺 be a Kleinian group. We say 𝐺 acts discontinuously

at 𝑧 ∈ H3
R ∪ 𝜕H3

R if there is an open neighborhood 𝑈 of 𝑧 so that

|{𝑔 ∈ 𝐺 | 𝑔𝑈 ∩ 𝑈 ̸= ∅}| <∞.

Let Ω(𝐺) be the set of points in 𝜕H3
R where 𝐺 acts discontinuously. This

is called the domain of discontinuity for 𝐺. Given 𝑥 ∈ Ω(𝐺), if there is a

neighborhood 𝑈 of 𝑥 so that 𝑔𝑈 ∩ 𝑈 = ∅ for every nontrivial 𝑔 ∈ 𝐺, then we

further say 𝐺 acts freely discontinuously at 𝑥.

It is a fact that discreteness of 𝐺 is equivalent to 𝐺 acting discontinuously

on all of H3
R. This is a consequence of the following theorem.

Theorem 2.1.14 ([Mas88] IV.E.3). Let 𝑥 ∈ H3
R, and let 𝐺 < PSL(2,C).

Then 𝐺 acts discontinuously at 𝑥 if and only if 𝐺 is discrete.

The same does not hold in the boundary, where the action may not be

discontinuous anywhere. In any case, the set Ω(𝐺) is open and 𝐺-invariant,

hence its complement is closed and also 𝐺-invariant. We will introduce an

alternative definition for the complement later. The set of points in Ω(𝐺)

where 𝐺 acts discontinuously but not freely discontinuously is precisely the

fixed points of elliptic elements of 𝐺 in the boundary.

Suppose 𝐺 acts freely discontinuously at some point 𝑧, and let 𝑈 be the

corresponding neighborhood. Using stereographic projection, we can identifŷ︀C with S2, inducing a spherical metric, diameter, and measure, which we

denote 𝑑𝑆, diam𝑆, and meas𝑆, respectively. These are all equivalent to the

corresponding Euclidean notion on ̂︀C when restricted to any bounded subset

of C. Now, since the𝐺-translates of 𝑈 are all disjoint, the following proposition

follows since the sphere has finite area.
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Proposition 2.1.15 ([Mas88] II.B.3). Let 𝐺 be a Kleinian group acting freely

discontinuously at 𝑧 ∈ ̂︀C, and let 𝑈 be the neighborhood from the definition.

Then ∑︁
𝑔∈𝐺

meas𝑆(𝑔𝑈) <∞.

We quickly note that, by standard facts about uncountable sums of positive

numbers, this implies that any Kleinian group 𝐺 acting freely discontinuously

at some point 𝑧 ∈ ̂︀C is countable. Now, as always, writing 𝑔 with bottom left

entry 𝑐, if we assume 𝐺 acts freely discontinuously at ∞, then no 𝑔 ∈ 𝐺 fixes

∞, hence 𝑐 ̸= 0 for every 𝑔 ∈ 𝐺.

Proposition 2.1.16 ([Mas88] II.B.5). Let 𝐺 be a Kleinian group acting freely

discontinuously at ∞, then

∑︁
𝑔∈𝐺∖{1}

|𝑐|−4 <∞.

Proof. Choose a neighborhood 𝑈 of ∞ of the form {𝑧 | |𝑧| > 𝜌}∪ {∞}, where

𝑔𝑈 ∩ 𝑈 = ∅ for all nontrivial 𝑔 ∈ 𝐺. Let 𝛼 be the center of the isometric

circle 𝐼 of some nontrivial 𝑔 ∈ 𝐺; recall that its radius is |𝑐|−1. By definition,

𝛼 = 𝑔−1(∞) ̸∈ 𝑈 , the center of 𝐼. We can further assume that the Euclidean

distance 𝛿 from 𝛼 to 𝑈 is positive. Note that 𝛿 ≤ 𝜌. From Proposition 2.1.12,

we have

diam(𝑔𝑈) ≥ |𝑐|−2𝛿−1.

Since 𝑔𝑈 is a bounded circular disc in C, we can use the equivalence of the

spherical and Euclidean metrics to find a constant 𝐾 > 0, so that

meas𝑆(𝑔𝑈) ≥ 𝐾−1diam2(𝑔𝑈).
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Combining both of these with Proposition 2.1.15, we get

∑︁
𝑔∈𝐺∖{1}

|𝑐|−4 ≤
∑︁

𝑔∈𝐺∖{1}

𝛿2diam2(𝑔𝑈) ≤ 𝐾𝜌2
∑︁

𝑔∈𝐺∖{1}

meas𝑆(𝑔𝑈) <∞.

A useful corollary of this proposition is the following.

Corollary 2.1.17 ([Mas88] II.B.6). Let 𝐺 be a Kleinian group which acts

freely discontinuously at ∞, and let (𝑔𝑚) be a sequence of distinct elements. If

𝜌𝑚 is the radius of the isometric circle for 𝑔𝑚, then 𝜌𝑚 → 0.

The complement of the domain of discontinuity has a nice description in

terms of accumulation points of a given 𝐺-orbit in HR
3 .

Definition 2.1.18. Let 𝐺 be Kleinian. A point 𝑥 ∈ 𝜕H3
R is called a limit

point for 𝐺 if there is a point 𝑧 ∈ H3
R, and a sequence of distinct elements

𝑔𝑚 ∈ 𝐺, so that 𝑔𝑚𝑧 → 𝑥. The set of all limit points is denoted Λ(𝐺), and is

called the limit set for 𝐺.

Since every neighborhood of 𝑥 ∈ Λ(𝐺) has infinitely many translates of

some point, we have Λ(𝐺)∩Ω(𝐺) = ∅. In fact, we also have ̂︀C = Λ(𝐺)∪Ω(𝐺).

The next result requires the notion of uniform convergence.

Definition 2.1.19. Let (𝑋, 𝑑) be a metric space. A sequence 𝑓𝑛 : 𝑋 → 𝑋

converges to 𝑓 uniformly on compact subsets of 𝑋 if, for every compact set

𝐾 ⊂ 𝑋, the maps 𝑓𝑛|𝐾 converge uniformly to 𝑓 |𝐾 . That is, for every 𝜀 > 0,

there is 𝑁 ∈ N, so that, for every 𝑥 ∈ 𝐾, and for every 𝑛 ≥ 𝑁 , we have

𝑑𝑋(𝑓𝑛(𝑥), 𝑓(𝑥)) < 𝜀.
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If the map 𝑓 is the constant function (𝑥 ↦→ 𝑧) for some 𝑧 ∈ 𝑋, we will say

that 𝑓𝑛𝑥→ 𝑧 uniformly on compact subsets of 𝑋.

Later, we will work with metrizable spaces with no specific metric, but this

definition does not depend on the choice of metric generating the given topol-

ogy. We can now state a theorem which illustrates the notion of convergence

dynamics, which motivates the definition of discrete convergence groups later

in the thesis.

Theorem 2.1.20 ([Mas88] II.D.2). Let 𝑥 ∈ Λ(𝐺). Then there is 𝑦 ∈ Λ(𝐺),

and there is a sequence of distinct elements 𝑔𝑚 of 𝐺, so that 𝑔𝑚𝑧 → 𝑥 uniformly

on compact subsets of ̂︀C ∖ {𝑦}.

Proof. Since 𝑥 is a limit point, we can find 𝑧 ∈ H3
R, and 𝑔𝑚 ∈ 𝐺 distinct,

so that 𝑔𝑚𝑧 → 𝑥. Choose a hyperbolic geodesic 𝐿 passing through 𝑧, with

endpoints 𝑧1, 𝑧2 ∈ 𝜕H3
R ∖ {𝑥}. Then since 𝑔𝑚𝑧 → 𝑥, we must have 𝑔𝑚𝑧1 → 𝑥

or 𝑔𝑚𝑧2 → 𝑥. Suppose the former holds. Normalize so 𝑧1 = ∞, and pass to a

subsequence so that 𝑔−1
𝑚 (∞) → 𝑦. Then 𝑦 ∈ Λ(𝐺) since 𝑔−1

𝑚 𝑧 → 𝑦.

As in Proposition 2.1.11, write 𝑔𝑚 = 𝑟𝑚𝑞𝑚𝑝𝑚. The result now follows from

the following observations: the center of the isometric circle of 𝑔𝑚 tends to

𝑦; 𝑔𝑚 maps the outside of its isometric circle onto the inside of the isometric

circle of its inverse; the common radius of the isometric circles of 𝑔𝑚 and 𝑔−1
𝑚

tends to 0 by Corollary 2.1.17; the center of the isometric circle of 𝑔−1
𝑚 tends

to 𝑥.

There is a slightly more general version of this that we will need in the

next section. The proof is very similar to what we have done so far, but is one

dimension higher and uses isometric spheres.
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Proposition 2.1.21 ([Mas88] IV.G.9). Let 𝐺 be Kleinian, with (𝑔𝑚) a se-

quence of distinct elements in 𝐺, with 𝑔𝑚𝑧 → 𝑥 ∈ 𝜕H3
R for some 𝑧 ∈ H3

R.

Then there is a subsequence, and 𝑦 ∈ 𝜕H3
R, so that 𝑔𝑚𝑤 → 𝑥 uniformly on

compact subsets of H3
R ∖ {𝑦}.

Note that these propositions give us no information on 𝑦. If 𝑦 ̸= 𝑥, then

this will be what we call a point of approximation, which we will define later.

2.1.3 Fundamental Domains and Polyhedra

When considering the action of a Kleinian group 𝐺 on Ω(𝐺), it is helpful

to work with fundamental sets and fundamental domains. First, we record a

useful definition which will recur throughout the rest of this section and later

in the thesis.

Definition 2.1.22. Suppose 𝐺 acts on a space 𝑋, and 𝐽 < 𝐺. We say a

subset 𝐵 ⊂ 𝑋 is precisely invariant under 𝐽 in 𝐺 if 𝐵 is 𝐽-invariant, and for

every 𝑔 ∈ 𝐺 ∖ 𝐽 , we have 𝑔𝐵 ∩𝐵 = ∅.

More generally, given subgroups 𝐽1, · · · , 𝐽𝑛 < 𝐺, we say a tuple of subsets

(𝐵1, · · · , 𝐵𝑛) is precisely invariant under (𝐽1, · · · , 𝐽𝑛) in 𝐺 if each 𝐵𝑖 is pre-

cisely invariant under 𝐽𝑖 in 𝐺, and if for 𝑖 ̸= 𝑗 and for every 𝑔 ∈ 𝐺, we have

𝑔𝐵𝑖 ∩𝐵𝑗 = ∅.

We can now define fundamental domains.

Definition 2.1.23. A fundamental domain 𝐷 for the Kleinian group 𝐺 is an

open subset of Ω(𝐺) satisfying the following.

(i) 𝐷 is precisely invariant under the identity in 𝐺.

(ii) For every 𝑧 ∈ Ω(𝐺), there is a 𝑔 ∈ 𝐺, with 𝑔𝑧 ∈ 𝐷.
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(iii) The boundary of 𝐷 consists of limit points of 𝐺, and a finite or countable

collection of curves; each curve lies, except perhaps for endpoints, in Ω.

The intersection of the curve with Ω(𝐺) is called an edge of 𝐷.

(iv) The edges are paired by 𝐺; that is, if 𝐸 is an edge of 𝐷, then there is

an edge 𝐸 ′, not necessarily distinct from 𝐸, and a non-trivial 𝑔𝐸 ∈ 𝐺,

called an edge pairing transformation, with 𝑔𝐸𝐸 = 𝐸 ′. Also (𝐸 ′)′ = 𝐸,

and 𝑔𝐸′ = 𝑔−1
𝐸 .

(v) If 𝐸𝑚 is a sequence of edges of 𝐷, then diam𝑆(𝐸𝑚) → 0; the edges of 𝐷

accumulate only at limit points.

(vi) Only finitely many translates of 𝐷 meet any compact subset of Ω(𝐺).

It is a fact that any Kleinian group has a fundamental domain. One can

use, for example, the Ford region, which is defined as the intersection of the

outsides of all the isometric circles of elements of 𝐺 ([Mas88] II.H.3). This

notion is mostly needed for constructing examples of Maskit’s combination

theorems. We now go up one dimension to consider the corresponding object

inside H3
R.

Our first notion of geometrical finiteness will involve the existence of a

fundamental polyhedron with finitely many faces. We now define these objects

and prove they exist for any Kleinian group 𝐺, using a standard construction

called the Dirichlet region. A hyperplane in H3
R is any totally geodesic copy

of H2
R, and such a hyperplane splits H3

R into two half-spaces. A (convex)

polyhedron 𝐷 is the intersection of countably many open half-spaces, where

only finitely many of the corresponding hyperplanes meet any compact subset

of H3
R. There is a natural cell structure on 𝐷 given by the intersections of

the hyperplanes. The 0-cells, 1-cells, and 2-cells are called vertices, edges, and
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faces, respectively.

Definition 2.1.24. Let 𝐺 be a Kleinian group. A polyhedron 𝐷 is a funda-

mental polyhedron for 𝐺 if the following hold.

(i) 𝐷 is precisely invariant under the identity in 𝐺.

(ii) For every 𝑥 ∈ H3
R, there is 𝑔 ∈ 𝐺, with 𝑔𝑥 ∈ 𝐷.

(iii) The faces of 𝐷 are paired by elements of 𝐺; that is, for every face 𝐹 there

is a face 𝐹 ′, and there is 𝑔𝐹 ∈ 𝐺 with 𝑔𝐹𝐹 = 𝐹 ′. These satisfy: 𝑔𝐹 ′ = 𝑔−1
𝐹

and (𝐹 ′)′ = 𝐹 . The element 𝑔𝐹 is called a face pairing transformation.

(iv) Any compact set meets only finitely many 𝐺-translates of 𝐷.

The final condition may also be expressed by saying that the tessellation

of H3
R by translates of 𝐷 is locally finite.

Now fix a Kleinian group 𝐺, and a point 𝑥0 ∈ H3
R not fixed by any non-

trivial 𝑔 ∈ 𝐺. For each non-trivial 𝑔 ∈ 𝐺, the perpendicular bisector of the

line joining 𝑥0 to 𝑔𝑥0 is a hyperplane. Let 𝐷𝑔 be the half-space consisting of

points closer to 𝑥0 than 𝑔𝑥0, that is, points such that 𝑑(𝑥, 𝑥0) < 𝑑(𝑥, 𝑔𝑥0). The

Dirichlet region 𝐷, centered at 𝑥0, is the intersection of all such 𝐷𝑔.

Since any compact subset contains only finitely many points of the form

𝑔𝑥0, 𝐷 is a convex polyhedron. Since 𝑥0 is only fixed by the identity, each face

of 𝐷 corresponds to a unique element of 𝐺.

Theorem 2.1.25 ([Mas88] IV.G.2). Let 𝐺 be a Kleinian group, and 𝑥0 ∈ H3
R

be a point not fixed by any non-trivial 𝑔 ∈ 𝐺. Then the Dirichlet region 𝐷

centered at 𝑥0 is a fundamental polyhedron for 𝐺.
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Proof. We first check (i). If 𝑔 is a non-trivial element of 𝐺, and 𝑥 ∈ 𝐷, then

𝑑(𝑔𝑥, 𝑔𝑥0) = 𝑑(𝑥, 𝑥0) < 𝑑(𝑥, 𝑔−1𝑥0) = 𝑑(𝑔𝑥, 𝑥0).

Hence 𝑔𝑥 is not in 𝐷𝑔, and also not in 𝐷, as desired.

We next check condition (ii). Let 𝑥 ∈ H3
R. There is a (not necessarily

unique) element 𝑔 ∈ 𝐺 with 𝑑(𝑥, 𝑔𝑥0) ≤ 𝑑(𝑥, ℎ𝑥0) for every ℎ ∈ 𝐺. This is

using the fact that 𝐺 acts discontinuously on H3
R. Then, writing an arbitrary

element of 𝐺 as 𝑔ℎ, we have

𝑑(𝑔−1𝑥, 𝑥0) = 𝑑(𝑥, 𝑔𝑥0) ≤ 𝑑(𝑥, 𝑔ℎ𝑥0) = 𝑑(𝑔−1𝑥, ℎ𝑥0)

for every ℎ ∈ 𝐺. Hence 𝑔−1𝑥 ∈ 𝐷ℎ for every ℎ, implying 𝑔−1𝑥 ∈ 𝐷.

Next, we check condition (iii). Let 𝑥 be a point of the relative interior of

a face 𝐹 of 𝐷. In this case, there is a unique 𝑔 ∈ 𝐺 with 𝑥 ∈ 𝐷𝑔; that is,

𝑑(𝑥, 𝑥0) < 𝑑(𝑥, ℎ𝑥0) for every ℎ ̸= 𝑔, and 𝑑(𝑥, 𝑥0) = 𝑑(𝑥, 𝑔𝑥0). We will show

𝑔𝐹 = 𝑔−1. We can write

𝑑(𝑔−1𝑥, 𝑥0) = 𝑑(𝑥, 𝑥0) = 𝑑(𝑔−1𝑥, 𝑔−1𝑥0),

and then for any ℎ ̸= 𝑔−1,

𝑑(𝑔−1𝑥, ℎ𝑥0) = 𝑑(𝑥, 𝑔ℎ𝑥0) > 𝑑(𝑥, 𝑥0) = 𝑑(𝑔−1𝑥, 𝑥0).

So, 𝑔−1𝑥 also lies on a side 𝐹 ′ of 𝐷. It quickly follows that 𝑔−1𝐹 = 𝐹 ′.

Lastly, for condition (iv), let 𝐾 be compact; it suffices to assume 𝐾 is

the closed ball of radius 𝜌 centered at 𝑥0. Again, since the action on H3
R is

discontinuous, only finitely many translates of 𝑥0 can be in the closed ball of
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radius 2𝜌. But when 𝑑(𝑔−1𝑥0, 𝑥0) > 2𝜌, it follows that 𝑔𝐷 ∩𝐾 = ∅, so we are

done.

Example 2.1.26. Let

𝑔 =

⎛⎝1 2

0 1

⎞⎠ , ℎ =

⎛⎝1 0

2 1

⎞⎠ .

Set 𝐺 = ⟨𝑔, ℎ⟩. If we compute the Dirichlet region 𝐷 centered at 𝑖, then we

can first apply 𝑔 and 𝑔−1 to 𝑖 which produces two vertical planes as bisectors.

Similarly, applying ℎ and ℎ−1, we get two hemispheres as our bisectors. Then

𝐷 is the intersection of the half-spaces containing 𝑖, which is depicted in Fig-

ure 2.1.1. Specifically, the region is contained between the two vertical planes

and above the two hemispheres.

C

Figure 2.1.1: The fundamental polyhedron for this example.

If one takes the intersection of 𝐷 with 𝜕H3
R, we get a fundamental domain
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for the action of 𝐺 on ̂︀C. This is true in general, although we will not need

that fact.

Parabolic Subgroups

We will call a Kleinian group 𝐺 parabolic if Λ(𝐺) consists of a single point.

Then 𝐺 has no loxodromic elements, and must have parabolic elements. Nor-

malize so Λ(𝐺) = {∞}, then we can normalize further so that 𝑗𝑧 = 𝑧+1 is in

𝐺, and all other parabolic elements are translations 𝑧 ↦→ 𝑧 + 𝜏 where |𝜏 | > 1.

Letting 𝐽 be the subgroup of 𝐺 consisting of all parabolic elements, we

have that 𝐽 is a discrete subgroup of translations of C. Hence 𝐽 is free abelian

and has rank 1 or 2.

Definition 2.1.27. Given a parabolic group 𝐺, we define the rank of 𝐺 to be

the rank of its maximal parabolic subgroup.

If 𝐽 = 𝐺, then 𝐺 is either cyclic and generated by 𝑗𝑧 = 𝑧 + 1 in the case

that 𝐺 has rank 1, or 𝐺 ∼= Z2 and is generated by 𝑗𝑧 = 𝑧 + 1 and ℎ𝑧 = 𝑧 + 𝜏

for 𝜏 ∈ C ∖R.

If 𝐺 ̸= 𝐽 , and 𝐽 has rank 1, then 𝐺 is necessarily an infinite dihedral group.

That is, after normalizing, 𝐺 is generated by 𝑗𝑧 = 𝑧+1 and an order 2 elliptic

element fixing 0 and ∞ (after normalization). We call order 2 elliptic elements

half-turns. This classification of rank 1 parabolic groups will be important in

some proofs in the next section. One can also classify the rank 2 parabolic

groups where 𝐺 ̸= 𝐽 , but we will not need that classification.

2.1.4 Geometrical Finiteness

In this section we will develop the notion of geometrical finiteness, a crite-

rion for a Kleinian group 𝐺 ensuring the quotient manifold H3
R/𝐺 is ‘nice’ in
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some sense. Again, our main reference is [Mas88]. Recall that any Kleinian

group admits a convex fundamental polyhedron by Theorem 2.1.25. The def-

inition we will start with is very natural in light of this fact.

Definition 2.1.28. We say a Kleinian group 𝐺 is geometrically finite if 𝐺 has

a convex fundamental polyhedron with finitely many faces.

The main goal in this section is to prove an equivalent characterization of

geometrical finiteness just in terms of the action of 𝐺 on 𝜕H3
R, which will then

be adapted to the more general situation of discrete convergence groups.

Theorem 2.1.29 ([Mas88] VI.C.7). Let 𝐺 be a Kleinian group. Then the

following are equivalent:

1. 𝐺 is geometrically finite.

2. 𝐺 has an essentially finite convex fundamental polyhedron.

3. Every limit point of 𝐺 is a point of approximation, a rank 2 parabolic

fixed point, or a doubly cusped rank 1 parabolic fixed point.

These other notions will be defined in this section. First, we work on

showing that any fundamental polyhedron 𝐷 with finitely many faces for a

Kleinan group 𝐺 is also essentially finite. This roughly means that, after

deleting a finite collection of horoballs about parabolic fixed points, that 𝐷 is

bounded away from Λ(𝐺). We will make this more precise soon. First, we fix

some notations used throughout this section.

For a polyhedron 𝐷 ⊂ H3
R, we denote the relative boundary of 𝐷 in H3

R

by 𝜕𝐷; we denote the intersection of the Euclidean boundary of 𝐷 with 𝜕H3
R

by

𝜕𝐷 = 𝜕𝐷 ∩ 𝜕H3
R.
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The relative interior of 𝜕𝐷 in 𝜕H3
R is denoted by Int(𝜕𝐷). See Figure 2.1.2

for an example.

If 𝑥 ∈ 𝜕𝐷, and 𝑥 lies on the boundary of the face 𝐹 of 𝐷, then we say that

𝐹 abuts 𝑥.

C

Figure 2.1.2: The fundamental domain determined by the fundamental poly-
hedron from Figure 2.1.1. The blue arcs bounding the red region are 𝜕𝐷, and
the red regions are Int(𝜕𝐷)

.

We will need the notion of a horosphere and horoball.

Definition 2.1.30. A horosphere 𝑆 in H3
R is a Euclidean (𝑛−1)-sphere tangent

to 𝜕H3
R which, aside from the point of tangency, lies in H3

R. The corresponding

open ball tangent to 𝜕H3
R is called a horoball. The point of tangency is the

center or vertex of the horosphere and horoball.

Note that a horosphere tangent to a point in C in the upper half-space

model is just a Euclidean sphere, while one tangent to ∞ is a Euclidean plane

parallel to C.
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Proposition 2.1.31 ([Mas88] VI.A.5). Let 𝐺 be Kleinian, where 𝐺 contains

𝑗𝑧 = 𝑧 + 1. Then the horoball 𝑇 = {(𝑧, 𝑡) ∈ H3
R | 𝑡 > 1} is precisely invariant

under Stab(∞).

Proof. Let 𝐽 = Stab(∞). Then no element of 𝐽 is loxodromic by Proposi-

tion 2.1.9. Hence every element of 𝐽 is parabolic or elliptic and preserves

every horosphere centered at ∞ invariant.

If

𝑔 =

⎛⎝𝑎 𝑏

𝑐 𝑑

⎞⎠ ∈ 𝐺,

then by Proposition 2.1.8, either 𝑐 = 0, in which case 𝑔 ∈ 𝐽 , or |𝑐| ≥ 1. In

the latter case, the radius of the isometric circle of 𝑔 is at most one. Write

𝑔 = 𝑞𝑟, where 𝑟 is reflection in the isometric circle of 𝑔, and 𝑞 is a Euclidean

motion. Extending to H3
R, we have that 𝑟 is reflection in the hyperbolic plane

bounded by 𝑔’s isometric circle. Since the radius of said circle is at most

one, 𝑟𝑇 ∩ 𝑇 = ∅. On the other hand, 𝑞 is a Euclidean motion preserving

horospheres centered at ∞, hence 𝑞𝑇 = 𝑇 and 𝑞𝑟𝑇 ∩ 𝑇 = ∅ as desired.

We now define cusped regions for parabolic fixed points.

Definition 2.1.32. Let 𝐺 be a Kleinian group, and let 𝐽 be a rank 1 parabolic

subgroup of 𝐺. 𝐽 , or the fixed point 𝑥 of 𝐽 , is cusped if there is an open circular

disc 𝐵 ⊂ ̂︀C which is precisely invariant under 𝐽 in 𝐺. 𝐵 is called a cusped

region for 𝐽 , or for 𝑥. The point 𝑥 is called the center of 𝐵.

Similarly, 𝐽 , or 𝑥, is doubly cusped if there are two disjoint open circular

discs 𝐵1 and 𝐵2, so that 𝐵 = 𝐵1∪𝐵2 is precisely invariant under 𝐽 in 𝐺. Call

𝐵 a doubly cusped region.

Note that the individual discs in a doubly cusped region need not be pre-

cisely invariant on their own. If 𝐽 = 𝐺 = ⟨𝑧 ↦→ 𝑧 + 1, 𝑧 ↦→ −𝑧⟩, then the discs
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{𝑧 | Im(𝑧) < −1} ∪ {𝑧 | Im(𝑧) > 1} are precisely invariant under 𝐽 in 𝐺, but

neither one is invariant on its own.

The existence of doubly cusped regions for rank 1 parabolic fixed points

when 𝐺 is geometrically finite is the first step towards encoding geometrical

finiteness in terms of the action on the boundary.

Proposition 2.1.33 ([Mas88] VI.A.10). Let 𝐷 be a fundamental polyhedron

with finitely many faces for the Kleinian group 𝐺, and let 𝑥 ∈ 𝜕𝐷. Then either

𝑥 ∈ Ω(𝐺), or 𝐽 = Stab(𝑥) is a parabolic subgroup of 𝐺. Further, if 𝐽 has rank

1, then 𝑥 is doubly cusped.

Proof. This proof is quite long, so we break it down into steps.

Step 1: Show that either 𝑥 ∈ Ω(𝐺), or at least two faces abut 𝑥.

Step 2: Modify 𝐷 inductively to obtain a new object 𝐷′ whose faces

abutting ∞ are all paired with each other.

Step 3: Use 𝐷′ to show Stab(𝑥) is a parabolic subgroup if 𝑥 ∈ Λ(𝐺).

Step 4: Construct a doubly cusped region in the case that Stab(𝑥) has

rank 1.

Step 1: If 𝑥 ∈ Int(𝜕𝐷), then 𝑥 ∈ Ω(𝐺) since the interior of 𝐷 is mapped

off itself by any 𝑔 ∈ 𝐺. If 𝑥 is an interior point of a face 𝐹 of Int(𝜕𝐷), then

there is another face 𝐹 ′ and a face pairing transformation 𝑔 with 𝑔𝐹 = 𝐹 ′.

Again we have that 𝑥 ∈ Ω(𝐺), since a neighborhood of 𝑥 consists of points in

𝐷, 𝑔−1𝐷 and 𝐹 . Since 𝐷 has finitely many faces, it now follows that at least

two faces of 𝐷 abut 𝑥. This also applies to isolated points of 𝜕𝐷.

Step 2: Normalize so 𝑥 = ∞. Since 𝐷 has finitely many faces, we can find

a horoball 𝑇 , centered at ∞, so that 𝑇 meets only those faces of 𝐷 abutting

∞. These faces need not be paired with each other, so we will modify 𝐷

inductively as follows. If any faces abutting ∞ are not paired, then there is a
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face pairing transformation 𝑔1 mapping a face abutting 𝑥1 ̸= ∞ on 𝜕𝐷 to a

face abutting ∞. Replace 𝐶1 = 𝐷 ∩ 𝑔−1
1 𝑇 by 𝑔1𝐶1. We are essentially cutting

a horoball centered at 𝑥1 out of 𝐷 and pasting it back at ∞.

If the resulting object has a face abutting ∞ paired with a face abutting

some point 𝑥2 = 𝑔−1
2 ∞ ≠ ∞, then set 𝐶2 = 𝐷 ∩ 𝑔−1

2 (𝑇 ) and replace 𝐶2 by

𝑔2𝐶2. This can only happen a finite number of times, and we eventually get a

set 𝐷′ with some properties we now list.

This 𝐷′ is a (not necessarily convex) ‘polyhedron’ bounded by a finite num-

ber of faces, where some of the faces lie on horospheres instead of hyperplanes;

𝐷′ is still precisely invariant under the identity in 𝐺; there is a horoball 𝑇 ′,

centered at ∞, that meets only those faces of 𝐷′ abutting ∞; the faces of 𝐷′

abutting ∞ are now paired with each other.

Step 3: The faces of 𝐷′ abutting ∞ (if there are any) are pairwise iden-

tified by elements of 𝐺. Since the tessellation by 𝐷 is locally finite and 𝐷 has

finitely many sides, H3
R/𝐺 is complete. When discussing Poincaré’s polyhe-

dron theorem, Maskit shows that the completeness condition for a finite sided

polyhedron implies these ‘infinite cycle transformations’ are never hyperbolic

([Mas88], IV.I.6). We now want to show one of the face pairings is parabolic.

If no faces of 𝐷′ abut ∞, then 𝜕𝐷′ is contained inside some Euclidean ball,

hence ∞ ∈ Ω(𝐺) as in the first paragraph. If there is exactly one pair of faces

abutting ∞ (including the possibility of one face paired with itself), and the

corresponding face pairing 𝑗 is elliptic, then ∞ is an elliptic fixed point since

𝑗 sends a vertical plane to a vertical plane. It follows that ∞ ∈ Ω(𝐺).

Lastly, if more than two faces abut ∞, then either one identification is

parabolic or we have at least two elliptic identifications. In the latter case,

the commutator of the elliptics is a parabolic fixing ∞ by Proposition 2.1.7

as desired. This implies 𝐽 has no loxodromic element by Proposition 2.1.9,
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and so we have established that any 𝑥 ∈ 𝜕𝐷 satisfies 𝑥 ∈ Ω(𝐺) or Stab(𝑥) is

parabolic.

Step 4: For the second part of the proposition, we assume 𝐽 is rank 1 and

normalized so that 𝑗𝑧 = 𝑧 + 1 generates the parabolic subgroup. The faces of

𝐷′ abutting ∞ are paired by elements of 𝐽 , and 𝐽 is either cyclic or infinite

dihedral if there are any elliptic elements. Either way, if 𝐹 and 𝐹 ′ are faces of

𝐷′ paired by 𝑗 ∈ 𝐽 , then we have 𝐹 = 𝐹 ′ or 𝐹 is parallel to 𝐹 ′.

Let Σ be the ‘polyhedron’ bounded by the faces of 𝐷′ abutting ∞. This is

a disjoint union of convex polyhedra, which are convex in both the hyperbolic

and Euclidean sense, since all their faces abut ∞. Let 𝐸 = Int(𝜕Σ), then 𝐸 is

a union of finitely many Euclidean convex polygons in the plane, with edges

paired by elements of 𝐽 .

Since 𝐽 has rank 1, there is at least one pair of parallel edges on the

boundary of 𝐸 identified by 𝑗. If 𝐸 has exactly one such pair of edges, then

these cannot be parallel to the real axis. So, we can find 𝑏 > 0, so that

𝐵 = {𝑧 | |Im(𝑧)| > 𝑏} intersects only that pair of edges. Then 𝐵 is precisely

invariant under 𝐽 in 𝐺 by construction, and so 𝑥 is doubly cusped.

In the more general case, consider Im(𝑧) as height. If there is no highest

point in 𝐸, then, since 𝐸 has finitely many edges, we see that at sufficient

height, we see only one pair of edges, necessarily identified by 𝑗. As above, we

can find a cusped region of the form {𝑧 | Im(𝑧) > 𝑏}. Similarly, if 𝐸 has no

lowest point, we can find a complementary region {𝑧 | Im(𝑧) < −𝑏}, and so 𝑥

is doubly cusped.

So, we now suppose 𝐸 has a highest point 𝑧1. If this point is unique, then

𝑧1 is the fixed point of a half-turn. More generally, these highest points are

discrete since 𝐸 only extends downwards from them. For the same reason, the

edges abutting these highest points cannot all be identified by translations.
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C

𝐸

𝑗

Figure 2.1.3: The simplest case for 𝐸 when there is no highest nor lowest
point. The red region is precisely invariant under 𝐽 in 𝐺.

So, 𝐽 is not cyclic. This also holds if 𝐸 has a lowest point. Now assume 𝐸 has

a highest point, and normalize so the fixed points of all half-turns in 𝐽 have

height 0.

Cut and paste using these half-turns to obtain a ‘polygon’ 𝐸 ′ contained in

the lower half-plane. Aside from edges lying on the real axis, all edge pairing

transformations are now translations. It follows that 𝐸 ′ has no lowest point.

Using a half-turn, the reflected 𝐸 ′ has no highest point, and so we can find a

doubly cusped region as above.

The set 𝐷′ will be used again in a later proof. Now, we said above that an

essentially finite fundamental polyhedron will be one which is bounded away

from Λ(𝐺) aside from a collection of horoballs. We can now show that each

individual parabolic fixed point has a such a horoball.

Proposition 2.1.34 ([Mas88] VI.A.13). Let 𝐷 be a fundamental polyhedron
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with finitely many faces for the Kleinian group 𝐺, and let 𝑥 ∈ 𝜕𝐷 be a rank 2

parabolic fixed point. Then there is a precisely invariant horoball 𝑇 , centered

at 𝑥, so that 𝐷 ∖ 𝑇 is bounded away from 𝑥.

Proof. Let 𝑇 be any precisely invariant horoball centered at 𝑥, whose existence

is guaranteed by Proposition 2.1.31. Normalize so that 𝑥 = ∞. Then a

sequence of points (𝑧𝑚, 𝑡𝑚) ∈ 𝐷 ∖ 𝑇 approaches ∞ only if 𝑡𝑚 is bounded and

|𝑧𝑚| → ∞. But 𝜕𝑇/Stab(∞) has finite area since Stab(∞) has rank 2, hence

|𝑧𝑚| is bounded for (𝑧𝑚, 𝑡𝑚) ∈ 𝐷 ∖ 𝑇 .

If 𝐽 = Stab(𝑥) has rank 1, then the above fails in general. Indeed, if 𝐺

is generated by 𝑧 ↦→ 𝑧 + 1, then a fundamental polyhedron 𝐷 is given by

the region between two parallel vertical planes. But then when we delete a

horoball centered at ∞, we can still approach ∞ from inside 𝐷. There is a

natural modification in light of Proposition 2.1.33, though. We now have a

doubly cusped region 𝐵 = 𝐵1 ∪ 𝐵2. Let 𝐻𝑚 be the half space bounded by

𝐵𝑚, and let 𝑇 ′ = 𝑇 ∪𝐻1∪𝐻2, where 𝑇 is a precisely invariant horoball. Then

𝑇 ′ is precisely invariant under 𝐽 in 𝐺, and we call this an extended horoball

centered at 𝑥. If 𝑧 ↦→ 𝑧 + 1 is our parabolic generator, then we can take 𝑇 ′ to

be a set of the form {(𝑧, 𝑡) ∈ H3
R | 𝑡 > 1} ∪ {(𝑧, 𝑡) ∈ H3

R | |Im(𝑧)| > 𝑎}, for

some 𝑎 > 0.

Proposition 2.1.35 ([Mas88] VI.A.14). Let 𝐷 be a fundamental polyhedron

with finitely many faces for the Kleinian group 𝐺, and let 𝑥 ∈ 𝜕𝐷, where

𝐽 = Stab(𝑥) is a rank 1 parabolic subgroup of 𝐺. Then there is a precisely

invariant extended horoball 𝑇 ′, centered at 𝑥, so that 𝐷 ∖ 𝑇 ′ is bounded away

from 𝑥.

Proof. Normalize once again so that 𝑥 = ∞, and so that 𝑗(𝑧) = 𝑧+1 generates

the parabolic subgroup of 𝐽 . Since 𝐷 is convex and has finitely many faces, all
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the faces not abutting ∞ are contained in a large Euclidean ball. Construct

the set 𝐸 as in Proposition 2.1.33, recalling that the edges which extend to ∞

do so in an infinite strip not parallel to the real axis. So, outside of a large

Euclidean ball, all points of 𝐷 either have large height or large imaginary part.

Since our extended horoball 𝑇 ′ consists of points with either large height or

large imaginary part, 𝐷 ∖ 𝑇 ′ stays bounded away from 𝑥 = ∞.

Now that we have the notion of an extended horoball, we can define essen-

tially finite fundamental polyhedra.

Definition 2.1.36. Suppose 𝑥1, · · · , 𝑥𝑛 are points of 𝜕𝐷, and 𝑇𝑚 is a horoball

or extended horoball at 𝑥𝑚. We say {𝑇1, · · · , 𝑇𝑛} is precisely invariant relative

to D if each 𝑇𝑚 is precisely invariant under Stab(𝑥𝑚), and, whenever there is

a 𝑔 ∈ 𝐺 with 𝑔𝑥𝑖 = 𝑥𝑗, then 𝑔𝑇𝑖 = 𝑇𝑗.

