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Ways to Consider Driverless Vehicles in Virginia Long Range Travel Demand Models  

April 13, 2018 @ 4:00 pm 

 

ABSTRACT 

 

Regional travel demand models are an institutionalized element of the transportation 

planning process, requiring a multiyear investment from collaborating agencies that rely on 

model outputs to assist with project prioritization and community visioning.  The purpose of this 

research is to identify ways in which Virginia might (1) alter existing travel demand models in 

order to consider the impacts of driverless vehicles and (2) use such models to inform questions 

of interest to regional planners.  Because the behavioral impacts of DVs are not known, the paper 

examined how five sets of alternative futures regarding DVs could be incorporated into the 

regional model, using the Charlottesville-Albemarle travel demand model as a case study for 

both (1) potential model modifications and (2) alternative futures, and by extension, related 

policy questions that might arise. 

 

An outreach exercise conducted with attendees at the Annual Meeting of the Virginia 

Association of MPOs suggested five particular alternative futures of interest.  DVs may  (1) alter 

capacity (reducing it based on operator comfort or later increasing it as platoons result); (2) 

increase privately owned zero-occupant vehicle (ZOV) trips as commuters seek to avoid parking 

fees; (3) alter transit’s mode share (decreasing it because DVs make auto travel more appealing 

by comparison or, alternatively, increasing transit’s mode share through shared DVs which 

reduce transit’s waiting time); (4) increase ZOV trips through non-familial sharing of DVs; and 

(5) increase travel by age groups with traditionally lower vehicle access. The regional model 

incorporated these impacts through altering the Charlottesville and Albemarle travel demand 

model as a case study, based on ranges of potential impacts of DVs as reported in the literature.  

(For example, because two sources had reported DVs might increase capacity by amounts of 

30% and 100%, and because a third source had reported DVs might reduce capacity by 32%, 

scenarios were developed based on each of these values.)  For each scenario, the impact on 

vehicle miles traveled (VMT) and vehicle hours traveled (VHT) was recorded as shown in table 

11-17(the relative change rates were also recorded as shown in table 18-23), as well as 

performance measures of interest for each particular scenario.  Examples of such measures 

include transit’s mode share (given stakeholders’ interest in transit) and impacts on oxides of 

nitrogen (NOx), a precursor to ground level ozone (given stakeholders’ interest in air quality). 

 

For comparisons within a scenario, the results suggest that concerns about the alternative 

futures do not carry equal weight.  For example, in Scenario 1, a capacity reduction attributed to 

DVs having lowered acceleration rates increases total travel time (vehicle hours traveled) by 

46%.  By contrast, a capacity increase attributed to DVs potentially having shorter headways of 

course reduces travel time—but only by 8%.  As another example, within Scenario 3, DVs have 

the potential to increase transit’s mode share from about 0.26% to 3.36% of commute trips if 

they fully eliminate transit waiting time and render easier the ability to travel from the origin and 

destination to the transit line. (By contrast, if DVs can make auto travel more appealing, the 

changes in absolute shares were modest: drive alone, carpool 2, and carpool 3+ increased their 

mode share from 93.86% to 94.14 %.)  Interestingly, the greatest impact for this latter portion of 



2 
 

Scenario 3 was on nonmotorized modes:  whereas transit trips decreased by about 5%, bicycle 

trips decreased by about 6%. 

 

For comparisons across scenarios, the results can inform various policy initiatives.  For 

example, the number of zero occupant vehicle trips may increase through a privately-owned DV 

self-parking (e.g., the owner sends the vehicle back home or to a lower cost parking area) or a 

shared DV traveling from one person’s destination to another person’s origin.  Scenarios 2 and 4, 

respectively, suggest that while both situations may increase VMT, the former could increase 

VMT much more than the latter.  (For the former, Scenario 2 increased commute-based VMT by 

12% and NOx by 10.8%; for the latter, Scenario 4 increased VMT by between 2.3% and 7.3%, 

depending on the degree of geographical and temporal matching between a leading trip’s 

destination and a following trip’s origin, and these changes corresponded to NOx increases of 

2.08% and 6.65%.)  Such figures potentially inform a policy initiatives public support for sharing 

DVs (relative to individual ownership of DVs) if NOx reduction is a priority.  

 

The ability to incorporate alternative futures into legacy regional planning models can 

help address some, but not all, questions of interest to MPOs.  For example, for this region in 

particular: 

 

 Planners in this region wanted to know about potential development impacts if parking 

was no longer needed.  A sub-scenario within Scenario 2 examined how conversion of 

parking lots in the Central Business District to other land uses could affect travel 

conditions.  The results indicate a 2% increase in VHT overall, and speed decreases of no 

more than 5 mph in the downtown area—and the GIS-based analysis showed substantial 

land development potential in the downtown areas.  

 

 Concerns about the transition period during which DVs might result in a reduction in 

capacity are justified if one is concerned about VHT, which increases by 46% if capacity 

drops. However, the impact on emissions, if one is concerned about NOx, is actually 

positive—e.g., the reduction in speeds may be associated with a reduction in emissions 

owing to the parabolic relationship between emissions rates and speeds.  

 

 Generally, induced travel will increase emissions, but not all types of induced travel are 

of equal concern.  For example, an increase in travel by persons who presently do not 

have access to a vehicle increases NOx by 1.51%.  If empty DVs were sent back to their 

origin rather than parked for all commuters; in that case, NOx increases by 10.8%--more 

if this behavior applies to other trip purposes.  Finally, if longer trips become more 

feasible due to DVs offering increased comfort, then NOx increases by 21.65%.  Thus, 

changes in behavior due to additional vehicle access increase NOx slightly (by less than 

two percentage points) by 1.51%—but longer term behavioral changes are much more 

problematic, with NOx increases that are more than ten times that amount.  (A similar 

phenomenon is noted with VMT:  additional travel by persons without access to a vehicle 

increases VMT by 1.7%; additional travel due to increased comfort increases VMT by 

25.6%). 
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One caveat to these results:  the sensitivity of the model to changes in travel impedance 

(such as capacity changes in scenario 1 or transit attractiveness in scenario 3) is influenced by 

whether the trip distribution step uses a singly or doubly constrained gravity model.  The original 

Charlottesville/Albemarle travel demand model is doubly constrained such that forecast 

attractions and computed attractions are equal; this is not normally the case for a singly 

constrained gravity model.  Assuming that one requires forecast productions to be equal to given 

productions after executing the trip distribution step, selection of the doubly or singly 

constrained version depends on the extent to which one has greater confidence in forecast 

attractions or transportation impedance.  Both models were tested in this study and generally 

yielded similar trends; for example, in both cases, a complete elimination of waiting time for the 

local bus could increase transit’s mode share by about three percentage points in Scenario 3.  

There were a few cases, however, where the singly constrained gravity model showed a greater 

magnitude of change than the doubly constrained version.  For example, redevelopment of 

parking lots in the CBD in Scenario 2 increased total VHT by 4% (for the singly constrained 

model) compared to the 2% as reported above for the doubly constrained version. 

 

To place these results in the context of long range regional planning, they are not as 

important as key socioeconomic parameters that drive the model.  For example, if the region’s 

population and employment doubled unexpectedly, VHT would increase by 102% and NOx 

would increase by 34.8%--easily dwarfing almost all of the other scenarios discussed herein.  

Further, because the results presented here are specific to the case study region, they are not 

necessarily generalizable to all other locations.  However, the modifications to the travel demand 

model made here can indeed be replicated elsewhere in Virginia.  Given that a sample of 11 

regional travel demand models in Virginia shows an average age over eight years, the 

approaches suggested herein indicate one way that transportation agencies can begin to 

incorporate potential impacts driverless vehicles into their existing modeling efforts—just as 

those agencies periodically examine other types of unexpected changes in land development, 

regional growth, or the transportation network.  Because of the uncertainty associated with DVs 

(e.g., will they cause us to take longer trips), the scenario-based approach used herein is one way 

to examine potential impacts relatively quickly. 
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INTRODUCTION 

 

Regional long range transportation plans are developed with 20 year horizons; the long 

period allows for careful consideration of infrastructure investments based on expectations of 

changes in activity (e.g., population, employment, land development, and other factors that 

generate transportation demand) and infrastructure (e.g., highways, guideways, bus service, 

operational improvements, and other ways of satisfying this demand).  Within metropolitan 

areas, such long range regional plans are supported by travel demand models, which forecast 

how various transportation improvements may affect regional measures, such as vehicle hours 

traveled, as well as more local measures, such as how an improvement at a given location may 

affect congestion levels.  At present, Virginia has a total of 13 such regional models, serving 

large metropolitan areas (e.g., the Washington, D.C. metropolitan region which includes 

Northern Virginia and suburban Maryland with a population of 6.3 million) and smaller areas 

(e.g., the Danville model serves an area of roughly 70,000) (VDOT, 2017a). 

 

 

The Role of Travel Demand Models in Transportation Planning 

 

Travel demand forecasts from these models may influence project selection, a process 

that entails both the metropolitan planning organizations (MPO) and the Virginia Department of 

Transportation.  For example, a candidate project that reduces transit headways in an urban area 

may be forecast to shift a certain percentage of motorists to transit.  The resultant reduction in 

vehicles on certain links will be forecast to have a reduction in crash frequency, and the 

anticipated growth rate in vehicle volumes will help determine how the candidate project affects 

person-hours of delay.  Virginia’s statewide prioritization process uses the results of regional 

travel demand models, such as forecasts of vehicle miles traveled (VMT) and vehicle hours 

traveled (VHT), to help evaluate how candidate projects affect safety, congestion, and modal 

choices (Commonwealth Transportation Board, 2016).  Such models are also used regionally: the 

long-range transportation plan for the Richmond Region (Richmond Area Metropolitan Planning 

Organization, 2014) used these forecasts to determine future projects such as improved signals 

on Midlothian Turnpike (Route 60), the addition of another lane to Route 360, and sidewalk 

construction to improve school travel in Hanover.  Models also inform strategic planning (e.g., 

determine how rail improvements may support freight) and community visioning (e.g., examine 

the impact of land use policies on the highway network) (Meyer and Miller, 2013).    

 

Generally, these transportation plans have presumed fairly consistent vehicle 

characteristics in terms of capacity, ease of use, and appeal to users.  For example, in long range 

transportation plans, factors that typically influence the choice of owning a vehicle are household 

size, income, and location, with higher rates of auto ownership in rural locations that offer fewer 

modal choices.  Further, when there have been changes to engineering or planning calculations 

that use vehicle characteristics, such changes have tended to be incremental.  Consider the 

Highway Capacity Manual which is periodically updated and whose information can inform the 

capacities used in long-range transportation plans.  The ultimate (Level of Service E) capacity 

for an idealized interstate highway segment is 2400 passenger cars per hour per lane 

(Transportation Research Board, 2010); in the same document a quarter century ago, the 1985 
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Highway Capacity Manual used a maximum value of 2,000 passenger cars per hour per lane 

(Garber and Hoel, 1988). 

 

 

Potential Changes in Travel Demand Models Due to a New Vehicle Type 

 

Yet a research need identified by Virginia’s Transportation Planning Research Advisory 

Committee (2016) suggests that contrary to this quarter century of relatively incremental change, 

that transportation planning might be poised to shift dramatically owing to the arrival of what at 

the time were described as “connected/autonomous” vehicles.  That research need further 

articulated that although additional information is forthcoming, that planners need to understand 

when and how to consider such vehicles now.  That is, stakeholders who participate in the 

transportation planning process may ask questions now such as what will be the impacts on 

highway capacity in two decades; will such impacts affect all functional classes of roadways in a 

roughly similar manner;  should behavioral expectations for auto ownership be modified; and 

would increases in the penetration of such vehicles be expected to reduce demands for new 

infrastructure (given potential capacity increases) or might such vehicles increase demand for 

infrastructure (if this mode reduced transportation impedance from what is faced at present)? 

 

While the initial terminology used by Virginia’s Transportation Planning Research 

Advisory Committee (2016) was “connected/autonomous”, additional literature illustrates that 

there is not a single definition for this phrase.  The National Highway Traffic Safety 

Administration has defined five levels of functionality that automated vehicles can achieve 

(Campbell et al., 2016).   Levels 0, 1, and 2 vehicles entail warning systems and very limited 

automation of a few driver functions:  level 0 provides information only (e.g., a warning to the 

driver when a vehicle is about to move from a lane or hit another vehicle) and level 1 and 2 

vehicles automate just a few specific functions (e.g., adaptive cruise control or assistance with 

staying in the lane or braking in time) that absolutely require driver intervention.  Level 3 

vehicles automates operation under certain circumstances with capabilities such as interpreting 

the communication received from a traffic signal and require some supervision for complex 

situations.  Level 4 vehicles were described therein as fully autonomous operation (Campbell et 

al., 2016).  SAE International (2014) provides six levels of automation, differentiating between 

“high automation” at level 4 and “full automation” at level 5.  Breden et al. (2017) use the term 

“self-driving vehicles” (SDVs); Isaac (2016a) uses the term “driverless” vehicles; in the latter 

case, the author explicitly points out that such vehicles “are capable of sensing their environment 

and navigating roads without human input”, with such vehicles corresponding to SAE level 5.  

Rosekind (2016) stated that “nobody understands the lexicon” of such higher levels.  Based on 

Grier (2016), Isaac (2016a), and Rosekind (2016) this report uses the term “driverless vehicle” or 

“DV.” 

 

Substantial literature has been devoted to the area of including such vehicles in 

transportation plans, recognizing that such vehicles may affect a variety of improvements such as 

long-term infrastructure leases (e.g., Pascale [2016] notes the almost 60 years lease for the 

Midtown Tunnel in Hampton Roads).  Hedden (2015) in the presentation 5 Things Planners 

Need to Know about Self-Driving Vehicles suggested that non-recurring congestion may decrease 

substantially and that further the shared economy will dramatically alter the extent to which 
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vehicles are owned with fewer capacity expansions being needed.  Bertini and Wang (2016) 

suggested that regional models may need changes in trip routes, vehicle ownership, and 

work/residence locations.  The literature suggests ways to incorporate DVs into regional models.  

One approach is to make large scale changes; Zhao and Kockelman (2017) combined the trip 

distribution and trip assignment step in the Austin MPO model, replacing the gravity model with 

a simplified multinomial logit model and reducing the modes from 20 to 4.  A second approach 

is to replace the more macroscopic travel demand model with the use of microscopic techniques 

to capture driver behavior better as noted by Campbell et al. (2015).  To be clear, therefore, the 

literature makes the case for new approaches for estimating travel demand, where such new 

approaches could replace existing travel demand models entirely. 

 

 

 

A Case for Modifying Existing Regional Models 

 

There are at least three considerations that may affect the decision to, instead of replacing 

regional models entirely, modifying such regional models for the purposes of considering these 

new types of vehicles.   

 

First, such models are typically developed over a multiyear period, a sample of 11 of 

Virginia’s regional models as of February 2018 showed that the year of model development was 

between 2003-2009 inclusive for seven of the models with the remaining four models being 

developed during the period 2013-2017 (VDOT, 2017a).  Presently two additional models are 

“in progress”, one of which was last updated in 2009. Part of the reason for the long model 

development time is that such models require a substantial amount of institutional knowledge in 

order to make modifications.  Although such models may use well-known analysis techniques 

found in standard texts, regional models are the product of many individual choices of the 

analyst who built the model.  Examples are the method for disaggregating zone level 

socioeconomic data for the purposes of trip generation, the manner in which feedback among 

model components is established, the selection of the volume delay function, and the parameters 

used for the utility choice expressions (The Corradino Group, 2009).  In order for someone 

unfamiliar with the development of the model to make modifications, some fairly detailed 

documentations are institutional knowledge is needed. 

 

Second, the calibrated base case model reflects assumptions that result from the 

interagency consultation process.  For example, agencies may have invested time agreeing on 

key elements that might affect air quality determination, such as vehicle ownership rates 

(FHWA, 2015), number of zones, and estimation of VMT on facilities not represented in the 

network (Michiana Area Council of Governments, 2007).  Agencies may also have discussed 

how they would represent concepts such as differentiation by time of day (e.g., is there a single 

24 hour period only, a 24 hour model plus a single peak period, a separate morning or evening 

peak period, and so forth), the manner in which freight is included (or not included) in the model, 

the source of auto occupancy rates for the various trip purposes, and the percentage of trips that 

may occur during various periods (Cambridge Systematics, Inc. et al., 2012).  As an illustration 

of the diversity of choices in the model, Cambridge Systematics, Inc. et al. (2012) examined the 

value of time for non-work trips that either began or ended at home based on the coefficients for 
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eight mode-choice models.  The implied value of an hour ranged from very low values (21 cents 

or less for three models) to moderately low values (48 or 80 cents for two models), to moderately 

higher values ($1.40 and $3.69 for two models).  While such values will be based on either data 

collected for the model or borrowed from other sources, they represent the product of 

interagency coordination. 

 

Third, outside entities may already have processes that rely on the existing regional 

model, such as a statewide prioritization process (Commonwealth Transportation Board, 2016, 

2017).  For example, Virginia’s Smart Scale explicitly cites regional travel demand models as 

one potential source for the number of “peak period person hours of delay” for a particular 

project.  Regional models are also cited as a source for two other measures:  person throughput 

(which can include vehicle travel as well as travel on other modes) and safety:  regional models 

provide vehicle miles traveled (VMT) for various scenarios which inform a different measure—

the equivalent property damage only crashes, which in part are based on VMT.  As a regional 

example, Region 2000 (2015) awarded points to projects in part based on the ratio of volume to 

capacity for that project as reflected in the travel demand model (e.g., for a project that could 

increase capacity, scores of high, medium, or low were established based on whether the 

volume/capacity ratio fell into three ranges:  1.10 or more, between 0.8 and 1.09 inclusive, and 

less than 0.8.)  While capacity can be measured in a variety of ways, it is clear that in this context 

what mattered was the impact on the volume/capacity ratio within the regional model. 

 

 

A Case for Scenario Planning 

 

Regardless of the modeling approach that is chosen, Krechmer et al. (2015) strongly 

emphasize that it is impossible to know which technologies—or which impacts—should be 

expected in the future.  Instead, planners should consider a variety of potential scenarios and then 

update these scenarios as new information emerges, leading Krechmer et al. (2015) to state that 
 
Long-range planning activities may shift to development of “alternative futures” that make 

different assumptions about technologies, market adoption, and impacts on the transportation 

system. These assumptions would then be reviewed on a regular basis and the long-range plan 

modified based on actual developments.   

 

Shogan (2016) also indicates that “scenario planning” can be used to consider the impacts 

of DVs, where scenarios could consider the factors such as the impacts on capacity (a supply 

measure, adoption rates (as previously discussed), vehicle occupancy, and, perhaps most 

challenging of all, how individuals would respond to these new options.  Twaddell et al. (2016) 

explain that scenario planning can incorporate “potentially radical shifts in conditions over which 

local, regional, and State agencies have little or no control”—an example of which is the 

introduction of new vehicle technologies and the resultant behavioral shifts in response to those 

new technologies.  One location cited therein that used scenario planning—Baltimore—showed 

the necessity of considering alternative futures, where, during a scenario planning exercise with 

stakeholders, two points of view were expressed regarding future vehicle technologies—(1) they 

might improve congestion or (2) they might lead to “increased ‘sprawl’”.  While these two points 

are not necessarily contradictory, Baltimore Metropolitan Council (2016) noted that “opinions 

were divided” on this topic.  In their consideration of how “self-driving vehicles” might alter the 
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future, Brenden et al. (2017) considered alternative futures not just based on technology but on 

public behavior:  while one scenario entailed strong public support for sharing of vehicles, 

another envisioned a future where the desire to own a vehicle increased. 

 

While multiple alternative futures may thus be one important component of scenario 

planning, FHWA (2017) notes also that scenario planning should have an active public 

involvement component, where stakeholders both (1) see their value incorporated into the 

planning process and (2) are informed regarding “growth trends and trade-offs.”  For example, 

Krechmer et al. (2015) suggest that regional plans should include “alternative futures and their 

impacts on land use.”  A scenario planning exercise would include not only alternative ways 

which new vehicle technologies might alter capacity, therefore, but it would also include (1) how 

stakeholders might want to see land develop and (2) how new vehicle technologies might affect 

land development compared to a baseline case without those technologies.  The scenarios, 

therefore, should be of interest to stakeholders and thus may be refined based on their input 

(Reed et al., 2011).   

 

 

PURPOSE AND SCOPE 

 

The purpose of this research is to identify ways in which Virginia might (1) alter existing 

travel demand models in order to consider the impacts of driverless vehicles and (2) use such 

models to inform questions of interest to regional planners.   

 

The scope is limited to adapting regional travel demand models to impacts that are 

becoming known about driverless vehicles rather than performing original research on such 

impacts.  For example, consider just one potential impact of driverless vehicles:  they might lead 

to an increase in capacity.  This report does not attempt to simulate this increase in capacity, but 

rather draws on studies that have suggested how capacity might change—and then demonstrates 

how to incorporate such findings into the regional model. 

 

 

METHODOLOGY 

 

A case study approach was used for this research effort where one region’s travel demand 

model, that for the City of Charlottesville and Albemarle County, was used as a way of testing 

how driverless vehicles could be incorporated into the model.  This particular model was chosen 

for two reasons: it was not the most recent model (which made it a reasonable test case for 

developing techniques that could likely be replicated with other models) and it reflected a 

location near the researchers (which made it easier to interact with local staff in order to examine 

policies of interest to the MPO).  Five tasks guided this case study approach.   

 

1. Conduct a literature review. 

2. Review the Charlottesville/Albemarle travel demand model. 

3. Identify issues of local interest the regional model can help address. 

4. Develop and refine scenario categories 

5. Execute the scenarios. 
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1. Conduct a literature review regarding ways to consider the impacts of driverless vehicles 

within the transportation planning process.   

 

This literature review was largely performed in two stages.  First, the research team initially 

identified sources based on a search within the Transportation Research in Development 

(TRID) database, using a variety of terms such as “autonomous vehicles” and “transportation 

planning.”  A review of these initial sources showed a range of potential impacts of driverless 

vehicles on capacity and VMT.  For example, Isaac (2016a) mentions that research suggests 

an increase in lane capacity of “500 percent” could result in cases of platooning of 

autonomous vehicles, whereas Campbell et al. (2016) noted that an increase of 8% might 

initially result from truck platoons.  Then, after providing the initial results of the literature 

review to the TRP in November 2016, a more detailed review was conducted focusing on 

impacts that the researchers believed could be included in the travel demand model.  For 

example, Biersted et al. (2014) noted that driverless vehicles could potentially affect mode 

share by making the trip from the origin to the transit stop more palatable, with TRP noting 

that this could be incorporated into the utility component of the travel demand model.  

Accordingly, literature that examined how driverless vehicles might influence the perception 

of time was reviewed. 

 

2. Review and modify as appropriate the Charlottesville Albemarle travel demand model to 

understand potential ways of incorporating impacts.   

 

The model was examined to understand the key assumptions therein.  A user’s guide 

provides some documentation of key modeling decisions (The Corradino Group, 2009); 

however, some details can be learned only from reviewing the model’s proprietary scripting 

language.  An effort was made to understand both the computation of outputs and behavioral 

assumptions.  As an example of the former, trip productions and attractions as reported in the 

user’s guide (The Corradino Group, 2009) were compared to trip rates from the model; in 

this particular case, a modification was made to render the model consistent with the user’s 

guide.  As an example of the latter, examination of the scripts for the mode choice step 

within that particular model showed that free flow speeds are used for nonwork trips whereas 

congested speeds are used for work trips; this did not require a change, but it explained some 

of the sensitivity of the model. 

 

3. Identify issues of local interest the regional model can help address. 

 

An outreach exercise was held on June 9, 2017 where 40 members of the Virginia 

Association of MPOs (VAMPO) were asked questions in person concerning how replacing 

conventional vehicles with DVs could generate planning-related concerns related to parking.  

(An earlier March 2017 meeting of the Charlottesville Albemarle MPO model working group 

attended by the researchers had indicated that the impact of DVs on parking was of interest.)  

The overall goal of this exercise was to determine the extent to which the regional travel 

demand model can help address a particular subset of policy concerns related to DVs.  Key 

questions in the exercise included the following:   
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1. What is the role of the planner as we consider the impacts of driverless vehicles on the 

parking industry? 

2. What are the opportunities or risks if driverless vehicles affect (or do not affect) future 

demand for parking? 

3. For either question 1 or 2, what policy tools (if any) can be considered by decision-

makers? 

4. Consider the tools noted in question 3.  Would any of them be adversely affected if you 

simply did not worry about driverless vehicles at this point in time? 

 

In advance of the in-person meeting where the questions were posed, attendees were 

provided with a packet of background information containing the current status of parking 

(e.g., about 9% of land in the Charlottesville portion of the region serves that purpose), and 

based on the most current regional model, expected 2040 volumes, speeds, and 

volume/capacity ratios for two major parking areas (one in the central business district 

[CBD] near an outdoor pedestrian mall and one in a suburban area near an indoor shopping 

mall).  To stimulate discussion, attendees were also provided with one potential extreme 

situation where DVs might lead to a doubling of trips (Figure 1).  (Staff of the Charlottesville 

Albemarle MPO had suggested that the researchers include an “extreme” case in the 

information packet whereby the impacts could be assessed if DVs led to a large change in 

behavior.)  

