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ABSTRACT

Emergency Medical Service (EMS) Providers perform various emergency protocols on their patients
under stressful and noisy conditions. We introduce several fundamental algorithmic solutions which will
be useful in creating a cognitive assistant that can be used by the EMS providers to solve several challenges
they face. Cardiac arrest is one of the most critical EMS protocols. Cardiopulmonary resuscitation (CPR) is
arguably the most important step in cardiac arrest-based emergency protocols. High-quality CPR with the
appropriate compression rate and depth is essential for the survival of cardiac arrest patients. In reality,
the CPR administered in many cases can be of low quality due to the suboptimal quality of feedback the
EMS providers receive during training which is caused by human biases and errors. There is a need for
automatic estimation of CPR depth and rate which is critical in providing real-time feedback to the EMS
providers. We collected a multi-modal dataset of 24 participants performing CPR which can be used to
develop, evaluate, and test algorithms that can be used to estimate CPR performance by estimating the CPR
compression depth and rate. We showed that the inertial sensors in a smartwatch can be used to reliably
estimate CPR compression depth and rate. It is preferable to estimate the CPR quality using cameras as well
since some EMS providers might not be wearing a smartwatch all the time. We showed that a single camera
can be used to reliably estimate the CPR rate. However, estimating the CPR depth requires improvements
in monocular depth perception. We showed that defocus blur can be used to accurately estimate depth
in general scenes. Any visual depth perception technique is sensitive to the changes of the camera. We
developed a novel technique to estimate camera parameters of a given new camera which can be used to
eliminate this camera dependency. Therefore our depth estimation technique can be used by a range of
different cameras. We collected a second dataset which consists of hand images and their depth maps. This
dataset was used to show that our defocus blur-based method can be used to reliably estimate the distance
to the hands from the camera. We used this technique to estimate CPR depth. The depth estimation errors
were higher than the results from the smartwatch and we identified possible causes for these errors so they
can be alleviated in future research. We introduce a novel few-shot-learning technique that can be used
to detect activities with just a very small amount of data. This can be used to detect various EMS steps in
the future. Our noise-robust emotion recognition techniques can be used to detect vocal emotions under
environmental noise. These vocal emotion recognition methods can be utilized in the future by a cognitive
assistant to detect if an EMS provider is stressed and potentially provide feedback to alleviate the stress.
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CHAPTER 1

INTRODUCTION

1.1 EMS providers

Emergency Medical Services (EMS) providers are a critical component in the healthcare system. They are
trained to quickly respond to emergency calls in the community and provide pre-hospital care for patients
with illnesses and injuries and prepare them for transport if necessary. EMS providers physically examine
the patient and assess the condition to decide on a course of treatment. They may use a wide array of
medical equipment to assess or treat patients. EMS providers may administer medications, provide life
care, cardiovascular life support, or other important medical procedures.

Over 30 million emergency medical incidents are reported every year in the U.S., and nearly 70% of
the fire department calls were for medical emergencies [1][2]. Various EMS organizations have put forth
guidelines for EMS providers, administration, and medical direction on treatment, transportation, and
management of patients under many medical emergencies. The purpose of these protocol guidelines is to
provide excellent prehospital care for patients. According to the Old Dominion EMS Alliance (ODEMSA)
[3], the responsibility for the EMS care is shared between three parties; the Operational Medical Director
(OMD), the online Medical Control physician (MC), and the EMS provider. EMS providers are allowed to
provide a set of authorized services to the patients while certain services are allowed only after approval
by the MC. Becoming a qualified EMS provider is very involved and requires continuous training and EMS
certifications to keep up with the latest medical practices and technologies. They have to be proficient in
various emergency protocols including cardiovascular emergencies, medical, trauma, toxicology, etc.

1.1.1 Problems faced by EMS providers

Due to the nature of the EMS work, the providers are facing several hardships related to their work. In this
dissertation, we focus on several critical challenges that need to be addressed to ensure the well-being of
EMS providers and to support an excellent level of patient care.

1.1.2 Working conditions are stressful

Due to the hazardous and hectic working environments and shift work nature, EMS providers have to
regularly work under stress [4] [5]. Various levels of anxiety, anger, and depression were detected to be
caused by the stress experienced by the EMS providers [6]. A national survey involving 658 emergency
medical technicians performed by Cydulka et al. [7] found very high-stress levels in EMS providers. These
stress levels manifested as somatic stress (stress that would affect bodily systems), organizational stress
(stress experienced as a result of working conditions), and job dissatisfaction. High levels of continuous
emotions such as anger, fear, anxiety, and guilt can result in mental health problems and changes in
corticosteroid levels in blood which can cause physiological stress and immune response [8]. Previous
attempts taken in order to relieve the stress in the work life of EMS, such as introducing new schedule
patterns, had no significant positive results [9]. Careful attention must be paid by EMS organizations and
EMS medical directors at an individual level to mitigate this issue.

1.1.3 EMS protocols are complicated and difficult to perfect

Many emergency protocols are complicated, difficult to follow and memorize, and require thorough and
continuous training. However, it is critical that the first responders perform the medical procedures with
the correct techniques and protocols. Let’s take a cardiac arrest situation as an example. EMS personnel
will arrive at the scene and start the necessary medical procedures to support the patient. EMS protocol for
cardiac arrest is complicated and can include interventions such as ECG, ventilation, cardiac monitoring,
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chest decompression, Cardiopulmonary resuscitation (CPR), defibrillation, and intubation. High quality,
timely CPR and attempted defibrillation are paramount to successful cardiac life support and recovery
of the patient [3] [10]. It is crucial to provide high-quality CPR with the appropriate amount of chest
compression rate with complete chest recoil, correct depth, and minimal interruption of compressions [11].
Adherence to the correct techniques and protocols during medical procedures such as Cardio-pulmonary
Resuscitation (CPR) is critical in saving the lives of patients [10]. But it is sometimes difficult to both
memorize the protocol steps and deliver CPR according to the accepted guidelines [12]. For example,
CPR delivery is often sub-optimal in practice because the compressions are too shallow or deep and the
frequency of the compressions can be inadequate. It has been shown that successfully administering EMS
protocols requires tedious and continuous training which involves accurately following the required steps
and developing the talents required to administer proper CPR which is difficult with the hectic working
schedule of the EMS providers and lack of proper feedback.

1.2 Cognitive assistant as a solution for the EMS challenges

A cognitive assistant that utilizes many sensors and Al/ML techniques can be used to alleviate many of the
problems faced by the EMS providers that were mentioned before. Ongoing work on cognitive assistants
can be divided into two main fronts: application and algorithmic foundation areas. The work on applica-
tion areas tends to build pipelines that integrate sensors and various techniques to build overall solutions.
Algorithmic foundation work tends to solve generic and fundamental problems that can be integrated into
the pipelines for cognitive assistants. The overarching goal of this thesis is to contribute to the algo-
rithmic foundations for EMS providers. It is beyond the scope of this thesis to incorporate them into the
full pipelines of a cognitive assistant. With recent swift advancements of Al, medical sciences experience
benefits along many avenues of Al-supported disease diagnosis, biomedical information processing, and
intelligent assistance [13]. Intelligent cognitive assistants are being developed to enhance human capabili-
ties and to reduce cognitive load experienced by humans especially when they are working in complicated
environments and tasks. For example, Wolters et al. [14] developed such a system to help people with
dementia in their daily activities. A cognitive assistant system called CLAICA was developed to help human
workers process a large amount of information efficiently [15]. Angulo et al. describes another cognitive
assistant system that can help human operators process waste amounts of information generated by various
intelligent devices efficiently [16]. Researchers have started developing cognitive assistants for the EMS
domain as well. EMS providers are required to fill-out various forms that documents the condition of the
patient and the types of interventions performed at an emergency scene. This can increase the cognitive
load of the EMS personnel. An NLP-based cognitive system has been proposed by Alemzadeh et al. which
can analyze clinical notes, patient records, and clinical guidelines to identify the state of a disease [17].
Methods to extract EMS-related information from patient care reports were developed by Kim et al. [18].
Cognitive EMS was developed by Preum et al. [19] to extract EMS-related information from the voice
which can be used to help EMS providers. GRACE is a cognitive assistant that was developed to automate
the process of form filling using speech transcripts recorded from conversations among the EMS providers
[20]. emsReACT [21] and EMSContExt [22] was developed to analyze real-time audio transcripts to give
feedback on various medical protocols. A cognitive assistant system that uses a smart glass to perform
real-time data collection and analysis was developed to perform voice analysis and to provide voice-based
feedback was developed [23]. Shu et al. [24] propose to use a mobile rescue robot as a virtual assistant
that can perform speech recognition and use Natural Language Processing and machine learning to under-
stand the surrounding of an EMS situation and provide feedback. An end-to-end real-time, multi-modal,
wearable virtual assistant was introduced by Weerasinghe et al. [25]. This system consists of AR glasses to
collect and analyze data. As seen from the numerous past work, important progress has been made which
pushes the field towards a realistic and helpful cognitive assistant. But many open questions remain to be
solved.

The future cognitive assistant that we envision is expected to use one or all of the following: a wear-
able camera, a microphone, and a smartwatch. In addition, it may also utilize an external camera. We
investigate various important problems that need algorithmic solutions that must utilize these sensors. For
example, a future cognitive assistant may use sensors shown in Figure 1.1.

Cameras will be an integral part of a cognitive assistant solution for EMS providers. Although iner-
tial sensors in smartwatches can be used for activity recognition and evaluating the quality of certain
emergency procedures (e.g. measuring the rate and depth of CPR) they have limitations. Cameras can
be used, possibly alongside smartwatch-based solutions to perform tasks that cannot be performed with
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smartwatches and as a parallel modality to improve the performance. Using cameras will provide the fol-
lowing advantages over using smartwatches.

« Facilitate object recognition
+ Can be used to recognize people (e.g through facial recognition)
* When combined with depth estimation, can estimate the sizes of various objects

» A camera worn by one EMS provider can be used to estimate the quality of an intervention performed
by another EMS provider. This may solve the problem of occlusion often faced by cameras.

Note that cameras also have certain disadvantages such as being bulky, privacy issues, and the possibility
of occlusion. Body cameras are widely used by the state and local law enforcement agencies in the United
States. This means that the above issues have been alleviated to some extent. Therefore the adoption of
cameras by EMS providers may not be far-fetched.
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Figure 1.1: Sensors used for a cognitive assistant
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Figure 1.2: Overall Architecture of the vision for a cognitive assistant, adapted from Weerasinghe et al.
[25]. The boxes in pink show our contributions.

Out of the many emergency protocols, we identify cardiac arrest as a critical protocol that many lives
depend on a daily basis. For this reason, we selected to build a set of technologies that can be part of a
cognitive assistant to help EMS providers train cardiac arrest-based medical protocols. We believe that a
similar methodology can be utilized to expand the cognitive assistant into other protocols in the future.
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1.2.1 Application Challenges

Motivated by the paper by Weerasinghe et al. [25] we propose that a future cognitive assistant may have
an architecture as shown in Figure 1.2. The video and audio data from a smart glass, body camera, or
external camera will be transmitted to an edge device running inference algorithms. Video feeds have
been used for tasks such as object recognition and activity recognition as proposed by the paper. Audio
data can be used to perform speech recognition. The results from object and speech recognition can be
used for the protocol (e.g. cardiac arrest) and intervention (e.g. CPR) prediction. The predicted protocols
and interventions can be used to provide feedback to the EMS providers. The IMU data from smartwatches
have been used for recognizing activities [26] and estimating the quality of interventions such as CPR [27].
A cognitive assistant may use the IMU sensors in the smartwatch such as accelerometer and gyroscope to
detect activities that are performed by the EMS providers. These sensors will also be used to measure
the quality of interventions such as CPR. For example, these sensors will be used to measure the CPR
compression frequency and depth. These measurements can be used to provide real-time feedback to the
EMS provider who is performing CPR. Depth estimation is an essential capability of a cognitive assistant.
Depth estimation can be used for situational awareness (to determine which objects are closer to the EMS
provider and which objects are further away), to measure the sizes of various objects (e.g. to measure
the size of syringes and to estimate the amount of liquid contained in them) and to measure the quality
of certain EMS interventions (e.g. to measure the CPR compression depth). Since EMS providers work in
hectic environments, they often suffer from high levels of stress. Voice has been recognized as an important
modality to detect stress [28]. It is important to detect the emotional state of EMS providers and provide
feedback. This feedback can be used by EMS providers to attempt to reduce their stress (e.g. through
breathing techniques) or to exchange with another EMS person. There have been several attempts (e.g.
the paper by Weerasinghe et al. [25]) to build a complete cognitive assistant which incorporates a subset
of what was described above. However a complete cognitive assistant equipped with all the different
capabilities mentioned above with real-time feedback is still lacking. Building such pipelines are out of
the scope of this thesis since we focus on solving algorithmic challenges in each of these areas as discussed
in the next section. These algorithmic improvements in the future will help researchers to build a more
comprehensive cognitive assistant.

1.2.2 Algorithmic Challenges

Five main research gaps were identified as necessary to realize the vision of a cognitive assistant mentioned
in the previous section. The gaps, their relationship to EMS, and the novel algorithmic solutions are
discussed next.

1.2.2.1 Monocular Depth Perception

A highly accurate visual depth perception is essential for many visual tasks the cognitive assistant will
face. For example, when the EMS provider is performing CPR, estimating CPR compression depth with
vision demands a highly accurate depth perception method that can be used to measure depth variation
of the patient’s chest or the hands of the EMS provider. Such solutions can also be utilized to measure
the depth of intubation, the amount of compression of bag valve masks and to measure the size of objects
such as syringes. Although active methods such as structured light and Time-of-Flight (TOF) sensors can
be used to measure depth, these methods require specialized hardware and are power-hungry [29] [30].
Stereo vision can also be used to measure depth in an accurate manner. However, this requires accurate
point matching between the two images taken by two different cameras. Accurate depth perception in
this manner suffers from errors caused by the point-matching algorithm. Further, the necessity of two
cameras adds weight and increases power requirements. Defocus blur can be used to accurately measure
depth with just a single camera [31] which is applicable to a future cognitive assistant for EMS providers.
These depth estimation techniques are developed for a given specific camera. The models trained with
images from one camera will not work on another camera. However different emergency response centers
may use different cameras. It is important for our models to be camera-independent. We are the first to
introduce such a technique for depth estimation from defocus blur. We introduce a quantity called K.,
that encapsulates various camera parameters that affect the defocus blur and introduce a novel technique
to estimate the K,,,, for a new camera which we call "Defocus Calibration”. This estimated value for
K.um can be used in our deep learning model to eliminate the dependency of the model on a specific
camera. The outcome is a solution that can be used for depth perception in various first responder sites
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and using different cameras. This solution can be helpful in other areas such as in augmented reality
gaming, estimating depth in microscopic scenes, and in endoscopic videos.

1.2.2.2 EMS related Datasets

Research into quality evaluation for EMS protocols such as cardiac arrest, especially for CPR is lacking [12]
[10]. The main reason for this is the clear lack of data to train machine learning models. We collected
the first multi-modal dataset of CPR quality evaluation of 24 participants performing 292 CPR sessions of
roughly one minute. External cameras and a body camera, and a smartwatch was used to gather data.
A depth sensor installed in a CPR manikin was used to obtain ground truth CPR compression depth and
rate. This novel dataset can be used by EMS researchers to make progress in estimating CPR quality with
smartwatch and computer vision techniques. [add the link]

1.2.2.3 Quality estimation for CPR

CPR is one of the most important steps in cardiac arrest-related EMS protocols. It is critical to maintain
the appropriate rate and depth of CPR to achieve high-quality CPR. Developing techniques that can auto-
matically measure the CPR depth and rate would significantly benefit the EMS providers both in training
and in the field. We show that our solution allows us to use a smartwatch to measure the CPR quality by
estimating depth and rate in an accurate manner (the rate and depth estimation errors were 5.4 compres-
sions/min and 6.6 mm (RMSE)). This means our solution can be used in the future to provide valuable
feedback to the EMS responders thereby improving their CPR performance.

Under certain circumstances, EMS providers may not wear a smartwatch and they may already have a
camera at the scene (e.g. in a smartglass or as an external camera). It is beneficial to explore the possibility
of using a camera to evaluate the CPR performance as well. We developed a novel technique to measure
CPR depth and rate with cameras. We estimated the CPR rate by tracking the wrist position on the hand and
estimated the CPR depth by estimating the distance to the hand from the camera using the novel defocus
blur technique we developed. The average CPR depth estimation accuracy over all the participants and
sessions to date is 25.60 mm (RMSE). The average rate estimation error is 16 compressions per minute.
This level of error is larger than the smartwatch-based solution. We observed that the performance of
the vision-based CPR quality estimation method vary depending on the participant and the CPR rate.
Higher CPR rates resulted in a larger error on average for both depth and rate estimation. Under certain
conditions (for certain participants and for medium to lower rates), the error becomes significantly lower
(less than 5 compressions/min and 11 mm). We have identified several sources of error which resulted in
the accuracy drop compared to the smartwatch solution (more details can be found in Chapter 4). These
results of error can guide future researchers to further improve the performance of the camera-based CPR
evaluation techniques.

1.2.2.4 Emotion recognition in noisy environments

EMS providers sometimes operate in a very noisy and chaotic environment. For example, they might
work on sidewalks where traffic noise is commonplace, or in buildings with significant ambient noise.
Both human speech (other than the user) and environmental noise sources may pollute the audio signal
observed by the cognitive assistant. The cognitive assistant must make inferences about the emotional state
of the user in this noisy environment. Such a system can be used to provide feedback to the EMS provider in
order to reduce stress. Current Speech Emotion Recognition (SER) systems fail to infer emotions with high
accuracy under noise [28]. Noise-robust emotion recognition models must be developed for the cognitive
assistant to handle noisy environments. We introduced three techniques to mitigate the adverse effects
of noise on vocal emotion recognition systems. First, we showed that by combining both magnitude and
phase features (in the form of magnitude and Modified Group Delay (MGD) spectrograms) as the input
to the model improves the noise robustness. Training the model with input voice samples mixed with
Gaussian noise also improved the noise robustness of our model. The third technique is to use an attention
mechanism in our model. We saw that the attention mechanism can help our model to give more attention
to the clean part of the input and pay less attention to noise-corrupted sections which resulted in a model
with higher noise robustness. Apart from the EMS domain, these general techniques may be helpful in
areas such as telehealth, helping caregivers of dementia patients, helping PTSD patients, and assessing the
emotional state of callers to an emergency call center.
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1.2.2.5 Activity Recognition with Limited Data

It is important to detect various steps in EMS protocols such as cardiac arrest. A cognitive assistant can
potentially use the detected step/activity to provide feedback to the (trainee) EMS responder on missing
steps or possible next steps, or to help automatically generate reports on which EMS protocols were per-
formed. There is a lack of research trying to detect various steps due to the lack of data available. We
introduce a novel few-shot learning technique to build models that can be used to detect activities with a
limited amount of data. We showed that including a center loss while training our model helped to gener-
ate embeddings that have a better separation between different classes. The model adaptation technique
that we introduced can further improve the performance of the model on a few shot classification tasks.
The efficacy of these techniques was demonstrated on several public activity recognition datasets. These
general techniques can be used in the future to detect various EMS-related activities and their steps. Note
that the usage of these techniques is not limited to the EMS domain and they can be used in other domains
such as rehabilitation monitoring, elderly assistant, fitness tracking, and gesture control.

1.3 Thesis Statement

By gathering an extensive dataset on specific EMS-related protocols and enhancing the current technology
in areas such as depth perception, learning from minimal examples, and noise-resistant emotion recogni-
tion, we can overcome several key barriers that hinder the development of an intelligent cognitive assistant
aimed at addressing the challenges faced by EMS providers.

1.4 Contributions

This dissertation makes the following key contributions to the fundamental algorithm field of research in
emergency response:

+ We create the first multi-model dataset that can be used to evaluate CPR performance. 24 par-
ticipants were asked to perform CPR at various compression depths and compression rates using a
manikin equipped with a sensor to collect ground truth on CPR compression depth and rate. Data was
recorded with a chest-worn camera (also equipped with an IMU), two external stationary cameras, a
smartwatch, and a depth sensor placed inside the manikin. The collected dataset can be found here!.
We collected a dataset of hand images from 17 participants, using two cameras and their ground
truth depth maps. This dataset was used to train and evaluate depth models that can estimate hand
depth using defocus blur. The hand dataset can be downloaded here?.

We demonstrate that a smartwatch or an external camera can be used to measure CPR compression
depth and rate accurately. Our smartwatch-based model achieved an error of 5.4 compressions per
minute when measuring CPR compression rate and an error of 6.6 mm when measuring CPR com-
pression depth. The external camera-based method displayed an error of 16 compression per minute
when measuring the CPR compression rate and 25.6 mm when measuring the CPR compression depth.
Although the depth estimation errors are significantly higher than the smartwatch-based model, we
observed that the performance is much better under lower CPR rates and for certain participants (e.g.
errors of less than 5 compressions/min and 11 mm for certain cases). We identified several sources
of error and plan to improve our methods aiming to lower the errors.

We showed that defocus blur can be used as a highly accurate tool for measuring depth using a single
camera. Our methods achieved lower depth estimation errors than the state-of-the-art methods. The
error reduction is around 3cm under the DDFF12 dataset, 7cm under the NYU depth v2 dataset and
around 5cm for the synthetic dataset we created. This method was used to measure CPR compression
depth with an external stationary camera. The method is sensitive to the characteristics of the camera
used. A novel calibration method was developed in order to use this depth estimation method across
many different cameras. Our research on camera-independent depth estimation with defocus blur
was published in IEEE/CVF WACV [32].

Inttps://drive.google.com/drive/folders/16f-1YaFIpey53A1BGeSe2LREZzIYF-8AH?usp=sharing
2https://drive.google.com/drive/folders/1dFCp7cc1Ai7xwaDgrOBBVkcWkaPP2YC9?7usp=sharing
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» We develop a novel Few Shot Learning (FSL) algorithm that uses the IMU of the smartwatch for
activity recognition. Our model could recognize 7 activities on the PAMAP2 dataset with around
60% accuracy under a 1-shot setting while achieving 78% on a 5-shot setting. This is a general result
that can be applied to steps in protocols used by first responders. The findings were published in an
IEEE PerCom workshop [33].

We develop several methodologies to build a noise-robust emotion recognition model for the estima-
tion of the emotional state of the EMS providers in a noisy environment. Our methods showed an
average accuracy of 76% on the Berlin Database of Emotional Speech. This is a significant improve-
ment over the previous state-of-the-art model which had an accuracy of 56%. These contributions
were published in the Journal Smart Health volume 19 [34].

1.5 Overview of this Dissertation

The next sections of this dissertation will begin with a discussion of the background and related work. The
next chapter will present the theory on using defocus blur for depth estimation followed by the details on
how to eliminate camera dependency of this method. Next, the performance of the model will be presented.
The next chapter will provide details on the collection of the CPR dataset followed by a discussion on how
smartwatches and cameras were used to estimate CPR compression depth and rate. The few shot-learning
techniques that can be used to recognize activities with a limited amount of data will be presented next
followed by evaluation results. The next chapter presents details on improving the noise robustness of the
vocal emotion recognition models. The dissertation will conclude with several final remarks.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents the most relevant work in the main topics discussed in this dissertation. These topics
are monocular depth estimation, EMS protocol quality assessment, few shot learning, and noise robust
emotion recognition.

2.1 Monocular depth estimation with defocus blur

Computer vision based depth estimation has many applications such as augmented and virtual reality (AR
and VR) [35], autonomous robotics [36], background subtraction, and changing the focus of an image
after it was taken [37][38][39]. Techniques such as structure from motion, structure from shading, shape
from structured light, shape from defocus blur, depth from focus, multi-view stereo and Time-of-Flight
(ToF) sensors can be used to estimate the depth of a scene [29, 30]. Active methods such as structured
light and ToF sensors need specialized hardware and are power hungry. Stereo techniques measure depth
by relying on multiple cameras to take several pictures of the scene. Techniques such as structure-from-
motion and depth-from-focus [40] require several images of a static scene to estimate it’s structure. Also,
the assumption about a static scene does not hold when the scene is changing over time. Furthermore,
structure from motion can only recover the depth of a scene up to a scale and cannot measure the absolute
depth.

Single image defocus blur based depth estimation is a fairly under-explored topic in the literature [37]
which utilizes the phenomena that certain objects in a photo appear more blurred than the others depending
on the distance to those objects from the camera. Therefore, measuring the amount of defocus blur at a
point of an image can provide a way to recover the depth to the respective point in the real 3D world. As
we will show in Section 3, this method is effective for close range depth measurements (typically under
2 to 3 meters). This makes defocus blur-based depth estimation techniques ideal for measuring depth
under many situations including in microscopic scenes [41, 42] and measuring depth to hands and nearby
objects for a wearable camera. Certain animals in the natural world have the capability to estimate the
depth of objects using the defocus blur. Nagata et al. have observed that certain parts of the principal eyes
of the jumping spider is capable of focusing the light in different ways and this creates a blurred and a
non-blurred images of the scene. Their brain can compare the blurred and the well-focused image in order
to estimate the depth of the environment in front of them [43].

2.1.1 Depth from RGB images

Estimating depth maps from images can use various characteristics of images such as semantics, stereo
matching, blur or differences in blur over a stack of images. [44-46]. Although stereo matching based
and blur based depth measurements are seen as completely separate methods, Schechner and Kiryati [47]
showed that both of them can be understood under the same mathematical formulation. A depth map
can be estimated for the given image based on the domain knowledge on the structure of the objects in
the image embedded in the estimation model [48-52]. Methods such as ZoeDepth [51] and VPD [52]
have pushed the state-of-the art to be very accurate in measuring depth. However, a problem with these
methods is that the estimated depth is only an approximation based on the structure of the objects. This
makes these models sensitive to domain changes [29]. Also, techniques that can recover 3D structure from
RGB images such as structure from motion can only estimate relative depths in a given scene [53].
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2.1.2 Depth from defocus blur

The amount of defocus blur can be used to measure the depth of a scene from images. Since these methods
rely more on blur which is a local feature of the image to estimate the depth, they are more robust to
domain changes [29]. Shape/depth from focus methods aim to measure depth to a scene given a stack
of images of different focus levels. A measure of the sharpness of each pixel of the images over the stack
is calculated. The depth of a point is taken as the focus distance with the sharpest pixel. Various meth-
ods such as the Laplacian or sum-modified-Laplacian, gray-level variance and gradient magnitude squared
were traditionally used to measure the sharpness [54, 55]. Modern methods utilize deep learning to auto-
matically learn the sharpness measure from focal stacks [37, 40, 56]. But deep learning based techniques
require a large amount of data to train [38].