We say a fundamental polyhedron 𝐷 for a Kleinian group 𝐺 is essentially

finite if there is a finite set of horoballs or extended horoballs {𝑇1, · · · , 𝑇𝑛},

where these are precisely invariant relative to 𝐷, and 𝐷 ∖
⋃︀
𝑇𝑚 is bounded

away from Λ(𝐺).

We are ready to prove the first implication of Theorem 2.1.29. Most of the

work is already done.

Proposition 2.1.37 ([Mas88] VI.A.15). Let 𝐺 be a Kleinian group, and 𝐷 a

fundamental polyhedron with finitely many faces. Then 𝐷 is essentially finite.

Proof. Let 𝑥1, · · · , 𝑥𝑛 be the parabolic fixed points in 𝜕𝐷. There are only

finitely many by Proposition 2.1.33. From Proposition 2.1.34 we can find

precisely invariant horoballs 𝑇𝑗 for any rank 2 parabolic fixed points, and

by Proposition 2.1.33 and Proposition 2.1.35, we can find precisely invariant

extended horoballs 𝑇𝑗 for any rank 1 parabolic fixed points, so that 𝐷 ∖
⋃︀
𝑇𝑚
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is bounded away from Λ(𝐺). By shrinking these horoballs as necessary, we

can also ensure 𝑔𝑇𝑖 = 𝑇𝑗 whenever 𝑔𝑥𝑖 = 𝑥𝑗.

For the second implication of Theorem 2.1.29, we have already seen what

it means for parabolic points to be cusped or doubly cusped. We now intro-

duce points of approximation. These will turn out to be equivalent to conical

limit points, which will play an important role when we switch to discrete

convergence groups. Recall that 𝑑𝐸 is the Euclidean metric coming from the

identification of H3
R ∪ 𝜕H3

R with the closed unit ball.

Definition 2.1.38. Let 𝐺 be Kleinian. A point 𝑥 ∈ 𝜕H3
R is a point of ap-

proximation for 𝐺 if there is a sequence (𝑔𝑚) of distinct elements of 𝐺 so that

𝑑𝐸(𝑔𝑚𝑥, 𝑔𝑚𝑧) ≥ 𝛿 > 0 on compact subsets of 𝜕H3
R ∖ {𝑥}.

If |Λ(𝐺)| = 1, then this one point is a parabolic fixed point and cannot be

a point of approximation. In general, parabolic fixed points are never points of

approximation. If |Λ(𝐺)| = 2, then both points are loxodromic fixed points and

points of approximation. More generally, fixed points of loxodromic elements

are always points of approximation, with 𝑔𝑚 being the sequence of powers of

the corresponding loxodromic element.

We will need the following characterization of points of approximation.

Proposition 2.1.39 ([Mas88] VI.B.3). A point 𝑥 ∈ 𝜕H3
R

∼= S2 is a point of

approximation if and only if there is a point 𝑧 ∈ H3
R, and there is a sequence

(𝑔𝑚) of distinct elements of 𝐺 so that 𝑑𝐸(𝑔𝑚𝑥, 𝑔𝑚𝑧) ≥ 𝛿 > 0.

Proof. Assume first that 𝑥 is a point of approximation and let (𝑔𝑚) be the

corresponding sequence of distinct elements of 𝐺. Let 𝑦1, 𝑦2 be points of S2

different from 𝑥, and let 𝐴 be the geodesic connecting 𝑦1 to 𝑦2. Choose a
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subsequence so that 𝑔𝑚𝑥 → 𝑥′, 𝑔𝑚𝑦1 → 𝑦′1 ̸= 𝑥′, and 𝑔𝑚𝑦2 → 𝑦′2 ̸= 𝑥′. Let

𝑧 ∈ 𝐴. Then either 𝑔𝑚𝑧 → 𝑦′1, or 𝑔𝑚𝑧 → 𝑦′2, as desired.

Now assume we have 𝑧 ∈ H3
R so that 𝑑𝐸(𝑔𝑚𝑥, 𝑔𝑚𝑧) ≥ 𝛿 > 0. Choose a

subsequence so that 𝑔𝑚𝑧 → 𝑦. Then 𝑔𝑚𝑤 → 𝑦 uniformly in compact subsets of

the complement of some point 𝑦′ by Proposition 2.1.21. Since 𝑑𝐸(𝑔𝑚𝑥, 𝑔𝑚𝑧) ≥

𝛿, we must have 𝑦′ = 𝑥, and so 𝑥 is a point of approximation.

We can now show boundary points of a fundamental polyhedron are never

points of approximation.

Proposition 2.1.40 ([Mas88] VI.B.5). Let 𝐷 be a fundamental polyhedron for

the Kleinian group 𝐺, and let 𝑥 ∈ 𝜕𝐷. Then 𝑥 is not a point of approximation.

Proof. Let (𝑔𝑚) be any sequence of distinct elements of 𝐺. Up to subsequence,

we may assume 𝑔𝑚𝑥 → 𝑥′. Let 𝐿 be a semi-infinite hyperbolic line segment

lying entirely inside 𝐷 with one endpoint at 𝑥. Since the Euclidean diameter

of 𝑔𝑚𝐷 in the ball model goes to 0, so does the Euclidean diameter of 𝑔𝑚𝐿.

This implies 𝑔𝑚𝑧 → 𝑥′ for all 𝑧 ∈ 𝐿, and then Proposition 2.1.21 implies there

can be no point 𝑧 ∈ H3
R so that 𝑑𝐸(𝑔𝑚𝑥, 𝑔𝑚𝑧) stays bounded away from 0. So

𝑥 is not a point of approximation by Proposition 2.1.39.

Sometimes, when we have points accumulating to ∞, we will want to mod-

ify by Stab(∞) so that the new set of points no longer accumulates to ∞.

This type of result will appear again when we switch to discrete convergence

groups, and play an essential role there.

Proposition 2.1.41 ([Mas88] VI.C.1). Let 𝐷 be an essentially finite funda-

mental polyhedron for the Kleinian group 𝐺, where ∞ is a parabolic fixed point

on 𝜕𝐷, and let (𝑧𝑚) be a sequence of points in C which are 𝐺-translates of
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some point 𝑦. Then there are elements 𝑗𝑚 ∈ 𝐽 = Stab(∞), with 𝑗𝑚𝑧𝑚 con-

tained in a bounded subset of C.

Proof. If 𝐽 has rank 2, then a fundamental domain for 𝐽 acting on C is

compact, so we are done. If 𝐽 has rank 1, then let 𝑇 be a precisely invariant

extended horoball centered at ∞, and let 𝐵 = 𝜕𝑇 . Modulo 𝐽 , there is at most

one translate of 𝑦 in 𝐵, hence we can assume the points 𝑧𝑚 lie outside 𝐵. This

is an infinite horizontal strip after normalizing so that 𝑧 ↦→ 𝑧+1 generates the

parabolic subgroup of 𝐽 , and again, a fundamental domain for the action of 𝐽

on this strip is compact.

We can now prove the main part of the second implication of Theorem 2.1.29.

Proposition 2.1.42 ([Mas88] VI.C.2). Let 𝐷 be an essentially finite funda-

mental polyhedron for the Kleinian group 𝐺. Then every limit point of 𝐺,

which is not a translate of a point of 𝜕𝐷, is a point of approximation.

Proof. Let 𝑥 be such a limit point, and let 𝐿 be a hyperbolic line passing

through 𝐷 with one endpoint at 𝑥. Let 𝑦 be the other endpoint of 𝐿. We have

enough degrees of freedom to ensure 𝑦 is not a parabolic fixed point, and that

𝐿 does not lie in any translate of a face of 𝐷. Since 𝑥 is not on a translate

of a face of 𝐷, 𝐿 cannot be in any one translate of 𝐷. So, we find a linearly

ordered sequence (𝑥𝑚) on 𝐿 so that 𝑥𝑚 → 𝑥, and there is a sequence of distinct

elements (𝑔𝑚) of 𝐺, where 𝑧𝑚 = 𝑔𝑚𝑥𝑚 ∈ 𝐷. Pass to a subsequence so that

𝑧𝑚 → 𝑧′, 𝑔𝑚𝑥→ 𝑥′, and 𝑔𝑚𝑦 → 𝑦′.

The lines 𝐿𝑚 = 𝑔𝑚𝐿 converge to a line, or to a point. If 𝐿𝑚 → 𝑀 , a

line, then the endpoints of 𝑀 are 𝑥′ and 𝑦′ ̸= 𝑥′, and 𝑧′ ∈ 𝑀 . Otherwise, 𝐿𝑚

converges to 𝑥′ = 𝑦′ = 𝑧′ ∈ 𝜕H3
R. Suppose first that 𝑧′ ∈ H3

R. On 𝐿𝑚, 𝑧𝑚

separates 𝑔𝑚𝑥 from 𝑔𝑚𝑥1. It follows that in the ball model, 𝑑𝐸(𝑔𝑚𝑥, 𝑔𝑚𝑥1) is
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Figure 2.1.4: A schematic picture showing the various points and lines under
consideration.

bounded away from 0, and so by Proposition 2.1.39, 𝑥 is a point of approxi-

mation.

Similarly, if 𝑧′ = 𝑦′ ̸= 𝑥′, then 𝑔𝑚𝑥1 → 𝑦′, so 𝑥 is a point of approximation.

If 𝑧′ = 𝑥′, then since every 𝑧𝑚 ∈ 𝐷, we have 𝑥′ ∈ 𝜕𝐷, so 𝑥′ is a parabolic

fixed point. Let 𝑇 be a precisely invariant horoball or extended horoball at 𝑥′.

Since 𝐷 ∖ 𝑇 is bounded away from 𝑥′, the lines 𝐿𝑚 all pass through 𝑇 . If 𝐿𝑚

converges to a line 𝑀 , then 𝑀 also passes through 𝑇 .

We briefly step back to consider the case 𝐿𝑚 converges to 𝑥′. We will reduce

this to the case in the previous paragraph. Since 𝑦 is not a parabolic fixed

point, 𝑥′ is not a translate of 𝑦. So, we can pick 𝑗𝑚 ∈ 𝐽 = Stab(𝑥′) so that

𝑗𝑚𝑔𝑚𝑦 is bounded away from 𝑥′ by Proposition 2.1.41. Up to subsequence,

𝑗𝑚𝑔𝑚𝑦 → 𝑦′, and since each 𝐿𝑚 passes through 𝑇 , so does each 𝑗𝑚𝐿𝑚.

In either case, under the assumption 𝑧′ = 𝑥′, we have built a sequence of

43



lines ℎ𝑚𝐿, where ℎ𝑚 = 𝑗𝑚𝑔𝑚 (if 𝐿𝑚 converged to a line𝑀 then 𝑗𝑚 = 1), so that

each ℎ𝑚𝐿 passes through 𝑇 ; ℎ𝑚𝑥→ 𝑥′, the center of 𝑇 ; and ℎ𝑚𝑦 → 𝑦′ ̸= 𝑥′.

Consider the points ℎ𝑚𝑧1. If these all lie outside 𝑇 (up to subsequence),

then 𝑑𝐸(ℎ𝑚𝑥, ℎ𝑚𝑧1) is bounded away from zero, and so 𝑥 is a point of approx-

imation with sequence (ℎ𝑚). So, we now assume that (up to subsequence) all

the points ℎ𝑚𝑧1 ∈ 𝑇 , and we will find a contradiction. Notice that, for 𝑚 ̸= 𝑛,

we have 𝑧1 ∈ 𝑔−1
𝑛 𝑇 ∩𝑔−1

𝑚 𝑇 , and so this intersection is nonempty. Precise invari-

ance of 𝑇 under 𝐽 in 𝐺 then implies that 𝑔𝑛, 𝑔𝑚 are in the same left 𝐽-coset

of 𝐺, which further implies that ℎ𝑚𝑧1 and ℎ𝑛𝑧1 are 𝐽-equivalent.

So, we can find 𝑘𝑚 ∈ 𝐽 so that 𝑘𝑚ℎ𝑚𝑧1 = ℎ1𝑧1. Since 𝑧1 is equivalent to

a point of 𝐷, only the identity can fix 𝑧1, so in fact 𝑘𝑚ℎ𝑚 = ℎ1. Rewriting

things, we see that 𝑔𝑚 = �̂�𝑚𝑔1, where �̂�𝑚 = 𝑗−1
𝑚 𝑘−1

𝑚 𝑗1 ∈ 𝐽 . Since the 𝑔𝑚 are all

distinct, so are the �̂�𝑚. We know 𝑔𝑚𝐿 = �̂�𝑚𝑔1𝐿 converges to the line 𝑀 which

has an endpoint at 𝑥′; since �̂�𝑚 are elements of the parabolic subgroup 𝐽 , this

happens only if an endpoint of 𝑔1𝐿 lies at the fixed point 𝑥′ as well. Hence 𝑥′

is equivalent to either 𝑥 or 𝑦. But then either 𝑥 is a translate of a point of

𝜕𝐷, or 𝑦 is parabolic, which is a contradiction.

Using Proposition 2.1.42 along with the definition of an essentially finite

fundamental polyhedron, we establish the second part of Theorem 2.1.29.

Corollary 2.1.43 ([Mas88] VI.C.3). Let 𝐺 be Kleinian, with an essentially

finite fundamental polyhedron 𝐷. Then every limit point of 𝐺 is a point of

approximation, or a rank 2 parabolic fixed point, or a doubly cusped rank 1

parabolic fixed point.

We need one quick result about uniqueness of face pairings before we finish

the proof of the theorem.
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Proposition 2.1.44 ([Mas88] VI.A.1). Let 𝐹1 ̸= 𝐹2 be faces of a fundamental

polyhedron 𝐷 for the Kleinian group 𝐺, and let 𝑔1 and 𝑔2 be the corresponding

face pairing transformations; i.e., there are faces 𝐹 ′
1 and 𝐹 ′

2, so that 𝑔𝑚𝐹𝑚 =

𝐹 ′
𝑚. Then 𝑔1 ̸= 𝑔2.

Proof. The hyperplane on which 𝐹 ′
1 lies separates 𝐷 from 𝑔1𝐷; in particular,

it separates 𝐹 ′
2 from 𝑔1𝐹2. Hence 𝑔1𝐹2 is not a face of 𝐷, while 𝑔2𝐹2 = 𝐹 ′

2

is.

And finally, we prove the final part of Theorem 2.1.29.

Theorem 2.1.45 ([Mas88] VI.C.4). Let 𝐷 be a convex fundamental polyhe-

dron for the Kleinian group 𝐺. If every limit point of 𝐺 is either a point of

approximation, or a rank 2 parabolic fixed point, or a doubly cusped rank 1

parabolic fixed point, then 𝐷 has finitely many faces.

Proof. We assume 𝐷 has infinitely many faces. Then we can find a sequence of

faces (𝐹𝑚) which accumulate at some point 𝑥 ∈ 𝜕𝐷. Let 𝑄𝑚 be the hyperplane

on which 𝐹𝑚 lies. In the ball model, we necessarily have that the Euclidean

diameters of 𝑄𝑚 are going to 0. Since there is a translate of 𝐷 on either

side of 𝑄𝑚, we see that 𝑥 ̸∈ Ω(𝐺), hence 𝑥 ∈ Λ(𝐺), and is not a point of

approximation by Proposition 2.1.40. This forces 𝑥 to be a parabolic fixed

point.

Normalize so 𝑥 = ∞, and so that 𝐽 = Stab(∞) contains 𝑗𝑧 = 𝑧 + 1 as

a primitive element. Since 𝐷 is convex, the Euclidean closure of 𝐷 is also

hyperbolically convex; in particular, if (𝑧, 𝑡) ∈ 𝐷 ∖ {∞}, then the hyperbolic

line between (𝑧, 𝑡) and ∞ is contained in 𝐷.

Let 𝐴 be the set of points 𝑧 ∈ C for which there is 𝑡 > 0 so that (𝑧, 𝑡) ∈ 𝐷.

This is the straight line projection of 𝐷 onto C. If 𝑧1, 𝑧2 ∈ 𝐴, then for large
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enough 𝑡, the points (𝑧1, 𝑡), (𝑧2, 𝑡) ∈ 𝐷; hence 𝑧1 cannot be 𝐽-equivalent to 𝑧2,

since this would give a 𝐽-equivalence of two points in 𝐷. This implies 𝐴 is

precisely invariant under the identity in 𝐽 .

Claim: 𝐴 is convex in C.

Let 𝑧1, 𝑧2 ∈ 𝐴, then there are numbers 𝑡1, 𝑡2 so (𝑧1, 𝑡1), (𝑧2, 𝑡2) ∈ 𝐷. Let 𝐿

be the hyperbolic line segment joining these points. Since 𝐷 is convex, 𝐿 is in

𝐷. Projecting 𝐿 onto 𝐴, we find a line segment contained in 𝐴 from 𝑧1 to 𝑧2

as desired.

The sequence (𝐹𝑚) converges to ∞. Up to subsequence, none of the faces

abut ∞, or they all do. We need to consider these two cases, with subcases

where 𝐽 has rank 1 or rank 2.

Case 1: We assume none of the faces abut ∞, so ∞ does not lie on the

boundary of any 𝑄𝑚. Take (𝑧𝑚, 𝑡𝑚) ∈ 𝐹𝑚 so that (𝑧𝑚, 𝑡𝑚) → ∞. Since none

of the 𝐹𝑚 abut ∞, we see that 𝑧𝑚 ∈ 𝐴. There is enough freedom in these

choices to ensure the points 𝑧𝑚 do not all lie on the same line in C.

Subcase 1: First suppose 𝐽 has rank 2. Then since 𝐴 is precisely invariant

under the identity in 𝐽 , 𝐴 must have finite area. Since 𝐴 also has non-empty

interior, we see that 𝐴 is bounded. Hence |𝑧𝑚| is bounded and 𝑡𝑚 → ∞. This

means the 𝑄𝑚 approach the vertical, that is, they all pass through a compact

subset of H3
R. This violates local finiteness of the tessellation by 𝐷.

Subcase 2: Now we assume 𝐽 has rank 1. Normalize further so that any

half-turns of 𝐽 have their finite fixed point on the real axis, and so that 𝐴 is

contained in the strip between some line 𝐿 and 𝐿′ = 𝐿 + 1, where 𝐿 is not

parallel to the real axis. For each 𝐹𝑚 there is a face 𝐹 ′
𝑚, and a face pairing

transformation 𝑔𝑚 so that 𝑔𝑚𝐹𝑚 = 𝐹 ′
𝑚.

Assume that 𝑡𝑚 is bounded. If Im(𝑧𝑚) is also bounded, then since 𝐿 is not

parallel to the real axis, Re(𝑧𝑚) is also bounded. This cannot happen, since
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(𝑧𝑚, 𝑡𝑚) → ∞. We conclude 𝑡𝑚 → ∞, or |Im(𝑧𝑚)| → ∞.

Consider the semi-infinite line segment 𝐿𝑚 from 𝑔𝑚(𝑧𝑚, 𝑡𝑚) to ∞; note that

𝐿𝑚 ⊂ 𝐷. The endpoints of 𝑔−1
𝑚 𝐿𝑚 are at (𝑧𝑚, 𝑡𝑚) and 𝑔−1

𝑚 (∞) ̸= ∞. Points

with sufficiently large imaginary part lie in an extended horoball 𝑇 which is

precisely invariant under 𝐽 in 𝐺. If the points 𝑔−1
𝑚 (∞) had arbitrarily large

imaginary part, we could find two such points 𝑔−1
𝑚1

(∞) and 𝑔−1
𝑚2

(∞) in 𝑇 where

one has larger imaginary part. Then 𝑔−1
𝑚2
𝑔𝑚1 ∈ 𝐽 since it maps 𝑔−1

𝑚1
(∞) to

𝑔−1
𝑚2

(∞) which are both in 𝑇 . But elements of 𝐽 are purely real translations

or half-turns about points on the real axis, and preserve the magnitude of the

imaginary part, giving a contradiction. So, 𝑔−1
𝑚 (∞) has bounded imaginary

part.

There is 𝑗𝑚 ∈ 𝐽 so that 𝑗𝑚𝑔−1
𝑚 (∞) also has bounded real part, and again

elements of 𝐽 leave |Im(𝑧𝑚)| unchanged. The height 𝑡𝑚 is also unchanged by

elements of 𝐽 . So, 𝑗𝑚𝑔−1
𝑚 𝐿𝑚 has one endpoint in a bounded part of C, and the

other endpoint has either unbounded imaginary part or unbounded height.

In either case, these lines pass through a compact subset of H3
R. Hence by

local finiteness of the tessellation by 𝐷, there are only finitely many distinct

elements of the form 𝑗𝑚𝑔
−1
𝑚 .

Note that if 𝑗𝑚𝑔−1
𝑚 = 𝑗𝑘𝑔

−1
𝑘 , then 𝑔𝑚(∞) = 𝑔𝑘(∞). Hence we can assume

there is a subsequence (𝑔𝑚) where 𝑔𝑚 = 𝑔1𝑗𝑚 (we can assume 𝑗1 = 1). Since

𝐹1 does not abut ∞, the point 𝑔1(∞) = 𝑔𝑚(∞) ̸∈ 𝜕𝐷. Now consider the

line 𝑀𝑚 from (𝑧𝑚, 𝑡𝑚) to ∞. We look at 𝑔𝑚(𝑀𝑚), which has one endpoint at

𝑔𝑚(∞) = 𝑔1(∞). Choose a subsequence so that 𝑔𝑚(𝑧𝑚, 𝑡𝑚) → 𝑦, then 𝑦 ∈ 𝜕𝐷

since (𝑧𝑚, 𝑡𝑚) ∈ 𝜕𝐷. It follows that the endpoints of 𝑔𝑚(𝑀𝑚) converge to

distinct points, so that 𝑔𝑚(𝑀𝑚) converges to a line 𝑀 . By Proposition 2.1.44,

the elements 𝑔𝑚 are all distinct. It follows that the tessellation of H3
R by 𝐷 is

not locally finite near 𝑀 , a contradiction.
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Case 2: What remains is the case when each 𝑠𝑚 abuts ∞. Again, we have

faces 𝐹 ′
𝑚 and face pairing transformations 𝑔𝑚, with 𝑔𝑚𝐹𝑚 = 𝐹 ′

𝑚.

The points 𝑔𝑚(∞) all lie in 𝜕𝐷. If there were infinitely many distinct such

points, then there would be an accumulation point 𝑧 ∈ 𝜕𝐷 which is necessarily

a parabolic fixed point since 𝑧 ∈ Λ(𝐺). Temporarily re-normalize so 𝑧 = ∞,

so we have a sequence of limit points 𝑧𝑚 ∈ 𝜕𝐷 with 𝑧𝑚 → ∞. These points

are all equivalent under 𝐺, they all lie in 𝐴, and they all lie in the complement

of the boundary of the possibly extended horoball at ∞. We have previously

observed such a set is always bounded, giving a contradiction. So, there are

only finitely many points of the form 𝑔𝑚(∞). This will allow us to construct

the set 𝐷′ from Proposition 2.1.33 soon.

We already know that there cannot be infinitely many faces that accumu-

late to ∞ without abutting ∞. Therefore, for 𝑡0 sufficiently large, the horoball

𝑇0 = {(𝑧, 𝑡) | 𝑡 > 𝑡0} meets only those faces of 𝐷 abutting ∞.

Subcase 1: Suppose 𝐽 has rank 2. The Euclidean area of 𝜕𝑇0/𝐽 is finite;

hence 𝐷 ∩ 𝜕𝑇0 is bounded; hence 𝐴, the vertical projection of 𝐷 ∩ 𝜕𝑇0, is also

bounded. If there were infinitely many faces abutting ∞, it now follows that

they would all pass through a bounded part of 𝜕𝑇0, which again contradicts

local finiteness of the tessellation.

Subcase 2: We now suppose 𝐽 has rank 1, which will split into two more

cases. Suppose first that no points of 𝜕𝐷 are equivalent to ∞, other than ∞

itself. The faces 𝐹𝑚 all project to lines on 𝜕𝑇0, which is convex and precisely

invariant under 𝐽 in 𝐺. Since 𝐽 has rank 1, there are at most a finite number

of elements of 𝐽 that can identify the faces of 𝐷 ∩ 𝜕𝑇0. Since distinct faces

of 𝐷 are identified by distinct elements of 𝐺, and elements of 𝐺 ∖ 𝐽 cannot

identify faces of 𝐷 ∩ 𝜕𝑇0, we see that 𝐷 has only finitely many faces abutting

∞, which is a contradiction.
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The other possibility is that we have a finite number of points equivalent to

∞ on 𝜕𝐷. As in Proposition 2.1.33, we construct the set 𝐷′, which is no longer

a polyhedron, since some of its ‘faces’ lie on horospheres. Recall that 𝐷′ is

precisely invariant under the identity in 𝐺 still. The faces of 𝐷′ are paired by

elements of 𝐺, and while these elements need not all be distinct (like the case

for 𝐷), there are at most finitely many of them equal to any given one (our cut

and paste operations to construct 𝐷′ are performed a finite number of times,

and they correspond to conjugating some of the face pairing transformations).

Since the faces of 𝐷′ abutting ∞ are paired with each other by elements

of 𝐽 , we can now proceed as in the previous case, and show that only finitely

many elements of 𝐽 pair such faces. This will again imply only finitely many

faces abut ∞.

We know faces of 𝐷 cannot accumulate to ∞ without abutting ∞; this

implies the same statement for points 𝑥 ∈ 𝜕𝐷 equivalent to 𝐷. Hence we can

find a horosphere 𝑇1 = {(𝑧, 𝑡) | 𝑡 = 𝑡1}, so that every face of 𝐷′ intersecting 𝑇1

abuts ∞. Then 𝑇1 is precisely invariant under 𝐽 in 𝐺, and 𝑇1 ∩𝐷′ is precisely

invariant under the identity in 𝐽 .

Let ̂︀𝐷 be the vertical projection of 𝑇1 ∩𝐷′ to C. Then ̂︀𝐷 is also precisely

invariant under the identity in 𝐽 . This is a connected finite union of Euclidean

convex polygons, but need not be convex itself. The edges of ̂︀𝐷 are paired by

𝐽 . Each polygon is either bounded, in which case it has finitely many edges,

or is contained in a strip between parallel lines at horizontal distance 1 from

each other. For each strip, there can be at most finitely many distinct edges

that are paired with edges of the same strip. Indeed, if there were infinitely

many, then there would be infinitely many paired by the same element of 𝐽 .

There is only one way we could have infinitely many distinct edge pairing

transformations in 𝐽 at this point. This is when we have two strips 𝑆 and 𝑆 ′,
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where 𝑆 and 𝑆 ′ both contain infinitely many edges of ̂︀𝐷, there is a sequence

of edges 𝐸𝑚 in 𝑆 paired with 𝐸 ′
𝑚 in 𝑆 ′, and the side pairing transformations

𝑗𝑚 ∈ 𝐽 , satisfying 𝑗𝐸𝑚 = 𝐸 ′
𝑚, are all distinct.

Since ̂︀𝐷 ∩ 𝑆 is convex, the edges (𝐸𝑚) have a limiting direction; similarly,

the (𝐸 ′
𝑚) have a limiting direction. These limiting directions are those of the

parallel lines bounding the respective strips. Since 𝑗𝑚𝐸𝑚 = 𝐸 ′
𝑚, the edges 𝐸𝑚

and 𝐸 ′
𝑚 are also parallel, hence the limiting directions are parallel. So, we

can find a point in the intersection of infinitely many of the edges 𝐸𝑚 being

identified to a point in the intersection of infinitely edges 𝐸 ′
𝑚. But there are

at most a finite number of elements of 𝐽 that can identify a point of a (non-

horizontal) infinite strip of bounded width with a point of a parallel strip,

which is also of bounded width. So once again, only finitely many faces can

abut ∞.

We end this section by noting another characterization of points of approx-

imation and a characterization of parabolic fixed points which are either rank

2 or rank 1 and doubly cusped. These then form the basis for generalizing

geometrical finiteness to discrete convergence groups.

Proposition 2.1.46. Let 𝐺 be a Kleinian group, then 𝑥 ∈ 𝜕H3
R is a point

of approximation if and only if there is a sequence (𝑔𝑚) of distinct elements

of 𝐺, so that, for every 𝑧 ∈ 𝜕H3
R, (𝑔𝑚𝑥, 𝑔𝑚𝑧) stays in a compact subset of

(𝜕H3
R × 𝜕H3

R) ∖∆, where ∆ is the diagonal subspace.

Proof. For this, we note that 𝑑𝐸(𝑔𝑚𝑥, 𝑔𝑚𝑧) ≥ 𝛿 > 0 is equivalent to (𝑔𝑚𝑥, 𝑔𝑚𝑧)

staying in a compact subset of (𝜕H3
R × 𝜕H3

R) ∖∆.

Lastly, we establish a different finiteness condition for parabolic fixed points

that more readily generalizes to the setting of discrete convergence groups. We

will later call these bounded parabolic fixed points.
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Proposition 2.1.47. Let 𝐺 be a Kleinian group. A parabolic fixed point 𝑥 ∈

𝜕H3
R is rank 2 or rank 1 and doubly cusped if and only if (Λ(𝐺)∖{𝑥})/Stab(𝑥)

is compact.

Proof. Normalize so 𝑥 = ∞ in the upper half-space model and contains 𝑗𝑧 =

𝑧 + 1. First suppose 𝑥 is rank 2 or rank 1 and doubly cusped. If 𝑥 is rank

2, then we have a compact fundamental domain for the action of Stab(𝑥) on

C, and hence C/Stab(𝑥) is compact and so is (Λ(𝐺) ∖ {𝑥})/Stab(𝑥). If 𝑥 is

rank 1 and doubly cusped, then Λ(𝐺) ∖ {𝑥} is necessarily contained in the

complement of the cusped regions. This complement is an infinite horizontal

strip, and there is a compact fundamental domain for the action of Stab(𝑥)

on this strip, so once again (Λ(𝐺) ∖ {𝑥})/Stab(𝑥) is compact.

Conversely, suppose (Λ(𝐺) ∖ {𝑥})/Stab(𝑥) is compact. If 𝑥 has rank 2,

then we are done, so suppose 𝑥 has rank 1. We first argue that Λ(𝐺) ∖ {𝑥}

is contained in an infinite horizontal strip. Indeed, since our only parabolic

elements translate horizontally, and the only other possible elements of Stab(𝑥)

are half-turns (by the discussion following Definition 2.1.27), if Λ(𝐺)∖{𝑥} were

not contained in a horizontal strip, then we could not have a compact subset

of Λ(𝐺) ∖ {𝑥} whose translates by Stab(𝑥) cover Λ(𝐺) ∖ {𝑥}. This contradicts

the fact that this action is cocompact. Then, for sufficiently large 𝑏, we have

that {𝑧 | |Im(𝑧)| > 𝑏} is a doubly cusped region for 𝑥, and we are done.

In the language of discrete convergence groups, geometrical finiteness will

directly generalize the dynamical characterization from Theorem 2.1.29 which

only involves information about the action of 𝐺 on the ideal boundary. These

last two propositions give us a reasonable definition to start with which will

make sense in the new context while being equivalent to the definitions for

Kleinian groups.
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2.2 Discrete Convergence Groups

This section is mostly devoted to background related to convergence group

actions. We start by defining convergence groups and geometrical finiteness in

Section 2.2.1 and Section 2.2.2. In Section 2.2.3 we recall some background on

relatively hyperbolic groups. At the end of this section, we state and prove a

key proposition (Proposition 2.2.25) about relatively quasi-convex subgroups

of geometrically finite convergence groups which we will need in Chapter 3.

2.2.1 Convergence Groups

We refer to Tukia [Tuk94], [Tuk98], and Bowditch [Bow99] for further

background on the material in this section.

Definition 2.2.1. Let 𝐺 be a group acting on a compact metrizable space 𝑀 .

We say the action is a convergence action and call 𝐺 a convergence group if,

whenever (𝑔𝑘) is a sequence of pairwise distinct elements in 𝐺, we can take a

subsequence so that one of the following two conditions is satisfied:

1. The sequence (𝑔𝑘) converges to a homeomorphism 𝑔 in the compact-open

topology on Homeo(𝑀).

2. There are points 𝑧+, 𝑧− ∈𝑀 (not necessarily distinct) so that the maps

𝑔𝑘|𝑀∖{𝑧−} and 𝑔−1
𝑘 |𝑀∖{𝑧+} converge to the constant maps 𝑧 ↦→ 𝑧+ and

𝑧 ↦→ 𝑧− uniformly on compacts, respectively..

If 𝐺 is a convergence group such that only the second condition occurs, we call

𝐺 a discrete convergence group and the action a discrete convergence action.

Remark 2.2.2. Note that when 𝐺 < Homeo(𝑀) is a convergence group, 𝐺

is a discrete convergence group if and only if 𝐺 is a discrete subgroup of
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Homeo(𝑀) with respect to the compact-open topology on Homeo(𝑀). So, if

(𝑔𝑘) is a divergent sequence (that is, a sequence which leaves every compact

subset of Homeo(𝑀)) in a discrete convergence group 𝐺, then we can extract

a subsequence so that the second condition above holds.

When 𝑀 is a topological 𝑛-sphere, the definition of a convergence group

is due to Gehring and Martin [GM87], who observed that the isometry group

of H𝑛
R always acts as a convergence group on 𝜕H𝑛

R. Gehring and Martin also

showed (again when 𝑀 is an 𝑛-sphere) that a group 𝐺 is a discrete convergence

group if and only if the induced action of 𝐺 on the space of distinct triples in

𝑀 is properly discontinuous; later Bowditch [Bow99] observed that the same

holds when 𝑀 is an arbitrary compact Hausdorff space.

In the setting where 𝑀 is compact metrizable, convergence groups were

studied systematically by Tukia [Tuk94]. In particular Tukia showed that

any group of isometries acting properly discontinuously on a proper geodesic

Gromov-hyperbolic metric space 𝑋 acts as a discrete convergence group on

both the boundary 𝜕𝑋 and the compactification 𝑋 = 𝑋⊔𝜕𝑋 (see also Freden

[Fre95]).

Definition 2.2.3. Following Tukia [Tuk94], if (𝑔𝑘) is a sequence in 𝐺 <

Homeo(𝑀) such that the second condition of Definition 2.2.1 holds without

extracting a subsequence, then we say that (𝑔𝑘) is a convergence sequence.

In this case, the (uniquely defined) points 𝑧+ and 𝑧− are respectively called

the attracting point and repelling point of the sequence (𝑔𝑘).

When 𝐺 is a discrete convergence group, an arbitrary sequence of pairwise

distinct elements in 𝐺 is not necessarily a convergence sequence, but it always

has a subsequence which is.

One consequence of the definitions above is the following:
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Proposition 2.2.4. Let (𝑔𝑘) be a convergence sequence in a discrete conver-

gence group 𝐺 acting on a compact metrizable space 𝑀 containing at least 3

points. If 𝑈 is any open neighborhood of the repelling point 𝑧− of (𝑔𝑘), then

(𝑔𝑘𝑈) converges to 𝑀 in the topology on closed subsets of 𝑀 induced by Haus-

dorff distance.

Proof. If 𝑈 =𝑀 the result is immediate, so assume that 𝑀 ∖ 𝑈 is nonempty.

Then, since 𝑀 ∖𝑈 is a nonempty compact subset of 𝑀 ∖{𝑧−}, the set 𝑔𝑘(𝑀 ∖𝑈)

converges to a singleton {𝑧+}. So 𝑔𝑘𝑈 eventually contains every compact in

the complement of {𝑧+}, and must converge to the closure of 𝑀 ∖ {𝑧+}. In

addition, since 𝑀 contains at least 3 points, there are distinct points 𝑥, 𝑦 ∈𝑀

so that (𝑔𝑘𝑥) and (𝑔𝑘𝑦) both converge to 𝑧+. This implies 𝑧+ is not an isolated

point of 𝑀 and so the closure of 𝑀 ∖ {𝑧+} is 𝑀 .

Given a discrete convergence group 𝐺 acting on 𝑀 , we can again define

Ω(𝐺) as the set of points in 𝑀 where 𝐺 acts discontinuously (recall Defini-

tion 2.1.13). We again call this the domain of discontinuity for 𝐺. This set is

open, since given 𝑥 ∈ Ω(𝐺) and a neighborhood 𝑈 from the definition, we have

𝑈 ⊂ Ω(𝐺). We set Λ(𝐺) =𝑀 ∖Ω(𝐺), which is again called the limit set for 𝐺,

and whose points are called limit points for 𝐺. Note that Λ(𝐺) is closed. We

see that Ω(𝐺) is 𝐺-invariant since we are acting by homeomorphisms, hence

Λ(𝐺) is also 𝐺-invariant. We can again give a characterization of Λ(𝐺).

Lemma 2.2.5 (Tukia [Tuk94], Lemma 2M). A point 𝑥 ∈ 𝑀 is a limit point

of the discrete convergence group 𝐺 if and only if 𝑥 is the attracting point of

a convergence sequence.

Proof. First, if 𝑥 ∈𝑀 is the attracting point of a convergence sequence, then

𝑥 ̸∈ Ω(𝐺), so 𝑥 ∈ Λ(𝐺), proving one direction.
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Conversely, suppose 𝑥 ∈ Λ(𝐺). Since 𝑥 ̸∈ Ω(𝐺), we can find 𝑥𝑘 → 𝑥 and

distinct 𝑔𝑘 ∈ 𝐺 so that 𝑔𝑘𝑥𝑘 → 𝑥. Pass to a subsequence so that (𝑔𝑘) is a

convergence sequence. Then 𝑥 must be either the attracting or repelling point

for (𝑔𝑘). In the latter case, 𝑥 is the attracting point for (𝑔−1
𝑘 ).

We will call a discrete convergence group 𝐺 elementary if |Λ(𝐺)| is finite.