 

Figure 1.  Example of information provided to MPO attendees of the outreach exercise.  (Attendees were 

provided with a total of 14 figures.  The figure shows the ratio of volume to capacity, with the left being a 

business as usual scenario and the right being an extreme scenario where the number of trips doubled.)   
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At the meeting, a ten-minute presentation was given by five staff from VTRC and the 

Thomas Jefferson Planning District Commission (TJPDC).  Each individual spoke for 

approximately two minutes.  One individual spoke first and last, introducing the exercise and 

concluding with next steps for attendees to perform.  Between the first speaker’s 

presentations, the four remaining staff covered the following topics:  the concept of scenario 

planning and potential capacity impacts of DVs (presenter 1), potential ways in which DVs 

might affect comfort (presenter 2), how DVs might affect the ability of persons to travel 

more than is presently the case (presenter 3), and how DVs might affect vehicle sharing and 

the demand for parking (presenter 4).  Then, attendees were divided into five groups of 

approximately eight persons each, and each group had a facilitator and note-taker.  Then, the 

groups provided responses to the questions during the outreach exercise.   
   

4. Develop and refine scenario categories reflecting ways to incorporate DV impacts into one 

region’s travel demand model. 

 

 Based on the literature review, five rough scenarios were initially developed pertaining to 

changes in capacity, changes in parking behavior (where DVs might self-park in less 

expensive areas), shifts in mode share (where DVs might increase or decrease transit use), 

the occurrence of zero-occupant-vehicle (ZOV) trips where DVs might be shared, and the 

increase in travel that might result from a greater proportion of younger persons (age 10-17) 

and older persons (age 65+) being able to have access to a vehicle than has historically been 

the case.  In practice, each “scenario” reflects multiple model runs because there are multiple 

ways to execute each potential impact within the regional model.  For example, one may 

increase the capacity in a regional model by changing the capacity within model’s speed 

lookup table (which would affect, conceptually, both the destination of trips and the route 

such trips take) or one may alter the volume delay function (which should affect the route but 

not necessarily the origin or destination).  Further, the trip distribution component may also 

be executed as a singly or doubly constrained model (VDOT, 2014). 

 

 The scenarios were refined based on a meeting with the project technical review panel on 

March 27 and, as suggested by the TRP, a researcher’s attendance at a Charlottesville Model 

Design Workshop held on March 28 at the Thomas Jefferson Planning District Commission.    

As an example of input from the former case, it was suggested that a new scenario be added 

which could result from DVs having a higher margin of safety when they are initially 

introduced.  As an example of input from the latter, when the researcher asked attendees 

what types of impacts they were most interested in, two impacts rose to the top of the list:  

deadheading of vehicles (and how that might affect emissions) and the potential for parking 

in the central business district to be converted to other uses if parking was no longer needed.  

This caused the researchers to begin to put extra emphasis on these scenarios.   

 

The scenarios were then further refined based on the results of Task 4 where, in some cases, 

the researchers identified ways to alter the scenarios to reflect issues of interest to the 

stakeholders in that task.  Although the literature review (Task 1) showed a variety of 

techniques, the researchers focused on those most relevant to the MPO policy areas of 

interest.  For example, because one concern from Task 3 was that DVs might initially require 

a greater headway than conventional vehicles, the researchers sought to incorporate a 

corresponding reduction in capacity into the model within scenario category 1.  Because 
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emissions had been mentioned as a result of Task 3, the researchers sought to show how a 

few scenarios could affect nitrogen oxide emissions, a precursor for ground level ozone 

which can affect some regions in Virginia. 

 

5. Execute the scenarios. 

 

The scenarios were executed and for each scenario, the impact on vehicle miles traveled 

(VMT), vehicle hours traveled (VHT), and mean trip time (MTT) was recorded.  In addition, 

performance measures of interest for each scenario were also obtained.  For example, for a 

scenario that focused on transit, the changes in mode share (e.g., drive alone, carpool, bus, 

walk, and bike) were examined.  For a scenario that focused on capacity, the change in 

number of facilities that are congested was obtained. 

 

Although it had been the intention to perform these five tasks sequentially, in practice 

Tasks 2, 3, and 5 were highly iterative.  For example, based on Task 2, the original utility 

function for the local bus included a term for the bus fare; this term was the product of a 

parameter (-0.005) and the fare itself (75 cents).  In discussions with the TRP after an initial 

transit scenario was developed that modified this utility function in response to driverless 

vehicles being available (Task 3) and executed (Task 5), it was pointed out that the original 

utility function should have included a “100” multiplier. Thus the scenario was redone, using the 

100 multiplier, and the results between the original scenario and the revised scenario were 

compared.  Table 1 summarizes examples of feedback from the TRP and local stakeholders that 

influenced this work. 

 
Table 1.  Examples of Feedback from the Technical Review Panel, TPRAC Members, or Local Stakeholders 

that Influenced this Work 

 

Tasks Description Dates Examples of Lessons Learned Based on Feedback  

1 Provide initial literature 

review to the TRP showing 

potential impacts of DVs and 

ways to incorporate these 

impacts into the model. 

Nov. 16, 2016 One way to reflect the improved attractiveness of DVs 

is to modify the out-of-vehicle travel time (OVTT) 

utility specification associated with transit 

1,2 Present project to the 

Transportation Planning 

Research Advisory 

Committee 

Nov. 30, 2016 The literature review should distinguish between 

impacts that can be reflected in existing travel demand 

models and impacts which cannot be reflected in 

existing travel demand models.    

2,4 Meet with the TRP to discuss 

proposed scenario categories 

with the regional model 

March 27, 2017 Recognize that contrary to the researchers’ initial 

suggestion; intrazonal trips will not appear on the 

network, so these must be accounted for separately in 

the fourth scenario category. 

2,4 Meet with Charlottesville, 

Albemarle model 

development group to hear 

areas of interest. 

March 28, 2017 Document the types of steps taken so that others can 

replicate our results; for example, note how 

deadheading (e.g., ZOV trips are incorporated into the 

model).  The impact on parking should be examined as 

one of the scenarios. 

3 Conduct an outreach exercise 

with members of VAMPO. 

June 9, 2017 Stakeholders are interested in a variety of impacts,  

some of which can be addressed by modifying the 

regional model, notably emissions. 
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Tasks Description Dates Examples of Lessons Learned Based on Feedback  

5 Provide initial results for 

scenario category 1 to the 

TRP. 

July 27, 2017 Although these particular results show that VHT is 

more sensitive to changes in demand than VMT, the 

reverse would be the case if the trip distribution step 

used the distance rather than travel time, in the 

impedance function. 

5 Provide initial results for 

scenario categories 2,3, and 5 

to the TRP. 

December 22, 

2017
 a
 

For Scenario 2d where parking lots are replaced with 

land development, use percentages for trip purposes 

based on trips in the Central Business District rather 

than trips from the entire model.
a
 

a
 Based on this feedback, a corrected version of scenarios 2, 3, and 5 was provided to the TRP on February 1, 2018. 

 

 

 

 

 

 

RESULTS 

 

Literature Review 

 

The literature review showed that DVs may potentially have a variety of impacts, 

including a change in capacity, a reduction in urban parking, changes in mode share, longer trips, 

and increased trip-making by non-drivers.  Because these impacts are behavioral in nature, it is 

not surprising that a review of the literature gives a range of values when one tries to quantify 

these impacts, leading to an admission of uncertainty noted herein.  

 

Changes in Capacity 

 

Bierstedt et al. (2016) noted that capacity increases of 25% to 35%, and 100% for 

freeways, are possible, and Childress et al. (2015) in their evaluation of alternatives in Puget 

Sound noted an increase of 30%.  Campbell et al. (2016) suggested that a two- to three-fold 

capacity increase is possible.  Isaac (2016a) cited research suggesting platooning could increase 

lane capacity by 500%, a percentage also noted by Williams (2013).  DVs might also 

differentially increase capacity by vehicle type (Campbell et al., 2016) and facility type (Zhao 

and Kockelman, 2017).  Farmer (2016) noted that the doubling of freeway capacity may be 

accompanied by faster travel at capacity (50 mph vs. 40 mph at present).  Greater highway 

capacity owing to DVs being closer to each other has also been noted for the Sarasota/Manatee 

Florida MPO (2016).    

 

Yet capacity may also drop:  Litman (2014) suggested that users may choose to have 

lower acceleration or deceleration rates, owing in part to passengers tend being more sensitive to 

acceleration than drivers.  Le Vine et al. (2015) suggested that DVs might reduce capacity by 

12% to 32%; the authors conducted simulations based on 25% of the traffic stream having 

driverless vehicles and setting set the rates of longitudinal acceleration equal to those of light rail 

and high speed rail.  When the headway between the leading and following vehicle was 

increased to ensure passengers in the following vehicle suffered no discomfort due to a sudden 
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change in acceleration by the lead vehicle, capacity was reduced by 12% for the light rail case 

and 32% for the high speed rail case (Le Vine et al., 2015).   
 

Changes in Parking Needs of Driverless Vehicles 

 

Williams (2013) suggested that DVs’ self-parking might reduce the use of parking lots in 

urban locations, citing previous research that suggested such parking locations could be located 

further away than is presently the case from the destinations they serve.  Grush et al. (2016) 

noted that the reduction in parking in the CBD could result in a substantial boon for developers 

who might want to use expensive land for other purposes, noting that the value of all U.S. 

parking is equal to the value of all U.S. motorized vehicles.  Zhao and Kockelman (2017) found 

that pricing of travel options affects VMT: in an Austin case study, when parking costs were 

one-half the CBD parking costs, VMT (for self-parking DVs) increased by 4%; when parking 

costs outside the CBD were nil, VMT increased by 8%.  However, Isaac (2016b) suggested that 

in some highly urban locations, the lack of needing to search for a space could reduce VMT by 

30%.  

 

Changes in Mode Share 

 

Polzin (2016) suggested that DVs could either “complement transit in first-mile/last-mile 

services” (thereby increasing transit use) or lead to transit being used for only “very high volume 

fixed guideway operations.”  Based on regional travel demand models (including Atlanta, Los 

Angeles, Puget Sound, San Francisco, and Washington, D.C.), Rixey (2017) found that transit 

trips might decrease by 43% or increase by 16%.  Elsewhere, the Committee for Review of 

Innovative Urban Mobility Services (2015) reported that transit can be thwarted or supported by 

new modes: bike sharing users replaced some transit trips with bicycle trips in one location, but 

in another transportation network, companies could “complement” public transportation, 

including providing an alternative during an emergency. 

 

Changes in Comfort  

 

Levin (2015) noted that the increased comfort of DVs may reduce disutility associated 

with in-vehicle travel time.  Childress et al. (2015) suggested that the discomfort of in-vehicle 

travel time may be reduced by 35% for households having access to a DV.  (The 35% estimate 

came from a finding that light rail travel time was 65% of the disutility of an equivalent amount 

of local bus travel time, with the difference attributed to comfort levels.)  Zhao and Kockelman 

(2017) used three multipliers—25%, 50%, and 75%—to convert between driverless time and 

conventional vehicle time.  Jaffe (2014) cites research suggesting that commute times may 

remain relatively fixed should speeds increase—suggesting that trip distances may grow.  Isaac 

(2016a) suggests that if the tendency to be willing to live about half an hour from one’s place of 

employment were to hold, then with higher speeds (e.g., 120 mph on freeways), driverless 

vehicles could result in increased commuting distances, where more farmland would be 

converted to residential use and costs of infrastructure to support such distances could increase. 

 

Increased Trips by Non-Drivers 
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DVs offer a “mobility externality” since persons who currently do not have access to a 

vehicle or public transportation may be able to take advantage of a DV (Transportation Research 

Board, 2016).  For example, more than one-half (54%) of adults age 75+ without a disability 

tend not to drive at night (Transportation Research Board, 2016).  Truong et al. (2017) found that 

DVs could increase trip generation by slightly more than 4%, with the largest increase for 

persons age 76+ (where trip generation increases by 18% relative to the case of DVs not being 

available). Although not restricted to non-drivers per se, additional trips are a possibility 

envisioned by one MPO:  documentation for one of the regional models used by Florida DOT 

discusses future plans to modifying the model to accommodate certain elements of DVs 

including additional trip generation, with “an increase in easy-access one-way trips in urban 

areas” (Sarasota/Manatee MPO, 2016).    
 

The Uncertainty of Impacts 

 

The aforementioned review shows that while it may be possible to incorporate such 

impacts into the regional model, the numerical value is uncertain (e.g., should one presume a 

change in capacity, and if so, should this amount be 25%, 35%, or 100%--or should it be a 

decrease).  It is also possible that the impacts of DVs could be better reflected as changes to the 

inputs into the regional model, such as population and employment locations.  For example, 

Chase (2016) suggests that highly automated connected vehicles could potentially reduce the 

costs of housing by 25%, since parking would not be required.  Such a behavioral impact would 

not immediately be captured by a travel demand model (nor a microscopic simulation model) 

and would require a better understanding of human behavior.  However, such a change might 

thus affect the location and quantity of new housing in a region, which would in turn alter the 

location of population in the regional model. 

 

A comment by Plosky (2016) implies that the inputs to travel demand models may need 

to be nonlinear in order to accommodate some behavioral changes.  (Plosky [2016] provides an 

example:  some freight stakeholders have suggested that the minimum age for driving a heavy 

vehicle be reduced from 21 to 18, in order to accommodate an increased need for tractor trailer 

drivers.  However, in theory, with fully automated [driverless] tractor trailers, the need for such 

drivers would be zero.  One can thus envision a travel demand model where, over a relatively 

long horizon, the need for heavy vehicle drivers would increase [from the point at present] and 

then, as some point in the future, start to decrease.) 

 

 

The Charlottesville-Albemarle Travel Demand Model 

 

With the assistance of the technical review panel, the researchers examined the 

Charlottesville-Albemarle travel demand model to understand assumptions therein.  Three initial 

changes were made to the model structure prior to executing any scenarios.  Then, three 

additional modifications were made incrementally as insights became apparent during the 

execution of the scenarios.  As per discussions with one TRP member, the “S2040_all29” 

version of the Charlottesville Cube Model was used as that version contained planned projects. 

 

Modification 1.  Alter Trip Production Rates 
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When calculating productions by trip purpose in the trip generation step, the researchers 

noticed a difference between the rates computed from the model and rates computed by hand for 

one zone in Albemarle County—but no such error was present in the rates for the City of 

Charlottesville.  The problem appeared to be in a script in the trip generation step showing an 

“if…else” function indicating that different land use types have different trip generation rates, 

where area types 1 and 2 correspond to the City of Charlottesville and area type 3 corresponds to 

Albemarle County (The Corradino Group, 2009).  However, the model appeared to incorrectly 

use area type 3 (the county) in these city rates.  Accordingly, as shown in Figure 2, the line “if 

(zi.2.atype=1-3)” was changed to “if (zi.2.atype=1-2)” (Xiao, 2016). 

 

   

 
Figure 2.  Script Used in Trip Generation 

 

Modification 2.  Add a Script to Obtain the Trip Length Frequency Distribution   

 

Within the model, there was a sequence 13 showing the average trip length in time, 

however, this trip length reflected free flow conditions.  Accordingly, several lines of code were 

added to show the mean congested travel time and the shape of the trip length frequency 

distribution as described in Appendix C. 

 

Modification 3.  Directly Incorporate Fares into the Mode Choice Step  

 

Initially, when transit fares were altered from a low value of 75 cents to a high value of 

$5, the initial mode split did not change.  As suggested by Xiao (2016), the root problem was 

that a feedback link needed to be added to the model as shown in Figure 3.  (This link connects 

model sequence 10 (see the output file “Matrix File 1”) and model sequence 11 (see the input file 

“Matrix File 1”); after making this correction, changes to transit fare do affect mode split. 
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Figure 3.  Adding a Link from Sequence 10 to Sequence 11 (Correction provided by Xiao, 2016) 

 

Modification 4.  Incorporate both a Singly-Constrained and Doubly-Constrained Gravity Model 

 

Most transportation planning textbooks (e.g., Garber and Hoel, 1988; Meyer and Miller, 

2013) use a doubly-constrained gravity model, meaning that within the trip distribution step, that 

forecast productions are equal to given productions and forecast attractions are equal to given 

attractions, and the Charlottesville model is also doubly constrained for all trip purposes.  By 

contrast, for a singly constrained model, this equalization is forced only for productions or 

attractions (usually the former).  Assuming that one requires forecast productions to be equal to 

given productions, the difference between a doubly constrained gravity model and a singly 

constrained gravity model depends on the extent to which one has greater confidence in forecast 

attractions (hence the doubly constrained model would be preferred) or the impedance function 

used in the gravity model (hence the singly constrained gravity model would be preferred).  

VDOT (2014) points out that while this is acceptable, that there is “no consensus” regarding 

whether a singly or doubly constrained gravity model is preferred, suggesting that for work trips, 

a doubly constrained gravity model could be used but that for other trips, the singly constrained 

gravity model could be used, while also noting that results should be checked for 

“reasonableness.”  

 

Consequently, the researchers implemented both versions when executing the scenarios:  

a doubly constrained gravity model and a singly constrained gravity model.  Implementation of a 

singly constrained gravity model in Cube does not use friction factors; rather, one uses a function 

as shown in Equation 1 of the form friction factor = e
(c*travel time)

.  Equations 1 and 2 simply obtain 

the parameters for the singly constrained gravity model, based on the friction factors used for the 

doubly constrained model via linear regression.  For example, Figure 4 shows the resultant fit of 

the home-based work trips, where a parameter of c = -0.08001 yields a function that matches the 

friction factors used in the model.  (The parameter a is used to scale the function and it may be 

eliminated from the model [Martin and McGuckin, 1998, Cambridge Systematics, 2012]).  As 
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shown in Figure 4, different parameters may be obtained but the general pattern is that travel 

time offers the greatest impedance for nonhome based trips and a lesser impedance for home-

based work trips. 

 

Friction factor (for purpose i and travel time j) = aj*exp(citj)    (Eq. 1) 

ln (FFij) = ln(aj) + citj         (Eq. 2) 

 

 
Figure 4.  Fit of the Friction Factors for the HBW Trip to Equation A1 (c = -0.08001, a = 7,371) 

  

A more detailed approach for determining the parameters associated with the singly 

constrained gravity model is available based on Martin and McGuckin (1998), where one 

performs model runs and updates the parameters based on those runs as well as existing survey 

data (e.g., American Community Survey Data for Charlottesville/Albemarle was available from 

the U.S. Census Bureau (undated).  The researchers did use this method for the first category of 

scenarios.  However, because the method was considerably more detailed, the simplified 

approach here may make the use of the singly constrained gravity model feasible in other 

locations; thus, the simplified approach was used for scenarios 2-5. 

 

Use of different parameters will affect the model results but not substantially, suggesting 

that the more transferable approach may be preferable.  For example, as a test case, consider 

Scenario 5d, which doubled growth in the area such as population, autos owned, school 

attendance, households and employment.  As doubling of growth relative to the base scenario 

showed that vehicle miles traveled (VMT) increased by 44%, vehicle hours traveled (VHT) 

increased by 168%, and mean trip time (MTT) increased by 71%.  Both the base scenario and 

this doubling of growth used the parameters shown the far left column of Table 2.  With the 

simplified approach, the base scenario and Scenario 5d (which doubles growth) used the 

parameters shown in the middle column of Table 2.  Similar values were obtained for Scenario 

5d:  that is doubling growth leads to an increase of 40% for VMT (rather than 44%), 116% for 

VHT (rather than 168%), and 71% for MTT (rather than 48%). 
 

Table 2.  Parameters for the Exponential Function in the Singly Constrained Gravity Model 
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Trip Purpose Calibration with Friction 

Factors and New 

Additional Census Data 

(Scenario 1) 

Calibration with Friction 

Factors Only from the 

Model  

(Scenarios 2-5) 

Default values from 

NCHRP 716 (for an MPO 

under 250,000)
a
 

(Not Used) 

Home-based work -0.04259 -0.08001 -0.052 

Home-based other -0.09881 -0.18959 -0.126 

Non-home based  -0.18995 -0.22559 -0.232 

Students living off campus -0.10779 -0.20830 N/A 

Students living on campus -0.10779 -0.20830 N/A 

Internal-external or 

External-internal trips 

-0.10516 -0.20004 N/A 

a
 NCHRP 716 (Cambridge Systematics, 2012) provides default values for the Gamma function F=(time

b
)e

(c*time)
.  

These were fit to the exponential function in order to show the values in the rightmost column. 

 

The script for implementing the singly-constrained gravity model is shown in Appendix B. 

 

Modification 5.  Adjust the Fare Parameter in the Utility Function in the Mode Choice Step 

 

In the utility, function, the local bus operating cost—that is, the fare—was modified to be 

multiplied by 100 as shown by the line “MW[15]=(mi.3.pkopcostlb*100)*HBWCCST.”  As 

suggested by the TRP, this modification was made for the category 3 scenarios, such that the 100 

multiplier applies for the operating cost for all three transit modes:  walk to local bus, walk to 

premium transit, and drive to best available. 

 

A justification for changing the multiplier for the local bus is evident from considering 

the utility function for two modes shown in the model:  drive to best available service and walk 

to local bus, where this fare is multiplied by a cost parameter of -0.005.  The product has a 

multiplier of 100 in the script for the former mode but not the latter.  As shown in Table 3, fare 

has relatively little impact on mode choice.  An illustration of these variables is evident from 

examining data for travel between zone 9 in the CBD and three others zones:  zone 20 (near the 

CBD and which has transit service), zone 113 (further away but which also has transit service) 

and zone 99 (furthest away and with no transit service).  These zones are shown in Figure 5.  

Table 3 shows the components of the utility for each mode under peak conditions.  (The utilities 

are calculated by multiplying each variable by the appropriate parameter.)  Notice that the effort 

for two elements of the trip—(1) moving between the origin or destination to or from the bus and 

(2) waiting for the bus—generally account for between 62% and 83% of the utility.  For these 

reasons, the utility functions suggest that for DVs to positively impact transit mode share, the 

key mechanism would be to reduce the discomfort associated with waiting, traveling to the stop, 

or traveling from the stop. 
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Figure 5.  Four Zones of Interest in the Regional Model:  Zone 9 (in the CBD), Zone 20 (near the CBD), Zone 

113 (further from the CBD), and Zone 99 (No Transit Service Available)  

Zone 9  
(Central Business District) 

Zone 20 (near the CBD, 
has transit service) 

Zone 113 (far from the 
CBD, has transit service) 

Zone 99 (farthest from the 
CBD, no transit service) 
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Table 3.  Components of Peak Period Utility for the Transit Mode 

 

Zone 20 to Zone 9 Variable Parameter Utility 

pkwktimeBA drive to local bus 17.38 -0.049 HBWCOVT -0.85162 25% 

pkwttimeBA wait time for local bus 32 -0.049 HBWCOVT -1.568 46% 

pkivtimeBA bus riding time 25.22 -0.025 HBWCIVT -0.6305 18% 

pkpkcostBA parking cost 1.8 -0.005 HBWCCST -0.009 0% 

pkopcostBA operating cost (fare) 0.75 -0.005 HBWCCST -0.375 11%
 a
 

        Total -3.43412 100% 

Zone 20 to Zone 113 Variable Parameter Utility 

pkwktimeBA drive to local bus 11.38 -0.049 HBWCOVT -0.55762 11% 

pkwttimeBA wait time for local bus 51 -0.049 HBWCOVT -2.499 51% 

pkivtimeBA bus riding time 58.61 -0.025 HBWCIVT -1.46525 30% 

pkpkcostBA parking cost 6.4 -0.005 HBWCCST -0.032 1% 

pkopcostBA operating cost (fare) 0.75 -0.005 HBWCCST -0.375 8%
 a
 

        Total -4.92887 100% 

Zone 20 to Zone 9 Variable Parameter Utility 

pkwktimelb walk to local bus 17.24 -0.049 HBWCOVT -0.84476 29% 

pkwttimelb wait time for local bus 32 -0.049 HBWCOVT -1.568 54% 

pkivtimelb bus riding time 7.98 -0.025 HBWCIVT -0.1995 7% 

pkpkcostlb parking cost 0 -0.005 HBWCCST 0 0% 

pkopcostlb operating cost (fare) 0.75 -0.005 HBWCCST -0.00375 0%
 a
 

SUM[I] pedestrian environment 10 0.117 HBWPTI
 
 0.2925 10%

 b
 

        Total -2.90851 100% 

Zone 20 to Zone 113 Variable Parameter Utility 

pkwktimelb walk to local bus 21.35 -0.049 HBWCOVT -1.04615 22% 

pkwttimelb wait time for local bus 51 -0.049 HBWCOVT -2.499 52% 

pkivtimelb bus riding time 39.71 -0.025 HBWCIVT -0.99275 21% 

pkpkcostlb parking cost 0 -0.005 HBWCCST 0 0% 

pkopcostlb operating cost (fare) 0.75 -0.005 HBWCCST -0.00375 0%
 a
 

SUM[I] pedestrian environment 10 0.117 HBWPTI
 
 0.2925 6%

 b
 

        Total -4.83415 100% 
a
 In the script, a multiplier of 100 is given in the script for pkopcostBA but not for pkopcostlb, which is why the 

utility for the latter is so low. 
b
 Note that the pedestrian environment component of utility, shown as the “HBWPTI” parameter in Table 3, is 

positive but all other components are negative.  Thus, the “total” utility reflects the five negative utilities minus the 

positive pedestrian environment utility.  A multiplier of 0.25 is given in the script, which is why the utility is the 

product of the parameter*variable*0.25. 
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Modification 6.  Add Geographic Information to the Roadway and Zone Shapefiles 

 

Some scenarios used Census data.  Although both Census data (2015a) and the travel 

demand model are available in a GIS format, it was not possible to immediately overlay these 

layers because of two distinct problems—what appears to be a relatively minor translation 

challenge in the travel demand model roadway shapefile and what appears to be a more serious 

projection challenge in the travel demand model socioeconomic shapefile.  