Depth from focus methods that use a focal stack of the same scene has several drawbacks. First they
assume the scene is static during the time needed to acquire several images with different focus (focal
stack). Second, an accurate registration of the images in the focal stack is needed due to focal breathing
(slight change of the filed-of-view of the camera due to changes of focal distance) or small movement of
the camera and/or the scene [57]. Therefore, more investigation on depth estimation with a single image
is necessary. Depth from defocus/blur relies on measuring the exact blur on a single image to estimate
the depth and cannot use the relative variation of sharpness/blurriness of a focal stack. Due to this, depth
from blur can be used to estimate the depth from a single blurred image [29, 38, 58-60]. Certain works
are also concerned about removing the blur at the same time as estimating depth [38, 58, 61].

Estimating depth from the amount of the blur of a single image is ill-posed. This is due to having two
possible depth values for a given blur [29]. Researchers have taken two different paths to solve this.

One solution is hardware based. One example for this is changing the shape of the aperture (coded
aperture) of the camera to a shape that can help avoid the ambiguity. Tkoma et al. [62] used deep learning
to learn the optimal shape for an aperture and came up with a prototype camera to measure depth from
blur. Another example is to use a lightfield camera which takes many pictures with closely spaced micro
lenses placed inside the camera [63]. The second approach is to use the domain knowledge (e.g. the
shape and sizes of objects in the scene) of the scene to remove the ambiguity. Our research falls into this
category. Gur and Wolf created a model which can generate the depth map of a scene given the blurred
image and the All-in-Focus (AiF) image [29]. They also make certain assumptions about the shape of the
blur circle. Usage of both AiF image and blurred images in making prediction makes this model less useful
in certain situations because both of these images are not usually available from regular cameras.

Many methods in the literature first estimate the blur of a given blurred image and secondly estimate
the depth from the blur. Physical consistency between the estimated blur and depth has been used as a
form of domain knowledge by Zhang et al. [60]. Lu et al. create two separate models to estimate the
blur and the amount of focus (sharpness) of a given blurred image. They claim that this method provides
better estimates of depth due to the capability of estimating both blur and the sharpness of an image [64].
But since sharpness is just the inverse of blur, a question remains that by estimating blur aren’t we also
estimating the (inverse of) sharpness.

Ban et al. [41] extend depth from blur to microscopic images. Certain works focus just on blur estima-
tion from a blurred image. Tai and Brown use hand crafted features of an image to estimate the blur map
[65] while Zhuo and Sim assume that the edges in the images are step edges [66]. Cun et al. estimated
the blur of a given image to separate the blurred and focused areas from a blurred image [67].

While all of the above methods assume that the blur is a single parameter (e.g. Gaussian or disk shape)
Liu et al. expand our understanding by introducing a two parameter model. This model is also helpful in
removing errors due to pattern edges [57].

2.1.3 Camera dependency of depth from blur

Certain characteristics of blur depend on the camera that is being used to acquire the images. The blurred
image of a point has the same shape (but scaled) as the lens aperture. For example, if the aperture is
circular, the blur of a point is also circular theoretically. But in practice this is a Gaussian due to diffraction
[59]. In this research we assume all the apertures are circular in shape.

The size of the blur of a point depends on many other parameters of the camera. The f-number, focal
length, pixel size of the image sensor (if the camera is digital), camera output scale and focal distance all
affect the size of the blur [29] as shown in Chapter 3. Depth from defocus blur techniques estimate the blur
of a given image as an intermediate step when estimating the depth. This makes these models sensitive
to the variations due to camera parameters. We show evidence supporting this in our evaluation section.
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But no papers in the literature address this problem. Gur and Wolf [29] use camera parameters in their
model to recreate a blurred image. It was not used directly to predict depth and they do not test their
model under different cameras. Although Maximov et al. [38] evaluate their model on several simulated
datasets generated with different camera parameters they do not explicitly address or propose a solution
to this problem.

2.2 Few Shot Learning

Few shot learning (FSL) is a technique that can be used to teach models new tasks with very few exam-
ples. This is different from traditional supervised learning where the modes can learn knowledge from
large datasets. This is important for applications where collecting a large amount of data is prohibitive.
Human activity recognition (HAR) using wearable devices has many applications including in fields such
as healthcare, security, entertainment and human-computer interaction [68][69]. Deep learning based
methods are being applied successfully to solve this problem. However, these models need a large amount
of data to achieve a high level of performance.

Data for common activities such as walking and running are easy to obtain from public datasets, while
data for activities outside of those areas are difficult to obtain. For example, publicly available data sets
might not contain data for horseback riding or gymnastics because they are less common than walking.
Also, there may be certain personalized activities that are unique to a certain individual. For example, the
way certain individuals cook may be different from others. Therefore data for these activities are usually
unavailable during the training time. Unlike in the domain of computer vision, HAR lacks data due to the
difficulties in annotating data [70]. Consequently, HAR models which can detect activities with very few
training samples are needed.

The field of HAR using wearable devices is very active due to the advancement, smaller size and lower
cost of micro electronics and computer systems with high computational power. Their smaller size, privacy-
preserving nature and being always closer to the user makes wearable devices more suitable to HAR than
other types of sensors such as cameras [68] [71].

The performance of deep learning has surpassed the capabilities of other types of machine learning
models in the field of HAR [72] [73]. Convolutional Neural Networks (CNNs) are proved to be more
robust to the changes in underlying data distributions compared to Recurrent Neural Networks [74]. Fully
Convolutional Neural Networks (FCNs) have been shown to demand less computational and memory cost
while performing better than other techniques when significant class imbalance is present. Also, FCNs
can accommodate variable input lengths which makes it more suitable for processing various activities
with different duration. FCNs have been used successfully for HAR with IMU data with above advantages
evident [75][76].

Class imbalance is also a challenge in HAR [77]. This stems from the fact that there is more data for
common activities such as walking and running, but a limited amount of data for uncommon activities
such as grabbing a box [72]. The lack of data for certain activities can hinder the performance on these
classification tasks while creating over fitting and reducing the robustness of the classifier. Also the models
need to learn from a large amount of data to model personal variations accurately [78].

The significant time and labor costs related to collecting data only exacerbates the problem [79]. In
some cases data from certain classes may be unavailable during the development phase. In these cases,
the knowledge from the classes with many data samples can be utilized to learn general knowledge that
can be used to classify rarely seen classes [79].

Few-shot learning (FSL) is a machine learning technique that specializes in learning from a few ex-
amples. It’s aim is to learn the ability to make inferences on new classes not seen during training [80]
[81]. FSL has shown its use in several domains such as drug discovery, character generation, robotics,
image classification, gesture recognition and neural architecture search [81]. One popular example of FSL
is prototypical networks [80] where they learn a non-linear mapping from input space to an embedding
space. Source class prototypes are calculated as the mean values of embeddings from each class. Learning
is performed by minimizing the softmax over distance from training samples to their embedding class pro-
totypes. Under the FSL setting, prototypes for target classes are calculated similar to prototype calculations
during training. A test sample from the target domain is classified to the closest target prototype.

In essence, prototypical networks aim to cluster the embeddings of the same classes together while
making the distance between clusters of different classes further from each other. Similar to prototypical
networks [80], meta-learning [82] learns an embedding function. These embeddings are then classified
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with a SVM. Meta-learning optimizes the embedding function using the loss obtained from the SVM clas-
sifier [82].

Most of the FSL literature is only concerned about classifying target classes but for a practical applica-
tion, source class classification may also be needed. Generalized FSL addresses this problem by devising
methods to classify both source and target samples [83] [84][85].

The research done in FSL in the HAR domain is limited. In a FSL based HAR paper [79] a long short-
term memory (LSTM) model is used to extract features and classify activities. It was trained with data from
source domain and the network parameters obtained were transferred to the model that classified samples
in the target domain. For each sample in the target domain parameters were only transferred from similar
classes to avoid negative transfer.

2.2.1 Terminology

Base dataset: In many FSL settings, a model is first trained on a relatively larger dataset. During this
learning phase, the model may learn knowledge that can be generalized to the new FSL domain. The base
dataset may be either labelled (supervised setting) or unlabelled (unsupervised setting).

Support set: Once the model learns a general knowledge from the base dataset, it is usually given a
very few examples from the new domain. The new domain consists of a new task to be solved. In the
classification problem, the new task can be an unseen set of classes. The set of such examples are called
the support set.

Query set: Once the model learns from the support set examples, it is given a set of samples called
query set that the model must used to make inferences. For the classification problem, the model must
predict the class labels for these unseen samples. The FSL performance of the model is evaluated on the
prediction accuracy on query samples.

Number of shots and ways: The number of classes in the query set is called the number of ways (V).
The number of samples in each class in the query set (X)) is called the number of shots. The FSL problem
can be called a N-way-K-shot task.

Next, several research areas that are related to Few Shot learning are mentioned.

2.2.2 Meta learning

Meta Learning or “learning to learn” technique tries to find a set of model parameters that can be quickly
adapted to a new task by training over a range of different tasks.

2.2.2.1 Metric-Based Methods

Metric-based methods learn a embedding space so that samples of the same place will assume locations that
are closer together in the embedding space while samples of different classes will occupy embeddings that
are further away from each other. In Model-Agnostic Meta-Learning (MAML), first the model is trained on
a range of tasks. During this "task-specific adaptation” phase, the model is adapted to each task with one
or several gradient decent updates. Next, during the "meta-update” phase, the model parameters of the
original model is updated so that the performance on each individual tasks are improved. The weights of
the model are updated so that the change that the model parameters must undergo during the task-specific
adaptation is minimized. This requires obtaining the second-order gradients of the model parameters [86].
Similar to MAML, the L2L-by-GDGD technique by Andrychowicz et al. learns how to update the optimiza-
tion parameters of a model given a small number of samples [87]. Reptile is a simplification to MAML
where rather than taking the second-order gradients of the parameters, gradients are updated at each step
of task-specific adaptation. This makes the Reptile algorithm simpler and less computationally intensive
[88]. Meta-SGD is an extension to MAML where not only the initial parameters, but also the learning rates
and update directions are learned for each parameter [89]. LEO (Latent Embedding Optimization) learns
an encoder-decoder pair to better optimize the model weights. The encoder creates a latent embedding
for the model weights. The decoder can reproduce the model weights. LEO learns to optimize the model
weights in the latent space through learning a range of tasks. Regularization methods are employed to
restrict the latent space of the weight embeddings into some distribution. The ability to optimize model
weights in a lower dimentional space can solve overfitting and improve efficiency [90]. Prototypical net-
works learns a metric space where the embeddings of the samples belonging to the same class are clustered
close to each other while embeddings of samples that do not belong to the same class are pushed further
apart. For a new task, class prototypes are defined as the centroids of the embeddings of the samples in
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each new class (taken from the support set). An unseen sample instance (from the query set) is classified to
one of the classes in the support set based on the class label of the prototype that is the closest to embedding
of the unseen sample. The training of the prototypical networks is conducted using episode based training
where each episode simulates a FSL task. Here a number of tasks from a distribution of tasks are selected
as the base task which a non-overlapping set of other classes were selected as the support and query sets
[91]. Vinyals et al. introduced matching networks where an attention mechanism is used to focus only
on the relevant examples of the support set when making a prediction on the query samples. This method
utilized full context embeddings because the inference process takes into account the whole support set
when making a prediction [92]. A Siamese network consists of two identical branches for predicting image
embeddings. This model is trained with pairs of samples. When the sample pair belongs to the same class
the embeddings are trained so that they are located in close proximity to each other. On the other hand
when the sample pair belongs to different classes, the embeddings must be further apart from each other.
Contrastive loss is used to train Siamese networks to achieve the desired operation [93]. Triplet networks
contain three identical branches for prediction. The input to the Triplet network consists of three inputs;
the anchor sample, positive sample and a negative sample. The positive sample belongs to the same class
as the anchor sample. The negative sample belongs to a different class from the anchor sample. Triplet
network can in theory learn richer representations because the network learns knowledge on both positive
and negative sample at the same time. Both Siamese and Triplet networks can learn rich representation
and operate with lower computational demand. But the positive and negative sample selection process
highly affects the performance of the networks. Therefore, sophisticated sample selection methods may
be needed for good performance on FSL problems [94]. Relation networks contains two modules made up
with neural networks; embedding network and relation network. Embedding network, similar to prototyp-
ical and matching network creates embeddings for given input samples. The relation network can output
a measure of similarity between two given embeddings. A sample from query set will be classified to the
class of the embedding which is the most similar to the query embedding. The similarity scores provided
by the Relation network is utilized to make the comparisons between the query sample and the samples in
the support set [95]. While the feature extractor of Relation networks are independent of the support set,
TADAM proposes a feature extractor that depends on the support set data and a learnable scaling factor
to scale the similarity measure [96]. Garcia et al. [97] used graph neural networks to solve the FSL task.
Data samples are represented by nodes and the edges represented by learned similarity. Though message
passing techniques, the network predicts the labels on query nodes.

2.2.2.2 Model-Based Methods

Model-based meta learning methods uses specialized architectures or memory structures to facilitate FSL.
RL? improves reinforcement learning algorithms to learn faster with a smaller amount of data, i.e for
FSL. A slow RL algorithm learns to solve different tasks while updating the weights of a recurrent neural
network (RNN). This RNN encodes the parameters required to generate a fast RL algorithm. A fast RL
algorithm to solve a given new task can be generated by the learned RNN [98]. SNAIL introduces a
novel architecture with temporal convolution networks and attention mechanism to solve the FSL problem
[99]. Meta networks utilizes an external memory and a meta-learner to quickly learn new tasks with a
small amount of data. The base learner learns to solve various tasks similar to many other meta-learning
methods. When samples for a new task is presented, the encoded version of these samples are stored in the
external memory. A specialized section of the meta network is used to query the external memory given
a query sample and generate a set of new weights for the base learner thereby making the base learner
specialized to solve the new task [100].

2.2.2.3 Bayesian meta-learning

These methods model various parameters as random variables and obtain their distributions. Hierarchical
Variational Autoencoders (HVAE) can be used to learn the statistics of a dataset with a hierarchy of latent
variables. This hierarchical nature lets the HVAE to adapt fast to a new data distribution with only a few
samples. Given the data samples from the support set of a new distribution, the statistics for each class can
be used. These statistics can be used to classify a new query sample to one of the classes [101]. Bayesian
MAML extends MAML to consider the Bayesian principles to improve model robustness, uncertainty esti-
mation and FSL performance. Standard MAML finds a set of initial parameters for the base model that can
be quickly adapted to a new task, Bayesian MAML finds distributions for these parameters. This improves
the robustness of the model and also provides a method to estimate the uncertanity of the prediction by
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predicting with parameters sampled from the distributions [102][103]. Deep kernels combine kernel based
methods with deep learning. A deep neural network extract features from the inputs. Then a radial basis
function or some other kernel function is used to calculate the pair-wise similarity between input pairs.
The features and the calculated pairwise similarities are used to make predictions by using a Gaussian
process framework which also outputs prediction uncertainties. For each new task, parameters of both the
deep neural network and kernel function are adjusted in meta-learning fashion [104].

Some recent works have shown that simple whole-classification training, where the model is trained
on all the available tasks rather that training on just a subset of tasks as done in meta-leaning can produce
comparable or even better performance than meta-learning. Chen et al. [105] showed that first perform-
ing whole-classification training and then doing meta-learning can produce better results that earlier FSL
methods.

2.2.3 Transfer Learning for Few Shot Learning

Transfer learning can be used to adapt a pretrained model to a new domain or a task. Researchers have
demonstrated that features learned by deep neural networks are transferable among a wide variety of
domains and tasks [106] [107][108]. It has shown that in certain cases transfer learning outperforms
training from scratch [109]. Transfer learning has shown to outperform more complicated meta-learning
based FSL techniques [110] [111] [112] [106] [113] specially when the domain shift between source and
the target domains are large [114] [115].

Meta-transfer learning aim to combine the best characteristics of both meta-learning and transfer learn-
ing techniques [116]. Meta-transfer learning defines new parameters scale and shift for each existing
weight and bias of a network that is pre-trained on a large dataset. These scale and shift are adjusted
based on a given meta-task. The number of parameters adjusted (shift and scale) are much less than the
original number of parameters of the network which reduces overfitting. Having a separate scale and a
shift for each weight facilitates a very fine-grained learning for each meta-task. The model still keeps the
original weights which prevents catastrophic forgetting of the original knowledge. During meta-learning
episodes, harder tasks are given priority over easier tasks and fed to the model more often than the easier
tasks. Hard task are defined as the tasks where the model performs worse. Meta-transfer learning achieved
state-of-the-art results in minilmageNet and Fewshot-CIFAR100 datasets. Chowdhury et al. show that us-
ing an ensemble of CNN models pretrained on diverse and large datasets can outperform more complicated
and well-established meta-learning algorithms. The ensemble of models are combined with a simple feed-
forward network trained with L2 regularization [117]. They show that their method of using a collection
of relatively smaller CNN models trained on relatively smaller but diverse datasets performs better than
a single much larger CNN model trained on a much larger dataset as mentioned in the Big transfer paper
[118]. Chowdhury et al. highlights the importance of the diversity of both the model architectures used
and the datasets. Different models can produce complementary features for the same input data. This
means at least some of the pre-trained models may produce features that are relevant to the FSL task at
hand. The library of models must be pre-trained on a diverse set of data which can reduce biases and
improve the generalization across domains and to facilitate robust feature extraction. Shen et al. pointed
at some drawbacks of transferring all the knowledge of a pre-trained model to another domain. This is
because some knowledge of the first domain may be relavent on the second domain, some knowledge
may be detrimental to the task on the second domain. To solve this Shen et al. introduces the partial
transfer techniques where certain layers of the pre-trained network are frozen while the other layers are
fine-tuned on the FSL task. Their evolutionary search method can determine the optimum set of layers to
freeze. This technique achieved state-of-the-art performance on several widely used FSL datasets [119]. A
self-supervised transfer learning technique has been proposed to solve FSL by Medina et al. [114]. They
use transformations with a random component to create augmentations of the input signal. The model is
trained to create embeddings that are clustered together for these augmentations. Note that this process
is completely self-supervised. Their technique which is named ProtoTransfer produced comparable results
with supervised methods while out-performing other unsupervised methods. Dumoulin et al. created a uni-
fied framework that can be used to compare transfer learning and meta learning techniques by combining
the Visual Task Adaptation Benchmark (ViTAB) and Meta-Dataset (MD). The resuls show that large-scale
transfer methods (models which are trained on vast datasets) outperform competing approaches including
meta learning [115]. Guo et al. created a new benchmark to evaluate FSL methods called "Broader Study of
Cross-Domain Few-Shot Learning (BSCD-FSL)” and found that earlier meta-learning methods outperformed
the newer ones on the benchmark. Further, simple fine-tuning strategies out performed more complicated
meta-learning techniques by a significant margin. Surprisingly, even randomly initialized models (rather
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than pre-training on a large dataset), when fine-tuned outperformed meta-learning techniques on some
occasions [112]. STARTUP uses a pre-trianed model on a large dataset and adapts this to a smaller target
domain that is significantly different from the source domain [120]. The authors assume no labelled data
from the target domain that can be used for training. They create a teacher and student models where
the teacher is pre-trained on the larger labelled source dataset. The teacher model creates soft-labels for
the target domain. STARTUP does not assume these labels to be very accurate. The student model learn
to predict the labels of the source domain and the match the prediction distribution of the teacher model
under the target domain (by matching distributions through KL divergence loss). It also tries to minimize
a self-supervised loss on the target dataset. This self supervise loss is obtained with the SimCLR framework
which tries to bring embeddings of the augmentations of the same input closer together while pushing the
augmentations of different inputs further apart [121]. GFL model utilizes Graph Neural Networks (GNN)
to solve the FSL problem. Given a new task, the nodes of the GNN represents the data samples. Some
nodes may have labels. The GNN can infer the labels of the rest of the nodes based on the structure of
the graph. GFL utilizes a target graph and an auxiliary graph. The auxiliary graph has learned knowledge
from a a larger dataset which is potentially significantly different from the target dataset. The target graph
models the target dataset. The auxiliary graph can transfer important knowledge to the target graph that
can improve the performance of on the FSL task [122]. Chen et al. found that including a self-supervised
task between pretraining and the FSL task can improve the FSL performance under Natural language pro-
cessing tasks. The self-supervised tasks include masked word prediction tasks related to next sentence
prediction [123]. Most of the FSL techniques are called inductive FSL where the model is first trained on
a labeled base dataset and then adapted to the target dataset with a very small number of labeled data.
In contrast, transductive FSL techniques can utilize the unlabelled target data along with labelled base
data when training the base model. The Shot in the dark paper by Chen et al. shows that self-supervised
training on unlabelled data alone from either or both the base and the target dataset can outperform the
best trasnductive FSL methods on datasets like mini ImageNet and tiered Image Net. These resuls builds a
compelling case for self-supervision for FSL [124]. The category traversal module from the paper by Li et
al. can consider the whole support set when predicting the label for a given sample for the FSL task. This
differs from the traditional FSL solutions which only consider a single sample from the support set to be
classified. But considering the whole support set, this solution can generate a set of features that are more
suitable for the given task [125].

2.2.3.1 Test-Time Adaptation

Test-Time Adaptation (TTA) techniques introduces methods to adapt a pre-trained network during the
inference time into a new domain which typically only contain a scarce amount of data. This is different
from the traditional setting where the network is once trained on a base dataset and fixed thereafter. Many
recent TTA techniques assume that they will not have access to the training data or labels for the target
domain during TTA. TTA adaptation differs from similar techniques such as domain generalization which
needs specialized training techniques and domain adaptation which demands access to both source and
target domain data at the same time [126]. TTA can be divided into several main areas depending on
the main problem it is trying to address. Test-time domain adaptation utilizes all the test data before
generating the final prediction. Test-time batch adaptation adapts the original model to a single target
batch at a time. Online test-time adaptation adapts the original model in an online manner. Here target
batches are used by the model in an online manner. The model may see a target batch only once. But it
can utilize the knowledge gained through a target batch for the batches encountered in the future batches
[126].

Hu et al. uses a backbone network that was trained on a large dataset as the feature extractor. They
note that when this model is used on a new task, the feature distribution deviates from being a Gaussian-
like distributions to a more skewed distribution. They introduce a power transform that can convert the
feature distribution back into a Gaussian distribution thereby improving the performance of the model on
the new domain [127]. TENT [128] introduces a novel technique for domain adaptation. A pre-trained
model is adapted to a new domain or a task by optimizing the scaling and shift parameters of the batch
normalization layers of the model. They assume no labels for the new domain. An entropy minimization
loss is used to minimize the entropy of the model on the test dataset. This is based on the assumption
that low entropy of the predictions of a network is associated with higher accuracy. TENT showed a sig-
nificant improve in performance in areas of image classification (including corrupted images and domain
shifts) and semantic segmentation. Conventional batch normalization (CBN) uses running statistics (mean
and standard deviation) from the source dataset to normalize batched data at batch normalization layers.
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Transductive Batch Normalization (TBN) methods such as used in TENET uses statistics from the test set
in the BN layers. TTN by Lim et al. improves the TTM by combining TBN and CBN by calculating and
adaptive version of statistics by interpolating between the statistics of the source and the target domains
[129]. Note that TTN does not seek to optimize the scale and shift parameters like TENT does. Although
direct comparison between TENT and TTN are lacking, TTN might be more appropriate for cases where the
labelled target data is noisy. But TTN method might add additional complexity due to the weighted inter-
polation between the source and target statistics. TENT on the other hand adds not additional complexity
since it relies on regular back propagation based training on the test dataset. However TTN is shown to
outperform other methods including TENT for smmaller batch sizes. RoTTA address the dynamic nature of
test time adaptation. It assumes the test data shifts in a dynamic manner. For examples the images captured
by an autonomous vehicle may gradually shift domains from a sunny day time to night time. In a method
that has some similarities to TTN, RoTTA starts the BN layers of their model with statistics from the source
domain and updates them gradually with the running statistics for the target data it encounters [130].
Segu et al. uses TTA for the domain of multiple object tracking. They tested this technique under various
domain shifts including sim-to-real, outdoor-to-indoor and indoor-to-outdoor [131]. Niu et al. showed
that minimizing entropy and adjusting batch normalization layers similar to TENT can produce unstable
results under several realistic conditions. TENT assumes that the test data only contains a single domain.
But in certain realistic situations, this might be not true. For example, an image recognition model might
encounter both out-of-focus images and images captured with different lighting conditions compared to
the source dataset. They also showed that TENT fails when TTA is performed with single samples instead of
using a batch. The next failure case encountered by TENT is when the TTA is performed with imbalanced
number of labels in the batch. Niu et al. posits that these failures may be due to the mean and standard
deviation calculated by the batch normalization layers being biased under the test conditions. They show
that using layer and group normalization which do not depend on the batch statistics rather than utilizing
batch normalization can sometimes solve these failure cases. They also introduce a method to filter out
noisy samples in the test data by avoiding the samples that generate gradients that are too high. They
also improve the entropy loss from TENT to be a sharpness-aware entropy minimization method. Niu et
al. expriment on the ImageNet-C dataset which contains 4 main categories of image corruptions (noise,
blur, weather and digital) which signifies the domain shifts [132]. AdaContrast [133] first obtains a model
pre-trained on the source dataset. Then it generates pseudo labels for the target dataset. These labels may
be noisy due to the domain shift. To alleviate the problems with the noisy pseudo labels, AdaContrast
utilizes a voting scheme while considering the nearest neighbours of embeddings features of a given target
input. The paper evaluate AdaContrast on image recognition datasets (VisDA-C and DomainNet-126) and
achieve state-of-the-art results beating other methods including TENT.

Most of the TTA methods described above adapt a model that is already trained on a source domain
to a target domain when there are no target labels are available. But the task that the model must solve
is the same. For example for the case of classification, the class labels do not change. But during FSL, the
classes do change. Previous literature have not utilized TTA techniques to solve the FSL problem itself.
Bennequine at.al [134] takes an important step towards this direction. But their usage of TTA is aimed
to address the domain shift between the support and query sets. They utilize prototypical networks to
address the FSL problem itself. Liu et al. introduces a graph-based solution where all the target samples
are mapped to a graph. In this graph, support set samples are assigned with a label. The model predicts the
labels for the query set after considering the whole target dataset. This is different from regular FLS setting
where only a single batch is considered at a time. This can be considered as a TTA based FSL technique
because the model structure being adapted to the whole target set [113].