The next result shows that, in this case, we actually have |Λ(𝐺)| ≤ 2.

Theorem 2.2.6 (Tukia [Tuk94] Theorem 2S). Let 𝐺 be a discrete convergence

group acting on 𝑀 . If Λ(𝐺) contains more than two points, then Λ(𝐺) is an

infinite perfect set (hence uncountable). If 𝐺 is non-elementary, then Λ(𝐺) is

in the accumulation set of any orbit 𝐺𝑥 for 𝑥 ∈𝑀 , and so, if 𝑥 ∈ Λ(𝐺), then

𝐺𝑥 = Λ(𝐺).

Proof. For the first claim, we must show Λ(𝐺) is perfect, i.e. Λ(𝐺) has no

isolated points. If 𝑎 ∈ Λ(𝐺), we can take a convergence sequence (𝑔𝑘) so that

𝑎 is the attracting point of the sequence, that is, 𝑧+ = 𝑎. Let 𝑧− be the

repelling point. Since Λ(𝐺) contains more than two points, we have distinct

𝑥, 𝑦 ∈ Λ(𝐺) ∖ {𝑧−}. Then 𝑔𝑘𝑥 and 𝑔𝑘𝑦 are distinct and tend to 𝑧+ as 𝑘 → ∞,

so 𝑧+ is an accumulation point of 𝐺{𝑥, 𝑦} ⊂ Λ(𝐺), showing 𝑧+ = 𝑎 is not

isolated. Standard topological arguments now imply Λ(𝐺) is uncountable.

This argument also shows that, for any 𝑎 ∈ Λ(𝐺), then 𝑎 ∈ 𝐺𝑥, as long as

𝑥 ̸= 𝑧−. If 𝐺 is non-elementary, then ℎ𝑧− ̸= 𝑧− for some ℎ ∈ 𝐺, and so 𝑎 ∈ 𝐺𝑥

even if 𝑥 = 𝑧−.

The classification of isometries in hyperbolic geometry also generalizes to

a classification of the elements of a group 𝐺 acting as a convergence group on

𝑀 , as shown by Tukia:
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Proposition 2.2.7 ([Tuk94] Theorem 2B). Let 𝐺 act as a convergence group

on a compact metrizable space 𝑀 . Every 𝑔 ∈ 𝐺 satisfies exactly one of the

following:

• The closure of the cyclic group ⟨𝑔⟩ is compact in Homeo(𝑀), in which

case we say 𝑔 is elliptic.

• 𝑔 is not elliptic and 𝑔 fixes exactly one point in 𝑀 , in which case we say

𝑔 is parabolic.

• 𝑔 is not elliptic and 𝑔 fixes exactly two points in 𝑀 , in which case we

say 𝑔 is loxodromic.

Moreover, if 𝑔 is parabolic or loxodromic, then (𝑔𝑛) is a convergence sequence,

and the set of attracting and repelling points {𝑧±} of (𝑔𝑛) is precisely the set

of fixed points of 𝑔.

Proof. Suppose 𝑔 ∈ 𝐺 is not elliptic. Then the sequence (𝑔𝑛) is divergent,

so we can extract a convergence subsequence (𝑔𝑛) with unique attracting and

repelling points 𝑧+, 𝑧−. We claim these are both fixed points of 𝑔. Indeed, take

𝑧 ∈𝑀 ∖ {𝑧−} satisfying 𝑔𝑧 ̸= 𝑧−. Then 𝑧+ = lim𝑛→∞ 𝑔𝑛𝑧, hence

𝑔𝑧+ = lim
𝑛→∞

𝑔𝑔𝑛𝑧 = lim
𝑛→∞

𝑔𝑛𝑔𝑧 = 𝑧+.

An identical argument involving powers of 𝑔−1 shows 𝑧− is also a fixed point

of 𝑔. The convergence dynamics imply 𝑔 cannot have more than two fixed

points, since then (𝑔𝑛) would not be a convergence sequence, and so we see

that 𝑔 is parabolic if 𝑧− = 𝑧+ and loxodromic otherwise.

If 𝐺 is a discrete convergence group, then the elliptic elements of 𝐺 are

precisely those with finite order. The classification also implies that if 𝐺 is
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a virtually cyclic discrete convergence group, then 𝐺 is elementary (but note

that the converse need not hold).

2.2.2 Geometrical Finiteness

Geometrical finiteness was originally defined in real hyperbolic spaces of

dimension 2 and 3, where the definition concerned the existence of a well-

behaved fundamental domain for the action of 𝐺 on 𝑋, as in Section 2.1.4.

However, this definition proved to be unsatisfactory in hyperbolic spaces of

higher dimension and in other negatively curved spaces.

In [Bow95], Bowditch gave several different definitions of geometrical finite-

ness for groups of isometries of a Hadamard manifold 𝑋 with pinched negative

curvature, and proved that they are all equivalent. One of Bowditch’s defini-

tions (Definition GF5), based on work of Beardon and Maskit [BM74], can be

expressed entirely in terms of the convergence action of 𝐺 on its limit set in

𝜕𝑋, and therefore generalizes readily to the situation where 𝐺 is a convergence

group acting on an arbitrary compact metrizable space 𝑀 . We also saw some

of these equivalences in the previous section for 𝑋 = H3
R.

Before giving the definition we recall some essential terminology, which

have been motivated by Proposition 2.1.46 and Proposition 2.1.47.

Definition 2.2.8. Let 𝐺 be a discrete convergence group acting on a compact

metrizable space 𝑀 .

i) A point 𝑥 ∈ Λ(𝐺) is a conical limit point if there is a sequence (𝑔𝑘) in 𝐺

of distinct elements such that for every 𝑧 ∈𝑀 ∖ {𝑥}, the pair (𝑔𝑘𝑥, 𝑔𝑘𝑧)

stays inside a compact subset of (𝑀 ×𝑀) ∖ ∆, where ∆ ⊂ 𝑀 ×𝑀 is

the diagonal subspace. We will call the sequence (𝑔𝑘) a conical limiting

sequence for the point 𝑥.
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ii) A point 𝑥 ∈ Λ(𝐺) is a parabolic point if it is the fixed point of a parabolic

isometry in 𝐺. A parabolic subgroup of 𝐺 is the stabilizer in 𝐺 of a

parabolic point in Λ(𝐺). A parabolic point 𝑥 is bounded if the quotient

(Λ(𝐺) ∖ {𝑥})/Stab𝐺(𝑥) is compact.

Remark 2.2.9. Tukia [Tuk98] showed that no point in 𝑀 can be both a

parabolic point and a conical limit point. By using the convergence group

condition and extracting subsequences, one can also see that a point 𝑥 ∈ 𝑀

is a conical limit point if and only if there are distinct points 𝑎, 𝑏 ∈ 𝑀 and a

conical limiting sequence (𝑔𝑘) in 𝐺 such that (𝑔𝑘𝑥) converges to 𝑎 and (𝑔𝑘𝑦)

converges to 𝑏 for all 𝑦 ̸= 𝑥. The sequence (𝑔𝑘) is then a convergence sequence,

with 𝑧+ = 𝑏 and 𝑧− = 𝑥.

Furthermore, we could just as well ask that the defining condition for a

conical limiting sequence holds only for 𝑧 ∈ Λ(𝐺) ∖ {𝑥}, and then the discrete

convergence dynamics imply this also holds in Ω(𝐺).

Definition 2.2.10. Let𝐺 be a discrete convergence group acting on a compact

metrizable space 𝑀 . We say that 𝐺 is geometrically finite if every point of

Λ(𝐺) is either a conical limit point or a bounded parabolic point.

Remark 2.2.11. Unfortunately, the standard definitions of ‘geometrically finite’

in the geometric and dynamical contexts do not exactly agree. According to

the definitions in e.g. Bowditch [Bow12], or Dahmani [Dah03], a convergence

group 𝐺 acting on 𝑀 is ‘geometrically finite’ if every point of 𝑀 (not just of

Λ(𝐺)) is a conical limit point or bounded parabolic point. With this conven-

tion, if 𝑋 is a Hadamard manifold with pinched negative curvature, and 𝐺

is a geometrically finite subgroup of Isom(𝑋) (according to the definitions in

Bowditch [Bow93], [Bow95]), then the action of 𝐺 on 𝜕𝑋 is not a ‘geometri-

cally finite convergence action’ if Λ(𝐺) is a proper subset of 𝜕𝑋.

58



In this thesis, we adopt the convention that a convergence group acting

on 𝑀 is geometrically finite if and only if it acts geometrically finitely (in the

sense of [Bow12], [Dah03]) on its limit set in 𝑀 . So for us, when 𝐺 acts by

isometries on a hyperbolic space𝑋, ‘geometrically finite’ means the same thing

regardless of whether we consider the isometric action on 𝑋 or the induced

action by homeomorphisms on 𝜕𝑋.

When 𝐺 is geometrically finite, Tukia [Tuk98] showed that, if 𝑋 is the set

of distinct triples in Λ(𝐺), then 𝑋/𝐺 is cusp-uniform - that is, 𝑋/𝐺 consists

of a compact piece with finitely many parabolic ends. In particular, if 𝐺 has

no parabolic elements, then 𝑋/𝐺 is compact. This set of distinct triples plays

the role of H3
R in the case that 𝑀 = S2. This result requires a lot of work and

is beyond the scope of this thesis.

We conclude this subsection with another simple but useful criterion which

can be used to guarantee that a point 𝑥 ∈𝑀 is a conical limit point.

Lemma 2.2.12. Let 𝐺 be a discrete convergence group acting on a compact

metrizable space 𝑀 . Let 𝑌 be a subset of 𝑀 containing at least two points,

let 𝐾1, 𝐾2 be disjoint compact subsets of 𝑀 , and let 𝑥 ∈ 𝑀 . If there exists

a sequence (𝑔𝑘) of pairwise distinct elements of 𝐺 such that for all 𝑘 ∈ N we

have 𝑔𝑘𝑥 ∈ 𝐾2 and 𝑔𝑘𝑌 ⊂ 𝐾1, then 𝑥 is a conical limit point for 𝐺.

Proof. Since 𝐺 is a discrete convergence group we can extract a subsequence

so that, for points 𝑧± ∈ 𝑀 , the sequence (𝑔𝑘) converges in Homeo(𝑀) to

the constant map 𝑧+ uniformly on compacts. In particular, for any 𝑦 ̸= 𝑧−,

the sequence (𝑔𝑘𝑦) converges to 𝑧+. Since 𝑌 contains at least two points, it

contains at least one point 𝑦 not equal to 𝑧−. Then since 𝑔𝑘𝑦 ∈ 𝑔𝑘𝑌 ⊂ 𝐾1

we must have 𝑧+ ∈ 𝐾1. Since 𝑔𝑘𝑥 ∈ 𝐾2, (𝑔𝑘𝑥) cannot converge to 𝑧+, hence

𝑥 = 𝑧−. Then for any 𝑦 ∈ 𝑀 with 𝑦 ̸= 𝑥, (𝑔𝑘𝑦) converges to 𝑧+. The
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characterization of conical limit points described in Remark 2.2.9 implies that

𝑥 is a conical limit point.

2.2.3 Relatively Hyperbolic Groups

For most of this thesis, we will only ever need to work with the dynamical

definition of geometrical finiteness given above. However, our proof of one key

technical lemma (Proposition 2.2.25) does rely on a geometric interpretation

of the definition, which is best understood via the connection between geomet-

rically finite groups and relative hyperbolicity. We refer to [Bow12], [Hru10]

for further background on relatively hyperbolic groups.

Recall that a geodesic in a metric space (𝑋, 𝑑) is an isometrically embedded

copy of R or an interval. 𝑋 is proper if 𝑋 is complete and locally compact

(equivalently, closed balls are compact), and 𝑋 is geodesic if any 𝑥, 𝑦 ∈ 𝑋

has a geodesic from 𝑥 to 𝑦. A geodesic triangle in 𝑋 is a triple of geodesic

segments which pairwise share exactly one endpoint.

Definition 2.2.13. Let (𝑋, 𝑑) be a proper geodesic metric space, and let 𝛿 > 0.

We say 𝑋 is 𝛿-hyperbolic if for any geodesic triangle with sides 𝑠1, 𝑠2, 𝑠3, we

have 𝑠1 is contained in the uniform 𝛿-neighborhood of 𝑠2 ∪ 𝑠3.

We will say 𝑋 is hyperbolic when such a 𝛿 exists. Note that the spaces

defined earlier in this thesis are all hyperbolic in this sense as well, but this

definition is more general since we are only asking 𝑋 to be a metric space.

We can associate a boundary to any such space, and in the case of H3
R, this

recovers the sphere, as one would expect.

Definition 2.2.14. Let (𝑋, 𝑑) be a hyperbolic metric space. Define 𝜕𝑋 =

{geodesic rays in 𝑋}/ ∼, the Gromov boundary of 𝑋, where two rays are
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equivalent if points in one ray are at a uniformly bounded distance from the

other ray, and vice versa.

Given a discrete subgroup 𝐺 < Isom(𝑋) (using the compact-open topol-

ogy), we get an induced action on 𝜕𝑋 in the natural way, and in fact 𝐺 acts on

𝜕𝑋 as a discrete convergence group by earlier remarks. This allows us to de-

fine geometrical finiteness of such subgroups exactly as we did in Section 2.1.4

using the third dynamical characterization, with Λ(𝐺) defined the same way

as well. Equivalently, we can forget about 𝑋 and define geometrical finiteness

as we did in Definition 2.2.10. Our definition of relative hyperbolicity includes

the data of the hyperbolic space 𝑋, though, and remarkably, that turns out

to be the same thing as geometrical finiteness of the 𝐺-action just on 𝜕𝑋.

The definitions of relative hyperbolicity we will use are given in Proposi-

tion 2.2.16 below. As in the classical (Kleinian) case of geometrical finiteness,

the proposition says that, if 𝐺 is as above and acts geometrically finitely on

𝜕𝑋, then an appropriately defined ‘convex core’ for the 𝐺-action has a ‘thick-

thin’ decomposition into a compact piece and some standard ‘cusps.’ This

‘convex core’ can be defined via the following. For any closed subset 𝑍 of 𝜕𝑋,

we let join(𝑍) denote the union of all bi-infinite geodesics in 𝑋 joining distinct

points in 𝑍.

Note that a horoball in this more general setting is defined as the preimage

of R≥0 under what is called a horofunction. They behave similarly to horoballs

in the Kleinian setting, and our proofs will not rely on the full technical defi-

nition.

Proposition 2.2.15 (see e.g. Section 5 of Bowditch [Bow12]). Suppose that

𝑋 is a proper geodesic 𝛿-hyperbolic metric space, and 𝑍 ⊂ 𝜕𝑋 is a closed

subset containing at least two points. Then join(𝑍) (with the metric induced
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by 𝑋) is the image of a quasi-isometrically embedded proper geodesic metric

space, and its ideal boundary is precisely 𝑍.

In the above proposition, a quasi-isometric embedding is a map which is

bi-Lipschitz with an additive error term. This notion will not occur beyond

this section.

When 𝐺 is a Kleinian group, join(Λ(𝐺)) is within uniformly bounded Haus-

dorff distance of the convex hull of the limit set of 𝐺, i.e. the minimal closed

𝐺-invariant convex subset of H3
R whose closure in H3

R contains Λ(𝐺). So in

the general setting, we can think of the quotient join(Λ(𝐺))/𝐺 as a ‘convex

core’ for 𝑋/𝐺.

Proposition 2.2.16 (see Section 6 of Bowditch [Bow12]). Let 𝑋 be a proper

geodesic 𝛿-hyperbolic metric space and let 𝐺 be an infinite discrete subgroup of

Isom(𝑋). Then the following are equivalent:

• The induced action of 𝐺 on 𝜕𝑋 is geometrically finite in the sense of

Definition 2.2.10.

• There exists a 𝐺-invariant system of pairwise disjoint horoballs ℬ in 𝑋,

such that the stabilizer in 𝐺 of each 𝐵 ∈ ℬ is a parabolic subgroup, and

𝐺 acts cocompactly on the set

𝐶(𝐺,ℬ) := join(Λ(𝐺)) ∖
⋃︁
𝐵∈ℬ

𝐵.

Moreover, if |Λ(𝐺)| > 1, then for any 𝐺-invariant system of pairwise disjoint

horoballs ℬ in 𝑋, the action of 𝐺 on 𝐶(𝐺,ℬ) is cocompact if and only if the

set of centers of horoballs in ℬ is precisely the set of parabolic points in Λ(𝐺).
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Proof. Since 𝐺 is infinite and discrete, Λ(𝐺) cannot be empty. If |Λ(𝐺)| = 1,

then the first bullet point is trivial because the unique point in Λ(𝐺) is trivially

bounded parabolic, and the second bullet point is trivial because join(Λ(𝐺))

is empty. So we assume |Λ(𝐺)| > 1.

The space 𝑌 = join(Λ(𝐺)) is a taut hyperbolic metric space (i.e. every

point in 𝑌 lies within uniformly bounded distance of a bi-infinite geodesic in

𝑌 ). Furthermore, horoballs in 𝑌 (which can be viewed as a proper geodesic

hyperbolic metric space via Proposition 2.2.15) are at a uniformly bounded

Hausdorff distance away from horoballs in 𝑋 intersected with 𝑌 . We need to

replace 𝑋 with 𝑌 so that Λ(𝐺) = 𝜕𝑌 , because of different conventions for

geometrical finiteness (recall Remark 2.2.11). The result now follows from two

results of Bowditch [Bow12] applied to 𝑌 . Proposition 6.12 of this paper gives

the backwards direction, and Proposition 6.13 gives the forwards direction.

If |Λ(𝐺)| > 1 in the situation above, then we say 𝐺 is a relatively hyperbolic

group, and the stabilizers of horoballs in ℬ are called the peripheral subgroups.

We say 𝐺 is hyperbolic relative to the collection 𝒫 of peripheral subgroups. We

also say that any countably infinite group 𝐺 is hyperbolic relative to {𝐺}, and

that any finite group is hyperbolic relative to an empty collection of peripheral

subgroups.

In the special case where 𝑋 is taut and Λ(𝐺) = 𝜕𝑋, we say that 𝑋

is a cusped space for the data of the relatively hyperbolic group 𝐺 and the

peripheral subgroups 𝒫 . If |Λ(𝐺)| > 1 we can always find a cusped space by

replacing 𝑋 with join(Λ(𝐺)).

The cusped space is in general not uniquely determined, even up to quasi-

isometry. However, its ideal boundary is a well-defined 𝐺-space once the

peripheral subgroups of 𝐺 have been specified (see section 9 of Bowditch
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[Bow12]). This space is called the Bowditch boundary of 𝐺 and we denote

it 𝜕𝐺 (the notation ignores the dependence on 𝒫). When 𝒫 = {𝐺}, then the

Bowditch boundary of 𝐺 is defined to be a singleton, and when 𝐺 is finite its

Bowditch boundary is empty.

When |𝜕𝐺| ≤ 2, then we say 𝐺 is elementary. The Bowditch boundary of

a non-elementary relatively hyperbolic group is always perfect, i.e. it contains

no isolated points. In particular if |𝜕𝐺| ≥ 3, then 𝜕𝐺 is infinite.

A result of Yaman shows that the action of 𝐺 on its Bowditch boundary

can actually be used to completely recover the definition of 𝐺 as a relatively

hyperbolic group:

Theorem 2.2.17 (Yaman [Yam04]). Let 𝐺 be a discrete convergence group

acting on a perfect compact metrizable space 𝑀 . If every point of 𝑀 is either a

conical limit point or a bounded parabolic point (equivalently, if 𝐺 is geometri-

cally finite and Λ(𝐺) =𝑀), then there is a proper geodesic 𝛿-hyperbolic metric

space 𝑋, an embedding 𝐺 → Isom(𝑋), and a 𝐺-equivariant homeomorphism

from 𝑀 to 𝜕𝑋.

The theorem implies in particular that a geometrically finite convergence

group is the same thing as a relatively hyperbolic group. The proof of this

result is beyond the scope of this thesis, but we will give a sketch of the key

ideas. The main steps are are follows. First, Yaman constructs a collection of

‘anuli’ satisfying certain properties which allows her to define a quasimetric.

This quasimetric is used to build an action of the group on a hyperbolic graph,

and this is then used to prove 𝐺 is relatively hyperbolic. The final step is

showing 𝜕𝐺 identifies naturally with 𝑀 . Some of the details are given below,

starting with the definition of an annulus.
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Definition 2.2.18. An annulus, 𝐴, is an ordered pair, (𝐴−, 𝐴+), of disjoint

closed subsets of 𝑀 such that 𝑀 ∖ (𝐴− ∪ 𝐴+) ̸= ∅. A system of annuli 𝒜 is

a set of such annuli. Given 𝐴 = (𝐴−, 𝐴+), we define −𝐴 = (𝐴+, 𝐴−), and say

the system 𝒜 is symmetric if −𝐴 ∈ 𝒜 for every 𝐴 ∈ 𝒜.

Given 𝐾 ⊂ 𝑀 closed, write 𝐾 < 𝐴 if 𝐾 ⊂ Int(𝐴−), and 𝐾 > 𝐴 if

𝐾 ⊂ Int(𝐴+). Given two annuli 𝐴,𝐵, write 𝐴 < 𝐵 if 𝑀 = Int(𝐴+)∪ Int(𝐵−).

Note that 𝐴 < 𝐵 implies −𝐵 < −𝐴, and 𝐴 < 𝐵 < 𝐶 implies 𝐴 < 𝐶.

Definition 2.2.19. Let 𝒜 be a system of annuli. For closed 𝐾,𝐿 ⊂ 𝑀 , we

define (𝐾|𝐿) ∈ Z≥0 ∪ {∞} as the maximal number 𝑛 such that we can find

nested annuli, 𝐴1, · · · , 𝐴𝑛 ∈ 𝒜 that separate 𝐾 and 𝐿, that is, 𝐾 < 𝐴1 <

· · · < 𝐴𝑛 < 𝐿. If the maximum is not attained we define (𝐾|𝐿) = ∞.

Given a system of annuli, one can define a map from the space of distinct

quadruples in 𝑀 by sending (𝑥, 𝑦, 𝑧, 𝑤) to ({𝑥, 𝑦}|{𝑧, 𝑤}). When 𝒜 is symmet-

ric, this defines a crossratio on 𝑀 . This is similar to the classical crossratio in

hyperbolic geometry. Then, if Θ(𝑀) is the space of distinct triples in 𝑀 and

Π is the set of bounded parabolic points in 𝑀 , they define a quasimetric 𝜌 on

Θ(𝑀) ∪ Π via

𝜌(𝑎, 𝑏) = ({𝑎}|{𝑏}),

𝜌(𝑎,𝑋) = 𝜌(𝑋, 𝑎) = max{({𝑎}|{𝑥𝑖, 𝑥𝑗}), 𝑖 ̸= 𝑗},

𝜌(𝑋, 𝑌 ) = max{({𝑥𝑖, 𝑥𝑗}|{𝑦𝑘, 𝑦𝑙}), 𝑖 ̸= 𝑗, 𝑘 ̸= 𝑙},

where 𝑎, 𝑏 ∈ Π, 𝑋 = (𝑥1, 𝑥2, 𝑥3), 𝑌 = (𝑦1, 𝑦2, 𝑦3) ∈ Θ(𝑀). A quasimetric

is a metric which only satisfies the triangle inequality up to some uniform

additive constant, and where two distinct points can be at distance 0 from

each other. Yaman constructs a specific system of annuli satisfying certain

65



additional properties, and then considers the corresponding quasimetric. The

next step is to construct a graph 𝒦 which 𝐺 acts on using this quasimetric, and

then the following alternative definition of relative hyperbolicity is applied.

Proposition 2.2.20 ([Bow12]). 𝐺 is hyperbolic relative to 𝒢 if and only if 𝐺

admits an action on a connected graph, 𝒦, with the following properties:

1. 𝒦 is 𝛿-hyperbolic and each edge of 𝒦 is contained in only finitely many

circuits of length 𝑛 for any integer 𝑛.

2. There are finitely many 𝐺-orbits of edges, and each edge stabiliser is

finite.

3. The elements of 𝒢 are precisely the vertex stabilisers ot infinite valence

of 𝒦.

Once they establish that 𝐺 is relatively hyperbolic, they show the Bowditch

boundary 𝜕𝐺 naturally identifies with 𝑀 . The space 𝑋 then comes from

the first equivalent definition of relative hyperbolicity described in Proposi-

tion 2.2.16, namely, any relatively hyperbolic group acts on a 𝛿-hyperbolic

proper geodesic 𝑋 so that 𝜕𝑋 identifies with 𝜕𝐺, which in turn identifies with

𝑀 .

Remark 2.2.21. Some definitions of relative hyperbolicity explicitly require ei-

ther the group 𝐺 or the peripheral subgroups in 𝒫 to be finitely generated.

We do not make this assumption, since both Proposition 2.2.16 and Theo-

rem 2.2.17 hold without it. Our setup does always force the groups in 𝒫 to be

infinite, since they are parabolic subgroups of a convergence group.
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Accumulation in Geometrically Finite Subgroups

Yaman’s theorem means that we can always understand a non-elementary

discrete convergence group 𝐺 which is geometrically finite in the sense of Def-

inition 2.2.10 using its isometric action on a cusped space 𝑋. In the case

|𝜕𝐺| = 0 or |𝜕𝐺| = 2, we can also find a cusped space by taking 𝑋 to be ei-

ther a point or a line; if |𝜕𝐺| = 1 and 𝐺 is finitely generated, then we can take

the cusped space to be a ‘horoball’ modeled on 𝐺 (see Gehring and Martin

[GM08], Hruska [Hru10]).

We take advantage of the existence of the cusped space to prove some

properties of subgroups of 𝐺 which act geometrically finitely on Λ(𝐺). A

convenient notation we will use here and many times later whenever we have

a group 𝐺 acting on 𝑀 is

𝐻(𝑈) =
⋃︁
𝑔∈𝐻

𝑔𝑈

for some 𝑈 ⊂𝑀,𝐻 ⊂ 𝐺. For the orbit of a point, we will just write 𝐻𝑥.

Definition 2.2.22. Let 𝐺 be a relatively hyperbolic group, with Bowditch

boundary 𝜕𝐺. A subgroup 𝐻 ≤ 𝐺 is relatively quasi-convex if 𝐻 acts geomet-

rically finitely on 𝜕𝐺 (i.e. if every point of Λ(𝐻) ⊆ 𝜕𝐺 is either a conical limit

point or a bounded parabolic point for the 𝐻-action).

Following Dahmani [Dah03], we say that a relatively quasi-convex subgroup

𝐻 is fully quasi-convex if for all but finitely many left cosets 𝑔𝐻, we have

𝑔𝐻(Λ(𝐻)) ∩ Λ(𝐻) = ∅.

Observe that, if 𝐺 is elementary, then any fully quasi-convex subgroup of

𝐺 is either finite or has finite index in 𝐺.

Lemma 2.2.23. Let 𝐺 be a non-elementary relatively hyperbolic group with

associated cusped space 𝑋 = 𝑋(𝐺), and let 𝐻 ≤ 𝐺 be a fully quasi-convex

67



subgroup of 𝐺.

Fix 𝑥 ∈ 𝑋, and suppose that (𝑔𝑘) is an infinite sequence in 𝐺∖𝐻 such that

𝑑𝑋(𝑔𝑘𝑥, 𝑥) = 𝑑𝑋(𝑔𝑘𝑥,𝐻𝑥) (2.2.1)

for all 𝑘. Then no attracting point of 𝑔𝑘 in 𝜕𝑋 lies in Λ(𝐻).

Proof. Suppose for a contradiction that 𝑔𝑘 has an attracting point 𝑧 ∈ Λ(𝐻) ⊂

𝜕𝑋. It follows that 𝐻 is infinite, since Λ(𝐻) is nonempty. Since 𝐺 acts as a

convergence group on both 𝜕𝑋 and 𝑋 ⊔ 𝜕𝑋, we see that (𝑔𝑘𝑥) converges to 𝑧

in 𝑋 ⊔ 𝜕𝑋.

For each 𝑘, we let 𝑐𝑘 : [0, 𝑟𝑘] → 𝑋 be a geodesic ray in 𝑋 from 𝑥 to 𝑔𝑘𝑥;

since (𝑔𝑘) is divergent we have 𝑟𝑘 → ∞. We may extend each 𝑐𝑘 to a map

[0,∞) → 𝑋 by setting 𝑐𝑘(𝑡) = 𝑐𝑘(𝑟𝑘) for all 𝑡 ≥ 𝑟𝑘. Up to subsequence, these

maps converge uniformly on compacts to a geodesic ray 𝑐𝑧 : [0,∞) → 𝑋,

whose ideal endpoint must be 𝑧.

By Proposition 2.2.16, there is a 𝐺-invariant family ℬ𝐺 of pairwise dis-

joint horoballs in 𝑋 such that the parabolic subgroups of 𝐺 are precisely the

stabilizers of the horoballs in ℬ𝐺, and the quotient of

𝐶(𝐺,ℬ𝐺) = 𝑋 ∖
⋃︁

𝐵∈ℬ𝐺

𝐵 (2.2.2)

by the action of 𝐺 is compact. By shrinking the horoballs in ℬ𝐺 if necessary,

we can also assume that 𝑥 ∈ 𝐶(𝐺,ℬ𝐺).

We claim that 𝑧 is the center of some horoball 𝐵 ∈ ℬ𝐺. If 𝐻 is an infinite

subgroup of a parabolic subgroup 𝑃 in 𝐺, this is immediate, because then the

unique point in Λ(𝐻) is the center of the unique horoball in ℬ𝐺 fixed by 𝑃 .

Otherwise, Λ(𝐻) contains at least two points, and we can consider the space
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join(Λ(𝐻)) ⊂ 𝑋.

Let ℬ𝐻 be the horoballs in ℬ𝐺 whose centers are parabolic points in Λ(𝐻).

By Proposition 2.2.16 again, 𝐻 acts cocompactly on the set

𝐶(𝐻,ℬ𝐻) := join(Λ(𝐻)) ∖
⋃︁

𝐵∈ℬ𝐻

𝐵.

Since the endpoint of the geodesic 𝑐𝑧 lies in Λ(𝐻), there is some uniform 𝑅 > 0

so that every point in the image of 𝑐𝑧 lies within distance 𝑅 of join(Λ(𝐻)).

Now, suppose that, for arbitrarily large 𝑡, the point 𝑐𝑧(𝑡) lies in an open

𝑅-neighborhood of the set 𝐶(𝐻,ℬ𝐻). Then, for some 𝑘 = 𝑘(𝑡), the point

𝑐𝑘(𝑡) also lies in an 𝑅-neighborhood of 𝐶(𝐻,ℬ𝐻). Since 𝐻 acts cocompactly

on 𝐶(𝐻,ℬ𝐻), this means that 𝑐𝑘(𝑡) is within uniform distance of ℎ𝑥 for some

ℎ ∈ 𝐻, which contradicts assumption (2.2.1).

So, for all sufficiently large times 𝑡, 𝑐𝑧(𝑡) must lie in some horoball in ℬ𝐻 .

Since the horoballs in ℬ𝐻 are pairwise disjoint, there is in fact a single horoball

𝐵 ∈ ℬ𝐻 so that 𝑐𝑧(𝑡) is in the interior of 𝐵 for all large enough 𝑡. The center

of this horoball must be 𝑧.

Since (𝑐𝑘) converges to 𝑐𝑧, for all sufficiently large 𝑘, the geodesic 𝑐𝑘 enters

𝐵. However, since we have assumed 𝑥 ∈ 𝐶(𝐺,ℬ𝐺), we know that 𝑔𝑘𝑥 ∈

𝐶(𝐺,ℬ𝐺), and thus 𝑐𝑘 must also leave the horoball 𝐵 after it enters it. So,

let 𝑤𝑘 denote the last point where 𝑐𝑘 leaves 𝐵. The distances 𝑑𝑋(𝑥,𝑤𝑘) must

tend to infinity as 𝑘 → ∞, since 𝑐𝑧 never leaves 𝐵. See Figure 2.2.1.

Since 𝑐𝑘 is a geodesic we know that 𝑑𝑋(𝑥, 𝑔𝑘𝑥) = 𝑑𝑋(𝑥,𝑤𝑘) + 𝑑𝑋(𝑤𝑘, 𝑔𝑘𝑥).

Then, because 𝑑𝑋(𝑥,𝑤𝑘) tends to infinity, assumption (2.2.1) implies that

𝑑𝑋(𝐻𝑥,𝑤𝑘) tends to infinity as well. On the other hand, we also know that

the stabilizer of 𝐵 in 𝐺 acts cocompactly on 𝜕𝐵. Then, since 𝑤𝑘 ∈ 𝜕𝐵, there

is some constant 𝐷 > 0 so that, for every 𝑘, we have 𝑠𝑘 ∈ 𝐺 preserving 𝐵 such
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𝐵𝑤𝑘

𝑔𝑘𝑥

𝑥

𝑧

𝑐𝑘

Figure 2.2.1: Illustration for the proof of Lemma 2.2.23. The geodesic 𝑐𝑘 from
𝑥 to 𝑔𝑘𝑥 must enter 𝐵, and leave 𝐵 far from 𝑥.

that 𝑑𝑋(𝑥, 𝑠−1
𝑘 𝑤𝑘) < 𝐷. Hence 𝑑𝑋(𝑠𝑘𝑥,𝑤𝑘) < 𝐷. It follows that the elements

in the sequence (𝑠𝑘) cannot lie in finitely many left cosets of 𝐻. However,

since 𝑠𝑘 preserves 𝐵, each 𝑠𝑘 also fixes the point 𝑧 ∈ Λ(𝐻), which contradicts

the full quasi-convexity of 𝐻.

The geometric statement of the lemma above has the following (completely

dynamical) consequence:

Lemma 2.2.24. Let 𝐺 be a relatively hyperbolic group with Bowditch boundary

𝜕𝐺, and let 𝐽1, 𝐽2 be fully quasi-convex subgroups of 𝐺.

For any sequence (𝑔𝑘) in 𝐺, there exists 𝑗𝑘 ∈ 𝐽1, 𝑗
′
𝑘 ∈ 𝐽2 such that the

sequence (𝑗𝑘𝑔𝑘𝑗
′
𝑘) has no attracting points in Λ(𝐽1) ⊂ 𝜕𝐺 and no repelling

points in Λ(𝐽2) ⊂ 𝜕𝐺.

Proof. If 𝑔𝑘 ∈ 𝐽1 ∪ 𝐽2, then we can choose 𝑗𝑘 ∈ 𝐽1 and 𝑗′𝑘 ∈ 𝐽2 so that 𝑗𝑘𝑔𝑘𝑗′𝑘
is the identity. A bounded sequence has no attracting or repelling points. So,

we may assume 𝑔𝑘 ∈ 𝐺 ∖ (𝐽1 ∪ 𝐽2) for all 𝑘.
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If 𝐺 is elementary, then 𝐽1 and 𝐽2 are both either finite or finite-index

subgroups of 𝐺. In this case the result is immediate, so we can assume 𝐺 is

non-elementary and let 𝑋 be a cusped space for 𝐺. Fix 𝑥 ∈ 𝑋. For each 𝑘,

we choose 𝑗𝑘 ∈ 𝐽1, 𝑗′𝑘 ∈ 𝐽2 so that

𝑑𝑋(𝑔𝑘(𝐽2𝑥), 𝐽1𝑥) = 𝑑𝑋(𝑔𝑘𝑗
′
𝑘𝑥, 𝑗

−1
𝑘 𝑥).

We know such elements 𝑗𝑘 ∈ 𝐽1, 𝑗
′
𝑘 ∈ 𝐽2 exist because 𝐽𝑖𝑥 are discrete subsets

of 𝑋 for 𝑖 = 1, 2. Let 𝑔′𝑘 = 𝑗𝑘𝑔𝑘𝑗
′
𝑘. We will show that 𝑔′𝑘 has no repelling

points in Λ(𝐽2). The argument that 𝑔′𝑘 has no attracting points in Λ(𝐽1) is

completely symmetric, after replacing 𝑔′𝑘 with its inverse.

Since 𝑗𝐽𝑖𝑥 = 𝐽𝑖𝑥 for any 𝑗 ∈ 𝐽𝑖, we know that for all 𝑘 ∈ N we have

𝑑𝑋(𝑔
′
𝑘𝑥, 𝑥) = 𝑑𝑋(𝑔𝑘𝐽2𝑥, 𝐽1𝑥) = 𝑑𝑋(𝑔

′
𝑘𝐽2𝑥, 𝐽1𝑥).

By definition of 𝑔′𝑘, we know that

𝑑𝑋(𝑔
′
𝑘𝐽2𝑥, 𝐽1𝑥) ≤ 𝑑𝑋(𝑔

′
𝑘𝐽2𝑥, 𝑥) = 𝑑𝑋(𝐽2𝑥, (𝑔

′
𝑘)

−1𝑥),

so combining this with the previous equality we conclude

𝑑𝑋(𝑥, (𝑔
′
𝑘)

−1𝑥) = 𝑑𝑋(𝑔
′
𝑘𝑥, 𝑥) ≤ 𝑑𝑋(𝐽2𝑥, (𝑔

′
𝑘)

−1𝑥).

So in fact 𝑑𝑋(𝑥, (𝑔′𝑘)−1𝑥) = 𝑑𝑋(𝐽2𝑥, (𝑔
′
𝑘)

−1𝑥) for every 𝑘. Then Lemma 2.2.23

implies that ((𝑔′𝑘)
−1) has no attracting points in Λ(𝐽2), or equivalently (𝑔′𝑘)

has no repelling points in Λ(𝐽2).

The main application of these lemmas is the technical proposition below.