 

To correct the first challenge, a spatial adjustment procedure suitable for vector layers 

was performed, where the researchers created “links” between certain locations in the roadway 

shapefile (such as the intersection of I-64 and U.S. 250 at the western end of the travel demand 

model) and the same location in real-world coordinates.  Then, an affine transformation was 

performed based on these 15 links as shown in Figure 6 (left).  While this improved the accuracy 

of the location of the roadway shapefile, errors were still visible especially in the more urban 

portion of the model; thus, this process was repeated with an additional 41 links as shown in 

Figure 6 (right).  A process similar to that shown in Figure 6 was used for the socioeconomic 

layer, except the initial projection information was deleted (otherwise the roadway layer would 

have been placed west of the Gulf of California), then a single affine transformation was 

performed, and then the projection information was added to the layer.  

 

  
Figure 6.   Example of Performing Spatial Adjustments to Correct the Location of the Roadway Layer 

 

 

Issues of Local Interest the Regional Model can Help Address 

 

Attendees at the annual meeting of the Virginia Association of MPOs, who had been 

provided outreach information of the type shown in Figure 1 as well as presentations on potential 

impacts of driverless vehicles, were divided into five groups of approximately eight persons 

each, and each group had a facilitator and note-taker.  Then, the groups provided responses to the 
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questions during the outreach exercise.  The complete set of responses is available from the 

authors, but a summary of findings as they relate to parking concerns is provided here.  Table 4 

maps related concerns to potential modeling strategies. 

 

Role of the Planner   

 

Planners may have a more active land use role in terms of changing current zoning 

ordinances, reusing existing parking areas, and discouraging growth outside existing areas.  

Planners might also have a new traffic engineering role to ensure curbside access at building 

entrances (e.g., advocacy for pick-up lanes used by DVs while ensuring pedestrian access).  

Information sharing regarding how pricing (e.g., parking costs in the CBD or per-mile vehicle 

operating costs) affects behavior was also suggested as a role, as was outreach to the parking 

industry.  Another possibility was for planners not to take a role but rather simply let market 

decisions dictate any changes to parking wrought by DVs.  A comment was made that the 

answer also depends on whether the planner has a regional versus a local focus. 

 

Opportunities for DVs   

 

DVs could further increase downtown land values, especially as former parking lots are 

turned into other uses (e.g., housing or public uses)—serving as catalysts for infill development.  

The advent of more green space (which could reduce the “urban heat density”), reduced noise, 

and reduced congestion could improve the downtown living areas, the last of which could be 

enhanced by the parking industry’s adoption of new technologies to tell motorists where parking 

is available.  DVs could also enhance transit connections between rural and urban areas, where 

rural commuters can park autonomous vehicles in a park and ride facility and take a high-

capacity mode such as bus rapid transit to the CBD.  Finally, as fleet penetration rates approach 

100%, the needed roadway infrastructure—parking spaces and travel lanes—could be reduced as 

the likelihood of human error is reduced.  One group of participants had noted that discussions of 

vehicle automation have occurred at “aging and disabled community service type meetings” 

which, if DVs were viewed as a way to provide mobility to persons who presently cannot drive, 

would support a benefit noted in the literature (Transportation Research Board, 2016).  

 

Risks of DVs   

 

DVs are associated with at least four potential risks with respect to parking.  First, a lack 

of needed cooperation between jurisdictions for parking use; an urban city might adjust its 

parking regulations after considering DVs but an adjacent and more rural county might not be 

ready to do so, leading to a “shell game” where congestion and parking problems are relocated 

from one jurisdiction to the next.  Second, elimination of parking in the CBD may lead to an 

increase in VMT attributable in part to the use of ZOVs whose owners choose not to park.  (One 

group noted “increased congestion from zero-occupant vehicles” as a risk and noted the number 

of trips might double; another group noted the potential emissions impacts of such trips.)  This 

increase in VMT may also alter peaking characteristics, for example, instead of traffic peaks 

inbound to employment areas in the morning and outbound in the evening, traffic peaks in both 

directions in both the morning and evening.  Third, DVs might lead to is expansion of 

development into rural area, and hence an increase in VMT, if DVs are more comfortable than 
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regular vehicles.  Fourth, during a transition period to DVs, capacity might decrease if DVs 

initially required a higher margin of safety (e.g., a longer following distance) than conventional 

vehicles; in fact one group noted “May not get capacity increase” as a potential risk. 

 

Potential Policy Tools 

 

One policy is pricing, where DVs could be charged based on the number of times they 

enter a congested area to serve passengers; this policy could consider both congestion levels and 

emissions in setting a fee.  Another policy is building DV-specific lanes where efficiency is 

affected less (than conventional lanes) when riders are picked up or dropped off.  An implication 

is that there could be multiple entrances at some buildings—one reserved for DVs and one 

reserved for conventional vehicles.  Of interest is how the relative attractiveness of DVs compare 

to transit if reduced emissions or congestion is sought. 

 

The Need (or Lack Thereof) to Consider DVs at Present 

 

Regarding whether it is essential to consider DVs’ impacts on parking at this time, 

opinions were divided.   One view is that it is not necessary to conduct such long range planning, 

given that we are already seeing one impact discussed previously:  in some locations, such as 

multimodal centers, there are already empty parking places.  [While empty spaces at present is 

not attributed to driverless vehicles, an implication is that such an impact does not require a 

focus on DVs per se.]  Another reason for not doing such analysis is the timing of the long range 

plan:  with the transition to DVs being 20 or more years from now [which is at the outer limits of 

long range planning horizons], there might be future innovations that will change our view of 

driverless cars.  In fact, one planning district commission deliberately chose not to consider 

driverless vehicles in their long-range plan.  Another view is that it could be productive to 

consider DVs now in long range planning efforts.  If DVs will tend to be used during the peak 

hours and not at other times one can begin to better understand how the “rush and lull” will 

affect traffic performance through the use of simulation modeling.  Additionally, implementation 

of any regulatory approach (such as a fuels tax) requires detailed analysis and probably cannot be 

implemented in a short time frame without such planning.  If, for example, parking behavior 

changes suddenly (e.g., vehicle trips double due to ZOVs), then without additional regulation or 

infrastructure, the increase in ZOVs could be detrimental to rural facilities [that are not equipped 

to handle heavy traffic volumes].   

 

Feasibility of Incorporating Such Concerns into the Regional Model   

 

There are parking-related concerns that are not feasible for examination with the travel 

demand model.  For example, DVs may require detailed management of curbside access, and 

details such as scheduling arrivals and drop-offs at loading zones require too much geographic 

detail for inclusion in the regional model.  The responses also suggested that regional models 

could help address some concerns; for example, the risk that DVs may initially require a greater 

following distance than conventional vehicles can easily be addressed by altering the capacity in 

the regional model.  For the issues that are feasible with the model, the level of difficulty varies 

by task; for instance, adjusting capacity in the capacity lookup table (which influences the 

impedance function in trip distribution) is simpler than modifying the script to alter capacity in 
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trip assignment (where just a few lines of code require alteration), which in turn is simpler than 

representing a new rural transit access mode (where DVs would augment rural park and ride lots 

by collecting passengers from individual locations in rural areas and enabling them to take higher 

speed transit to more urban areas).   

 

 Throughout the discussion, comments from several groups indicated there are a variety of 

unknown impacts for DVs.  One concerned environmental effects:  to what extent would 

emissions change if DVs are driven more frequently to run errands or to return home to park 

because parking in commercial areas is expensive?  A second concern is “what is the most 

effective use of resources?”   Other unknowns about the technology include cybersecurity, 

expected rate of fleet turnover, multiple states’ inspection requirements, the future of retail if 

another technology (drones) replaces vehicle-based delivery, and public acceptance; one group 

drew a connection to the Segway [a new technology that did not revolutionize transportation but 

which does have some niche applications.] 

 

Table 4 summarizes one way to address the issues of interest identified by attendees.  As 

shown by the right column, there are five issues that modifications to the regional model can 

potentially address.  These are that: (1) DVs may require increased headways [which could 

potentially reduce capacity], (2) that one can convert existing parking decks to other land uses if 

parking is no longer needed; (3) that DVs could strengthen the role of transit; (4) that zero 

occupant vehicles may increase because of self-parking, and (5) that the increased use of DVs 

may lead to higher emissions.  Issues (1), (2), (4), and (5) can be directly covered within the 

regional model.  Issue (3) can be partially covered in that one can examine how DVs affect 

transit use, without specifically focusing on rural areas.  In reviewing these scenarios, the 

researchers recognized two potential additions: 

 

 For issue 4, that zero occupant vehicles may increase because of self-parking, ZOVs 

might also increase because of the travel from person 1’s destination to person 2’s 

origin.  Thus issue 4 could be addressed through two scenarios:  a scenario that 

generates ZOV trips by privately owned DVs (what later became scenario 2) and a 

scenario that generates ZOV trips by shared DVs (what later became scenario 4) 

 

 For issue 5, that zero occupant vehicles might increase emissions, this could 

potentially be covered in all scenarios.  This issue could be addressed in particular, 

however, through two scenarios:  a scenario that looked at how changes in capacity 

might affect emissions (what later became scenario 1) and a scenario that looks at 

how additional travel by persons who do not have a vehicle affects emissions (what 

later became scenario 5). 
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Table 4.  Ways to Consider Issues of Interest Concerning the Impacts of Driverless Vehicles (DVs) Identified 

by Attendees at the Virginia Association of MPOs on June 9, 2017 

Issue of Interest [Scenario relating to 

this issue of interest] 

Relevant Analytical Approach Feasibility of Using a 

Regional Model 

Change current zoning ordinances that 

mandate a minimum number of 

parking spaces.  

Original research on how DVs will influence 

behavior is needed. 

Low: data are not 

available for the 

model. 

Encourage vehicle sharing rather than 

ownership of DVs. 

If the policy tool is a tax on vehicle ownership, 

possibly an incremental logit model could be 

used, but original research on how cost 

influences decisions is needed. 

Probably low: 

extensive revisions to 

the regional model 

would be required. 

Convert existing parking decks to 

other land uses (and increase property 

values).  [Scenario 2] 

Within the regional travel demand model, what-

if scenarios can be performed that examine how 

changes in population and employment in 

certain zones will influence VMT. 

Medium: existing 

models can be used for 

this analysis, although 

some modifications to 

specific zones are 

required.  
a
 

Discourage additional growth outside 

existing areas through higher property 

taxes. 

Strengthen the role of transit in 

serving rural park and ride lots.  

[Scenario 3] 

Modify the model to include additional park and 

ride lots at key nodes and higher capacity transit 

from such nodes to the central business district.  

(This can include examining how DVs can serve 

persons without mobility options.
 a
)

 
 

Medium: extensive 

model revisions are 

needed.
 a
 

Increase enforcement of traffic 

ordinances regarding curb access for 

DVs.  

With queuing models, how arrivals, departures, 

and waiting time affect facility performance can 

be examined. 

Low: a regional model 

is not sufficiently 

detailed for this 

analysis. Advocate for more drop-off and pick-

up lanes next to businesses.  

Ensure good access for pedestrians 

and bicyclists with such lanes. 

 

Modify the queuing models to account for 

different modes (e.g., bicycle vs. pedestrian). 

Provide information about how 

parking pricing might influence where 

DVs are parked. 

 

Within either a regional travel demand model or 

a stand-alone mode choice model, how the price 

of parking vs. the price per extra mile traveled 

influences whether a trip is taken by a zero 

occupant vehicle can be tested. 

Medium: extensive 

revisions to the mode 

choice component are 

needed. 

Reduce transit costs by eliminating the 

need for a driver. 

Perform a benefit-cost analysis that compares 

the costs of purchasing a DV with the reduction 

in labor costs by eliminating the driver. 

Low: a regional model 

is not appropriate for 

this purpose. Quantify the reduced need for 

infrastructure investments given that 

DVs may require less right of way 

than conventional vehicles. 

Zero occupant vehicles may increase 

because of DVs self-parking.  

[Scenarios 2,4] 

Increase the number of trips in the regional 

travel demand model to account for such zero 

occupant vehicles. 

High: some 

modifications can be 

made to the model.
  b

 

DVs may require a higher margin of 

safety initially (such as increased 

headways).  [Scenario 1] 

Initially reduce the capacity in the regional 

travel demand model and examine the impact on 

VMT and VHT. 

High: capacity impacts 

can be captured in the 

regional model.
  b

 

The increased use of DVs may lead to 

higher emissions.  [Scenarios 1,5] 

The model by itself will not provide an answer 

but can provide key inputs (VMT, VHT, and 

speeds). 

Medium: emissions 

factors can be used in 

conjunction with 

outputs from the 

regional model.
  b

 

VMT = Vehicle miles traveled; VHT = Vehicle hours traveled 
a
 Indicates an issue of interest that is partially addressed in the modeling in Task 5. 

b
 Indicates an issue of interest that is directly addressed by the modeling in Task 5.  
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Develop and Refine Scenario Categories 

 

Scenario 1. Alter Capacity 

 

Capacity changes of 30% (Bierstedt et al., 2014; Childress et al., 2015), 100% (Bierstedt 

et al., 2014), and -32% (Le Vine et al., 2015) were used in the first category of scenarios in order 

to obtain a wide range of impacts (although this figure does not include the six-fold possibility 

noted by Isaac (2016a).  Link capacity values are used in three locations in regional model:  two 

are in the volume delay function and a third is shown in the capacity lookup table.  The volume 

delay function equation is used in the pre-assignment step (sequence 7) and the highway 

assignment step (sequence 12).  The pre-assignment and assignment sequences are shown in 

Figure 7.   

 

 
A.  Pre-Assignment Step Module. 

 

 
B.  Pre-assignment script within the module shown in 

Figure A. 

 
C. Highway Assignment Step Module 

 

 
D. Highway Assignment Script within the module 

shown in C.   

Figure 7.  Modifying the Travel Demand Model in Order to Accommodate Changes in Capacity 

 

Figure 8 shows that the volume/capacity ratio is represented by a single variable “VC.”  

Accordingly, to represent a change in capacity, the researchers added a new variable VDF 

computed as VDF = 1/(1+percent increase in capacity).  For example, if capacity is doubled 

(e.g., a 100% increase), the “VC” ratio should be multiplied by 1/(1*(1+100%))=0.5.  Therefore, 

a catalog key named “vdf” was added for every facility type; this key represents the V/C ratio in 

the model as indicated in Figure 8.  Thus if capacity is unchanged, “vdf” is 1, but “vdf” is 0.5 for 

a capacity increase of 100%.  For the changes in capacity of a 32% decrease and a 30% increase, 

VDF is 1.4706 and 0.769, respectively.  Accordingly, the new variable “VDF” represents 

changes in capacity of -32%, 30% and 100% in the assignment step. 

 

 
Figure 8.   Adding a Catalog Key (vdf) to the Volume/Capacity Ratio 
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A different way of modifying capacity is to simply change the value in the lookup table, 

which in the model is stored as the file capacity.dbf.  This change does not require modifying the 

volume delay function.  

 

 For Scenario category 1, a total of 14 scenarios were executed:  a base doubly 

constrained gravity model, a base singly constrained gravity model, and then, for each of these 

gravity model types, changes in capacity of -32%, 30%, and 100%, with each capacity method 

being deployed in two ways, but only that of Figure 8 (alter the capacity lookup table) was 

reported since the results are almost identical.  

 

Scenario 2.  Reduce Parking Needs 

 

A review of Grush et al. (2016), Isaac (2016a), Williams (2013), and Zhao and 

Kockelman (2017) suggested that self-parking of DVs could potentially result in up to two 

behavioral changes.  One short-term change, if such vehicles were not shared outside the 

household, could be that individuals choose to send their vehicles home when they are not 

needed.  For example, a driverless vehicle drops a person off at work, returns home to park, and 

then makes that same trip again to pick up the worker.  Consequently three scenarios model this 

short term behavior:  doubling the number of home-based work (HBW) trips in the trip 

generation step, doubling the number of home-based other and non-home based trips.  Such 

scenarios provide an upper bound for the increase in VMT.   

 

Scenario 2a presumes that commuters send the DV home; Scenario 2a is implemented by 

doubling the number of HBW trips.  Thus, within the trip generation step, one can change the 

variable “phbw” to “2*phbw” within the script file “TGGEN00A.S” (Figure 9).  This change is 

done for both the city and the county, so the change is made within two places in the script 

(Figure 9).  Scenario 2a includes a simplification:  in theory, one would want to double the 

number of vehicle trips rather than the number of person trips.  That said, the researchers found 

that doubling person trips increased vehicle trips by a factor of almost 2.0 (the factor was 1.998).   

 

 
Figure 9.  Changes to the Script for Scenario 2a 

  

Scenario 2b is similar to Scenario 2a except this process is performed for HBO and NHB 

trips.  That is, one makes four changes in the script: “phbo” to “2*phbo” (for both the city and 

the county) and also “pnhb” to “2*pnhb” (for both the city and the county).  Scenario 2c is an 

extreme scenario that combined 2a and 2b which assume all trips will seek to park at home to 

avoid parking cost.  
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One long-term change, however, is that parking lots may be converted to other land uses.  

A fourth approach is thus to convert these parking lots in the central business district to such 

uses.  Scenario 2d sought to account for the fact that in close-in locations, existing parking lots 

could be converted to other uses, thereby increasing productions and attractions located within 

certain inner zones.  (Scenario 2d thus induces additional residential and commercial 

development at these former parking lot locations.  An alternative approach would be to reduce 

development at outer locations such that total growth of the region did not change.)  To be clear, 

Scenario 2d provides an order-of-magnitude example of how the conversion of parking lots to 

new land development may affect travel demand, as the number of parking lots that are 

converted, as well as the types of land development to which they are converted, will affect the 

quantity and types of new trips that result. 

 

In Scenario 2d, a portion of the city of Charlottesville—the area near and including the 

central business district—was treated as the inner location and thus parking lots therein were 

converted to other land uses (Figure 10).  The increase in productions was roughly equal to the 

increase in attractions, and a mix of land development alternatives were considered based a 

review of the 9
th

 edition of the ITE Trip Generation Manual (2013).   

 

 
 

Figure 10.  Area of the Charlottesville Business District (Red) Where Parking Areas Could Be Converted to 

Other Land Uses 
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Five steps were required to develop this scenario: 

 

 Estimate the new employment that could replace existing parking in Figure A1 

 Estimate the trips that such employment could generate 

 Adjust the trip estimates to account for multistory parking garages in the CBD 

 Convert these trips to productions and attractions by trip purpose 

 Modify the trip generation script to accommodate this increase in trips 

 

Estimate the New Employment that could Replace Existing Parking Lots 

 

Because parking data were only available for the City of Charlottesville (rather than the 

entire region) and for year 2017 (a more recent period than the base year in the model), the 

researchers used additional data to relate parking to employment.  Data from the City of 

Charlottesville (2017) showed approximately 1,410 parking lots, with these lots having a total 

area of 2,292,425 m
2
.  Total employment for the City of Charlottesville from the Bureau of 

Labor Statistics (2017a) for year 2016 (the last year for which full data are available) was 

114,317.  The ratio of these two values suggests that there are roughly 20.053 m
2
 of parking 

corresponding to one position of employment.  Both the parking data and the employment data 

have limitations in terms of relating parking area to employment:  the parking data do not 

account for multistory parking garages, on-street parking, and the fact that some parking is likely 

used for residential rather than employment purposes, and employment data do not include 

military, proprietor, or household employment (Bureau of Labor Statistics, 2017b).   

 

To allocate the 1,410 parking lots in the city to the roughly 115 transportation analysis 

zones which contain this parking (see Figure A2), two operations were performed in GIS after 

reprojecting these data into Albers Equal Area.  An identity overlay split parking lots spanning 

two or more zones into smaller polygons, where the size of each polygon was proportional to the 

amount of parking lot located in each zone.  This operation resulted in 1,694 parking polygons, 

but the total parking area of 2,292,425 m
2
 did not change).  Then a dissolve operation was used 

to determine, for each zone, the sum of the parking areas within each zone.   

 

The results suggest that within the central business district (CBD) shown in Figure 10, 

there are roughly 2.76 million square feet (256,879 m
2
) of parking that could be converted to 

other uses.  This estimate is higher than reality if all such land development is kept to one story, 

since land development requires a floor area ratio of less than 100% (in fact, a floor area ratio of 

40% can be considered relatively high).  This estimate is lower than reality if multi-level 

development (e.g., high rise condominiums or four story shopping complexes) is feasible.    

 

Estimate the Trips that Such Employment Could Generate 

 

 In order to create a realistic scenario for the number of new trips that might be generated 

by additional development, trip generation rates published by the Institute of Transportation 

Engineers (2012a, 2012b), types of housing that have been built in the Charlottesville area (City 

of Charlottesville, 2007), and typical square footage of housing types (U.S. Census Bureau, 

2017) were consulted.  Four iterative steps were then followed: 
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 First, the researchers assigned a new imaginary employee to one of five commercial land 

uses cited in ITE (2012a,2012b):  general office building, medical-dental office building, 

discount club, specialty retail center, and furniture store.  There are hundreds of different 

commercial land uses available in ITE (2012a,2012b), and thus other uses could be chosen; 

these five were selected because they showed a wide range of trip generation rates per 

employee, they provided trip rates based on number of employees and gross floor area, and 

they were a manageable number of land uses (five) with which the researchers could 

experiment.   

 

 The researchers then used three principles in determining the proportion of new employees 

for each land use.  Because the proportion of employment in the region was expected to rise 

from 20.2% in 2007 to 22.6% in 2035 (The Corradino Group, 2009), the researchers forced 

retail employment (e.g., discount club, specialty retail center, and furniture store in this case) 

to be 23.0% of total employment in 2040 (where the 23.0% is an extrapolation of the 2007-

2035 trend reported by The Corradino Group [2009]).  Because the Bureau of Labor 

Statistics (2015) forecast at the national level in 2024 that the sum of five service 

employment categories which the researchers judged to be comparable to office employment 

(information, financial activities, professional and business services, federal government, and 

state and local government) would be 3.41 times higher than the category of health care and 

social assistance, the researchers forced general office building employment to be 3.41 times 

higher than medical-dental office building employment.  Finally, because the number of 

person-trips per household based on data from the National Household Travel Survey (Santos 

et al. 2011) was 9.50, the researchers altered the proportions of the three categories of retail 

employment until this value of 9.50 trips per household was attained. 

 

 For the entire region, socioeconomic data in the 2040 travel demand model—that is, the 

forecast for year 2040 used to execute the Cube travel demand model—suggested a ratio of 

roughly 1.29 employees per household, such that each employee “requires” about 0.777 

households.  Then, based on ITE (2012b), the researchers estimated the number of 

commercial trip ends per employee as well as the square footage of gross floor area that 

would be required for each commercial land use.  In addition, a weighted average of three 

types of housing (single family detached dwelling units, condominiums, and apartments) 

(City of Charlottesville, 2007) along with trip generation rates expected for these housing 

types (Institute of Transportation Engineers, 2012a) was used by the researchers to estimate 

the number of residential trip ends per new employee.   

 

 Finally, the number of new employees was increased until all the parking area in the central 

business district had been used by residential or commercial land uses.  The resultant sum of 

commercial and residential trip ends, when divided in half, gives the net number of new trips 

in the central business district.   

 

These results are shown in Table 5.  For example, Table 5 suggests that the CBD parking 

lots, if converted to other land uses, might support a total increase in employment of 1,393, 

which would occupy a total land area of about 2.763 million square feet.  About 0.250 million 

square feet would be general office building, which would generate roughly 2,756 trip ends.  The 
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830 new employees working in this type of land use, along with the other employees who work 

in the four other types of land development shown (medical-dental office building, discount club, 

specialty retail center, and furniture store) would live in households that would consume 

approximately 2.083 million square feet.  The results of Table A1 suggest that the combined 

commercial and residential land uses would generate an additional 20,577 trip ends (e.g., 10,289 

trips).  Because these trips correspond to 2,763,000 ft
2
 (or 257,000 m

2
) of parking, Table 5 

suggests that each square meter of parking could result in 0.04 additional daily trips. 

 
Table 5.  Estimated New Trips from the Conversion of Parking Area in the Central Business District 

Land use type 

Trip ends 

per new 

employee
a
 

Trip 

ends  

per new  

1000 ft
2a

 

1000 ft
2
  

per new 

employee 

New 

employees 

Land area  

(1,000 ft
2
) 

created from 

parking lots 

New 

trip 

ends 

General office building 3.32 11.03 0.30 830 250 2,756 

Medical-dental office building 8.91 36.13 0.25 243 60 2,169 

Discount club 32.21 41.8 0.77 131 101 4,225 

Specialty retail center 22.36 44.32 0.50 98 49 2,182 

Furniture store 12.19 5.06 2.41 91 220 1,112 

Household 5.84 3.90 1.49 1,393
b
 2,083 8,134 

Total 1,393
b
 2,763 20,577

c
 

a 
Based on data reported by the Institute of Transportation Engineers (2012a, 2012b) 

b
 Each employee lives in a household.  The sum of employees working in the five commercial land uses equals the 

sum of employees living in households.  These 1,393 employees reside in (0.777)(1393) =1,083 households. 
c
 The number of new trips generated is equal to half the trip ends. 