2.3 EMS protocol quality assessment

2.3.1 EMS provider training and use of augmented reality solutions

Although regular training was provided to EMS personal, a significant number of them are often find them-
selves unprepared at an emergency situation. To overcome this, cognitive assistant, VR and AR solutions
have been proposed [135] [136] [137]. Rahman et al. [20] [138] developed a cognitive assistant based
solution to extract vital information such as about patient condition and medical history from the con-
versations among EMS providers and patients. Preum et al. proposed a method to automatically curate
domain specific knowledge (e.g. EMS domain) using natural language processing that can be used to de-
velop cognitive assistants [22]. Sharon and Daniel used a VR environment in early 2000s where the users
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could interact with virtual objects which prepared emergency responders for bio-terrorist attacks [135].
Wilkerson et al.. created a similar solution where the feedback they received suggested that VR can be
successfully used to train first responders [137]. Koutitas et al. devised both AR and VR solutions to train
first responders to operate in an ambulance bus environment [136] [139]. After training with the AR/VR
experience created with the head mounted displays, the participants experienced better preparedness to
tackle real life emergency situations. One of the limitations of VR based solutions is that the user does not
get to touch and feel the real life objects. AR based solutions can fuse the benefits of VR and the realities
of actual physical interaction with the real world.

2.3.2 Cardiac arrest and CPR protocols

The EMS protocol for cardiac arrest is complicated and can include interventions such as ECG, ventila-
tion, cardiac monitor, chest decompression, CPR, defibrillation, and intubation. It is critical that the first
responders perform the medical procedures with the correct techniques and protocols. Adherence to the
correct techniques and protocols during medical procedures such as Cardio-pulmonary Resuscitation (CPR)
can save lives [10]. Regulatory bodies have put forward protocols and guidelines on how to best perform
Cardio-pulmonary Resuscitation (CPR). It is difficult to memorize the protocol and deliver CPR according
to the accepted guidelines [12]. Hence, CPR delivery is often sub optimal and the compressions are too
shallow. Proper CPR technique can significantly improve the survival of the patient[10]. Therefore, good
feedback on the CPR procedure for the trainees is important. Providers monitoring a CPR procedure can
provide feedback on the quality of the CPR based on visual observation. But this feedback can have sig-
nificant biases. For example, the accuracy of such feedback depends on the viewing angle [140]. It has
been observed that health care providers often have an erroneous estimate of the quality of their own CPR
performance. Visual human real-time CPR feedback and recent CPR training (or Just-In-time Training;
JIT) can improve the perception of CPR depth, but did not improve other CPR quality measures such as
rate of Chest Compression Fraction (CCF). This demands more objective measures of CPR quality during
training and actual resuscitation [141]. In a study conducted spanning nine pediatric institutions found
that despite JIT CPR training and real-time visual feedback or none of these interventions, there is a sig-
nificant variability in CPR compression rate and depth. This calls for high quality real-time CPR feedback
[142]. In a study conducted with 244 lifeguards revealed that while most of them adhered to the CPR
guidelines, there are issues with ventilation and compression depth. Also most of them had not received
pediatric-specific CPR training and felt more confident performing CPR on adults compared to children.
The study recommends use of electronic feedback manikins during training [143]. It has been shown that
using real time feedback from a pediatric manikin can significantly improve the CPR compression quality
in terms of depth and rate in a study involving 75 healthcare providers [144]. Another study showed that
both JIT CPR training and real-time feedback from a device called CPRcard improved CPRO depth and
rate performance of 108 three-person teams [145].

2.3.3 CPR quality metrics

Detection of chest compression is a preliminary requirement of assessment of CPR quality. Quantities such
as frequency and number of chest compressions, chest compression fraction (CCF) and chest compression
rate (CC-rate) can be derived from the chest compression detection. In addition, compression depth (CD)
and exerted force can be used to evaluate CPR. Studies have shown that there is a correlation between
these parameters and survival rate, spontaneous circulation and restoration of the patient [10]. Among
various CPR quality measures CPR compression depth and rate have been used for many studies. A positive
relationship between good CPR rate and compression depth with improved physiological response has been
shown [146]. In this study we use CPR compression depth and rate as our CPR quality measures.

2.3.4 CPR quality measurement solutions

A human observer cannot measure certain quantities such as compression depth with high accuracy, but
can only give a rough estimate of the adequacy of the compression depth under visual observation of a
trainee performing CPR. To solve such problems, an automated system that can evaluate the quality of
various medical procedures is needed. It has been shown that when given real time feedback on CPR
quality, participants displayed a significantly better CPR quality in terms of CPR compression rate and
depth [147].

CPRcard is a credit-card-sized device equipped with accelerometers that can be placed on a CPR manikin
which CPR is administered. This device can measure the CPR rate and depth and provide feedback to the
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healthcare provider. The feedback is provided via two separate sets of LED that signals the user of ade-
quate/inadequate compression depth and rate. This device can provide CPR compression rate measure-
ments with an error rate of around +5% compressions per minute and depth estimation error of +5mm or
10%, whichever is greater [145] [148]. CPRcard has featured in several research studies [149] [150] and
has shown to help improve the CPR quality of its users. TI signals recorded with defibrillation pads is a
great signal to calculate the CPR compression rate and is shown to be in par with the the gold standard CPR
compression rate which is CPR rate calculated using compression force or combined ECG and TI signals
[151]. Ayala et al. used a modified Heartstart 4000 defibrillators to record ECG, Thoracic Impedance
(TI) signals from the regular defibrillation pads while also recording chest force and acceleration signals
through modifications. They calculated a chest compression depth using the TI, force and acceleration
signals and showed that both TI and and a combination of chest force and acceleration can be used to
accurately measure the CPR compression rate and Chest compression fraction [10]. Lu et al. presented
a method to calculate the CPR compression depth based on a measure of the magnitude of acceleration
obtained with a smartwatch and the ground truth rate of CPR compressions obtained with a CPR manikin
[152].

2.3.5 Data scarcity for CPR

Although previous research considered automatically evaluating the quality of CPR, they have not con-
sidered visual modality or wearable devices [10][12]. Smart devices like smartphones, smartglasses and
smartwatches have become cheap and ubiquitous. They can provide a cheap and accessible solution for
providing feedback for trainee first responders on medical procedures such as CPR. But to train models on
such modalities, a large amount of training data is required. To solve the lack of training data, A compre-
hensive dataset of participants performing CPR on a dummy was collected. Data from various modalities
including vision, audio and IMU sensors were collected.

2.4 Noise Robust Emotion recognition

2.4.1 CNNs for SER

Deep learning has become the state-of-the-art of many audio classification tasks including SER [153].
Within the deep learning domain, CNNs have become popular for computer vision tasks [154]. But if
any set of features can be represented as images or stack of images (multi dimensional arrays), CNNs can
be used to classify them. Magnitude spectrograms obtained via Discreet Fourier Transformation (DFT) of
audio signals is commonly used as the input to CNNs in audio classification solutions. Because spectrograms
are 2D images, the audio classification problem may be treated similar to a regular image classification
problem using a CNN [154] [155] [156] [157]. [157] showed that CNNs are better suited than Deep Neural
Networks (DNN) and Long Short-Term Memory (LSTM) networks for the SER problem. Although it is not
straightforward to compare state-of-the-art models in SER due to the variety of datasets and evaluation
methods, CNNs seems to be performing better than other types of classifiers for SER.

2.4.2 Inputs for CNNs

In terms of CNNs various types of inputs qualify for the task of SER. [158] found evidence that frequency
domain features are better suited than time domain features for acoustic event classification using deep
learning. Various frequency domain inputs such as DFT components [158], magnitude spectrograms [159]
[156] [160] [155] [161] [157] [162] [163] [153] [164] and wavelet features [165] have been used in
the literature. Spectrograms can retain more information than most hand-crafted features and are low
dimensional than raw audio [155] and are one of the most commonly used feature types for audio related
tasks.

Spectrograms are obtained by performing Discrete Fourier Transformation (DFT) on the audio signal.
DFT of a signal around the sample n can be represented by
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Here the frequency of the component X, (w) is w and w is a windowing function. X, (w) is a complex
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number and can be represented in terms of magnitude and phase angle as.
X (w) = | X (w)[e?r9En ()] 2.2)

Here arg[ X, (w)] is the angle between imaginary and real parts.

If DFT of a signal was taken with sliding windows a distribution of frequency characteristics along time
axis can be obtained. This is called a spectrogram. If the magnitude part | X,,(w)| from equation 2 is used,
this is called the magnitude spectrogram. If the part arg[X,,(w) is used, it is called a phase spectrogram.
To recreate the original signal from the DFT components, both magnitude and phase parts of the signal
should be used [166].

But traditionally only the magnitude spectrogram is used and the phase spectrogram is ignored [167].
This is mainly due to the fact that the phase is discontinuous due to mathematical problems occurred
when calculating the inverse of trigonometric functions. A simple correction called phase unwrapping
should be performed to mitigate this problem. Researchers are beginning to explore the effectiveness
of the phase based features for various tasks such as speech and speaker recognition. They found that
combining magnitude with phase spectrogram improves the performance [168] of SER systems. [169]
deals with detecting gunshots from audio data. They calculate statistical features from magnitude and
phase spectrogram of the audio signal and conclude that combining these features improves performance
than just including features from the magnitude spectrogram. [170] lists different phase representations
those are being used in literature. They are relative phase shift, time-frequency derivatives of phase, phase
dispersion and phase distortion.

Modified Group Delay (MGD) is another quantity that has seen a recent rise in usage. It combines mag-
nitude and phase components of the signal. There exists some research that investigate the effectiveness
of MGD for speech and speaker recognition. But only a limited number of literature investigate this for
emotion recognition. Research shows that MGD performs better than traditional features for whispered
emotion recognition [171]. Modified Group delay can be calculated using the DFT. Let

y(n) = nz(n) (2.3)

Here x(n) is the n'* sample of the speech signal. If X (w) and Y (w) are the Fourier transformations of x(n)

and y(n) at any given n

Define
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Here Xy and Yj are real parts of X and Y. X; and Y; are imaginary parts of X and Y. To obtain S.(w),

first squared magnitude | X (w)|? of the signal z(n) is obtained and then it is cepstrally smoothed. Modified
Group Delay (MGD) can be obtained as follows.

(W) =
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T(w) = (17" (@)|*) (2.5)

In these equations « and  are parameters where (0 < o < 1) and (0 < < 1). These parameters should be
tuned depending on the application. Obtaining MGD with a moving window yields a MGD spectrogram.

Although many frequency domain feature types are being used in literature, their comparative perfor-
mance and the reason to choose a particular feature type is rarely studied [172]. But there is evidence
that different features can yield different performance levels. Even slightly changing the representation of
features can change the performance. For example, [164] use CNNs for snore sound classification. They
input magnitude spectrograms obtained with 3 different color maps. Different color maps gave different
performance.

Previous studies have considered combining different feature types as inputs to deep learning based au-
dio classification models. [161] [168] and [165] found that combining various frequency domain features
improved the performance of their audio classification models. There are different methods to combine
feature types as inputs to CNN models. [161], [173] and [174] combines each different spectrogram as
a different channel when they are input to the CNN. This is similar to the way R,G and B channels are
treated in RGB images. Different from this method, [168] and [174] concatenates two different spectro-
gram representations side-by-side to form a single image. Although it is intuitive to assume that different
methods of combining the features may yield different results very limited research is done in this regard.
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2.4.3 CNNs accepting variable input sizes

The height of a spectrogram depends on the range of frequency considered and the length depends on the
time interval considered. Since people may speak utterances of variable length, an emotion classification
models should have the capability to handle inputs with variable lengths. But traditional CNNs only accept
a fixed size of input.

One method to overcome this is to combine a CNN with a Recurrent Neural Network (RNN) model
[153] [154] [160]. In these studies the CNN acts as a feature extractor and the RNN (in this case it is a
LSTM) layer learns the time sequence relationships in these features. [153] showed that combining CNN
with LSTM better performance can be obtained than just using a CNN. This may be due to the fact that
LSTM can model the sequential characteristics of the input.

Another method to handle variable input lengths is to use a Fully Convolutional Neural Network
(FCNN). A FCNN does not explicitly model the sequential nature of the input. Instead it considers the
whole input (of variable length) and make inferences. A FCNN can be generated starting from a tradi-
tional CNN by replacing all fully connected layers with convolution layers. This can also be beneficial
because it reduces the number of trainable parameters in the CNN. [175] uses FCNN for spoken emotion
recognition task and saw that it outperformed a model which combined CNN and LSTM.

2.4.4 Performance under noise

SER systems can be adversely affected by environmental distortions. Noise and reverberation are two main
sources of distortions that could degrade the quality of the audio signal. Reverberation depends on the
characteristics of the environment that the sound is produced. Noise is generated due to sound sources
other than the one we are interested in. When the distance form the speaker to microphone increases,
increased noise relative to signal can be observed [28]. Noise and reverberation can affect the original
clean speech signal as shown in equation 6.

y(t) = h(t) * s(t) + n(t) (2.6)

Here h(t) is the room impulse response between the microphone and the speaker. s(t) is the clean speech
and n(t) is the background noise. * is convolution operation. Note that reverberation is represented as
convolution with the original signal. Noise is represented as addition [176].

Studying both reverberation and noise for SER is important because both of these distortions can affect
SER systems in an adverse manner. Previous studies have attempted to study/reduce these effects from
both noise and reverberation. For example [177] studied the effects of reverberation and [28] studies the
effects of both noise and reverberation for SER. [163] use CNN with amplitude spectrograms as input and
observed performance degradation when noise is added to the inputs. [159] use magnitude spectrogram
and provides reasoning for spectrograms may be better for handling noisy data. [178] studies the effects
of the distance to the microphone from the speaker on a SER system because increasing the distance also
increases the amount of noise with respect to that of the signal.

In this study we aim to find solutions for the adverse effects of noise on SER systems. Although the
problem of reverberation is also very important, certain solutions for that problem can be obtained easier
than the problem of noise. For instance, if we have prior knowledge that the SER system will operate in
a certain environment (e.g. living room of a house) it can be assumed that majority of the living rooms
have similar reverberation characteristics. Therefore if the SER system was trained with data recorded in
living rooms, this SER may be able to solve the problem of reverberation for operation inside similar living
rooms. The problem of background noise on the other hand is harder to solve. Although there are certain
types of noises such as air conditioner which is present in most of the house holds, there are many other
unpredictable noises such as a noise of a vehicle outside the house or a ring of an alarm. Therefore it is
not realistic to assume that all the possible noise conditions can be known beforehand. Therefore we focus
on solving the problem of background noise in this study.

2.4.5 Methods to mitigate effects of noise

Several methods can be used to reduce the adverse effects of noise on SER systems. Some of these methods
are described below.

One method is to remove the noise from raw speech signal or calculated features. This is generally called
speech enhancement. Several main categories of speech enhancement can be identified from literature.
They are spectral subtraction based [160], subspace based, statistical-model-based, Wiener-filter based
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algorithms [179] and de-noising autoencoders [180] [181]. The aim of this research is to find noise robust
features, CNN architectures and methods of training them. Once these are found, speech enhancement can
also be applied on top of our solution to further improve the performance. Future studies may be necessary
to quantify these further improvements.

The second method is using features which are robust to noise. Some features are more robust to
reverberate and noisy conditions than others [28]. According to [182] different frequency domain fea-
tures may have varying robustness for noisy data for speech recognition task. The noisy environments
they consider are background music, white noise and reverberate environments. [182] use 1st and 2nd
derivative of Mel-Frequency Cepstral Coefficients (MFCC) features for speech recognition. They found that
including the derivatives of MFCC features improves performance in both noisy and quiet environments.
[166] described MGD which is calculated using both magnitude and phase of the Fourier transformation
of the signal. MGD is analytically shown to be robust under additive noise [183] [166] [184]. Practically,
features calculated with MGD is shown to be robust under noise for speech recognition [184] [166] and
for voice activity detection [183]. We explore this dimension in this study. Only a very limited number of
research is done regarding noise robust features in the context of SER. We explore the noise robustness of
several DFT based features and their combinations.

The lack of performance of models under noisy conditions can be attributed to the difference between
training and testing data distributions. Researchers have tried to reduce this problem by trying to bring the
training data distribution closer to that of the testing data by artificially injecting noise or reverberations to
the training dataset. [28] and [177] utilize this method to improve model performance under reverberate
conditions. The same methods can be applied to noisy conditions. Limited number of research is done
exploring this dimension with regard to SER systems. In this study we explore the effect of adding synthetic
noise to training data on the noise robustness of these models.

There are evidence that certain NN architectures are more robust to noise than others. For example
[185] shows that CNN with attention mechanisms could be more robust to noise compared to other types
of models (e.g. LSTM). Attention mechanism used with CNNs can be used to improve the model per-
formance by teaching a model to explicitly pay attention to important parts of the input and to ignore
unimportant parts. [186] used attention mechanism with a CNN for image captioning tasks and observed
an improvement in performance. Similar models can be used for SER [175]. [175] uses FCNN with at-
tention mechanism and saw an improvement of performance compared to other models. But a detailed
analysis on the noise robustness of CNNs with attention mechanism was not performed in the literature.
In this research we implement an attention mechanism for a Fully Convolutional Neural Network (FCNN)
and show that adding the attention mechanism improves the noise robustness properties of the model.
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CHAPTER 3

MULTIMODAL DATASETS THAT ARE
USEFUL TO CREATE A COGNITIVE
ASSISTANT FOR EMS PROVIDERS

DSLR camera

.55 '.:.;,.r;

VL6180 Depth
sensor

Figure 3.1: Data collection setup

3.1 Introduction

As mentioned in the previous sections, we aim to develop methods that can be used by augmented reality
systems to evaluate CPR performance. Although previous research considered automatically evaluating the
quality of CPR, there are very limited considerations given for wearable devices and they have not con-
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sidered visual modality [10] [12]. Smart devices like smartphones, smartglasses, and smartwatches have
become cheap and ubiquitous. They can provide a cheap and accessible solution for providing feedback
for training first responders on medical procedures such as CPR. But, to train models on such modalities,
a large amount of training data is required. To solve the lack of training data, we collected a comprehen-
sive dataset of 24 participants performing CPR on a dummy. We collected data from various modalities
including vision, audio, and IMU sensors. There are no previous research done which uses vision as a
modality to measure CPR quality. Measuring CPR compression depth is a critical component of measuring
CPR quality. Therefore, depth estimation to hands is a critical component of our solution. There are some
datasets containing hand images and their depths. But, the range of the depth in these datasets is limited.
Furthermore, there are no existing datasets that are suitable for depth-from-defocus-blur methods. There-
fore, we collected a dataset which contains hand images from two cameras and their corresponding depth
maps.

3.2 Data collection setup

3.2.0.1 CPR dataset

For the CPR dataset, the sensors were setup as shown in Figure 3.1. The different types of data that were
collected with the different types of sensors are mentioned in Table 3.1. Data from Azure Kinect, Canon
DSLR camera, smartwatch, and the VL6180 sensor are stored in real-time on a laptop while data from the
GoPro camera was transferred after each participant finished to the same laptop. The collected dataset can
be found at

https://drive.google.com/drive/folders/16f-1YaFIpey53A1BGeSe2LREzIYF-8AH?usp = sharing

3.2.0.2 Hand depth dataset

For the hand depth dataset, only the Kinect and Canon cameras were used. The participants were asked
to move their hands, one hand at a time back and forth in-front of the Canon and the Kinect cameras
displaying various hand poses as shown in Figure 3.3. The hand dataset can be downloaded from
https://drive.google.com/drive/folders/1dFCp7cclAi7xwaDgrOBBVkcWkaPP2YC9?usp = sharing

Sensor Data type
Azure Kinect color images, depth images
Canon DSLR camera color images
Chest worn GoPro camera color images, IMU, audio
Smartwatch IMU
VL6180 sensor Time-of-flight dpeth sensor data

Table 3.1: Data sources

3.2.1 Azure Kinect camera

Azure Kinect camera can be used to obtain aligned color and depth maps which contains a time-of-flight
(TOF) depth sensor. There are multiple settings to choose from which provide various resolutions and
frames per second settings for the camera. We utilized the frame rate to be 30 frames per second. This
resulted in 30 color and depth images per second. Color image resolution was 1280x720. The field of
view of the color camera was 90 x 59 degrees in the horizontal and vertical directions. The color image
output format was MJPEG. The exposure time for the camera was set automatically. The pixel resolution
for the depth camera was set to 512 x 512 with frame rate of 30 fps which was synchronized with the color
images. The operating range for the depth sensor under these settings was 0.25 - 2.88m. The depth maps
were aligned with the color images using the C+ + Azure Kinect SDK. All our subjects in the experiments
were within this depth range [187]. For depths between 0.5 - 3.0m, it was observed that the Azure Kinect
camera has a depth measurement accuracy of under 2mm [188] [189] which is sufficient for our needs.
Azure Kinect SDK [187] and Open3D [190] python library was used record data from Azure Kinect and to
align depth images to the color image coordinate frame and resolution.
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Figure 3.3: Hand poses for hand depth dataset

3.2.2 Canon DSLR camera

EOS Rebel T100 camera with the lens EFS 18-55mm was used to capture video of the experiments. The
focal length was fixed to around 1m. The focal length was adjusted to that the manikin, hands and the
time-stamp monitor will fill the field-of-view of the camera. The frame rate of the camera was set to 30
FPS. The image resolution of the camera was set to 1920 x 1080 pixels.

3.2.3 GoPro chest-worn camera

Although we planed to use a smartglass to capture ego-centric videos, from several pilot studies we realized
that the videos captured by the smartglass is extremely shaky due to the motion of the wearer’s head.
Furthermore, the wearer might look around towards other EMS providers or objects and this will break
the view away from the manikin. Therefore, we decided to use a chest-worn camera. We used the GoPro
Hero 9 Black camera which can record color images (video), audio and IMU data from accelerometer and
gyroscope. The color image resolution is 2704 x 1520 and the frame rate is 60 FPS. The audio was recorded
at 48 KHz. Accelerometer and gyroscope data were recorded at 150 Hz.

3.2.4 Smartwatch

Accelerometer, gyroscope and magnetometer readings are recorded with Google Pixel Watch 2 at a rate
of around 50Hz. We developed an Android app called sensor_stream that can stream IMU data from the
smartwatch to the computer in real time through WiFi. A python program can read this stream of data
from the laptop. This app can be accessed here: https://github.com/sleekEagle/sensor_stream

3.2.5 VL6180 depth sensor

This sensor that was embedded in the manikin is used to get the ground truth CPR compression depth
and rate. VL6180 sensor uses an infrared based Time-of-Flight sensor to measure depth. VL6180 has an
effective range of 1-160 mm and a sampling rate of around 100Hz. According to the specs the depth
error of the sensor is around 1mm. To verify this we performed an experiment as shown in Figure 3.4.
First, the sensor was attached to a vise as shown in (a) and the ground truth distance was measured with
a vernier caliper. The VL6180 was attached to an Arduino Uno REV3 and the data was recorded into a
computer. A C program running in the Arduino reads the depth values from the sensor which a python
program running in the laptop is receiving these data from the Arduino. We get the mean distance reading
considering different window sizes. Figure 3.4 (b) shows the error when the window is 25ms while (c)
is for 50ms. It can be seen that for distances between 30mm and 90mm, the error is less than 1mm. (d)
shows the standard deviation of 2000 samples and its variation for different actual distances. It can be
seen that the standard deviation increases when the actual distance increases. The nominal distance that
we measure is around 40 mm and we mean-filter the depth readings with a window length of 33 ms which
falls under the region where the error is less than 1mm.

3.3 Methods

24 participants contributed to the dataset. Each participant was asked to perform several CPR sessions of
around one minute at different depths and rates. Most of the participants contributed to the hand depth
dataset which was done at the same time-slot right after or before the CPR experiment.
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Hand mask

Color Image

Figure 3.5: Hand transformation

3.3.1 Using timestamps

Different methods were used to obtain the timestamps for different sensors and devices. A display with a
timestamp with the format hh:mm:ss was kept next to the manikin so the Kinect and Canon cameras can
see it. This timestamp was visible to the chest work GoPRo camera at certain times. This timestamp was
generated by the laptop which is used to collect data. For each color image from the Kinect and Canon
camera, the timestamp was obtained by performing Optical Character Recognition (OCR) using Google
vision API. One image per every second was sent to the Google vision API and the timestamps for the other
images were obtained by interpolation. The output from the Gopro camera contains a timestamp and the
timestamp displayed was used to synchronize the Gopro clock and the clock used by Kinect and Canon
cameras. The sensor_stream app sends the smartwatch timestamp at each sensor event occurrence. The
python program that stores the IMU data also stores the local time of the laptop when the data sample
was received along with the IMU sensor readings. For all the purposes in this study, the laptop timestamps
are used. The python program that is reading the depth sensor readings from the VL6180 sensor stores
the local timestamp of the laptop when the depth sensor reading was received. Note that there is a slight
discrepancy between the actual times of the smartwatch IMU and depth sensor readings and the stored
timestamps for these devices, this difference was assumed to be negligible due to fast data transfer rates.

3.3.2 Data Selection

Valid sections of CPR was detected by filtering for standard deviation of the depth sensor readings. Each
valid section of CPR was termed a session in this study. All the sensor readings for each session were stored
in separate directories.

3.3.3 Data Processing

For each color image from the Kinect and Canon cameras we obtain several derivative quantities as shown
in Figure 3.5. First, the bounding box for the hand that is visible (top hand) is obtained with Grounding
Dino [191]. Next, hand segmentation maps (mask) were generated with segment anything model [192].
The wrist position of the hands were detected using two methods. First we utilize Google mediapipe [193]
to detect the wrist position of the visible hand over all of the image frames of a given CPR video. We
initially detected 21 hand keypoints for a given hand. But for our study we only use the wrist keypoint.
The wrist position given by this method can be used to estimate the CPR compression rate and depth after
measuring depth to these pixels. We experiment with a second method to track the wrist position which
is based on optical flow. The wrist position is manually detected for the first frame of the CPR video for
all the CPR sessions. This position was tracked with Lucas-Kanade based optical flow [194] implemented
in OpenCV library [195] for the rest of the images in the video. Note that for practical application, this
method required human intervention for each CPR session and can be cumbersome in the real world. We
do this for the purpose of comparison.