Roughly, this proposition tells us that, in certain circumstances, it is possible
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to strengthen the ‘ping-pong’ combinatorics of geometrically finite convergence

groups. That is, the proposition gives us a way to modify a ‘ping-pong’ element

𝑔 ∈ Homeo(𝑀), so that instead of nesting the closure of an open subset 𝑈 ⊂𝑀

inside of another open subset 𝑉 ⊂ 𝑀 , 𝑔 takes the closure of 𝑈 inside of a

fixed compact subset 𝐾 ⊂ 𝑉 . This ‘strong nesting’ property will be useful

throughout Chapter 3.

Proposition 2.2.25. Let 𝐺 be a geometrically finite convergence group acting

on a compact metrizable space 𝑀 , let 𝐻 be a subgroup of 𝐺, and let 𝐽1, 𝐽2 ≤ 𝐻

be fully quasi-convex subgroups of 𝐺. Let 𝑈1, 𝑈2 be open subsets of 𝑀 such that,

for 𝑖 ∈ {1, 2}, we have 𝐽𝑖(𝑈𝑖) = 𝑈𝑖 and Λ(𝐻) ∖ Λ(𝐽𝑖) ⊂ 𝑈𝑖. Suppose that for

every 𝑔 ∈ 𝐻 ∖ 𝐽2, we have 𝑔(𝑀 ∖ 𝑈2) ⊂ 𝑈1.

Then, there exists a compact set 𝐾 ⊂ 𝑈1 such that for all 𝑔 ∈ 𝐻 ∖ 𝐽2, we

can find 𝑗 ∈ 𝐽1 such that 𝑗𝑔(𝑀 ∖ 𝑈2) ⊂ 𝐾.

Proof. Suppose that the claim does not hold. This means that we can find a

sequence of group elements (𝑔𝑘) in 𝐻 ∖𝐽2 such that for any sequence (𝑗𝑘) in 𝐽1,

there is a sequence (𝑥𝑘) in 𝑀 ∖𝑈2 such that the sequence (𝑗𝑘𝑔𝑘𝑥𝑘) accumulates

in 𝑀 ∖ 𝑈1.

Fix this sequence (𝑔𝑘). Lemma 2.2.24 gives a pair of sequences (𝑗𝑘) in 𝐽1

and (𝑗′𝑘) in 𝐽2 so that any attracting points of the sequence (𝑔′𝑘) = (𝑗𝑘𝑔𝑘𝑗
′
𝑘) do

not lie in Λ(𝐽2), and any repelling points do not lie in Λ(𝐽1). Then, since 𝑈2 is

𝐽2-invariant, there is a sequence (𝑥𝑘) in 𝑀 ∖𝑈2 so that (𝑗𝑘𝑔𝑘𝑗′𝑘𝑥𝑘) accumulates

in 𝑀 ∖ 𝑈1. After taking a subsequence, we may assume that (𝑗𝑘𝑔𝑘𝑗
′
𝑘𝑥𝑘) has a

unique limit 𝑧 ∈𝑀 ∖ 𝑈1.

Again using the fact that 𝑈1 and 𝑈2 are invariant under 𝐽1 and 𝐽2 respec-

tively, we know that for every 𝑘, we have 𝑔′𝑘(𝑀 ∖𝑈2) ⊂ 𝑈1. So, if only finitely

many different elements appear in the sequence (𝑔′𝑘), we can find a fixed com-
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pact set 𝐾 ⊂ 𝑈1 so that 𝑔′𝑘(𝑀 ∖ 𝑈2) ⊂ 𝐾 for every 𝑘, hence 𝑔′𝑘𝑥𝑘 ∈ 𝐾 for

every 𝑘. This is impossible if 𝑔′𝑘𝑥𝑘 → 𝑧 ∈𝑀 ∖ 𝑈1.

So, we may extract a subsequence so that the elements in (𝑔′𝑘) are pairwise

distinct. After taking a further subsequence, we can find a pair of points

𝑧+ ∈ 𝑀 ∖ Λ(𝐽1) and 𝑧− ∈ 𝑀 ∖ Λ(𝐽2) so that (𝑔′𝑘) converges uniformly to the

constant map 𝑧+, uniformly on compacts in 𝑀 ∖{𝑧−}. Both of 𝑧± lie in Λ(𝐻),

and in fact 𝑧+ ∈ 𝑈1 and 𝑧− ∈ 𝑈2.

Since 𝑀 ∖ 𝑈2 is closed, 𝑥𝑘 cannot accumulate on 𝑧−, which means (𝑔′𝑘𝑥𝑘)

converges to 𝑧+ ∈ 𝑈1, which contradicts the fact that 𝑔′𝑘𝑥𝑘 → 𝑧.

2.3 Combinatorial Group Theory

In this section we establish the notation and basic facts for amalgamated

free products (AFP) and HNN extensions (HNN), which will play an important

role in both the classical and new combination theorems.

2.3.1 AFP Combinatorial Group Theory

We first deal with amalgamated free products. The abstract group-theoretic

definition is as follows.

Definition 2.3.1. Let 𝐺1, 𝐺2, 𝐽 be groups, and let 𝜙𝑖 : 𝐽 → 𝐺𝑖 be a pair of

injective homomorphisms. We define 𝐺1 *𝐽 𝐺2, the amalgamated free product

of 𝐺1 and 𝐺2 over 𝐽 , as

𝐺1 *𝐽 𝐺2 = (𝐺1 *𝐺2)/𝑁,

where 𝑁 is the normal closure of {𝜙1(𝑗)𝜙2(𝑗)
−1 | 𝑗 ∈ 𝐽}.
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One can think of this construction as gluing the two groups along a common

subgroup 𝐽 . We will next introduce an equivalent way to view amalgamated

free products. Our reference throughout is [Mas88]. In this section, 𝑀 will

denote a compact metrizable space, although the results in this section are

purely set-theoretic. We further assume throughout this section that 𝐺1, 𝐺2

are subgroups of Homeo(𝑀), and 𝐺1 ∩𝐺2 = 𝐽 , where 𝐽 is a proper subgroup

of both 𝐺1 and 𝐺2. We let 𝐺 denote ⟨𝐺1, 𝐺2⟩, the subgroup generated by 𝐺1

and 𝐺2. When we discuss the classical combination theorems, we will have

𝑀 = 𝜕H3
R and our subgroups will live inside PSL(2,C), but this more general

framework will not change any arguments and is needed later in the thesis.

Given a word 𝑔 = 𝑔1 · · · 𝑔𝑛 in the elements of 𝐺1 and 𝐺2, we call 𝑔 a normal

form when the elements 𝑔𝑖 alternate between 𝐺1 ∖ 𝐽 and 𝐺2 ∖ 𝐽 . We say two

normal forms 𝑔 = 𝑔1 · · · 𝑔𝑛 and ℎ = ℎ1 · · ·ℎ𝑛 are equivalent if 𝑔 can be obtained

from ℎ by inserting or deleting finitely many words of the form 𝑗𝑗−1 for 𝑗 ∈ 𝐽 .

We can then form the amalgamated free product as

𝐺1 *𝐽 𝐺2 = 𝐽 ∪ {equivalence classes of normal forms}.

We have a group operation on 𝐺1 *𝐽 𝐺2 given by concatenation, which is well-

defined on normal forms up to equivalence. Up to isomorphism, this produces

the same group as Definition 2.3.1, with the inclusion maps playing the role

of the injective homomorphisms.

The normal form 𝑔 = 𝑔1 · · · 𝑔𝑛 is called an (𝑖, 𝑗)-form if 𝑔1 ∈ 𝐺𝑖 and 𝑔𝑛 ∈ 𝐺𝑗.

The length of the normal form is defined as |𝑔| = 𝑛. By convention, we will

say that elements of 𝐽 have length 0. Note that if 𝑔 is an (𝑖, 𝑗)-form, then its

formal inverse 𝑔−1 is a (𝑗, 𝑖)-form.
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There is a group homomorphism

𝜙 : 𝐺1 *𝐽 𝐺2 → 𝐺

𝑔1 · · · 𝑔𝑛 ↦→ 𝑔1 ∘ · · · ∘ 𝑔𝑛,

where on the right we are just composing the corresponding elements in

Homeo(𝑀). This map is always surjective, but its kernel need not be trivial.

When 𝜙 is an isomorphism, we will abuse notation and leave it implicit, writ-

ing 𝐺 = 𝐺1*𝐽𝐺2; then we can view elements of the subgroup 𝐺 as (equivalence

classes of) normal forms in the abstract amalgamated free product 𝐺1 *𝐽 𝐺2.

Using a ping-pong technique (Proposition 2.3.6 below), we can give a suf-

ficient condition which guarantees that 𝜙 is actually an isomorphism.

Definition 2.3.2. A pair of disjoint nonempty 𝐽-invariant sets 𝑈1, 𝑈2 ⊂ 𝑀

is called an interactive pair for 𝐺1 and 𝐺2 if for every 𝑔 ∈ 𝐺𝑖 ∖ 𝐽 , we have

𝑔𝑈𝑖 ⊂ 𝑈3−𝑖.

If, in addition, 𝑔𝑈𝑖 ⊂ 𝑈3−𝑖 is a proper inclusion for every 𝑔 ∈ 𝐺𝑖 ∖ 𝐽 for at

least one of 𝑖 ∈ {1, 2}, then we call (𝑈1, 𝑈2) a proper interactive pair.

Remark 2.3.3. Maskit’s convention is to call an interactive pair 𝑈1, 𝑈2 proper

if the 𝐺𝑖-translates of 𝑈𝑖 do not cover 𝑈3−𝑖 for at least one 𝑖 ∈ {1, 2}. Our

assumption is slightly weaker, but does not change any of the standard argu-

ments.

It is immediate that if (𝑈1, 𝑈2) is an interactive pair, then 𝑈𝑖 is precisely

invariant under 𝐽 in 𝐺𝑖 for 𝑖 = 1, 2. We observe the following:

Proposition 2.3.4. If (𝑈1, 𝑈2) is a proper interactive pair for 𝐺1 and 𝐺2,

then both 𝑈1 and 𝑈2 are infinite sets.
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Proof. Since 𝐽 is a proper subgroup of 𝐺𝑖 for 𝑖 = 1, 2, there is at least one

element 𝑔1 ∈ 𝐺1 ∖ 𝐽 and at least one element 𝑔2 ∈ 𝐺2 ∖ 𝐽 . We know that at

least one inclusion 𝑔1𝑈1 ⊂ 𝑈2 or 𝑔2𝑈2 ⊂ 𝑈1 is proper, so 𝑔2𝑔1𝑈1 is a proper

subset of 𝑈1. Therefore 𝑈1 is infinite, and since 𝑔1𝑈1 ⊂ 𝑈2, so is 𝑈2.

Via the map 𝜙, normal forms in 𝐺1 *𝐽 𝐺2 act in a ‘ping-pong’ manner on

the sets in an interactive pair.

Lemma 2.3.5 ([Mas88] VII.A.9). Let (𝑈1, 𝑈2) be an interactive pair. Then if

𝑔 ∈ 𝐺1 *𝐽 𝐺2 is an (𝑖, 𝑗)-form, we have 𝜙(𝑔)𝑈𝑗 ⊂ 𝑈3−𝑖. Further, this inclusion

is proper if (𝑈1, 𝑈2) is proper and |𝑔| ≥ 2.

The lemma can be proved via a straightforward combinatorial argument;

see the reference for details. To illustrate the idea, suppose the 𝐺1-translates

of 𝑈1 are all properly contained in 𝑈2, and that 𝑔 has length 2. If 𝑔 = 𝑔1𝑔2

is a (2, 1)-form, then 𝑔2(𝑈1) ⊂ 𝑈2 is already proper, and hence 𝜙(𝑔)𝑈1 ⊂ 𝑈1

is also a proper inclusion. If 𝑔 is a (1, 2)-form, then 𝑔2𝑈2 ⊂ 𝑈1 need not be a

proper inclusion, but then applying 𝑔1 will cause the next inclusion 𝜙(𝑔)𝑈2 =

𝑔1𝑔2𝑈2 ⊂ 𝑈2 to be proper.

Proposition 2.3.6 (Ping-pong for amalgamated free products; see [Mas88]

VII.A.10). Suppose (𝑈1, 𝑈2) is a proper interactive pair for 𝐺1 and 𝐺2. Set

𝐺 = ⟨𝐺1, 𝐺2⟩. Then 𝐺 = 𝐺1 *𝐽 𝐺2.

Proof. We will show the surjective group homomorphism 𝜙 : 𝐺1*𝐽𝐺2 → 𝐺 has

trivial kernel. The only length 0 element sent to the identity is the identity,

and length 1 elements are all nontrivial in 𝐺1 or 𝐺2, so it suffices to show

𝜙(𝑔) ̸= 1 when |𝑔| ≥ 2. Suppose 𝑔 is an (𝑖, 𝑗)-form. We now note that because

we have a proper interactive pair, 𝜙(𝑔)𝑈𝑗 ⊂ 𝑈3−𝑖 is a proper inclusion by

Lemma 2.3.5, and so 𝜙(𝑔) cannot be the identity. The result follows.
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2.3.2 HNN Combinatorial Group Theory

In this section we establish notation and give some basic facts about HNN

extensions. Again, we start with the group-theoretic definition.

Definition 2.3.7. Let 𝐺 = ⟨𝑆 | 𝑅⟩ be a group defined via generators and

relations, and 𝐻,𝐾 < 𝐺 subgroups with an isomorphism 𝜙 : 𝐻 → 𝐾. Define

𝐺*𝛼, the HNN extension of 𝐺 relative to 𝛼, as

𝐺*𝛼 = ⟨𝑆, 𝑡 | 𝑅, 𝑡ℎ𝑡−1 = 𝛼(ℎ),∀ℎ ∈ 𝐻⟩.

This time, we are constructing a larger group where two isomorphic sub-

groups will now be conjugate to each other. There is again a version us-

ing normal forms which we will develop next. Our main reference is again

[Mas88]. In this section, 𝑀 is again an arbitrary compact metrizable space,

but as in Section 2.3.1, these results are purely set-theoretic. We further as-

sume throughout this section that 𝐺0, 𝐺1 are subgroups of Homeo(𝑀), where

𝐺1 = ⟨𝑓⟩ is infinite cyclic, and 𝐽1, 𝐽−1 are subgroups of 𝐺0 with 𝑓𝐽−1𝑓
−1 = 𝐽1.

Technically, we think of 𝑓 as 𝑡 from Definition 2.3.7, and conjugation by 𝑓 as

𝛼. We let 𝐺 denote ⟨𝐺0, 𝐺1⟩, the subgroup of Homeo(𝑀) generated by 𝐺0

and 𝐺1. The abstract isomorphism 𝐽−1 → 𝐽1 induced by conjugating by 𝑓 will

be denoted by 𝑓* here, instead of 𝛼. The indices are chosen to make notation

more convenient later.

As was the case for amalgamated free products, we can define HNN exten-

sions using equivalence classes of normal forms.

Definition 2.3.8. A word 𝑔 = 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛 in 𝑓 and elements 𝑔𝑘 of 𝐺0 is a

normal form if:

(1) Each 𝑔𝑘 ∈ 𝐺0 is nontrivial for 𝑘 < 𝑛;
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(2) Each 𝛼𝑘 is an integer, with 𝛼𝑘 ̸= 0 whenever 𝑘 > 1;

(3) If 𝛼𝑘 < 0 and 𝑔𝑘−1 ∈ 𝐽−1 ∖ {1}, then 𝛼𝑘−1 < 0;

(4) If 𝛼𝑘 > 0 and 𝑔𝑘−1 ∈ 𝐽1 ∖ {1}, then 𝛼𝑘−1 > 0.

Two words 𝑔 = 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛 and ℎ = 𝑓𝛽1ℎ1 · · · 𝑓𝛽𝑛ℎ𝑛 are equivalent if we

can obtain 𝑔 from ℎ by inserting finitely many conjugates and inverses of words

of the form 𝑓𝑗𝑓−1(𝑓*(𝑗))
−1 for 𝑗 ∈ 𝐽−1 (words of this form are the identity in

𝐺). Every word of the form 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛 is equivalent either to a normal

form or to the identity, which means that every word in 𝑓 and elements of 𝐺0

is equivalent to either a normal form or the identity.

The length of a normal form 𝑔 = 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛 is defined to be |𝑔| =∑︀𝑛
𝑖=1 |𝛼𝑖|. Note that, in contrast to normal forms for amalgamated free prod-

ucts, the length of a normal form 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛 is not necessarily 𝑛. Length-0

normal forms correspond by definition to elements of 𝐺0.

If a normal form 𝑔 has positive length, 𝑖 ∈ {0,±1} and 𝑗 ∈ {±1}, then we

say 𝑔 = 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛 is an (𝑖, 𝑗)-form if 𝛼1 is positive (resp. negative, zero)

and 𝑖 = 1 (resp. −1, 0), and 𝛼𝑛 is positive (resp. negative) and 𝑗 = 1 (resp.

−1). Our notation differs slightly from Maskit’s, which will make some of our

later arguments less cumbersome.

We set

𝐺0*𝑓 = {id} ∪ {equivalence classes of normal forms}.

This set forms a group, with operation given by concatenation followed by

reduction to a normal form. It is called the HNN extension of 𝐺0 by 𝑓 . Note

that it is not in general true that the formal inverse of a normal form 𝑔 is also

a normal form (see Lemma 2.3.13 below), but it is a formal product of normal
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forms, which tells us that 𝐺0*𝑓 contains inverses.

We again have a natural surjective homomorphism

𝜙 : 𝐺0*𝑓 → 𝐺

𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛 ↦→ 𝑓𝛼1 ∘ 𝑔1 ∘ · · · ∘ 𝑓𝛼𝑛 ∘ 𝑔𝑛.

The map 𝜙 may or may not be an isomorphism. As was the case for amalaga-

mated free products, if 𝜙 is an isomorphism, we will abuse notation and say

that 𝐺 = 𝐺0*𝑓 . In this situation, we implicitly identify elements of 𝐺 with

equivalence classes of normal forms in 𝐺0*𝑓 .

As in Section 2.3.1, we want a ‘ping-pong’ condition ensuring that 𝜙 actu-

ally is an isomorphism.

Definition 2.3.9. Let 𝑈1, 𝑈−1 ⊂ 𝑀 be nonempty disjoint sets, with 𝐴 =

𝑀 ∖ (𝑈1∪𝑈−1) nonempty. We call (𝐴,𝑈1, 𝑈−1) an interactive triple for 𝐺0 and

𝐺1 if the following hold:

1. The pair (𝑈1, 𝑈−1) is precisely invariant under (𝐽1, 𝐽−1) in 𝐺0.

2. For 𝑖 ∈ {±1}, and for every 𝑔 ∈ 𝐺0, 𝑔𝑈𝑖 ⊂ 𝐴 ∪ 𝑈𝑖.

3. We have 𝑓(𝐴 ∪ 𝑈1) ⊂ 𝑈1 and 𝑓−1(𝐴 ∪ 𝑈−1) ⊂ 𝑈−1.

We say an interactive triple is proper if the set 𝐴∖(𝐺0(𝑈1∪𝑈−1)) is nonempty.

Note that these conditions imply that in particular 𝑔𝑈𝑖 ⊂ 𝐴 for 𝑔 ∈ 𝐺0∖𝐽𝑖.

Similarly to Section 2.3.1, we can observe:

Proposition 2.3.10. If (𝐴,𝑈1, 𝑈−1) is a proper interactive triple for 𝐺0 and

𝐺1, then 𝐴, 𝑈 , and 𝑈−1 are all infinite sets.
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Proof. Since 𝐽1 is a proper subgroup 𝐺0, there is some element 𝑔 ∈ 𝐺0 ∖ 𝐽1,

and by precise invariance we have 𝑔𝑈1 ⊂ 𝐴. By properness of the triple,

the inclusion is proper, which means that 𝑓𝑔𝑈1 is a proper subset of 𝑈1. We

conclude that 𝑈1 is infinite. Since 𝑔𝑈1 ⊂ 𝐴 and 𝑓−1𝑔𝑈1 ⊂ 𝑈−1 the other two

sets are infinite as well.

We have a description of the way normal forms in 𝐺0*𝑓 act on certain sets

in the interactive triple, in analogy to the way normal forms in an amalgamated

free product act on sets in an interactive pair.

Lemma 2.3.11 ([Mas88] VII.D.11). Let (𝐴,𝑈1, 𝑈−1) be an interactive triple

for 𝐺0 and 𝐺1, and set 𝐴0 = 𝐴 ∖𝐺0(𝑈1 ∪𝑈2). Let 𝑔 = 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛 ∈ 𝐺0*𝑓
be a normal form with |𝑔| > 0. Then the following hold.

i) If 𝑔 is an (𝑖, 𝑗)-form for 𝑖, 𝑗 ∈ {±1}, then 𝜙(𝑔)(𝐴0 ∪ 𝑈𝑗) ⊂ 𝑈𝑖.

ii) If 𝑔 is a (0, 𝑗)-form for 𝑗 ∈ {±1}, then there is ℎ ∈ 𝐺0 so 𝜙(𝑔)(𝐴0∪𝑈𝑗) ⊂

ℎ𝑈 ⊂ 𝐴, where 𝑈 = 𝑈−1 if 𝛼2 < 0 and 𝑈 = 𝑈1 if 𝛼2 > 0.

The combinatorics in this case are slightly more complicated than for

amalgamated free products, but the basic idea is the same. To illustrate

the idea, consider a (1, 1)-form of length 2, for example 𝑔 = 𝑓𝑔1𝑓𝑔2. Then

𝑔2(𝐴0 ∪ 𝑈1) ⊂ 𝐴 ∪ 𝑈1 by definition (in fact 𝐴0 is 𝐺0-invariant by our condi-

tions). Then we have

𝑔(𝐴0 ∪ 𝑈1) ⊂ 𝑓𝑔1𝑓(𝐴 ∪ 𝑈1)

⊂ 𝑓𝑔1(𝑈1)

⊂ 𝑓(𝐴 ∪ 𝑈1)

⊂ 𝑈1.
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Conditions (3) and (4) in Definition 2.3.8 ensure that when we iteratively

apply a normal form to 𝐴0 ∪ 𝑈𝑖, we always can say where each set is mapped

to next. We have chosen our notation so that if 𝑔 is an (𝑖, 𝑗)-form with 𝑖 ̸= 0,

then 𝑔𝑈𝑗 ⊂ 𝑈𝑖. This is consistent with the convention for amalgamated free

products.

The proposition below gives the combinatorial condition we need to ensure

that 𝜙 is actually an isomorphism.

Proposition 2.3.12 (Ping-pong for HNN extensions; [Mas88] VII.D.12). Sup-

pose (𝐴,𝑈1, 𝑈−1) is a proper interactive triple for 𝐺0 and 𝐺1. Then 𝐺 = 𝐺0*𝑓 .

Proof. We just need to show that 𝜙 : 𝐺0*𝑓 → 𝐺 is injective. This map is al-

ready injective on 𝐺0, so suppose 𝑔 ∈ 𝐺0*𝑓 has |𝑔| > 0. Then by Lemma 2.3.11

we have 𝜙(𝑔)𝑥 ̸= 𝑥 for any 𝑥 ∈ 𝐴0 = 𝐴 ∖ 𝐺0(𝑈1 ∪ 𝑈−1), showing that 𝜙(𝑔) is

not the identity.

Normal forms in an HNN extension are slightly more complicated than

normal forms for an amalgamated free product, so now we collect some results

which will later make working with these normal forms a little easier.

Formal Inverses for Words in an HNN Extension

In several situations later in the thesis, we will want to work with formal

inverses of (𝑖, 𝑗)-forms. These inverses may not themselves be normal forms,

as we will see in the proof, but it is still useful to work with them directly,

rather than with an equivalent normal form. To that end, we prove:

Lemma 2.3.13. Let 𝑔 = 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛 be an (𝑖, 𝑗)-form for 𝑖, 𝑗 ∈ {±1} (so

in particular, 𝑔 has positive length). Then the formal inverse

𝑔−1 = 𝑔−1
𝑛 𝑓−𝛼𝑛 · · · 𝑔−1

1 𝑓−𝛼1
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is a (0,−𝑖)-form if 𝑔𝑛 ∈ 𝐺0 ∖ (𝐽1 ∪ 𝐽−1). The word 𝑓−𝛼𝑛 · · · 𝑔−1
1 𝑓−𝛼1 is a

(−𝑗,−𝑖)-form, regardless of 𝑔𝑛.

Proof. We set 𝛽0 = 0 and 𝛽𝑘 = −𝛼𝑛+1−𝑘 for 1 ≤ 𝑘 < 𝑛, so that 𝑔−1 is the

word

𝑓𝛽0𝑔−1
𝑛 𝑓𝛽1𝑔−1

𝑛−1 · · · 𝑓𝛽𝑛−1 .

We need to verify that this word is a normal form. The only conditions in

Definition 2.3.8 which could possibly fail are the technical requirements (3)

and (4).

For (3), we must show that, for 𝑘 ≥ 0, if 𝛽𝑘+1 < 0 and 𝑔−1
𝑛−𝑘 ∈ 𝐽−1 ∖ {id},

then 𝛽𝑘 < 0. Equivalently, we need to show that if 𝛼𝑛+1−𝑘 > 0 and 𝑔𝑛−𝑘 ∈ 𝐽−1,

then 𝛼𝑛−𝑘 < 0. When 𝑘 ≥ 1 this follows from condition (4) on our original

normal form 𝑔, and when 𝑘 = 0 the condition is vacuous because we assume

𝑔𝑛 /∈ 𝐽−1. The argument for condition (4) is nearly identical.

The same reasoning implies that 𝑓𝛽1𝑔−1
𝑛−1 · · · 𝑓𝛽𝑛−1 is a normal form, with

𝛽1 = −𝛼𝑛 and 𝛽𝑛−1 = −𝛼1.

Ping-pong for HNN Normal Forms

When we have an interactive triple (𝐴,𝑈1, 𝑈−1) for an HNN extension 𝐺,

Lemma 2.3.11 above gives us a way to locate sets of the form 𝑔𝑈𝑖 when 𝑔 is

a normal form in 𝐺. However, the statement of the lemma is often a little

unwieldy to work with directly, so to simplify some arguments later on, we

introduce some additional terminology.

Definition 2.3.14. Let 𝐺 = 𝐺0*𝑓 be the HNN extension of 𝐺0 along 𝐽1 =

𝑓−1𝐽−1𝑓 . We say that a normal form

𝑔 = 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛
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is an HNN ping-pong form of type 1 (or just a type-1 form) if either 𝑔𝑛 ∈ 𝐺0∖𝐽1,

or 𝛼𝑛 > 0. Similarly a normal form is an HNN ping-pong form of type −1 if

either 𝛼𝑛 < 0 or 𝑔𝑛 ∈ 𝐺0 ∖ 𝐽−1.

Note that if |𝑔| = 0, then 𝑔 has type 𝑖 if and only if 𝑔 ∈ 𝐺0 ∖ 𝐽𝑖. An (𝑖, 𝑗)-

form is always type 𝑗, and it may or may not also be type −𝑗. If (𝐴,𝑈1, 𝑈−1)

is an interactive triple for 𝐺0, ⟨𝑓⟩, then a normal form 𝑔 has type 𝑘 when the

dynamics of the triple allow us to locate the set 𝑔𝑈𝑘. That is, we have the

following immediate consequence of Lemma 2.3.11:

Lemma 2.3.15. Let (𝐴,𝑈1, 𝑈−1) be an interactive triple for 𝐺0 and ⟨𝑓⟩. If 𝑔

is an (𝑖, 𝑗)-form of type 𝑘, and 𝑖 ̸= 0, then 𝑔𝑈𝑘 ⊂ 𝑈𝑖.

Frequently we will want to apply inductive arguments to normal forms,

which means that we want some control over the ping-pong behavior of a

prefix of an (𝑖, 𝑗)-form. The lemma below gives one way to do this. Here (and

elsewhere), a ‘prefix’ ℎ′ of a normal form ℎ is a normal form which appears as

an initial subword of ℎ. That is, if ℎ is a normal form 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛, then a

prefix ℎ′ is a normal form 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑘𝑔𝑘 for some 1 ≤ 𝑘 ≤ 𝑛.

Lemma 2.3.16. Let (𝐴,𝑈1, 𝑈−1) be an interactive triple for 𝐺0 and ⟨𝑓⟩, and

let 𝑔 be a type-𝑖 normal form of length 𝑚 ≥ 1. Then for some 𝑗 ∈ {−1, 1},

there is a length-(𝑚 − 1) prefix 𝑔′ of 𝑔 and 𝑔0 ∈ 𝐺0 so that 𝑔 = 𝑔′𝑓 𝑗𝑔0 and

𝑓 𝑗𝑔0𝑈𝑖 ⊂ 𝑈𝑗. If |𝑔′| ≥ 1, then 𝑔′ is type 𝑗.

Proof. When 𝑚 = 1 we can just take 𝑔′ = id, so assume 𝑚 > 1. We let

𝑔 = 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛 be a type-𝑖 normal form. Without loss of generality assume

𝛼𝑛 > 0, and consider the normal form

𝑔′ = 𝑔𝑔−1
𝑛 𝑓−1 = 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛−1𝑔𝑛−1𝑓

𝛼𝑛−1.
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This is a normal form with positive length 𝑚− 1. It is also type 1: if 𝛼𝑛 > 1

or 𝑔𝑛−1 ∈ 𝐺 ∖ 𝐽1, then this follows directly from the definition; if 𝛼𝑛 = 1 and

𝑔𝑛−1 ∈ 𝐽1, then, since 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛−1𝑔𝑛−1𝑓
𝛼𝑛𝑔𝑛 is a normal form, we must have

𝛼𝑛−1 > 0, which again means the above form has type 1.

We need to verify that 𝑓𝑔𝑛𝑈𝑖 ⊂ 𝑈1, which will show the lemma holds

with 𝑔0 = 𝑔𝑛. If 𝑖 = 1, then 𝑓𝑔𝑛𝑈𝑖 = 𝑓𝑔𝑛𝑈1 ⊂ 𝑈1. On the other hand, if

𝑖 = −1, then since 𝛼𝑛 > 0 and 𝑔 has type 𝑖, we must have 𝑔𝑛 ∈ 𝐺 ∖ 𝐽−1. Then

𝑓𝑔𝑛𝑈𝑖 = 𝑓𝑔𝑛𝑈−1 ⊂ 𝑈1.

We will also sometimes want to characterize elements in 𝐺 via their action

on sets in an interactive triple (𝐴,𝑈1, 𝑈−1). This can again be expressed using

the ping-pong type of normal forms for these elements. The lemma below is a

precise statement of this form, and generalizes the fact that in 𝐺0, (𝑈1, 𝑈−1)

is precisely invariant under (𝐽1, 𝐽−1):

Lemma 2.3.17. Let (𝐴,𝑈1, 𝑈−1) be an interactive triple for 𝐺0 and ⟨𝑓⟩. Let

𝑔 be a ping-pong form of type 𝑖 and let ℎ be a ping-pong form of type 𝑘.

Suppose that |𝑔| = |ℎ|. Then either 𝑖 = 𝑘, 𝑔𝑈𝑖 = ℎ𝑈𝑖, and 𝑔 = ℎ𝑗 for

𝑗 ∈ 𝐽𝑖, or 𝑔𝑈𝑖 ∩ ℎ𝑈𝑘 = ∅.

Proof. We proceed by induction on the length 𝑚 of 𝑔 and ℎ; the main idea is

to use the previous lemma to find prefixes of 𝑔 and ℎ where we can assume

that the statement holds, and then apply precise invariance of (𝑈1, 𝑈−1) under

(𝐽1, 𝐽−1) for the inductive step.

First observe that, if 𝑔, ℎ are elements of 𝐺0, and if 𝑔𝑈𝑖 ∩ ℎ𝑈𝑘 ̸= ∅, then

the fact that (𝑈1, 𝑈−1) is precisely invariant under (𝐽1, 𝐽−1) implies 𝑖 = 𝑘 and

𝑔 = ℎ𝑗 for 𝑗 ∈ 𝐽𝑖. Now, let 𝑚 ≥ 1, let 𝑔, ℎ be normal forms with |𝑔| = |ℎ| = 𝑚,

and suppose that 𝑔 has type 𝑖, ℎ has type 𝑘, and 𝑔𝑈𝑖 ∩ ℎ𝑈𝑘 ̸= ∅.
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By Lemma 2.3.16 we can find prefixes 𝑔′, ℎ′ of type 𝑖′, 𝑘′ respectively, with

|𝑔′| = |ℎ′| = 𝑚 − 1 and 𝑔 = 𝑔′𝑓 𝑖′𝑔0, ℎ = ℎ′𝑓𝑘′ℎ0 for 𝑔0, ℎ0 ∈ 𝐺0 satisfying

𝑓 𝑖′𝑔0𝑈𝑖 ⊂ 𝑈𝑖′ and 𝑓𝑘′ℎ0𝑈𝑘 ⊂ 𝑈𝑘′ . Then we know that both 𝑔𝑈𝑖 ⊂ 𝑔′𝑈𝑖′ and

ℎ𝑈𝑘 ⊂ ℎ′𝑈𝑘′ hold, which means that ℎ′𝑈𝑘′ ∩ 𝑔′𝑈𝑖′ ̸= ∅. By induction (or by

precise invariance if 𝑛 = 1), we know that 𝑖′ = 𝑘′ and ℎ′ = 𝑔′𝑗′ for 𝑗′ ∈ 𝐽𝑖′ .

Without loss of generality take 𝑖′ = 𝑘′ = 1, so 𝑗′ ∈ 𝐽1.

Since 𝑔𝑈𝑖 = 𝑔′𝑓𝑔0𝑈𝑖 has nonempty intersection with ℎ𝑈𝑘 = ℎ′𝑓ℎ0𝑈𝑘 =

𝑔′𝑗′𝑓ℎ0𝑈𝑘, the intersection 𝑓𝑔0𝑈𝑖 ∩ 𝑗′𝑓ℎ0𝑈𝑘 is also nonempty. Since 𝑓 conju-

gates 𝐽1 to 𝐽−1, for some 𝑗′′ ∈ 𝐽−1 we have 𝑗′𝑓ℎ0 = 𝑓𝑗′′ℎ0. Then we have

that 𝑓𝑔0𝑈𝑖 ∩ 𝑓𝑗′′ℎ0𝑈𝑘 is nonempty as well, hence 𝑔0𝑈𝑖 ∩ 𝑗′′ℎ0𝑈𝑘 ̸= ∅. Then by

precise invariance we know 𝑖 = 𝑘 and 𝑔0 = 𝑗′′ℎ0𝑗 for 𝑗 ∈ 𝐽𝑖.

Finally, we see that

𝑔 = 𝑔′𝑓𝑔0 = 𝑔′𝑓𝑗′′ℎ0𝑗 = 𝑔′𝑗′𝑓ℎ0𝑗 = ℎ′𝑓ℎ0𝑗 = ℎ𝑗,

and we are done.
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Chapter 3

Combination Theorems

In this chapter, we first discuss the classical combination theorems of Klein

and Maskit in Section 3.1, which were the inspiration for our combination

theorems for discrete convergence groups. We then have one section devoted

to each of the new theorems, Section 3.2 for amalgamated free products and

Section 3.3 for HNN extensions. The new theorems in this chapter constitute

joint work with Theodore Weisman.

3.1 Classical Combination Theorems

In this section, we state versions of the classical Klein and Maskit Com-

bination Theorems. These theorems start with two Kleinian groups, and give

sufficient dynamical conditions ensuring we can describe the group they gen-

erate in terms of the starting groups. The latter two theorems also guarantee

geometrical finiteness is preserved when we combine two groups. The first of

the combination theorems is the one by Klein, which is closely related to the

ping-pong lemma and does not refer to geometrical finiteness.
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Theorem 3.1.1 ([Mas88] VII.A.13, Klein Combination Theorem). Let 𝐺1, 𝐺2

be Kleinian groups. Suppose we have two disjoint nonempty open sets 𝐵1, 𝐵2 ⊂̂︀C such that 𝐵1 ∪𝐵2 = ̂︀C, 𝐵1 ∩𝐵2 ̸= ∅, and

𝑔𝐵𝑖 ∩𝐵𝑖 = ∅,

for every 𝑔 ∈ 𝐺 ∖ {1}. Set 𝐺 = ⟨𝐺1, 𝐺2⟩, the subgroup of PSL(2,C) generated

by 𝐺1 and 𝐺2. Then 𝐺 = 𝐺1 *𝐺2, and 𝐺 is Kleinian.

The proof is nearly identical to several arguments we give later.

Example 3.1.2. Let 𝑔1, 𝑔2 ∈ PSL(2,C) be loxodromic elements with disjoint

fixed point sets. Let 𝐺𝑖 = ⟨𝑔𝑖⟩. Then, by replacing 𝑔𝑖 with a sufficiently

high power if necessary, we can assume there are four disjoint open discs 𝐵𝑖,±

around each of the fixed points 𝑧𝑖,± of 𝑔1 and 𝑔2 (here the + indicates the

attracting point, while the − indicates the repelling point), so that 𝑔𝑖 maps

the outside of 𝐵𝑖,− into 𝐵𝑖,+. If we then let 𝐵𝑖 = ̂︀C ∖ (𝐵𝑖,+ ∪𝐵𝑖,−), we satisfy

all the conditions of Theorem 3.1.1, and so ⟨𝐺1, 𝐺2⟩ = 𝐺1 *𝐺2
∼= 𝐹2, the free

group on two letters.

This example allows one to prove that Kleinian groups satisfy the Tits

alternative, that is, any subgroup of the Kleinian 𝐺 is either virtually solvable

(contains a finite index solvable subgroup) or contains a non-abelian free group.

Indeed, the only virtually solvable Kleinian groups are elementary, that is their

limit sets have cardinality 1 or 2, and any non-elementary Kleinian group

contains at least two loxodromic elements with distinct fixed point sets.