 

These trips were distributed to the CBD zones on the basis of the square meters of 

parking available in each zone.  For example, since zone 66 has 48,259 m
2
 of parking, the 

conversion of parking lots to other land uses could lead to (0.04)(48,259) = 1,933 extra trips. 

 

Adjust the Trip Estimates to Account for Multistory Parking Garages in the CBD 

 

At the regional level, the lack of multistory parking garage data is a relatively small 

problem compared to the vast amount of surface parking.  However, in focusing on the CBD, 

where parking garages are concentrated, this could be problematic.  There are three relatively 

large garages in the CBD:  the Market Street Garage in zone 2 (473 spaces), the Water Street 

Garage in Zone 10 (1,019 spaces), and the Omni Garage in Zone 8 (400 spaces), based on a draft 

parking analysis (Nelson\Nygard Consulting Associates Inc., 2015).  Based on a planning level 

analysis from the International Parking Association (Kavanaugh, 2015) of 350 square feet per 

parking space, these garages would increase the number of trips in zones 2, 8, and 10 in the CBD 

by approximately 23%.  Thus, whereas Table 5 suggested a total of 20,577/2 = 10,288 trips, 

inclusion of parking garages increased this figure by 23% to 12,752 trips. 

 

Convert these Trips to Productions and Attractions by Trip Purpose 

 

For each of five purposes (HBW, HBO, NHB, internal-external, and off-campus 

university), the additional trip ends that would result for each zone were summed, giving a total 

that represents productions and attractions.  (The researchers did not perform this operation for a 
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sixth trip purpose—on campus travel—as those trips reflect students living in dormitories.)  The 

total trips ends for each zone were distributed on the basis of the original percentages for each 

trip purpose:  for example, because internal-external productions account for 40% of all trip 

attractions (excluding external-external trips and dorm-based trips), 40% of the new trip 

productions were assigned to that purpose (see Table 6).  Thus, the conversion of parking lots to 

other land uses for zone 66 would lead to (1,933)(40%) = 773 internal-external productions for 

that particular zone. 

 
Table 6.  Percentage of Trips that are Productions and Attractions 

a
 

 

Purpose  
Productions Attractions 

Number Percent Number Percent 

Home-based work 3,323 5% 14,464 25% 

Home-based other 9,691 16% 24,697 42% 

Non-home based 19,424 32% 19,424 33% 

Internal-External or External-Internal
 b

 24,168 40% 0 0% 

Off campus university 4,535 7% 0 0% 

Total 61,141 100% 58,585 100% 
a
 These percentages are based on two files TGEN_HB.dbf and UVAPANDA.dbf.  A related file (TGEN_PA.dbf) 

gives similar percentages, however, that file appears to include multipliers for certain trip purposes.  For 

compatibility with the original script, the researchers believe the percentages shown in Table 6 are more appropriate. 
b  

For productions, these are normally internal-external trips (e.g., a traveler living in the region and working outside 

the region).  For attractions, these are normally external-internal trips (e.g., a person living outside the region and 

working or shopping in the region). 

 

The initial execution of the original scenario 2d showed that the observed number of trips 

was about two-thirds of the expected number of trips.  Examination of total trips produced by 

purpose showed the researchers had initially inadvertently created a combination of two 

scenarios:  for internal trips (e.g., HBW, HBO, NHB, and HBU and trip purposes that stay within 

the modeling region), Scenario 2d reflects new development which was the intention of the 

scenario and which was expected.   However, for internal-external trips, the researchers were 

surprised to learn that productions are balanced to attractions, which meant that while trip ends in 

the CBD increased, this resulted at the expense of trip ends in other locations.   

 

Martin and McGuckin (1998, p. 55) note that “External station productions are trips 

whose home base is outside of the region and external station attractions are trips whose home 

base is within the region.”  Interestingly, the Charlottesville model appears to be organized a bit 

differently:  a column labeled internal-external productions shows values greater than zero for all 

CBD zones but equal to zero for all external stations.  A different column labeled internal-

external attractions shows values of zero for all CBD zones yet greater than zero for all external 

stations.  Examination of the script shows that the internal-external productions appear to be 

based on both the number of households in the area and the employment, whereas the attractions 

appear to be based on traffic counts.  (Further, the rate for productions is roughly 0.33 trips per 

household plus 0.724 trips per employee, such that for CBD zones, most of the “IX productions” 

are based on employment, not households.) 
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Thus, in order to generate approximately 12,752 trips, the attraction percentages shown in 

Table 6 had to be modified to account for how productions and attractions are balanced, which 

will vary by trip purpose:  for HBW, HBO, and NHB, productions guide the control total, for 

HBU no balancing is performed, and for IX, attractions guide the control total.  Accordingly, the 

researchers first increased university attractions from 0% to 7% to equal productions (which 

appeared reasonable given that the CBD would attract some students from the nearby university), 

then set NHB attractions equal to NHB productions (which was a slight change from 33% to 

32%), and then, recognizing that HBW and HBO attractions would be scaled to equal 

productions, scaled the attraction percentages for these purposes by the sum of the production 

percentages for these two categories.  (Thus because HBW and HBO productions represent 21% 

of all productions, HBW attractions become 21%*25%/(25%+42%)) = 8% of all attractions and 

HBO attractions became 21%*42%/(25%+42%)) = 13%).  The script was also modified to 

increase internal-external attractions by 1.02112 in order to allow an increase in 40% of internal-

external productions.  Although the nomenclature of the model differed from that in Martin and 

McGuckin (1998), this change allowed for productions (as defined in the model) to be attracted 

to internal-external attractions.  Table 7 shows that these changes resulted in an increase in total 

trip ends in the CBD and in the region.   (Some experiments showed that increasing the number 

of HBW attractions in the CBD can be done but, because of scaling to productions, this would 

result in some trips being taken away from other locations).  With the modifications shown, the 

desired number of trip ends (or total trips) within the CBD was within 3% of the desired amount 

for this scenario. 

 
Table 7.  Trips Generated in Scenario 2d 

Trip End Ps As Ps As Ps As 
Total 

Ps 

Total 

 As 

Total  

Trips  Purpose HBW HBO NHB HBW HBO NHB IX IX HBU HBU 

Desired 638 2,040 4,081 2,805 4,846 4,081 5,101 0 893 893 12,752 12,624 12,688 

Total 

observed 641 2,040 4,083 650 2,033 4,083 5,106 5,101 893 893 12,763 12,760 12,761 

CBD 

observed 641 2,040 3,954 982 1,492 3,954 9,883 0 893 893 17,411 7,321 12,366 

HBW = Home based work, HBO = Home based other, NHB = Nonhome based, IX = Internal External, HBU = 

Home-based university, Ps = Productions, As = Attractions 

 

Modify the Trip Generation Script to Accommodate this Increase in Trips 

 

Finally, the script was modified to reflect the additional trips that would result from the 

conversion of parking to some type of employment.  The variable ZI.3.ParkPLo is the total 

number of trip ends resulting from the conversion of parking to another use.  This method 

required modifying a total of 16 lines in two scripts as shown in Appendix A.  (There are ten 

percentages shown in Table 6, but note that the attractions are repeated in the script.)  Note that 

attraction increases were applied to the UVA, CBD, and urban areas while rural areas were 

unchanged.  
 

For Scenario category 2, a total of 10 scenarios were executed:  a base doubly 

constrained gravity model (which was the same as that used in Scenario 1), a base singly 
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constrained gravity model (which differed from that used in Scenario 1), and then, for each of 

these gravity model types, four scenarios:  replace parking with a zero occupant vehicle trip for 

work trips only, replace parking with a zero occupant vehicle trip for non-work trips only, 

replace all parking trips with a zero occupant vehicle trip, and redevelop CBD parking lots with 

new residential and commercial uses. 

 

Scenario 3.  Evaluate Potential Shifts from or to Transit 

 

Because the possibility had been raised that DVs could increase transit use (either 

reducing the discomfort associated with the portion of the trip prior to boarding or after 

disembarking from the transit vehicle [Polzin, 2016] or based on execution of travel demand 

models [Rixey, 2017]) or decrease transit use (also Polzin [2016] and Rixey [2017]) two 

contrasting scenarios were developed for evaluating the potential of DVs to influence transit use. 

 

Note that in executing these scenarios, within the mode portion of the model, the total 

number of person trips will differ slightly, by about 0.02%, depending on whether they are 

extracted from the “InitialTdist.mat” matrix at the beginning of the mode choice step or a file 

titled “Mode Summary.txt” at the end of the mode choice step.  Examination of the mode choice 

script does not show a clear reason for this modest difference.  However, a possibility is that with 

the several numerical manipulations in the script (e.g., the initial number of person trips is first 

divided into 0-car, 1+-car, and student households for each zone and then the logit equations for 

the mode choice step are applied), that there is some rounding that causes the discrepancy.  To 

avoid errors in comparison, we have consistently used the person trip percentages based on the 

conclusion of the mode choice step—that is, the person trip percentages extracted from the file 

“Mode Summary.txt”.) 

 

Potential Shifts from Other Modes to Transit (Scenario 3a) 

 

Scenario 3a considered how DVs might solve the last-mile problem for transit—that is, 

lead to an increase in transit use.  Part of this increase in comfort may result from shared 

driverless vehicles performing two activities: (1) eliminating the need to walk to the transit stop 

and (2) providing greater comfort by removing the driving task (Levin [2015]).  The Corradino 

Group (2009) explains that there are three distinct transit modes in the model: (1) walk to local 

bus (2) walk to premium service and (3) drive to best available service.  This “premium service” 

does not exist in reality; The Corradino Group (2009) explains that “The premium mode used for 

transit is a place holder for any future premium service that may be introduced in 

Charlottesville.”  Thus, in practice, transit modes 2 and 3 have almost zero values in the base 

scenario.  To examine how DVs could potentially complement transit, the researchers created a 

new mode that is a hybrid of modes 2 and 3 by performing two changes for the peak hour: 

 

 Walking to the bus was replaced with taking a shared driverless vehicle.  In the model, 

walking time was replaced with the driving time, and the cost of out of vehicle travel time 

was replaced with 65% of the cost of in-vehicle travel time based on a potential change in 

comfort suggested by Childress et al.  (2015).  In practice, as shown in Figure 11, two 

lines in the script were changed:  walk time (shown as the variable “pkwktimeex”) was 

replaced with driving time to best available transit (“pkwktimeBA”) and the in-vehicle 
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time parameter HBWCIVT was replaced with HBWCIVT*0.65.   (Note that the variable 

“pkwktimeBA” means drive to best available transit, despite the fact that “wk” means 

walk in other variables.) 

 

 Waiting for the bus was eliminated.  The wait time was set to zero, which is why the 

variable “pkwktimeex” is multiplied by zero. 

 

Although the two above bullets represent the change in the mode conceptually, four 

additional changes were made to the script due to the nature of this particular model.  The 

researchers’ understanding of these variables was based on (1) examination of the model 

documentation (The Corradino Group, 2009), (2) the model script, (3) calculations of the transit 

utility for three zone interchanges as shown in Appendix B and (4) interactions with the TRP. 

 

 The variable for travel time in premium transit (“pkivtimeex”) was replaced with the 

variable for the travel time in local bus (“pkivtimelb”) 

 

 The parking cost variable was set to zero, although the parking cost had been presumed to 

be zero in the original model. 

 

 The operating cost variable for local bus was used, where the variable “pkopcostex” was 

replaced with “pkopcostlb.” 

 

 For this particular scenario, after discussions with the TRP a new base scenario was 

developed:   local bus operating cost—that is, the fare—was modified to be multiplied by 

100 as shown by the line “MW[15]=(mi.3.pkopcostlb*100)*HBWCCST.”  This made the 

utility function for walk to local bus comparable to the utility functions for walk to 

premium transit and drive to best available as discussed in Table 3.    

 

 
Figure 11.  Initial modifications in order to Implement Scenario 3a.  Later, the fare was multiplied by 100 and 

a revised base scenario, as well as a new version of Scenario 3a, was developed. 

 

Shifts from Transit to Other Modes (Scenario 3b) 

 

Zhao and Kockelman (2017) suggest that by year 2020 for one particular region, 

connected vehicles may increase VMT by 20%, owing to three factors: (1) “self-parking” of 

This line was later modified to include 

a 100 multiplier for the fare. 
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driverless vehicles (e.g., an increase in zero occupant vehicles as discussed in Scenario 2); (2) 

“door-to-door” service, some of which would result in a shift from existing transit modes [the 

focus of Scenario 3b which has not yet been performed], and (3) increased comfort for 

passengers of driverless vehicles.  Therefore, within the same mode choice script (file 

“MCMAT00A.S”), the in-vehicle travel time was multiplied by 0.65 for three modes:  drive 

alone, carpool 2, and carpool 3+ during the peak hour as the figure 12 shows.  (As was the case 

with Scenario 3a, the focus was on the peak hour, so only HBW trips had the utility function 

modified.  

 

Figure 12.  Example of Reducing the Cost of In-Vehicle Travel Time by 35%.  (A similar procedure was 

performed for two-person carpools and 3+ person carpools). 

 

Potential Longer Trips (Scenario 3c) 

 

 For the singly constrained gravity model, the friction factors were iteratively adjusted 

until the congested travel times had increased by 35% based on a review of Childress et al. 

(2015).  Table 8 shows how the travel time changes both for the free flow condition (which is 

used for the initial measure of impedance in the trip distribution step and applies to each trip 

purpose separately) and, as given in the last row, the overall congested mean trip time.  For the 

singly constrained gravity model, a multiplier of 0.125 times the friction coefficient yielded a 

congested travel time (29.81 minutes) that was 35.01% longer than the base model congested 

time (22.08 minutes).  This factor was derived iteratively:  previous multipliers included 0.095 

(yielding 30.35 minutes, which is a 37.5% trip length increase relative to the base congested time 

of 22.08 minutes); 0.105 (29.99 minutes, a 35.8% increase); 0.20 (28.95 minutes, a 31% 

increase), 0.14 (29.56 minutes, a 33.9% increase), and 0.12 (29.97 minutes, a 35.7% increase).  

For the doubly constrained model, when set all friction factors are equal (e.g., whether that value 

is 1 or 1,000) the congested mean travel time is 28.23 minutes, which is 35.1% higher than the 

base congested time of 20.89 minutes. 

 
Table 8.  Impact of Adjusted Impedances on Trip length in Minutes 

Trip length 

type 

Trip 

purpose 

Doubly Constrained Singly Constrained 

Base Model Revised  Base Model Revised  



39 
 

Impedances 
b
 Impedances 

 b
 

Uncongested HBW  17.58 19.02 10.15 11.41 

HBO 15.66 18.99 8.22 10.89 

NHB 14.24 18.2 7.05 10.04 

HBU 11.45 12.07 5.71 8.1 

HDORMU 11.49 11.9 5.11 7.55 

IX 21.93 24.59 16.65 19.94 

Congested All  20.89 28.23 22.08 29.81 
b
 Multiplication of the original impedances by 0.125 yielded these trip times.  For example, for HBW trips, the 

original impedance was e
-0.08001(travel time)

.  For the revised impedance, this equation became e
-0.08001(travel time)*0.125

.  

Thus, as shown in Appendix C, the script is modified to read:  “mw[21]=MI.2.FFTIME*(-0.08001*0.125) 
 

For Scenario category 3, a total of eight scenarios were executed.  With the original 

utility function, there were four scenarios:  Scenario 3a (shift from other modes to transit), 

Scenario 3b (shift from transit to other modes) [both with the doubly constrained gravity model], 

and then Scenario 3c (shift from other modes to transit) and Scenario 3d (shift from transit to 

other modes) [both with the singly constrained gravity model].  Then, these four scenarios were 

executed again as Scenarios 3a’, 3b’, 3c’, and 3d’ with the revised utility function for local bus 

that included the “100” multiplier. 

 

Scenario 4.  Allow Non-Familial Sharing of Driverless Vehicles 

 

Scenario 4 concerns an increase in zero occupant vehicles (ZOV) trips which might result 

from individuals choosing to share driverless vehicles rather than purchase them outright. 

Whereas Scenarios 2 and 3 considered a driverless vehicle that was restricted to a single 

household, it may be possible to either share vehicles within a household or with others who live 

outside of a household.  Williams (2013) suggests DVs may reduce car ownership and facilitate 

car-sharing, resulting in less time spent parking, more wear-and-tear on the vehicle, and a higher 

fixed cost; in fact, between 9 and 13 privately owned vehicles could be replaced by a shared DV. 

 

 Scenario 4 thus involves consideration of a subscription model, where travelers pay for 

individual trips to a provider in lieu of owning a vehicle.  While such a subscription-based model 

may differ from a traditional ownership-based model in a number of ways, Scenario 4 considers 

just one potential difference:  how might the increase in deadheading lead to an increase in VMT 

(and other outputs of interest such as emissions)?  For a doubly constrained gravity model, there 

are a total of eight possible scenarios that may consider this increase in VMT, based on a high or 

low degree of matching. 

 

A High Degree of Matching 

 

If there is a high degree of matching such that ZOV trips are relatively short (e.g., 

beginning and terminating within the same zone), then deadheading will generally not occur on 

the roadway network included in the model.  An example is a trip that that starts and stops in the 

same residential subdivision (e.g., within the same zone).  The interpretation of this scenario is 

that because sharing occurs within each TAZ, the additional VMT is not on the observed 

roadway network (see Figure 13).  Thus, trips B, D, F, H, and J are not on the network. 
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Figure 13.  Example of Zero Occupant Vehicle Trips.  The occupancies for interzonal Trips A, C, E, G, and I (in 

bold) is one person per vehicle.  Intrazonal trips B, D, F, H, and J (italicized) have no occupants in the vehicle. 

 

However, VMT still influences total emissions, as shown in Scenarios 4a-4c.  For home-

based work trips, Equation 1 makes this trip length a function of individual zone size based on a 

review of Martin and McGuckin (1999).  For example, consider ZOV trips within zones 209 

versus those within zone 35.  A ZOV trip within zone 209 has a length of 0.5(6.33)^(1/2) = 1.26 

miles (since zone 209 is relatively large with an area of 6.33 miles) yet each ZOV trip within 

zone 35 has a length of 0.5(0.11)^2 = 0.16 miles (since that zone, near the CBD has a much 

smaller area of 0.11 miles).   

 

0.5(zone area)^0.5 (Number of HBW trips terminating in the zone)   (Eq. 1) 

 

To implement this approach, the number of vehicle trips for each zone based on the 

number of destinations from the origin-destination table may be tabulated.   Table 9 illustrates 

these calculations for the simple two-zone system in Figure 1 where there are five trips between 

zones 35 and 209 (which occur on the network) and an additional five zero-occupant vehicle 

trips that occur off the network.  The three ZOV trips terminating in zone 35 add roughly 0.49 

VMT, by contrast, the two ZOV trips terminating in zone 209 add roughly 2.51 VMT. 

 
Table 9.  Example of Tabulating Zero Occupant Vehicle Miles Traveled for Figure 1. 

Zone  35 209 

On network trips starting in the zone A, E, I C, G 

Off network trips ending in the zone B, F, J D, H 

Zone area in miles 0.107 6.322 

ZOV trip length in miles 0.163 1.257 

Total off-network ZOV VMT = 3 X 0.163 = 2 X 1.257 

Total off-network ZOV VMT 0.49 2.51 

 

For Scenario 4a, the number of home-based work vehicle trips just prior to sequence 7 

(trip assignment) was 129,300, although a different answer (112,359) based on the step just prior 

to trip assignment in sequence 12.  For consistency, the number of vehicle trips from the latter 

process was used, based on the file modeout.mat, which meant that the number of vehicle trips 

for three modes (drive alone, two-person carpool, and carpool 3+) needed to be exported and 

summed outside CUBE.  For Scenario 4b, the process was applied to all vehicle trips, regardless 

of purpose, except for external-external trips and internal-external or external-internal trips; for 

this reason, the file CVFINALVEHTRIPS2040.DAT was used with modes of drive alone, two-

person carpool, and carpool with more than two people, where again the matrices were exported 

and summed.  Scenario 4c considered the fact that ZOVs might tend to be used to different 
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degrees by persons who drive alone versus carpool and thus examined what might occur if only 

persons who currently carpool use a driverless vehicle; thus, only the two-person carpool and 3+ 

carpool matrices were used. 

 

A Medium Degree or Low Degree of Matching 

 

Scenarios 4d and 4e presumed that when one passenger departs the shared driverless 

vehicle, the vehicle must then make a ZOV trip within a particular region in order to arrive at the 

origin for the next passenger.  Compared to Scenario 4a, Scenario 4d presumes a low degree of 

matching such that these regions are relatively large:  the entire study area is split into 5 regions, 

consisting of roughly 50 TAZs per region.  By contrast, Scenario 4e presumes a greater degree of 

matching, such that the regions are relatively small, with Scenario 4e splitting the area into 51 

regions consisting of roughly 1-13 TAZs per region.   As with Scenario 4a, Scenarios 4d and 4e 

considered only commuting trips (HBW) in order to forecast peak hour transportation system 

performance.  

  

A GIS analysis was used to develop these regions where the 262 TAZs were converted 

from a vector format to a raster format.  Using five seed zones and the Euclidean allocation tool, 

a raster consisting of five regions was established (Figure 14, left).  The resultant raster of five 

regions was converted to a polygon format and then a spatial join was performed between these 

five vectorized regions and the 262 TAZs, such that each TAZ now was associated with one of 

the five regions (Figure 14, right).  Then, the number of HBW person trips in file TGEN_PA.dbf 

153862.8 that terminated in each region was determined and, based on Equation 1, the trip length 

for a ZOV trip associated with each HBW trip end was determined. 

 

 
Figure 14.  Implementation of Scenario 4d with Five Regions (left) and Association of Each TAZ with a 

Region (right) 

For example, consider the doubly constrained model and the northwest region in Figure 

14.  The zones in that region showed a total of 11,098 HBW person trip ends.  Because that zone 

has an area of 153,454,155 square meters (59.24 square miles), Equation 1 suggests that a ZOV 

trip that stayed within that region would have an average length of 3.849 miles (e.g., 

0.5*(59.24)
1/2

 = 3.849) Thus, ZOV trips for that region generate 29653.4trips*3.849 miles = 
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114125.8717VMT, and the sum of the additional VMT from all regions yields 496465.6419 

VMT as shown in Table 10. 

 
Table 10.  Summary of VMT from Zero Occupant Vehicle Trips Based on a Low Degree of Matching 

for the Doubly Constrained Gravity Model 

 

Region Area (square 

meters) 

Average ZOV 

Trip length 

(miles) 

HBW Destination Ends ZOV VMT 

Northwest 153,454,155 3.849 

 

29653.4 

 

114125.8717 

 

Northeast 170,076,017 4.052 

 

50370.6 

 

204088.6948 

 

Southeast 826,59,022 

 

2.825 

 

7863.8 

 

22212.52229 

 

Southwest 86,261,173 

 

2.886 

 

5784.8 

 

16692.3051 

 

Central 55,526,259 

 

2.315 

 

60190.2 

 

139346.248 

 

Total    153862.8 
a
 

 

496465.6419 

a
 This number (153862.8person trips) is the total productions used in trip generation.  There are a total of 153,863 

person trips in the file PDDST00A.PRN which includes HBW productions.  

 

Then, recall that the base case in year 2040 is that the total VMT is 6,829,605.34 for the 

doubly constrained gravity model.  The estimated new VMT is thus 6,829,605.34 + 

496465.6419= 7326070.642 VMT.  Thus, in the trip generation script (TGGEN00A.S), as shown 

in Appendix C, a multiplier is used for the NHB trips such that the VMT generated by the model 

is roughly this amount.  The researchers found that multiplying NHB trips by a factor of 1.685 

gave a value within approximately 0.0011% of that amount (e.g., 7,325,221.930).  A similar 

process was performed for the singly constrained gravity model:  the researchers found that a 

multiplier of 1.608 yielded a VMT (7,399,473.59) that was within 0.01% of the desired VMT 

from the GIS analysis (7,399,469.822).  

 

Then, the above steps were repeated for a medium degree of matching, where it was 

presumed that there are only a few zones per ZOV matching region (Figure 15).  As one might 

expect, with medium matching rather than low matching, the ZOV VMT is less and hence the 

multiplier for NHB trips is also less, with values of 1.22 and 1.173 for the doubly and singly 

constrained models, respectively.   
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Figure 15.  Catchment Area for Scenario 4e Which Presumes a Medium Degree of Matching (Hence 51 

smaller regions rather than 5 large regions).   
For Scenario category 4, therefore, a total of ten scenarios have been executed:  high 

degree of sharing of home-based work vehicle trips (scenario 4a), high degree of sharing of all 

vehicle trips (scenario 4b), high degree of sharing of vehicle trips that are carpool only (scenario 

4c), low degree of sharing of HBW trips (scenario 4d), and medium degree of sharing of HBW 

trips (scenario 4e). 