To create the ground truth CPR compression depth and rate, we analyzed the depth from the VL6180
sensor. Peaks and valleys are detected with Python Scipy library [196] as seen on Figure 3.6. The mean
value of the number of peaks and valleys are taken as the number of compressions in a given time. CPR
rate is taken by dividing the number of CPR compressions by the time. To get the ground truth depth, we
subtract the valley depths from the consecutive peak depths.
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Figure 3.6: Peak Detection

3.3.4 Data interpolation and synchronization

3.3.4.1 Smartwatch data

The data rate of the IMU of the smartwatch varies around 50Hz. But a constant data rate is demanded
by the machine learning models that were trained to predict depth and the CPR rate (more on these are
described later). Hence, all the smartwatch data was interpolated to be 100Hz. To synchronize all the
data, the local timestamp of the laptop was used.
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Figure 3.7: Hand transformation

3.3.4.2 Hand depth dataset

Special considerations for data synchronization was necessary for the hand depth dataset. As mentioned
before, we obtained color and depth images from Kinect camera and color images from the Canon camera.
The color and the depth images from the Kinect camera are synchronized at hardware level. But, the
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images from Canon and Kinect are not synchronized. But, in order to obtain color and ground truth depth
image pair for the Canon camera, the images from the canon and the Kinect must be synchronized. This
process is depicted in Figure 3.7. First, a color image from the Kinect camera is selected. This is depicted as
K. Then the timestamp of this image is obtained (¢;). Next, the Canon image with the closes timestamp to
ty is selected (Canon image C with timestamp ¢.). Next, the Kinect images with a timestamp immediately
lower than ¢, (KX_;) and immediately greater than ¢, (K1) were selected. Next, 3D point clouds of the
hands from these images are obtained by projecting 2D coordinates of the hand settings on the image into
3D space with the intrinsic matrix of the Kinect camera. Next, the transformation between the two points
clouds obtained from the images K_; and K is obtained with open3D iterative closest point algorithm
(ICD) [190]. Next, the point clouds obtained with the image K_; was transformed into the timestamp
t. using the transformation matrix obtained in the previous step. Then this transformed point cloud is
projected into the Canon 2D image plane with the Canon camera’s intrinsic matrix to obtain the hand
depth map for the Canon camera.

3.3.5 Camera calibration

The Azure Kinect camera provides the color images and aligned depth images. In this study we are in-
terested in measuring depth to the hands of our participants. This depth will be used to obtain the 3D
coordinates of the wrist. The 3D motion of wrist can be analyzed to estimate the CPR compression depth.
When we obtain the color images and the depth images, we can utilize the intrinsic camera matrix to
project 2d (x,y) coordinates along with the depth at that point to 3D coordinates (X,Y,Z). We can estimate
the intrinsic matrix of a camera by camera calibration. Similarly, the intrinsic matrix of the canon DSLR
camera can be estimated. The Azure Kinect camera provides us with a depth map. But, the Canon camera
does not have a depth sensor. We meed to measure the depth of the hands of our participants with respect
to the Canon camera. To do this we need to estimate the relative position and rotation of the Canon camera
with respect to the Kinect camera. Then a 3D point (X,Y, Z)ginect (@ 3D points from Kinect camera coor-
dinate frame) can be transformed into Canon coordinate frame (X,Y, Z).qnon- The relative position and
orientation of Canon camera with respect to the Kinect camera can be obtained by obtaining image pairs of
a calibration pattern from both Kinect and Canon cameras and performing stereo camera calibration. The
same set of images of the calibration patterns can be used to calibrate the cameras to obtain the intrinsic
matrices. We use Matlab camera calibration [197] and stereo camera calibration [198] toolboxes to do
the calibration. An example of an image pair is shown in Figure 3.8. The Azure Kinect, Canon intrinsic
calibration matrices (kiinee: and keanon) and the stereo calibration matrix 7" are obtained as follows.

615.87 0 640.80

kpinect = | 0 615.91 365.54 (3.1)
0 0 1
1646.60 0 634.93
keanon = | 0 1647.30 361.86 (3.2)
0 0 1

0.994 0.011  0.107  99.045
T=|-0.011 0999 -0.004 —-34.41 3.3)
—0.107 0.003 0.994 29.12

Now the 3D points in the Kinect coordinate frame (X,Y, Z, 1)xinect can be transformed to a 3D point in
the Canon coordinate frame (X,Y, Z,1)canon as

(X; }/v Z: 1)canon =T. (X; Y; Za l)kinect (34)

3.4 Dataset Description

3.4.1 CPR dataset

The CPR dataset contains data from 24 participants and 239 CPR sessions. The distribution of the average
CPR compression depth, rate and the length of these sessions are calculated as mentioned in section 3.3.3
are shown in Figure 3.9. Note that we calculate the ground truth CPR compression depth and rate are
calculated based on the VL6180 sensor embedded in the manikin.
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(a) Image from Kinect (b) Image from Canon

Figure 3.8: Calibration image pair

3.4.2 Hand depth dataset

2720 Kinect and Canon image pairs and their respective depth maps were collected from 17 participants.
Statistics of the depth values of the dataset is shown in the Figure 3.10. In the histogram of the Figure 3.10
the frequencies were counted as the number of pixels of a given depth that belonged to a region of a hand.

3.5 Models, prediction and results

3.5.1 CPR quality evaluation with smartwatch

In this section we provide details on the model that we call SW-CPR model to predict the CPR compression
depth and rate. We created a dataset (a subset of the CPR dataset) that consists of 5 second segments of
smartwatch IMU data and ground truth depth values from VL6180 sensor with 50% overlap. For each 5
second segment our model outputs two quantities. It predicts the mean CPR compression depth. It also
tries to recreate the ground truth depth signal. The first loss is calculated by the mean squared error
between the mean predicted depth and ground truth depth (Lgp,). The second loss is calculated by the
mean squared error between the depth signal recreation and the ground truth depth signal (L,..). The
CPR compression is calculated by detecting peaks and valleys of the recreated depth signal as mentioned
in section 3.3.3. The structure of our model which just 5 layers is shown in Figure 3.11. The model contains
two convolution layers, a single LSTM layer and two fully connected layers.

3.5.1.1 Training and evaluation

The loss of the model was defined as
L= Ldepth + Lyec (35)

The model was trained on data from 12 participants which amounted for 2368 5-second samples. It was
evaluated on data from the other 12 participants which contained 2091 samples. The evaluation results
are shown in Table 3.2. Our SW-CPR model can predict the CPR compression depth with an error of 6.6mm
and the compression rate with an error of 5.4 compressions per minute. We compared the compression
rate estimation with two other methods. Python numpy based peak detection algorithm performed with a
error of 22.8 compressions per minute and Fast Fourier Transform based (FFT-based) method had an error
of 21.3 compressions per minute. Note that the two latter methods used the Z-axis accelerometer readings
from the smartwatch to detect peaks and valleys to calculate the CPR compression rate. FFT based method
converted the raw accelerometer readings into the Fourier domain and gave the most dominant frequency
as the output after discarding the DC-component. Figure 3.12 shows further analysis of the performance
of the SW-CPR model.

3.5.2 CPR quality evaluation with vision

3.5.2.1 Detection and tracking of the wrist position

We experiment with two methods to detect and track the wrist position of the hand when a participant is
performing CPR on the manikin.
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Prediction Method Error
Depth SW-CPR model 6.6 mm
SW-CPR model 5.4 compression/min
Rate np peak detection 22.8
FFT-based 21.3

Table 3.2: Performance of the SW-CPR model

3.5.2.2 CPR compression rate

In order to measure the CPR compression rate and depth with vision, the wrist position was detected from
the image as mentioned in section 3.3.3. The Y-axis variation of the pixel location of the wrist position
was obtained as show in Figure 3.13. The peaks and valleys are detected with Python Scipy library [196].
The CPR rate was calculated as mentioned in equation 3.6.

CPR,ute = (npeaks + nvalleys) x 0.5/time (3.6)

3.5.2.3 CPR compression depth

The 3D position of the wrist can be obtained with x and y pixel position of the wrist and the depth at
this pixel. The ground truth depth from the Kinect depth map can be used for the depth. First, the peaks
and valleys are detected as in section 3.5.2.2. The x and y coordinates of the wrist was projected to the
3D points X,Y and Z using the corresponding depth at that pixel. We then take the distances between the
3D positions at peak and valley locations. For a given CPR session we take the average depth of all these
distances to get average CPR depth.

Table 3.3 shows the CPR compression rate and depth errors for all the participants and the sessions.
CPR rate error is in compressions per minute while the depth error is in mm.

Participant | Session Kinect
Rate error (comp/min) | Depth error (mm)

0 1.3 0.29
1 5.2 1.1
2 34.4 4.66
3 38.7 3.02
4 7.6 2.03

PO 5 20.5 2.34
6 5 0.43
7 3 0.25
8 46.5 0.38
9 4.3 4.07
10 67.9 42.24
0 69.6 14.4
1 36.5 13.2
2 7.36 73.4

P1 3 20.45 121.9
4 2.35 0.6
5 8.92 5.8
6 21.4 58.6
7 24.5 12.8
0 5.09 54.68
1 24.65 4.93
2 4.57 4.75
3 6.7 4.71
4 5.47 4.75

P2 5 5.57 3.87
6 12.69 15.12
7 3.19 22.36
8 7.03 3.02




9 2.71 5.45
10 31.84 4.77
0 14.2 105.93
1 43.3 12.45
2 1.5 22.9
3 31.7 58.1
P3 4 42.4 37.9
5 9.7 32.8
6 4.7 5.1
7 6.5 11.2
8 30.7 65.1
0 0.89 1.55
1 18.72 27.63
2 3.17 29.51
3 4.4 46.25
P4 4 86.4 22.6
5 14.44 55.9
6 35.63 2.36
7 42.36 1.02
0 1.42 67.71
1 7.39 81.95
2 14.83 13.67
3 0.42 40.01
4 37.75 2.06
P5 5 4.67 47.72
6 61.38 4.36
7 7.7 78.41
8 9.28 50.18
9 1.74 35.4
10 11.68 10.2
0 10.51 2.83
1 19.06 52.19
2 46.97 32.76
3 34.91 47.14
P6 4 0.54 11.5
5 8.76 25.11
6 77.76 54.41
7 54.64 19.83
8 97.47 5.2
0 12.63 12.59
1 8.51 2.12
2 16.23 0.56
3 1.41 2.32
P7 4 40.3 30.1
5 0.29 0.57
6 9.35 7.09
7 8.99 12.2
8 11.58 9.39
0 1.56 1.17
1 3.91 49.97
2 34.7 1.36
3 29.99 0.15
4 3.06 0.67
5 0.81 1.16
b8 6 2.68 0.15
7 1.32 0.42
8 9.88 2.97
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9 9.49 1.71
10 11.56 1.74
11 24.99 13.47
0 116.35 13.34
1 120.84 26.13
2 41.65 0.11
3 31.9 7.08
P9 4 25.96 9.13
5 27.39 10.09
6 65.85 16.57
7 33.13 19.54
8 33.13 39.6
0 41.11 83.83
1 14.11 35.26
2 16.75 44.62
P10 3 31.4 33.91
4 15.98 3.48
5 23.72 1.32
0 9.49 0.63
1 4.82 0.77
2 9.08 0.99
3 8.73 0.41
4 12.54 3.03
P11 5 9.02 3.95
6 8.13 292.65
7 42.15 5.17
8 2.21 1.65
9 4.65 8.84
10 0.02 173.61
0 8.32 8.23
1 29.54 0.5
2 18 0.86
3 1.81 1.77
P12 4 10.33 0.64
5 2.96 0.38
6 2.77 4.99
7 1.23 0.01
0 20.78 23.58
1 2.1 7.53
2 1.9 4.62
3 4.16 8.14
4 0.46 0.59
P13 5 13.32 2.54
6 0.84 2.21
7 0.03 1.76
8 11.77 1.98
9 0.25 24.8
0 6.35 18.28
1 5.79 15.87
2 3.95 14.3
3 11.6 4.04
P14 4 11.05 7.23
5 4.06 18.42
6 31.74 2.79
7 59.21 6.1
8 52.32 15.42
0 4.51 9.25

P15
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1 10.05 12
3 14.04 11.46
3 371 13.24
2 777 32.00
5 13.76 12.31
6 3.87 6.65
7 21.55 35.13
g 6.0 6.7
9 0.15 33.33
10 12.23 9.15
0 .32 3.44
1 0.31 2.39
3 13.52 0.61
3 98.41 1.63
P16 3 22.60 0.81
5 914 8.61
6 61.14 22.87
7 0.89 0.96
0 37.24 6.86
1 58.08 271
3 0.19 1.52
3 10.92 11
2 0.57 5.7
P17 5 3.67 214
6 1.33 531
7 10.44 2.37
8 017 3.85
9 9.28 2.46
0 30.79 5.34
1 4.03 1.47
3 11.07 747
3 377 4.69
2 1.43 833
5 1.35 3.67
P18 6 0.19 3.35
7 7.84 9.83
8 10.41 3.96
9 36.35 3.56
10 2.3 218
11 11.33 2.63
0 6.74 151
1 1.7 0.6
3 6.16 56
3 1.43 10.02
P19 4 1.76 12.19
5 39.58 77
6 15.26 12.22
7 2.39 6.26
0 1.7 1.64
1 557 10.58
3 551 3.56
3 7.92 4.89
2 7.37 9.52
5 3.96 1511
P20 6 73.12 6.1
7 2.77 6.85
8 17.68 2.76
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9 21.77 5.14
10 9.17 4.84
11 1.96 9.41
12 3.67 5.73
0 6.94 8.89
1 21.45 16.09
2 16.08 12.09
3 9.38 7.85
4 8.13 6.89
P21 5 5.49 8.89
6 2.42 9.84
7 28.66 3.99
8 7.59 15.04
9 2.56 4.17
10 0.49 13.46
0 8.17 1.2
1 13.92 0.73
2 0.8 3.14
3 2.33 0.65
4 13.02 1.71
5 26.02 2.84
P22 6 4.05 0.25
7 0.83 1.73
8 0.09 1.19
9 4.29 1.81
10 4.32 0.33
11 1.32 0.65
12 7.86 1.75
0 3.31 2.32
1 6.52 2.73
2 46.38 1.07
3 16.31 2.65
4 14.95 4.14
5 6.39 0.39
b23 6 14.03 1.45
7 18.51 1.76
8 4.18 0.49
9 37.88 2.55
10 19.97 0.04
11 39.24 2.31
Average 16.26 14.62

Table 3.3: CPR compression rate and depth performance

3.6 Conclusions

This Chapter describes collection, processing, and analysis of the multi-modal CPR quality estimation
dataset and hand depth estimation dataset. CPR quality estimation dataset was collected to build and
evaluate methods that can be used to estimate CPR compression depth and rate with smartwatches and
with using cameras. Depth perception is an essential requirement for estimating CPR depth from cameras.
But there are no suitable datasets that can be used to train models that can be used to accurately estimate
depth and track hands. To close this research gap, a dataset that contain hand images and their respective
depth maps were collected. Models that can be used to estimate CPR compression depth and rate with both
smartwatch data and video were built and evaluated. This analysis shows that smartwatch can be used
to accurately measure both of these quantities. Video based models show promise and requires further
improvement to improve their accuracy.
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CHAPTER 4

MONOCULAR DEPTH ESTIMATION
WITH DEFOCUS BLUR

Figure 4.1: Defocus blur of a photo
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4.1 Introduction

Depth perception is a critical component of cognitive assistant solutions for EMS providers. Computer
vision based depth estimation has many applications such as augmented and virtual reality (AR and VR)
[35], autonomous robotics [36], background subtraction, and changing the focus of an image after it
was taken [37]1[38][39]. Techniques such as structure from motion, structure from shading, shape from
structured light, shape from defocus blur, depth from focus, multi-view stereo and Time-of-Flight (ToF)
sensors can be used to estimate the depth of a scene [29, 30]. Active methods such as structured light and
ToF sensors need specialized hardware and are power hungry. Stereo techniques measure depth by relying
on multiple cameras to take several pictures of the scene. Usage of multiple cameras increase the weight
and power consumption of the wearable devices. Furthermore, stereoscopic depth estimation relies on
point matching of the two images to measure depth. Errors in the point matching algorithms could result
in increased errors of the depth estimation. Techniques such as structure-from-motion and depth-from-
focus [40] require several images of a static scene to estimate it’s structure. Also, the assumption about
static scene does not hold when the scene is changing over time. Furthermore, structure from motion can
only recover the depth of a scene up to a scale and cannot measure the absolute depth.

Single image defocus blur based depth estimation is a fairly under-explored topic in the literature
[37]1 which utilizes the phenomena that certain objects in a photo appear more blurred than the others
depending on the distance to those objects from the camera. Figure 4.1 shows an examples image with
defocus blurring. This image is focused at the wooden table and the flower is blurred due to its proximity
to the camera. The lamp post with the flag is also blurred because its further away from the focal point
(wooden table). Measuring the amount of defocus blur at a point of an image can provide a way to recover
the depth to the respective point in the real 3D world. As we will show in Section 4.4.3, this method is
effective for close range depth measurements (typically under 2 to 3 meters) and out performs the state-
of-the-art semantic based monocular depth estimation methods. This makes defocus blur-based depth
estimation techniques ideal for measuring depth under many situations including in microscopic scenes
[41, 42] and measuring depth to hands performing CPR and nearby objects used by first responders for a
wearable camera.

Single image depth from defocus blur methods are not robust to changes of cameras. As we will show
in our experiments, the performance of existing methods degrades significantly when they are trained on
images taken from one camera and evaluated on images taken from another camera (even when they both
image the same scene). This is due to the fact that different cameras will produce defocus blurs with
different characteristics.

In this Chapter we describe a novel technique to estimate depth from defocus blur in a camera-independent
manner. We exploit the optical physics equations that describe the relationships between various camera
parameters and the amount of defocus blur. Our method can be used to train a deep learning model in a
supervised manner on a dataset containing defocus blurred images taken from a single or multiple cam-
era/s and respective ground truth depth maps. This trained model can be used to predict depth using
images taken with a wide range of other cameras with a slight modification to the model (depending on
the particular camera parameters of the new camera) and without the need for retraining. We also describe
a novel method to estimate the camera parameters of a given camera with an easy to use calibration pro-
cess. This will be particularly useful when the parameters for a certain camera cannot be obtained (certain
manufacturers do not provide all the parameters in the data-sheets and/or the values are only provided as
approximations). Having a general solution is important for first response applications because different
first responder stations will be using different cameras.

Our main contributions are as follows:

We show that depth from defocus technique can measure depth more accurately than the state-of-
the-art techniques.

We show that existing depth from defocus methods are not robust to changes of cameras the images
are acquired with.

This work is the first to devise a relationship between defocus blur and the blur created due to pixel
binning.

We present a novel depth from defocus blur method which is robust to images taken from a wide
range of cameras, given camera parameters that describe a particular camera.

We present a novel calibration technique to estimate the camera parameters based on several images
taken from a given camera.
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» Our methods have less estimation error than the state-of-the-art when performing depth from blur in
a camera-independent manner. The error reduction is around 3cm under the DDFF12 dataset, 7cm
under the NYU depth v2 dataset and around 5cm for the synthetic dataset we created.

4.2 Related Work

4.2.1 Depth from RGB images

Estimating depth maps from images can use various characteristics of images such as semantics, stereo
matching, blur or differences in blur over a stack of images. [44-46]. Although stereo matching based
and blur based depth measurements are seen as completely separate methods, Schechner and Kiryati [47]
showed that both of them can be understood under the same mathematical formulation. A depth map
can be estimated for the given image based on the domain knowledge on the structure of the objects in
the image embedded in the estimation model [48-52]. Methods such as ZoeDepth [51] and VPD [52]
have pushed the state-of-the art to be very accurate in measuring depth. However, a problem with these
methods is that the estimated depth is only an approximation based on the structure of the objects. This
makes these models sensitive to domain changes [29]. Also, techniques that can recover 3D structure from
RGB images such as structure from motion can only estimate relative depths in a given scene [53].

4.2.2 Depth from defocus blur

The amount of defocus blur can be used to measure the depth of a scene from images. Since these methods
rely more on blur which is a local feature of the image to estimate the depth, they are more robust to
domain changes [29]. Shape/depth from focus methods aim to measure depth to a scene given a stack
of images of different focus levels. A measure of the sharpness of each pixel of the images over the stack
is calculated. The depth of a point is taken as the focus distance with the sharpest pixel. Various meth-
ods such as the Laplacian or sum-modified-Laplacian, gray-level variance and gradient magnitude squared
were traditionally used to measure the sharpness [54, 55]. Modern methods utilize deep learning to auto-
matically learn the sharpness measure from focal stacks [37, 40, 56]. But deep learning based techniques
require a large amount of data to train [38].

Depth from focus methods that use a focal stack of the same scene has several drawbacks. First, they
assume the scene is static during the time needed to acquire several images with different focus (focal
stack). Second, an accurate registration of the images in the focal stack is needed due to focal breathing
(slight change of the filed-of-view of the camera due to changes of focal distance) or small movement of
the camera and/or the scene [57]. Therefore, more investigation on depth estimation with a single image
is necessary. Depth from defocus/blur rely on measuring the exact blur on a single image to estimate the
depth and cannot use the relative variation of sharpness/blurriness of a focal stack. Due to this, depth
from blur can be used to estimate the depth from a single blurred image [29, 38, 58-60]. Certain works
are also concerned about removing the blur at the same time as estimating depth [38, 58, 61].

Estimating depth from the amount of the blur of a single image is ill-posed. This is due to having two
possible depth values for a given blur [29]. Researchers have take two different paths to solve this. One
solution is hardware based. One example for this is changing the shape of the aperture (coded aperture) of
the camera to a shape that can help avoid the ambiguity. Tkoma et al. [62] used deep learning to learn the
optimal shape for an aperture and came up with a prototype camera to measure depth from blur. Another
example is to use a light field camera which takes many pictures with closely spaced micro lenses placed
inside the camera [63]. The second approach is to use the domain knowledge (e.g. the shape and sizes
of objects in the scene) of the scene to remove the ambiguity. Our research falls into this category. Gur
and Wolf created a model which can generate the depth map of a scene given the blurred image and the
All-in-Focus (AiF) image [29]. They also makes certain assumptions about the shape of the blur circle.
Usage of both AiF image and blurred images in making prediction makes this model less useful in certain
situations because both of these images are not usually available from regular cameras. Many methods in
the literature first estimate the blur of a given blurred image and secondly estimate the depth from the blur.
Physical consistency between the estimated blur and depth has been used as a form of domain knowledge
by Zhang et al. [60]. Lu et al. create two separate models to estimate the blur and the amount of focus
(sharpness) of a given blurred image. They claim that this method provides better estimates of depth due
to the capability of estimating both blur and the sharpness of an image [64]. But since sharpness is just
the inverse of blur, a question remains that by estimating blur aren’t we also estimating the (inverse of)
sharpness. Ban et al. [41] extend depth from blur to microscopic images. Certain works focus just on blur
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Figure 4.2: Left:Image formation in a simple camera system. Right:Blur vs. distance

estimation from a blurred image. Tai and Brown use hand crafted features of an image to estimate the
blur map [65] while Zhuo and Sim assume that the edges in the images are step edges [66]. Cun et al.
estimated the blur of a given image to separate the blurred and focused areas from a blurred image [67].
While all of the above methods assume that the blur is a single parameter (e.g. Gaussian or disk shape)
Liu et al. expand our understanding by introducing a two parameter model. This model is also helpful in
removing errors due to pattern edges [57].

4.2.3 Camera dependency of depth from blur

Certain characteristics of blur depend on the camera that is being used to acquire the images. The blurred
image of a point has the same shape (but scaled) as the lens aperture. For example, if the aperture is
circular, the blur of a point is also circular theoretically. But in practice this is a Gaussian due to diffraction
[59]. In this research we assume all the apertures are circular in shape.

4.3 Approach

This section starts with a theoretical introduction to estimating depth from defocus blur then establishes
the challenges faced by this technique and finally our solution.

4.3.1 Theory and Techniques

When imaging a scene with a camera, the points that are not in focus appear blurred and the points that are
perfectly in focused appear sharp in the image. This phenomenon is called defocus blurring. To illustrate
this, in the left side of the Figure 4.2, the point P2 that is in focus appears as a point in the image plane of
the camera. A point P1 that is not in focus appears as a blur in the image plane where the pixel intensity is
the highest at the center and gradually falls of as we move away. This can be modelled with a 2D Gaussian
function as denoted in equation 4.1 with o as the standard deviation, x and y are image coordinates.

1 _1 r2+1/2
G(r,y) = o’ 7

4.1)

o depends on the distance to the point P1 from the camera center and several other camera dependent
factors as shown in equation 4.2.

1 — 1 21 Ul iz
|51 82|. .L._.L:kr.g (4.2)
So (si—f) N p sensorpy

In equation 4.2, s, is the depth (distnace to the ) f is the focal length of the camera, N is the f-number,
p is the pixel width, out,;, is the number of pixels in the final image, sensor,;, is the number of pixels
in the image sensor, s; is the focus distance, k, is a constant that depends on the camera [199]. Many
cameras allow user to change s; thereby focusing the camera at different distances. we define a camera
dependent parameter k., as shown in equation 4.3.
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Camera/device Lens f(mm) N Keam
Cannon EOS Rebel T7 EF-S 18 4 15.54
55 5.6 105.58
EF 50mm 50 1.2 406.16
EF 70-300mm 70 5.6 172.35
Nikon D7500 Nikon AF-S 50 1.8 240.40

AF-S DX NIKKOR 18 3.5 15.76
18 5.6 9.85
55 3.5 149.98
55 5.6 93.73
Sony Alpha 7 IV FE PZ 16-35mm 16 4 8.92
35 4 43.13
16 22 1.62
FE 70-200 mm 70 2.8 25094
200 2.8 2196.48
70 22 31.93
Google Pixel 7 Pro wide 25 1.85 50.39
telephoto 120 2.55 1577.82

Table 4.1: k.,,, of some popular cameras

LS2| “keam =0 (4.3)
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Where k = 1 f_2 1 —O'u’tm“‘ L
cam (si—f) N p sensorpiz kr
G(z,y) is the response of the camera system to a point target and is called the point spread function
(PSF). We can obtain the defocus blurred image B(z,y) by convolving the the perfectly focused image

F(z,y) with PSF G(z,y) as show in equation 4.4.