We move onto the first of Maskit’s combination theorems now, which allows

for more interesting combinations than just free products, as well as interacting

nicely with geometrical finiteness.
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Theorem 3.1.3 ([Mas88] VII.C.2, Maskit’s First Combination Theorem).

Let 𝐺1, 𝐺2 be Kleinian groups, with 𝐺1 ∩ 𝐺2 = 𝐽 , where 𝐽 ̸= 𝐺𝑖 and 𝐽 is

geometrically finite. Suppose 𝑊 ⊂ ̂︀C is a topological circle dividing ̂︀C into

two closed 𝐽-invariant discs, 𝐵1 and 𝐵2. Suppose

𝑔𝐵𝑖 ⊂ Int(𝐵3−𝑖),

for every 𝑔 ∈ 𝐺𝑖 ∖ 𝐽 , and

Λ(𝐺𝑖) ∖ Λ(𝐽) ⊂ Int(𝐵3−𝑖).

Set 𝐺 = ⟨𝐺1, 𝐺2⟩. Then:

(i) 𝐺 = 𝐺1 *𝐽 𝐺2.

(ii) 𝐺 is discrete.

(iii) Elements of 𝐺 not conjugate into 𝐺1 nor 𝐺2 are loxodromic.

(iv) 𝐺 is geometrically finite if and only if both 𝐺1 and 𝐺2 are geometrically

finite.

Remark 3.1.4. We have stated a version of Maskit’s original theorem which

is slightly weaker, but which suffices for every example Maskit presents in

his book [Mas88]. Specifically, Maskit allows the translates of 𝐵𝑖 by 𝐺𝑖 ∖ 𝐽

to intersect 𝜕𝐵𝑖. Maskit also has several conclusions about how fundamental

domains for 𝐺1 and 𝐺2 can be used to build a fundamental domain for 𝐺. The

slightly weaker version stated here will be directly implied by the new results

later in this chapter.

We will illustrate this theorem with a couple of examples.
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𝑖R

∞

𝐵1 𝐵2

R

Λ(𝐽) = {0,∞}

𝑔 ∈ 𝐺1 ∖ 𝐽

Λ(𝐺1)Λ(𝐺2)

𝑔 ∈ 𝐺2 ∖ 𝐽

Figure 3.1.1: Illustration for the example. The limit sets Λ(𝐺𝑖) are Cantor
sets.

Example 3.1.5. Let 𝐺 be a Fuchsian genus 2 surface group, embedded

inPSL2(C) ∼= Isom(H3) via the inclusion PSL2(R) < PSL2(C).

Then 𝐺 has the presentation ⟨𝑎, 𝑏, 𝑐, 𝑑 | [𝑎, 𝑏][𝑐, 𝑑] = 1⟩. Set 𝑗 = [𝑎, 𝑏] =

[𝑐, 𝑑]−1. We then take 𝐺1 = ⟨𝑎, 𝑏⟩ ∼= 𝐹2, and 𝐺2 = ⟨𝑐, 𝑑⟩ ∼= 𝐹2, the free group

on 2 letters, and 𝐽 = 𝐺1 ∩ 𝐺2 = ⟨𝑗⟩ ∼= Z. We can arrange our generators so

Λ(𝐺1) ⊂ R≥0 ∪ {∞} and Λ(𝐺2) ⊂ R≤0 ∪ {∞}, where Λ(𝐽) = {0,∞}. These

will be the fixed points of 𝑗 = (𝑥 ↦→ 𝜆𝑥) where 𝜆 > 1. See Figure 3.1.1.

This is precisely the picture one gets when gluing the sides of an octagon

in H2
R to form a surface of genus 2, and then isometrically embedding this

picture into the standard H2
R sitting inside H3

R whose boundary is R ∪ {∞}.

The limit set of the surface group coincides with 𝜕H2
R, and then the octagon

with faces identified appears once in each connected component of 𝜕H3
R∖𝜕H2

R.

Our 𝐽-invariant sets 𝐵1 and 𝐵2 are then the closed left and right closed half-

planes respectively, including ∞, and their common intersection is 𝑖R∪∞. If
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we identify ̂︀C with 𝑆2, then 𝐵1 and 𝐵2 are complementary hemispheres.

For the other examples in this section, we will need two brief definitions. A

fundamental set for the Kleinian𝐺 will be a set containing one point from every

𝐺-orbit in ̂︀C. No assumptions are made about the toplogy of a fundamental

set. One can obtain a fundamental set from a fundamental domain by adding

some boundary points. A constrained fundamental set is a fundamental set

whose interior is a fundamental domain.

Example 3.1.6 ([Mas88] VIII.C.3). Let 𝐺1 be a finitely generated Fuchsian

group, that is, a subgroup of PSL(2,R) ⊂ PSL(2,C), which contains an elliptic

element of order 𝜈. Normalize so that 𝐽 = Stab(0) = Stab(∞) has order 𝜈.

For 𝛿 > 0 sufficiently small, we know that 𝐵1 = {|𝑧| ≥ 𝛿} is preserved by 𝐽

and otherwise mapped off of it self, using that 0 ∈ Ω(𝐺) which is open. Hence

𝐵1 is precisely invariant under 𝐽 in 𝐺1. Let 𝐷1 be a constrained fundamental

set for 𝐺1 contained inside the ‘natural’ constrained fundamental set for 𝐽 :

𝐸 = {𝑧 | 0 ≤ arg 𝑧 ≤ 𝜈}. We may also choose 𝐷1 so that 𝐷1 ∩ 𝐵1 is a

fundamental set for the action of 𝐽 on 𝐵1.

Figure 3.1.2: [Mas88] Fig. VIII.C.2. Illustration depicting 𝐷1. The circle 𝑊
is the boundary of 𝐵1.
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Let 𝐺2 be another finitely generated Fuchsian group with a maximal elliptic

subgroup of order 𝜈 fixing 0 and ∞. This implies 𝐺1 ∩ 𝐺2 = 𝐽 . Like above,

we can find precisely invariant neighborhoods of either fixed point. If we

conjugate by a dilation of the form 𝑧 ↦→ 𝑡𝑧, 0 < 𝑡 < 1 (which preserves 𝐽),

we can assume 𝐵2 = {|𝑧| ≥ 𝛿} ∪ {∞} is precisely invariant under 𝐽 in 𝐺2.

Let 𝐷2 be a constrained fundamental set for 𝐺2 again contained in 𝐸, and

choose 𝐷2 so that 𝐷2 ∩𝐵2 is a fundamental set for 𝐽 acting on 𝐵2. We claim

Theorem 3.1.3 holds here. Indeed, we can take 𝑊 = 𝐵1 ∩ 𝐵2 = 𝜕𝐵1, and

then 𝑊 is 𝐽-invariant, and the precise invariance of 𝐵1 and 𝐵2 ensures 𝐺𝑖 ∖ 𝐽

translates of 𝐵𝑖 are contained in Int(𝐵3−𝑖).

Figure 3.1.3: [Mas88] Fig. VIII.C.3. Illustration depicting 𝐷2.

So, setting 𝐺 = ⟨𝐺1, 𝐺2⟩, we conclude 𝐺 = 𝐺1 *𝐽 𝐺2. Since finitely gener-

ated Fuchsian groups are geometrically finite, we find that 𝐺 is also geometri-

cally finite.

The second combination theorem deals with HNN extensions instead.

Theorem 3.1.7 ([Mas88] VII.E.5, Maskit’s Second Combination Theorem).

Let 𝐺0 be a Kleinian group, with 𝐽1, 𝐽−1 < 𝐺0 proper subgroups which are
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both geometrically finite. Let 𝐺1 = ⟨𝑓⟩ be infinite cyclic, where 𝑓𝐽−1𝑓
−1 = 𝐽1.

Suppose we can find disjoint closed discs 𝐵1, 𝐵−1 ⊂ ̂︀C satisfying the following:

1. (𝐵1, 𝐵−1) is precisely invariant under (𝐽1, 𝐽−1) in 𝐺0.

2. If 𝐴 = ̂︀C ∖ (𝐵1 ∪𝐵−1), then 𝑓(𝐴 ∪𝐵1) = Int(𝐵1).

3. For 𝑖 ∈ {±1}, Λ(𝐺0) ∩𝐵𝑖 = Λ(𝐽𝑖).

4. The set 𝐴0 = ̂︀C ∖𝐺0(𝐵1 ∪𝐵−1) is nonempty.

Set 𝐺 = ⟨𝐺0, 𝐺1⟩. Then the following hold.

(i) 𝐺 = 𝐺0*𝑓 .

(ii) 𝐺 is Kleinian.

(iii) Elements of 𝐺 not conjugate into 𝐺0 are loxodromic.

(iv) 𝐺 is geometrically finite if and only if 𝐺0 is geometrically finite.

Remark 3.1.8. Like for the previous theorem, this version is slightly weaker

again. Maskit allows the two discs to intersect along their boundary, so that

the conjugating element could be parabolic, and Maskit also has conclusions

about fundamental domains for the combination. The version we have stated

will be directly implied by the new results later in this chapter.

Example 3.1.9. To illustrate the second combination theorem, we will work

with very explicit groups. Let 𝐺0 be the double dihedral group generated by

𝑗𝑧 = −𝑧, 𝑔𝑧 = 16/𝑧, and ℎ𝑧 = 400/𝑧. One possible fundamental domain

for 𝐺0 is 𝐷0 = {𝑧 | 4 < |𝑧| < 20,−𝜋/2 < arg 𝑧 < 𝜋/2}, and by adding

some points to the boundary we can assume 𝐷0 is a constrained fundamental

set. Let 𝐵1 = {𝑧 | |𝑧 − 25| ≤ 15} and 𝐵−1 = {𝑧 | |𝑧 − 5| ≤ 3}, and let
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𝑓𝑧 = (25𝑧 − 80)/(𝑧 − 5). Then 𝑓 maps the outside of 𝐵−1 onto the inside of

𝐵1.

Figure 3.1.4: [Mas88] Fig. VIII.C.7. Illustration depicting 𝐷,𝐵1 and 𝐵−1.

Letting 𝐽1 = ⟨ℎ⟩ and 𝐽−1 = ⟨𝑔⟩, we have 𝑓𝐽−1𝑓
−1 = 𝐽1, and (𝐵1, 𝐵−1) are

precisely invariant under (𝐽1, 𝐽−1) in 𝐺0. The second combination theorem

applies in this case, and so setting 𝐺 = ⟨𝐺0, 𝑓⟩, we find that 𝐺 = 𝐺*𝑓 , and 𝐺

is geometrically finite since 𝐺0, 𝐽1 and 𝐽−1 are.

3.2 New Combination Theorems: Amalgamated

Free Products

We now introduce the main definition for Theorem A.

Definition A (AFP ping-pong position). Let 𝐺1 and 𝐺2 act as discrete

convergence groups on a compact metrizable space 𝑀 , and suppose that

𝐺1 ∩ 𝐺2 = 𝐽 is a geometrically finite group distinct from both 𝐺1 and 𝐺2.

We say 𝐺1 and 𝐺2 are in AFP ping-pong position (with respect to 𝐽) if there
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exist closed sets 𝐵1, 𝐵2 ⊂ 𝑀 with nonempty disjoint interiors satisfying the

following:

1. For 𝑖 ∈ {1, 2}, 𝐵𝑖 is 𝐽-invariant.

2. For 𝑖 ∈ {1, 2}, and for each 𝑔 ∈ 𝐺𝑖 ∖ 𝐽 , 𝑔𝐵𝑖 ⊂ Int(𝐵3−𝑖).

3. For 𝑖 ∈ {1, 2}, Λ(𝐺𝑖) ∖ Λ(𝐽) ⊂ Int(𝐵3−𝑖).

The definition above for the most part mimics the setup in Maskit’s orig-

inal combination theorem for amalgamated free products of Kleinian groups.

Referring to Figure 3.1.1 can be helpful. We can now state and begin proving

Theorem A.

Theorem A. Let 𝐺1 and 𝐺2 be discrete convergence groups acting on a com-

pact metrizable space 𝑀 . Suppose that 𝐽 = 𝐺1 ∩ 𝐺2 is geometrically fi-

nite, and 𝐺1 and 𝐺2 are in AFP ping-pong position with respect to 𝐽 . Let

𝐺 = ⟨𝐺1, 𝐺2⟩ < Homeo(𝑀), and suppose 𝐺 acts as a convergence group.

Then the following hold:

(i) 𝐺 = 𝐺1 *𝐽 𝐺2.

(ii) 𝐺 is discrete.

(iii) Elements of 𝐺 not conjugate into 𝐺1 nor 𝐺2 are loxodromic.

(iv) 𝐺 is geometrically finite if and only if both 𝐺1 and 𝐺2 are geometrically

finite.

Remark 3.2.1. The hypotheses for Theorem A are different from the hypothe-

ses for Maskit’s original combination theorems in H3
R in two respects. First,

Maskit insists that the sets 𝐵1, 𝐵2 in Definition A are topological balls in
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𝑀 = 𝜕H3
R, satisfying 𝜕𝐵1 = 𝜕𝐵2 and 𝐵1 ∪ 𝐵2 = 𝑀 . This requirement is

unnatural in our setting, since 𝑀 may not even be a manifold, and it is not

needed in any of our arguments.

Second, and more significantly, Maskit’s version of condition (2) in Defi-

nition A is weaker than what we have given here. Our condition implies in

particular that if 𝑔 ∈ 𝐺𝑖 ∖ 𝐽 , then 𝑔𝐵𝑖 ∩𝐵𝑖 = ∅. This means that if 𝑃 < 𝐽 is

a maximal parabolic subgroup in 𝐽 , then 𝑃 must also be a maximal parabolic

subgroup in 𝐺𝑖.

Maskit’s original statement in H3
R allows 𝑔𝐵𝑖 to intersect 𝐵𝑖 in limit points

of 𝐽 , which means his theorem allows for amalgamations along subgroups

𝐽 < 𝐺𝑖 whose parabolic subgroups are not maximal in 𝐺𝑖. This means our

theorem is not strong enough to recover Maskit’s original result in the case

𝑀 = 𝜕H3
R. However, most of the examples constructed in Maskit’s book

satisfy the stronger hypothesis we have given above.

Below, we give a quick proof of the first three parts of Theorem A.

Proof of (i) - (iii) in Theorem A. (i) Let 𝐵1, 𝐵2 be the closed subsets of 𝑀

from Definition A. We note that since 𝑔𝐵𝑖 ⊂ Int(𝐵3−𝑖) for any 𝑔 ∈ 𝐺𝑖 ∖ 𝐽 , it

follows that 𝑔Int(𝐵𝑖) ⊂ Int(𝐵𝑖) is a proper inclusion for every 𝑔 ∈ 𝐺𝑖∖𝐽 . Hence

(Int(𝐵1), Int(𝐵2)) form a proper interactive pair for 𝐺1 and 𝐺2 by conditions

(1) and (2), so we are done by Proposition 2.3.6.

(ii) It suffices to show no sequence in 𝐺 accumulates at the identity. Let

(𝑔𝑘) be a sequence of distinct elements in 𝐺. Since 𝐺1, 𝐺2 are discrete we can

assume |𝑔𝑘| > 1. If the length of 𝑔𝑘 is odd, then 𝑔𝑘 maps one of the sets 𝐵1, 𝐵2

into the interior of the other and hence is far from the identity, so assume the

lengths are all even. Without loss of generality, we may assume every 𝑔𝑘 is a

(2, 1)-form. We have 𝑔𝑘𝐵1 ⊂ Int(𝐵1) for every 𝑘.
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Suppose for a contradiction that (𝑔𝑘) converges to the identity. Then 𝑔𝑘𝐵1

converges to 𝐵1. Write 𝑔𝑘 = ℎ𝑘𝑔
′
𝑘 where |𝑔′𝑘| = |𝑔𝑘| − 1 and ℎ𝑘 ∈ 𝐺2 ∖ 𝐽 . Then

𝑔𝑘𝐵1 ⊂ ℎ𝑘𝐵2 ⊂ Int(𝐵1) for every 𝑘 since 𝑔′𝑘𝐵1 ⊂ 𝐵2. It now also follows that

(ℎ𝑘𝐵2) converges to 𝐵1. Now, in general, when 𝑔, ℎ ∈ 𝐺2 ∖𝐽 , we will have 𝑔𝐵2

and ℎ𝐵2 either disjoint or equal. Indeed, if 𝑔𝐵2 ∩ ℎ𝐵2 ̸= ∅, then ℎ−1𝑔 sends

a point in 𝐵2 back into 𝐵2, hence ℎ−1𝑔 = 𝑗 ∈ 𝐽 . Then 𝑔𝐵2 = ℎ𝑗𝐵2 = ℎ𝐵2 as

desired.

Since ℎ1𝐵2 ⊂ Int(𝐵1) has nonempty interior and ℎ𝑘𝐵2 ⊂ Int(𝐵1) converges

to 𝐵1, it follows that for some fixed large 𝑘, we will have ℎ𝑘𝐵2∩ℎ1𝐵2 ̸= ∅, and

also ℎ𝑘𝐵2 ̸= ℎ1𝐵2. This gives our contradiction, so we conclude 𝐺 is discrete.

(iii) Assume 𝑔 ∈ 𝐺 is not conjugate into 𝐺1 nor 𝐺2. Take 𝑔 to have minimal

length in its conjugacy class. If 𝑔 is an (𝑖, 𝑖)-form (that is, |𝑔| is odd) then we

can conjugate by an element of 𝐺𝑖 to reduce its length, hence 𝑔 has even length.

Without loss of generality suppose 𝑔 is a (2, 1)-form. Since 𝑔𝑛𝐵1 ⊂ Int(𝐵1) is a

proper inclusion for every 𝑛, we see that 𝑔 has infinite order, hence is parabolic

or loxodromic since 𝐺 is discrete. At least one fixed point of 𝑔 is an attracting

point 𝑧+ for the convergence sequence (𝑔𝑛) (see Proposition 2.2.7). Since 𝐵1

has nonempty interior, there is some 𝑤 ∈ 𝐵1 so that 𝑔𝑛𝑤 → 𝑧+. But for every

𝑛 ≥ 1, the set 𝑔𝑛𝐵1 is a subset of the fixed compact 𝑔𝐵1 ⊂ Int(𝐵1), so we must

have 𝑧+ ∈ Int(𝐵1). An identical argument applied to 𝑔−1 (a (1, 2)-form) gives

a fixed point for 𝑔 in Int(𝐵2), hence 𝑔 is loxodromic by Proposition 2.2.7.

3.2.1 Limit Sets of Amalgamated Free Products

The rest of the section is devoted to the proof of part (iv) of Theorem A,

so for the rest of the section, we fix groups 𝐺1, 𝐺2, 𝐽, 𝐺 and sets 𝐵1, 𝐵2 ⊂ 𝑀

satisfying the conditions of Definition A. We will prove each direction of the
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theorem separately, but we start by making some general observations about

the positioning of the limit sets of subgroups of 𝐺.

Proposition 3.2.2. Each of the following holds.

(i) Λ(𝐽) ⊂ 𝜕𝐵1 ∩ 𝜕𝐵2. In particular, if 𝐽 is infinite, then 𝜕𝐵1 ∩ 𝜕𝐵2 is

nonempty.

(ii) For 𝑖 ∈ {1, 2}, Λ(𝐺𝑖) ⊂ 𝐵3−𝑖.

(iii) For 𝑖 ∈ {1, 2}, and any 𝑔 ∈ 𝐺 ∖𝐺𝑖, we have 𝑔(Λ(𝐺𝑖)) ∩ Λ(𝐺𝑖) = ∅.

Proof. (i) Note that since 𝐽 preserves the closed set 𝐵1 and Int(𝐵1) is an

infinite set by Proposition 2.3.4, we have Λ(𝐽) ⊂ 𝐵1. Similarly, Λ(𝐽) ⊂ 𝐵2,

hence Λ(𝐽) ⊂ 𝐵1 ∩𝐵2 = 𝜕𝐵1 ∩ 𝜕𝐵2 since these sets have disjoint interiors.

(ii) This is an immediate consequence of condition (3) in Definition A along

with (i) above.

(iii) For concreteness, take 𝑖 = 1, and let 𝑔 ∈ 𝐺 ∖ 𝐺1. In particular

𝑔 /∈ 𝐽 , so 𝑔 has a normal form with positive length. We can always find some

ℎ, ℎ′ ∈ 𝐺1 so that 𝑔′ = ℎ𝑔ℎ′ is a (1, 2)-form. Then, applying (ii), we know that

𝑔′Λ(𝐺1) ⊂ Int(𝐵1) and so

𝑔′Λ(𝐺1) ∩ Λ(𝐺1) = ∅.

Now, since Λ(𝐺1) is invariant under 𝐺1, we see that 𝑔′Λ(𝐺1) = ℎ𝑔Λ(𝐺1), and

therefore

ℎ𝑔Λ(𝐺1) ∩ Λ(𝐺1) = ∅.

But then ℎ−1(ℎ𝑔Λ(𝐺1) ∩ Λ(𝐺1)) = 𝑔Λ(𝐺1) ∩ ℎ−1Λ(𝐺1) = 𝑔Λ(𝐺1) ∩ Λ(𝐺1) is

empty as well.
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3.2.2 AFP Ping-Pong and Contraction

Both directions of the proof of Theorem A rely crucially on a key contrac-

tion property of the ping-pong action of 𝐺 on the sets 𝐵1 and 𝐵2, stated as

Lemma 3.2.5 below. This contraction lemma gives a sufficient condition for a

sequence of sets (𝑔𝑘𝐵𝑖) to converge to a singleton in 𝑀 .

The proof of the contraction lemma relies on an application of Proposi-

tion 2.2.25 to the subgroups we are currently considering. Recall that this

proposition gives us control over the topological behavior of the action of fully

quasi-convex subgroups on certain subsets of 𝑀 . So, in order to apply the

proposition, we first need to check:

Lemma 3.2.3. Let 𝐻 be one of 𝐺,𝐺1, or 𝐺2. If 𝐻 is geometrically finite,

then 𝐽 is a fully quasi-convex subgroup of 𝐻.

Proof. We know 𝐽 is relatively quasi-convex since it is a geometrically finite

subgroup of 𝑀 , so we just need to prove that for all but finitely many ℎ ∈ 𝐻∖𝐽

we have ℎΛ(𝐽)∩Λ(𝐽) = ∅. In fact, we will see that this is true for all ℎ ∈ 𝐻∖𝐽 .

First, if 𝐻 = 𝐺𝑖 for 𝑖 = 1 or 2, by assumption we know that for any

ℎ ∈ 𝐻 ∖ 𝐽 we have ℎΛ(𝐽) ⊂ ℎ𝐵𝑖 ⊂ Int(𝐵3−𝑖), hence ℎΛ(𝐽) ∩ Λ(𝐽) = ∅ by

part (i) of Proposition 3.2.2. If 𝐻 = 𝐺, then any ℎ ∈ 𝐻 ∖ 𝐽 is an (𝑖, 𝑗)-form,

so that ℎΛ(𝐽) ⊂ ℎ𝐵𝑗 ⊂ Int(𝐵3−𝑖) and again ℎΛ(𝐽) ∩ Λ(𝐽) = ∅.

Now, we can specialize Proposition 2.2.25 to the current setting.

Lemma 3.2.4. Suppose that either 𝐺 is geometrically finite, or both 𝐺1 and 𝐺2

are geometrically finite. For 𝑖 ∈ {1, 2}, there exists a compact 𝐾𝑖 ⊂ Int(𝐵3−𝑖)

so that for any 𝑔 ∈ 𝐺𝑖 ∖ 𝐽 , there is 𝑗 ∈ 𝐽 so that 𝑗𝑔𝐵𝑖 ⊂ 𝐾𝑖.

Proof. This follows directly from Proposition 2.2.25, taking the ambient ge-

ometrically finite group 𝐺 to be either 𝐺 or 𝐺𝑖 for 𝑖 ∈ {1, 2}, 𝐻 to be 𝐺𝑖,
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𝐽1 = 𝐽2 = 𝐽 , 𝑈1 to be Int(𝐵3−𝑖), and 𝑈2 to be 𝑀 ∖ 𝐵𝑖. By assumption we

know that Λ(𝐺𝑖)∖Λ(𝐽) ⊂ Int(𝐵3−𝑖) ⊂𝑀 ∖𝐵𝑖, so in fact Λ(𝐺𝑖)∖Λ(𝐽) ⊂ 𝑈1∩𝑈2

and the hypotheses of the proposition are satisfied.

Finally, we can establish the contraction property for sequences in 𝐺.

Lemma 3.2.5 (Contraction for amalgamated free products). Suppose that

either 𝐺 is geometrically finite, or both 𝐺1 and 𝐺2 are geometrically finite. If

(ℎ𝑘) is a sequence of (𝑖, 𝑗)-forms (for fixed 𝑖 and 𝑗) lying in distinct left cosets

of 𝐽 , then, up to subsequence, (ℎ𝑘𝐵𝑗) converges to a singleton {𝑥}.

It is not hard to verify directly that the subgroup {𝑔 ∈ 𝐺 : 𝑔𝐵𝑗 = 𝐵𝑗} is

exactly 𝐽 . So, asking for the sequence of cosets (ℎ𝑘𝐽) to be pairwise distinct

is equivalent to asking for the sequence of translates (ℎ𝑘𝐵𝑗) to be pairwise

distinct.

Proof. We first prove the following:

Claim. There exists a compact subset 𝐾 ⊂ Int(𝐵3−𝑗) and a sequence (𝑗𝑘) in

𝐽 such that 𝑗𝑘ℎ−1
𝑘 𝐵𝑖 ⊂ 𝐾 for all 𝑘.

To prove the claim, first observe that if |ℎ𝑘| = 1 for every 𝑘, then 𝑖 = 𝑗

and ℎ𝑘 ∈ 𝐺𝑖 ∖ 𝐽 for all 𝑘. Then the claim follows directly from Lemma 3.2.4.

Otherwise, suppose that |ℎ𝑘| > 1, and write a normal form for ℎ𝑘:

ℎ𝑘 = 𝑔𝑘,1 · · · 𝑔𝑘,𝑛.

Although 𝑛 can depend on 𝑘, we ignore this in the notation. The word ℎ−1
𝑘 =

𝑔−1
𝑘,𝑛 · · · 𝑔

−1
𝑘,1 is a (𝑗, 𝑖)-form, and the word

𝑔𝑘,𝑛ℎ
−1
𝑘 = 𝑔−1

𝑘,𝑛−1 · · · 𝑔
−1
𝑘,1
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is a (3 − 𝑗, 𝑖)-form. This means that 𝑔𝑘,𝑛ℎ−1
𝑘 𝐵𝑖 ⊂ 𝐵𝑗. Then, we can apply

Lemma 3.2.4 again to find a fixed compact 𝐾 ⊂ Int(𝐵3−𝑗) and 𝑗𝑘 ∈ 𝐽 so that

𝑗𝑘𝑔
−1
𝑘,𝑛𝐵𝑗 ⊂ 𝐾 for every 𝑘, and therefore

𝑗𝑘ℎ
−1
𝑘 𝐵𝑖 = 𝑗𝑘𝑔

−1
𝑘,𝑛𝑔𝑘,𝑛ℎ

−1
𝑘 𝐵𝑖 ⊂ 𝑗𝑘𝑔

−1
𝑘,𝑛𝐵𝑗 ⊂ 𝐾.

This proves the claim, so now we consider the sequence (ℎ𝑘𝑗
−1
𝑘 ). Since the

left cosets ℎ𝑘𝐽 are all distinct, it follows that the sequence of group elements

(ℎ𝑘𝑗
−1
𝑘 ) is divergent in 𝐺, and therefore we can extract a convergence sub-

sequence: we can find attracting and repelling points 𝑧+, 𝑧− ∈ 𝑀 so that

(ℎ𝑘𝑗
−1
𝑘 𝑦) converges to 𝑧+ whenever 𝑦 ̸= 𝑧−. Equivalently, (𝑗𝑘ℎ−1

𝑘 𝑦) converges

to 𝑧− whenever 𝑦 ̸= 𝑧+.

By Proposition 2.3.4, the set 𝐵𝑗 is infinite, so there is at least one point

𝑦 ∈ 𝐵𝑗 ∖ {𝑧+}. Since 𝑗𝑘ℎ−1
𝑘 𝐵𝑗 ⊂ 𝐾, we must have 𝑧− ∈ 𝐾. In particular, 𝑧−

must lie in Int(𝐵3−𝑗), which means that 𝐵𝑗 is a compact subset of 𝑀 ∖ {𝑧−}.

Thus, (ℎ𝑘𝑗−1
𝑘 𝐵𝑗) = (ℎ𝑘𝐵𝑗) converges to the singleton {𝑧+} as desired.

3.2.3 Geometrical Finiteness of the Product

We now turn to the proof of the implication (𝐺1 and 𝐺2 geometrically

finite) =⇒ (𝐺 geometrically finite), which is one of the directions of Theorem

A (iv).

The proof of this direction of the theorem relies on the fact that limit points

of 𝐺 fall into one of two classes: either they are 𝐺-translates of limit points

of 𝐺1 or 𝐺2, or else they are limit points of sequences of (𝑖, 𝑗)-forms in 𝐺

whose length tends to infinity. The essential step in the proof is to show that

any limit point 𝑥 of the latter form can be “coded” by a sequence of nested

translates of 𝐵1 or 𝐵2.
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Precisely, we prove the following:

Proposition 3.2.6 (AFP coding for 𝐺-limit points). Suppose that 𝐺1 and 𝐺2

are geometrically finite, and let 𝑥 be a point in Λ(𝐺)∖𝐺(Λ(𝐺1)∪Λ(𝐺2)). Then

there exists a sequence (𝑔𝑘) in (𝐺1 ∪𝐺2) ∖ 𝐽 so that for every 𝑘,

ℎ𝑘 = 𝑔1 · · · 𝑔𝑘

has length 𝑘, and if 𝑔𝑘 ∈ 𝐺𝑗, then 𝑥 ∈ ℎ𝑘𝐵𝑗.

To prove this proposition, we follow Maskit’s strategy, and consider a

sequence of “ping-pong” sets in 𝑀 , defined inductively as follows. We let

𝑇0 = 𝐵1 ∪𝐵2. Then, for every 𝑛 > 0, and 𝑖 ∈ {1, 2}, we define

𝑇𝑛,𝑖 =
⋃︁

𝑔∈𝐺𝑖∖𝐽

𝑔(𝐵𝑖 ∩ 𝑇𝑛−1).

Then we define

𝑇𝑛 = 𝑇𝑛,1 ∪ 𝑇𝑛,2.

The set 𝑇1 is just the union of the 𝐺1 ∖ 𝐽 translates of 𝐵1 and the 𝐺2 ∖ 𝐽

translates of 𝐵2. More generally, 𝑇𝑛 is the union of translates of 𝐵1 by (𝑖, 1)-

forms of length 𝑛 and the translates of 𝐵2 by (𝑖, 2)-forms of length 𝑛. See

Figure 3.2.1 for a depiction of 𝑇1 and 𝑇2. We see that these sets are decreasing,

so let

𝑇 =
∞⋂︁
𝑛=0

𝑇𝑛.

We will see that limit points of 𝐺 which are not translates of limit points of

𝐺1 nor 𝐺2 are in 𝑇 , which allows us to construct the sequence given by the

conclusion of the proposition above.

We observe:
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𝐵1 𝐵2

Λ(𝐽)𝑇1,2 𝑇1,1

Figure 3.2.1: Part of the sets 𝑇1 and 𝑇2.

Lemma 3.2.7. The set 𝑇 is 𝐺-invariant and nonempty. In particular, since

𝐺 is non-elementary, we have Λ(𝐺) ⊂ 𝑇 ⊂ 𝐵1 ∪𝐵2.

Proof. We know 𝑇 is nonempty because it is the intersection of a decreasing

sequence of nonempty subsets of the compact space 𝑀 . The definition of 𝑇𝑛

implies that if 𝑥 ∈ 𝑇𝑛 and 𝑔 ∈ 𝐺1 ∪ 𝐺2, then 𝑔𝑥 ∈ 𝑇𝑛−1. Inductively, we see

that if 𝑔 ∈ 𝐺 has |𝑔| = 𝑘, and 𝑥 ∈ 𝑇𝑛+𝑘, then 𝑔𝑥 ∈ 𝑇𝑛. It follows that if 𝑥 ∈ 𝑇

then 𝑔𝑥 ∈ 𝑇 for any 𝑔 ∈ 𝐺.

Lemma 3.2.8. If 𝐺1 and 𝐺2 are geometrically finite, we have Λ(𝐺)∖(Λ(𝐺1)∪

Λ(𝐺2)) ⊂ 𝑇1.

Proof. We will prove that if 𝑦 ∈ Λ(𝐺)∖𝑇1, then 𝑦 ∈ Λ(𝐺1)∪Λ(𝐺2), so suppose

that 𝑦 ∈ Λ(𝐺) does not lie in 𝑇1. Using the above lemma, we know 𝑦 ∈ 𝐵1∪𝐵2,

so without loss of generality assume 𝑦 ∈ 𝐵2. Since 𝑦 is in the limit set of 𝐺,

we can find a sequence (𝑔𝑘) in 𝐺 so that (𝑔𝑘𝑤) converges to 𝑦 for all but a
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single point in 𝑀 . If 𝑦 ∈ Λ(𝐽) we are done, so we can assume that 𝑔𝑘 /∈ 𝐽 for

infinitely many 𝑘.

Then, after extracting a subsequence, we can assume that for every 𝑘, 𝑔𝑘

is an (𝑖, 𝑗)-form for 𝑖, 𝑗 fixed, and then find 𝑤 ∈ 𝐵𝑗 so that 𝑔𝑘𝑤 → 𝑦.

Since 𝑔𝑘 is an (𝑖, 𝑗)-form and 𝑤 ∈ 𝐵𝑗, we have 𝑔𝑘𝑤 ∈ 𝐺𝑖(𝐵𝑖) for every 𝑘.

So, we may write 𝑔𝑘𝑤 = 𝑔′𝑘𝑧𝑘 for 𝑔′𝑘 ∈ 𝐺𝑖 ∖ 𝐽 and 𝑧𝑘 ∈ 𝐵𝑖. Note that 𝑔′𝑘 is just

the first letter in the (𝑖, 𝑗)-form 𝑔𝑘. In particular, we know 𝑔′𝑘𝑧𝑘 ∈ 𝑇1 for every

𝑘, so 𝑔′𝑘𝑧𝑘 is never equal to 𝑦. If, up to subsequence, there are only finitely

many distinct translates 𝑔′𝑘𝐵𝑖, then we would have 𝑔′𝑘𝑧𝑘 ∈
⋃︀
𝑔′𝑘𝐵𝑖, a compact

set in the complement of 𝑇1, which contradicts the fact that 𝑔′𝑘𝑧𝑘 → 𝑦 ∈ 𝑇1.

Hence we may assume that the translates 𝑔′𝑘𝐵𝑖 are all distinct, which means

that the left cosets 𝑔′𝑘𝐽 are all distinct.

Now, Lemma 3.2.5 implies that (𝑔′𝑘𝐵𝑖) converges to a singleton. This sin-

gleton must be 𝑦 since 𝑔′𝑘𝑧𝑘 → 𝑦. It follows that 𝑔′𝑘𝑧 → 𝑦 for any 𝑧 ∈ 𝐵𝑖, and

since 𝐵𝑖 is an infinite set it follows that 𝑦 ∈ Λ(𝐺𝑖) as desired.

Proof of Proposition 3.2.6. We first claim that Λ(𝐺) ∖ 𝐺(Λ(𝐺1) ∪ Λ(𝐺2)) is

a subset of 𝑇 . So, fix 𝑧 ∈ Λ(𝐺), and suppose 𝑧 /∈ 𝑇 . We will show 𝑧 ∈

𝐺(Λ(𝐺1) ∪ Λ(𝐺2)).

By Lemma 3.2.7 we know that Λ(𝐺) ⊂ 𝐵1 ∪ 𝐵2 = 𝑇0, so there is some

𝑛 > 0 such that 𝑧 ∈ 𝑇𝑛−1 ∖ 𝑇𝑛. In particular, because 𝑧 ∈ 𝑇𝑛−1, there is an

(𝑖, 𝑗)-form 𝑔 ∈ 𝐺, with |𝑔| = 𝑛−1, such that 𝑔𝑦 = 𝑧 for 𝑦 ∈ 𝐵𝑗. We must have

𝑦 /∈ 𝑇1, since otherwise we would have 𝑦 = ℎ𝑤 for 𝑤 ∈ 𝐵3−𝑗 and ℎ ∈ 𝐺3−𝑗 ∖ 𝐽 ,

and then 𝑧 = 𝑔ℎ𝑤 would lie in 𝑇𝑛. Then, since Λ(𝐺) is 𝐺-invariant we see that

𝑦 ∈ Λ(𝐺) but 𝑦 /∈ 𝑇1, so by the previous lemma we have 𝑦 ∈ Λ(𝐺1) ∪ Λ(𝐺2),

hence 𝑧 ∈ 𝐺(Λ(𝐺1) ∪ Λ(𝐺2)).

We have now seen that Λ(𝐺) ∖ 𝐺(Λ(𝐺1) ∪ Λ(𝐺2)) is a subset of 𝑇 , so
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we just need to show that for any 𝑥 ∈ 𝑇 , there is a sequence of (𝑖, 𝑗)-forms

(ℎ𝑘) satisfying the conclusions of the proposition. We construct this sequence

inductively. Take ℎ0 to be the identity. For 𝑘 > 0, assume that 𝑥 ∈ ℎ𝑘−1𝐵𝑗

for an (𝑖, 𝑗)-form

ℎ𝑘−1 = 𝑔1 · · · 𝑔𝑘−1.

