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Objective: To test the validity and data accessibility of the health detection features on two leading smartwatches in the industry, the Apple

Watch Series 6 and Fitbit Sense, and to determine if these devices can be used to accurately measure stress responses in the body.

Background: Stress causes the release of hormones in the human body that increase heart rate, blood pressure, and energy supplies. Over

time, the constant release of stress hormones can lead to many medical, psychological, and behavioral health problems. Health problems related

to or caused by stress have become increasingly prevalent in the modern world. Access to health information on mobile devices have allowed

users to more easily keep track of their fitness, but there is still much to be learned when it comes to stress detection. The ability to detect stress

responses and access the measured data needs to be further examined.

Method: Sixteen participants performed modules of a multi-tasking program while smartwatches measured cardiac information.

Multi-tasking modules varied in difficulty and included low, medium, and high workload conditions.

Results: Workload has an effect on the amount of stress responses produced by the participants, as the testing conditions showed an

increase in stress responses compared to the baseline. The presence of detectable stress responses aligned with the participant's perception of how

hard they were working and how stressed they were feeling. The Apple Watch Series 6 was unable to detect significant differences in stress

responses as compared to the baseline in this study, and did not align with the measurements of the official ECG device used.

Conclusion: The accessibility of health-related data for in depth analysis on current smartwatches is very limited, and is highly susceptible

to variability when measurements are being taken. Data collection limitations in current smartwatches make it difficult to capture peak stress

responses during varying workload conditions, and likely was the cause of insignificance. Stress detection in smartwatches must be investigated

further.

Application: The findings of this research provide insight on the validity and accessibility of health metrics gathered from current

smartwatches and how stress responses can be evaluated using these devices.

Keywords: smartwatches, stress detection, heart rate, heart rate variability, workload

INTRODUCTION

Stress, in its simplest form, is a nonspecific response produced by the body to address a demand

(Selye, 1984). All living organisms have evolved to undergo various physiological responses to these

demands. In vertebrates, stress responses are mediated by the release of hormones like adrenaline and

cortisol, which increase heart rate, blood pressure, and available energy supplies (Taborsky et al, 2021).

Long before modern technological advancements made humans the dominant living organism on Earth

with little threat to survival, humans relied on stress responses to maximize cognitive and physical

performance in life or death situations (Selye, 1984). During times when the body is presented with an

acute physical stressor, like running from a wild animal, the release of stress hormones temporarily turns

off bodily functions that are not essential for survival (Stanford University, 2007). In small doses over

spaced intervals, the release of such stress hormones is harmless, but an increase in the frequency or

intensity of stressors presented to an individual can lead to conditions like chronic stress or post-traumatic

stress disorder (PTSD) (Nidiffer & Leach, 2010). Now that humans are to the point where it is not

necessary to run from wild animals on a daily basis, stressors are instead produced from things like work

deadlines, exercising, relationship troubles, and money management. These modern day stressors are

perceived as real threats in the mind, so the body is unable to discern between these perceptions and an

actual external threat. As a result, adrenaline and cortisol are once again released in response (Selye,
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1956). The constant release of stress hormones over time (chronic stress) can lead to various medical,

psychological, and behavioral health problems like cardiovascular diseases, cancer, insomnia, alcohol and

drug abuse, violence, and family conflict (Quick, Horn, & Quick, 1987). Due to the growing presence of

stress-related long term health conditions, it is increasingly important to be able to detect and manage

daily stress levels.