B(z,y) = G(z,y) » F(z,y) (4.9

Equation 4.4 explains the blur solely due to defocus blurring. An additional blurring can occur due to
various other reasons such as filtering in the camera hardware (e.g. to reduce noise), pixel binning, color
filter mosaics, analog/digital image processing, analog to digital conversion, etc. [200]. This additional
blurring can also be modelled as a convolution with another Gaussian function Q(z,y) having a standard
deviation v which we assume to be constant for a given camera stetting. The final image can be obtained
by

All we can observe is the final image I. We show that the combined blurring (from defocus and due to
other reasons described above) can also be modelled with a Gaussian PSF (refer the Appendix) and we can
estimate the standard deviation of this PSF ()\) at each pixel in I. After estimating A for a given image and
when v is known we can obtain ¢ as shown in the equation 4.6.

o=/ -2 (4.6)

Substituting equation 4.6 into equation 4.3 we can obtain equation 4.7.

M : kcam = A2 — 72 (47)
52

The right side of the Figure 4.2 shows the variation of o with different distances (s2) and under different
cameras. For a given camera (hence for a given k.,,,), we can estimate the ¢ from a given image and then
estimate s,. For certain sections of the curve (e.g. curve of k..., = 17.3 at the shown value of ¢), estimating
s is ambiguous since there will be two s2 values for a given o. This limitation can be mitigated by using
a learning based model to estimate so. Another observation is that the value of o depends on k.y,,. This
poses the main problem that we are addressing in this chapter. If a model was trained to estimate depth
using data from a camera with one k4., this model will fail to predict the depth accurately for images
taken with a camera having a different k.,,,. Furthermore, the sensitivity of o to the distance diminishes
as the distance increases. Hence the effectiveness of the defocus blur based depth measurement techniques
will also lessen with increasing distance. This limits the effectiveness of depth from defocus blur techniques
to close range; as a rule of thumb, to distances less than 2m.

Table 4.1 shows some camera models and their k.., values based on the particular lens/settings used.
Please refer to the Appendix for a more detailed calculation and for k., values for more cameras/settings.
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Figure 4.3: Our Model

4.3.2 Our solution

The operation or our model is shown in Figure 4.3. Both Blur Estimation and Depth estimation sections
are CNN based neural networks inspired by the defocusnet [38]. Given a defocus blurred image, the blur
estimation model estimates the PSF standard deviation ) at each pixel of the image. Then we calculate the
standard deviation of the PSF solely due to defocus blurring o according to equation ??. Next we divide
the obtained o with k.4, to obtain % which does not depend on either k.4, or v. Then ‘Szg—_;l' is
sent to the depth estimation model to estimate s,. Note that we require a learning based model such as a
CNN to estimate s, due to the ambiguity explained in the previous section and to impart semantic domain
knowledge of the image into the estimation process via the skip connections.

When we train our model, we calculate two types of losses; blur estimation loss and the depth estimation
loss. Blur estimation loss (1) is calculated at the prediction of . Ground truth ; can be obtained with
equation 2 with known camera parameters at the training time. Depth prediction loss (L) is calculated
comparing the predicted and ground truth depth maps. The final loss is obtained by,

Liotar = Lg + b_weight - Ly, (4.8)

where b_weight is a parameter used to scale L.

4.3.3 Defocus Blur Calibration

Assume we train our model with images from a certain camera and need to use this already trained model
to estimate depth using images from another camera with a different k., and . In this section we
present our novel method that can be used to estimate these parameters for a given camera. We call this
method the "Defocus Blur Calibration”. Note that defocus blur calibration is different from but requires
the conventional camera calibration where camera intrinsic and distortion coefficients are estimated. The
steps for defocus blur calibration are as follows.

1. Fix the focal distance of the camera at s; (we used s; = 2m in our experiments) and calibrate the
camera (in a conventional sense) with a calibration pattern [201]. We have used an asymmetric
circular pattern as can be seen in Figure 4.4. Maintain a rough distance of around % from the
camera to the calibration pattern. After this calibration, we can estimate the distance to a given
point on the calibration pattern that is visible in a given image.

2. Capture two images of a circular calibration pattern (preferably the same pattern that was used in
step 1) while maintaining a distance of 3 (we used 1m) from the camera to the pattern. The first
image is obtained with the camera focused on the pattern (s; = 1m) and the second image is obtained
while maintaining s; = 2m. Since the first image is focused on the calibration pattern, the circles on
the pattern will appear sharp as shown in the upper part of Figure 4.4. The second image will look
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Figure 4.4: Defocus Blur Calibration

blurred as shown in the bottom half of the Figure 3. According to Figure 4.4, the images of circle
edges on the focused images have a steeper slope (A Gaussian with a lower std). The slight blurring
in these images are solely due to pixel binning. The edges on the blurred images have a more gradual
slope. Also the slope becomes even more gradual as k., is increased.

3. Estimate the std of the Gaussian function of the circle edges from the focused image. We horizontally
slice the image of the circle as seen in Figure 4.4 and obtain the distribution of pixel intensities.
These are flat-top Gaussian functions. The flat top nature is due to the intensity being constant inside
the circle. It falls gradually at the edges of the circles. We scale these intensity values into the range
from zero to one. We consider all the values less than a threshold (we used 0.95) as belonging to the
falling edges. We then integrate the resulting distribution (one dimensional Gaussian). According to
equation 4.9, we can estimate ~ after obtaining the integral J for a constant y.

J= /OO Gla)da = /°o e H 5 gy — /om (4.9)

4. Estimate the std of the Gaussian of the falling edges (\) of the circles from defocus blurred images
similarly to step 3. Note the the blurring of the defocused images are due to both defocus blurring
and pixel binning. We can estimate the std of the Gaussian of the falling edges due to defocus blurring
with equation 4.6.

5. Estimate the distance to each circle center from camera using the defocus blurred images using the
camera intrinsic matrix generated with calibration in step1. This is a well-established procedure that
is available in most of the computer vision libraries. We can write a separate version of equation 4.7
for each circle in the calibration pattern. With \ and ~ already estimated, we can estimate the k..,
for the given camera using equation 4.7. Here we have assumed that the distance from the camera
to each circle center is approximately equal to the distance to the edges of the circle. This can be
justified because the distance to the circles from the camera (around 1m) is much larger than the
diameter of the circles (around 4cm in our case).

6. To improve the accuracy of the estimate, we can repeat steps from 2 to 5 several times. See the
evaluation section for further details on the experiments.

We can estimate the k., for a given camera with the above steps. The estimated k.,,, can be used as
shown in Figure 4.3 to predict depth with the images taken from this new camera.



55

4.3.3.1 Convolution of a 2D Gaussian Function with another 2D Gaussian Function

we have shown that the defocus-blurring can be modelled with a convolution of a 2D Gaussian function;
the Point Spread Function (PSF) having a standard deviation of ¢ with the respective image in perfect focus
(in-focus image). This Gaussian PSF can be denoted as below.
12 y2
Glo,y) =e 30 (4.10)
The blurred image B can be obtained as follows by convolving the in-focus image F' with the blur
function (PSF) G.

B(z,y) = G(z,y) * F(x,y) (4.11)

Additional blurring of the image occurs due to phenomenon such as pixel binning and post processing
which can be modelled as an additional convolution with a Gaussian function with a standard deviation
of v which we can be represented as follows.

_1 r2+y2

Qr,y)=c > ~* (4.12)

Let’s consider the convolution of the already defocus-blurred image B with the additional blurring
function due to pixel binning and post processing ). The final image we can observe will be denoted by I

I'=Q(z,y) * B(z,y) (4.13)
I=Q(z,y) * (G(z,y) * F(z,y)) (4.14)

Due to the associative nature of convolution
I=(Q(z,y) * G(z,y)) * F(x,y) (4.15)

Let’s explore the quantity Q(z,y) * G(z,y)

Q(z,y) x G(z,y)
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The convolution becomes,

2~2 _1 (22492

e e (4.16)
o% +vy

Therefore the convolution of a 2D Gaussian function with another 2D Gaussian function is also a Gaus-
sian function. Let \ be the standard deviation of the resultant Gaussian function.

Qz,y) * G(z,y) =27

A2 =02 442 (4.17)
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Figure 4.5: Synthetic dataset samples.

Since we can observe the image I, we can measure its blur (\). The depth of each pixel on the image I is
related the defocus blur (which is described with o). We can find o given A (which we can measure from
I) and 7 (which we can measure with the calibration process described in the main paper) according to

the equation below.
o=/ —~2 (4.18)

4.4 Experiments

4.4.1 Datasets

Defocusnet dataset. We use the synthetic dataset generated by Maximov et al. [38] to train one of our
models. This dataset was created with a virtual camera having several K., values of 0.15,0.33,0.78,1.59
and 2.41. This dataset has 500 focal stacks, each with 5 images with different focal distances.
Synthetic Blender dataset. We create a new synthetic dataset by expanding the defocusnet dataset [38].
This new dataset has various textures (to make them realistic) mapped to the 3D objects that was not
present in the original dataset. We use several simulated cameras with K, of 0.08, 0.15, 0.23 and 0.33.
This dataset has a focal distance of 1.5m and contains 400 defocus blurred images. We use the script
provided by Maximov et al. (modified) to create our dataset. The images we generate in this dataset are
256 x 256 pixels.

We create this dataset to show that the models have the ability to generalize its learned knowledge to
a new dataset and also it can adapt to different camreas. The original dataset did not have the textures
mapped to the 3D objects. We found that this is because the 3D models used are of the STL format
(commonly used for 3D printing) which only stores the geometric shape of an object and does not support
texture or color information. We convert some of the downloaded STL models into OBJ format after UV
mapping to facilitate textures. Different from the defocusnet dataset [38] we create focal stacks taken
from several virtual cameras instead of just one camera. Some examples of the defocusnet dataset and our
dataset is shown in Figure 4.5. We vary the virtual cameras in two respects; f-stop and focal length. The
f-stops of the simulated cameras were chosen to be 1.0,1.1,1.2,1.5,1.8,2.0,2.2,2.8,3.0,5.0,8.0 and 10.0 to
create the blender,.s;y dataset. The focal lengths of the camera were taken to be 3mm, 4mm, 5mm, and
6mm to create the blender . dataset while keeping the F-number 2. We train our models with the data
from the decocusnet dataset and test on the images coming from blender;.s;ny and blender;.s;r datasets.
blender;ossny dataset contains 1491 focal stacks. blender;.s:r contains 400 focal stacks. In addition to this
we also create another dataset (blendery,.q;,) With a virtual camera with a focal length of 2.9mm and F-
number of 1. This dataset has 1000 focal stacks. Each focal stack in all the datasets we created contains 6
blurred images and additionally an all-in-focus (AIF) image. The blurred images are focused at distances of
0.1, 0.15, 0.3, 0.7, 1.5 meters and at infinity. We do not use the images focused at infinity in evaluations
of this paper. We use the same 20 3D models, 10 textures and a single environment map to create all the
datasets. We use the script provided by Maximov et al. (modified) to create our dataset. Note that in the
paper we have only used the blender s dataset.

Both the Synthetic blender and the defocusnet datasets also have a perfectly focused image per each
defocus blurred image.
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Method Keam

0.08 0.14 0.23 0.33
in-focus 0.099 0.081 0.082 0.100
No K.4m | 0.062 0.050 0.056 0.085
GT K.om | 0.045 0.037 0.052 0.061

Table 4.2: Performance on Blender dataset (MSE)

DDFF12 dataset. We also use the DDFF12 dataset provided by Hazirbas et al. [56] which contains 720
images created with a lightfield camera. We use the two real world datasets (DDFF12 and the NYU dataset
described next) so that we can show that our models can work under real world images and deal with
the domain gap between real and synthetic images [53]. After pre-processing the images as mentioned by
Hazirbas et al. we obtained the blurred images which are focused at various distances.

NYU depth v2 dataset. The NYU depth v2 dataset [202] contains 1449 pairs of aligned RGB and depth
image pairs. Following previous papers [38] [203] we create the training and testing splits. We create
artificially defocus blurred images from this dataset using the method described by Carvalho et al. [31].
We have fixed certain drawbacks in their Matlab script in order to produce more realistic defocus blurred
images as further discussed later in the chapter. We used K., values for training and testing as shown in
Table 4.3. Images of 480 x 480 pixels were used for training and 480 x 640 were used for testing.

4.4.2 Experimental Setup

We use PyTorch [204] to implement the neural networks. We use the Adam optimizer [205] with 5, =
0.9 and 3> = 0.999 and a learning rate of 10~%. Mean Squared Error was used as the loss function for
both the blur and the depth to train all the models. We evaluate our depth predictions with the metrics
absolute relative error (REL), mean-squared error (MSE), Root-Mean-Squared error (RMSE) and average
logl0 error. We also report threshold accuracy 4, which is the percentage of pixels which satisfy the
condition mazx(d;/d;, d;/d;) < 1.25". We train our models on the defocusnet dataset for 400 epochs and a
batch size of 20. Our NUY depth models were train for 800 epochs with a batch size of 8.

4.4.3 Performance

Table 4.2 shows the performance of the model trained on the defocusnet [38] dataset and evaluated on
our Blender dataset with different k., values of simulated cameras. All three methods; in-focus, No K .4,
and GT Kqm, use the same deep learning architecture to predict depth. The only exception is that the GT
K qm model performs the K, correction as shown in Figure 4.3. We use the K, values that were used
to generate the data and these can be called the Ground Truth K,,, values (GT K_,,,)- The In-focus model
was both trained and tested on perfectly focused images. The No K,,, model does not consider the effect
of K., during either training or testing (similar to defocusnet [38] model). This means the No K4,
model does not divide the output of the blur estimation model with K., as shown in Figure 4.3. The GT
K.qm model on the other hand considers the effect of K.,,, and behaves as shown in Figure 4.3 during
both training and testing. According to Table ref4.2 the performance of both the No K., and the GT
K..m models are better (by around 0.025) than that of the in-focus method which shows that considering
defocus blur is valuable when estimating depth. Our models perform better when considering the effect
of Kcom (GT K,4m) compared to when not considering it (No K.,,,) by around 0.015 in MSE. This shows
that we can transfer the knowledge learned with the trained model into a new domain (images taken with
a different K.,,,) just with one parameter K,,,.

Table 4.3 shows the performance on the defocus blurred NYU depth dataset. Here we use a single
trained model to evaluate the performance under various settings. The model was trained on data refocused
with a K4, of 8.79 and 35.61 and tested on the rest under the distance range of 0 to 2 m. The VPD
model was trained and tested on in-focus images with no defocus blurring. Our GT and est K ,,,, methods
outperform the state-of-the-art depth estimation model (VPD) on the NUY depth v2 dataset [52] by around
0.04 in RMSE. This converts to a reduction of error of around 4cm in the depth estimation. This proves
again the importance of defocus blurring in depth estimation. We evaluate our models under three methods
which depend on the nature of the K, values used. The method column, "GT K,,,,” means we have
used the K, values that were used to defocus blur the particular dataset which can be considered as
Ground Truth K, values. "est K.,,,” represents the K.,,, values that were estimated with the defocus
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Keam method o1t [0 03T REL| RMSE| logl0 |
in-focus VPD[52] 0.953 0.992 0.999 0.052 0.154  0.027
879  GT K.y 0.976 0.997 0.999 0.046 0.082  0.019
879  No Kem 0912 0975 0998 0.095 0.161  0.037
35.61 GT Keon 0.976 0.997 0.999 0.046 0.082  0.019
35.61 No K 0962 0995 0999 0.054 0.101  0.023
12.69 GT Koo 0.969 0.999 0.999 0.068 0.123  0.088
12.69  est Kean 0.970 0.999 0.999 0.068 0.122  0.030
12.69 No K.m 0.853 0.963 0.999 0.127 0.193  0.050
22.67 GT Keon 0.980 0.998 0.999 0.068 0.117  0.028
22.67  est Ko, 0.980 0.998 0.999 0.069 0.118  0.028
22.67 No K. 0.896 0.994 0999 0.105 0.165  0.043
Table 4.3: Performance on NYU dataset
i
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Figure 4.6: Estimation of K,,, values of different cameras

calibration method described in section 3.3. No K., models do not consider the effect of K.,,,. We
describe further details of the estimation process in the subsequent sections.

Table 4.3 shows the performance of our model under the DDFF12 dataset [56]. All the models were
first trained on the defocusnet dataset [38] (the same model we used to evaluate the Blender dataset as
shown in Table 4.3). The In-focus model was trained and tested on well focused images. The No K 4,
and est K,,, models were trained and tested on defocus blurred images. Since we do not have ground
truth K, for the DDFF12 dataset, we performed a linear search of the K,,, which predicts the best
depth using the ground truth depth maps provided in the training set. The results in Table 4.4 are the
performance of our model under the test set using the K., value found above. Both the No K_,,, and
est K4, models perform better than the in-focus model for depth prediction. Also using the appropriate
Kqm to transfer the model to the new domain of images significantly improves the performance compared
to the no K,,, model which does not perform a correction that depends on the camera.

4.4.4 Defocus Blur Calibration Performance

We expand the discussion on defocus blur calibration in this section. These experiments were performed
on the refocused NYU depth v2 dataset. We have created refocused data with K., values of 1.39, 5.61,
8.79, 12.69, 22.67, 25.61. Note that we have used the additional K., values (1.39 and 5.61) that were
not used to evaluate the performance of depth estimation in Table 4.3. We obtain several photos of the
asymmetric circular pattern shown in Figure 4.4 with the Microsoft Kinect camera and refocus them with
the above mentioned K, values. We used from 19 to 20 different image pairs (an in-focus image and
a defocus-blurred image) for each K.,,, value. Then we perform the defocus blur calibration procedure
described in section 4.3.3. Estimated K, values vs. the actual values (ground truth K.,,,) are shown
in Figure 4.6. The relationship between the ground truth and estimated K.,,, values are very linear as
expected. We estimate one K,,, value per one circle from an in-focus and defocus blurred image pair.
Since there are 44 circles in the pattern, for 20 image pairs we obtained 880 estimated K,,, values. The
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Figure 4.7: K. Estimation Error

Method MSE Keom | Imagesize RMSE
in-focus 0.0640 12.69 | Original size 0.123

Resized 0.438
No Kcam | 0.0139 22.67 | Original size 0.117

est Kcom | 0.0096 Resized  0.399

Table 4.4: Performance on Table 4.5: Effect of FOV
DDFF12 dataset

results in Figure 4.4 were obtained after removing outliers and calculating the median from the estimated
K.om values. We show box plots with interquartile range, median, minimum and maximum values of these
estimations along with the ground truth K, values.

4.4.4.1 Sensitivity of depth estimation performance to Kqm,

In this section we explore how the variation in estimated K., values affect the depth estimation perfor-
mance. We use the same model that we used to obtain the results in Table 4.3 that was trained on data
from K_.,,, values of 8.79 and 35.61 and evaluate them on data from K., values of 12.69 and 22.67. As
can be seen in Figure 4.7, we use a range of numbers centered on the actual K., values for the respective
datasets and obtain the RMSE error of depth estimation. It can be seen that the error response of the model
to the variation of K., used has a clear minimum. The error increases if the values used in the place
of K., deviates from the actual value. For example, the error of the response of K,,, =23.67 increases
by around 16% if the K,,, used deviates positively from the GT values by 18%. Figure 4.10 shows some
examples of predicted depth maps when the model was provided with an unseen virtually blurred image
from a camera with K., = 22.67. Agreeing with the Figure 4.7, the predictions get distorted faster when
the K.q,, used lowers than the ground truth K,,, and distorts slower when it increases.

4.4.5 Effect of the blur weight

We change the scaling parameter b_weight from equation 4.8 while training several models on data from
defocus blurred NYU depth v2 dataset with K., values of 8.79 and 35.61. The performance on the two
evaluation datasets (with K., values of 12.69 and 22.67) are shown in Figure 4.9.

4.4.6 Effect of the Field of View

Field of view of a camera can be defined in several ways. One way is to define it as the size of an object
at a given distance from the camera that would completely fill the image sensor. In Figure 4.9, s is the
length of the sensor, f is the focal length of the lens, d is the distance to the object and w is the length of the
object. The size w of an object that would completely fill the sensor will be given by w = 7 -d. It can be
seen that w is inversely proportional to f. Cameras with a smaller focal length have a larger Field of View
and vise-versa. In all the experiments that we performed including the NYU dataset, we have assumed
that the cameras have a fixed FOV even when the k,,, (and therefore f) changes. While this is helpful to
analyze the performance of blur based depth estimation methods, it is important to investigate the effect
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Model RMSE (mm)

our defocus blur model 22.43
Depth Anything [206] 161.27

Table 4.6: Performance of hand depth estimation model

of the FOV change on the performance of the models. We created a dataset by scaling down the images in
the NYU depth dataset by a factor of 0.6 and then refocusing with a k.,,, (respective f is 30mm) of 12.69.
The model has been trained with data having k.,,,s of 8.79 and 35.61 (they had focal lengths (f) of 20mm
and 50mm). We scaled down the images of f = 30mm with respect to f = 50mm which is 0.6. Note that
the images have the same amount of blur as the images of original size; only the size of the objects visible
have changed. From Table 4.5, it can be seen that the performance drops significantly by more than three
folds when we perform the resizing. The reason for this can be understood from Figure 4.3. The depth
estimation section receives two inputs. One is the blur and the second is the image features in the form of
skip connections. Although we account for the change of blur through division by the respective k.4, we
do not modify image features to reflect the change of FOV. This is a limitation of our work and needs to
be addressed in the future.

4.5 Hand Depth Prediction from Defocus blur

This section applies the depth from defocus blur techniques to estimate depth to hands. The dataset
collected in section 3.4.2 was used to train a depth prediction model used to predict depth from defocus
blur. The same model and training setting used in this chapter was used to train the model. The images
from the Canon camera was used as inputs for this model since these images provided more significant
defocus blur than the images from the Kinect camera. The depth to hands were also predicted with the
state-of-the-art model Depth Anything [206] and the results are shown in Table 4.6. Note that the Depth
Anything model was used as is and not fine-tuned on our hand depth estimation dataset. Our model which
uses defocus blur achieves low error level of just around 22mm while the depth anything model shows an
error of 161 mm.

Next we used the trained depth from defocus blur model to predict the depth to hands in order to
predict the CPR compression depth. The results are shown in Table 4.7. Results which used the ground
truth depth from the Kinect camera is also repeated for reference.