By Lemma 3.2.7, 𝑇 is 𝐺-invariant, so ℎ−1
𝑘−1𝑥 ∈ 𝐵𝑗 ∩ 𝑇 . In particular, ℎ−1

𝑘−1𝑥

lies in 𝑇1 ∩ 𝐵𝑗 = 𝑇1,𝑗, so there is some 𝑔𝑘 ∈ 𝐺3−𝑗 ∖ 𝐽 so that ℎ−1
𝑘−1𝑥 ∈ 𝑔𝑘𝐵3−𝑗.

Then if ℎ𝑘 is the (𝑖, 3− 𝑗)-form

𝑔1 · · · 𝑔𝑘,

we have 𝑥 ∈ ℎ𝑘(𝐵3−𝑗) and |ℎ𝑘| = |ℎ𝑘−1|+ 1, as required.

The next step is to use the “coding” of limit points given by Proposi-

tion 3.2.6 to prove that there is a conical limit sequence for every point in

Λ(𝐺) ∖𝐺(Λ(𝐺1) ∪ Λ(𝐺2)).

Lemma 3.2.9. If 𝐺1 and 𝐺2 are geometrically finite, every point in Λ(𝐺) ∖

𝐺(Λ(𝐺1) ∪ Λ(𝐺2)) is a conical limit point for 𝐺.

Proof. Let 𝑥 ∈ Λ(𝐺) ∖ 𝐺(Λ(𝐺1) ∪ Λ(𝐺2)). We know 𝑥 ∈ 𝐵1 ∪ 𝐵2 from

Lemma 3.2.7, so to simplify notation assume 𝑥 ∈ 𝐵2. We let (𝑔𝑘) be the

sequence in (𝐺1 ∪𝐺2) ∖ 𝐽 from Proposition 3.2.6, so that, for every 𝑘, we have

|𝑔1 · · · 𝑔𝑘| = 𝑘 and if 𝑔𝑘 ∈ 𝐺𝑗, then 𝑥 ∈ 𝑔1 · · · 𝑔𝑘𝐵𝑗.

For each 𝑘, we let ℎ𝑘 = 𝑔1 · · · 𝑔2𝑘, so that ℎ𝑘 is an (𝑖, 𝑗)-form for fixed

𝑖 ̸= 𝑗. Since ℎ𝑘𝐵𝑗 ⊂ Int(𝐵3−𝑖), and 𝑥 ∈ 𝐵2, we have 𝑖 = 1 and thus ℎ𝑘 is a

(1, 2)-form for every 𝑘. This means that (𝑔2𝑘) is a sequence in 𝐺2∖𝐽 . So, using

Lemma 3.2.4, we find a fixed compact subset 𝐾 ⊂ Int(𝐵1) and a sequence (𝑗𝑘)

in 𝐽 so that 𝑗𝑘𝑔−1
2𝑘 𝐵2 ⊂ 𝐾.
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Consider the sequence (𝑓𝑘) given by 𝑓𝑘 = ℎ𝑘𝑗
−1
𝑘 . Since |𝑓𝑘| → ∞, a

subsequence of (𝑓−1
𝑘 ) consists of pairwise distinct elements of 𝐺. Since 𝑓−1

𝑘 is

a (2, 1)-form, we know that

𝑓−1
𝑘 𝐵1 = 𝑗𝑘𝑔

−1
2𝑘 · · · 𝑔−1

1 𝐵1 ⊂ 𝐾.

On the other hand, by construction, we know that

ℎ−1
𝑘 𝑥 = 𝑔−1

2𝑘 · · · 𝑔−1
1 𝑥 ∈ 𝐵2.

Since 𝐵2 is 𝐽-invariant, we also see that 𝑓−1
𝑘 𝑥 = 𝑗𝑘ℎ

−1
𝑘 𝑥 ∈ 𝐵2 for every 𝑘.

By Proposition 2.3.4, Int(𝐵1) is an infinite set. Then, since 𝐵2 and 𝐾 are

disjoint compact subsets of 𝑀 , we can apply Lemma 2.2.12 (with 𝑌 = Int(𝐵1),

𝐾1 = 𝐾, and 𝐾2 = 𝐵2) to complete the proof.

Next we deal with parabolic points.

Lemma 3.2.10. If both 𝐺1 and 𝐺2 are geometrically finite, then every parabolic

point of 𝐺 in Λ(𝐺1) ∪ Λ(𝐺2) is a bounded parabolic point for the action of 𝐺

on Λ(𝐺).

Proof. Fix a parabolic point 𝑝 ∈ Λ(𝐺1), and let 𝑃 < 𝐺 be the parabolic

subgroup stabilizing 𝑝. We will show that there is a compact set 𝐾 ⊂ Λ(𝐺) ∖

{𝑝} so that 𝑃 (𝐾) = Λ(𝐺) ∖ {𝑝}, which implies the action is cocompact. The

main idea here is to apply Proposition 2.2.25 to the parabolic subgroup 𝑃 ,

which gives us a way to use elements of 𝑃 to position certain points in 𝑀 far

away from Λ(𝑃 ) = {𝑝}. Our strategy is to decompose the set Λ(𝐺) ∖ {𝑝} into

pieces. We will show that every point in Λ(𝐺) ∖ {𝑝} is either far away from 𝑝

to begin with, or else it is in a piece of Λ(𝐺) ∖ {𝑝} which can be translated far

away from 𝑝 using either Proposition 2.2.25 or the boundedness of 𝑝 in Λ(𝐺1).
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We consider two cases. For both cases, in order to apply Proposition 2.2.25,

we need to know that 𝐽 and 𝑃 are fully quasi-convex subgroups of 𝐺1; for 𝐽

this follows from Lemma 3.2.3, and for 𝑃 this is true because 𝑃 is exactly the

stabilizer of its limit set {𝑝} ⊂ Λ(𝐺1) in 𝐺1.

Case 1: 𝑝 ∈ Λ(𝐺1) ∖𝐺1(Λ(𝐽))

Using Lemma 3.2.8, we can see that every point in Λ(𝐺) ∖ {𝑝} lies in one

of the sets Λ(𝐺1),Λ(𝐺2), or 𝑇1. Since Λ(𝐺2) ⊂ 𝐵1, and 𝑇1 ⊂ 𝐵1 ∪ 𝐵2, this

means that every point in Λ(𝐺) lies in one of the sets

𝐿1 = Λ(𝐺1), 𝐿2 = 𝐵1, 𝐿3 = 𝑇1 ∩𝐵2.

Now, for each 𝑖, we will find a compact set 𝐾𝑖 ⊂ 𝑀 ∖ {𝑝} so that 𝑃 (𝐾𝑖)

contains (Λ(𝐺) ∖ {𝑝}) ∩ 𝐿𝑖. Then we can define 𝐾 = (𝐾1 ∪𝐾2 ∪𝐾3) ∩ Λ(𝐺),

so that 𝑃 (𝐾) = Λ(𝐺) ∖ {𝑝}.

Since 𝑝 is a bounded parabolic point for the action of 𝐺1 on Λ(𝐺1), and

Λ(𝐺1) is locally compact, we already know that there is a compact 𝐾1 ⊂

Λ(𝐺1) ∖ {𝑝} so that 𝑃 (𝐾1) = Λ(𝐺1)−{𝑝}. And, by part 3 of Definition A, we

know 𝑝 ∈ Int(𝐵2), so 𝐵1 is already a compact subset of 𝑀 ∖ {𝑝} and we can

take 𝐾2 = 𝐵1. So, we just need to construct the compact set 𝐾3.

For this, we apply Proposition 2.2.25, with 𝐺 = 𝐻 = 𝐺1, 𝐽1 = 𝑃 , 𝐽2 = 𝐽 ,

𝑈1 = 𝑀 ∖ {𝑝}, and 𝑈2 = 𝑀 ∖ 𝐵1. To verify that the hypotheses of the

proposition are satisfied, we need to check that 𝑔𝐵1 ⊂ 𝑀 ∖ {𝑝} for every

𝑔 ∈ 𝐺1∖𝐽 . But, since Λ(𝐺1) is 𝐺1-invariant we can only have 𝑝 ∈ 𝑔𝐵1 if 𝑔−1𝑝 ∈

𝐵1∩Λ(𝐺1) = Λ(𝐽), which is impossible since we assume 𝑝 ∈ Λ(𝐺1)∖𝐺1(Λ(𝐽)).

So, we know there is a compact subset 𝐾 ′ ⊂ 𝑀 ∖ {𝑝} so that for any

𝑔 ∈ 𝐺1 ∖ 𝐽 , we can find ℎ ∈ 𝑃 so that ℎ𝑔𝐵1 ⊂ 𝐾 ′. But by definition, any
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𝑦 ∈ 𝑇1 ∩𝐵2 lies in (𝐺1 ∖ 𝐽)(𝐵1), so we can take 𝐾3 = 𝐾 ′ and we are done.

𝑝

Λ(𝐺1)

𝐾3

𝐾1

𝐾2

Figure 3.2.2: The sets 𝐾1, 𝐾2, and 𝐾3 proving that 𝑝 ∈ Λ(𝐺1) is a bounded
parabolic point (Case 1).

Case 2: 𝑝 ∈ 𝐺1(Λ(𝐽))

Since 𝐺 acts by homeomorphisms on Λ(𝐺) it suffices to consider the case

𝑝 ∈ Λ(𝐽). For this case, we again use Lemma 3.2.8 to see that every point in

Λ(𝐺) lies in one of the three sets

𝐿1 = Λ(𝐺1), 𝐿2 = Λ(𝐺2), 𝐿3 = 𝑇1.

As in the previous case, for each of these sets, we will find a compact set

𝐾𝑖 ⊂𝑀 ∖ {𝑝} so that 𝑃 (𝐾𝑖) contains (Λ(𝐺) ∖ {𝑝}) ∩ 𝐿𝑖.

For 𝑖 = 1, 2, as in Case 1, we can use the fact that 𝑝 is a bounded parabolic

point for the 𝐺𝑖-action on Λ(𝐺𝑖), to find compact sets 𝐾𝑖 ⊂ Λ(𝐺𝑖) ∖ {𝑝} such

that 𝑃 (𝐾𝑖) = Λ(𝐺𝑖) ∖ {𝑝}.

To find 𝐾3, we apply Proposition 2.2.25 twice: for 𝑖 = 1, 2, we take 𝐺 =
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𝐻 = 𝐺𝑖, 𝐽1 = 𝑃 , 𝐽2 = 𝐽 , 𝑈1 =𝑀 ∖ {𝑝}, and 𝑈2 =𝑀 ∖𝐵𝑖. As in the previous

case we need to verify that 𝑔𝐵𝑖 ⊂ 𝑀 ∖ {𝑝} for every 𝑔 ∈ 𝐺𝑖 ∖ 𝐽 , but this

follows because 𝑔𝐵𝑖 ⊂ Int(𝐵3−𝑖), which is disjoint from Λ(𝐽) and hence does

not contain 𝑝.

This gives us a pair of compact set 𝐾3,1 and 𝐾3,2, such that for any 𝑔 ∈

𝐺𝑖 ∖ 𝐽 , we can find ℎ ∈ 𝑃 so that ℎ𝑔𝐵𝑖 ⊂ 𝐾3,𝑖. Then, since any 𝑦 ∈ 𝑇1 lies in

(𝐺1 ∖ 𝐽)(𝐵1) ∪ (𝐺2 ∖ 𝐽)(𝐵2) by definition, we can take 𝐾3 = 𝐾3,1 ∪𝐾3,2 and

we are done.

Finally, we can complete the proof of this direction of Theorem A part (iv).

Proposition 3.2.11. If 𝐺1 and 𝐺2 are geometrically finite, then 𝐺 is geomet-

rically finite.

Proof. Let 𝑥 ∈ Λ(𝐺). We must show 𝑥 is either a conical limit point or a

bounded parabolic point for 𝐺. First, if 𝑥 is not a translate of a limit point

of 𝐺1 nor 𝐺2, then 𝑥 is a conical limit point by Lemma 3.2.9. So, assume

𝑥 ∈ 𝐺(Λ(𝐺1) ∪ Λ(𝐺2)). Acting by elements of 𝐺 preserves the properties we

are trying to show, so in fact we may assume 𝑥 ∈ Λ(𝐺1) ∪ Λ(𝐺2). If 𝑥 is a

parabolic point of 𝐺, we are done by Lemma 3.2.10. Otherwise, 𝑥 is necessarily

a conical limit point for 𝐺1 or 𝐺2 since these are geometrically finite, and again

we are done since 𝑥 will also be a conical limit point for 𝐺.

3.2.4 Geometrical Finiteness of the Factors

The last thing to do in this section is prove the other direction of Theorem A

part (iv), and show that 𝐺1 and 𝐺2 are geometrically finite if 𝐺 is geometrically

finite. The first step is the following lemma, which makes use of the contraction

property proved earlier in this section.
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Lemma 3.2.12. Assume that 𝐺 is geometrically finite. Let 𝑥 ∈ Λ(𝐺𝑖) for

𝑖 ∈ {1, 2}, and suppose that (ℎ𝑘) is a conical limit sequence in 𝐺 for 𝑥. Then,

after extracting a subsequence, we can find some ℎ ∈ 𝐺 so that ℎ𝑘 ∈ ℎ𝐺𝑖 for

every 𝑘.

Proof. Without loss of generality take 𝑥 ∈ Λ(𝐺1). Let (ℎ𝑘) be a conical limit

sequence for 𝑥. This means that there are distinct points 𝑎, 𝑏 ∈ 𝑀 such that

ℎ𝑘𝑥→ 𝑎 and ℎ𝑘𝑧 → 𝑏 for any 𝑧 ∈𝑀 ∖ {𝑥}.

If there is some ℎ ∈ 𝐺 so that ℎ𝑘 ∈ ℎ𝐽 for infinitely many 𝑘, then we

are done. So we may assume that, after taking a subsequence, each ℎ𝑘 is an

(𝑖, 𝑗)-form for 𝑖, 𝑗 fixed, and each ℎ𝑘 represents a different left 𝐽-coset in 𝐺.

There are two cases to consider: either every ℎ𝑘 is an (𝑖, 1)-form or every ℎ𝑘

is an (𝑖, 2)-form.

First suppose that ℎ𝑘 is an (𝑖, 2)-form. By Lemma 3.2.5, after extraction

the sets (ℎ𝑘𝐵2) converge to a singleton. Since 𝑥 ∈ Λ(𝐺1) ⊂ 𝐵2, and ℎ𝑘𝑥→ 𝑎,

we must have ℎ𝑘𝐵2 → {𝑎}. Since 𝐵2 is an infinite set by Proposition 2.3.4,

there is some point 𝑧 ∈ 𝐵2 ∖ {𝑥}, which must satisfy ℎ𝑘𝑧 → 𝑎. But this is

impossible if (ℎ𝑘) is a conical limit sequence for 𝑥.

We conclude that each ℎ𝑘 must be (𝑖, 1)-form. If ℎ𝑘 ∈ 𝐺1 for infinitely many

𝑘 then we are done, so assume that this is not the case. Then after taking a

subsequence we have |ℎ𝑘| > 1 for every 𝑘. We write ℎ𝑘 as an (𝑖, 𝑗)-form of

length 𝑛 ≥ 2:

ℎ𝑘 = 𝑔𝑘,1 · · · 𝑔𝑘,𝑛.

Note that although 𝑛 can depend on 𝑘, we omit this from the notation. Since

ℎ𝑘 is an (𝑖, 1)-form, we have 𝑔𝑘,𝑛 ∈ 𝐺1, and since Λ(𝐺1) is 𝐺1-invariant, 𝑔𝑘,𝑛𝑥
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lies in Λ(𝐺1) ⊂ 𝐵2. Then

(ℎ𝑘𝑔
−1
𝑘,𝑛) = (𝑔𝑘,1 · · · 𝑔𝑘,𝑛−1)

is a sequence of (𝑖, 2)-forms. If the elements in this sequence lie in infinitely

many different left 𝐽-cosets in 𝐺, then we extract a subsequence and apply

Lemma 3.2.5 to see that (ℎ𝑘𝑔−1
𝑘,𝑛𝐵2) again converges to a singleton. This single-

ton contains the limit of (ℎ𝑘𝑔−1
𝑘,𝑛𝑔𝑘,𝑛𝑥) = (ℎ𝑘𝑥), so it is again equal to {𝑎}. But

then for any 𝑧 ∈ 𝐵1 ∖{𝑥}, we have 𝑔𝑘,𝑛𝑧 ∈ 𝐵2 and thus ℎ𝑘𝑧 = ℎ𝑘𝑔
−1
𝑘,𝑛𝑔𝑘,𝑛𝑧 → 𝑎,

again giving a contradiction. We conclude that a subsequence of (ℎ𝑘𝑔−1
𝑘,𝑛) lies

in a single coset ℎ𝐽 for ℎ ∈ 𝐺, hence ℎ𝑘 ∈ ℎ𝐽𝑔𝑘,𝑛 ⊂ ℎ𝐺1.

Proposition 3.2.13. If 𝐺 is geometrically finite, then 𝐺1 and 𝐺2 are geomet-

rically finite.

Proof. Let 𝑥 ∈ Λ(𝐺1). We will show that 𝑥 is either a conical limit point or a

bounded parabolic point for 𝐺1. Since 𝐺 is geometrically finite, we know 𝑥 is

either a conical limit point for 𝐺 or a bounded parabolic point for 𝐺.

If 𝑥 is a conical limit point for 𝐺, then it has a conical limit sequence

(ℎ𝑘) in 𝐺, i.e. a sequence such that (ℎ𝑘𝑥, ℎ𝑘𝑧) lies in a compact subset of

(𝑀 ×𝑀) ∖ ∆ for any 𝑧 ̸= 𝑥 in 𝑀 . By Lemma 3.2.12, we know that, up to

subsequence, ℎ𝑘 = ℎ𝑔𝑘 for 𝑔𝑘 ∈ 𝐺1 and ℎ fixed. Then (𝑔𝑘) is a conical limit

sequence for 𝑥 in 𝐺1 and we are done.

Otherwise, suppose 𝑥 is a bounded parabolic point for 𝐺. Let 𝑃 be the

stabilizer of 𝑥 in 𝐺. As we observed in the proof of Lemma 3.2.10, part (iii)

of Proposition 3.2.2 implies that 𝑃 is a subgroup of 𝐺1.

Since 𝑥 is a bounded parabolic point for 𝐺, again applying local compact-

ness of Λ(𝐺) ∖ {𝑥}, there is a compact 𝐾 ⊂ Λ(𝐺) ∖ {𝑥} so that 𝑃 (𝐾) =
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Λ(𝐺) ∖ {𝑥}. Let 𝐾1 = 𝐾 ∩ Λ(𝐺1). Since Λ(𝐺1) is closed, 𝐾1 is compact, and

since Λ(𝐺1) is 𝐺1-invariant (hence 𝑃 -invariant), we have

𝑃 (𝐾1) = 𝑃 (𝐾 ∩ Λ(𝐺1)) = 𝑃 (𝐾) ∩ Λ(𝐺1) = Λ(𝐺1) ∖ {𝑥}.

Thus 𝑥 is bounded parabolic for 𝐺1 and we are done.

3.3 New Combination Theorems: HNN Exten-

sions

In this section we prove Theorem B. The proof is very similar in spirit and

structure to the proof of Theorem A, but the details are different. Where pos-

sible, we have tried to imitate the structure of Section 3.2, and have indicated

the analogies between the proofs.

We start (as in Section 3.2) by setting up the general ping-pong framework.

Definition B (HNN Ping-Pong Position). Let 𝐺0 be a discrete convergence

group acting on a compact metrizable space 𝑀 , and suppose that 𝐽1, 𝐽−1 < 𝐺0

are both geometrically finite. Let 𝐺1 = ⟨𝑓⟩ be an infinite discrete convergence

group also acting on 𝑀 , where 𝑓𝐽−1𝑓
−1 = 𝐽1 in Homeo(𝑀). We will say 𝐺0 is

in HNN ping-pong position (with respect to 𝑓, 𝐽1 and 𝐽−1) if there exists closed

sets 𝐵1, 𝐵−1 ⊂𝑀 with nonempty disjoint interiors satisfying the following:

(1) (𝐵1, 𝐵−1) is precisely invariant under (𝐽1, 𝐽−1) in𝐺0 (recall Definition 2.1.22).

(2) If 𝐴 =𝑀 ∖ (𝐵1 ∪𝐵−1), then 𝑓(𝐴 ∪𝐵1) = Int(𝐵1).

(3) For 𝑖 ∈ {±1}, we have Λ(𝐺0) ∩𝐵𝑖 = Λ(𝐽𝑖).

(4) The set 𝐴0 =𝑀 ∖𝐺0(𝐵1 ∪𝐵−1) is nonempty.
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Remark 3.3.1. Note that our precise invariance assumption forces 𝐵1 ∩𝐵−1 =

∅.

We can now state and begin proving Theorem B.

Theorem B. Let 𝐺0 be a discrete convergence group acting on a compact

metrizable space 𝑀 , and suppose that 𝐽1, 𝐽−1 < 𝐺0 are both geometrically

finite. Let 𝐺1 = ⟨𝑓⟩ be an infinite cyclic discrete convergence group also acting

on 𝑀 , where 𝑓𝐽−1𝑓
−1 = 𝐽1 in Homeo(𝑀). Suppose 𝐺0 is in HNN ping-pong

position with respect to 𝑓, 𝐽1 and 𝐽−1. Let 𝐺 = ⟨𝐺0, 𝐺1⟩ < Homeo(𝑀), and

suppose 𝐺 acts as a convergence group. Then the following hold:

(i) 𝐺 = 𝐺0*𝑓 .

(ii) 𝐺 is discrete.

(iii) Elements of 𝐺 not conjugate into 𝐺0 are loxodromic.

(iv) 𝐺 is geometrically finite if and only if 𝐺0 is geometrically finite.

Remark 3.3.2. As was the case for amalgamated free products, when 𝑀 =

𝜕H3
R, this theorem is not strong enough to recover Maskit’s full result, since

we ask for stronger hypotheses on our ping-pong configuration. Specifically, we

do not allow 𝐵1 and 𝐵−1 to intersect, and consequently 𝑓 cannot be parabolic.

This condition ensures that our subgroups are fully quasi-convex, and allows

us to apply Proposition 2.2.25.

Before proving the first three parts of Theorem B, we give the following

slightly stronger version of Lemma 2.3.15, which will be useful throughout this

section.

Lemma 3.3.3. Suppose that 𝑔 is an (𝑖, 𝑗)-form of type 𝑘. If 𝑖 ̸= 0, then

𝑔𝐵𝑘 ⊊ Int(𝐵𝑖), and if 𝑖 = 0, then 𝑔𝐵𝑘 ⊊ 𝐴.
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Proof. First suppose that 𝑖 ̸= 0. For concreteness, assume 𝑔 is a (1, 𝑗)-form.

We first suppose that |𝑔| = 1, so that 𝑔 = 𝑓𝑔1 for 𝑔1 ∈ 𝐺0. If 𝑘 = 1, then

𝑔1𝐵1 is a subset of 𝑀 ∖ 𝐵−1 = Int(𝐴 ∪ 𝐵1) by precise invariance. In fact it

is a proper subset by properness of the interactive triple, so 𝑓𝑔1𝐵1 ⊊ Int(𝐵1)

by condition (2) in Definition B. If 𝑘 = −1, then since 𝑔 has type 𝑘, we

must have 𝑔1 ∈ 𝐺0 ∖ 𝐽−1 and 𝑔1𝐵−1 ⊂ 𝑀 ∖ 𝐵−1 = Int(𝐴 ∪ 𝐵1). Again, the

inclusion is proper by properness of the interactive triple, so again we have

𝑓𝑔1𝐵−1 ⊊ Int(𝐵1).

When |𝑔| > 1, we can apply Lemma 2.3.16 and induction: we write 𝑔 =

𝑔′𝑓 𝑗𝑔𝑛, where 𝑔′ is a type-𝑗 normal form with length |𝑔|−1, and 𝑓 𝑗𝑔𝑛𝐵𝑘 ⊂ 𝐵𝑗.

Via induction we know that 𝑔′𝐵𝑗 ⊊ Int(𝐵1), which means 𝑔𝐵𝑘 ⊊ Int(𝐵1).

The case 𝑖 = 0 follows from the first case and precise invariance of 𝐵𝑖 under

𝐽𝑖, since any (0, 𝑗)-form 𝑔 can be written 𝑔 = 𝑔1𝑔
′, where 𝑔′ is an (𝑖, 𝑗)-form

and 𝑔1 ∈ 𝐺0 ∖ 𝐽𝑖.

We now prove the first three parts of Theorem B.

Proof of (i) - (iii) in Theorem B. (i) Let 𝐵1 and 𝐵−1 be the sets given by

our conditions, and set 𝐴 = 𝑀 ∖ (𝐵1 ∪ 𝐵−1). Note that condition (2) of

Definition B implies 𝑓−1(𝐴 ∪ 𝐵−1) = Int(𝐵−1). The result now follows from

Proposition 2.3.12 since (𝐴, Int(𝐵1), Int(𝐵−1)) form an interactive triple which

is proper by condition (4) of Definition B.

(ii) It suffices to show no sequence (𝑔𝑘) in 𝐺 can accumulate at the identity.

If |𝑔𝑘| = 0, then 𝑔𝑘 lies in the discrete group 𝐺0, so assume |𝑔𝑘| ≥ 1 for all 𝑘.

We can consider several cases. If a normal form for 𝑔𝑘 ends in a power of 𝑓 ,

then 𝑔𝑘𝐴0 ⊂ 𝐵1 ∪ 𝐵−1. Otherwise, 𝑔𝑘 is either a (0, 1) or a (0,−1)-form. In

the former case, 𝑔𝑘𝐵1 ⊂ 𝐴, and in the latter case 𝑔𝑘𝐵−1 ⊂ 𝐴. In each of these

cases, 𝑔𝑘 takes a fixed set with nonempty interior into another fixed disjoint
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set, which means 𝑔𝑘 cannot accumulate on the identity.

(iii) Let 𝑔 = 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛 be a normal form not conjugate into 𝐺0. Con-

jugating and replacing 𝑔 with 𝑔−1 if necessary, we can assume that 𝛼1 > 0 (so

𝑔 is a (1, 𝑗)-form) and that |𝑔| is minimal in its conjugacy class. Note that

if 𝛼𝑛 < 0 and 𝑔𝑛 ∈ 𝐽1, then 𝑓−1𝑔𝑓 = 𝑓𝛼1−1𝑔1 · · · 𝑓𝛼𝑛+1𝑓−1𝑔𝑛𝑓 has a strictly

smaller length than 𝑔 since 𝑓−1𝑔𝑛𝑓 ∈ 𝐽−1, so we know that either 𝛼𝑛 > 0 or

𝑔𝑛 ∈ 𝐺0 ∖ 𝐽1. That is, 𝑔 is a (1, 𝑗)-form of type 1, so by Lemma 3.3.3, 𝑔𝐵1 is a

proper subset of Int(𝐵1). Then the same argument as in Theorem A part (iii)

implies that 𝑔 has infinite order, and a fixed point in Int(𝐵1).

On the other hand if 𝑔𝐵1 is a proper subset of 𝐵1, then 𝑔−1(𝑀 ∖ 𝑔𝐵1) is

a proper subset of 𝑀 ∖ 𝐵1, so the same argument again shows that 𝑔−1 has a

fixed point in the closure of 𝑀 ∖𝐵1. Thus 𝑔 has two distinct fixed points and

is loxodromic.

3.3.1 Limit Sets of HNN Extensions

The remainder of the section is meant to prove part (iv) of Theorem B,

so for the rest of the paper we fix the space 𝑀 and groups 𝐺0, 𝐽, ⟨𝑓⟩, 𝐺 in

Homeo(𝑀) satisfying the conditions of Definition B. As for Theorem A, we

start by establishing some properties of the limit points of 𝐺 under these

assumptions.

Proposition 3.3.4. With the above conditions and notation, each of the fol-

lowing holds.

(i) 𝐵1∩𝐵−1 = ∅, and 𝑓 is loxodromic with attracting fixed point in Int(𝐵1)

and repelling fixed point in Int(𝐵−1).

(ii) Λ(𝐽±1) ⊂ 𝜕𝐵±1.
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(iii) Λ(𝐺0) ∖𝐺0(Λ(𝐽1) ∪ Λ(𝐽−1)) ⊂ 𝐴0.

Proof. (i) The fact that 𝐵1 ∩ 𝐵−1 = ∅ follows from precise invariance of

(𝐵1, 𝐵−1) under (𝐽1, 𝐽−1) in 𝐺0. Now, since 𝑓(𝐴 ∪ 𝐵1) = Int(𝐵1), we have

𝑓(𝜕𝐵−1) = 𝜕𝐵1, and so 𝑓𝐵1 ⊂ Int(𝐵1). Arguing as in the proof of Theorem

A part (iii), we know this implies 𝑓 has a fixed point in Int(𝐵1) which is

necessarily attracting. The same argument applied to 𝑓−1 gives a fixed point

in Int(𝐵−1) which is necessarily a repelling fixed point for 𝑓 .

(ii) Since 𝐵𝑖 is closed and 𝐽1-invariant, and Int(𝐵𝑖) is infinite by Proposi-

tion 2.3.10, it follows that Λ(𝐽𝑖) ⊂ 𝐵𝑖. Further, since 𝑓 conjugates 𝐽−1 to 𝐽1,

𝑓 maps Λ(𝐽−1) bijectively onto Λ(𝐽1). Hence

Λ(𝐽1) = 𝑓Λ(𝐽−1) ⊂ 𝑓𝐵−1 = 𝐵−1 ∪ 𝐴 ∪ 𝜕𝐵1.

So we conclude Λ(𝐽1) ⊂ (𝐵−1 ∪𝐴∪ 𝜕𝐵1)∩𝐵1 = 𝜕𝐵1 as desired. Applying an

identical argument using 𝑓−1 gives Λ(𝐽−1) ⊂ 𝜕𝐵−1.

(iii) Fix 𝑥 ∈ Λ(𝐺0), and suppose that 𝑥 /∈ 𝐴0, i.e. that 𝑥 = 𝑔𝑦 for 𝑔 ∈ 𝐺0

and 𝑦 ∈ 𝐵𝑖. Then 𝑦 = 𝑔−1𝑥 ∈ Λ(𝐺0)∩𝐵𝑖, which means 𝑦 ∈ Λ(𝐽𝑖) by condition

(3) in Definition B, and therefore 𝑥 ∈ 𝐺0(Λ(𝐽𝑖)). It follows that Λ(𝐺0) ∖𝐴0 is

contained in 𝐺0(Λ(𝐽1)∪Λ(𝐽−1)), which is equivalent to the desired claim.

3.3.2 HNN Ping-Pong and Contraction

Next, we will establish a contraction lemma for HNN ping-pong sequences,

similar to Lemma 3.2.5 for amalgamated free products. As in the earlier

case, the key tool is Proposition 2.2.25, so we start by establishing that the

subgroups 𝐽1 and 𝐽−1 are fully quasi-convex in some ambient geometrically

finite group.
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First, we show:

Lemma 3.3.5. Fix 𝑖, 𝑗 ∈ {±1} and 𝑔 ∈ 𝐺. Then 𝑔𝜕𝐵𝑖 ∩ 𝜕𝐵𝑗 ̸= ∅ if and only

if either:

1. 𝑖 = 𝑗 and 𝑔 ∈ 𝐽𝑖, or

2. 𝑖 = −𝑗 and 𝑔 = 𝑓 𝑗ℎ for ℎ ∈ 𝐽𝑖.

Proof. We induct on the length of 𝑔. If |𝑔| = 0, then the claim follows from

precise invariance of (𝐵1, 𝐵−1) under (𝐽1, 𝐽−1) in 𝐺0, so suppose |𝑔| ≥ 1, and

for concreteness, assume 𝑖 = 1. We write a normal form 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛 for

𝑔. If this normal form has type 1, then Lemma 3.3.3 implies that 𝑔𝐵1 ⊂

Int(𝐵1) ∪ Int(𝐵−1) ∪ 𝐴, hence 𝑔𝜕𝐵1 ∩ 𝜕𝐵𝑗 = ∅. So we can assume that this

normal form does not have type 1, which means that 𝛼𝑛 < 0 and 𝑔𝑛 ∈ 𝐽1. In

this case, 𝑓−1𝑔𝑛𝜕𝐵1 = 𝜕𝐵−1.

The group element 𝑔′ = 𝑔𝑔−1
𝑛 𝑓 has strictly smaller length than 𝑔, so if

𝑔′𝜕𝐵−1 ∩ 𝜕𝐵𝑗 ̸= ∅ then by induction we know that either 𝑗 = −1 and 𝑔′ ∈

𝐽−1, or 𝑗 = 1 and 𝑔′ = 𝑓ℎ for ℎ ∈ 𝐽−1. In the former case we can rewrite

𝑔 = 𝑔′𝑓−1𝑔𝑛 = 𝑓−1𝑔′′𝑔𝑛 for 𝑔′′ ∈ 𝐽1, and in the latter case we can rewrite

𝑔 = 𝑔′𝑓−1𝑔𝑛 = 𝑓ℎ𝑓−1𝑔𝑛 = 𝑔′′𝑔𝑛 for 𝑔′′ ∈ 𝐽1. Since 𝑔𝑛 ∈ 𝐽1 the conclusion

follows.

The lemma above implies in particular that 𝜕𝐵𝑖 is precisely invariant under

𝐽𝑖 in both 𝐺 and 𝐺0. Then, after applying part (ii) of Proposition 3.3.4, we

see:

Corollary 3.3.6. Let 𝐻 be one of 𝐺 or 𝐺0. If 𝐻 is geometrically finite, then

𝐽1 and 𝐽−1 are fully quasi-convex subgroups of 𝐻.

Now, we can apply Proposition 2.2.25 to the present setting:
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Lemma 3.3.7. Suppose that either 𝐺 or 𝐺0 is geometrically finite. For 𝑖 ∈

{±1}, we can find a compact 𝐾 ⊂ 𝐴 ∪𝐵−𝑖 so that both of the following hold:

(i) For any 𝑔 ∈ 𝐺0 ∖ 𝐽𝑖, we have 𝑗 ∈ 𝐽𝑖 so 𝑗𝑔𝐵𝑖 ⊂ 𝐾.

(ii) For any 𝑔 ∈ 𝐺0, we have 𝑗 ∈ 𝐽𝑖 so that 𝑗𝑔𝐵−𝑖 ⊂ 𝐾.

Proof. Take 𝑖 = 1 to simplify notation. We can find a compact for each claim

separately and take their union. First, we focus on (i). We can assume𝐵1 ⊂ 𝐾,

so the statement follows immediately for 𝑔 ∈ 𝐽1 by taking 𝑗 to be the identity.

Otherwise, we apply Proposition 2.2.25 with the ambient geometrically finite

group as 𝐺 or 𝐺0 (depending on which one is geometrically finite) and 𝐻 = 𝐺0

in both cases, and our two fully quasi-convex subgroups 𝐽1 and 𝐽−1 with

corresponding invariant open sets 𝑈1 = 𝑀 ∖ 𝐵1 and 𝑈−1 = 𝑀 ∖ 𝐵−1. Then if

𝑔 ∈ 𝐺0 ∖ 𝐽1, we have 𝑔(𝑀 ∖ 𝑈1) = 𝑔(𝐵1) ⊂ 𝐴 ⊂ 𝑈−1, and so the proposition

gives our desired compact subset 𝐾 ⊂ 𝑈−1 = 𝐴 ∪𝐵1.

For (ii), the proof is identical with 𝐽1 playing the role of both fully quasi-

convex subgroups in the statement of Proposition 2.2.25, and both open sets

being 𝑀 ∖𝐵1 = 𝐴 ∪𝐵−1.

We can now establish the HNN contraction property:

Lemma 3.3.8 (Contraction for HNN extensions). Suppose that either 𝐺 or

𝐺0 is geometrically finite, and let (ℎ𝑘) be a sequence of type-𝑖 forms such that

the left cosets ℎ𝑘𝐽𝑖 are all distinct. Then up to subsequence, (ℎ𝑘𝐵𝑖) converges

to a singleton {𝑥}.

It follows from Lemma 3.3.5 that any group element 𝑔 ∈ 𝐺 satisfying

𝑔𝐵𝑖 = 𝐵𝑖 must lie in 𝐽𝑖. So, asking for the left cosets (ℎ𝑘𝐽𝑖) to be distinct is

the same as asking for the translates (ℎ𝑘𝐵𝑖) to be distinct.
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Proof. To simplify notation, assume 𝑖 = 1. The proof is very similar to the

proof of Lemma 3.2.5. The first step is to show the following:

Claim. After extracting a subsequence, there is a fixed ℓ = ±1, a compact set

𝐾 ⊂ 𝐴 ∪𝐵−1, and a sequence (𝑗𝑘) in 𝐽1 so that 𝑗𝑘ℎ−1
𝑘 𝐵ℓ ⊂ 𝐾 for all 𝑘.

To prove the claim, we first suppose that |ℎ𝑘| = 0. Then, since ℎ𝑘 has type

1, we know ℎ𝑘 ∈ 𝐺0 ∖ 𝐽1. Then we take ℓ = 1, and apply Lemma 3.3.7 to find

the required set 𝐾 and elements 𝑗𝑘. Otherwise, suppose that |ℎ𝑘| ≥ 1, and

write out a normal form for ℎ𝑘:

ℎ𝑘 = 𝑓𝛼𝑘,1𝑔𝑘,1 · · · 𝑓𝛼𝑘,𝑛𝑔𝑘,𝑛.

We consider the inverse word

𝑔−1
𝑘,𝑛𝑓

−𝛼𝑘,𝑛 · · · 𝑔−1
𝑘,1𝑓

−𝛼𝑘,1 .