When a person experiences stress, several physiological responses produced by the body can be used

as measurable indicators of their stress levels. These include changes in heart rate, heart rate variability,

cortisol levels, and blood pressure (Childs, White, & de Wit, 2014). As previously mentioned, the

majority of daily stressors are rooted in the workplace (Wainwright & Calnan, 2002). Career fields that

are considered to be highly stressful may involve daily threats of life and death (e.g., police officers and

warfighters) or severe consequences in the event of a mistake (e.g., miners, airline pilots, surgeons)

(Cranwell-Ward & Abbey, 2005). There have been several studies (e.g., Johnson et al., 2005, Robertson &

Ruiz, 2010) that leverage the physiological responses to stress to measure daily stress levels in high

intensity career fields, such as when Seoane et al., (2014) measured the mental stress of combatants in

real time. Even in a job that may subjectively be considered as less stressful, the human body still

experiences the highest number of physiological stress responses during hours of work. Stress response

rates increase as more work-related tasks are piled on (Okada et al., 2013). Many studies have shown that

of the acute stress responses, cardiac activity (e.g., heart rate, heart rate variability) is one of the best

indicators of stress levels in humans (Okada et al., 2013; Seoane et al., 2014; Schwerdtfeger &

Friedrich-Mai, 2009) because it is linked to the cortical regions that are involved in stressful situation

appraisal (Kim et al., 2018). When measuring stress responses, the majority of these studies utilize

equipment that is not practical for use by the average person such as chest-mounted, three-electrode

electrocardiograms (ECGs) or a sensorized glove apparatus. This equipment is great for understanding

human stress responses in a controlled research environment, but due to limited accessibility the majority

of people are unable to learn anything about their day to day stress levels without visiting a doctor.

With the advancement of modern technology over the past decade, people are increasingly integrating

their smartphones into their daily lives for communication and entertainment purposes which has been

shown to have a negative impact on overall health, depending on the extent of use (Samaha & Hawi,

2016). There has also been an increase in health-consciousness among smart device users, which is

enhanced by the use of smartwatches or wearable fitness trackers (Reeder & David, 2016). Currently, the

leading smartwatches in the industry, such as the Apple Watch Series 6 or Fitbit Sense, come equipped

with health and activity tracking features like global-positioning systems (GPS), altimeter, blood oxygen

sensor, electrical heart sensor, optical heart sensor, accelerometer, and gyroscope (Apple Inc., 2020; Fitbit

LLC, 2020). In addition to all of the health and activity features, the watches are equipped with the same
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or similar capabilities as a smartphone, so the popularity of smartwatches among users is steadily

increasing (Chuah et al., 2016).

This work aims to gain a better understanding of the capabilities of smartwatches in relation to the

detection and measurement of acute physiological stress responses, as compared to an official Food and

Drug Administration (FDA) approved mobile ECG device. The goal of this research is to ultimately test

the validity and data accessibility of the health detection features on two of the leading smartwatches in

the industry, the Apple Watch Series 6 and Fitbit Sense, and to determine if these devices can be used to

accurately measure stress responses in the body. Based on what is known about the relationship between

stress levels, workload, and cardiac responses (Okada et al., 2013; Cranwell-Ward & Abbey, 2005;

Wainwright & Calnan, 2002; Seoane et al., 2014), the expected results of this study are that (a) as user

workload increases, user stress will increase, (b) an increase in perceived user stress will result in a

measurable increase in physiological stress responses, and (c) the data streams produced from the

smartwatch ECGs will align with the heart rate data streams from the official FDA-approved ECG device.

METHODS

Participants

Sixteen (n = 16) University of Virginia undergraduate and graduate students participated in this study

(8 males, 8 females; M = 23, SD = 2.66). It was determined that an even number of participants were

needed based on the nature of how tasks were presented during the data collection phase so that proper

task-participant counter-balancing could be achieved. Participants were compensated with a $10 gift card

following completion of the experiment..

Experimental Setup

The participants’ task in this experimental setup was to complete two 3-minute long evaluation trials

using the Multi-Attribute Task Battery II (MATB-II) program developed by National Aeronautics and

Space Administration (NASA). This computer-based multitasking program is designed to evaluate

operator performance and workload (Santiago-Espada et al., 2011). This program was selected because it

simulates a high-stress career field (pilot) and allows programmers to manipulate the number of tasks the

participant is presented within each trial (Cranwell-Ward & Abbey, 2005). Because stress typically

increases as workload increases (Okada et al., 2013), the proper manipulation and implementation of the

MATB-II program should elicit measurable stress responses in the user.