Participant | Session Kinect Blur
Rate error | Depth error (mm) | Rate error | Depth error (mm)
(comp/min) (comp/min)
0 1.3 0.29 0.86 11.63
1 5.2 1.1 4.91 12.68
2 34.4 4.66 34.43 15.85
3 38.7 3.02 38.39 13.93
4 7.6 2.03 7.52 12.85
PO 5 20.5 2.34 20.41 13.53
6 5 0.43 4.66 11.48
7 3 0.25 2.77 11.26
8 46.5 0.38 46.40 11.66
9 4.3 4.07 4.28 14.76
10 67.9 42.24 68.04 48.86
0 69.6 14.4 69.23 25.41
1 36.5 13.2 36.40 24.22
2 7.36 73.4 7.24 84.39
P1 3 20.45 121.9 20.24 132.99
4 2.35 0.6 1.97 11.37
5 8.92 5.8 8.77 16.50
6 21.4 58.6 21.15 69.98
7 24.5 12.8 24.31 24.43
0 5.09 54.68 4.85 65.74
1 24.65 4.93 24.19 16.14
2 4.57 4.75 4.32 15.69
3 6.7 4.71 6.43 15.74
4 5.47 4.75 5.22 15.94
P2 5 5.57 3.87 5.63 14.55
6 12.69 15.12 12.45 26.00
7 3.19 22.36 3.09 33.35
8 7.03 3.02 6.97 14.09
9 2.71 5.45 2.71 16.27
10 31.84 4.77 31.64 16.22
0 14.2 105.93 14.14 109.72
1 43.3 12.45 43.25 23.74
2 1.5 22.9 1.04 33.74
3 31.7 58.1 31.42 69.12
P3 4 42.4 37.9 42.36 49.46
5 9.7 32.8 9.51 42.97
6 4.7 5.1 4.52 16.50
7 6.5 11.2 6.34 22.53
8 30.7 65.1 30.42 70.07
0 0.89 1.55 0.58 12.46
1 18.72 27.63 18.58 38.59
2 3.17 29.51 3.03 40.17
P4 3 4.4 46.25 4.39 57.29
4 86.4 22.6 86.44 33.46
5 14.44 55.9 13.86 67.12
6 35.63 2.36 35.53 13.58
7 42.36 1.02 42.10 12.28
0 1.42 67.71 1.46 78.76
1 7.39 81.95 7.30 92.57
2 14.83 13.67 14.57 24.77
3 0.42 40.01 0.03 50.94
4 37.75 2.06 37.40 12.51
P5 5 4.67 47.72 4.38 58.37
6 61.38 4.36 61.34 15.19
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7 7.7 78.41 7.48 89.54
8 9.28 50.18 8.86 61.07
9 1.74 35.4 1.50 46.52
10 11.68 10.2 11.53 21.17
0 10.51 2.83 10.11 13.74
1 19.06 52.19 18.89 63.33
2 46.97 32.76 46.76 43.91
3 34.91 47.14 34.60 58.03
P6 4 0.54 11.5 0.31 22.25
5 8.76 25.11 8.56 35.98
6 77.76 54.41 77.69 65.87
7 54.64 19.83 54.12 30.85
8 97.47 5.2 97.46 16.27
0 12.63 12.59 12.40 23.11
1 8.51 2.12 8.40 12.94
2 16.23 0.56 16.32 11.13
3 1.41 2.32 1.20 13.46
P7 4 40.3 30.1 40.00 40.80
5 0.29 0.57 0.16 11.70
6 9.35 7.09 8.89 17.52
7 8.99 12.2 8.63 23.52
8 11.58 9.39 11.40 20.27
0 1.56 1.17 1.47 12.07
1 3.91 49.97 3.69 61.62
2 34.7 1.36 34.36 12.11
3 29.99 0.15 29.69 11.24
4 3.06 0.67 2.81 11.85
P8 5 0.81 1.16 0.54 12.11
6 2.68 0.15 2.67 11.53
7 1.32 0.42 1.36 12.06
8 9.88 2.97 9.52 13.64
9 9.49 1.71 9.40 13.00
10 11.56 1.74 11.39 12.15
11 24.99 13.47 24.75 10.77
0 116.35 13.34 116.11 24.58
1 120.84 26.13 120.76 37.15
2 41.65 0.11 41.40 11.44
3 31.9 7.08 31.96 17.39
P9 4 25.96 9.13 26.08 20.27
5 27.39 10.09 27.55 21.16
6 65.85 16.57 65.60 27.18
7 33.13 19.54 32.74 31.08
8 33.13 39.6 33.03 48.72
0 41.11 83.83 40.80 95.51
1 14.11 35.26 14.02 46.34
P10 2 16.75 44.62 16.48 55.86
3 31.4 33.91 31.18 45.03
4 15.98 3.48 15.86 14.09
5 23.72 1.32 23.58 12.29
0 9.49 0.63 9.33 11.77
1 4.82 0.77 4.74 11.71
2 9.08 0.99 9.05 12.36
3 8.73 0.41 8.46 11.59
4 12.54 3.03 12.46 13.55
P11 5 9.02 3.95 8.80 14.56
6 8.13 292.65 8.03 304.06
7 42.15 5.17 41.99 16.20
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8 2.21 1.65 1.61 12.76
9 4.65 8.84 4.54 19.69
10 0.02 173.61 0.26 184.13
0 8.32 8.23 8.25 19.73
1 29.54 0.5 29.46 17.71
2 18 0.86 17.66 12.32
P12 3 1.81 1.77 1.72 12.61
4 10.33 0.64 10.31 12.35
5 2.96 0.38 2.74 11.56
6 2.77 4.99 2.73 15.44
7 1.23 0.01 0.94 10.96
0 20.78 23.58 20.63 34.25
1 2.1 7.53 1.85 18.95
2 1.9 4.62 1.69 15.77
3 4.16 8.14 3.91 19.58
P13 4 0.46 0.59 0.21 11.77
5 13.32 2.54 13.03 13.08
6 0.84 2.21 0.69 13.58
7 0.03 1.76 0.13 13.09
8 11.77 1.98 11.65 11.37
9 0.25 24.8 0.20 36.12
0 6.35 18.28 6.18 29.28
1 5.79 15.87 5.65 26.23
2 3.95 14.3 3.33 24.95
3 11.6 4.04 11.54 15.26
P14 4 11.05 7.23 10.70 18.70
5 4.06 18.42 3.92 29.24
6 31.74 2.79 31.56 13.56
7 59.21 6.1 59.13 17.28
8 52.32 15.42 52.26 26.45
0 4.51 9.25 4.21 20.08
1 10.95 12 10.81 25.92
2 14.04 11.46 14.12 22.82
3 3.71 13.24 3.47 23.90
4 7.77 32.09 7.44 43.02
P15 5 13.76 12.31 13.45 22.81
6 3.87 6.65 3.60 17.81
7 21.55 35.13 21.25 46.50
8 6.09 6.7 5.68 17.47
9 0.15 33.33 0.20 44.08
10 12.23 9.15 12.05 20.14
0 2.32 3.44 1.99 15.17
1 0.31 2.39 0.05 13.95
2 13.52 0.61 13.38 11.46
P16 3 28.41 1.63 28.13 12.68
4 22.69 0.81 22.34 12.53
5 9.14 8.61 8.86 19.87
6 61.14 22.87 61.17 33.88
7 0.89 0.96 0.58 12.31
0 27.24 6.86 27.09 18.11
1 58.98 2.71 58.62 15.11
2 0.19 1.52 0.04 12.43
3 10.92 1.1 10.65 11.73
P17 4 0.57 5.27 0.51 15.69
5 3.67 2.14 3.88 13.05
6 1.33 5.31 1.02 16.52
7 10.44 2.37 10.21 13.54
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8 0.17 3.85 0.16 14.73
9 9.28 2.46 8.88 16.59
0 20.79 2.34 20.40 13.48
1 4.03 1.47 3.90 12.71
2 11.07 7.47 10.84 21.56
3 3.77 4.69 3.74 15.76
4 1.43 8.33 1.35 19.24
P18 5 1.35 3.67 1.11 14.98
6 0.19 3.35 0.04 13.99
7 7.84 9.83 8.01 22.61
8 10.41 3.26 10.14 14.26
9 36.35 3.56 36.36 14.77
10 2.3 2.18 2.29 13.35
11 11.33 2.63 11.11 13.72
0 6.74 1.51 6.50 12.55
1 1.97 0.6 1.85 11.65
2 6.16 5.6 6.06 17.17
P19 3 1.43 10.02 1.07 21.35
4 1.76 12.19 1.52 22.95
5 39.58 7.7 39.44 18.67
6 15.26 12.22 14.85 23.81
7 2.39 6.26 2.20 17.55
0 11.7 1.64 11.64 13.48
1 5.57 10.58 5.50 21.96
2 5.51 3.56 5.34 14.67
3 7.22 4.89 7.05 17.98
4 7.37 9.52 7.01 20.94
5 3.26 15.11 2.99 22.80
P20 6 73.12 6.1 72.85 16.58
7 2.77 6.85 2.50 17.73
8 17.68 2.76 17.46 13.56
9 21.77 5.14 21.58 15.59
10 9.17 4.84 8.73 15.90
11 1.96 9.41 1.88 20.18
12 3.67 5.73 3.30 16.47
0 6.94 8.89 6.76 19.98
1 21.45 16.09 21.52 27.21
2 16.08 12.09 15.89 23.63
3 9.38 7.85 8.97 20.00
4 8.13 6.89 7.82 17.42
P21 5 5.49 8.89 5.30 19.61
6 2.42 9.84 2.14 20.81
7 28.66 3.99 28.35 15.41
8 7.59 15.04 7.22 26.43
9 2.56 4.17 2.43 15.52
10 0.49 13.46 0.34 24.84
0 8.17 1.2 8.01 12.27
1 13.92 0.73 13.65 11.65
2 0.8 3.14 0.58 13.98
3 2.33 0.65 2.04 11.59
4 13.02 1.71 12.96 12.61
5 26.02 2.84 25.77 13.98
P22 6 4.05 0.25 3.71 11.04
7 0.83 1.73 0.59 13.19
8 0.09 1.19 0.08 12.04
9 4.29 1.81 4.23 14.41
10 4.32 0.33 3.99 11.55
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Figure 4.10: Examples of from the camera with K.,,, = 22.67 predicted using various K., values

11 1.32 0.65 1.25 11.90

12 7.86 1.75 7.60 12.49

0 3.31 2.32 3.10 13.53

1 6.52 2.73 6.23 14.49

2 46.38 1.07 46.24 11.74

3 16.31 2.65 16.08 14.15

4 14.95 4.14 14.66 14.56

P23 5 6.39 0.39 5.93 11.93
6 14.03 1.45 13.66 12.54

7 18.51 1.76 18.30 12.96

8 4.18 0.49 3.85 11.18

9 37.88 2.55 37.69 13.59

10 19.97 0.04 20.04 10.66

11 39.24 2.31 39.00 12.88

Average 16.26 14.62 16.06 25.60

Table 4.7: CPR compression rate and depth performance

4.6 Conclusions

We show that estimating depth from defocus blur is significantly superior to conventional semantic based
depth prediction provided that the camera is suitable for it. But this technique is sensitive to the camera.
Our novel approach performs a simple correction to an already trained depth prediction model using the
camera parameters of a given camera. We show that this correction can alleviate the sensitivity of the
model to the camera. Our novel defocus blur calibration technique can estimate the camera parameters
using several images taken by a given camera. We show that our approach beats the state-of-the-art for
several datasets. We show some limitations of our work and suggest future improvements. We trained
a model that uses defocus blur that can be used to measure hand depth with the dataset we collected in
Chapter 3. This model was used to predict CPR depth and we present the results. The results still need
improvements over the smartwatch-based results from Chapter 3. We may improve the performance in
the future after considering the suggestions mentioned in Chapter 3.
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CHAPTER 5

GENERALIZED FEW-SHOT LEARNING
FOR WEARABLE SENSOR-BASED
HUMAN ACTIVITY RECOGNITION

5.1 Introduction

Human activity recognition (HAR) using wearable devices has many applications including in fields such
as healthcare, security, entertainment, first response, and human-computer interaction [68][69]. Deep
learning based methods are being applied successfully to solve this problem. However, these models need
a large amount of data to achieve a high level of performance. Data for common activities such as walking
and running are easy to obtain from public datasets, while data for activities outside of those areas are
difficult to obtain. For example, publicly available data sets might not contain data for horse riding or
gymnastics because they are less common than walking. Also, there may be certain personalized activities
that are unique to a certain individual. For example, the way certain individuals cook may be different from
others. Therefore data for these activities are usually unavailable during the training time. Unlike in the
domain of computer vision, HAR lacks data due to the difficulties in annotating data [70]. Consequently,
HAR models which can detect activities with very few training samples are needed.

In Few-Shot Learning (FSL) setting, it is important to make the distinction between source and target
domain. Source domain is a set of data samples from classes where data is abundant (e.g. walking and
running). Target domain is data samples where only very limited amount of data is available from each
class (e.g. horse riding and gymnastics). In the problems considered in this paper, target and source
domain classes are completely exclusive from one another. FSL utilizes knowledge from source domain
and generalize this knowledge to classify the samples from the target domain [207] [80]. To so this very
few samples from the each class in the target domain is used. For example, consider an HAR system that
is used to detect activities performed by an elderly person living alone. This system may be trained with
common activities such as walking, sleeping, sitting and climbing stairs. Now, the elderly person would
like their device to recognize other activities such as cooking, playing an instrument, doing exercises, and
walking with a mobility aid. It is impossible for the manufacturer to account for all of these activities
because they may be personalized to each individual. For example, each elderly person may be doing very
unique exercises due to injury or pain and the mechanics of walking with aid depends heavily on the device
used. The FSL system should be able to be trained with just a few examples of these new activities while
being economical because the FSL system will be running on the end user’s resource constrained mobile
devices.

A practical FSL solution should classify samples from the target domain as well as the source domain.
This is important because while the user is interested in classifying the samples from the target domain,
it should not stop classifying samples from the source domain. This task is called generalized Few-Shot
Learning (GFSL) and most FSL papers do not address it [83]. Building a classifier for source domain is
straight-forward and in this thesis we present the methods to train a FSL classifier to classify samples from
the target domain and another classifier to distinguish if a sample is coming from source or target domain,
which would make this a GFSL solution. Although FSL has been applied in drug discovery, character gen-
eration, robotics, image classification, gesture recognition and neural architecture search [81], application
of FSL in HAR is very limited. Domains such as image classification has the luxury of enormous datasets. In
comparison, datasets in HAR are minuscule. Therefore, FSL methods developed in the image classification
domain cannot be applied directly to HAR.

We developed a generalized FSL solution for HAR using wearable devices. Influenced by previous
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work on FSL [80] we used a deep learning based embedding function to project input data from wearable
inertial sensors into an embedding space. Previous work has shown that encouraging an embedding model
to generate features which are tightly clustered around their respective class centroids improves their FSL
performance [80] [208].

We use several methods to reduce the intra-class distances and increase inter-class distances of the
embeddings. We use center loss which is used successfully in facial recognition systems [208] as our loss
function. We also modified prototypical networks, which is a popular FSL method [80] from the literature.
We generate embedding with these two methods and used them to train CLSrgy. Finally we show that
test-time adaptation methods can be used after the mode is trained to improve the accuracy of the FSL
performance.

This work is the first to demonstrate how to build a generalized FSL solution for HAR. We ran ex-
periments on three publicly available datasets. Fine tuning was done on the UTWENTE dataset[209]
and evaluations were performed on the OPP[210] and PAMAP2[211] datasets. The methods on average
outperformed state-of-the-art FSL. models by around 11% and 6% on the PAMAP2 and OPP datasets, re-
spectively, under FSL conditions. Finally we evaluated the model dataset that combines several activities
from PAMAP2 dataset and CPR activity which is important in the context of Emergency Medical Service
(EMS) providers.

5.2 Related Work

Convolutional Neural Networks (CNNs) are proved to be more robust to the changes in underlying data
distributions compared to Recurrent Neural Networks [74]. Fully Convolutional Neural Networks (FCNs)
have been shown to demand less computational and memory cost while performing better than other
techniques when significant class imbalance is present. Also, FCNs can accommodate variable input lengths
which makes it more suitable for processing various activities with different duration. FCNs have been used
successfully for HAR with IMU data with above advantages evident [75][76].

Lack of data for certain classes in HAR [77] can cause probles such as performance degradation, over-
fitting and reduced robustness [78]. Lack of data could arise due to the fact that there is more data for
common activities such as walking and running, but a limited amount of data for uncommon activities
such as grabbing a box [72] or certain classes being simply unavailable during the development phase as
described in section 1. The significant time and labor costs related to collecting data only exacerbates the
problem [79]. In these cases, the knowledge from the classes with many data samples can be utilized to
learn general knowledge that can be used to classify rarely seen classes [79].

Unsupervised representation learning aims to generate clustering-friendly embedding from input data
without using any labelled data. A common approach is to use an encoder-decoder architecture to indirectly
learn a low-dimensional latent representation of the input data [212] [213]. After generating clusters
they may be mapped to an existing activity class using a small amount of labelled data [212] [213].
Although unsupervised representation learning has similarities to our problem, we need a different solution
to address the situation where we have sufficient data from several classes and extremely limited amount
of data from some other classes.

Few-shot learning (FSL) is a machine learning technique that specializes in learning from a few ex-
amples. It’s aim is to learn the ability to make inferences on new classes not seen during training [80]
[81]. FSL has shown its use in several domains such as drug discovery, character generation, robotics,
image classification, gesture recognition and neural architecture search [81]. One popular example of FSL
is prototypical networks [80] where they learn a non-linear mapping from input space to an embedding
space. In essence, prototypical networks aim to cluster the embeddings of the same classes together while
making the distance between clusters of different classes further from each other. Similar to prototypical
networks [80], meta-learning [82] learns an embedding function. These embeddings are then classified
with a SVM. Meta-learning optimizes the embedding function using the loss obtained from the SVM clas-
sifier [82]. Most of the FSL literature is only concerned about classifying target classes but for a practical
application, source class classification may also be needed. Generalized FSL addresses this problem by
devising methods to classify both source and target samples [83] [84][Socher2013Zero-shotTransfer].

The research done in FSL in the HAR domain is limited. In a FSL based HAR paper [79] a long short-
term memory (LSTM) model is used to extract features and classify activities. It was trained with data from
source domain and the network parameters obtained were transferred to the model that classified samples
in the target domain. For each sample in the target domain parameters were only transferred from similar
classes to avoid negative transfer.
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Figure 5.1: Operation of the FSL system
From the literature it can be seen that generating embedding which have low intra-class variation and
high inter-class variation improved the FSL performance. We use center loss along with softmax loss [208]
to create such embeddings [208]. According to a taxonomy introduced by a survey on HAR [81], our
solution fell under model based methods which performed task-invariant embedding learning. We also
implemented prototypical loss [80] with some modifications for the task of FSL based HAR. The model
FSHAR from early work on FSL based HAR [79] is used as a baseline for comparison.

5.3 System Operation

Fig. 1 shows the operation of our FSL system after it is trained. Data flow is shown in Figure 2. A FSL
embedding function is denoted by f. CLSgsr distinguishes data from source and target domain. C'LSg
classifies data in source domain while C'LSrg; classifies data from target domain. We denote source
domain data as S = {(s;,%:)Y",}. Where each s; € R is the D-dimensional feature vector of a sample.
y; € Cs = {1,...,|Cs|} are the corresponding labels. We divide S into S;4;, and Si.s;. We train the
embedding function f with data from S}, ,;, and perform testing on S;.5;. We embed S;;..;,, and S5, with
f and get 3,4 and Y. While training, the source classifier C'LSg is attached at the end of f. CLSg is
trained to classify the embeddings generated by f into one of the classes present in S. The error used in
training C'LSg is calculated from the class probability generated by it. We learn an embedding function
f(,0s0c) : RP — RM using data from S, which embeds each sample s; to an embedding o; € RM.
Here 0., is the set of parameters of the embedding function f. This process outputs embedded source data
¥ = {(0i, i), }. These embeddings and corresponding class labels are used to calculate a loss (explained
in next section) which, in turn, is used to train f using back propagation. FSL (C'LSrsr) and source/target
(CLSgsr) classifiers are trained with the data from the user. In Figure 1, z;..; denotes a data sample to be
classified. This would be a multi dimensional vector of IMU data. The embedding of the s, f(Ztest) iS
generated with the trained embedding function f (CNN model). f(zcs:) is sent to CLSsr. This outputs
whether the input sample is from a source class or a target class. If x;.,; comes from the source data,
f(2test) is send to C'LSg for classification. This would give the probabilities of x;..; being belonging to
each class in the source classes. If xz;.s; belongs to target data, f(x:cst) is sent to CLSrg;, which would
classify it to one of the target classes. When the user encounters new classes, the system should be capable
to incorporate these into the CLSgr and CLSpg;, by retraining them. f and C'LSg require no modification
after the initial factory training.

For the FSL tasks we have the data from target domain. 7' = {(;,2;)%}. Where t; € RP. z, € Cp =
{1,...,|Cr|} are the corresponding labels. We can generate the set of embeddings from 7' by sending all
t; € T through the embedding function f. This way we obtain T = {(7;, z,,;)ﬁ\; 7} where each 7; € RM and
7i = f(ti,0src). To train the FSL classifier we extract K number of samples from each class randomly from
the data in T. The number of classes in 7" is |Cr|. This is considered a |Cr|-way-K -shot classification. We
use rest of the data in T for testing. To classify an unseen sample (t:.st,?), we get the embedding of ¢;.;
as f(tiest, Osre) = Teest. Then CLSpgr (Tiest) classifies the test sample ¢;.; to one of the classes in 7'. If the
embedding function f embeds the data to a lower dimension, that is if M < D, a simpler classifier can be
built to classify the embedding of ¢;.; into a class. CLSkg is preferred to be a simpler classifier since the
amount of data used to train CLSFg/ is very small.

We build a source/target classifier C'LSgr to distinguish samples from S and 7. We select a K number
of samples from each class in both Y., and T. We train Cs with these data. Csr is tested with the rest
of the data from X;.,; and T.

5.3.1 Calculating Class Centers

Both prototypical networks and center loss based networks utilize class centers. Class centers for source
data S can be calculated as
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Figure 5.2: Training workflow
1
CENTER, = — (84 (5.1)
e X )

(si,k)EStrain
Here CENTER, is the center of class k. S; denotes all samples belonging to class k. In prototypical
networks these centers are called "prototypes” [80]. Center loss paper calls them ”class centers” [208].
Ideally, the entire training set S.q;», should be taken into account when calculating the centers. But in
practice, the centers are calculated only considering mini-batches.

5.3.2 Prototypical networks

Prototypical networks from [80] use a neural network based function to derive embeddings for input data.
For each class in S, they calculate a "prototype” by taking the mean of the embedding of each class as
shown in equation 1. Given a distance function d, prototypical networks generate a distribution over
classes for a sample point 2 based on softmax over distances.

B _ exp(—d(f(xz), CENTERy))
pely = M) = S~ A7 (2).CENTER]))

If = belongs to class k, the distance between the class center CENTE Ry, and z should be low and ps(y =
k|x) value for class & should be the maximum among all other ps(y = £’|x) for all the other classes '

Learning aims to minimize the negative log-probability J(®) = —log[ps(y = k|x)]. Since f is a neural
network, the loss J can be used for training f by back propagation. Details of the training procedure
follows from prototypical networks [80].

(5.2)

5.3.3 Center Loss

To create embeddings with low intra-class variation and high inter-class variation, we use the center loss
as described in [208]. It is described as shown in the equation 3. The training data were taken from source
domain S;, 4.
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Algorithm 1 Training episode loss computation. C is
the set of classes in source set. C,; and Cy; are the sets
of classes selected to calculate center loss and softmax
loss. Here |C| = |C| + |Cs|- m is the number of sam-
ples used to train per class. S* denotes the subset of S
where all elements (s;,y;) are such that y; = k. RAN-
DOMSAMPLE(A,B) denotes a set of B elements chosen
uniformly at random from set A without replacement.
P . denotes all data points € X4, which belongs
to class p. Here softmaxloss is the softmax loss calcu-
lated according to equation (4).
Input : source set S = {(s1,91),..., (Sn,yn)} where
each y; € C,
output: The loss J for a training episode.

P =+ RANDOMSAMPLE(C,,|Cu)

for pin P do

Ap = RANDOMSAMPLE(SY, 150 m)

CENTER, « 3 T wea, (5

CL<+ CL+ 5 E(si,J,)eA,, |f(si) — CENTER,||3
end for
for q in {{Cs}\P} do

B, < RANDOMSAMPLE(S?, . m)

S]W — SM + Z(si,yz)eB,, softmaxloss(f(s:), yi)
end for
J=SM+\CL

m

== Z ||f(z:) — CENTER;||? (5.3)

Here m is the size of mini-batch. CENT ER; is the center of class of z;. The softmax loss for the mini-batch

can be defined by equation 4.
‘/V T +by,

Zlog S T, (5.4)

The final loss of the model is the summation of the two losses with the hyperparameter A to control Lo
L=Ls+ ALc (5.5)

Note that in equation 3, L. is the scaled average of euclidean distance of data points from their class
centroid. Research on FSL with prototypical networks [80] show that euclidean distance works better
than other types of distances such as cosine similarity for FSL problems.

We modified the training procedure to generate more generalized embeddings. During each training
episode, a subset of |C,;| number of classes are selected from Cs. Samples in the mini-batch belonging to
C.; are used to obtain the center loss L.. The rest of the data in the mini-batch is used to obtain the softmax
loss L. Pseudocode to compute loss J is shown in Algorithm 1. We use separate classes to calculate center
loss and softmax loss so that f would be adapted to unseen classes.

5.3.4 Test time adaptation for Few shot learning

We expand our FSL framework by incorporating the test time adaptation philosophy. As mentioned in
Section 2 Batch Normalization (BN) layers can be used to adapt a model to the test data distribution by
adjusting the scaling and shifting parameters of the BN layers. BN layers operate as show in equation 5.6.
x is the inputs to the BN layer. E[z] and Var[z] represents the mean and variance of the inputs to the BN
layer. ~ is the scaling parameter and f is the shifting parameter.

__z—ela] ,
v= Varlx] + € ¥y +0 (5.6)
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We show that the reason the FSL performance is low is the difference of distributions between the
source data and the target data. The scaling and the shift parameters of the BN layers can be used to
adapt a model easily to a new data distribution. Since there are just two parameters (scale and shift) this
adaptation can be done with very few data samples. Therefore this is very suitable for the FSL setting.
Although BN based test time adaptation have been used to adapt a model to a new domain, it has not
been tested for FSL setting. In order to adapt the model under FSL setting, we perform the regular back
propagation on the model after freezing the whole model except for the BN layers thereby adjusting the
scaling and shifting parameters of all the BN layers. We calculate a novel loss based on the model outputs
as shown in equation 5.8. Here we use two different types of losses. L is the centerloss used previously. In
addition to this we use another loss that we call Distribution Loss while measures the intra-sample distance
of the prototypes as shown in Equation 5.7. This loss is utilized to increase the separation of the different
classes. We also use regularization on the features to prevent the features from getting too large.

1
L ist — m (57)
o S enin (@) — ()2
L= L¢c + Laist (5.8)

We further fine-tune our model with the UTWENTE dataset under the Test-time Adaptation (TA) and
obtained the model in Figure 5.3. We use this model in all the TA based experiments.

classification

center loss loss

o Convld || Convld BN MP Convld BN o Convld “
- - - - ] =
g_ k=2 k=2 Relu k=2 k=1 || N 3 k=1 g
'f. out=64 out=64 mom=0.1| [stride=2 out=64 mom=0.1 g out=1 G
stride=2 || stride=2 stride=1 L stride=1
x2
KNN —>{FS—-Class

Figure 5.3: TA model

Test vs train statistics for the BN layers: When normalizing the outputs with, BN layers can either
use the statistics F[x] and Var[z] calculated from the current batch or use the statistics calculated from the
whole train set. In addition, a balance of these two quantities can be used by calculating running statistics
as mentioned in Equation 5.9. Here [ is the current mean (calculated from the train set) and p, is the
statistic from the current batch (in the FSL setting this is from the target samples).

finew = (1 — momentum) x fi + momentum X i (5.9

Note that when momentum = 1 the statistic is calculated solely from the target samples and when
momentum = 0, it is calculated from just the train set.

5.4 Experimental Evaluation

5.4.1 Dataset Information

We experiment on 3 publicly available HAR datasets. We extract data from The Physical Activity Monitor-
ing dataset (PAMAP2) [211] and The Opportunity Activity recognition dataset (OPP) [210] as mentioned
in literature [79] [74]. Complex human activity recognition using smartphone and wrist-worn motion
sensors (the UTWENTE dataset) [209] contains 13 activities from 9 participants. We extract accelerom-
eter and gyroscope data from wrist-placed smartphones. This provides us with time series data with 6
dimensions.

For each dataset, we select certain classes as the source and others as the target. These target and source
activity splits are shown in Table 5.1. Note that the split of Datasets PAMAP2 and OPP are the as same
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Table 5.1: Source/target split for activities

source activities target activities

PAMAP2
Lie,Stand,Walk,Run,Rope Jump
Ascend Stairs,Vacuum Clean

Sit,cycle,Nordic Walk,Iron
Descend Stairs

OPP

Open Door 1,close door 1
open dishwasher

open drawer 1,2,3

open fridge

Open Door 2,close door 2

close fridge,clear table,drink from cup
close drawer 1,2,3,toggle switch

close dishwasher

UTWENTE
Walk,stand,type,drink,talk,smoke,eat
ascend stairs

jog,sit,bike,write
descend stairs

as the paper by Feng and Duarte [79]. We create our own split for the UTWENTE dataset. To experiment
with the effect of variations caused by users, we divide the participants of PAMP2 and OPP datasets as
mentioned in Feng and Duarte [79] into 3 and 4 groups. We do not apply this to the UTWENTE dataset due
to missing information on participants. We perform two types of testing on OPP and PAMAP2 datasets.
They are when source and target data is drawn from the same group and different groups as mentioned in
Feng and Duarte [79]. We fine-tune our system using the UTWENTE dataset for FSL performance and use
OPP and PAMAP?2 for evaluations. When preparing data we break the data sequences into sliding windows
of 1 seconds with 50% overlap and standardized. No other pre-processing was performed.

5.4.2 Extended source target splits and EMS related dataset

For the previous section a single source/target splits were used. This section extends this by adding three
more source/target splits for OPP and PAMAP2 datasets.