By Lemma 2.3.13, the sub-word 𝑔𝑘,𝑛ℎ
−1
𝑘 = 𝑓−𝛼𝑘,𝑛 · · · 𝑔−1

𝑘,1𝑓
−𝛼𝑘,1 is a normal

form, which must have length at least 1. Up to subsequence, for every 𝑘 this

normal form is type ℓ for some fixed ℓ = ±1, meaning that 𝑔𝑘,𝑛ℎ−1
𝑘 𝐵ℓ ⊂ 𝐵1

if −𝛼𝑘,𝑛 > 0 and 𝑔𝑘,𝑛ℎ
−1
𝑘 𝐵ℓ ⊂ 𝐵−1 if −𝛼𝑘,𝑛 < 0. After extracting another

subsequence we can assume one of these conditions holds for every 𝑘.

In the case where −𝛼𝑘,𝑛 < 0 for every 𝑘, we can use Lemma 3.3.7 to find

elements 𝑗𝑘 ∈ 𝐽1 and a compact 𝐾 ⊂ 𝐴∪𝐵−1 so that 𝑗𝑘𝑔−1
𝑘,𝑛𝐵−1 ⊂ 𝐾 for every

𝑘. Then, we know that for every 𝑘, we have

𝑗𝑘ℎ
−1
𝑘 𝐵ℓ = 𝑗𝑘𝑔

−1
𝑘,𝑛𝑔𝑘,𝑛ℎ

−1
𝑘 𝐵ℓ ⊂ 𝑗𝑘𝑔

−1
𝑘,𝑛𝐵−1 ⊂ 𝐾.

On the other hand, if −𝛼𝑘,𝑛 > 0, then since ℎ𝑘 has type 1 we know that
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𝑔𝑘,𝑛 ∈ 𝐺0∖𝐽1. Then again by Lemma 3.3.7 we can find a compact 𝐾 ⊂ 𝐴∪𝐵−1

and 𝑗𝑘 ∈ 𝐽1 so that 𝑗𝑘𝑔−1
𝑘,𝑛𝐵1 ⊂ 𝐾. Thus, we have

𝑗𝑘ℎ
−1
𝑘 𝐵ℓ = 𝑗𝑘𝑔

−1
𝑘,𝑛𝑔𝑘,𝑛ℎ

−1
𝑘 𝐵ℓ ⊂ 𝑗𝑘𝑔

−1
𝑘,𝑛𝐵1 ⊂ 𝐾.

We have shown the claim above, so now consider the sequence (ℎ𝑘𝑗
−1
𝑘 ). Since

all the translates ℎ𝑘𝐵1 are distinct, the group elements ℎ𝑘 lie in infinitely

many left 𝐽1-cosets, hence so do the group elements ℎ𝑘𝑗−1
𝑘 . In particular, the

sequence ℎ𝑘𝑗−1
𝑘 is divergent in 𝐺, so we can extract a convergence subsequence

and assume that there are points 𝑧+, 𝑧− ∈𝑀 so that (ℎ𝑘𝑗−1
𝑘 𝑦) converges to 𝑧+

whenever 𝑦 ̸= 𝑧−. Equivalently, (𝑗𝑘ℎ−1
𝑘 𝑦) converges to 𝑧− whenever 𝑦 ̸= 𝑧+.

Proposition 2.3.10 tells us that the set 𝐵1 is infinite, so in particular there

must be some 𝑦 ∈ 𝐵1 ∖ {𝑧+}. Then, since 𝑗𝑘ℎ−1
𝑘 𝐵1 ⊂ 𝐾 we conclude that

𝑧− ∈ 𝐾. Finally, since 𝐵1 is a compact set in the complement of 𝐾, we see

that (ℎ𝑘𝑗
−1
𝑘 𝐵1) = (ℎ𝑘𝐵1) must converge to {𝑧+}.

3.3.3 Geometrical Finiteness of the Extension

We now prove that (𝐺0 geometrically finite) =⇒ (𝐺 geometrically finite).

This gives one of the directions of Theorem B part (iv).

As in the proof of the analogous direction of Theorem A, the key for this

direction of theorem is to show that limit points in Λ(𝐺)∖Λ(𝐺0) can be “coded”

by sequences of (𝑖, 𝑗)-forms in 𝐺. The precise statement is:

Proposition 3.3.9 (HNN coding for 𝐺-limit points). Suppose that either 𝐺 or

𝐺0 is geometrically finite, and let 𝑥 ∈ 𝐵1∪𝐵−1 be a point in Λ(𝐺)∖𝐺(Λ(𝐺0)).

Then for fixed ℓ, there is a sequence of type-ℓ forms (ℎ𝑘) in 𝐺 so that |ℎ𝑘| → ∞,

each ℎ𝑘 is a prefix of ℎ𝑘+1, and 𝑥 ∈ ℎ𝑘𝐵ℓ for every 𝑘.
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We can think of this proposition as a less explicit version of Proposi-

tion 3.2.6 in the amalgamated free product case. The construction in this

case is slightly more involved, and we need a little more information about the

location of certain points in Λ(𝐺). So, we start by showing the following:

Lemma 3.3.10. Suppose that either 𝐺 or 𝐺0 is geometrically finite. Then the

only limit points of 𝐺 in 𝜕𝐵±1 are limit points of 𝐽±1. That is, Λ(𝐺)∩𝜕𝐵±1 =

Λ(𝐽±1).

Proof. We will show that the intersection Λ(𝐺) ∩ (𝜕𝐵1 ∪ 𝜕𝐵−1) is a subset

of Λ(𝐺0); then we will be done by condition (3) in Definition B. So, let 𝑥 ∈

Λ(𝐺) ∩ 𝜕𝐵1. We can find a sequence (𝑔𝑘) in 𝐺 so that 𝑔𝑘𝑧 → 𝑥 for all but

perhaps a single 𝑧 ∈𝑀 . Now, if 𝑔𝑘 ∈ 𝐺0 for infinitely many 𝑘, the conclusion

immediately follows. So we may assume |𝑔𝑘| ≥ 1 for every 𝑘.

Up to subsequence, the 𝑔𝑘 are all (𝑖, 𝑗)-forms for fixed 𝑖 ∈ {0,±1} and

𝑗 ∈ {±1}. If 𝑖 = −1, then 𝑔𝑘𝐵𝑗 ⊂ Int(𝐵−1). But for some 𝑧 ∈ 𝐵𝑗, the

sequence (𝑔𝑘𝑧) converges to 𝑥 ∈ 𝜕𝐵1. So, we know that either 𝑖 = 0 or 𝑖 = 1.

If 𝑖 = 0, then by Lemma 2.3.11, for some ℓ = ±1 and some ℎ𝑘 ∈ 𝐺0 ∖ 𝐽𝑖,

we have 𝑔𝑘𝐵𝑗 ⊂ ℎ𝑘𝐵ℓ ⊂ 𝐴. There must be infinitely many distinct translates

ℎ𝑘𝐵ℓ, since otherwise each 𝑔𝑘𝑧 would lie in a fixed compact subset of 𝐴, and

(𝑔𝑘𝑧) could not converge to 𝑥 ∈ 𝐵1. So, the left cosets ℎ𝑘𝐽ℓ are all distinct.

Then by Lemma 3.3.8, the sequence of sets (ℎ𝑘𝐵ℓ) converges to a singleton,

which must be 𝑥. But since ℎ𝑘 ∈ 𝐺0 this again implies that 𝑥 ∈ Λ(𝐺0).

Finally, we consider the case 𝑖 = 1. We write out a normal form for 𝑔𝑘:

𝑔𝑘 = 𝑓𝛼𝑘,1𝑔𝑘,1 · · · 𝑓𝛼𝑘,𝑛𝑔𝑘,𝑛.

121



First observe that if 𝛼𝑘,1 > 1 for infinitely many 𝑘, then the word

𝑔′𝑘 = 𝑓−1𝑔𝑘 = 𝑓𝛼𝑘,1−1𝑔𝑘,1 · · · 𝑓𝛼𝑘,𝑛𝑔𝑘,𝑛

is still a (1, 𝑗)-form, which means that 𝑓−1𝑔𝑘𝐵𝑗 ⊂ 𝐵1 for infinitely many

𝑘. But then for infinitely many 𝑘, the point 𝑔𝑘𝑧 lies in the compact subset

𝑓𝐵1 ⊂ Int(𝐵1), which is impossible if 𝑔𝑘𝑧 → 𝑥 ∈ 𝜕𝐵1.

We conclude that after extraction, we have 𝛼𝑘,1 = 1 for every 𝑘. After

further extraction, we can assume that one of the the three conditions below

holds for every 𝑘:

(a) The length of 𝑔′𝑘 is zero;

(b) 𝑔′𝑘 is a (0, 𝑗)-form;

(c) 𝑔′𝑘 is not a normal form, hence 𝑔𝑘,1 ∈ 𝐽1 and 𝛼𝑘,2 > 0.

If either (a) or (b) holds, we can use the first two cases of this proof to see

that that 𝑓−1𝑥 lies in Λ(𝐺0) ∩ 𝜕𝐵−1 = Λ(𝐽−1), and thus 𝑥 ∈ Λ(𝐽1). And, (c)

cannot occur: if 𝛼𝑘,2 > 0, then the word 𝑓𝛼𝑘,2𝑔𝑘,2 · · · 𝑓𝛼𝑘,𝑛𝑔𝑘,𝑛 is a (1, 𝑗)-form,

which means 𝑔′𝑘𝑧 ∈ 𝑔𝑘,1𝐵1, and if 𝑔𝑘,1 ∈ 𝐽1 then 𝑔𝑘𝑧 = 𝑓𝑔′𝑘𝑧 ∈ 𝑓𝐵1 and again

(𝑔𝑘𝑧) cannot converge to 𝑥 ∈ 𝜕𝐵1.

We now set about proving Proposition 3.3.9. As in the analogous situation

in the amalgamated free product case, we follow Maskit’s strategy by defining

certain “ping-pong” sets in 𝑀 . Let 𝑇0,𝑖 = 𝐺0(𝐵𝑖), and 𝑇0 = 𝑇0,1 ∪ 𝑇0,−1 =

𝐺0(𝐵1 ∪𝐵−1), the union of all 𝐺0 translates of 𝐵1 and 𝐵−1.

More generally, let

𝑇𝑚,−1 =
⋃︁

𝑔𝐵−1,
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where the union is taken over length-𝑚 normal forms 𝑔 of type −1. Similarly,

let

𝑇𝑚,1 =
⋃︁

𝑔𝐵1,

where the union is taken over length-𝑚 normal forms of type 1. Let

𝑇𝑚 = 𝑇𝑚,1 ∪ 𝑇𝑚,−1.

Lemma 2.3.16 implies that the sets 𝑇𝑚 are decreasing: for any length-𝑚

normal form 𝑔 with type 𝑖, we can use the lemma to find a length-(𝑚 − 1)

normal form 𝑔′ with type 𝑗, and 𝑔0 ∈ 𝐺0 so that 𝑔𝐵𝑖 = 𝑔′𝑓 𝑗𝑔0𝐵𝑖 ⊂ 𝑔′𝐵𝑗. So,

we can now consider the set

𝑇 =
∞⋂︁

𝑚=0

𝑇𝑚.

𝐵1 𝐵−1

𝐴

Figure 3.3.1: Part of the sets 𝑇0 and 𝑇1.

The proof of Proposition 3.3.9 mainly involves showing that Λ(𝐺)∖𝐺(Λ(𝐺0)) ⊂
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𝑇 . Then, we construct the desired sequence using the definition for 𝑇 . The

first step is:

Lemma 3.3.11. Suppose either 𝐺 or 𝐺0 is geometrically finite. Then Λ(𝐺) ∖

Λ(𝐺0) ⊂ 𝑇0.

Proof. This argument is similar to the proof of Lemma 3.3.10. Suppose 𝑦 ∈

Λ(𝐺) does not lie in 𝑇0 (that is, 𝑦 ∈ 𝐴0). We must show 𝑦 ∈ Λ(𝐺0). Since

𝑦 ∈ Λ(𝐺), we can find a sequence (𝑔𝑘) in 𝐺 so that 𝑔𝑘𝑤 → 𝑦 for all but a

single 𝑤 ∈ 𝑀 . If 𝑔𝑘 ∈ 𝐺0 for infinitely many 𝑘 we will have 𝑦 ∈ Λ(𝐺0) as

desired, so now suppose that |𝑔𝑘| ≥ 1 for infinitely many 𝑘. After extracting a

subsequence we can assume that each 𝑔𝑘 is an (𝑖, 𝑗)-form for 𝑖, 𝑗 fixed. Since

𝐵𝑗 is an infinite set, we can fix some 𝑤 ∈ 𝐵𝑗 so that (𝑔𝑘𝑤) converges to 𝑦.

By definition, we know that 𝑔𝑘𝑤 ∈ 𝑇𝑛, so in particular 𝑔𝑘𝑤 ∈ 𝑇0 for every

𝑘. Then, we can extract a further subsequence so that 𝑔𝑘𝑤 ∈ 𝐺0(𝐵𝑖) for fixed

𝑖 and write 𝑔𝑘𝑤 = 𝑔′𝑘𝑧𝑘 for 𝑔′𝑘 ∈ 𝐺0 and 𝑧𝑘 ∈ 𝐵𝑖.

As 𝑦 /∈ 𝑇0, there must be infinitely many distinct translates 𝑔′𝑘𝐵𝑖, because

otherwise every 𝑔′𝑘𝑧𝑘 would lie in a fixed compact subset of 𝑇0. Thus there

are infinitely many distinct cosets 𝑔′𝑘𝐽𝑖, and Lemma 3.3.8 tells us that after

extraction, (𝑔′𝑘𝐵𝑖) must converge to a singleton. Since 𝑔′𝑘𝑧𝑘 → 𝑦, it follows

that this singleton is 𝑦. Hence for any choice of 𝑧 ∈ 𝐵𝑖 we have 𝑔′𝑘𝑧 → 𝑦, so

𝑦 ∈ Λ(𝐺0).

Proof of Proposition 3.3.9. We first prove that Λ(𝐺) ∖𝐺(Λ(𝐺0)) ⊂ 𝑇 . So, fix

𝑧 ∈ Λ(𝐺), and suppose 𝑧 /∈ 𝑇 . We will show 𝑧 ∈ 𝐺(Λ(𝐺0)).

If 𝑧 ∈ Λ(𝐺0) we are done, hence by Lemma 3.3.11 we can assume 𝑧 ∈ 𝑇0.

Then we can find 𝑚 > 0 so that 𝑧 ∈ 𝑇𝑚−1 ∖𝑇𝑚 since these sets are decreasing.

Without loss of generality, we have 𝑧 ∈ 𝑔𝐵−1 for 𝑔 = 𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑔𝑛 a normal

form with length 𝑚 − 1 and type −1. If 𝑔−1𝑧 ∈ 𝜕𝐵−1, then since Λ(𝐺) is
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𝐺-invariant we have 𝑔−1𝑧 ∈ Λ(𝐺) ∩ 𝜕𝐵1 = Λ(𝐽−1) by Lemma 3.3.10 and we

are done. So suppose 𝑔−1𝑧 ∈ Int(𝐵−1).

Since 𝑧 /∈ 𝑇𝑚, we have 𝑓𝑔−1𝑧 /∈ 𝐵−1 since 𝑔𝑓−1 has length 𝑚. Also,

𝑓𝑔−1𝑧 /∈ 𝐵1 since 𝑓 does not map any points of Int(𝐵−1) into 𝐵1. It follows

that 𝑓𝑔−1𝑧 /∈ 𝐵1 ∪ 𝐵2, but also, 𝑓𝑔−1𝑧 cannot be in a translate of 𝐵1 nor

𝐵2. Indeed, if 𝑓𝑔−1𝑧 = ℎ𝑦 for 𝑦 ∈ 𝐵𝑖 and ℎ ∈ 𝐺0, then ℎ ∈ 𝐺0 ∖ 𝐽𝑖 since

ℎ𝑦 ̸∈ 𝐵𝑖 and 𝐵𝑖 is 𝐽𝑖-invariant. Hence 𝑧 = 𝑔𝑓−1ℎ𝑦 ∈ 𝑇𝑚, a contradiction.

Hence 𝑓𝑔−1𝑧 /∈ 𝑇0, and so by Lemma 3.3.11 we have 𝑓𝑔−1𝑧 ∈ Λ(𝐺0) and

𝑧 ∈ 𝐺(Λ(𝐺0)) as desired.

We have now shown that Λ(𝐺) ∖ 𝐺(Λ(𝐺0)) ⊂ 𝑇 , so consider 𝑧 ∈ 𝑇 . We

will construct our sequence (ℎ𝑘) of normal forms inductively. We know that

𝑧 ∈ 𝑇1, so we can find some normal form ℎ1 with type 𝑖1 so that 𝑧 ∈ ℎ1𝐵𝑖1 .

Now, assume that we have constructed a normal form ℎ𝑘 of type 𝑖 so that

𝑧 ∈ ℎ𝑘𝐵𝑖. Since 𝑧 ∈ 𝑇𝑘+1, we can find a normal form ℎ′𝑘+1 with length 𝑘 + 1

and type ℓ so that 𝑥 ∈ ℎ′𝑘+1𝐵ℓ. Then, by Lemma 2.3.16, there is a type-𝑖′ form

ℎ′𝑘 with length 𝑘 and 𝑔0 ∈ 𝐺0 so that ℎ′𝑘+1 = ℎ′𝑘𝑓
𝑖′𝑔0 and ℎ′𝑘+1𝐵ℓ ⊂ ℎ′𝑘𝐵𝑖′ . Then

ℎ′𝑘𝐵𝑖′ has nonempty intersection with ℎ𝑘𝐵𝑖, so by Lemma 2.3.17 we have 𝑖 = 𝑖′

and ℎ𝑘𝑗 = ℎ′𝑘 for 𝑗 ∈ 𝐽𝑖. We can write 𝑗𝑓 𝑖 = 𝑓 𝑖𝑗′ for 𝑗′ ∈ 𝐽−𝑖. Then since

ℎ𝑘 has type 𝑖, ℎ𝑘 is a prefix of the type-ℓ form ℎ𝑘+1 = ℎ𝑘𝑓
𝑖𝑗′𝑔0. This form is

equivalent in 𝐺 to the type-ℓ form ℎ′𝑘+1, hence 𝑧 ∈ ℎ𝑘+1𝐵ℓ.

Finally, by taking a subsequence, we can assume that each ℎ𝑘 is a form of

type ℓ for ℓ fixed, and we are done.

As for amalgamated free products, we can use the coding given by Propo-

sition 3.3.9 to construct conical limit sequences for points in Λ(𝐺)∖𝐺(Λ(𝐺0)):

Lemma 3.3.12. If 𝐺0 is geometrically finite, then every point of Λ(𝐺) ∖
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𝐺(Λ(𝐺0)) is a conical limit point for 𝐺.

Proof. Let 𝑥 ∈ Λ(𝐺) ∖ 𝐺(Λ(𝐺0)). Proposition 3.3.9 says that for 𝑖 fixed, we

can find a sequence (ℎ𝑘) of ping-pong forms of type 𝑖, with |ℎ𝑘| → ∞, so that

each ℎ𝑘 is a prefix of ℎ𝑘+1, and 𝑥 ∈ ℎ𝑘𝐵𝑖 for all 𝑘. Possibly after relabeling we

may assume 𝑖 = 1.

We write ℎ𝑘 in a normal form:

𝑓𝛼1𝑔1 · · · 𝑓𝛼𝑛𝑘𝑔𝑛𝑘
.

If 𝛼1 = 0, then 𝛼2 ̸= 0, in which case ℎ′𝑘 = 𝑓𝛼2𝑔2 · · · 𝑓𝛼𝑛𝑘𝑔𝑛𝑘
is a ping-pong

form of type 1 such that ℎ′𝑘𝐵1 contains 𝑥′ = 𝑔−1
1 𝑥. Since 𝑥′ is a conical limit

point if and only if 𝑥 is, if necessary we can replace 𝑥 with 𝑥′ and ℎ𝑘 with ℎ′𝑘,

and assume that 𝛼1 ̸= 0. That is, ℎ𝑘 is an (ℓ, 𝑗)-form for ℓ ̸= 0, so ℎ𝑘𝐵1 ⊂ 𝐵ℓ.

Further, since 𝑥 ∈ ℎ1𝐵1, by replacing 𝑥 with ℎ−1
1 𝑥 and ℎ𝑘 with ℎ−1

1 ℎ𝑘, we

can assume that also 𝑥 ∈ 𝐵1, hence ℎ𝑘𝐵1 ∩𝐵1 ̸= ∅. Since ℎ𝑘𝐵1 ⊂ 𝐵ℓ we have

ℓ = 1, meaning 𝛼1 > 0.

Now, consider the sequence of sets

(ℎ−1
𝑘 𝐵−1) = (𝑔−1

𝑛𝑘
𝑓−𝛼𝑛𝑘 · · · 𝑔−1

1 𝑓−𝛼1𝐵−1).

By Lemma 2.3.13, the word 𝑓−𝛼𝑛𝑘 · · · 𝑔−1
1 𝑓−𝛼1 is a normal form; since 𝛼1 > 0

it is a form of type −1, implying that 𝑓−𝛼𝑛𝑘 · · · 𝑔−1
1 𝑓−𝛼1𝐵−1 is a subset of 𝐵1

if 𝛼𝑛𝑘
< 0 and a subset of 𝐵−1 if 𝛼𝑛𝑘

> 0. And, since ℎ𝑘 is a form of type 1,

we know that either 𝑔𝑛𝑘
∈ 𝐺0 ∖ 𝐽1 or 𝛼𝑛𝑘

> 0.

To prove that 𝑥 is conical, we want to apply Lemma 2.2.12, which means

we need to produce distinct elements 𝑔𝑘, a set 𝑌 with at least two points,

and disjoint compact sets 𝐾1 and 𝐾2 so that 𝑔𝑘𝑥 ∈ 𝐾2 and 𝑔𝑘𝑌 ⊂ 𝐾1. Let
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𝐾 ⊂ 𝐴 ∪ 𝐵−1 = 𝑀 ∖ 𝐵1 be the compact from Lemma 3.3.7, and take 𝑌 =

𝐵−1, 𝐾1 = 𝐾 and 𝐾2 = 𝐵1. We know 𝑌 contains at least two points from

Proposition 2.3.10, so we just need to produce the sequence (𝑔𝑘) by modifying

ℎ−1
𝑘 .

For each fixed 𝑘, we already have ℎ−1
𝑘 𝑥 ∈ 𝐵1 as desired. If 𝛼𝑛𝑘

> 0, then

ℎ−1
𝑘 𝐵−1 ⊂ 𝑔−1

𝑛𝑘
𝐵−1. From the definition of 𝐾, we can find 𝑗𝑘 ∈ 𝐽1 so that

𝑗𝑘𝑔
−1
𝑛𝑘
𝐵−1 ⊂ 𝐾, hence 𝑗𝑘ℎ−1

𝑘 𝐵−1 ⊂ 𝐾.

On the other hand, if 𝛼𝑛𝑘
< 0, then we necessarily have 𝑔𝑛𝑘

∈ 𝐺0 ∖ 𝐽1, and

ℎ−1
𝑘 𝐵−1 ⊂ 𝑔−1

𝑛𝑘
𝐵1 ⊂ 𝐴. Again using the definition of 𝐾, we can find 𝑗𝑘 ∈ 𝐽1 so

that 𝑗𝑘𝑔−1
𝑛𝑘
𝐵1 ⊂ 𝐾, hence 𝑗𝑘ℎ−1

𝑘 𝐵−1 ⊂ 𝐾.

In either of these cases, we have 𝑗𝑘ℎ−1
𝑘 𝐵−1 ⊂ 𝐾 and 𝑗𝑘ℎ

−1
𝑘 𝑥 ∈ 𝑗𝑘𝐵1 = 𝐵1,

which means we can take 𝑔𝑘 = 𝑗𝑘ℎ
−1
𝑘 to complete the proof.

We next consider parabolic points.

Lemma 3.3.13. Suppose that 𝐺0 is geometrically finite. If 𝑝 ∈ Λ(𝐺0) is a

parabolic point for the action of 𝐺0 on Λ(𝐺0), then 𝑝 is a bounded parabolic

point for the action of 𝐺 on Λ(𝐺).

Proof. Let 𝑝 ∈ Λ(𝐺0) be a parabolic point for𝐺, and let 𝑃 be the stabilizer of 𝑝

in 𝐺. Since 𝑝 is a bounded parabolic point, and 𝑃 contains the stabilizer of 𝑝 in

𝐺0, we know that there is a compact ̂︀𝐾 ⊂ Λ(𝐺0)∖{𝑝} so that 𝑃 ( ̂︀𝐾) = Λ(𝐺0)∖

{𝑝}. We want to find a compact 𝐾 ⊂ Λ(𝐺) ∖ {𝑝} so that 𝑃 (𝐾) = Λ(𝐺) ∖ {𝑝}.

As in the proof of Lemma 3.2.10, our strategy is to show that Λ(𝐺) ∖ {𝑝}

can be decomposed into several pieces, such that each piece is either far away

from 𝑝 to begin with, or can be pushed uniformly far away from 𝑝 using either

the boundedness of 𝑝 in Λ(𝐺0) or an application of Proposition 2.2.25. We

consider two cases:
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Case 1: 𝑝 ∈ Λ(𝐺0) ∖𝐺0(Λ(𝐽1) ∪ Λ(𝐽−1))

In this case, Lemma 3.3.11 tells us that each point in Λ(𝐺) ∖ {𝑝} lies in

the union Λ(𝐺0) ∪ 𝑇0. We can further decompose 𝑇0 by intersecting it with

(𝐵1 ∪ 𝐵−1) and its complement 𝐴, meaning we decompose Λ(𝐺) ∖ {𝑝} into

three pieces lying in

𝐿1 = Λ(𝐺0), 𝐿2 = (𝐵1 ∪𝐵−1), 𝐿3 = 𝑇0 ∩ 𝐴.

For each 𝐿𝑖, we need to find a compact set𝐾𝑖 ⊂𝑀∖{𝑝} so that if 𝑦 ∈ Λ(𝐺)∩𝐿𝑖,

then we can find ℎ ∈ 𝑃 so that ℎ𝑦 ∈ 𝐾𝑖. Then we can take 𝐾 = 𝐾1∪𝐾2∪𝐾3.

We know we can take 𝐾1 = ̂︀𝐾 from the boundedness of 𝑝 in Λ(𝐺0), and

from part (3) of Definition B we know that 𝐵1 ∪ 𝐵−1 is already a compact

subset of 𝑀 ∖ {𝑝}. So, we just need to find the compact set 𝐾3.

We apply Proposition 2.2.25, taking 𝐻 = 𝐺0, 𝐽1 = 𝑃 , 𝑈1 = 𝑀 ∖ {𝑝},

𝐽2 = 𝐽±1, and 𝑈2 = 𝑀 ∖ 𝐵±1, to see that there are sets 𝐾+, 𝐾− ⊂ 𝑀 ∖ {𝑝}

such that for any 𝑔 ∈ 𝐺0 ∖ 𝐽±1, we can find ℎ ∈ 𝑃 so that ℎ𝑔𝐵±1 ⊂ 𝐾±.

To justify the application of the proposition, we need to check that for every

𝑔 ∈ 𝐺0 ∖ 𝐽±1, we have 𝑔𝐵±1 ⊂ 𝑀 ∖ {𝑝}, but this follows from part (iii) of

Proposition 3.3.4. Then, we take 𝐾3 = 𝐾+ ∪𝐾−.

Now, if 𝑦 ∈ 𝑇0 ∩ 𝐴, then by definition we know that 𝑦 ∈ (𝐺0 ∖ 𝐽1)(𝐵1) ∪

(𝐺0∖𝐽−1)(𝐵−1). But then by definition of 𝐾± we know that we can find ℎ ∈ 𝑃

so that ℎ𝑦 ∈ 𝐾+ ∪𝐾− = 𝐾3 and we are done.

Case 2: 𝑝 ∈ 𝐺0(Λ(𝐽1) ∪ Λ(𝐽−1))

Since 𝐺 acts by homeomorphisms it suffices to consider 𝑝 ∈ Λ(𝐽1)∪Λ(𝐽−1).

Without loss of generality take 𝑝 ∈ Λ(𝐽1). As in the previous case, we decom-
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pose Λ(𝐺) ∖ {𝑝} into several different pieces, by writing 𝑀 as the union

𝑀 = 𝑓𝐵1 ∪ 𝑓𝐴 ∪ 𝜕𝐵1 ∪ 𝐴 ∪𝐵−1.

Since 𝑝 ∈ 𝜕𝐵1, the sets 𝑓𝐵1 ⊂ Int(𝐵1) and 𝐵−1 are compact sets in the

complement of 𝑝.

So, we only need to consider the three pieces of Λ(𝐺) ∖ {𝑝} contained in

the three sets

𝜕𝐵1, 𝐴, 𝑓𝐴.

We can further decompose these pieces by intersecting each of them with

the sets Λ(𝐺0), 𝑓Λ(𝐺0) and their complements in 𝑀 . By Lemma 3.3.10, we

know that 𝜕𝐵1 ∩ Λ(𝐺) ⊂ Λ(𝐺0). Also, from Lemma 3.3.11, we know that

Λ(𝐺) ∖Λ(𝐺0) lies in 𝑇0, which means we now only need to consider the pieces

of Λ(𝐺) ∖ {𝑝} contained in the four sets

𝐿1 = Λ(𝐺0), 𝐿2 = 𝑇0 ∩ 𝐴, 𝐿3 = 𝑓Λ(𝐺0), 𝐿4 = 𝑓(𝑇0 ∩ 𝐴).

We want to find compact sets 𝐾1, 𝐾2, 𝐾3, 𝐾4 ⊂ 𝑀 ∖ {𝑝} so that for each

𝑦 ∈ 𝐿𝑖 ∩ (Λ(𝐺) ∖ {𝑝}), we can find ℎ ∈ 𝑃 so that ℎ𝑦 ∈ 𝐾𝑖.

We already know that we can take 𝐾1 = ̂︀𝐾, and to find 𝐾2, we can use the

exact same construction we used for 𝐾3 in Case 1. To justify the application

of Proposition 2.2.25 in this situtation, we again need to check that for any

𝑔 ∈ 𝐺0∖𝐽±1, we have 𝑔𝐵±1 ⊂𝑀 ∖{𝑝}. This time, the desired inclusion follows

from precise invariance of (𝐵1, 𝐵−1) under (𝐽1, 𝐽−1) and the fact that 𝑝 ∈ 𝐵1.

Finally, to find 𝐾3 and 𝐾4, we just apply the same exact arguments to the

parabolic point 𝑓−1𝑝 ∈ Λ(𝐽−1) and its stabilizer 𝑓−1𝑃𝑓 , to obtain a pair of

compact sets𝐾 ′
3, 𝐾

′
4 ⊂𝑀∖{𝑓−1𝑝} such that for any 𝑧 ∈ (Λ(𝐺)∖{𝑓−1𝑝})∩(𝐿1∪
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𝑓(𝐵1)

𝐵−1𝐵1

𝑝

𝐾2

𝐾3

Figure 3.3.2: Illustration for Case 2 of Lemma 3.3.13. The sets 𝐵−1 and 𝑓(𝐵1)
are already compact subsets of 𝑀 ∖ {𝑝}, so we need to divide the rest of
Λ(𝐺) into pieces. The sets 𝐾1 and 𝐾4 (not pictured) lie in Λ(𝐺0) ∖ {𝑝} and
𝑓(Λ(𝐺0)) ∖ {𝑝}.

𝐿2), we can find ℎ ∈ 𝑃 so that 𝑓−1ℎ𝑓𝑧 ∈ 𝐾 ′
3∪𝐾 ′

4. We can take 𝐾3 = 𝑓𝐾 ′
3 and

𝐾4 = 𝑓𝐾 ′
4 (see Figure 3.3.2). Then if 𝑦 ∈ (Λ(𝐺) ∖ {𝑝}) ∩ (𝐿3 ∪ 𝐿4) = (Λ(𝐺) ∖

{𝑝}) ∩ (𝑓𝐿1 ∪ 𝑓𝐿2), we have 𝑦 = 𝑓𝑧 for 𝑧 ∈ (Λ(𝐺) ∖ {𝑓−1𝑝}) ∩ (𝐿1 ∪ 𝐿2), and

we can find ℎ ∈ 𝑃 so that 𝑓−1ℎ𝑓𝑧 ∈ 𝑓−1𝐾3∪ 𝑓−1𝐾4, hence ℎ𝑦 ∈ 𝐾3∪𝐾4.

Finally, we complete the proof of this direction of Theorem B part (iv):

Proposition 3.3.14. If 𝐺0 is geometrically finite, then 𝐺 is geometrically

finite.

Proof. We must show that any 𝑥 ∈ Λ(𝐺) is a conical limit point or bounded

parabolic point. By Lemma 3.3.12, we may assume 𝑥 ∈ 𝐺(Λ(𝐺0)). Since 𝐺

acts by homeomorphisms, in fact we can assume that 𝑥 ∈ Λ(𝐺0). Since 𝐺0 is

geometrically finite, 𝑥 is either a conical limit point or bounded parabolic point

for the action of 𝐺0 on Λ(𝐺0). In the former case, 𝑥 is also a conical limit point
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for 𝐺 acting on Λ(𝐺), and in the latter case 𝑥 is a bounded parabolic point

for 𝐺 acting on Λ(𝐺) by Lemma 3.3.13. Hence 𝐺 is geometrically finite.

3.3.4 Geometrical Finiteness of 𝐺0

Finally, we prove the other direction of Theorem B part (iv), and show

that if 𝐺 is geometrically finite, then so is 𝐺0. As for the amalgamated free

product case, the first step is the following:

Lemma 3.3.15. Assume that 𝐺 is geometrically finite. Let 𝑥 ∈ Λ(𝐺0) ∖

𝐺0(Λ(𝐽1)∪Λ(𝐽−1)), and suppose that ℎ𝑘 ∈ 𝐺 is a conical limit sequence for 𝑥.

Then, after extracting a subsequence, we can find some ℎ ∈ 𝐺 so that ℎ𝑘 ∈ ℎ𝐺0

for every 𝑘.

Proof. By Proposition 3.3.4 part (iii), we know 𝑥 ∈ 𝐴0 ⊂ 𝐴. As 𝑥 is a conical

limit point, we can find a conical limit sequence (ℎ𝑘) for 𝑥, so that for distinct

points 𝑎, 𝑏 ∈𝑀 , we have ℎ𝑘𝑥→ 𝑎 and ℎ𝑘𝑧 → 𝑏 for any 𝑧 ∈𝑀 ∖ {𝑥}.

If ℎ𝑘 ∈ 𝐺0 for infinitely many 𝑘 then we are done, so we may assume

|ℎ𝑘| ≥ 1 for every 𝑘. Suppose we can write ℎ𝑘 = ℎ′𝑘𝑓𝑔𝑘 where |ℎ′𝑘| = |ℎ𝑘| − 1

(the case where ℎ𝑘 = ℎ𝑘𝑓
−1𝑔𝑘 is similar). We note that 𝑔𝑘𝑥 ∈ 𝐴0 ⊂ 𝐴 still

since 𝐴0 is 𝐺0-invariant.

Consider the sequence (ℎ𝑘𝑔
−1
𝑘 ) = (ℎ′𝑘𝑓). We know that 𝑓𝑔𝑘𝑥 ∈ 𝑓𝐴 ⊂ 𝐵1,

so ℎ𝑘𝑥 lies in ℎ′𝑘𝐵1 for every 𝑘. If the ℎ′𝑘 are all in distinct left 𝐽1-cosets in

𝐺, the sequence (ℎ′𝑘𝐵1) converges to a singleton by Lemma 3.3.8. The limit

of (ℎ𝑘𝑥) is contained in this singleton, so the singleton is {𝑎}. On the other

hand, since 𝐴 is infinite, the set 𝑔−1
𝑘 𝐴 is also infinite, so there is at least one

point 𝑧 in 𝑔−1
𝑘 𝐴 ∖ {𝑥}. But then ℎ𝑘𝑧 ∈ ℎ𝑘𝑔

−1
𝑘 𝐴, so we have

ℎ𝑘𝑧 ∈ ℎ′𝑘𝑓𝑔𝑘𝑔
−1
𝑘 𝐴 ⊂ ℎ′𝑘𝑓𝐴 ⊂ ℎ′𝑘𝐵1.
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This means that (ℎ𝑘𝑧) converges to 𝑎, which contradicts the fact that (ℎ𝑘) is

a conical limit sequence for 𝑥.

So, after taking a subsequence, we must have ℎ′𝑘 ∈ ℎ′𝐽1 for some fixed

ℎ′ ∈ 𝐺. Then for every 𝑘, we have ℎ𝑘 ∈ ℎ′𝐽1𝑓𝑔𝑘 = ℎ′𝑓𝐽−1𝑔𝑘 ⊂ ℎ′𝑓𝐺0, and we

are done.

Proposition 3.3.16. If 𝐺 is geometrically finite, then 𝐺0 is geometrically

finite.

Proof. We must show that any 𝑥 ∈ Λ(𝐺0) is a conical limit point or bounded

parabolic point for the 𝐺0-action. Since 𝐺 is geometrically finite, 𝑥 is either a

conical limit point or bounded parabolic point for the 𝐺-action. In the former

case, by Lemma 3.3.15 we conclude that there is a conical limit sequence of

the form (ℎ𝑔𝑘) for 𝑥, where ℎ ∈ 𝐺 and 𝑔𝑘 ∈ 𝐺0. Then (𝑔𝑘) is a conical limit

sequence for 𝑥 in 𝐺0 and we are done.