MATB-II Task Overview
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The MATB-II program consists of four main tasks that the user is required to monitor: System

Monitoring (SYSM), Tracking (TRCK), Communications (COMM), and Resource Management (RMAN)

(see Figure 1). All of these tasks are concurrent during the trials and are controlled through the use of a

wireless mouse, keyboard, and attached joystick.

Figure 1. Screen-capture of the MATB-II program during an assessment.

The goal of the SYSM task is to ensure the darker blue panels within the light blue vertical

gauges (labeled F1-F4) remain centered on the gauge. The normal state of this component is when the

dark blue panels are centered on the gauge, and the failed state of this component is when the dark blue

panels are at the top or bottom of the gauge. Additionally, the SYSM section has two buttons, labeled F5

and F6, that require attention. The F5 button must always remain green (failed state: button turns white)

and the F6 button must always remain white (failed state: button turns red). All of these components are

controlled through the use of the corresponding keys on the keyboard labeled F1-F6.

The TRCK task is meant to simulate flying an aircraft, or controlling an aircraft system during flight.

The goal of this task is to keep the circle-shaped reticle as close as possible to the center of the crosshairs
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through the use of a joystick connected to the computer. Left untouched, the circle-shaped reticle will

randomly move away from the center of the crosshairs. The sensitivity of joystick inputs and reticle

deviation intensity can be separated into three categories: Low, Medium, and High. The RMAN task

represents fuel management while onboard an aircraft in flight. The goal of this task is to maintain ±250

units from the starting volumes in tanks alphabetically labeled A-D. Tanks A and B start at 2500 units and

tanks C and D start at 1000 units. Tank fuel levels are controlled by operating fuel pumps numbered 1-8

(Pump States: Open = Green, Closed = White, Failed = Red). Tanks A and B are set to continually drain

and there is no combination of pump flow that results in a steady state tank volume, so the user must

constantly monitor this section throughout the duration of the trials.

The Communications task represents pilot interaction with aircraft controller requests (Gutzwiller,

Wickens & Clegg, 2014). The user is called to action through audio rather than a visual queue in this

section. The audio comes in the generic form of “[Call sign], please change your [radio] to [frequency].”

The goal is to change the radio and frequency using a mouse as quickly and accurately as possible if the

audio message is referring to the user’s assigned call sign (NASA504).

Tutorials and Trials

During the trials, participants wore an Apple Watch Series 6 on their left wrist and a Fitbit Sense on

their right wrist. Both watches were positioned so that the optical and electrical heart sensors were flush

against their skin and 1 cm above the end of the ulna (Figure 2).

Figure 2. Depiction of correct smartwatch placement on wrists.

Participants sat in a standard desk chair adjusted to their comfort level in front of a HP Z230 workstation

with a 28” monitor, keyboard, wireless mouse, and Logitech joystick to monitor MATB-II tasks during

each trial (Figure 3). An AliveCor Kardia ECG device was also placed within reach of the participants for

official ECG measurements between trials.
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Figure 3. Experimental setup for all three workload conditions (Low, Medium, High).

For each individual task within the MATB-II program, participants were presented with a 1-minute long

tutorial that introduced the task and expectations of the study. During this time, participants were

encouraged to ask questions and review the tutorial as many times as they felt necessary until they fully

understood the material being presented. Three separate full-length MATB-II trials, lasting 3 minutes

each, of varying difficulty (low workload: Test 1, medium workload: Training, high workload: Test 2)

were utilized during the data collection phase. At the end of each trial, participants were asked to fill out a

NASA Task Load Index (NASA-TLX) survey to assess subjective participant workload.

Experimental Design

This study utilized the customizability of the MATB-II program to create three trial conditions

(labeled Training, Test 1, and Test 2) that varied in difficulty by the workload required from the user. The

variables altered to create the three conditions were task frequency, joystick sensitivity, and pump flow

rates. The training condition was designed to be a middle ground between low workload and high

workload, as this condition was to be used as a qualifier for the two testable sections of the experiment.