Table 5.2: Data splits

dataset Source classes Target classes
Open Door 2,Close Door 2,Close Fridge,Close | Open Door 1,Close Door 1,0pen
splitl Dishwasher,Close Drawer 1,Close Drawer | Fridge,Open Dishwasher,Open
OPP 2,Close Drawer 3,Clean Table,Drink from | Drawer 1,0pen Drawer 2,0pen
Cup,Toggle Switch Drawer 3
Close Door 2,Close Drawer 1,Close Drawer | Close Dishwasher,Close
split 2 2,Close Drawer 3,Close Door 1,0pen Drawer | Fridge,Open Fridge,Drink from
1,0pen Drawer 2,0pen Door 2,0pen Door | Cup,Open Dishwasher,Clean
1,0pen Drawer 3 Table,Toggle Switch
Close Dishwasher,Close Fridge,Open
Fridge,Drink  from  Cup,Open  Dish- | Close Door 2,Close Drawer
split 3 | washer,Clean Table,Toggle Switch,Open | 2,Close Drawer 3,0pen Drawer
Door 1,Close Door 1,0pen Drawer 1,Close | 2,0pen Door 2,0pen Drawer 3
Drawer 1
Close Door 2,Close Fridge,Close Dish- | Open Door 2,0pen Door 1,0pen
split 4 washer,Close Drawer 1,Close Door 1,Close | Fridge,Open Dishwasher,Open
Drawer 2,Close Drawer 3,Clean Table,Drink | Drawer 1,0pen Drawer 2,0pen
from Cup,Toggle Switch Drawer 3

In addition to the public datasets, the FSL methods were evaluated for EMS related activities mentioed

below.

5.4.3 Classifiers used for Srg;,

We use KNN which had been used for FSL settings [214] due to its simplicity [78] [82]. We also use a
Distance Classifier (DC) to classify f(z:st) to the class centroid with the closest distance to it following
prototypical networks [80]. We use euclidian distance as the measure of distance because it has proven to
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be more effective that some other distance measures in FSL setting [80]. Finslly we also use SVM classifier
because sometimes it has show to out-peform simpler classifiers [215].

5.4.4 Fine-tuning

We fine-tuned the hyper parameters of the embedding function f separately for both center loss and pro-
totypical loss based methods using the UTWENTE dataset. We modified a CNN architecture which proved
to be successful for HAR with IMU data [216]. The FCN structure obtained is shown in Fig. 4. Here the
embeddings are calculated from the C3 layer. The output from the last pooling layer goes to the source
classifier C'LSs which uses a convolutional layer followed by a softmax layer for classification of source
data. Parameters found for both of the methods are shown in Table 5.3.

Table 5.3: Hyperparameters used

Parameter proto CL
samples per class 10 8
embedding size 128 128
learning rate 0.001 | 0.001

discount 0.7 0.9
C1 kernel size 2 2
C2 kernel size 4 1
C3 kernel size 128 128
selected classes 6 2
A - 0.0001
support samples 7 5
Optimizer Adam | Adam

num. episodes 1000 | 1000

Table 5.4: Performance on UTWENTE with KNN classifier for CLSrgy,

1-shot | 5-shot
proto | 77.81 | 91.54
CL 83.63 | 93.25

Loss

C: Convolution layer . CLS,
P: Max-pooling layer

R: Relu layer

B: Batch normalization layer

Figure 5.4: FCNN architecture

5.4.5 Performance of the Models

In this section we report the accuracy of Crgy, Cs and Csp for both prototypical and center loss based
models, and where applicable we compare it with a weight transfer based method FSHAR from literature
[79].
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Table 5.5: Performance on PMAP2 using KNN for CLSpgy,

1-shot 5-shot
1 2 3 1 2 3
same 50.87 57.67 58.98 65.95 62.84 70.08

base  jifferent 54.59 50.58 63.70 67.91 59.22 77.18
same 50.33 63.84 6267 7492 79.18 83.76
Proto  jifferent 62.62 58.82 51.87 75.20 76.84 80.31
ol same 58.65 62.22 64.23 7401 7838 84.11
different 58.68 59.84 53.07 74.69 74.84 78.98

Table 5.6: Performance on OPP using SVM for CLSrsy,

1-shot 5-shot
1 2 3 7] 1 2 3 7]

base SAME 5592 5324 5862 5475 67.08 6450 67.68 69.05

diff 48.02 49.70 48.82 49.06 62.29 61.88 62.08 60.64
same 57.99 58.12 59.65 56.53 75.82 73.08 76.72 72.50
diff 51.62 50.93 48.41 49.22 70.22 6843 62.38 67.00
same 69.82 63.15 70.34 64.22 82.33 76.93 82.46 77.85
diff 56.85 54.21 52.22 53.17 72.26 68.42 67.55 68.70

5.4.5.1 FSL performance (CLSpsr)

proto

CL

We show the number of training samples used to train C LSrgsy. per each target class (1 or 5) and whether
source and target data are generated by the same participant (for OPP dataset)/group of participants (for
PAMAP2 dataset). Each value in this section is averaged for over 100 models. Tables 5.4, 5.5 and 5.6
shows these results. Note that for each dataset we only show the results of the best FSL classifier. KNN
was the best option for CLSrg; under both UTWENTE and PAMAP2 datasets while SVM was the best for
OPP.

Number of shots: A common trend that can be seen from the results is that the performance level
improves when we increase the number of training samples seen by CLSrg; (number of shots). For
example in Table 5.4, under the KNN classifier of CL model, the accuracy improves from 89% to 93%
when number of shots is changed from 1 to 5. This can be expected because when C'LSrg; gets more
data, it can make a more informed decision.

Training data used for the FSL classifier: For the OPP and PAMAP2 datasets, the average performance
of CLSFgr, is higher when it is trained and tested with data from the same participant opposed to when
they are trained and tested with different participants. This can be observed from Tables 5.5 and 5.6 and
can be more clearly seen from Table 5.7. Table 5.7 shows the average performance of all the classifiers for
C'L model. We used KNN for all the CLSrgsr and CLSsr classifiers except for C'LSrg, under OPP dataset
where we used SVM due to its higher performance. In Table 5.7, the 5-shot average performance of CL
model trained on OPP data when source and target data are from the same participant is 80% and when
data comes from different participants, this value drops to 69%. This is true for all the participants/groups
except for group 1 under 5-shot evaluation in PAMAP2 where these performance metrics are roughly equal
as can be seen from Table 5.5. This characteristic where FSL performance is greater when source and target
data are drawn from the same participants/groups than when they are different can also be observed under
the FSHAR model evaluated on the OPP dataset. But, this is not so for the PAMAP2 dataset as can be seen
in the FSHAR paper [79]. Following the reasoning from FSHAR paper [79] we can conjecture that this
is because the OPP train and test data from the same participant have the same marginal distribution.
Marginal distribution of data selected from different participants must be different. The PAMAP2 dataset
on the other hand does not display the above behaviour. This might be because we group 3 participants
into the same group for this dataset which may make the two marginal distributions of the same group
dissimilar. We can conjecture that our centroid based models can learn relevant concepts from data better
even when marginal distributions of train and test data are different.

Different methods of training embedding function From the results in Table 5.7, it can be seen
that the centroid based models perform significantly better than the FSHAR method [79]. The average
improvement of CL. method over the FSHAR method [79] is around 10% for both the OPP and PAMAP2
datasets under 5-shot setting. The improvement is significantly greater when 5-shot setting is used opposed
to using just 1 sample. For the OPP dataset, the average 1 shot improvement when using CL model
over FSHAR method is around 8%. For 5-shot setting, this is over 10%. On the PAMAP2 dataset, 1-
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Table 5.7: average performance of the CL model with 95% confidence intervals

CL from [79]
1-shot 5-shot 1-shot 5-shot
UTWENTE
CLSFsy, 83.63 +0.69 93.42+0.17
CLSs 84.87 4+ 0.44
CLSst 71.28 £0.80 75.06 + 0.66
OPP
CLSpsr same 66.40 £ 0.81 79.87 £0.37 55.63 67.07
- different 54.124+0.71 69.244+0.45 48.90 61.72
CLSg 96.21 +0.12
CLSst 74.69 +0.60 83.45+0.37
PAMAP2
CLSpst same 60.57 +0.98 78.66 +£0.66 55.84 66.29
different 59.08 +0.98 76.794+0.51 56.29 68.10
CLSg 94.55 £ 0.17
CLSst 77.95+£0.57 86.73 £0.31

Table 5.8: Classification accuracy among target classes UTWENTE

sim SVM KNN

1 5 1 5 1 5
sitting 78.88 90.57 78.88 90.40 78.88 88.97
biking 73.66 79.85 73.66 87.72 73.66 91.93
jogging 83.70 94.40 83.70 95.00 83.70 95.27
descending stairs 90.35 95.68 90.35 96.05 90.35 96.17
writing 91.52 95.16 91.52 94.71 91.52 94.74

shot improvement is around 3.7% and 5-shot improvement is over 10%. These improvements going from
1 shot to 5 shot settings can be attributed to CLSpgs;, classifiers and to the quality of the embedding
generated by f. Also the FSL performance improvement is higher when source data comes from the
same participant/group than when the data comes from a different participant/group. For example, on
OPP dataset considering the CL model, the performance improvement over the FSHAR method from the
literature is around 12% when data comes from the same participant. This is only 6% when the data comes
from a different participant. For PAMAP2 dataset these values are around 8% and 5%. This trend is also
visible for prototypical networks. We can conclude that the centroid based methods learn more useful
details from data than the FSHAR model does. Furthermore, the improvement in performance is larger
when training data comes from a similar distribution to the test data. Also, we can see that in most cases
CL model performs the best. This is true for the UTWENTE dataset, for all the settings on the OPP dataset
and for certain cases of the PAMAP2 dataset.

Class-wise breakdown of the CLSrs; performance can be seen in Tables 5.8 to 5.11. We also show
the performance of all three classifiers used for F'LSr;s and the number of shots.

Table 5.9: Classification accuracy among target classes on OPP

DC SVM KNN

1 5 1 5 1 5
open door 1 60.63 75.51 60.63 75.57 60.63 73.91
close door 1 71.71 79.82 71.71 80.18 71.71 79.66
open fridge 51.89 68.53 51.89 70.83 51.89 65.26

open dishwasher 46.71 61.48 46.71 62.26 46.71 62.37
open drawer 1 60.60 75.94 60.60 76.78 60.60 73.45
open drawer 2 54.28 70.68 54.28 70.74 54.28 70.99
open drawer 3 76.04 85.29 76.04 85.57 76.04 84.77
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Table 5.10: Classification accuracy among target classes on PAMAP2

DC SVM KNN

1 5 1 5 1 5
sitting 48.43 62.43 48.43 66.91 48.43 74.45
cycling 76.24 90.11 76.24 90.17 76.24 89.35

Nordic walking 78.04 85.24 78.04 89.02 78.04 91.57
descending stairs 43.23 59.87 43.23 64.82 43.23 65.99

ironing 53.18 65.25 53.18 69.08 53.18 67.26
Table 5.11: source class accuracy on UTWENTE Table 5.12: source class accuracy on PAMAP2

source class accuracy source class accuracy
walk 96.88 lying 93.98
stand 77.15 standing 93.90
ascending stairs 98.32 walking 94.87
type 90.00 running 94.87
drink 82.88 ascending stairs  92.08
talk 81.33 vacuum cleaning 93.35
smoke 70.56 rope jumping 96.84
eat 81.07

5.4.5.2  Source classifier performance

This section discuss the performance of the classifier which classify source samples (C'LSg) as can be see
in Table VI. CLSFrg;, of UTWENTE is around 93% while that of CLSg is around 85%. But for OPP and
PAMAP2, C LSrs; performance levels are in mid-seventies while C'LSs are mid nineties. We can surmise
that the embedding function might have overfit to the source data for OPP and PAMAP2 datasets. But
UTWENTE models seem not to suffer from this. Therefore it is important to handle the overfitting when
creating a FSL solution.

Interesting relationships between performance levels of source and target classes can be observed. From
Table 5.8, it can be seen that descending stairs class has the highest 5-shot performance (for CLSrsy,)
around 96% for the KNN classifier for the UTWENTE dataset. The highest performing source class is
ascending stairs at 98% (see Table 5.11). We can surmise that this is due to the similarities between
these two activities. Since the embedding function learned higher quality embeddings for the source
class ascending stairs, this knowledge was easily transferred to the target domain. Sitting on the other
hand has the lowest 5-shot performance at 89% among target activities under KNN (Table 5.8). This
might be because there are no similar activities in the set of source classes of UTWENTE so the embedding
function did not learn concepts similar to sitting. For PAMAP2 dataset, the highest achieving target activity
(under 5-shot and KNN classifier) is Nordic walking which has an accuracy of 91.5% as can be seen from
Table 5.11. On the set of source classes, the highest performing activity is rope jumping at almost 97% (see
Table 5.12). We can hypothesize that this is due to the inherent similarities between the two activities.

Table 5.13: Classification accuracy on source classes on OPP

source class accuracy
Close Dishwasher 96.62
Close Drawer 3 97.12
Close Drawer 2 90.07

Close Door 2 96.92
Close Drawer 1 92.26
Close Fridge 97.25
Toggle Switch 98.46
Open Door 2 95.94

Drink from Cup 97.38
Clean Table 99.42
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Table 5.14: Classification accuracy of source classes vs. target classes

DC SVM KNN

1 5 1 5 1 5
S 56.79 57.29 32.83 47.12 60.79 72.08
UTWENTE T 86.70 87.22 99.41 98.40 81.77 86.47
OPP S 56.27 60.51 2259 70.17 66.62 79.09
T 6489 6284 9560 87.71 82.77 87.81
S 69.02 7255 44.00 83.29 74.13 85.53
PAMAP2 T 7010 73.33 91.25 85.07 81.76 87.94

Both activities involve significant and synchronized arm and leg movements. Ascending stairs from the
set of source classes in PAMAP2 dataset and descending stairs from the target classes both are the lowest
performing activities in their respective domains (Tables 5.11 and Table 5.12). We can infer that the
activity descending stairs did not perform well in the target domain due to the embedding function did not
learn concepts related to ascending stairs well in the source domain.

5.4.5.3 Source/target classifier performance

Table ?? demonstrates that performance of C'LSsy on all 3 datasets. For each dataset we show the accuracy
of detecting both target (T) and source (S) samples under 3 different types of classifiers DC, SVM and KNN,
under 1-shot and 5-shot setting. For 5-shot setting, each classifier is trained with 5 samples from each class
in source and target domain and then tested on the rest of data. It is evident that KNN is the best overall
choice for C'LSsr which has the average performance of 75%, 83% and 87% on the UTWENTE, OPP and
PAMAP2 datasets. A summary result of this can also be seen in table 5.7. We have only reported CLSsr
performance under KNN dues to its highr performance.

It can be seen that the performance of our CLSrg;, models surpasses those from literature [79]. Al-
though the 1-shot accuracy values are not sufficiently high for any practical use, 5-shot accuracy values
show promise. Therefore we can recommend to use the model CL with 5-shot criterion for a FSL-based
HAR system.

5.4.6 Test time adaptation for Few Shot Learning

This section extends the previous experiments using test time adaptation as shown in Table 5.15. It can
be seen that using test time adaptation improves the performance significantly specially in 5 shot setting.
The improvement is more significant when BN momentum is O; that is when we use the train data statistics
instead of the target dataset statistics. This may be due to the statistics derived with just 5 samples in the
target dataset may be too biased. The improvement under 1 shot setting is not significant; in some cases
the performance decreased. Therefore, under 1 shot setting, using TA is not necessary.

Next we evaluated the model trained on PAMP2 data on target data which contains all the target
classes from the PAMAP2 and also the data from a CPR data session. The IMU data we collected during
CPR contained 6 dimensions (3 axis accelerometer and 3 axis gyroscope). Therefore we trained the model
with the same sensor outputs from PAMAP2 dataset and evaluated on the combined dataset. The results
are shown in Table 5.16. The new activity, CPR can be recognized with a high accuray.

5.5 Conclusion

We present the first generalized FSL system for human activity recognition with wearable devices. We
show that our methods outperform the state-of-the art in the FSL task. Our system has real practical
applications, especially as these applications evolve over time. For example, consider elderly people living
alone. We can use wearable devices which are programmed to recognize certain set of activities. But as
the condition of the elderly change over time, they might end up doing different activities to what the
device is previously programmed for. We can use our system to detect these new activities with just a few
samples from each new activity.



Table 5.15: TA evaluation on OPP dataset

split Method 1 Shot | 5 Shot
Base 52.79 | 62.55
CL 56.11 66.79

splitl | TAmom=0.0 | 57.37 | 75.93
TA mom=0.5 | 55.79 | 75.13
TA mom=1.0 | 56.83 | 75.64
Base 52.41 | 62.55

CL 58.57 | 66.79

split 2 | TAmom=0.0 | 57.76 | 75.93
TA mom=0.5 | 59.63 | 66.79
TAmom=1.0 | 60.24 | 66.79
Base 59.70 | 62.55

CL 58.61 | 66.79

split 3 | TAmom=0.0 | 57.51 | 75.93
TA mom=0.5 | 56.55 | 66.79
TA mom=1.0 | 57.73 | 66.79
Base 65.91 | 62.55

CL 67.34 | 66.79
split4 | TAmom=0.0 | 64.95 | 75.93
TA mom=0.5 | 65.89 | 66.79
TAmom=1.0 | 64.61 | 66.79

Table 5.16: FSL evaluation on data with EMS data

Activity 5-shot FSL accuracy
sitting 0.76
cycling 0.56
Nordic walking 0.75
Descending stairs 0.28
Ironing 0.40
CPR 0.85
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CHAPTER 6

ROBUSTNESS TO NOISE FOR SPEECH
EMOTION RECOGNITION

6.1 Introduction

This chapter explores solutions to develop noise-robust speech emotion recognition system for the EMS
providers. To this end, we conduct experiments with several techniques for vocal emotion recognition
under several different environmental noise conditions on public emotion recognition datasets. We hope
the techniques that we develop in this chapter can be expanded into real world EMS provider setting with
minimal modifications.

There are other domains that Automatic emotion recognition (AER) can be used [153]. For example,
it can be used for interaction between human and machines such as robot health assistants [156]. There
are many applications for emotion understanding in health such as diagnostic tools for therapists, helping
caregivers of dementia patients, helping post traumatic stress disorder patients, assessing the emotional
state of callers to a emergency call center, and even outside of health such as to assess emotional state of
drivers in cars [156] and for media [154].

One of the weaknesses of the state-of-the-art SER systems is they are very sensitive to noise. These
noises are caused by other sound producing sources in the vicinity of the SER system which can corrupt
the speech signal the SER system is analysing. But only very limited amount of research was performed
addressing this problem in the context of SER. Therefore, in this chapter, we develop, analyze, compare
and propose several potential solutions to solve this problem.

Convolutional Neural Network (CNN) models were used for SER since they have the state-of-the-art per-
formance in the literature. Several spectrogram based feature types as inputs to the CNN models were used,
compared and combined in this study. All of these spectrograms were obtained by performing Discrete
Fourier Transformation (DFT) on the speech signals. Traditionally, SER models use only magnitude spec-
trograms for audio classification. But in this study we also use Modified Group Delay (MGD) spectrograms
[171] and unwrapped phase spectrograms obtained with python package scipy [scipy].

The main contributions of this chapter are:

1. Majority of state-of-the-art SER models are CNNs and use magnitude spectrogram as the input. But
performance of these models degrade significantly with background noise. There are evidence from
literature that Modified Group Delay (MGD) may be robust under noise. We combine magnitude
spectrogram with MGD spectrogram and show that the Fully Convolutional Neural Network (FCNN)
models trained with this combined input is more robust to noise than just using magnitude spec-
trogram. We perform initial experiments on the Berlin Database of Emotional speech. Using other
techniques such as training with artificially added noise and attention mechanism alongside the com-
bined input we show that an average improvement of 15% accuracy (F1 of 0.16) can be obtained
under noisy conditions when compared to a traditional model which only uses magnitude spectro-
gram as input.

2. We show that including synthetic noise in the training data improves the noise robustness of all the
models considered. Interestingly, the model with combined magnitude and MGD spectrograms as
inputs saw a larger improvement than those used individual spectrogram inputs. Doing this step
improved the accuracy by 10% (F1 by 0.11) over the model which used magnitude spectrogram
alone and did not train with noisy data.

3. Including an attention mechanism to the FCNN model with combined input and training with noisy
data also improved the noise robustness by an accuracy of 5% (F1 by 0.05). We also provide evi-
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dence that attention mechanisms can ignore noisy data sections of speech and pay more attention to
important and cleaner sections of the speech.

4. Our best model showed an average accuracy of 76% (F1 of 0.73) over all the noise levels (Signal to
noise ratios from 10 to 35 and clean speech) and all the noise types considered. If the performance
under AWGN is considered our model had an accuracy of 76% over all the noise levels (including
clean speech). This performance is a significant improvement over the model mentioned in [217]
which reports an accuracy of 56%.

5. The above results were obtained with the Berlin Database of Emotional speech. Next the best fine-
tuned model architecture, noise robust features and the hyperparameters chosen from those steps
were used and trained on the RAVDESS dataset [218]. This model obtained an accuracy of 91% (F1
- 0.91) under clean speech and 81% average accuracy (F1 - 0.81) under all noise types and levels
considered. This shows that our solution can be generalized to other datasets and emotions.

The remainder of this chapter is organized as follows. First we discuss the methods and solution frame-
work that was used in Section 6.2. Then, we present the experiments and results in Section 6.3. A discussion
and conclusions are presented in Sections 6.4 and 6.5.

6.2 Methods and solutions

The aim of this study is to find features, training procedures and model architectures that are robust to
noise for the task of SER. This section describes the methods used to achieve this, problems faced and
solutions.

6.2.1 Data Sets

For the first sections of this study audio speech from the Berlin Database of Emotional Speech is used
[219]. It contains around 500 utterances spoken in German. The emotions happiness, anger, anxiety/fear,
disgust, boredom, sadness and neutral are present in the dataset. First the hyperparameters of the models
were tuned and appropriate input features were selected using the Berlin dataset. Afterwards the model
with those hyperparameters and input features were tested on the speech audio data from the RAVEDESS
dataset [218]. This dataset contains two intensities of emotion expression; strong and normal. Only the
strong emotional expressions were used. For this study, the emotions calm, happy, sad, angry, fearful and
surprised were used from the RAVDESS dataset. 575 utterances were present in the selected data from
RAVDESS.

6.2.2 Noise

Noise types used. Different types of noise can affect the performance of a SER system. But an analysis
of SER performance under different noise types is not performed in an adequate manner in the literature.
Therefore, a set of 9 common indoor noises were selected for this study from the Freesound Dataset [220].
They are the sounds of crickets, alarms, kettle whistling, rain, steps (person walking), thunder with rain,
traffic noise, vacuum cleaner, and air conditioner. In addition, additive white Gaussian noise (AWGN) was
used.

These noise types are selected because they are very common sources of noises in indoor environments.
For example, air conditioner may be always on during summer. Also sounds with various characteristics
were selected. For example, unlike air conditioner hum, steps is of intermittent nature and alarm sound
has a higher and well defined set of frequencies. Note that some of these noise types such as steps, rain,
traffic noise are very common in EMS situations.

Additive white Gaussian Noise. This kind of noise can be added (arithmetic element-wise addition)
to the signal. Also its mean value is zero (randomly sampled from a Gaussian distribution with mean value
of zero; standard deviation can vary). It contains all the frequency components in an equal manner. AWGN
is easier to model and easier to generate. Since AWGN contains noise equally in all the frequency bands,
researchers (e.g. [221]) use it to approximate different types of noises and to compare the performance of
different models and features.

The SER models trained during this study were evaluated with all of these noise types. It is hypothesized
that a model which is competent under these noise conditions will be able to handle a wide variety of indoor
noise types which are not used here.
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Signal to noise ratio. For the experiments in this study, one of the qualities that was evaluated is the
performance of a classifier under noisy conditions. Signal to noise ratio (SNR) is a method to quantify how
much noise is present in a signal. For the purposes of this study, signal is the speech. Noise is one of the
noise sources described in the last section. SNR can be defined as follows.

RMSsignal 6.1
RS2, (6D

noise

SNR = 10log(

where RM S;gnai is the RMS value of signal and RM S,, ;.. is that of noise. log represents the logarithm
of 10. In the experiments performed, noise was added to the clean signal at different SNR levels and the
performance of models were observed.

6.2.3 Feature selection

Magnitude spectrogram is the most commonly used input type for CNN based SER systems. So, it will
be included in this study. Since there are evidence suggesting including phase information makes models
perform better, we also use unwrapped phase spectrogram as an input. Also, since modified group de-
lay (MGD) was theoretically proven to be robust to noise as described in section 2.4.5 we include MGD
spectrogram in our study. All 3 of these input types are Fourier transform based.

Different input types and their combinations may have different noise robustness characteristics. There-
fore, models were trained taking each of these input types and some of their combinations as inputs and
their performance under noise is compared. This way, the best performing input types/input combinations
can be selected.

6.2.4 Creating the FCNN architecture

To find the best CNN architecture for each feature type, the auto ML package Autokeras [222] was used.
To build the classifier with Autokeras, ImageClassifier class with maz_trials = 20 and fit function with
epochs = 20 were used. An interesting observation is that the optimum CNN architecture found by Autok-
eras was the same for all the situations (Different input types and their combinations). After obtaining a
CNN architecture, it was converted into a FCNN by replacing all the fully connected layers with convolu-
tional layers. The architecture is shown in Table 1. Note that there are 7 filters in the last convolutional
layer. These filters correspond to the 7 different emotion classes in the Berlin dataset which is used in
initial experiments.

Table 6.1: FCNN architecture

Layers

conv2D 32 3x3 1
Activation relu
Max Pooling 2x2 2
conv2D 64 3x3 1
Activation relu
Max Pooling 2x2 2
conv2D 16 3x3 1
Activation relu
Dropout 0.5
conv2D 7 3x3 1
Global Average Pooling
Activation softmax

6.2.5 Calculating spectrograms

First, start and end silence sections were removed from voice samples. All the voice samples were re-
scaled so they will be between [—1, 1]. Then features were calculated from these samples. Note that the
length of these voice samples varied since FCNN can handle variable length inputs. Note that MGD has
the parameters o and + from Section 2.4.2. After some trial and error a = 0.6 and v = 0.5 was selected
and kept constant throughout this study.
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Feature 1

Feature 1 Feature 2
Feature 2

comb1 comb2

Figure 6.1: Combining Features

The input types used are magnitude, MGD and unwrapped phase spectrograms. To calculate these, the
voice signal was broken into blocks of desired length (depending on the desired DFT window length) and
then applied a hamming window. Afterwards DFT was performed. From the DFT results, magnitude, MGD
and unwrapped phase were calculated. DFT was performed with python library scipy.

DFT window length. Different lengths for the blocks (this is called DFT window length in this study)
were chosen. The frequency and time resolution of the spectrograms depend on the chosen DFT window
length. Larger lengths results in higher frequency resolution and lower time resolution and vice-versa.
Therefore different DFT lengths may react to various noises in different ways. The noise performance of
the models may depend on the DFT window length chosen. These lengths are chosen to be 25 ms, 50 ms,
75ms and 100ms. A separate model for each of these DFT window lengths were trained.