 

 

Scenario 5.  Increase Travel by Age Groups with Traditionally Lower Vehicle Access  

 

The fifth category of scenarios asks “what if persons who do not presently have access to 

a vehicle because they lack a driver’s license could use a DV?”  Scenarios 5a and 5b concern 

persons age 65+ and persons age 13-17, respectively, and focus on non-work trips only.  

Scenario 5c combines these two scenarios and includes persons age 18-64, and for that age group 

only, considers both work and non-work trips.  Scenario 5d provides a comparison for all 

scenarios:  what if the region’s growth doubles the expected value for 2040?  The doubling of 

growth is not attributed to driverless vehicles but rather is an example of an unforeseen shock 

that might affect the results of the travel demand model—and thus its change can be compared to 

those of the other scenarios. 

 

Figure 16 shows the percentage of persons by age group who have, or potentially have, a 

driver’s license or access to a driverless vehicle based on roughly current year populations (U.S. 

Census Bureau [2015b]), forecast year data (Weldon Cooper Center for Public Service, 2012), 

and rates of licensure by age group available from the literature (e.g., Figure 6 of Miller et al., 

2015, Appendix E of Zmud et al., 2016).  For example, in year 2015, there were roughly 11,738 

persons age 15-19 in the Albemarle Charlottesville area.  Because population growth should 

increase this age cohort from 11,738 to 15,153 by 2040, we would expect the number of licensed 

drivers to increase from 4,695 to 6,061, based on a 40% rate of licensure for this age group 
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(Miller et al., 2015).  If every person could have access to a vehicle, however (even without a 

driver’s license), then the licensed vehicles in this age group increases from 6,061 to 15,153.  

Figure 16 shows the impacts of the increase; notice the larger increases are at the upper and 

lower ends of the age spectrum. 
 

 
Figure 16.  Potential Impacts of Population Growth and Technology on the Number of Licensed Drivers and 

Licensed Driverless Vehicles in the Charlottesville/Albemarle Area.  Drawn based on data from U.S. Census 

Bureau [2015b], Weldon Cooper Center for Public Service, 2012), Miller et al., 2015, and Zmud et al., 2016)   

 

Concepts for the Scenarios 

 

As reported in Appendix B, the methodology for implementing Scenario 5a consisted of 

three main steps:  obtain current proportions of persons age 65+ in each Census block group, 

reconcile geospatial errors that resulted when aligning Census geography with travel demand 

model geography, and finally forecast the 2040 population age 65+ by zone.  Those calculations 

suggest a potential increase of about 15.3% in HBO and NHB trips for persons age 65+. 

 

For Scenario 5b, an approach for estimating the additional trips due to younger 

individuals (age 13-17) who previously could not travel was also developed, where current 

populations for persons in that age range were obtained from the U.S. Census Bureau (2016).  

(Because data were provided in the ranges of ages 10-14 and 15-17, the researchers estimated the 

number of persons age 13-14 as 40% of the population age 10-14).  This method provided an 

average percentage of persons age 13-17 by Census block group.  Then, census block groups and 

TAZs were aligned after performing an overlay in a GIS environment and checking for errors, 

yielding a present day percentage of persons age 13-17 by TAZ.  While the proportion of persons 

age 13-17 will change between the present and 2040, the change is not as dramatic as with 
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persons age 65+:  this proportion is 6.66% at present (U.S. Census Bureau, 2015b) and will rise 

to 6.69% in 2040 (Weldon Cooper Center for Public Service, 2012).  Accordingly, the 

percentage population for each zone age 13-17 that were computed based on present-day 

populations were all increased by the ratio of 6.69%/6.66% = 1.003.  Finally, the modified 

percentages were multiplied by the number of people in each zone in 2040 in order to obtain a 

forecast of persons age 13-17 in each zone.  For example, for transportation zone 161, with 369 

people, the percentage of people in that zone forecast to be age 13-17 is 2.93% of 369—about 11 

people.  Truong (2017) suggests that persons in the age range of 13-17 could see an increase in 

trips of 11.12%, thus, a multiplier of 1.1112 was used for such persons for HBO and NHB trips.  

As was the case with Scenario 5a (persons age 65+, HBW trips were not increased. 

 

For Scenario 5c, a similar procedure was considered for persons age 18-64, where 

approximately 14.8% of Virginians age 18-64 do not have a driver’s license (Miller et al., 2015).  

Data from Truong (2017), when adapted to Albemarle County and the City of Charlottesville 

data projections for 2040 (Weldon Cooper Center for Public Service, 2012), suggest an 

additional 3.67% of trips could be realized with the arrival of driverless vehicles; hence a weight 

of 1.0367 was used for all trip purposes—HBW, HBO, and NHB—and the judgment being that 

some of these individuals are more likely to be in the work force.  These data were combined 

with those for Scenarios 5a and 5b. 

 

Scenario 5d was implemented by doubling all socioeconomic variables for each zone in 

the file LandUse_2040A.dbf:  population, household, automobiles, total employment, retail 

employment, school enrollment, university employees, number of on-campus students, 

dormitory beds, off campus students and classroom seats.  No changes were made to acreage and 

zonal university parking the same.  (There is one additional parameter shown in the above file 

titled “Academic_E.”  After reviewing the model report and Cube script, the researchers could 

not determine what this variable means and thus it was not altered.   

 

Implementation of Scenarios  

 

The number of persons age 65+ varies by zone as shown in Figure 17.  For example, for 

zone 230, the total population is 319 with about 18.5% of those persons (59) being age 65+.  By 

contrast, the percent of persons age 65+ in zone 94 is about 24.2% (e.g., 254 persons out of a 

total of 1,048).   Then, in the trip generation step, the number of HBO and NHB productions is 

set equal to existing productions multiplied by (1+15.3% * the proportion of people age 65+ in 

each zone).  In zone 93, about 24.2% of the population is expected to see home-based other and 

non-home based trips increase by 15.3%.  Thus, for that zone, which generated 361 HBO trips 

and 63 NHB trips, Figure 17 shows the calculated increase in the number of HBO trips is 

361*(1+(24.2%)*(15.3%)) = about 375 trips and the number of NHB trips is 

63*(1+(24.2%)*(15.3%)) = about 65 trips.  The script is thus modified as shown in Appendix C 

(Figure C1). 
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Figure 17.  New Landuse_2040A.dbf table 

  

A similar procedure was followed for Scenario 5b.  For example, for zone 93, about 9% 

of the population is expected to see home-based other and non-home based trips increase by 

11.12%.  Thus, for that zone, which generated 361 HBO trips and 63 NHB trips, the increased 

number of HBO trips is 361*(1+(0.09)*(11.12%)) = about 364.6 trips and the number of NHB 

trips is 63*(1+(0.09%)*(11.12%)) = about 63.63 trips (see Figure 18). 

 

 
 

Figure 18.   Modification to the Trip Generation Script for Scenario 5b, where HBO and NHB Trips are 

Increased by 11.12% to Account for Increased Trips by Travelers Age 13-17 

 

 Finally, Scenario 5c increases trips for each of these age groups (see Figure C2 in 

Appendix C).  Results were checked by hand and with the model; for example, for HBW, HBO 

and NHB trips, the model gives 200.2, 386.4 and 67 for Scenario 5c, while, these numbers 

calculated by hand was 203.26, 386.043 and 67.35. 
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A Combined Scenario 

 

 It was pointed out that this project should include a combined scenario that integrated 

elements from the previous scenarios.  The resultant combined scenario does not seek to provide 

a worst-case analysis:  if one wanted to see a situation where congestion becomes large, for 

example, one could use Scenario 5d which greatly increases travel time.  Rather, the combined 

scenario entails a situation where driverless vehicles are introduced but are not the dominant 

mode of transportation.  Accordingly, capacity is reduced on some but not all facilities, parking 

in the CBD is reduced thus allowing some new development in the CBD, and a change in 

behavior in terms of longer trips as well as additional trips occurs.  The environmental impact of 

two options:  DVs being shared versus DVs not being shared, are examined.  To execute this 

scenario, therefore, four key changes were made to the model: 

 

 Capacity was reduced by 32% but only on three types of facilities:  interstates, freeways, 

and major arterials.  For all other facilities, capacity was not altered.  The rationale is that 

for high-speed facilities, a greater margin of safety is required but for lower speed 

facilities, capacity is unchanged.  Thus, a modified version of Scenario 1a is used. 

 

 Because DVs may induce some additional travel by persons without access to a license, 

the number of trips was increased—but not by the same amount shown in Scenario 5c.  

Rather, to indicate a relatively low percentage of persons who might have a driverless 

vehicle, a figure of 24.8% was selected based on Bansal and Kockelman (2016) who 

suggested that percentage for year 2045 if certain events transpire, such as technology 

decreasing at a cost of about 5% annually.  Thus, a modified version of Scenario 5c was 

used. 

 

 A portion of parking in the CBD area—24.8%--is replaced with development.  The idea 

is that some developers see that greater value can be obtained by converting existing 

parking lots to parking—but not all.  Thus, a modified version of Scenario 2d is used, 

with the 24.8% figure being selected based on the above bullet. 

 

 Because increased comfort of DVs makes longer trips feasible for some users, 

impedances were reduced.  For the singly constrained gravity model, friction factors 

were increased and for the singly constrained gravity model, the magnitude of the 

coefficient c for travel time in the expression e
c*time

 was reduced.  However, the changes 

were not as large as those in Scenario 3c.  For the singly constrained gravity model, for 

example, whereas Scenario 3c had reduced impedance by a factor of 0.125 (e.g., 

changing impedance from e
-c*(travel time)

 to e
-c*(travel time)*0.125

), this combined scenario only 

moderately altered the factor, using e
-c*(travel time)*0.70

.  (The value of 0.70 was chosen 

because compared to a multiplier of 1.0, it raised VMT from 6,903,004.18 [the singly 

constrained gravity model base VMT] to 7,466,519.26 for an increase of 8.2 percent, 

which is roughly a quarter (e.g., roughly 24.8%) of the increase sought in Scenario 3c 

where DVs increased travel time due to increased comfort.  For the doubly constrained 

gravity model, the researchers modified the friction factors to increase VMT by a similar 

amount using first a linear approximation and later an exponential function.  (To start the 

linear approximation, the friction factor associated with one minute was left unchanged 
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for each of the six trip purposes.  These friction factors were 5996 (HBW), 5484 (HBO), 

2723 (NHB), 126687 (HBU), 126687 (HDORMU), and 8187 (IX).  Then, the friction 

factors were initially decreased in a linear fashion by the expression a*time until a trip 

length was obtained that was about 19% higher than the base trip length.  Then, an 

exponential decay function of the form e
c*time

 was fit to these values for each trip purpose 

and c was adjusted further until the VMT of 7,395,451.47 was obtained, which was 8.3% 

higher than the base VMT of 6,829,605.34.)  Thus a modified version of Scenario 3c was 

used. 

 

The model was executed based on the above four bullets and became the “base case 

combined scenario.”  Then, two policies were contrast, focusing on the peak hour and HBW 

trips.  One policy was to not provide sharing of DVs, where the HBW person trips only were 

increased by 24.8%.  Then, after removing the 24.8% increase in HBW person trips, a second 

policy was to provide sharing of DVs relative to this new base case combined scenario, where 

there is a low degree of matching as shown in Scenario 4 (e.g., with five regions).  For each 

HBW vehicle trip from the “base case combined scenario”, a ZOV trip was added, where this 

ZOV trip was the average trip length from Scenario 4e.  The NHB VMT was increased until this 

additional VMT was obtained.  The difference in NOx was determined for these two scenarios. 

 

 Step 1.  Generate the “New Base Case Combined Scenario” which yields a new 

VMT of 7,565,546.88. 

 Step 2.  Increase HBW person trips by 24.8% and run the model.  The end of this 

step yields the results of the not-sharing scenario. 

 Step 3.  Remove the HBW person trips from Step 2. 

 Step 4.  Add 24.8% of the induced HBW VMT from Scenario 4e.  Recall that 

Table for Scenario 4e gave 496,466additional VMT from sharing.  Thus 

24.8%(496466) = 123,123.48is added to obtain a new VMT such that 

123,123.48+ 7,565,546.88 = 7,688,670.36.   

 Step 5.  Use an NHB multiplier to get this new VMT.  These multipliers were 1.1 

(doubly constrained) and 1.09(singly constrained).   

 

 

Summary of Base Scenarios 

 

Table 11 shows the key changes in the base scenarios throughout the project:  with legacy 

models, there is a strong possibility that additional information will be learned as one delves 

more deeply into the model itself, and thus it may not always be realistic to have a single base 

scenario. 
 

Table 11.  Summary of Base Scenarios 

Type 
a
 Scenario 

Category 

Characteristics VMT VHT MTT 

Double 1,2,4,5, 

and 

combined 

Make three changes that apply to all scenarios:   

 Adjust trip production rates to match documentation 

 Incorporate fares into the mode choice step 

 Add script to obtain mean trip length 

6,829,605.34 167,101.64 20.89 

Double 3 Include a 100 multiplier for the local bus operating cost 6,828,131.94 167,293.27 20.89 
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Single 1 only Develop friction factors for the singly constrained 

gravity model based on an iterative procedure following 

Martin and McGuckin (2016)  

7,688,831.98 219,496.25 24.57 

Single 2,4,5, and 

combined 

Develop friction factors based on a simpler procedure 

noted in Cambridge Systematics (2012) 

6,903,004.18 189,192.57 22.09 

Single 3 Develop friction factors based on a simpler procedure 

noted in Cambridge Systematics (2012) and include a 

100 multiplier for the local bus operating cost 

6,902,795.22 189,196.84 22.08 

a 
Double = Doubly constrained gravity model.  Single = Singly constrained gravity model 

 

 

Summary of Model Results for the Five Categories of Scenarios 

 
Table 12.  Results of Scenario 1:  Change in Capacity 

a
 

  Decrease 32% Base Case Increase 30% Increase 100% 

Doubly 

constrained 

VMT 7,079,205.500 6,829,605.34 6,747,453.330 6,731,498.390 

VHT 244,207.840 167,101.64 153,157.980 145,056.520 

MTT 26.890 20.89 19.750 19.080 

Singly 

constrained 

VMT 8,187,508.82 7,688,831.98 7,543,089.10 7,473,970.15 

VHT 513,664.57 219,496.25 183,405.96 167,491.54 

MTT 47.18 24.57 21.76 20.45 

VMT = Vehicle miles traveled, VHT = Vehicle hours traveled, MTT = Mean travel time 
a
 Values reported here are based on changing the capacity in the lookup table 

 

Table 13.  Results of Scenario 2:  Change in Parking Behavior 

  Base Case Replace HBW 

parking with 

ZOV trips 

Replace HBO 

and NHB 

parking with 

ZOV trips 

Replace 

HBW, HBO, 

and NHB 

parking with 

ZOV trips 

Convert CBD 

parking lots to 

other uses 

Doubly 

constrained 

VMT 6,829,605.34 7,650,824.51 8,717,886.16 9,665,971.40 6,936,922.85 

VHT 167,101.64 203,327.64 273,749.49 355,343.87 170,977.63 

MTT 20.89 21.76 22.80 25.95 21.00 

Singly 

constrained 

VMT 6,903,004.18 7,766,171.68 8,879,039.87 9,854,816.11 7,033,312.45 

VHT 189,192.57 236,682.19 325,566.77 431,957.00 197,080.66 

MTT 22.09 23.79 25.63 29.62 22.45 

VMT = Vehicle miles traveled, VHT = Vehicle hours traveled, MTT = Mean travel time, HBW = Home based 

work, HBO = Home based other, NHB = Non home based, CBD = Central Business District, ZOV = Zero Occupant 

Vehicle.   

 

Table 14.  Results of Scenario 3:  Changes in Comfort Levels 

  Base Case DVs solve the last mile 

problem for transit 

DVs capture transit 

market share 

DVs make longer trips 

more appealing 

Doubly 

constrained 

VMT 6,828,131.94 6,814,366.98 6,826,759.97 8,576,827.18 

VHT 167,293.27 166,670.74 167,312.18 247,556.86 

MTT 20.89 20.91 20.89 28.23 

Singly 

constrained 

VMT 6,902,795.22 6,894,671.03 6,907,381.89 8,833,979.39 

VHT 189,196.84 188,745.23 189,195.26 284,238.86 

MTT 22.08 22.11 22.08 29.81 

VMT = Vehicle miles traveled, VHT = Vehicle hours traveled, MTT = Mean travel time 

 

Table 15.  Results of Scenario:  Shared DVs Increase Zero Occupant Vehicle Trips for HBW Only 

 Metric Base Case High matching Medium Matching Low Matching 
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A match is found 

in the same TAZ 

A match is found 

within nearby TAZs
 a
 

A match is found but may 

be several TAZs away
 a

 

Doubly 

constrained 

VMT 6,829,605.34 No change except 

off-network VMT 

increases 33,910  

6,988,626.15 7325221.930 

VHT 167,101.64 174,249.01 189867.540 

MTT 20.89 20.83 20.790 

Singly 

constrained 

VMT 6,903,004.18 No change except 

off-network VMT 

increases 45,460  

7,047,368.54 7,399,473.59 

VHT 189,192.57 196,171.89 215029.120 

MTT 22.09 22.16 22.400 

VMT = Vehicle miles traveled, VHT = Vehicle hours traveled, MTT = Mean travel time 
a
 Execution of the values herein is based on a multipliers of 1.22 (medium matching, doubly constrained), 1.173 

(medium matching, singly constrained), 1.61 (low matching, doubly constrained), and 1.549 (low matching, singly 

constrained).   

 

Table 16.  Results of Scenario 5:  Change in Travel Demand 

  Base Case Additional 

travel by 

persons age 

65+ 

Additional 

travel by 

persons age 

13-17 

Additional 

travel by 

persons of all 

ages  

Double growth 

in the region 

Doubly 

constrained 

VMT 6,829,605.34 6,883,749.25 6,840,372.56 6,946,501.10 9,476,552.78 

VHT 167,101.64 169,602.52 167,697.11 172,561.90 336,840.33 

MTT 20.89 20.88 20.91 20.92 26.99 

Singly 

constrained 

VMT 6,903,004.18 6,986,549.27 6,933,309.49 7,049,134.41 9,666,916.34 

VHT 189,192.57 193,210.56 190,194.98 196,484.38 408,361.48 

MTT 22.09 22.28 22.37 22.43 32.64 

VMT = Vehicle miles traveled, VHT = Vehicle hours traveled, MTT = Mean travel time 

 

 
Table 17.  Results of Combined Scenario 

  Base Case New 

Combined 

Based Case 

Do not share 

driverless 

vehicles 
a
 

Share driverless vehicles 

(low degree of matching) 
b
 

Share 

driverless 

vehicles 

(medium 

degree of 

matching) 
c
 

Doubly 

constrained 

VMT 6,829,605.34 7,565,546.88 7,789,345.22 7,687,147.01 7,610,887.48 

VHT 167,101.64 231,041.01 247,546.53 239,630.86 235,742.65 

MTT 20.89 26.05 26.72 26.11 26.19 

Singly 

constrained 

VMT 6,903,004.18 7583825.300 7,845,174.08 7,705,895.08 7,623,948.66 

VHT 189,192.57 251680.040 271,217.05 258,676.89 251,829.06 

MTT 22.09 27.020 27.97 27.21 27.08 
a
 Reflects new combined base case plus an increase in HBW trips of 24.8% 

b
 Execution of the values herein is based on a multipliers of 1.1 (doubly constrained), 1.09 (singly constrained) in 

NHB trips.  This presumes a low degree of matching as per Figure [the figure with 5 regions]. 
c
 Execution of the values herein is based on a multipliers of 1.05 (doubly constrained), 1.015 (singly constrained) in 

NHB trips.  This presumes a medium degree of matching as per Figure [the figure with 51 regions]. 

 

 
Table 18.  Relative Changes for Scenario 1:  Change in Capacity 

a
 

  Decrease 32% Base Case Increase 30% Increase 100% 

Doubly 

constrained 

VMT 1.04 
b
 1.00 0.99 0.99 

VHT 1.46 1.00 0.92 0.87 

MTT 1.29 1.00 0.95 0.91 

Singly 

constrained 

VMT 1.065 1.00 0.98 0.97 

VHT 2.340 1.00 0.84 0.76 
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MTT 1.920 1.00 0.89 0.83 

VMT = Vehicle miles traveled, VHT = Vehicle hours traveled, MTT = Mean travel time 
a
 Values reported here are based on changing the capacity in the lookup table 
b
 For example, decreasing capacity leads to a 4% increase in VMT 

 

Table 19.  Relative Changes for Scenario 2:  Change in Parking Behavior 

  Base Case Replace HBW 

parking with 

ZOV trips 

Replace HBO 

and NHB 

parking with 

ZOV trips 

Replace 

HBW, HBO, 

and NHB 

parking with 

ZOV trips 

Convert CBD 

parking lots to 

other uses 

Doubly 

constrained 

VMT 1.00 1.12 1.28 1.42 1.02 

VHT 1.00 1.22 1.64 2.13 1.02 

MTT 1.00 1.04 1.09 1.24 1.01 

Singly 

constrained 

VMT 1.00 1.13 1.29 1.43 1.02 

VHT 1.00 1.25 1.72 2.28 1.04 

MTT 1.00 1.08 1.16 1.34 1.02 

VMT = Vehicle miles traveled, VHT = Vehicle hours traveled, MTT = Mean travel time, HBW = Home based 

work, HBO = Home based other, NHB = Non home based, CBD = Central Business District, ZOV = Zero Occupant 

Vehicle 

 

Table 20.  Relative Changes for Scenario 3:  Changes in Comfort Levels 

  Base Case DVs solve the last mile 

problem for transit 

DVs capture 

transit market 

share 

DVs make longer 

trips more appealing 

Doubly 

constrained 

VMT 1.00 0.9980 1.000 1.256 

VHT 1.00 0.9963 1.000 1.480 

MTT 1.00 1.0010 1.000 1.351 

Singly 

constrained 

VMT 1.00 0.9988 1.001 1.280 

VHT 1.00 0.9976 1.000 1.502 

MTT 1.00 1.0014 1.000 1.350 

VMT = Vehicle miles traveled, VHT = Vehicle hours traveled, MTT = Mean travel time 
a 
Reflects the base case where VMT = 6,828,131.94, VHT = 167,293.27, and MTT = 20.89  

 

Table 21.  Relative Changes for 4:  Shared DVs Increase Zero Occupant Vehicle Trips for HBW Only 

  Base Case A match is found 

in the same TAZ 

A match is found 

within nearby TAZs 

A match is found but may 

be several TAZs away 

Doubly 

constrained 

VMT 6,829,605.34 No change except 

VMT increases 

0.50% a  

1.023 1.073 

VHT 167,101.64 1.043 1.136 

MTT 20.89 0.997 0.995 

Singly 

constrained 

VMT 6,903,004.18 No change except 

VMT increases 

0.66% a 

1.02 1.07 

VHT 189,192.57 1.04 1.14 

MTT 22.09 1.00 1.01 

VMT = Vehicle miles traveled, VHT = Vehicle hours traveled, MTT = Mean travel time 
at

 The off-network VMT was calculated by the researchers, and dividing this by the on-network VMT shown for the 

base case gives these percentages. 

 

Table 22.  Relative Changes for Scenario 5:  Change in Travel Demand 

  Base Case Additional 

travel by 

persons age 

65+ 

Additional 

travel by 

persons age 

13-17 

Additional 

travel by 

persons of all 

ages  

Double growth 

in the region 
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Doubly 

constrained 

VMT 1.000 1.008 1.002 1.017 1.388 

VHT 1.000 1.015 1.004 1.033 2.016 

MTT 1.000 1.000 1.001 1.001 1.292 

Singly 

constrained 

VMT 1.000 1.012 1.004 1.021 1.400 

VHT 1.000 1.021 1.005 1.039 2.158 

MTT 1.000 1.009 1.013 1.015 1.478 

VMT = Vehicle miles traveled, VHT = Vehicle hours traveled, MTT = Mean travel time 

 

 
Table 23.  Relative Change for Combined Base Case Scenario 

  Base Case New 

Combined 

Based Case 

Do not share 

driverless 

vehicles  

Share 

driverless 

vehicles (low 

degree of 

matching)  

Share 

driverless 

vehicles 

(medium 

degree of 

matching) 

Doubly 

constrained 

VMT 1.000 1.108 1.141 1.126 1.114 

VHT 1.000 1.383 1.481 1.434 1.411 

MTT 1.000 1.247 1.279 1.250 1.254 

Singly 

constrained 

VMT 1.000 1.099 1.136 1.116 1.104 

VHT 1.000 1.330 1.434 1.367 1.331 

MTT 1.000 1.223 1.266 1.232 1.226 

 

 

 

DISCUSSION 

 

 The results presented in the last twelve tables are interesting but are useful only to the 

extent that they inform concerns raised by stakeholders—that is, the value of a model derives 

from its ability to help planners inform stakeholders of the impacts of potential decisions (Meyer 

and Miller, 2013).  Returning to the five local issues of interest cited by VAMPO attendees that 

are potentially addressed by modifications to the regional model, what information is offered by 

incorporation of driverless vehicles into the model? 

 

 Execution of the model suggests five insights regarding local issues of interest for this 

particular region: 

 

1. The impact of the transition period where DVs might lead to a decrease in capacity is a 

significant concern. 