For the two testable sections, Test 1 was designed to be the least demanding of the three conditions while

Test 2 was designed to be the most demanding. The experiment was intentionally customized this way so

that a measurable difference in resulting stress responses would be elicited from low workload to high

workload conditions. A full breakdown of the three MATB-II workload conditions are shown in Table 1.

TABLE 1: Task-specific breakdown of varying workload conditions
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The way in which each workload condition was scored also added to the varying difficulty between the

tests. This was achieved by altering the data recording intervals of the MATB-II sections that require

continuous monitoring (TRCK and RMAN). Test 1 was the lowest rated workload condition, so its

recording intervals for the continuous tasks were the most spread out. As a result, participant scores were

not as greatly affected by mistakes. This allows the participants more time to address tasks between each

recording interval, resulting in the ability to apply attention elsewhere in the MATB-II program.

Conversely, Test 2 was the highest rated workload condition, so the continuous task recording intervals

were the shortest. This limits the amount of time participants have to address other tasks within the

MATB-II program, adding to the difficulty level of the high workload condition. Each COMM task results

in two scoring opportunities as the participant is asked to change both radio and frequency, so points are

awarded for the accuracy of both of those components. Each SYSM task is only worth one point, but the

participant will lose points if a working component is attempted to be fixed. The TRCK task was scored

based on the root-mean-square error (RMSE) of the location of the circle-shaped reticle relative to the

center of the crosshairs for each recording interval. If the RMSE indicates that the reticle was outside of

the dotted square surrounding the center of the crosshairs, the participant does not receive points for that

recording interval. The RMAN task is scored by logging the volumes of tanks A-D at time of each

recording interval, creating four scoring opportunities per recording interval. If tank volumes are outside
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the allowable volume range, then no points are awarded for that recording interval. A full breakdown of

the scored events for each workload condition are shown in Table 2. Scoring each trial provides insight on

how well participants are objectively performing under each workload condition.

TABLE 2: Workload Condition Scoring Breakdown

Low workload and high workload conditions were presented to participants in a predetermined order

so that proper task-participant counter-balancing could be achieved. Half of the participants completed

low workload followed by high workload conditions, while the other half of the participants completed

high workload followed by low workload conditions. In an effort to increase stress responses, participants

were informed after completing the training condition that 3 participants who scored the highest over the

following two testable trials would receive an extra $20 in reward money. The incentivization of a reward

has been shown to increase cardiac activity under conditions of unclear difficulty (Richter & Gendolla,

2009).

This research complied with the American Psychological Association (APA) Code of Ethics and was

approved by the University of Virginia’s Institutional Review Board (IRB-SBS, Protocol 4428). Upon

arrival, participants were asked to read and sign an informed consent form and fill out a demographic

survey. The experimenter then explained the details of the study including the equipment and overview of

the tasks required. Participants took a baseline ECG using the AliveCor Kardia device, and adjusted the

Fitbit Sense to fit securely on their right wrist. The experimenter read the scripted instructions for each

task in the MATB-II program as the participant completed the 1-minute long task tutorials. The

participant then completed the full training module to become familiar with handling all main tasks at

once. Participants were required to score at least 70% before moving onto the experimental portions of the

study. The 70% threshold was determined during program pilot testing. Fourteen out of the 16 participants

achieved or exceeded the 70% threshold score on the training module. The passing participants then
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moved onto the testing portion of the experiment and fit the Apple Watch Series 6 to their left wrist. In

both testing scenarios, the program was paused at the 1.5 minute mark, at which time the participants

recorded an ECG using the Apple Watch Series 6. Following the Apple Watch Series 6 ECG, the program

resumed until completion at the 3 minute mark, at which time the participants recorded an ECG using the

AliveCor Kardia ECG. At the conclusion of the study, each participant completed a debriefing

questionnaire. The study was approximately 1 hour long in duration from start to finish. A full breakdown

of the flow of events involved in this study are as follows:

1. Participants sign informed consent form, complete demographic survey, and fit Fitbit to right

wrist

2. Participants complete individual tutorials for each MATB-II task

3. Baseline ECG taken with AliveCor Kardia ECG Device

4. Participants complete 3-minute full training module

○ If 70% threshold is met, move on

5. Participants fit Apple Watch Series 6 to left wrist

6. Participants complete first 3-minute experimental portion (low or high workload condition)

○ At 1.5 minute mark, take ECG with Apple Watch Series 6

○ At 3 minute mark, take ECG with AliveCor Kardia ECG

○ Complete NASA-TLX questionnaire

7. Participants complete second 3-minute experimental portion (low or high workload condition)

○ After 1.5 minutes, take ECG with Apple Watch Series 6

○ After 3 minutes, take ECG with AliveCor Kardia ECG

○ Complete NASA-TLX questionnaire

8. Participants complete debriefing questionnaire

RESULTS

The dependent variable in this study was cardiac activity of the participants during each examination

period. Cardiac activity was used to calculate differences in heart rate (HR) and heart rate variability

(HRV) under varying participant workload conditions. The HR and HRV data was recorded using an ECG

at the conclusion of the trials utilizing both the AliveCor Kardia ECG and Apple Watch Series 6 ECG

features. The results were analyzed using paired samples t-tests to identify any differences between

baseline cardiac measurements and examination period cardiac measurements. The two separate

examination workload conditions were also directly compared through the use of t-tests. Due to a reduced
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sample size, t-tests were conducted after a Shapiro-Wilk normality test was conducted to show that the

distribution of the differences in the paired samples were not significantly different from a normal

distribution. Subjective workload differences between participants were also calculated and analyzed

using a NASA Task Load Index (NASA-TLX) questionnaire.

MATB-II Scoring

Participants were scored for each of the workload conditions so that any changes in performance

could be measured between the trials, as outlined in the Methods section. During the low workload

condition (Test 1), participants achieved an average score of 96.79%. Under the high workload condition

(Test 2), the average score among participants dropped to 64.04%.

Heart Rate (HR)

AliveCor Kardia

A paired samples t-test between the baseline ECGs (M = 69.998, SD = 10.741) and low workload

condition Kardia ECGs (M = 73.143, SD = 10.250) showed a significant increase in HR, t(13) = 2.4089, p

= 0.032. A paired samples t-test between the baseline ECGs (M = 69.998, SD = 10.741) and high

workload condition Kardia ECGs (M = 74.231, SD = 11.476) showed a significant increase in HR, t(12) =

2.4847, p = 0.029 (Figure 4).

Figure 4. Differences in Heart Rate between baseline, low workload condition, and high workload

condition ECGs using AliveCor Kardia ECG.

No significant differences were found between low workload (M = 73.143, SD = 10.250) and high

workload (M = 74.231, SD = 11.476) condition HR measurements using the Kardia ECG device, t(12) =

0.21707, p = 0.832.
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Apple Watch Series 6

No significant differences were found between baseline ECGs (M = 69.998, SD = 10.741) and low

workload condition (M = 69.150, SD = 10.058) or high workload condition (M = 72.451, SD = 11.803)

using the Apple Watch Series 6 ECG, t(12) = 0.94836, p = 0.362 and t(13) = 1.8194, p = 0.092,

respectively. A paired samples t-test between the low workload condition Apple Watch Series 6 ECGs (M

= 69.150, SD = 10.058) and high workload condition Apple Watch Series 6 ECGs (M = 72.451, SD =

11.803) showed a significant increase in HR, t(13) = 2.6114, p = 0.022 (Figure 5).

Figure 5. Differences in HR between baseline, low workload condition, and high workload condition

ECGs using Apple Watch Series 6.