6.2.6 Combining Input spectrograms

The goal of this section is to find the effects of combining different inputs on noise robustness of SER.
It is hypothesized that different methods of combining different inputs may yield varying levels of SER
performance and combining inputs may provide better results than just using individual inputs. To test
this some input types were combined in two different ways and compared.

Two different methods of combining two feature types were used in this study. They are combining
them as different channels of an image (called comb1) and combining them side-by-side (called comb2).
Figure 6.1 shows the two methods of combining feature types. If both Feature_1 and Feature 2 are 2D
arrays of dimension % x w, the dimension of comb1 would be 4 * w * 2 and dimension of comb2 would be
h x 2w. A CNN can be trained using regular methods with both of these input types.

6.2.7 Model training

All the FCNN models were trained with Keras deep learning library with the optimizer adam. The starting
learning rate was 0.001. To train all the FCNN models except under batch training in section 6.3.5 and
when training on RAVDESS in section 6.3.8 batch size of 1 was used because keras can only have fixed
length inputs in the same batch. For details on the batch training refer section 6.3.5. Learning rate was
decayed by 1 % 10~° once every epoch. Class weights were used while training due to the class imbalance.
These class weights were inversely proportional to the number of instances present in each class.

6.2.8 Model testing

In the initial experiments, for each feature and DFT window length 10 fold cross validation was performed
on the Berlin Database of Emotional Speech. First each model was evaluated under clean speech test set.
In order to evaluate the noise robustness of these models, they were evaluated under clean speech clips
mixed with various noise types at various noise levels (measured by SNR). SNRs used are 10, 15, 20, 25,
30 and 35. For example when evaluating a model under noise of crickets, cricket noise was mixed to the
original clean test data set at different SNRs. The same procedure was performed for all the different noise
types including AWGN. Afterwards the model accuracy and F1 score was obtained. F1 score is used to
report most of the results because it is more useful for evaluating datasets with class imbalance. For the
RAVDESS dataset, train data was prepared with 80% of the data and testing was performed on the rest.
Procedure for testing under noisy conditions was identical to that of the Berlin dataset.
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6.2.9 Training with noise

One reason that the models perform worse on the testing data is that the distributions of train and test
data are different. If models are trained with clean speech and used in real world noisy environments, the
model performance degrades because the test data contains noise which was not present in train data. To
bridge this gap, noise may be included in the training data. It is hypothesized that by injecting noise to
training data, the performance of the model on test data under noise can be improved.

To prepare the training data, 3 data sets were generated from the clean speech data. One is the clean
speech data itself. A second data set was prepared by injecting AWGN of SNR 40 to clean speech. Fig-
ure 6.2 shows one instance of these samples. A third data set was created by injecting random noise at
several random frequency bands. Figure 6.3 shows one of the samples with this type of noise. Note that
Figures 6.2 and 6.3 show magnitude and MGD spectrograms combir [ONN + tanh | mb2.

conv2D_3
=

6.2.10 Adding attention mechanism

An attention mechanism was added as shown in the Figure
6.6. It functions according to equations 6.2 and 6.3. This
attention mechanism is influenced by and modified from the 5
one in [186]. [186] implements the attention mechanism
for a traditional CNN architecture with fully connected lay-
ers. This had to be modified to fit FCNN which only contains

conv2D_att
=
Attention Layer

convolution layers as feature extractors. A convolution layer " :H
is used for extracting attention weights. There was no pre- . f
vious research done regarding combining FCNN models with l

attention mechanism and evaluating its noise robustness. Al- ool A

though [186] used both spatial and channel-wise attention
this study only uses spatial attention due to increased com-
plexity involved in implementing both types of attention at
the same time. Due to the smaller nature of the datasets used in this study, it can be imagined that in-
creasing the number of model parameters will increase over fitting.

Figure 6.6: Attention Mechanism

B = sigmoid|conv2D 4 (A)] (6.2)
C=AxB (6.3)

Attention mechanism can be used to teach the model in an explicit way to focus on relevant sections of
the input and ignore irrelevant parts in the time-frequency space. The motivation behind using attention
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mechanism to create noise robust SER models is that certain noises affect localized regions in the time-
frequency space. For example Figures 6.4 and 6.5 show voice clips mixed with cricket and alarm sound.
Majority of these noises are contained in some particular frequency ranges. Alarm noise in this example
corrupts a narrow frequency range around 2.1KHz. Cricket sound has corrupted some lower frequencies
and higher frequencies around 4-5KHz. If the model learns through attention mechanism to focus on clean
sections of the input and ignore the noisy regions it is hypothesized that the model will be more robust to
these types of noises.

6.3 Experimental Results

6.3.1 Training FCNN

The FCNN architecture shown in Table 6.1 was trained with spectrograms generated from voice recordings
of variable lengths. Figures 6.7, 6.8 6.9 and 6.10 shows the performance of the FCNN models under
various levels of noise. The SNRs used are 10,15,20,25,30 and 35 as mentioned in section 6.2.8. SNR of
infinity corresponds to clean speech. In Figures 6.7, 6.8 and 6.9 at each SNR, the average performance
of each model under all of the noise types mentioned in section 2.2 are shown. A separate model was
trained for each DFT window length and feature type. The DFT window length used is shown in the
legend. Figure 6.10 shows the performance breakdown under different noise types for the best model
trained under each feature. For each of these noise types the average performance under the various SNR
were taken.

Figure 6.7 shows the mean accuracy of the FCNN model trained with magnitude spectrogram as input.
The model trained with DFT window length of 75ms shows the best overall performance under noisy
conditions. Under clean speech, it shows an F1 score of 0.71. Interestingly the worst performing model
under noise (25ms model) performs best under clean speech. The performance levels of all the models
drop significantly with the addition of noise. Figure 6.8 shows the performance of the MGD model. 50ms
model shows best performance under noise and clean speech. It shows an F1 score of 0.75 under clean
speech. Figure 6.9 shows the performance of the model which uses phase spectrogram as input. The best
overall performance was achieved when DFT window length is 75ms and was 0.42 under clean speech.
Figure 6.10 compares the best models from each feature. Here the magnitude, MGD and phase features
were derived using DFT window sizes 75ms, 50ms and 75ms respectively.

From these plots it can be seen that different features may have different performance for clean speech
and under various noise levels. Also using different DFT window length may yield different performance
both for clean and noisy speech. The DFT window length which gives the best performance under clean
speech may not be a good choice for SER under noisy speech. From the features evaluated in this section,
MGD shows the most significant drop of performance going from clean speech to noisy speech. For example
the performance of the 50ms MGD model drops from 0.75 to 0.49 when going from clean speech to speech
with SNR of 35. But its performance is very stable around 0.50 until SNR is 15. From Figure 6.10 it can
be seen that for certain noise types MGD performs better and for the others mag is better. MGD performs
better under noise types air conditioner, rain, vacuum cleaner and white noise. Note that these noise types
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are more similar to white noise and corrupts broad frequency bands when compared to other types of noises
used here. Phase always performs the worst under all the noise types. Therefore only magnitude and MGD
features were selected for further analysis. From this section it can be seen that not only magnitude but
also phase based features like MGD can be used for SER.

6.3.2 Combining spectrograms

Next the effects of combining different input types to FCNN were studied. These input types were combined
according to two methods (comb1 and comb2) as discussed in section 6.2.6. From the previous section it
can be seen that the performance may depend on the selected DFT window length. So for each combination
method different DFT window lengths were used to train and validate the models.

From Figure 6.11 it can be seen that the DFT window length 50ms performs better for combination
method combl. Under clean speech combl model with 50ms DFT window length yields a F1 score of
0.81. For comb2, 25ms is the best DFT window length as can be seen from Figure 6.12. The performance
of this model under clean speech is 0.8.

Next the best models for magnitude spectrogram, MGD spectrogram, combl and comb2 input types
were compared. Figure 6.13 and Figure 6.14 shows the relative performance of these models. Figure 6.13
was obtained by taking the mean performance of the best magnitude, MGD, combl and comb2 models
over different SNR under all the noise types. Values in Figure 6.14 were obtained by taking the mean
value of performance under all SNRs under individual noise type.

Although the best performing model under clean speech is combl which gives a F1 score of 0.81
according to Figure 6.13, it never performs the best at any noisy condition (see Figure 6.14). Also combl
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is very sensitive to noise since its F1 drops to 0.51 under a little addition of noise having a SNR of 35.
Therefore, we can safely eliminate comb1 from further consideration. According to Figure 6.13, the mag
model shows an F1 score of 0.71 under clean speech. It has the best performance under noisy conditions
among all the models until SNR drops to 20. But from Figure 6.14 it can be seen that comb2 model performs
the best when we take the mean performance over all the noise types. Also a different kind of model may
be the best one under a different noise type.

From the results of this section, it can be concluded that by combining phase based features such as
MGD with magnitude, models more robust to noise can be built (compared to model just using magnitude
as input). Also different methods of combining features can have different levels of noise robustness. Under
these conditions comb2 method seems significantly better than combl method of combining magnitude
and MGD features.

6.3.3 Training with noisy data

Previously, all the models were trained with just clean data. In this section the effects of training with noisy
data is studied. Three best performing models from previous section (mag, MGD and comb2) were selected
and retrained with data mixed with artificial noise as mentioned in section 6.2.9. When trained with noise,
mag, MGD and comb2 models were named noise_mag, noise_ MGD and noise_comb2. Figure 6.15 shows the
improvement obtained by training with noise for each model. This figure shows the average performance
under all noisy conditions and all SNRs. All the models saw an improvement when trained with noise.
F1 score of magnitude model improved from 0.57 to 0.59. MGD model improved from 0.53 to 0.61 and
comb2 improved from 0.58 to 0.68.

Figure 6.16 shows the mean performance of models under all the noisy conditions under various SNRs.
The model trained with magnitude spectrograms perform the worst in general and noise_comb2 performs
the best. Figure 6.17 shows the performance of the models under all the different noise types. For each
noise type, the average over all the SNRs were taken. It can be seen that noise_comb2 performs the best
for each and every individual noise type.

From the results of this section, it can be concluded that training with artificial noise, the noise ro-
bustness of SER models can be improved. Furthermore, the improvement is greater when the model takes
both magnitude and MGD inputs compared to just using one of them. One other interesting observation
from Figure 6.17 is that noise_comb?2 is the best model under all the different types of noises used. From
experiments in previous sections it can be observed that no model was performing the best under all the
noise types like this. Therefore these results show evidence that by training under noise and using both
magnitude an MGD as inputs we can build SER models that are robust to many different types of indoor
noises.
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Figure 6.17: Performance when training under noise

6.3.4 Incorporating attention mechanism

To test the effectiveness of the attention mechanism, several models from the previous section were chosen
and attention mechanism was added to them as described in section 6.2.10. Magnitude was not consid-
ered in this section because it was the worst performing model from previous section. All the models
in this section are trained with noise as mentioned in the previous section. In addition to that, atten-
tion mechanism was incorporated. The models with attention mechanism are called att_noise_ MGD and
tuned_att_noise_comb2. These models use MGD and comb2 features respectively. tuned_att noise_comb2
was fine tuned to increase the performance. During the fine tuning process, several filter sizes and number
of filters were tried and the fine tuning was performed with the validation accuracy value of clean data.
No such fine tuning was performed on att_noise_ MGD. The reasoning behind just choosing the com2 model
for fine tuning is that from the previous section it was seen that noise_comb2 performs the best under all
different noise types and levels. Therefore it was assumed that com2 model will perform better with the
added attention mechanism and fine tuning.

From Figure 6.18 it can be seen that the average F1 score of MGD model improves from 0.61 to 0.64
after adding attention mechanism. tuned_noise_att_comb2 performs the best. This comb2 model improved
from 0.68 to 0.73. From Figure 6.19 it can be seen that for clean speech, this model shows a F1 score of
0.85.

Figure 6.20 shows the per emotion performance of tuned_noise_att_comb2. These values are taken by
averaging the F1 scores over all the different SNR levels and noise types per each emotion.

This section provides evidence that incorporating attention mechanism to CNN based SER systems can
improve its robustness to noise. This may be due to the ability of attention mechanism to focus on important
sections of the input and ignore the rest.

Figure 6.21 compares the performance of the model tuned_att_noise_comb2 with the model W-WPCC
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from [217]. They use an importance-weighted support vector machine to classify features based on sub-
band spectral centroid weighted wavelet packet cepstral coefficients. [217] evaluates their model only
under AWGN conditions. Therefore Figure 6.21 shows the performance of both models only under AWGN.
Our model performs better under both clean and noisy speech. Note these results use accuracy instead of
F1 score because [217] only reports accuracy. For clean speech, tuned_att_noise_.comb2 performed at an
accuracy level 86% and W-WPCC was 73%. Under speech of SNR of 20, our model performed at 72% and
W-WPCC performed at 52%. If the average performance under all the noise types, SNR from 15 to 35 and
clean speech is considered, W-WPCC performs at accuracy of 56% and our model performs at 76%. Note
that [217] uses noise robust features. But they do not employ other techniques such as training with noise
or attention mechanism.

6.3.5 Effects of batch-wise training

This section explains the effectiveness of batch training of the tuned_att_noise_.comb2 model. Here the
model batch_tuned_att_noise_comb2 was trained batch-wise. During earlier experiments, all the models
were trained with batch size of 1 since Keras does not allow variable input sizes in the same batch even
with FCNN. During batch training, for each batch the inputs were cropped into a randomly chosen length
(along time axis). So all the samples in a batch had the same size. The evaluation procedure is the same as
before. After a few trial-and-error experiments, a batch size of 16 was selected. Figure 6.22 and Figure 6.23
compares the F1 scores obtained via batch training and instance wise training. From Figure 6.23 it can be
seen that the average performance of batch training under lower noise levels (SNR > 20) is significantly
better than that of the instance wise trained model. According to Figure 6.22 the mean performance
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improves from 0.73 to 0.76 when trained batch-wise. But interestingly the batch trained model performs
worse than the instance trained model in certain noise conditions such as white noise and kettle noise.
Batch trained model is much better than the instance model under some noise conditions such as thunder
and traffic noise. Therefore this batch trained model may be useful under certain noise conditions.

6.3.6 Comparison of various methods on noise robustness

This section presents the effectiveness of various methods used to improve noise robustness and their com-
parison. Figure 6.24 shows the accuracy levels of the models trained with just using magnitude (mag),
comb2, com2 model trained with noise and comb2 model with attention trained with noise. Taking mag
model as a baseline, using combined features (mag and MGD) improved the accuracy by 1%. Using com-
bined features and training the model with noise improved the accuracy by 10%. Using comb2, noise
in training data and also incorporating attention mechanism improved the accuracy by 15%. From Fig-
ure 6.25, these value in F1 score are 0.01, 0.11 and 0.16. From these results it can be seen that combining
magnitude and MGD spectrogram and training the model with noisy data have the biggest impact on
building a noise robust model.

6.3.7 Operation of attention mechanism

Attention mechanism explicitly instructs the CNN model to focus only on important sections of the input
features. This can be demonstrated by few examples. Figure 6.26 shows one example input to the classifier.
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Figure 6.28: comb2 with corrupted sections Figure 6.29: Attention map

There are silent sections in this speech clip. The silent sections are not important for classification of
emotions. Figure 6.27 shows the attention map when the input is passed through the model tuned_att_noise
_comb2. It can be seen that the attention mechanism has given less weights to the silent sections. Before
training the models, the silent sections were removed from start and end of the speech data. Therefore,
the model did not have an opportunity to experience silent sections. This might explain the model still
paying some attention to silent sections.

Figure 6.28 shows another possible input to tuned_att noise _comb2 model. In this input, some sections
are hidden. These rectangular ’hidden’ sections contains random noise. When this input is passed through
the model, the generated attention map is shown in Figure 6.29. It can be seen that the model pays less
attention to the the corrupted sections of the input. Furthermore, it can be seen that the MGD section
does a better job of doing this. This gives evidence that the attention mechanism may be capable of
handling data with missing/corrupted sections. For example, imagine a section of the input is corrupted
with some noise. Certain noises are limited only to a certain range of frequencies and times as mentioned
in Section 6.3.4. These types of noises might create artifacts which can be approximated by rectangular
sections in Figure 6.28. Figure 6.29 provides evidence that attention mechanism may be able to handle
situation similar to this.

6.3.8 Evaluation on the RAVDESS dataset

The model in which hyperparameters were fine tuned on the Berlin dataset was used to train and evaluate
on the RAVDESS dataset. The training was performed with batches as described in section 6.3.5. A subset
of emotions were selected as mentioned in section 6.2.1. Since we used 6 emotions, the FCNN architecture
was modified to accommodate that. Therefore, the last convolution layer of the FCNN had 6 filters instead
of 7. All other hyperparameters were kept unchanged. Figure 6.30 shows the mean performance of the
model under all the different SNR levels, but under different noise types. From this diagram it can be seen
that the model has a mean F1 score of 0.81. This value is the performance of the system under all SNR
levels and noise types considered. It can also be seen that kettle noise has the lowest level of performance
which is 0.68. Alarms and steps noises have the highest performance which is 0.88. This is similar to the
results from Berlin data set as can be seen from Section 6.3.4. This provides evidence that disturbances
like alarms and step noises can be handled easily with our SER solution. But noises like kettle whistle noise
are harder to handle for these systems. Figure 6.31 shows the model F1 values under different SNR values.
These values were averaged over all the different noise types. The model shows F1 values of 0.91 under
clean speech. Figure 6.32 shows the same evaluation results in terms of accuracy. It shows an accuracy
of 91% under clean speech. Figure 6.33 shows an emotion wise breakdown of model F1 values. Here
the average F1 was taken over all the SNR levels and noise types. From Figure 6.33 it can be seen that
sad is the lowest performing emotion while calm performs best. Although the types of emotions used in
training Berlin dataset if different from RAVDESS, certain common emotions are present in both datasets.
The performance on these emotions differ in the two models. This may be due to the difference in the
training data, difference in the emotions and randomness involved in the training process. Therefore, the
we can conclude that the performance of each individual emotion may depend on these conditions and
should be taken into consideration when using these models for practical applications.
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6.4 Discussion

From the results of this study it can be seen that the attention mechanism is capable of handling data with
corrupted sections. But the training data consisted only of simple and artificial noise. If it contained other
real noise types, the attention mechanism may have learned to deal with noise/corrupted data in a better
manner. This hypothesis is yet to be tested.

The main motivation for using the attention mechanism is that it is capable of ignoring irrelevant
sections of input and focus on the important sections. So, if the input consists of large sections of irrelevant
data, the attention mechanism should pay less attention to this input. Thinking in this direction, it can be
hypothesized that the attention layer by itself may be able to predict the uncertainty of the model. This
has to be tested during future studies.

From figures 6.18 and 6.30 which explains the noise type performance of the models trained on Berlin
and RAVDESS datasets, it can be seen that both of these models show their lowest performance under
kettle noise. This may be evidence that SER systems created by the procedure we described are affected
adversely by noises similar to the whistle sound of kettles. Figure 6.34 shows the kettle noise we used
mixed with one of the speech samples from Berlin dataset. The time frequency characteristics of kettle
noise are different from other noises in that the dominant frequency of the kettle noise shifts in time. But
when our models were trained with noise, the artificial noises that were used only occupied a constant
frequency ranges as can be seen from Figure 6.3. The low performance under kettle noise may be due to
the fact that the models have not seen noises similar to this while training.

Referring to section 6.3.5 it can be seen that the performance of the model trained with batches de-
creased under white noise. This is in contrast to the performance under most of the other noise types where
batch training improved performance over instance wise training. This may be due to certain character-
istics of batch training. When training batch wise, the mean error it calculated per batch and then back
propagated to update the weights. As explained in section 6.2.9 white noise was added to speech samples
while training. Since white noise corrupts all the frequency ranges and time intervals in an equal manner,
batch training might have cancelled the effect of white noise. Further analysis of this phenomena should
be performed.

6.5 Conclusion

This study analyzes several ways to improve the performance of SER systems under noisy conditions.
Magnitude spectrogram is the most common input feature for state-of-the-art CNN SER systems. But these
are very sensitive to noise. We show that by combining magnitude spectrogram with modified group
delay spectrogram as inputs to CNNs, the noise robustness of SER systems can be improved. Also it was
observed that adding artificial noise during training can make models more robust to real world noises.
Also, using CNN architecture characteristics like FCNN and attention mechanism can improve CNN based
SER models. We first used the Berlin Database of Emotional Speech to find the noise robust features,
training procedures, CNN architecture, and hyperparameters which perform well under noise. Then, we
use these features, procedures, CNN architecture, and hyperparameters to train and evaluate a model on
the speech section of the RAVDESS dataset.

Using the Berlin Database of Emotional Speech we showed that our final model with attention mech-
anism improved performance over other models considered. The 10 fold cross validation accuracy of the
final model was 86% (F1 - 0.85) under clean speech and the average accuracy under all the noise types and
signal to noise ratios considered was 76% (F1 - 0.73). The model trained on the speech section of RAVDESS
dataset achieved an accuracy of 91% (F1 of 0.91) under clean speech and average accuracy of 82% (F1 of
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0.81) under all signal to noise ratios and noise types considered. These results show that the noise robust
features, training methods and the particular FCNN architecture with the attention mechanism that we ob-
tained can indeed handle noisy data for the task of speech emotion recognition. Models trained and code
used to produce results in this chapter can be found at https://github.com/sleekEagle/noise_emotion.git
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CHAPTER 7

CONCLUSION

EMS providers face several challenges in their work which hiders their effectiveness when working. The
emergency protocols that they must follow are very complicated and requires frequent training and skill
for successful execution. Certain emergency protocols such as cardiopulmonary resuscitation (CPR) is
such a protocol which require frequent training and also requires high-quality feedback during training.
Accurate feedback must be provided on CPR compression depth and rate which are essential in providing
high-quality CPR. Normal practice is for a human observer to provide feedback on the CPR procedure
which can be sub-optimal. Work stress is another hindrance faced by EMS providers which can limit their
effectiveness. An intelligent cognitive assistant can be utilized to solve these problems. To realize the
vision of a cognitive assistant, several fundamental algorithmic contributions are still lacking. Through
this thesis, several such fundamental algorithmic contributions were made which in the future can be
combined into a capable cognitive assistant.

Depth perception is a critical component which can be used to measure distance to objects around the
EMS provider. For example, it can be used to estimate the distance to the hands during CPR which is
critical in measuring CPR depth. We introduced a novel technique based on defocus blur that can be used
to measure depth to human hands using a single camera. All monocular depth estimation techniques are
sensitive to the change of the camera. We introduce a novel technique to eliminate this sensitivity so our
solution will be usable by a range of different cameras.

We introduced several techniques to estimate CPR compression depth and rate. To solve the problem
of data scarcity on CPR performance evaluation, the first multi-modal dataset on CPR performance was
collected. The ground truth CPR depth was obtained with a sensor implanted in a CPR manikin while the
video was recorded with three different cameras. These cameras included one body-worn camera to obtain
an ego-centric view and two external cameras. Microsoft Kinect camera was used to collect depth maps of
the scene. Inertial measurement data was collected with a smartwatch on the wrist of the participant. The
defocus-blur-based depth perception model was used to predict the depth of the hands of the participants
while they were performing CPR. A smartwatch IMU-based model was developed to predict CPR depth
and rate which achieved accurate results. This model could predict the CPR rate with an error of 5.4
compressions per minute and CPR compression depth with an error of 6.6 mm. The CPR compression rate
could be calculated with video from an external camera with the error of 16 compressions per minute. The
CPR compression depth could be estimated with the camera with an error of 25.6 mm.

A few shot learning methods were developed to teach models to recognize activities with very few
samples. The methods include utilizing a special kind of loss called ’Center Loss’ and batch normalization-
based adaptation methods. All these techniques are useful in teaching a model with few examples. First,
we experimented with several public datasets for IMU-based activity recognition to show the effectiveness
of our methods which achieved the state-of-the-art performance. For example our model could recognize
7 activities on PAMAP2 dataset with around 60% accuracy under 1-shot setting while achieving 78% on
5-shot setting. On the OPP dataset the performance under 1-shot and 5-shot settings were 66% and 79%
for detecting 7 classes in the target set. For the UTWENTE dataset 1-shot and 5-shot accuracies achieved
83% and 93%. We also show that the models we trained on these public datasets can be used to detect
EMS activities including CPR with a high degree of accuracy.

We addressed the problem of noise robustness of vocal emotion recognition with several fronts. Regular
practice is to use magnitude spectrogram as an input to the models in order to predict emotions. We showed
that using a special type of spectrogram called Modified Group Delay (MGD) also to models improved there
performance under noise by 15%. Training with data mixed with artificial noise was shown to improve
the performance under noise for the vocal emotion recognition models. This may be due to injecting noise
brings the noise-injected data samples closer to the real world noisy samples. Adding synthetic noise to
the data samples improved the accuracy of the models on average by 10% as evaluated on public datasets.
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In addition to the above two methods, using attention mechanism in the model can also improve the
performance under noise in the models. This is due to the attention mechanism being able for focus on
regions of the input that are not corrupted by noise. Adding an attention layer improved the performance
of our model under noise by 5%. Our model showed an average accuracy of 76% on the Berlin Database
of Emotional speech. This is a significant improvement over the previous state-of-the-art model which had
an accuracy of 56%. We also experimented on the RAVDESS dataset where our model performed at 81%
accuracy under noisy conditions.

Our improvements to the state-of-the-art in the above-mentioned directions alleviated several problems
related to the usage of an intelligent cognitive assistant that can help EMS providers which has the potential
to solve their problems that were mentioned earlier.

Still, there are many avenues for improvement in these fields. Our camera-based CPR quality esti-
mation methods did not perform as well as the smartwatch-based models. This is due to inaccuracies in
in-depth perception and tracking points on the hands. There are plenty of future works in high accurate
depth estimation and highly accurate point tracking on the hand. The defocus calibration method that we
invented was tested on artificially defocus-blurred images. Although the algorithms we used to create the
artificial defocus blurring on the images are quite realistic, more extensive testing must be done on real
datasets. Our few shot learning algorithms must be tested more thoroughly on more EMS-related data.
The methods that we used to build a noise-robust emotion recognition model must be evaluated on EMS
related emotional dataset. Furthermore, it must be researched to see if the same methods are applicable in
the closely related area of speech recognition that can also be used to understand the stress level of EMS
responders. Finally, future work includes integrating the developed sets of solutions in to a fully functional
cognitive assistant
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