2. There is substantial land available for conversion of parking decks, and in this particular 

location the network appears poised to handle the traffic. 

3. DVs can, under the best of conditions, could strengthen the role of transit to some extend 

(increased by around 13 times).  However, there is a significant risk that DVs may reduce 

the mode share of nonmotorized vehicles. 

4. Zero occupant vehicle trips may increase due either to self-parking or unmatched trips, 

but the former has the potential to be much greater than the latter. 

5. If vehicle types do not change, the risk of emissions results from both increased DV use 

but especially (interestingly) capacity. 
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Local Issue 1.  Impact of a Transition Period where DVs Might Decrease Capacity 

 

The initial concern regarding a capacity decrease during a transition period appears 

justified.  A capacity reduction potentially increases VHT by 46% (if doubly constrained) or 

146% (if singly constrained) and is particularly detrimental to some smaller facilities:  the 

proportion of congested major collectors is more than doubled, increasing from 12% to 37% 

(doubly constrained model) or from 34% to 72% (singly constrained model).  Table 18 (for 

scenario 1) also shows that for this particular region, VHT is more sensitive to changes in 

demand or capacity than VMT, owing to the nonlinear exponent for volume/capacity in the 

volume delay function.  However, this result is also somewhat specific to the use of the shortest 

travel time for the impedance function that is used in the gravity model:  had the impedance 

function been based on distance, rather than travel time, then VMT might be more sensitive than 

VHT (Xiao, 2017). 
 

Note also that one result was counterintuitive at the aggregate level: capacity increases 

were associated with VMT decreases (although decreases were modest).  Table 24 suggests one 

explanation: 50% of interstate segments and almost 89% of major freeway segments were 

congested under the base case; thus, it might be the case that such facilities offer more direct 

routes that because of capacity increases became feasible for more motorists.   

 
Table 24.  Impacts of Scenarios on Proportion (%) of Congested Facilities

 a
 

Trip 

Distribution 

Approach 

Capacity 

Change 

Interstate Freeway Major 

Arterial 

Minor 

Arterial 

Major  

Collector 

Minor 

Collector 

Local 

Street 

Doubly 

constrained 

gravity 

model 

32% decrease 88.9
b
 97.5 77.7 71.5 36.9 30.3 15.0 

No change 54.2 73.4 44.2 40.8 12.1 11.2 3.5 

30% increase 0.0 29.1 19.8 24.6 9.4 5.4 0.9 

100% increase 0.0 0.0 7.9 6.0 1.5 0.6 0.0 

Singly 

constrained 

gravity 

model 

32% decrease 72.2 100.0 90.0 86.0 72.0 61.2 30.2 

No change 50.0 88.6 59.5 58.3 34.2 22.1 6.7 

30% increase 0.0 68.4 37.4 35.4 13.6 5.8 0.5 

100% increase 0.0 2.5 9.8 15.2 4.7 1.3 0.2 

HBW = home-based work. 
a
 For this region, a segment is defined as congested if its volume/capacity ratio exceeds 0.8. 

b 
For example, a 32% decrease in capacity meant that 88.9% of interstate segments had a volume/capacity ratio > 

0.8. 

 

The singly constrained gravity model shows greater sensitivity to changes than the 

doubly constrained model:  an increase in capacity of 30% reduces VHT to 92% of its value for 

the for the doubly constrained case but to 84% of its value for the singly constrained case.  This 

is expected as the singly constrained gravity model relies to a greater extent on travel time, or 

any other measure of impedance, than does the doubly constrained model (Cambridge 

Systematics, 2014; VDOT TMPD, 2009) 

 

As noted in the methodology, it is possible to alter capacity not in the lookup table but 

rather in the volume delay function.  If the steps of trip distribution and trip assignment are 

applied only in sequence, increasing the capacity in a volume delay function that is used in the 
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trip assignment step should affect the route chosen but not the locations of origins and 

destinations.  However, because of multiple feedback loops within the model between trip 

distribution and trip assignment, changing the capacity in either step yields virtually identical 

results in terms of VMT, VHT, and MTT.  That is, the relative changes in the top row of Table 

18 (for the doubly constrained case) are identical except that for the 32% decrease in capacity, 

modification of the volume delay function yields a 45% increase in VHT (rather than the 46% 

shown in Table 18) and an increase in MTT of 30% (rather than 29% shown in Table 18).  For 

the singly constrained case, all results are the same except for the drop in capacity, where 

modification to the volume delay function yields a VHT increase of 130% (rather than 134% in 

Table 18) or and MTT increase of 92% (rather than 96% shown in Table 18). 

 

Local Issue 2.  Impact of Converting CBD Parking Lots to Other Land Uses 

 

For the doubly constrained model, scenario 2d showed a modest increase in VMT 

(1.57%), VHT(2.32%), and MTT (0.53%) which was not surprising in that the CBD represents a 

relatively small portion of the regional model.  (The singly constrained formulation increases 

these percentages modestly to 1.89%, 4.17%, and 1.63%, respectively and thus the doubly 

constrained model remains the focus of the discussion herein).  What was surprising was that in 

the CBD, travel speeds were generally not affected substantially:  while the increase in volumes 

led to speed decreases, these were relatively small and no larger than a drop of 5 mph.  Mode 

splits did not change, which was not surprising given that travel speeds had not changed:  no link 

in the CBD saw speeds decrease by less than 5 mph.  (Of the 191 links in the CBD, one had a 

speed increase of a bit less than 1.5 mph, 36 had speed increases of less than 1 mph, 126 had 

speed decreases of less than 1 mph, and 16 had speed decreases between 1 and 5 mph). 

 

For this particular case, the model generally suggests that there could be substantial 

growth in demand as shown by the off-street network.  For zones 33, 34, and 35, Figure 19 (that 

follows) contrasts the relatively few streets that are part of the modeled network with the greater 

number of local streets that are not part of the modeled network.  For example, whereas West 

Main Street is included in the model network, Hardy Drive is not part of this model network.  

For zones 33, 34, and 35, the additional centroid connector volumes are 2,366, 3,253, and 3,179 

respectively (representing both directions), which are percentage increases of 107%, 30%, and 

29%, respectively over the base scenario.  If these volumes were split evenly over the five north-

south and east-west off-network facilities that are represented with dashed lines in Figure 19, this 

would be an additional 1,760 vehicles per hour on these facilities on a daily basis.  If one 

presumes a capacity of 800 vehicles per hour (a value inferred from the capacity for the smallest 

type of on-network facility, described as “Local Only serves local traffic Local City/Subdivision 

Streets” [The Corradino Group, 2009], then logically during a peak hour such movements could 

be accommodated by local streets.  For example, with 10% of the volume occurring during the 

peak hour, the centroid connectors could add, in theory, roughly 176 extra vehicles if these were 

distributed equally among the five facilities.  

 

That said, the increase in centroid volumes might affect the “livability” of the area:  Ben-

Joseph (undated) and Spack (2018) suggested that volumes of about roughly 1,000 vehicles per 

day can adversely affect a community.  Further, examination of the volumes reported for the City 

of Charlottesville (VDOT, 2017c) also suggests these volumes could be relatively large; for 
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example, while most of the streets shown in Figure 19 were not counted, a count is available for 

a section of Albemarle Street to the north of the area, where that count is 170 vehicles per day.  

In sum, Scenario 2d does not suggest large regional changes in transportation performance, and 

frankly it appears that the roadways could support this traffic volume—and the methodology 

showed ample potential land area that could be converted from parking to other uses.  However, 

it is possible that greater attention may need to be paid to those living near the smaller off-

network facilities that would have these local (off-network) trips. 

 

 

Figure 19.  Contrast Between Off-Network and On-Network Facilities Supporting Zones 33, 34, and 35. 

Local Issue 3.  Impacts of DVs on Transit Mode Share 
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Table 20 shows that under a scenario where DVs could increase market share by 

eliminating waiting time, there is almost an imperceptible impact on aggregate performance 

measures.  With the increased mode share for transit, VMT and VHT on the transportation 

network drop but the amount is negligible:  VMT drops by about one fifth of one percent for the 

doubly constrained model and about one tenth of one percent for the singly constrained model.  

VHT also drops by relatively small amounts:  0.37% and 0.24% for the doubly and singly 

constrained cases, respectively.  Generally, trips were transferred from drive-alone and carpool 

to transit, which explains why in the aggregate, VMT and VHT decrease slightly.  (Note also that 

while most of the additional transit trips are from the auto mode, about 9% are transfers from the 

active modes of bicycling and walking as shown in Table 25).  The mean travel time increases by 

one tenth of one percent for the doubly constrained case and slightly more for the singly 

constrained case.     

 

In short, if one asks “so if driverless vehicles eliminate waiting time for transit and 

replace the walk time with a ride in a driverless vehicle, then what is the impact?” then the 

answer is that DVs can increase mode share for transit by around three percentage points.  Some 

uncertainty include that the utility and condition of current transit system stay the same, which 

may explain why transit mode share does not see expected big increase. The doubly constrained 

gravity model suggests a figure of 3.10% (e.g., raising transit mode share from 0.26% to 3.36%, 

which is about 13 times) and the singly constrained gravity model suggests a figure of 2.71 (e.g., 

raising mode share from 0.28% to 2.99%).  Table 25 also shows that only about half of this 

increase comes from taking mode share from single occupant vehicles:  the next biggest portion 

of this increase (about a percentage point) comes from carpool shifting to transit, and then about 

a quarter of a percentage point of the increase is a shift from nonmotorized modes to transit. 

 
Table 25.  Impact of Scenario 3a on Transit Mode Share 

Gravity Model Doubly constrained Singly constrained 

Scenario Base  Scenario 3a Difference 
a
 Base Scenario 3a Difference 

a
 

Drive Alone 87,553 85,123 -1.58% 
a
 87,536 85,435 -1.37% 

Carpool 2    38,176 36,856 -0.86% 38,264 37,114 -0.75% 

Carpool 3+   18,721 18,121 -0.39% 18,951 18,431 -0.34% 

Walk To Local Transit   397 4 -0.26% 424 7 -0.27% 

Walk To Premium Transit  0 5,162 3.35% 0 4,589 2.98% 

Drive To Best Available Transit 5 4 0.00% 3 3 0.00% 

Non-Motorized Walk 4,298 4,051 -0.16% 4,143 3,899 -0.16% 

Non-Motorized Bicycle  4,746 4,576 -0.11% 4,580 4,425 -0.10% 
a
 Change in absolute mode shares based on the file Mode Summary.txt.  For example, under the base scenario, drive 

alone had 87,553 trips out of a total of 153,896, for a mode share of 56.89%.  Under Scenario 3a, this mode share for 

drive alone dropped to 55.31%.  The difference, 55.31% - 56.89% = -1.58%, is reported in Table above. 

 

Scenario 3 had a slightly different utility function than the other scenarios: for Scenario 3, 

the fare for the mode of “walk to local bus” was modified to be multiplied by 100 for all three 

transit modes:  walk to local bus, walk to premium transit, and drive to best available.  In the 

original model, however, this multiplier of 100 is not present for the fare of walk to local bus.  

Interestingly, comparable results are obtained:  DVs could increase transit’s mode share by 

2.97% (e.g., raising mode share from 0.39% to 3.36% for the doubly constrained gravity model) 



57 
 

or by 2.59% (e.g., raising mode share from 0.40% to 2.99% for the singly constrained gravity 

model).  (Another interpretation of these results is that the utility functions suggest that 

elimination of the fare alone—without any DV impacts--yields roughly an increase of between 

0.12% or 0.13% of transit’s mode share for HBW trips.) 

 

As expected, Scenario 3b reduced transit’s mode share and increased the auto mode 

share.  The changes in absolute shares were very modest:  as shown in Table 26, drive alone, 

carpool 2, and carpool 3+ increased their mode share from 93.86% to 94.14%.  However, 

examination of the modes in greater detail shows a slight surprise:  the greatest impact was on 

nonmotorized modes—even on a percentage basis relative to such modes, which is interesting in 

that nonmotorized modes have a larger mode share than transit.  That is, more trips were lost to 

DVs from bike and walk than were lost to transit.  For instance, the number of transit trips 

decreased slightly (an absolute change of 22-23 trips or 5.2%-5.7% in total transit trips).  

However, the number of nonmotorized trips changed by about 20 times that amount (402-404 

trips), with bicycle trips decreasing by 6.3% relative to total bicycle trips. 

 
Table 26.  Impact of Scenario 3b on Transit Mode Share 

Gravity Model Doubly constrained Singly constrained 

Scenario Base  Scenario 3a Difference a Base Scenario 3a Difference a 

Drive Alone 87,553 87,772 0.14% 87,536 87,760 0.14% 

Carpool 2    38,176 38,317 0.09% 38,264 38,403 0.09% 

Carpool 3+   18,721 18,786 0.04% 18,951 19,016 0.04% 

Walk To Local Transit   397 375 -0.01% 424 402 -0.01% 

Walk To Premium Transit  0 0 0.00% 0 0 0.00% 

Drive To Best Available Transit 5 4 0.00% 3 3 0.00% 

Non-Motorized Walk 4,298 4,195 -0.07% 4,143 4,044 -0.06% 

Non-Motorized Bicycle  4,746 4,447 -0.19% 4,580 4,275 -0.20% 
a
 Change in absolute mode shares based on the file Mode Summary.txt.  For example, drive alone’s mode share 

increased from 56.89% to 57.03% for an increase of 0.14%. 

 

 

Local Issue 4.  Impact of Zero Occupant Vehicles on VMT 

 

The number of zero occupant vehicle trips may increase through DVs either self-parking 

(if DVs are privately owned and the owner sends the vehicle back home or to a lower cost 

parking area) or an empty DV traveling from one person’s destination to another person’s origin 

(if shared).  The results in Table 21 suggest that while both situations may increase VMT, the 

former could increase VMT much more than the latter. 

 

If all commuters chose to send the DV home, then Scenario 2 showed that VMT would 

increase by 12% for the doubly constrained model.  By contrast, consider the potential increase 

in VMT due to zero occupant vehicles resulting from DVs being shared.  For the doubly 

constrained model, Table 21 for Scenario 4 suggests that this increase in VMT could range from 

about 0.50% if DVs could be matched within the same zone (e.g., off network VMT only), 2.3 % 

if matching occurred within a few zones, to a high of roughly 6.51% if matching occurred across 

many zones—that is, an almost worst-case matching scenario.  The singly constrained gravity 
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model yielded similar results:  Scenario 2 (singly constrained) showed a possibility of all 

commuters sending their vehicles home (thereby increasing VMT by 12.5%) compared to the 

three cases of a very high degree of matching where all ZOV VMT occurs off the network 

(increasing VMT by 0.66%), a case of a medium degree of matching (where ZOV VMT increase 

by 2.1%), and a case of low matching (where ZOV VMT increases by 6.48%).  (The doubly 

constrained model gave similar results:  without sharing, VMT increases by 12.0%, while 

sharing with a medium to low degree of matching increases VMT by 2.33% to 6.51%; a high 

degree of matching yields an increase of just 0.50% in VMT). 

 

  The larger VMT increases have real-world consequences; for example, Scenario 2 

showed that the 12-13% increases in VMT for the doubly and singly constrained gravity model 

could increase VHT by 22%-25%, respectively.  Thus, a key question for DVs is the extent to 

which they will be shared (outside of the household) versus used by multiple members of the 

household.  It is certainly the case that a doubling of all trips is likely a worst-case scenario that 

would not materialize.  However, it is also conceivable that for members of a household who had 

different departure times and destinations, that some doubling of trips as shown in Table 27 

could occur.  Note that if the worst-case scenario of non-shared DVs were replicated for non-

work trip types (e.g., HBO and NHB), then VMT and VHT would increase by 42% and 113%, 

respectively.   

 

By contrast, Table 27 below suggests that with a high degree of matching, even for all 

trips, the VMT wrought by zero occupant vehicles would be about 2.5% of all VMT.  This 

additional VMT is of course smaller if it applies only to work-based trips.  

 
Table 27.  Results of Scenario 4:  Additional Off-Network VMT Resulting  

from Zero Occupant Vehicles with a High Degree of Matching 
Scenario Description 

a
 Doubly constrained 

b
 Singly constrained 

c
 

4a All internal vehicle trips, 

HBW purpose only 

33,910 45,460 

4b All internal vehicle trips, 

all purposes 

172,140 170,083 

4c Only carpooling internal 

vehicle trips, all purposes 

51,242 49,237 

a 
Internal refers to HBW, HBO, NHB, and HBU trips only and excludes internal-external, external-   

internal, and external-external trips.  There were no HDORMU trips in the model. 
b
 For the base scenario where VMT = 6,829,605.34, VHT=167,101.64, MTT = 20.89 

c
 For the base scenario where VMT = 6,903,004.18, VHT=189,192.57, MTT = 22.09 

 

Local Issue 5.  Impact on Emissions 

 

One area where VAMPO stakeholders had expressed an interest in June was in how DVs 

might influence emissions.  Figure 20 generally shows that as VMT increases, so might NOx 

(chosen as a focus because it is a contributor to ground level ozone, which has affected other 

Virginia areas although presently Charlottesville is an attainment area). As table 28 shown, it is 

not surprising that NOx emissions increased, by 10.8% (for the doubly constrained gravity 

model), for example, when commuters chose not to share DVs but rather send them home, 

thereby doubly HBW trips.  However, the changes in capacity may have some surprising impacts 

on emissions, however:  emissions increased for the singly constrained model (by 4.9%) but 
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decreased for the doubly constrained model (by 2.5%).  Depending on the age and vehicle type, 

NOx emissions tended to follow a parabolic curve (see Figure that follows); for one set of 

assumptions, emissions rates were minimized at speeds of around 32 mph and maximized at very 

low and very high speeds (California Air Resources Board, 2013).  (Thus, an increase in speed 

on a facility might lead to a reduction or an increase in emissions depending on the facility’s 

current speed as shown in Figure that follows.)   Examination of speeds by facility type provides 

an explanation for the case of the reduction in capacity for Scenario 1: for the doubly constrained 

model only, the reduced speeds on two classes of facilities—freeways and major collectors—on 

average corresponded to a lower NOx emissions factor than was the case without the capacity 

reduction.  For the singly constrained gravity model, although speeds also decreased for these 

two classes of facilities, the emissions factor associated with the speed corresponding to a 

reduction in capacity was lower than for the base scenario. Thus, although the relationship 

between the number of trips and VMT is fairly constant for these scenarios, the relationship 

between trips or VMT and emissions rates is not constant.  If such capacity reductions were to 

come to pass, these results could help prioritize the types of facilities that should be improved if 

a reduction in NOx emissions is a priority. 

 
Table 28.  Impact of Certain Scenarios on NOx Emissions 

No Abbreviated Description Impact on NOx  

    Doubly Constrained Model Singly Constrained Model 

1a Capacity reduced by 32% -2.51% 4.87% 

2a Commuters chose not to park 10.80% 11.81% 

2b Non-commuters choose not to park 24.40% 26.84% 

2c All persons choose not to park 37.30% 41.13% 

2d CBD parking lots converted to other 

uses  

1.48% 1.67% 

3c Longer trips 21.65% 25.05% 

4d Sharing with a medium degree of 

matching 

2.08% 1.90% 

4e Sharing with a low degree of 

matching 

6.65% 6.63% 

5a Increase trips for persons age 65+ 

who do not presently have access to 

a vehicle or transit 

0.70% 0.95% 

5b Increase trips for persons age 13-17 

who do not presently have access to 

a vehicle or transit 

0.10% 0.30% 

5c Increase trips for all persons, 

regardless of age, who do not 

presently have access to a vehicle or 

transit 

1.50% 1.95% 
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5d Double population and employment 

(all ages) 

34.80% 38.32% 

  New Combined Base Scenario 2.29% 4.16% 

  Combined base case DVs not shared 4.98% 8.07% 

  Combined base case DVs shared 

(low degree of matching) 

3.65% 6.13% 

  Combined base case DVs shared 

(medium matching) 

2.94% 5.03% 

 

 

 

 
Figure 20.  Impact of Speed on Emissions.  (Drawn from data provided by:  California Air Resources Board.  

Methods to Find the Cost-Effectiveness of Funding Air Quality Projects for Evaluating Motor Vehicle 

Registration Fee Projects and Congestion Mitigation and Air Quality Improvement (CMAQ).  Sacramento, 

2013.  https://www.arb.ca.gov/planning/tsaq/eval/evaltables.pdf.) 

 

 

Table.  Relative Change for Combined Base Case Scenario 

  Base Case New 

Combined 

Based Case 

Do not share 

driverless 

vehicles  

Share 

driverless 

vehicles (low 

degree of 

matching)  

Share driverless 

vehicles 

(medium 

degree of 

matching) 

Doubly 

constrained 

VMT 1.000 1.108 1.141 1.126 1.114 

VHT 1.000 1.383 1.481 1.434 1.411 

MTT 1.000 1.247 1.279 1.250 1.254 

Singly 

constrained 

VMT 1.000 1.099 1.136 1.116 1.104 

VHT 1.000 1.330 1.434 1.367 1.331 

MTT 1.000 1.223 1.266 1.232 1.226 

 

 

 

Higher  
emissions 

Lower 

emissions 

https://www.arb.ca.gov/planning/tsaq/eval/evaltables.pdf
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Combine Scenario Results 

 

The combined scenario simulated two possible futures where DVs have many of the elements 

discussed previously:  a potential capacity decrease during the transition period, conversion of 

the downtown parking lots to other land uses, and additional travel by persons without access to 

a vehicle.  The difference in these two futures was that driverless vehicles were either privately 

owned or shared.  A medium degree of matching for shared driverless vehicles increases VMT 

by 11.4% (doubly constrained gravity model) and 10.4% (singly constrained gravity model) with 

respective NOx emission increases of 2.94% and 5.03%. The results from a low degree of sharing 

increase NOx and VMT more; for the doubly constrained gravity model, VMT increases by 

12.6% and NOx increases by 3.65%.  Yet both of these futures where DVs are shared yield a 

lesser environmental impact than if DVs are not shared, where VMT and NOx increase by 14.1% 

and 4.98%, respectively.  These results are consistent with the results obtained to from the 

individual scenarios, although the difference between sharing and not sharing herein is not as 

great as was the difference between Scenario 2a and Scenario 4d.  That said, the results suggest a 

public benefit for shared driverless vehicles. 

  

 

 

CONCLUSIONS 

 

1. For the purposes of discussing DVs, scenario planning can generate useful discussion even if 

the model inputs are uncertain, and this discussion may proceed in a qualitative or 

quantitative manner. 

 

 As a qualitative example, when this work began, MPO staff indicated that they were 

interested in knowing how DVs might affect parking.  Because the parking-related 

scenario had not been developed at the time the MPO expressed an interest, the 

research team put together an outreach exercise showing the degree to which parking 

might be affected if DVs led to a doubling of all trips.  Despite this model input 

(doubling all trips) being different from a later model input (doubling only commute 

trips), the participants in the outreach exercise were able to provide areas of concern 

that were later used to refine model scenarios. 

 

 As a quantitative example, uncertainty in the utility function did not seem to affect the 

results dramatically provided the model was executed in a consistent manner.  For 

example, if one asks “so if driverless vehicles eliminate waiting time for transit and 

reduce the walk time as well, what is the impact?” then the answers based on the 

doubly constrained model are either (1) DVs could increase transit’s mode share by 

3.10% (e.g., raising mode share from 0.26% to 3.36% as shown for Scenario 3a), or, 

(2) DVs could increase transit’s mode share by 2.97% (e.g., raising mode share from 

0.39% to 3.36% as shown when the original utility functions were used for Scenario 

3).  A similar pattern is noted for the singly constrained gravity model:  DVs could 

increase transit’s mode share by either 2.59% or 2.71%, depending on whether the 

utility function includes the “100” multiplier for local bus.  In sum, based on the 

model, it appears that DVs have the potential to raise transit’s mode share by about 
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three percentage points under a scenario where the waiting time is eliminated and the 

access time is replaced by a DV which in turn has a 35% reduction in discomfort 

compared to driving to the stop in a conventional vehicle.   

 

2. Some, but not all, policy-related questions can be examined by the regional model, and those 

that can be examined have varying levels of difficulty.   

 

While some issues are not easily addressed with the model (e.g., curbside access 

management), other macroscopic questions (e.g., the impact of DVs affecting capacity) are 

feasible within the modeling structure.  Then, the effort required to implement the issues that 

are feasible will vary (meaning that one can start with the simplest changes first.)  For 

example, only a few person-hours were required to modify the capacity in the lookup table, 

with most of that time being used for conversions between the various database formats.  By 

contrast, knowledge of the proprietary scripting language was necessary in order to increase 

trips for the population age 65+, and both scripting and calibration procedures were required 

to develop an appropriate singly constrained gravity model. 

 

3. The regional model may be used to prioritize areas of concern to local stakeholders.   

 

For this region in particular, incorporation of DVs yielded the following observations in 

response to concerns identified by VAMPO attendees. 

 

 The model suggests that if parking is not needed, there is substantial land development 

opportunity in downtown areas.  Scenario 2d suggests that parking garages and lots in the 

downtown area, not including street parking, have roughly 3.4 million square feet of 

redevelopment potential in the downtown area—and the model suggests that the existing 

transportation network may be able to accommodate this development. 