Fitbit Sense

The Fitbit Sense was worn by participants throughout the entire duration of the experiment and

measured HR continuously on 5-second intervals. During the training module, participants showed an

average HR increase of 13.500 beats per minute (bpm) and an overall average HR of 76.984 bpm. HR

data gathered during the low workload condition showed an average HR increase of 18.000 bpm, and an

overall average HR of 75.190 bpm. The high workload condition showed an average HR increase of

17.214 bpm, and an average HR of 76.645 bpm. Paired samples t-tests were run on the increases in HR

over the three conditions (Training, Test1, and Test2) using the continuous HR data gathered from the

Fitbit Sense. There were no significant differences found between low workload (M = 18.000, SD =

6.051) and high workload (M = 17.214, SD = 5.549) conditions, t(13) = -0.45101, p = 0.659. However,

there were significant differences between the training module (M = 13.500, SD = 4.942) and the two

varying workload conditions (Test1 and Test2), t(13) = 3.698, p = 0.003, and t(13) = 2.2995, p = 0.039,

respectively (Figure 6).
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Figure 6. Differences in HR Increase between training and experimental modules using Fitbit Sense.

AliveCor Kardia vs. Apple Watch Series 6

The data gathered from both devices during each test condition was also evaluated through the use of

paired samples t-tests. A significant difference was found between the HR data gathered during low

workload condition from the Kardia ECG (M = 73.143, SD = 10.250) and the HR data gathered during

low workload condition from the Apple Watch Series 6 ECG (M = 69.150, SD = 10.058) t(13) = 2.9954,

p = 0.0103.

Using the same type of test, there was found to be no significant difference between the HR data

gathered during the high workload condition from the Kardia ECG (M = 74.231, SD = 11.476) and the

HR data gathered during the high workload condition from the Apple Watch Series 6 ECG (M = 72.451,

SD = 11.803). From this result, an equivalency test was run to see if the two data streams could in fact be

considered equal. Using calculated effect sizes of Cohen’s d = -0.293 and d = 0.293, it was found that the

observed effect falls outside the equivalence bounds and is not close enough to zero to be considered

equivalent at the 90% confidence interval. (Seaman & Serlin, 1998). However, this may be due to the

limited sample size.

Heart Rate Variability (HRV)

Heart rate variability was calculated using the Root Mean Square of Successive Differences

(RMSSD) of the R-R intervals of heartbeats during the various ECG recordings. RMSSD was chosen

because it has been shown to be the most accurate during short (30s or less) HRV measures (Thong et al.,
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2003). In order to isolate the R-R intervals from the raw data, it was necessary to screen for local peaks

and amplify the largest ones (QRS complex) (see Figure 7).

Figure 7. Depiction of QRS complex and R-R interval on example ECG data (Tawakal et al., 2012).

A threshold in which all amplified QRS complexes surpassed could then be determined so that any point

in time with an ECG measurement above that threshold indicated the R portion of the QRS complex

(Figures 8-10). The R-R intervals could then be identified and RMSSD could be calculated.

Figure 8. Example of raw ECG data gathered during low workload condition from Participant 16 using

the AliveCor Kardia ECG.
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Figure 9. Low workload condition, Participant 16 AliveCor Kardia ECG data with QRS complexes

amplified; Blue line indicates threshold in which only ECG R-waves surpass.

Figure 10. Low workload condition, Participant 16 AliveCor Kardia ECG data with R-R intervals

identified; Blue dots represent the tops of the R-waves for each QRS complex.

AliveCor Kardia

Paired samples t-tests between the baseline ECGs (M = 0.0649, SD = 0.0413) and the two testing

conditions, low workload Kardia ECGs (M = 0.0566, SD = 0.0317) and high workload Kardia ECGs (M =

0.0556, SD = 0.0413) showed no significant differences in RMSSD, t(13) = 1.9874, p = 0.0684, and t(11)

= 2.0088, p = 0.0698, respectively. There was also no significant difference between low workload and

high workload condition RMSSD using the Kardia ECG, t(12) = 0.06172, p = 0.9518.
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Apple Watch Series 6