In the latter case, let 𝑃 < 𝐺 be the stabilizer of 𝑥, a parabolic subgroup of

𝐺. We claim that in fact 𝑃 is a subgroup of 𝐺0. If 𝑥 ∈ Λ(𝐽1) ∪ Λ(𝐽−1), then

𝑥 lies in either 𝜕𝐵1 or 𝜕𝐵−1, and then this follows from Lemma 3.3.5. And,

if 𝑥 = 𝑔𝑦 for 𝑦 ∈ Λ(𝐽1) ∪ Λ(𝐽−1) and 𝑔 ∈ 𝐺0, then the stabilizer of 𝑥 lies in

𝑔𝐺0𝑔
−1 = 𝐺0. Finally, if 𝑥 ∈ Λ(𝐺0) ∖ 𝐺0(Λ(𝐽1) ∪ Λ(𝐽−1)), then part (iii) of

Proposition 3.3.4 says that 𝑥 ∈ 𝐴0, and Lemma 2.3.11 implies that no element

of 𝐺 with positive length can fix a point in 𝐴0.

Now, since 𝑥 is a bounded parabolic point for the 𝐺-action on Λ(𝐺), local

compactness of Λ(𝐺) ∖ {𝑥} implies that there is some compact 𝐾 ⊂ Λ(𝐺) so

that 𝑃 (𝐾) = Λ(𝐺) ∖ {𝑥}. We let 𝐾0 = 𝐾 ∩ Λ(𝐺0), which is a compact in

Λ(𝐺0) ∖ {𝑥}.
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Using 𝐺0-invariance (and hence 𝑃 -invariance) of Λ(𝐺0), we now have that

𝑃 (𝐾0) = 𝑃 (𝐾 ∩ Λ(𝐺0)) = 𝑃 (𝐾) ∩ Λ(𝐺0) = Λ(𝐺0) ∖ {𝑥}

as desired.
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Chapter 4

An Application

In this chapter, we explore an application of the combination theorems to

Kleinian groups which would produce new examples of geometric limits which

are strictly larger than the corresponding algebraic limit. First, we introduce

these two types of convergence, as well as the classical Jørgensen example of

limits of cyclic groups. We then discuss the application and some evidence why

we believe this should work, along with possible ideas for future exploration.

4.1 Algebraic and Geometric Convergence

We first define the two types of convergence we need. This exposition

follows a paper by Maloni and Pozzetti [MP22], and one can also read more

in Thurston [Thu79], Marden [Mar07], or Kapovich [Kap09]. The first notion

is the one that is most sensible from an algebraic standpoint, hence its name.

Definition 4.1.1. Let 𝜌𝑛 : Γ → PSL(2,C) be a sequence of representations

of a fixed group Γ. The sequence 𝜌𝑛 converges algebraically to 𝜌∞ : Γ →

PSL(2,C) if, for all 𝛾 ∈ Γ, the sequence (𝜌𝑛(𝛾)) converges to 𝜌∞(𝛾) in the
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topology on PSL(2,C). The representation 𝜌∞ is called the algebraic limit of

(𝜌𝑛).

The other type of convergence we will consider is about closed subgroups

of PSL(2,C), but we will only be interested in the case when said subgroups

are the images of a sequence of representations.

Definition 4.1.2. Let 𝜌𝑛 : Γ → PSL(2,C) be a sequence of representations

of a fixed group Γ. The sequence 𝜌𝑛(Γ) of images converges geometrically to

Γ𝜌
geo if the following two conditions hold:

1. for every 𝛾 ∈ Γ𝜌
geo, there exists a sequence 𝛾𝑛 ∈ 𝜌𝑛(Γ), so that 𝛾𝑛 → 𝛾;

2. for every subsequence 𝛾𝑛𝑖
∈ 𝜌𝑛𝑖

(Γ), if 𝛾𝑛𝑖
→ 𝛾′, then 𝛾′ ∈ Γ𝜌

geo.

Remark 4.1.3. There is a reason for the name geometric convergence. This

definition corresponds to the pointed quotient orbifolds H3
R/𝜌𝑛(Γ) of the se-

quence converging to the pointed quotient orbifold of the geometric limit (with

respect to the Gromov-Hausdorff convergence). The base-point is determined

by identifying H3 with PSL(2,C)/𝑃𝑆𝑈(2), and then considering the orbit of

[𝑃𝑆𝑈(2)] under 𝜌. See Canary, Epstein, and Green [CEG86] for more details

on this. Alternatively, Marden proved this is also equivalent to polyhedral

convergence, which refers to convergence of fundamental polyhedra for the

sequence of Kleinian groups. See Section 4.3 of Marden [Mar07].

Applying condition 2 above and the definition of algebraic convergence, we

see that any element in 𝜌∞(Γ) must also be contained in Γ𝜌
geo. This gives us

the following proposition.

Proposition 4.1.4. If 𝜌𝑛 : Γ → PSL(2,C) converges algebraically to 𝜌∞ and

𝜌𝑛(Γ) converges geometrically to Γ𝜌
geo, then 𝜌∞(Γ) ⊂ Γ𝜌

geo.

136



The other containment is not true in general, and the following definition

addresses this.

Definition 4.1.5. Let 𝜌𝑛 : Γ → PSL(2,C) be a sequence of representations of

a fixed group Γ, with algebraic limit 𝜌∞, such that the images 𝜌𝑛(Γ) converge

geometrically to Γ𝜌
geo. We say that 𝜌𝑛 converges strongly to 𝜌∞ if 𝜌∞(Γ) = Γ𝜌

geo.

4.1.1 Examples

We now give some examples of sequences of representations where the

convergence is not strong. The following example is due to Jørgensen [Jør73],

and one can read more details in the notes of Canary, Epstein, and Green

[CEG86] or the MSRI lecture notes of Brock. The work of Maloni and Pozzetti

[MP22] generalizes this example to real and complex hyperbolic spaces of all

dimensions.

Example 4.1.6 (Jørgensen [Jør73], cyclic group example). Let 𝜔 = 1
𝑛2 + 𝑖𝜋

𝑛
.

Define a representation 𝜌𝑛 : Z → PSL(2,C) by

𝜌𝑛(1) = 𝑔𝑛 =

⎛⎝𝑒𝜔𝑛 𝑛 sinh(𝜔𝑛)

0 𝑒−𝜔𝑛

⎞⎠ .

Then

lim
𝑛→∞

𝜌𝑛(1) = 𝑔∞ =

⎛⎝1 𝑖𝜋

0 1

⎞⎠ ,

and so this matrix generates the algebraic limit 𝜌∞(Z) = ⟨𝑔∞⟩. On the other

hand, we have

lim
𝑛→∞

𝜌𝑛(𝑛) = lim
𝑛→∞

𝑔𝑛𝑛 =

⎛⎝1 1

0 1

⎞⎠ ,
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which shows that the convergence is not strong. This behavior arises from

forcing the fixed points of 𝜌𝑛(1) to both converge to ∞, while also tweaking

the translation distance and rotational part of 𝜌𝑛(1) in a very specific way.

For a fixed 𝑥 ∈ H3
R, the elements 𝜌𝑛(1) and 𝜌𝑛(𝑛) both translate 𝑥 along a

cone centered at the axis of 𝜌𝑛(1), but in different directions. Specifically,

𝜌𝑛(1) rotates 𝑥 slightly around the cone (and slightly up the cone) while 𝜌𝑛(𝑛)

rotates 𝑥 entirely around the cone while translating upward. See Example 4.1.6

Figure 4.1.1: Illustration from lecture notes of Brock depicting the different
translation directions along the cone, with 𝑚 > 𝑛. As 𝑛 increases, the cone
flattens out to a horosphere through 𝑥.

As 𝑛 goes to infinity, the finite fixed point of 𝑔𝑛 approaches infinity, and

the cone degenerates to a horosphere through 𝑥, where 𝑔∞ and lim 𝑔𝑛𝑛 translate

in different directions, giving a geometric limit isomorphic to Z2.

Maloni and Pozzetti [MP22] generalize the above to construct examples of

representations of the cyclic group into the groups Isom+(H𝑛
R) and Isom+(H𝑛

C)

of isometries of H𝑛
R and H𝑛

C (complex hyperbolic spaces). They also use

these examples to construct representations of the rank two free group into

Isom+(H𝑛
R) and Isom+(H𝑛

C) which do not converge strongly. These generalize

ideas of Thurston [Thu79], also discussed in Kapovich [Kap09], for PSL(2,C).

They use the notion of a Schottky pair. A Schottky pair is a pair of loxodromic

elements satisfying the conditions of the Klein combination theorem, as stated
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in Theorem 3.1.1. In Example 3.1.2, we described how to produce Schottky

pairs out of any pair of loxodromic elements with distinct fixed point sets by

taking large enough powers.

Example 4.1.7 (Thurston [Thu79], rank 2 free group example). A Schottky

pair can be constructed from 𝜌𝑛(1) = 𝑔𝑛 from Example 4.1.6 and a new el-

ement ℎ by first showing that, for sufficiently large 𝑛, there is a disc 𝐵 of

radius 1
3

centered at the origin which is contained in a fundamental domain

for the action of 𝜌𝑛(Z). Then, choose disjoint open discs 𝐵+, 𝐵− ⊂ 𝐵, and

a hyperbolic element ℎ ∈ PSL(2,C) with attracting (respectively repelling)

fixed point in 𝐵+ (respectively 𝐵−), so that ℎ(C ∖𝐵−) ⊂ 𝐵+. Since 𝐵 is in a

fundamental domain for 𝜌𝑛(Z), we can also find open discs for the fixed points

of 𝜌𝑛(1) satisfying the hypotheses in Example 3.1.2 which are disjoint from 𝐵+

and 𝐵−. Namely, the two boundary components of the fundamental domain

containing 𝐵 determine two such discs.

To construct this element explicitly, we can take 𝐵− to be the disc of radius
1
24

centered at the origin, and 𝐵+ to be the disc of radius 1
12

centered at 1
6
.

Then one can check that the element

ℎ =

⎛⎝ 4 0

45
2

1
4

⎞⎠ ,

which has fixed points 0 and 1
6
, maps the complement of 𝐵− into 𝐵+, as desired.

Defining 𝜙𝑛 : 𝐹2 = ⟨𝑎, 𝑏⟩ → PSL(2,C) by 𝜙𝑛(𝑎) = 𝜌𝑛(1) and 𝜙𝑛(𝑏) = ℎ,

we produce a sequence of representations with geometric limit isomorphic to

Z2 *Z, since one of the free factors becomes a Z2. The algebraic limit is given

by ⟨𝜌∞(1), ℎ⟩ ∼= 𝐹2.

We hope to apply our new combination theorems to produce examples of
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surface group representations with strictly larger geometric limit. In PSL(2,C),

Kerckhoff and Thurston [KT90] produced such examples. We sketch their

methods now. First, we need some background material.

Let 𝑆 be a closed oriented surface. The mapping class group

Mod(𝑆) = Homeo+(𝑆)/Homeo0(𝑆)

of 𝑆 is the group of orientation preserving homeomorphisms of 𝑆 up to isotopy,

where Homeo0(𝑆) is the identity component of Homeo+(𝑆). These isotopy

classes are called mapping classes. A standard example of a mapping class

is a Dehn twist, which we now describe. Let 𝑎 be a simple closed curve on

𝑆. A representative of the Dehn twist 𝑇𝑎 is then obtained by cutting 𝑆 along

𝑎, twisting a neighborhood of one side of the curve one full rotation, and

then re-gluing the surface. It turns out these mapping classes finitely generate

Mod(𝑆). See Farb and Margalit [FM11] for more details.

Figure 4.1.2: [FM11] Figure 3.2. Depicts the action of 𝑇𝑎 on another simple
closed curve 𝑏.

The next notion we need is that of the Teichmüller space 𝒯 (𝑆) of 𝑆. Recall
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that a Riemann surface 𝑋 is a manifold with charts into C such that the

transition maps are biholomorphisms. Teichmüller space is the set of pairs

X = (𝑋, 𝑓), where 𝑋 is a Riemann surface and 𝑓 : 𝑆 → 𝑋 is a diffeomorphism,

up to isotopy. More precisely, (𝑋, 𝑓) ∼ (𝑋 ′, 𝑓 ′) if 𝑓 ′ ∘𝑓−1 : 𝑋 → 𝑋 ′ is isotopic

to a biholomorphism. Such pairs are called marked Riemann surface structures

or marked complex structures.

The mapping class group acts on 𝒯 (𝑆) by changing the marking. Specif-

ically, given the isotopy class [𝑔] ∈ Mod(𝑆) of a homeomorphism 𝑔 : 𝑆 → 𝑆,

we have

[𝑔] · [(𝑋, 𝑓)] = [(𝑋, 𝑓 ∘ 𝑔−1)].

This action is well defined since everything is defined only up to isotopy. Taking

the quotient 𝒯 (𝑆)/Mod(𝑆) produces the set of unmarked complex structures

on 𝑆, also known as the moduli space of 𝑆. Again, Farb and Margalit [FM11]

is a possible reference to learn more about these topics.

The final notion we will need is that of a quasi-Fuchsian group. A Kleinian

group 𝐺 is quasi-Fuchsian if Λ(𝐺) is a simple closed curve in ̂︀C. Note that

some authors only ask that Λ(𝐺) is contained in a simple closed curve, but

we do not need this more general definition. We will let 𝒬ℱ(𝑆) be the set of

discrete and faithful representations 𝜌 : 𝜋1(𝑆) → PSL(2,C), so that 𝜌(𝜋1(𝑆))

is quasi-Fuchsian, up to conjugation by PSL(2,C).

Given a discrete and faithful representation 𝜌 : 𝜋1(𝑆) → PSL(2,C) with

a quasi-Fuchsian image 𝐺 = 𝜌(𝜋1(𝑆)), the domain of discontinuity Ω(𝐺) =̂︀C ∖ Λ(𝐺) consists of two 𝐺-invariant topological discs, 𝐵1 and 𝐵2. Since 𝐺

acts freely and properly discontinuously on 𝐵𝑖, it follows that 𝜋1(𝐵𝑖/𝐺) ∼= 𝐺,

and hence 𝐵𝑖/𝐺 ∼= 𝑆. Note that the orientation on 𝑆 induces an orientation

on 𝐵1, and the opposite orientation on 𝐵2. Refer to 𝑆 with the opposite
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orientation as 𝑆.

Since𝐺 also acts by biholomorphisms, we get two induced marked Riemann

surface structures, one on 𝑆 and the other on 𝑆, which we will denote (X,X′).

Conjugating 𝜌 does not change the class of X nor X′, so we get a map 𝒬ℱ(𝑆) →

𝒯 (𝑆)×𝒯 (𝑆). Bers [Ber60] proved that any pair of Riemann surface structures

(X,X′) ∈ 𝒯 (𝑆) × 𝒯 (𝑆) uniquely determines a point [𝜌] ∈ 𝒬ℱ(𝑆) inducing

said structures as above. This is called Bers simultaneous uniformization.

This produces another map B : 𝒯 (𝑆) × 𝒯 (𝑆) → 𝒬ℱ(𝑆). When one of the

structures is fixed and the other is varied, we get what is called a Bers slice.

Example 4.1.8 (Kerckhoff, Thurston [KT90], surface group example). Let

𝑆 = 𝑆2, the genus 2 surface. Let 𝑎 be a separating curve on 𝑆2, and 𝑇𝑎

the corresponding Dehn twist. Fix a structure X ∈ 𝒯 (𝑆2). Kerckhoff and

Thurston considered a sequence of pairs of structures (X,X𝑛) in the Bers slice

determined by X, where X𝑛 = 𝑇 𝑛
𝑎 · X. Bers simultaneous uniformization pro-

duces a sequence of points B(X,X𝑛) ∈ 𝒬ℱ(𝑆2), and by taking representatives

and passing to a subsequence, they show this sequence has a geometric limit

strictly containing the algebraic limit. They prove this by considering the ge-

ometry and topology of the corresponding quotient 3-manifolds. In the limit,

a curve in the 3-manifolds corresponding to 𝑎 gets pinched (its length tends

to 0), and the quotients by the algebraic and geometric limits have different

topologies.

A downside to this approach is that there is no clear way to generalize this

method to other spaces, such as higher dimensional real hyperbolic spaces, or

complex or even quaternionic hyperbolic spaces. An approach using combina-

tion theorems to construct such examples using existing examples of represen-

tations of free groups has a chance to generalize, though.
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4.2 A Conjecture

Let 𝜙𝑛 be as in Example 4.1.7, the general strategy is to obtain another

sequence of representations by conjugating 𝜙𝑛 by something which commutes

with the commutator, 𝐶𝑛 = [𝜙𝑛(𝑎), 𝜙𝑛(𝑏)]. This will produce representa-

tions 𝜓𝑛, where 𝜓𝑛(𝐹2) ∩ 𝜙𝑛(𝐹2) = ⟨𝐶𝑛⟩ in PSL(2,C). The hope is that the

combination theorems will then apply, allowing us to form the combination

𝜙𝑛(𝐹2) *⟨𝐶𝑛⟩ 𝜓𝑛(𝐹2). By standard facts from algebraic topology, this group

will be isomorphic to a genus 2 surface group 𝜋1(𝑆2), and by construction,

the geometric limit of these representations will strictly contain the algebraic

limit.

So, we make the following conjecture.

Conjecture 4.2.1. There is a sequence 𝜉𝑛 : 𝜋1(𝑆2) → PSL(2,C) of repre-

sentations constructed via applying a combination theorem to 𝜙𝑛 and 𝜓𝑛 from

above, such that the images 𝜉𝑛(𝜋1(𝑆2)) converge geometrically to a group Γ𝜌
geo

strictly containing the algebraic limit 𝜉∞(𝜋1(𝑆2)).

We now sketch a possible plan for proving this conjecture. We need only

perform this combination for sufficiently large 𝑛, since we can then pass to a

subsequence. Let 𝐺1,𝑛 = 𝜙𝑛(𝐹2), and let 𝐽𝑛 = ⟨𝐶𝑛⟩, the subgroup generated

by the commutator. We need a 𝐽𝑛-invariant simple closed curve 𝑊𝑛, dividinĝ︀C into two closed discs 𝐵1,𝑛 and 𝐵2,𝑛, so that Λ(𝐺1,𝑛)∖Λ(𝐽𝑛) ⊂ Int(𝐵2,𝑛), with

Λ(𝐽𝑛) ⊂ 𝜕𝐵2,𝑛 = 𝑊𝑛. Further, we then need to show that 𝑔𝐵1,𝑛 ⊂ Int(𝐵2,𝑛)

for 𝑔 ∈ 𝐺1,𝑛 ∖ 𝐽𝑛.

Given such sets, we can construct 𝜓𝑛 : 𝐹2 → PSL(2,C) by conjugating 𝐺1,𝑛

by reflection in 𝑊𝑛. This reflection commutes with the commutator 𝐶𝑛, which

preserves 𝑊𝑛, and so this conjugation preserves 𝐽𝑛. Let 𝐺2,𝑛 = 𝜓𝑛(𝐹2). Then,

by construction, we have Λ(𝐺2,𝑛)∖Λ(𝐽𝑛) ⊂ Int(𝐵1,𝑛), and 𝑔𝐵2,𝑛 ⊂ Int(𝐵1,𝑛) for
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𝑔 ∈ 𝐺2,𝑛∖𝐽𝑛. This suffices to apply the combination theorem for amalgamated

free products.

Now, a natural way to search for the set 𝑊𝑛 is by considering the algebraic

limits first, and finding a curve 𝑊 for this group. Let 𝐺1 = 𝜙∞(𝐹2), with

𝐽 = ⟨𝐶∞⟩, the subgroup generated by the commutator in the algebraic limit.

A calculation shows (tr 𝐶∞)2 ∈ R>4, implying that 𝐶∞ is not only loxodromic,

but hyperbolic, i.e, 𝐶∞ is conjugate into PSL(2,R). We can normalize so that

𝐶∞ has repelling fixed point at −1 and attracting fixed point at 1. Then

𝑊 = ̂︀R = R ∪ {∞} is 𝐽-invariant. Let 𝐵1 be the lower half-plane in ̂︀C, and

𝐵2 the upper half-plane.

We now show that the sequence can be adjusted so that we may take

𝑊𝑛 = ̂︀R for every 𝑛, and hence 𝐵1,𝑛 = 𝐵1 and 𝐵2,𝑛 = 𝐵2 for every 𝑛. When

choosing the element ℎ from before, we selected a hyperbolic element fixing 0

and 1
6

which conjugates to

𝐸(4) =

⎛⎝4 0

0 1
4

⎞⎠ .

In general, loxodromic elements are conjugate to

𝐸(𝜆) =

⎛⎝𝜆 0

0 𝜆−1

⎞⎠
with |𝜆| > 1. Hyperbolic elements correspond to Im(𝜆) = 0. Conjugating by

⎛⎝1 0

6 −1

⎞⎠ ,
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which is its own inverse and sends ∞ to 1
6

and fixes 0, produces

ℎ(𝜆) =

⎛⎝ 𝜆 0

6𝜆− 6𝜆−1 𝜆−1

⎞⎠ .

So ℎ = ℎ(4) with this notation, the element constructed in Example 4.1.7.

Recall that 𝐶𝑛 = [𝜙𝑛(𝑎), 𝜙𝑛(𝑏)], where

𝜙𝑛(𝑎) = 𝜌𝑛(1) =

⎛⎝𝑒𝜔𝑛 𝑛 sinh(𝜔𝑛)

0 𝑒−𝜔𝑛

⎞⎠
and 𝜙𝑛(𝑏) = ℎ. Let 𝑔𝑛 = 𝜌𝑛(1) again to simplify notation. Our goal now is to

find a sequence 𝜆𝑛 ∈ C, where Re(𝜆𝑛) = 4 for every 𝑛, and Im(𝜆𝑛) → 0, so

that (tr[𝑔𝑛, ℎ(𝜆𝑛)])2 ∈ R. Then, setting 𝜙𝑛(𝑏) = ℎ(𝜆𝑛) instead, we still have

that ⟨𝑔𝑛, ℎ(𝜆𝑛) ∼= 𝐹2 for sufficiently large 𝑛 since the ping-pong dynamics are

an open condition. But now, after normalizing so that 𝐶𝑛 fixes −1 and 1, we

find that 𝐶𝑛 fixes ̂︀R, so in fact we can take 𝑊𝑛 = ̂︀R as desired.

These computations are messy but straightforward, but constructing an

explicit 𝜆𝑛 seems hard. Existence is enough here, however, and we can estab-

lish this using the intermediate value theorem on the imaginary part of the

trace. We should also note that the elements we conjugate by to normalize

the representations are not all the same, but since they are determined by the

fixed points of 𝐶𝑛 which converge to the fixed points of 𝐶∞, this process does

not affect the limiting group either.

If we can now show that Λ(𝐺1,𝑛) ∖Λ(𝐽𝑛) ⊂ Int(𝐵2), and 𝑔𝐵1 ⊂ Int(𝐵2) for

𝑔 ∈ 𝐺1,𝑛 ∖𝐽 for sufficiently large 𝑛, then letting 𝐺2,𝑛 be obtained from 𝐺1,𝑛 by

conjugating by reflection in ̂︀R (complex conjugation), the combination theo-

rem will apply just as above. Alternatively, one could show these statements
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for just 𝐺1, and then try to argue that the corresponding statements will hold

for 𝐺1,𝑛 for sufficiently large 𝑛.

There was not enough time to finish this final step, but some pictures of

limit sets generated in Python give promising evidence that the desired prop-

erties hold. We now show these pictures and discuss how they were generated.

Figure 4.2.1: Approximation of Λ(𝐺1), obtained by applying elements to fixed
points of the commutator.

Figure 4.2.1 depicts an approximation of the limit set of 𝐺1, the limit

group isomorphic to 𝐹2. The picture was produced by first normalizing so the

commutator fixes 1 and −1, and then applying a large number of elements to

these fixed points and plotting the results. Since translates of limit points are

again limit points, and the closure of any infinite 𝐺1-orbit gives Λ(𝐺1), we can

approximate the limit set by plotting a large number of such translates. The

fixed points of the commutator at 1 and −1 are plotted in green.

The code first produces all possible words in 𝐹2 up to a given length using

a form of recursion called backtracking, and then retrieves the corresponding

elements of 𝐺1 by multiplying the generators together. Finally, these are

applied to the commutator’s fixed points and displayed in a scatter plot using
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the popular Python package MatPlotLib.

There appear to be some isolated points beneath the real axis, but these are

believed to be errors arising from the large number of numerical computations.

No limit points can be isolated in all of Λ(𝐺1), and these points remain isolated

even when increasing the length of the words as high as 12. The clusters of

points which accumulate in various places all seem to be happening above

the real axis, as desired. The following was obtained by zooming in to the

commutator’s fixed point at 1.

Figure 4.2.2: Λ(𝐺1) approximated via translates of a fixed point, near the
fixed point 1 of the commutator.

Another way to approximate the limit set is by plotting the centers of

isometric circles of elements. Recall Definition 2.1.10 for the definition of the

isometric circle of an element in PSL(2,C), and see the short paper of Ford

[For29] for more details on why this method works. An upside to this method

is that we need fewer computations in the code, reducing the approximation

error. These pictures do not have the isolated points occurring beneath 𝑊 =̂︀R, which is another positive sign. The second figure is again zoomed in quite
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a bit. We also get a natural “depth” associated to each center of an isometric

circle, depending on the length of the corresponding word. Different colors are

used to depict this.

Figure 4.2.3: Approximation of Λ(𝐺1), obtained by plotting centers of isomet-
ric circles. Each color corresponds to a fixed word length.

Figure 4.2.4: Λ(𝐺1) approximated via centers of isometric circles, near the
fixed point 1 of the commutator.

With some additional work, this construction could be performed in H𝑛
R as

well, which would produce truly new examples. With the right computational

tools, a similar construction could work in H2
C, the complex hyperbolic plane,
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for which no such examples exist yet.
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Chapter 5

Appendix

In this appendix we provide the Python code used to generate the pictures

in Chapter 4. To use the widget at the start for MatPlotLib, one should run

this code in a Jupyter notebook. This first code is for translating the fixed

points of the commutator via all elements up to a given length.
import numpy as np

import matp lo t l ib . pyplot as p l t

def apply_map(mat , z ) :

"""Applies a matrix to a complex number and returns the re su l t as a pair . """

return (np . r e a l ( (mat [ 0 , 0 ] ∗ z + mat [ 0 , 1 ] ) / (mat [ 1 , 0 ] ∗ z + mat [ 1 , 1 ] ) ) ,

np . imag ( (mat [ 0 , 0 ] ∗ z + mat [ 0 , 1 ] ) / (mat [ 1 , 0 ] ∗ z + mat [ 1 , 1 ] ) ) )

def get_f ixed_points (mat ) :

"""Returns the f i xed points of an element . """

return [ ( mat [ 0 , 0 ] − mat [ 1 , 1 ] + np . sq r t ( (mat [ 0 , 0 ] + mat [ 1 , 1 ] ) ∗∗ 2 − 4) ) / (2 ∗ mat [ 1 , 0 ] ) ,

(mat [ 0 , 0 ] − mat [ 1 , 1 ] − np . sq r t ( (mat [ 0 , 0 ] + mat [ 1 , 1 ] ) ∗∗ 2 − 4) ) / (2 ∗ mat [ 1 , 0 ] ) ]

def get_words (n , l e t t e r s ) :

"""Returns words of length n in a l i s t of l i s t s . Works for free group of rank 2."""

r e s u l t s = [ ]

def backtrack ( path , index ) :

i f len ( path ) == n :

r e s u l t s . append ( path . copy ( ) )

return

for l e t t e r in l e t t e r s :

i f len ( path ) == 0 :

path . append ( l e t t e r . copy ( ) )

backtrack ( path , index + 1)
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path . pop ( )

e l i f (

(np . array_equal ( path [ index −1] , A) and np . array_equal ( l e t t e r , A_inv ) )

or (np . array_equal ( path [ index −1] , A_inv) and np . array_equal ( l e t t e r , A) )

or (np . array_equal ( path [ index −1] , B) and np . array_equal ( l e t t e r , B_inv ) )

or (np . array_equal ( path [ index −1] , B_inv) and np . array_equal ( l e t t e r , B) )

) :

continue

else :

path . append ( l e t t e r . copy ( ) )

backtrack ( path , index + 1)

path . pop ( )

backtrack ( [ ] , 0)

return r e s u l t s

# Swaps 1 and in f in i ty , i s i t s own inverse

J = np . array ( [ [ 1 , 0 ] , [ 1 , − 1 ] ] )

# First generator

G = np . array ( [ [ 1 , np . p i ∗ 1 j ] , [ 0 , 1 ] ] )

# Second generator

H = np . array ( [ [ 4 , 0 ] , [ 4 5 / 2 , 1 / 4 ] ] )

# Commutator

Comm = np . l i n a l g . multi_dot ( [G,H, np . l i n a l g . inv (G) , np . l i n a l g . inv (H) ] )

# Normalized elements so no f ixed points are at i n f i n i t y

NG = np . l i n a l g . multi_dot ( [ J ,G, J ] )

NH = np . l i n a l g . multi_dot ( [ J ,H, J ] )

NComm = np . l i n a l g . multi_dot ( [ J ,Comm, J ] )

# Normalized so commutator f i x e s 1 , −1

J1 = np . array ( [ [1 , − get_f ixed_points (NComm) [ 0 ] ] , [ 1 , − get_f ixed_points (NComm) [ 1 ] ] ] )

J2 = np . array ( [ [ 1 , 1 ] , [ 1 , − 1 ] ] )

N = np . l i n a l g . multi_dot ( [ np . l i n a l g . inv ( J2 ) , J1 ] )

NNG = np . l i n a l g . multi_dot ( [N,NG, np . l i n a l g . inv (N) ] )

NNH = np . l i n a l g . multi_dot ( [N,NH, np . l i n a l g . inv (N) ] )

NNComm = np . l i n a l g . multi_dot ( [N,NComm, np . l i n a l g . inv (N) ] )

# Names for generators

A = NNG

A_inv = np . l i n a l g . inv (A)

B = NNH

B_inv = np . l i n a l g . inv (B)

l e t t e r s = [A,A_inv ,B, B_inv ]

# In i t i a l i z e s l i s t for words

word_list = [ ]

# Adds words of a given length
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for i in range ( 2 , 1 0 ) :

word_list += get_words ( i , l e t t e r s )

# In i t i a l i z e s l i s t s for x and y coords

x_coords = [ ]

y_coords = [ ]

# Applies words to f i xed points of the commutator

lp1 = get_f ixed_points (NNComm_lim) [ 0 ]

lp2 = get_f ixed_points (NNComm_lim) [ 1 ]

for i in range ( len ( l e t t e r s ) ) :

x , y = apply_map( l e t t e r s [ i ] , lp1 )

x_coords . append (x )

y_coords . append (y )

for i in range ( len ( l e t t e r s ) ) :

x , y = apply_map( l e t t e r s [ i ] , lp2 )

x_coords . append (x )

y_coords . append (y )

for i in range ( len ( word_list ) ) :

x , y = apply_map(np . l i n a l g . multi_dot ( word_list [ i ] ) , lp1 )

x_coords . append (x )

y_coords . append (y )

for i in range ( len ( word_list ) ) :

x , y = apply_map(np . l i n a l g . multi_dot ( word_list [ i ] ) , lp2 )

x_coords . append (x )

y_coords . append (y )

f i g , ax = p l t . subp lo t s ( )

# Plots l imi t points

ax . s c a t t e r ( x_coords , y_coords , s=15)

# Plot commutator f ixed points

ax . p l o t (np . r e a l ( get_f ixed_points (NNComm_lim) [ 0 ] ) , np . imag ( get_f ixed_points (NNComm_lim) [ 0 ] ) ,

’ go ’ , l a b e l=’marker␣ only ’ , markers i ze=6)

ax . p l o t (np . r e a l ( get_f ixed_points (NNComm_lim) [ 1 ] ) , np . imag ( get_f ixed_points (NNComm_lim) [ 1 ] ) ,

’ go ’ , l a b e l=’marker␣ only ’ , markers i ze=6)

p l t . ax i s ( " equal " )

p l t . axv l i ne (0 , c o l o r=’ black ’ )

p l t . axh l ine (0 , c o l o r=’ black ’ )

f i g . t ight_layout ( )

p l t . show ( )

The following code is for plotting centers of isometric circles, with colors

determined by the length of the corresponding word.
import numpy as np

import matp lo t l ib . pyplot as p l t
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import pandas as pd

def get_center (mat ) :

"""Returns center of isometric c i r c l e . """

return (np . r e a l (−mat [ 1 , 1 ] / mat [ 1 , 0 ] ) , np . imag(−mat [ 1 , 1 ] / mat [ 1 , 0 ] ) )

def get_words (n , l e t t e r s ) :

"""Returns words of length n in a l i s t of l i s t s . Works for free group of rank 2."""

r e s u l t s = [ ]

def backtrack ( path , index ) :

i f len ( path ) == n :

r e s u l t s . append ( path . copy ( ) )

return

for l e t t e r in l e t t e r s :

i f len ( path ) == 0 :

path . append ( l e t t e r . copy ( ) )

backtrack ( path , index + 1)

path . pop ( )

e l i f (

(np . array_equal ( path [ index −1] , A) and np . array_equal ( l e t t e r , A_inv ) )

or (np . array_equal ( path [ index −1] , A_inv) and np . array_equal ( l e t t e r , A) )

or (np . array_equal ( path [ index −1] , B) and np . array_equal ( l e t t e r , B_inv ) )

or (np . array_equal ( path [ index −1] , B_inv) and np . array_equal ( l e t t e r , B) )

) :

continue

else :

path . append ( l e t t e r . copy ( ) )

backtrack ( path , index + 1)

path . pop ( )

backtrack ( [ ] , 0)

return r e s u l t s

# Swaps 1 and in f in i ty , i s i t s own inverse

J = np . array ( [ [ 1 , 0 ] , [ 1 , − 1 ] ] )

# First generator

G = np . array ( [ [ 1 , np . p i ∗ 1 j ] , [ 0 , 1 ] ] )

# Second generator

H = np . array ( [ [ 4 , 0 ] , [ 4 5 / 2 , 1 / 4 ] ] )

# Commutator

Comm = np . l i n a l g . multi_dot ( [G,H, np . l i n a l g . inv (G) , np . l i n a l g . inv (H) ] )

# Normalized elements so no f ixed points are at i n f i n i t y

NG = np . l i n a l g . multi_dot ( [ J ,G, J ] )

NH = np . l i n a l g . multi_dot ( [ J ,H, J ] )

NComm = np . l i n a l g . multi_dot ( [ J ,Comm, J ] )

# Normalized so commutator f i x e s 1 , −1

J1 = np . array ( [ [1 , − get_f ixed_points (NComm) [ 0 ] ] , [ 1 , − get_f ixed_points (NComm) [ 1 ] ] ] )
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J2 = np . array ( [ [ 1 , 1 ] , [ 1 , − 1 ] ] )

N = np . l i n a l g . multi_dot ( [ np . l i n a l g . inv ( J2 ) , J1 ] )

NNG = np . l i n a l g . multi_dot ( [N,NG, np . l i n a l g . inv (N) ] )

NNH = np . l i n a l g . multi_dot ( [N,NH, np . l i n a l g . inv (N) ] )

NNComm = np . l i n a l g . multi_dot ( [N,NComm, np . l i n a l g . inv (N) ] )

# Names for generators

A = NNG

A_inv = np . l i n a l g . inv (A)

B = NNH

B_inv = np . l i n a l g . inv (B)

l e t t e r s = [A,A_inv ,B, B_inv ]

# In i t i a l i z e s l i s t for words

word_list = [ ]

# Adds words of a given length

for i in range ( 2 , 1 0 ) :

word_list += get_words ( i , l e t t e r s )

# In i t i a l i z e s a d iscre te color map

color_map = [ ’ b lack ’ , ’ b lue ’ , ’ red ’ ,

’ green ’ , ’ purple ’ , ’ pink ’ , ’ cyan ’ , ’ orange ’ , ’ grey ’ ]

# In i t i a l i z e s l i s t s for x and y coords

x_coords = [ ]

y_coords = [ ]

# Gets centers of s tar t ing l e t t e r s

for i in range ( len ( l e t t e r s ) ) :

x , y = get_center ( l e t t e r s [ i ] )

x_coords . append (x )

y_coords . append (y )

c o l o r s . append ( color_map [ 0 ] )

# Gets centers of words

for i in range ( len ( word_list ) ) :

x , y = get_center (np . l i n a l g . multi_dot ( word_list [ i ] ) )

x_coords . append (x )

y_coords . append (y )

c o l o r s . append ( color_map [ len ( word_list [ i ] ) −1 ] )

# Dataframe with points to scat ter and colors corresponding to word length

df = pd . DataFrame ( data={ ’x ’ : x_coords , ’ y ’ : y_coords , ’ c ’ : c o l o r s })

f i g , ax = p l t . subp lo t s ( )

# Plots points with the i r corresponding color

for g , b in df . groupby (by=’ c ’ ) :

p l t . s c a t t e r (b [ ’ x ’ ] , b [ ’ y ’ ] , c o l o r=g , s=15)

# Plot commutator f ixed points
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ax . p l o t (np . r e a l ( get_f ixed_points (NNComm_lim) [ 0 ] ) , np . imag ( get_f ixed_points (NNComm_lim) [ 0 ] ) ,

’ go ’ , l a b e l=’marker␣ only ’ , markers i ze=6)

ax . p l o t (np . r e a l ( get_f ixed_points (NNComm_lim) [ 1 ] ) , np . imag ( get_f ixed_points (NNComm_lim) [ 1 ] ) ,

’ go ’ , l a b e l=’marker␣ only ’ , markers i ze=6)

p l t . ax i s ( " equal " )

p l t . axv l i ne (0 , c o l o r=’ black ’ )

p l t . axh l ine (0 , c o l o r=’ black ’ )

f i g . t ight_layout ( )

p l t . show ( )
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