 

 Concerns about the transition period during which DVs might result in a reduction in 

capacity are justified.  VHT was estimated to increase by 45% for the doubly constrained 

gravity model.  By contrast, the model showed that another potential concern—the 

impact of additional travel by persons who had not had access to a vehicle—had a far less 

detrimental impact on performance:  VHT was estimated to increase by only about 1%.   

 

 The impact on other modes is not substantial.  Under the best of conditions, DVs can 

modestly increase transit’s mode share from a current value of roughly one quarter of one 

percent to over 3%.  With the transit mode share in the model being relatively low, the 

mode share appeared unlikely to drop substantially, however, a competing scenario 

where DVs offer increased comfort and hence willingness to travel could reduce 

nonmotorized mode share by about a quarter of a percentage point.   

 

 The impact of DVs being shared versus not shared is substantial.  Considering the 

commute trip (e.g., HBW purpose) only, if DVs are not shared, then for the doubly 

constrained gravity model VMT increases by 12.02%, whereas sharing of DVs increases 

VMT by between 2.33% and 6.51% depending on whether a moderate degree of 

matching occurs (e.g., the termination of person 1’s trip and the origin of person 2’s trip 
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is a few TAZs apart) or a low degree of matching occurs (e.g., the driverless vehicle must 

traverse many zones).  A high degree of matching among shared DVs would increase 

VMT by only one half a percentage point. 

 

 If vehicle types do not change, emissions may increase but the increases are higher for 

non-shared DVs than they are for the case of induced travel by persons who do not have 

access to a vehicle. The worst-case scenario of a doubling of vehicle trips increases NOx 

by 37.3%, whereas an increase in persons who do not presently have access to a vehicle 

increases NOx by 1.5%. 

 

4. Socioeconomic parameters—population and employment—continue to be of critical 

importance for the model.   

 

Of all the results presented here, the most dramatic change in absolute percentages resulted 

from a population and employment increase of 100%:  Scenario 5d showed that VMT and 

VHT increased by 39%-40% and 102%-116%, respectively. 

 

5. The aggregate performance measures may mask important distinctions in more detailed 

performance measures. 

 

The researchers had initially expected to focus on three aggregate measures of performance:  

VHT, VMT, and MTT.  However, for some scenarios, differences in these measures were 

very slight—yet the scenario demonstrated an impact in other areas.  Notably, for example, 

while the transit-favorable scenario (3a) showed a drop of about 0.20% in VMT or 0.37% in 

VHT, the mode shift—an increase in transit’s mode share from 0.26% to 3.36%--was far 

more dramatic.  Other modal shifts were also of interest:  in Scenario 3b, which asked an 

opposite question of Scenario 3a (what if the increased attractiveness of DVs led them to take 

market share from transit), while the number of transit trips decreased slightly, the number of 

nonmotorized trips decreased by about 20 times that amount. 

 

 

BENEFITS AND IMPLEMENTATION 

 

The direction taken in this report differs from a strict focus on modeling: the goal was not 

to devise a demand model that captured all elements of DVs but rather one that addressed just a 

few topics of interest to local decision-makers, which in this case pertained to capacity decreases, 

parking decisions, greater access for a subset of the population with limited mobility, and 

resultant impacts on emissions.  In that sense, the information in Tables 18-23 (for the five 

scenarios) suggest that the most productive steps for regions with limited budgets and staff to 

take in considering DVs might be to identify a few policy concerns and then look at simple 

changes to the model that can provide insights into those concerns.  To implement these steps, 

the recommendation is to provide guidance in the appropriate modeling guidance document 

when it is updated as shown in the Recommendations. 
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Appendix A.  Excerpt of Material Provided to VAMPO Attendees a 

a
 The alignment of the questions shown to the right as been altered slightly to enhance their readability in this report  
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Figures 1-14 are available from the authors.  Figures 13-14 are shown as Figure 1 in this report. 
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Appendix B.  Derivation of Socioeconomic Data for Persons Age 65+ (Scenario 5a) 

 

Estimation of Persons Age 65+ By Zone 

 

Zmud et al. (2016) indicate that age is one factor that influences the ability to drive, 

noting that starting at age 50, the proportion of persons who no longer drive increases as a 

function of aging.  Accordingly, the researchers sought to obtain an estimate of the number of 

persons age 65+ for each transportation analysis zone (TAZ), where the estimate would be 

consistent with the projection of total population used in the base 2040 travel demand model.   

The methodology consisted of three main steps:  obtain current proportions of persons age 65+ in 

each Census block group, align Census geography with travel demand model geography, and 

finally forecast the 2040 population age 65+ by zone. 

 

Obtain Current Proportion of Persons Age 65+ in Each Census Block Group 

 

The first step was to obtain current populations over persons age 65+ by census block 

group from the most recent five year data set available (U.S. Census Bureau, 2016).  For each 

census block group, the percentage of persons age 65+ was determined by summing the male and 

female persons in the six age categories for age 65+ (e.g., age 65-66, age 67-69, and so forth) 

and dividing by the total population of the block group.  This method provided an average 

percentage of persons age 65+ by Census block group. 

 

Align Census Geography with Travel Demand Model Geography 

 

Although the effort described in modification 6 (Figure 6) comprised most of the work 

required to align the zones from the travel demand model and those from the U.S. Census 

(2015a), some additional processing was also needed in order to overlay the zones from the 

travel demand model with the Census block groups.  The general approach was to use the 

“Feature to Point” tool in ArcGIS which in this particular case generated a centroid for each 

transportation analysis zone. Then, the zones were reviewed for errors; for example, in a few 

cases the centroid might be outside of an irregular shaped zone, and in other cases, there were 

sliver polygons that had resulted from the geoprocessing. Finally, the centroid of each 

transportation analysis zone (a point feature) could be easily associated with a census block 

group (a polygon) such that each zone had a percentage of persons age 65+. 

 

Forecast the 2040 Population Age 65+ by Zone 

 

For the third step, the proportion of persons age 65+ is not expected to remain constant.  

For Charlottesville and Albemarle as a whole, the number of persons age 65+ based on 2015 data 

is 22,523 (out of a total population of 152,300)—that is, about 14.8% of the population is age 

65+ at present (U.S. Census Bureau, 2015b).  For year 2040, this proportion is forecast to rise to 

19.5%--that is, with a total population forecast of 203,359, the forecast population age 65+ is 

39,656 (Weldon Cooper Center for Public Service, 2012).  Accordingly, the percentage 

population for each zone that were computed based on present-day populations were all 

increased by the ratio of 19.5%/14.8% = 1.32.  Finally, the modified percentages were multiplied 

by the number of people in each zone in 2040 in order to obtain a forecast of persons age 65+ in 
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each zone.  For example, Figure B1 shows how a forecast value of 274 persons age 65+ was 

obtained for transportation analysis zone 161:  the present day percentage is 56% (which should 

increase by a factor of 1.32 to 74%), and given that the 2040 total population of that zone is 369, 

one expects the number of persons age 65+ to be 74% of 369 which is 274.  

 

 

 

Entity Quantity Value 

Census 

block group  

Total population 2015 975 

Persons age 65+ (2015) 549 

Percent persons age 65+ 

(2015) 
56% 

Forecast increase in 

percentage (2040) 
132% 

Zone   Total population (2040) 369 

161 
Percent persons age 65+ 

(2040) 
74% 

  Persons age 65+ (2040) 274 

Figure B1.  Computation of Persons Age 65+ in Transportation Analysis Zone 161, Situated Inside Census 

Block Group 510030110002 

 

Estimation of Extra Trips by Persons Age 65+ 

 

The literature (Truong, 2017; Zmud et al., 2016) suggests that with driverless vehicles, 

persons who currently cannot drive due to age might take advantage of such vehicles, leading to 

an increase in trips.  Three different approaches using 2040 population forecasts for persons age 

65+ in Charlottesville and Albemarle (Weldon Cooper Center for Public Service, 2012) suggest 

that this increase in trips could be 12.9%, 14.4%, or 18.6%.  For this scenario, an average value 

of 15.3% has been used for two trip purposes—home-based other and non-home based. 

 

Derivation of the Percentages of 14.4% and 18.6% 

 

One approach is to consider how driverless vehicles might affect travel is to compare 

licensure rates by age group.  Calculations specific to Virginia reported in Miller et al. (2015) 

indicated that as of 2012, approximately 82% of persons age 65+ had a driver’s license.  If one 

assumed that the remaining persons age 65+ without a driver’s license would use driverless 

vehicles, and if one further assumed that trip characteristics for such individuals were similar to 

that of other drivers, then one might expect an 18% increase in trips.  A variation in this 

approach is to consider national (not Virginia specific) rates of licensure for specific age groups 

reported by Zmud et al. (2016), which are 91.4% (for persons age 60-69), 83.0% (for persons age 

70-79), and 61.7% (age 80+).  If it is assumed that the rate of licensure for persons age 65-69 is 

the same as that for persons age 60-64 (e.g., 91.4%), then a weighted average for the 

Charlottesville-Albemarle region for 2040 would be a 23% increase in trips.  (That is, in 2040, 

among all the persons age 65+, the distribution is expected to be distributed as follows:  a 

proportion of 0.21 is forecast for age 65-69, a proportion of 0.42 is forecast for age 70-79, and a 

proportion of 0.37 are forecast to be 80+.  A weighted average would thus be 
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91.4%*(0.21)+83.0%*(0.42)+61.7%*(0.37) = 76.8% of such individuals having a driver’s 

license, meaning that 23.2% of such individuals would not have a license. 

 

However, both estimates—the 18% figure and the 23.2% figure—are possibly high given 

that they presume all persons without a driver’s license would like to travel and that persons age 

65+ take the same number of trips as younger persons.  Data from the 2009 National Household 

Travel Survey were used by Lynott and Figueiredo (2011) suggest that whereas persons age 16-

49 average 4.0 trips per day, persons age 65+ average 3.2 trips per day—a 20% lower figure.  

Reducing the aforementioned averages by 20% suggests an increase in trips for persons age 65+ 

of 14.4% and 18.8%, respectively. 

 

Derivation of the Percentage of 12.9% 

 

A lower estimate is available from Truong (2017), who suggested that autonomous 

vehicles would increase the number of trips by 5.13% (for persons age 65-74) and by 18.48% (by 

persons age 65+).  (As is the case with the aforementioned calculations, Truong et al. [2017] 

considers age effects on licensure [which is influenced by the presence of disabilities] and trip 

generation; in addition, Truong et al. [2017] considers modal shifts and auto occupancy rates.)  

In 2040, the number of persons in these age groups are not expected to be identical; for example, 

in the Charlottesville/Albemarle region, the number of persons age 65-74 is forecast to be 16,704 

(about 42% of the total population age 65+) and the number of persons age 75+ is forecast to be 

22,950 (about 58% of the total population age 65+).  Accordingly, if the results of Truong (2017) 

were to be applicable for the Charlottesville/Albemarle region, one would expect the aggregate 

number of trips by persons age 65+ to increase by a weighted average of 5.13%(0.42) + 

18.48%(0.58) or about 12.9%. 

 

Other Potential Percentages Not Used Here 

 

To be clear, these figures are of course variable.  It is possible, for example, that one 

could argue that the 20% difference in trips for persons age 65+ and persons age 16-49 reported 

by Lynott and Figueiredo (2011) is strikingly similar to the proportion of trips nationally that are 

usually attributed to the HBW trip purpose of 15% (Cambridge Systematics, Inc., et al., 2012).  

Accordingly, it might be appropriate to increase the 15.3% figure used in these scenarios by a 

factor of roughly 15% (e.g., to a value of 17.6%) with the idea that it would only be applicable to 

the non-work trips (e.g., HBO and NHB).  That said, the use of the 15.3% estimate appears to be 

a reasonable order of magnitude approximation for determining the impact of trips generated by 

persons age 65+.  Accordingly, the 15.3% increase in HBO and NHB trips is used to generate 

scenarios 5b (doubly constrained) and 5f (singly constrained). 
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Appendix C.  Key Scripts Used in the Scenarios 
 

Script for Implementing a Singly Constrained Gravity Model (all Scenarios) 
 
;The researchers that Peng Xiao and Xin Wang for their help with this script! 

 

RUN PGM=MATRIX 

PRNFILE="{CATALOG_DIR}\OUTPUT\{SCENARIO_FULLNAME}\Logs\PDDST00A.PRN"  

 

FILEI MATI[2] = "{CATALOG_DIR}\OUTPUT\{SCENARIO_FULLNAME}\FFTIME.MAT" 

FILEI ZDATI[1] = "{CATALOG_DIR}\Output\{Scenario_FullName}\TGEN_PA.DBF" 

FILEO MATO[1] = "{CATALOG_DIR}\Output\{Scenario_fullname}\InitialTdist.MAT", mo=1-5, 

name=HBW,HBO,NHB,HBU,HDORMU 

FILEO MATO[2] = "{CATALOG_DIR}\Output\{Scenario_fullname}\EITdist.MAT", 

 MO=6, NAME=IX 

 

PARAMETERS 

   zones = {Total Zones} 

   maxiters ={AITERS}  

   ARRAY HBWpersonTrips = ZONES 

   ARRAY HBOpersonTrips = ZONES 

   ARRAY NHBpersonTrips = ZONES 

   ARRAY HBUpersonTrips = ZONES 

   ARRAY HDORMUpersonTrips = ZONES 

   ARRAY IXpersonTrips=ZONES 

 

JLOOP 

      HBWpersonTrips[I]=ZI.1.HBW_P 

      HBOpersonTrips[I]=ZI.1.HBO_P 

      NHBpersonTrips[I]=zi.1.nhb_p 

      HBUpersonTrips[I]=zi.1.HBUP 

      HDORMUpersonTrips[I]=zi.1.HDORMUP 

      IXpersonTrips[I]=zi.1.IX_P 

ENDJLOOP 

 

mw[30]=MI.2.FFTIME 

mw[21]=MI.2.FFTIME*(-0.04259)  ;Can replace with -0.08001 

mw[22]=MI.2.FFTIME*(-0.09881)  ;Can replace with -0.18959 

mw[23]=MI.2.FFTIME*(-0.18995)  ;Can replace with -0.22559 

mw[24]=MI.2.FFTIME*(-0.10779)  ;Can replace with -0.20830 

mw[25]=MI.2.FFTIME*(-0.10779)  ;Can replace with -0.20830 

mw[26]=MI.2.FFTIME*(-0.10516)  ;Can replace with -0.20004 

 

XCHOICE, 

ALTERNATIVES=ALL, 

DEMAND=HBWpersonTrips[I], 

UTILITIESMW=21, 

ODEMANDMW=1, 

DESTSPLIT=TOTAL All, INCLUDE=1-{Internal Zones}, 

STARTMW=99 

FREQUENCY VALUEMW=1 BASEMW=30, RANGE=0-50 

 

XCHOICE, 

ALTERNATIVES=ALL, 

DEMAND=HBOpersonTrips[I], 
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UTILITIESMW=22, 

ODEMANDMW=2, 

DESTSPLIT=TOTAL All, INCLUDE=1-{Internal Zones}, 

STARTMW=99 

FREQUENCY VALUEMW=2 BASEMW=30, RANGE=0-50 

 

XCHOICE, 

ALTERNATIVES=ALL, 

DEMAND=NHBpersonTrips[I], 

UTILITIESMW=23, 

ODEMANDMW=3, 

DESTSPLIT=TOTAL All, INCLUDE=1-{Internal Zones}, 

STARTMW=99 

FREQUENCY VALUEMW=3 BASEMW=30, RANGE=0-50 

 

XCHOICE, 

ALTERNATIVES=ALL, 

DEMAND=HBUpersonTrips[I], 

UTILITIESMW=24, 

ODEMANDMW=4, 

DESTSPLIT=TOTAL All, INCLUDE=1-{Internal Zones}, 

STARTMW=99 

FREQUENCY VALUEMW=4 BASEMW=30, RANGE=0-50 

 

XCHOICE, 

ALTERNATIVES=ALL, 

DEMAND=HDORMUpersonTrips[I], 

UTILITIESMW=25, 

ODEMANDMW=5, 

DESTSPLIT=TOTAL All, INCLUDE=1-{Internal Zones}, 

STARTMW=99 

FREQUENCY VALUEMW=5 BASEMW=30, RANGE=0-50 

 

XCHOICE, 

ALTERNATIVES=All, 

DEMAND=IXpersonTrips[I], 

UTILITIESMW=26, 

ODEMANDMW=6, 

;DESTSPLIT=TOTAL All, INCLUDE=1-{Internal Zones}, EXCLUDE = 1-265, 

DESTSPLIT=TOTAL All, EXCLUDE = 1-265, 

STARTMW=99 

FREQUENCY VALUEMW=6 BASEMW=30, RANGE=0-50 

 

 

ENDRUN 

 

Script for Obtaining a Congested Trip Length Frequency Distribution   

 

The lines shown here yield the average trip length as required by the file CVMAT00A.S 

in sequence 13. 

 
RUN PGM=MATRIX PRNFILE="{CATALOG_DIR}\Output\{Scenario_FullName}\totaltrip length.prn" 

MSG='Average trip Length' 
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FILEO MATO[1] = "{CATALOG_DIR}\Output\{Scenario_FullName}\Total triplength.MAT", mo=3 

name ='total trip length' 

FILEI MATI[1] = 

"{CATALOG_DIR}\OUTPUT\{SCENARIO_FULLNAME}\FBCONGTIMESOV{Year}.MAT" 

mw[1]=mi.1.3 

FILEI MATI[2] = 

"{CATALOG_DIR}\OUTPUT\{SCENARIO_FULLNAME}\CVFINALVEHTRIPS{Year}.DAT" 

mw[2]=mi.2.5 

mw[3]=mw[1]*mw[2] 

FREQUENCY VALUEMW=2  BASEMW=1,  RANGE=1-100  

ENDRUN 

 

 

Script for Implementing Conversion of Parking Lots to Other Uses (Scenario 2d) 
 

;Notice that the file Landuse_2040A.dbf is ZI.2 in the first script but ZI.3 in the second script. 

 

;In the file APPLICATIONS\TGMAT00F.S 

 

HBUP = 2.996*ZI.2.OffC_Stu*{HBO-TF}+ZI.2.ParkPLo*0.07; was 0.10  

HBUA = 1.375*ZI.2.Total_park*{HBO-TF}+ZI.2.ParkPLo*0.07; was 0.00  

 

;In the file APPLICATIONS\TGGEN00A.S 

pix=0.331*zi.3.HH + 0.724*(zi.3.TOTEMP + zi.3.EMPLOYEE_P)+ZI.3.ParkPLo*0.40 

aix=zi.4.COUNT * zi.4.IXPCT+ZI.3.ParkPLo*0 

; Balance attractions to productions 

 a[4]=aix*1.02112 

 

  if(zi.2.atype=1-2) 

 

  phbw=_rates_city(1,1)* zi.1.h1V0+ _rates_city(1,2)* zi.1.H1V1 + _rates_city(1,3)* zi.1.H1V2 + 

       _rates_city(1,4)* zi.1.H2V0 + _rates_city(1,5)* zi.1.H2V1 + _rates_city(1,6)* zi.1.H2V2 +  

       _rates_city(1,7)* zi.1.H3V0 + _rates_city(1,8)* zi.1.H3V1 + _rates_city(1,9)* zi.1.H3V2 + 

       _rates_city(1,10)* zi.1.H4V0 + _rates_city(1,11)* zi.1.H4V1 + _rates_city(1,12)* zi.1.H4V2 

+ZI.3.ParkPLo*0.05 

 

  phbo=_rates_city(2,1)* zi.1.h1V0+ _rates_city(2,2)* zi.1.H1V1 + _rates_city(2,3)* zi.1.H1V2 + 

       _rates_city(2,4)* zi.1.H2V0 + _rates_city(2,5)* zi.1.H2V1 + _rates_city(2,6)* zi.1.H2V2 + 

       _rates_city(2,7)* zi.1.H3V0 + _rates_city(2,8)* zi.1.H3V1 + _rates_city(2,9)* zi.1.H3V2 + 

       _rates_city(2,10)* zi.1.H4V0 + _rates_city(2,11)* zi.1.H4V1 + _rates_city(2,12)* zi.1.H4V2 

+ZI.3.ParkPLo*0.16 

 

  pnhb=_rates_city(3,1)* zi.1.h1V0+ _rates_city(3,2)* zi.1.H1V1 + _rates_city(3,3)* zi.1.H1V2 + 

       _rates_city(3,4)* zi.1.H2V0 + _rates_city(3,5)* zi.1.H2V1 + _rates_city(3,6)* zi.1.H2V2 + 

       _rates_city(3,7)* zi.1.H3V0 + _rates_city(3,8)* zi.1.H3V1 + _rates_city(3,9)* zi.1.H3V2 + 

       _rates_city(3,10)* zi.1.H4V0 + _rates_city(3,11)* zi.1.H4V1 + _rates_city(3,12)* zi.1.H4V2 

+ZI.3.ParkPLo*0.32 

 

;--------------------------------------------------------------------- 

; 

  if(i=55,58-62,68,80-92,163,165-169,251-256,258-260)                 ;  Attractions for UVA 

    ahbw=ATTRRATES(3,1)*zi.1.temp+ZI.3.ParkPLo*0.08 

    ahbo=ATTRRATES(1,5)*zi.1.ret + ATTRRATES(2,5)*nonretail + 

ATTRRATES(4,5)*zi.1.hhx+ZI.3.ParkPLo*0.13 
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    anhb=ATTRRATES(1,9)*zi.1.ret + ATTRRATES(2,9)*nonretail + 

ATTRRATES(4,9)*zi.1.hhx+ZI.3.ParkPLo*0.32 

    flag=1 

   ;print list=' UVA ',i(6),j(6),ahbw(8.2),zi.1.temp(6),ahbo(9.2),zi.1.ret(6),nonretail(6),zi.1.hhx(6) 

 

 

  ELSEif(zi.2.atype=1 & flag=0)                                       ;  Attractions for CBD 

    ahbw=ATTRRATES(3,2)*zi.1.temp+ZI.3.ParkPLo*0.08 

    ahbo=ATTRRATES(1,6)*zi.1.ret + ATTRRATES(2,6)*nonretail + 

ATTRRATES(4,6)*zi.1.hhx+ZI.3.ParkPLo*0.13 

    anhb=ATTRRATES(1,10)*zi.1.ret + ATTRRATES(2,10)*nonretail + 

ATTRRATES(4,10)*zi.1.hhx+ZI.3.ParkPLo*0.32 

 

 

  elseif(zi.2.atype=2-5 & flag=0)                            ;  Attractions for Urban 

    ahbw=ATTRRATES(3,3)*zi.1.temp+ZI.3.ParkPLo*0.08 

    ahbo=ATTRRATES(1,7)*zi.1.ret + ATTRRATES(2,7)*nonretail + ATTRRATES(4,7)*zi.1.hhx + 

ATTRRATES(5,7)*zi.1.school+ZI.3.ParkPLo*0.13 

    anhb=ATTRRATES(1,11)*zi.1.ret + ATTRRATES(2,11)*nonretail + ATTRRATES(4,11)*zi.1.hhx + 

ATTRRATES(5,11)*zi.1.school+ZI.3.ParkPLo*0.32 

 

 

Script for Increasing NHB Trips to Simulate ZOV Trips (Scenarios 4d and 4e) 

 

In the file TGGEN00A.S a multiplier is used to increase NHB trips.  For example, for the 

doubly constrained case with five regions (e.g., Scenario 4d), a multiplier of 1.685 was needed.  

Thus, the script is modified in two places (one for the city zones and one for the county zones), 

as shown below. 

 
pnhb=(_rates_city(3,1)* zi.1.h1V0+ _rates_city(3,2)* zi.1.H1V1 + _rates_city(3,3)* zi.1.H1V2 + 

_rates_city(3,4)* zi.1.H2V0 + _rates_city(3,5)* zi.1.H2V1 + _rates_city(3,6)* zi.1.H2V2 + 

_rates_city(3,7)* zi.1.H3V0 + _rates_city(3,8)* zi.1.H3V1 + _rates_city(3,9)* zi.1.H3V2 + 

_rates_city(3,10)* zi.1.H4V0 + _rates_city(3,11)* zi.1.H4V1 + _rates_city(3,12)* zi.1.H4V2)*1.685 

 

pnhb=(_rates_county(3,1)* zi.1.h1V0+ _rates_county(3,2)* zi.1.h1V1+ _rates_county(3,3)* zi.1.H1V2 + 

_rates_county(3,4)* zi.1.H2V0 + _rates_county(3,5)* zi.1.H2V1 + _rates_county(3,6)* zi.1.H2V2 + 

_rates_county(3,7)* zi.1.H3V0 + _rates_county(3,8)* zi.1.H3V1 + _rates_county(3,9)* zi.1.H3V2 + 

_rates_county(3,10)* zi.1.H4V0 + _rates_county(3,11)* zi.1.H4V1 +  

_rates_county(3,12)* zi.1.H4V2+ZI.3)*1.685 

 

 

Scripts for Implementing More Trips by Persons Age 65+, 13-17, and 20-64 (Scenario 5) 

Figure C1 shows the modification to the script for additional trips by persons age 65+, 

where for each zone the number of HBO and NHB trips is increased by percentage of persons 

age 65+ (zi.3.percent) multiplied by 15.3%.  Suppose, for example, a zone generated 100 HBO 

trips and had 50% of its population age 65+.  Figure C1 would increase the number of HBO trips 

by a factor of (0.50*0.153+1) = 1.0765. 
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Figure C1.   Modification to the Trip Generation Script for Scenario 5a, where HBW and NHB Trips are 

Increased by 15.3% to Account for Increased Trips by Travelers Age 65+. 