Paired samples t-tests between the baseline ECGs (M = 0.06492, SD = 0.0413) and the two testing

conditions, low workload Apple Watch Series 6 ECGs (M = 0.06487, SD = 0.04284) and high workload

Apple Watch Series 6 ECGs (M = 0.05699, SD = 0.03975) showed no significant differences in RMSSD,

t(12) = 0.33255, p = 0.7452, and t(13) = 0.63559, p = 0.5361, respectively. There was no significant

difference between low workload and high workload condition RMSSD using the Apple Watch Series 6

ECGs, t(12) = 0.51582, p = 0.6154, but due to the fact that it could not be shown that the differences

between the pairs are normally distributed via the Shapiro-Wilk normality test, W = 0.83791, p = 0.02,

this observation cannot be considered to be valid.

AliveCor Kardia vs. Apple Watch Series 6

The data gathered from both devices during each test condition was also evaluated through the use of

paired samples t-tests. No significant differences were found between the RMSSD data gathered during

the low workload (M = 0.0566, SD = 0.0317) or high workload (M = 0.0556, SD = 0.0413) condition

using the Kardia ECG compared to the low workload (M = 0.06487, SD = 0.04284) or high workload (M

= 0.05699, SD = 0.03975) condition using the Apple Watch Series 6, t(13) = -0.83588, p = 0.4183, and

t(12) = 0.4734, p = 0.644, respectively. From these results, equivalency tests were run to see if the data

streams from both devices could in fact be considered equal. Using calculated effect sizes of Cohen’s d =

-0.223 and d = 0.223 for low workload condition, and Cohen’s d = -0.131 and d = 0.131 for high

workload condition, it was found that the observed effect falls outside the equivalence bounds for both

tests and is not close enough to zero to be considered equivalent at the 90% confidence interval. (Seaman

& Serlin, 1998). However, this may be due to the limited sample size.

NASA Task Load Index (NASA-TLX)

Participants filled out a NASA-TLX questionnaire at the conclusion of each experimental portion of

the MATB-II program to gauge subjective workload and stress levels. When comparing the responses

from the low workload condition to the high workload condition through the use of paired samples

T-Tests, all measured categories showed significant differences (all p < 0.002) (Figure 11).
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Figure 11. Differences in NASA-TLX responses by category from low workload condition to high

workload condition; EFFT: Effort, FRUS: Frustration, MENL: Mental Demand, PERF: Performance,

TEMP: Temporal Demand.

Effort (EFFT) (M = 28.821, SD = 25.966), t(13) = 4.1531, p = 0.0011, Frustration (FRUS) (M = 34.107,

SD = 22.677), t(13) = 5.6277, p < 0.001, Mental Demand (MENL) (M = 34.107, SD = 26.245), t(13) =

4.8625, p < 0.001, and Temporal Demand (TEMP) (M = 28.50, SD = 26.997), t(13) = 3.9499, p = 0.0017,

all showed significant increases in response ratings from the low workload condition to the high workload

condition. Performance (PERF) (M = -37.53, SD = 20.093), t(13) = -6.9899, p < 0.001, showed a

significant decrease in rating from low workload condition to high workload condition. This shows that

the perceived significant decrease in performance was accurately reflected by the actual MATB-II task

scores of the two workload conditions. Physical Demand (PHYS) was not included in evaluation because

it could not be shown that the differences between the pairs are normally distributed via the Shapiro-Wilk

normality test, W = 0.81708, p = 0.008.

Debriefing Questionnaire Responses

Participants were asked to rate how stressed they currently felt on a scale from 0-10 (0 being not

stressed at all, 10 being most stressed) as part of the demographic survey at the beginning of the

experimental session, and again upon completion of all trials during the debriefing questionnaire at the

end of the experimental session. Pre-trial responses to this question resulted in an average stress level of

3.625 (mode = 5). Post-trial responses resulted in an average stress level of 4.625 (mode = 6, 7).
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DISCUSSION

The goal of this research is to determine the extent to which two of the leading smartwatches in the

technology industry, the Apple Watch Series 6 and the Fitbit Sense, can accurately detect and measure

stress responses as a function of workload. Additionally, this research aimed to determine the accessibility

of measured user health data so that the average user may better understand how their body responds to

short-term stress.