 

 Scenarios 5b and 5c followed a similar approach.  For example, in Scenario 5c, HBW 

trips were increased by a factor of 3.67% mulitiplied by the percentage of persons age 18-64 

(variable zi.3.Percent186).  Further, Scenario 5c also increased non-work trips (e.g., HBO and 

NHB), for all three age groups, where the percentage of persons age 65+, age 13-17, and age 18-

64 are represented by the variables zi.3.Percent65, zi.3.PercentTee, and zi.3.Percent186, 

respectively. 
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Figure C2.  Modification to the Trip Generation Script for Scenario 5c. 

 

Script for Implementing a Congested Travel Time Increase of 35% 

 
;The multiplier 0.125 leads alters the congested travel time from 22.08 to 29.81, an increase of 35%. 

 

mw[21]=MI.2.FFTIME*(-0.08001*0.125) 

mw[22]=MI.2.FFTIME*(-0.18959*0.125) 

mw[23]=MI.2.FFTIME*(-0.22559*0.125) 

mw[24]=MI.2.FFTIME*(-0.2083*0.125) 

mw[25]=MI.2.FFTIME*(-0.2083*0.125) 

mw[26]=MI.2.FFTIME*(-0.20004*0.125) 

 

Script for Implementing the Combined Scenario 
 

This portion of the script converts parking lots in the CBD to other land uses (with the ParkPLo variable) and 

increases trips for persons without access to a vehicle (hence the variables Percent186,PercentTee, and Percent65) 

in the TGGEN00A.S file. 



83 
 

 

 if(zi.2.atype=1-2) 

   

  phbw=((_rates_city(1,1)* zi.1.h1V0+ _rates_city(1,2)* zi.1.H1V1 + _rates_city(1,3)* zi.1.H1V2 + 

       _rates_city(1,4)* zi.1.H2V0 + _rates_city(1,5)* zi.1.H2V1 + _rates_city(1,6)* zi.1.H2V2 +  

       _rates_city(1,7)* zi.1.H3V0 + _rates_city(1,8)* zi.1.H3V1 + _rates_city(1,9)* zi.1.H3V2 + 

       _rates_city(1,10)* zi.1.H4V0 + _rates_city(1,11)* zi.1.H4V1 + _rates_city(1,12)* 

zi.1.H4V2+ZI.3.ParkPLo*0.05*0.248)*(zi.3.Percent186*0.0367*0.248+1))*1.248 

 

  phbo=(_rates_city(2,1)* zi.1.h1V0+ _rates_city(2,2)* zi.1.H1V1 + _rates_city(2,3)* zi.1.H1V2 + 

       _rates_city(2,4)* zi.1.H2V0 + _rates_city(2,5)* zi.1.H2V1 + _rates_city(2,6)* zi.1.H2V2 + 

       _rates_city(2,7)* zi.1.H3V0 + _rates_city(2,8)* zi.1.H3V1 + _rates_city(2,9)* zi.1.H3V2 + 

       _rates_city(2,10)* zi.1.H4V0 + _rates_city(2,11)* zi.1.H4V1 + 

_rates_city(2,12)*zi.1.H4V2+ZI.3.ParkPLo*0.16*0.248)*(zi.3.Percent65*0.153*0.248+zi.3.PercentTee*0.1112*0.2

48+zi.3.Percent186*0.0367*0.248+1) 

 

  pnhb=(_rates_city(3,1)* zi.1.h1V0+ _rates_city(3,2)* zi.1.H1V1 + _rates_city(3,3)* zi.1.H1V2 + 

       _rates_city(3,4)* zi.1.H2V0 + _rates_city(3,5)* zi.1.H2V1 + _rates_city(3,6)* zi.1.H2V2 + 

       _rates_city(3,7)* zi.1.H3V0 + _rates_city(3,8)* zi.1.H3V1 + _rates_city(3,9)* zi.1.H3V2 + 

       _rates_city(3,10)* zi.1.H4V0 + _rates_city(3,11)* zi.1.H4V1 + 

_rates_city(3,12)*zi.1.H4V2+ZI.3.ParkPLo*0.32*0.248)*(zi.3.Percent65*0.153*0.248+zi.3.PercentTee*0.1112*0.2

48+zi.3.Percent186*0.0367*0.248+1) 

 
else   ; Calculate Productions for County Zones 

  phbw=((_rates_county(1,1)* zi.1.h1V0+ _rates_county(1,2)* zi.1.H1V1 + _rates_county(1,3)* zi.1.H1V2 + 

       _rates_county(1,4)* zi.1.H2V0 + _rates_county(1,5)* zi.1.H2V1 + _rates_county(1,6)* zi.1.H2V2 + 

       _rates_county(1,7)* zi.1.H3V0 + _rates_county(1,8)* zi.1.H3V1 + _rates_county(1,9)* zi.1.H3V2 + 

       _rates_county(1,10)* zi.1.H4V0 + _rates_county(1,11)* zi.1.H4V1 + _rates_county(1,12)* 

zi.1.H4V2)*(zi.3.Percent186*0.0367*0.248+1)) *1.248 

 

  phbo=(_rates_county(2,1)* zi.1.h1V0+ _rates_county(2,2)* zi.1.H1V1 + _rates_county(2,3)* zi.1.H1V2 + 

       _rates_county(2,4)* zi.1.H2V0 + _rates_county(2,5)* zi.1.H2V1 + _rates_county(2,6)* zi.1.H2V2 + 

       _rates_county(2,7)* zi.1.H3V0 + _rates_county(2,8)* zi.1.H3V1 + _rates_county(2,9)* zi.1.H3V2 + 

       _rates_county(2,10)* zi.1.H4V0 + _rates_county(2,11)* zi.1.H4V1 + _rates_county(2,12)* 

zi.1.H4V2)*(zi.3.Percent65*0.153*0.248+zi.3.PercentTee*0.1112*0.248+zi.3.Percent186*0.0367*0.248+1) 

 

 

  pnhb=(_rates_county(3,1)* zi.1.h1V0+ _rates_county(3,2)* zi.1.h1V1+ _rates_county(3,3)* zi.1.H1V2 + 

       _rates_county(3,4)* zi.1.H2V0 + _rates_county(3,5)* zi.1.H2V1 + _rates_county(3,6)* zi.1.H2V2 + 

       _rates_county(3,7)* zi.1.H3V0 + _rates_county(3,8)* zi.1.H3V1 + _rates_county(3,9)* zi.1.H3V2 + 

       _rates_county(3,10)* zi.1.H4V0 + _rates_county(3,11)* zi.1.H4V1 + _rates_county(3,12)* 

zi.1.H4V2)*(zi.3.Percent65*0.153*0.248+zi.3.PercentTee*0.1112*0.248+zi.3.Percent186*0.0367*0.248+1) 

 

 
;--------------------------------------------------------------------- 

; 

  if(i=55,58-62,68,80-92,163,165-169,251-256,258-260)                 ;  Attractions for UVA 

    ahbw=ATTRRATES(3,1)*zi.1.temp+ZI.3.ParkPLo*0.08 

 

    ahbo=ATTRRATES(1,5)*zi.1.ret + ATTRRATES(2,5)*nonretail + 

ATTRRATES(4,5)*zi.1.hhx+ZI.3.ParkPLo*0.13*0.248 

    anhb=ATTRRATES(1,9)*zi.1.ret + ATTRRATES(2,9)*nonretail + 

ATTRRATES(4,9)*zi.1.hhx+ZI.3.ParkPLo*0.32*0.248 

 

    flag=1 
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   ;print list=' UVA ',i(6),j(6),ahbw(8.2),zi.1.temp(6),ahbo(9.2),zi.1.ret(6),nonretail(6),zi.1.hhx(6) 

 

 

  ELSEif(zi.2.atype=1 & flag=0)                                       ;  Attractions for CBD 

    ahbw=ATTRRATES(3,2)*zi.1.temp+ZI.3.ParkPLo*0.08*0.248 

    ahbo=ATTRRATES(1,6)*zi.1.ret + ATTRRATES(2,6)*nonretail + 

ATTRRATES(4,6)*zi.1.hhx+ZI.3.ParkPLo*0.13*0.248 

    anhb=ATTRRATES(1,10)*zi.1.ret + ATTRRATES(2,10)*nonretail + 

ATTRRATES(4,10)*zi.1.hhx+ZI.3.ParkPLo*0.32*0.248 

 

 

  elseif(zi.2.atype=2-5 & flag=0)                            ;  Attractions for Urban 

    ahbw=ATTRRATES(3,3)*zi.1.temp+ZI.3.ParkPLo*0.08*0.248 

    ahbo=ATTRRATES(1,7)*zi.1.ret + ATTRRATES(2,7)*nonretail + ATTRRATES(4,7)*zi.1.hhx + 

ATTRRATES(5,7)*zi.1.school+ZI.3.ParkPLo*0.13*0.248 

    anhb=ATTRRATES(1,11)*zi.1.ret + ATTRRATES(2,11)*nonretail + ATTRRATES(4,11)*zi.1.hhx + 

ATTRRATES(5,11)*zi.1.school+ZI.3.ParkPLo*0.32*0.248 

 

 
;---------------------------- 

; Calculate External Trips  

;---------------------------- 

pix=0.331*zi.3.HH + 0.724*(zi.3.TOTEMP + zi.3.EMPLOYEE_P)+ZI.3.ParkPLo*0.40*0.248                  ; 

Production for external trips (internal zone --> external zone) 

aix=zi.4.COUNT * zi.4.IXPCT+ZI.3.ParkPLo*0.0000*0.248                                               ; Attraction for external 

trips (external zone --> internal zone) 

 

 
; Balance attractions to productions 

  p[1]=phbw*1.0 

  p[2]=phbo*1.0 

  p[3]=pnhb 

  p[4]=pix 

  a[1]=ahbw  

  a[2]=ahbo 

  a[3]=anhb 

  a[4]=aix*(1+0.02112*0.248) 

 

 
These changes occur in TGMAT00F.S 

 

HBUP = 2.996*ZI.2.OffC_Stu*{HBO-TF}+ZI.2.ParkPLo*0.07*0.248     ; home-based university PRODS from off-

campus (students); old production rate = 2.996 

HBUA = 1.375*ZI.2.Total_park*{HBO-TF}+ ZI.2.ParkPLo*0.07*0.248    ; home-based university ATTRSS from 

off-campus(parking spaces); old attraction rate = 1.375 

 
This portion of the script reduces the impedance for the singly constrained gravity model.  For the doubly 

constrained gravity model, no changes are necessary in the script, although new friction factors are used. 

 

mw[30]=MI.2.FFTIME 

mw[21]=MI.2.FFTIME*(-0.08001*0.7) 

mw[22]=MI.2.FFTIME*(-0.18959*0.7) 

mw[23]=MI.2.FFTIME*(-0.22559*0.7) 

mw[24]=MI.2.FFTIME*(-0.2083*0.7) 
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mw[25]=MI.2.FFTIME*(-0.2083*0.7) 

mw[26]=MI.2.FFTIME*(-0.20004*0.7) 

 
This portion of the script is performed only for the case of no-sharing, where the number 1.248 is added in two 

places in the file TGGEN00A.S. 

 
  phbw=((_rates_city(1,1)* zi.1.h1V0+ _rates_city(1,2)* zi.1.H1V1 + _rates_city(1,3)* zi.1.H1V2 + 

       _rates_city(1,4)* zi.1.H2V0 + _rates_city(1,5)* zi.1.H2V1 + _rates_city(1,6)* zi.1.H2V2 +  

       _rates_city(1,7)* zi.1.H3V0 + _rates_city(1,8)* zi.1.H3V1 + _rates_city(1,9)* zi.1.H3V2 + 

       _rates_city(1,10)* zi.1.H4V0 + _rates_city(1,11)* zi.1.H4V1 + _rates_city(1,12)* 

zi.1.H4V2+ZI.3.ParkPLo*0.05*0.248)*(zi.3.Percent186*0.0367*0.248+1))*1.248 

 
else   ; Calculate Productions for County Zones 

  phbw=((_rates_county(1,1)* zi.1.h1V0+ _rates_county(1,2)* zi.1.H1V1 + _rates_county(1,3)* zi.1.H1V2 + 

       _rates_county(1,4)* zi.1.H2V0 + _rates_county(1,5)* zi.1.H2V1 + _rates_county(1,6)* zi.1.H2V2 + 

       _rates_county(1,7)* zi.1.H3V0 + _rates_county(1,8)* zi.1.H3V1 + _rates_county(1,9)* zi.1.H3V2 + 

       _rates_county(1,10)* zi.1.H4V0 + _rates_county(1,11)* zi.1.H4V1 + _rates_county(1,12)* 

zi.1.H4V2)*(zi.3.Percent186*0.0367*0.248+1)) *1.248 

 
This portion of the script is performed only for the case of sharing.  That is, the number 1.248 shown above in 

purple is removed.  Then, the NHB multiplier is adjusted for low matching doubly combine scenario, as follows in 

two places in  TGGEN00A.S: 

 
  if(zi.2.atype=1-2) 

   

  pnhb=((_rates_city(3,1)* zi.1.h1V0+ _rates_city(3,2)* zi.1.H1V1 + _rates_city(3,3)* zi.1.H1V2 + 

       _rates_city(3,4)* zi.1.H2V0 + _rates_city(3,5)* zi.1.H2V1 + _rates_city(3,6)* zi.1.H2V2 + 

       _rates_city(3,7)* zi.1.H3V0 + _rates_city(3,8)* zi.1.H3V1 + _rates_city(3,9)* zi.1.H3V2 + 

       _rates_city(3,10)* zi.1.H4V0 + _rates_city(3,11)* zi.1.H4V1 + 

_rates_city(3,12)*zi.1.H4V2+ZI.3.ParkPLo*0.32*0.248)*(zi.3.Percent65*0.153*0.248+zi.3.PercentTee*0.1112*0.2

48+zi.3.Percent186*0.0367*0.248+1))*1.1 

 

 

pnhb=((_rates_county(3,1)* zi.1.h1V0+ _rates_county(3,2)* zi.1.h1V1+ _rates_county(3,3)* zi.1.H1V2 + 

       _rates_county(3,4)* zi.1.H2V0 + _rates_county(3,5)* zi.1.H2V1 + _rates_county(3,6)* zi.1.H2V2 + 

       _rates_county(3,7)* zi.1.H3V0 + _rates_county(3,8)* zi.1.H3V1 + _rates_county(3,9)* zi.1.H3V2 + 

       _rates_county(3,10)* zi.1.H4V0 + _rates_county(3,11)* zi.1.H4V1 + _rates_county(3,12)* 

zi.1.H4V2)*(zi.3.Percent65*0.153*0.248+zi.3.PercentTee*0.1112*0.248+zi.3.Percent186*0.0367*0.248+1))*1.1 
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Appendix D.  Example of Validation 

 

Because they were using a model developed by others (The Corradino Group, 2009), the 

researchers sought to ensure that they had not inadvertently misunderstood the model results or 

added errors when developing scenarios.  Examples of steps necessary to understand the model 

and confirm results are shown in this Appendix. 

 

Example of Understanding the Overall Model 

 

For the base scenario, it was possible to confirm that person trips and vehicle trips from 

the model matched expected values.  In sum, Table 1 suggests that there should be 

approximately 772,132 vehicle trips after considering all seven purposes (HBW, HBO, NHB, 

HBU, HDORMU, IX/XI, and XX).  The total volumes on all centroid connectors—including 

both internal zones and external stations—summed to 1,529,438 vehicle trip ends.  As shown in 

Figure 1, recognizing that a single trip (e.g., from Zone 1 to Zone 50) takes two trip ends, the 

traffic assignment as shown in the file LoadedNet2040A_BaseValues.net reflects 1,529,438/2 = 

764,719 vehicle trips.  Further, the values were reasonable for individual zones:  for example, for 

zone 1, there are 3,539 productions and 4,557 attractions for zone 1 after balancing as shown in 

the files TGEN_PA.DBF and (for productions) InitialTdist.MAT.  One would expect that 

conversion of these to an origin-destination table would yield an average of roughly 4,048 person 

trip origins and destinations.  If 77% of such person trips became vehicle trips, one would expect 

there to be 3,177 vehicle trip origins and destinations.  A similar number is shown for zone 1 in 

the file CVFINALVEHTRIPS2040.DAT (3,280.9 vehicle trip origins and destinations) and in 

LoadedNet2040A_.net, the number of vehicle trip ends is comparable:  the single connector 

shows 3,285.82 vehicle trip ends entering zone 1 and of course the same number (3,285.82) 

vehicle trip ends leaving zone 1. 

 

The researchers used Table 1 to confirm that the results they were obtaining for the base 

case were as expected without gross errors.  For example, The Corradino Group (2009) reported 

that for the base model, after one summed productions for the five internal trip purposes (HBW, 

HBO, NHB, and students living off campus plus students living in dorms) and then divided by 

the total number of households, one obtained a trip generation rate of 9.31 trips per household.  

Performing the same type of exercise with the 2040 base case data shows 772,557 person trips 

(e.g. the sum of the first five rows of Table 1) divided by the 82,105.68 households yields 9.41 

trips per household.  It was also possible to replicate the calculations for the conversion of person 

trips to vehicle trips; for example, the 772,132 vehicle trips (see Vehicles.mat) can be derived for 

the different trip purposes.  Table 1 thus explains a bit of the sensitivity of the model; for 

example, alterations of behaviors or conditions that only affect the commuting are impacting 

only 14.9% of all person trips, after one considers those trips that pass through the area. 

 

Table 1 shows that in the aggregate, about 66% of all person trips become vehicle trips 

(e.g., there are 772,557 person trips and 510,291 vehicle trips).  These percentages for converting 

person-trips to vehicle trips vary by trip purpose:  73% (HBW), 60% (HBO), 85% (NHB), 0% 

(for on-campus university), and 100% (for internal-external).  Such percentages affect the 

scenarios.  For example, for Scenario 2d which focuses on the central business district, there is a 

relatively high percentage of internal-external and external-internal trips (37%) compared to that 
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trip purpose’s percentage for the model overall (23%).  In part for that reason, whereas about 

66% of all person trips become vehicle trips when focusing on the overall region, this percentage 

is closer to 77% for Scenario 2d.  Such an observation does not mean that the CBD automatically 

generates more vehicle trips than other areas (as one would expect the reverse in theory) but 

rather reflects the fact that for this particular model, there are a relatively large portion of 

internal-external trips.   

 

The researchers also found that execution of some scenarios twice, while increasing 

effort, was also helpful for understanding model sensitivity.  For example, in order to modify the 

socioconomic data which is stored in a .dbf format, the researchers noted that it was possible for 

decimals to be truncated (e.g., zone with 37.253 autos could be truncated to 37.0 autos) unless a 

specific modification to the the .dbf file was made.  (That modification was to make zone 66 be 

the first row in the dataset, as this particular zone had decimal values for all attributes where 

decimal values were needed.)  However, this rounding was not a substantial cause of error for 

Scenario 2d.  An explanation of the sensitivity of the model is that this rounding caused less than 

0.01% change in VMT (from 6,829,605.34 to 6,828,949.12) and VHT (from 167,101.64 to 

167,085.5), respectively.  The rounding also caused a total difference of 108 trips from the 

HBW, HBO, and NHB categories (which reflects about 0.02% of these productions), with no 

difference in HBU or HDORMU productions. 
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Table D1.  Summary of Trips for the Base Case (Doubly Constrained Gravity Model 

c
  

Quantity Purpose 

Drive 

alone 

Carpool  

(2 persons) 

Carpool 

(3+) 

Walk to 

bus 

Drive to 

bus Walk Bike File or derivation 

Abbreviation DA CP CPX WB BA WK BK 

Person 

trips 

HBW 87,460 38,115 18,694 600 4.3 4,283 4,739 Modeout.mat 

HBO 102,129 143,136 52,802 837 0.3 16,692 2,660 Modeout.mat 

NHB 145,788 42,855 9,198 35 0.0 706 1,174 Modeout.mat 

HBU 35,285 3,970 2,762 12,343 7.3 13,633 1,646 Modeout.mat 

HDORMU     4,878   15,504 10,624 Modeout.mat 

Internal person 772,557 InitialTdist.mat, TGEN_PA.DBF 

XX 
d
 20,244     ProcEXT_2040A.MAT 

IX + XI 
d
 241,609    IX_OD.MAT 

a
 

Total person 1,034,410 Internal person + XX + IX + XI 

Vehicle 

trips 

HBW 87,460 19,058 5,842 

  

4.3 

  

Divide person trips by 2 (for CP2).  

Divide person trips by 3.2 (for CP3) 

except HBO (use 3.3) 

HBO 102,129 71,568 16,000 0.3 

NHB 145,788 21,427 2,874 0.0 

HBU 35,285 1,985 863 7.3 

HDORMU   No vehicle trips 

Internal vehicle 370,662 114,038 25,580  Vehicles.mat 

XX 20,244  ProcEXT_2040A.MAT 

IX 241,609   IX_OD.MAT 
a
 

External vehicle 261,853   Vehicles.mat, ODVehTrips 2040.MAT 

All vehicle 772,132  CVFINALVEHTRIPS2040.DAT 

Trips of 

interest 

Peak transit  600 4.3  TRANSIT.MAT 

Off peak transit       18,091 7.6   TRANSIT.MAT 

Transit    18,704   TRANSIT.MAT 

Nonmotorized 

 

50,817 20,843 NONMOTOR.MAT 

Person 632,515 228,076 83,456 18,692 12 50,817 20,843 Sum person trips by mode 
b
 

a
 The file "EITdist.MAT" reflects IX and XI trips, comes from trip generation, and feeds IX_OD.MAT (with 241,585.46 rips)  

b
 The file "InitialTdist.MAT" reflects (772,732) internal person trips and is within 0.02% of the sum of HBW, HBO, NHB, HBU, and HDORMU person trips 

(772,557) shown in this table, as is the file TGEN_PA.DBF (772,724 person trips).  
c
 Base case doubly constrained gravity model with values of 6,829,605.34 (VMT), 167,101.65 (VHT), and 20.89 (MTT). 

d
 Abbreviations XX, IX, and XI denote external-external, internal-external, and external-internal trips, respectively 
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Example of Checking a Specific Scenario 
 

Efforts were made to confirm that the results obtained were not due to errors in coding 

the model.  When examining all zones and external stations for the entire model, it should be the 

case that the centroid volumes (shown as dashed lines) reflect vehicle trip ends, such that 

dividing the total centroid volume by two yields the number of vehicle trips.  For example, 

Figure 1 shows that the 360 trip ends from the centroid volumes correspond with 180 trips.  If 

one only examines centroid connectors within a particular portion of the model, such as the 

CBD, then the percent of vehicle trips that should be ascribed to the CBD will be between 50% 

and 100% of the total centroid connector volumes, depending on whether most of the CBD trips 

remain within the CBD (hence a value of 50%) or leave the CBD (a value closer to 100%).  In 

Figure 1, most CBD trips remain within the CBD, thus, the value is considerably closer to 50%.  

(That is, the centroid volumes show 230 trip ends, but since most trips remain within the CBD, a 

multiplier relatively close to 50% yields 130 trips).  The logic that underscores Figure 1 is used 

for the validation of Scenario 2d. 

 

 
Figure 1.  Origin-Destination Table and Centroid Volumes for a Simple 4 Zone System. 

 

For Scenario 2d, consider the additional 12,752 person trips that were anticipated from 

the conversion of parking lots that resulted from execution of the model for Scenario 2d.  

Because the researchers were initially surprised that these trips did not increase VMT, VHT, and 

MTT in the regional model by a substantial amount, the researchers sought to confirm that these 

trips had been incorporated into the script correctly.  For the CBD zones, it was generally the 

case that 77% of person trips became vehicle trips (with the other person trips using carpool, 

transit, and nonmotorized modes).  Accordingly, the 12,752 person trips (e.g., 12,752 

productions and 12,752 attractions for a total of 25,504 person trip ends) produced by the CBD 

should have yielded, roughly 77% of 25,504 or 19,638 vehicle trip ends.  For the base scenario, 

the vehicle trip table CVFINALVEHTRIPS2040DAT showed that roughly 7.1% of vehicle trips 

remained with the CBD.  Because, contrary to Figure 1, only a small percentage of CBD trips 

remained within the CBD, one would expect the total additional volume on the CBD connectors 

to be slightly lower than 100% of 19,638 (e.g., perhaps (100%-7.1%)(19,638)  = 18,263 vehicle 

trips ends.  Accordingly, the CBD centroid connectors in the model were identified (e.g., for 

zones 1-11, 33-35, 66, and 261) and, for those connectors, the difference in volumes between the 

base scenario and Scenario 2d was summed.  For these connectors that difference was 22,631 

vehicle trip ends based on the file link.dbf.  This suggested that the number of vehicle trip ends 

was reasonable. 

 Zone 1 (CBD) 2 (CBD) 25 26 Total 

1 0 50 10 5 65 

2 50 0 0 0 50 

25 10 0 0 25 35 

26 5 0 25 0 30 

Total 65 50 35 30 180 

Sum of centroid volumes: 360 
Sum of trips:   180 
Sum of CBD centroid volumes: 230 
Sum of CBD trips:  130 