Effects of Workload Changes

The results of this study confirmed that heart rate is affected by workload and supports our first

hypothesis: as user workload increases, user stress responses increase. Heart rate variability was impacted

by increases in workload in this study, but further experimentation with an increase in sample size could

lead to significance, as p < 0.07 both low and high workload conditions. The participant responses from

the NASA-TLX questionnaire demonstrate a significant increase in participant perceived workload from

the low workload condition to the high workload condition. Additionally, pre-trial and post-trial

questionnaires show a subjective increase in user overall stress levels on a 10-point scale. Pairing these

findings with the stress responses measured using the AliveCor Kardia ECG during the low workload

condition and the high workload condition, our second hypothesis is supported: an increase in perceived

user stress will result in a measurable increase in physiological stress responses. This body of work

demonstrates that workload affects stress levels and that changes in HR and HRV hold the potential to

accurately measure stress responses in humans (Taelman et al., 2009; Okada et al., 2013; Cranwell-Ward

& Abbey, 2005; Wainwright & Calnan, 2002).

Data Accessibility of Each Device

AliveCor Kardia

The AliveCor Kardia device is a mobile, FDA-approved ECG device that was used as the official

ECG comparison to the smartwatches selected in this study. Each ECG that was taken with this device is

automatically uploaded to the Kardia application on a connected smartphone via bluetooth and to the

AliveCor Kardia official website (https://app.alivecor.com/). Users can easily view and extract the ECG

data in the form of a European Data Format (EDF) file, which is the standard format used for the

exchange and storage of medical time series data (Kemp & Olivian, 2003).

Apple Watch Series 6

The Apple Watch Series 6 has the ability to constantly track user heart rate and take an ECG in the

span of 30 seconds. Heart rate and ECG information is automatically uploaded to the Apple Health

https://app.alivecor.com/
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application on a connected smartphone. Continuous heart rate data and summaries can be viewed on the

Apple Health application in increments as short as 1 minute, but cannot be extracted for raw data analysis.

HRV can be calculated over extended periods of time wearing the device. ECG information can be

exported and mailed to a desired location and comes in the form of a comma-separated values (CSV) file

composed of heart electrical activity readings (measured in millivolts) paired with time stamps.

Fitbit Sense

The Fitbit Sense has the ability to constantly track user heart rate and take an ECG in the span of 30

seconds, similar to the Apple Watch Series 6. Heart rate and ECG information is automatically uploaded

to the Fitbit application on a connected smartphone. Continuous HR data and summaries can be viewed

on the Fitbit application. Through the use of a third-party application (Pulse Watch), users can extract all

measured HR data in increments as small as 5 seconds. HRV can be calculated over extended periods of

time wearing the device. ECG information is stored in the form of a Portable Document Format (PDF).

The raw data behind the ECG readings are unable to be extracted for data analysis.

For all devices utilized in this study, HRV was calculated by converting the data into a time series

format, screening for local peaks and amplifying the largest ones (QRS complex), and then isolating the

points in time in which the peaks surpassed a determined threshold, revealing the R-R intervals so that

RMSSD could be calculated. This method is mentioned in depth in the Results section.

Data Stream Comparison

The AliveCor Kardia device showed a significant increase in stress responses during low workload

and high workload test conditions when compared to the baseline, but no significant difference between

the low workload condition and high workload condition directly. This suggests that participants were

equally stressed for the low workload as they were for the high workload based on heart rate, despite the

difference in demand. This could be attributed to the fact that both the low workload and high workload

conditions were being scored, and that a financial reward was said to be given to the highest performers

on these trials. The promise of a reward based on the level of success creates a high-stakes testing

environment, which has been shown to increase levels of intrinsic motivation and stress (Tagher &

Robinson, 2016; Cameron et al., 2005). During the low workload and high workload conditions, the

Apple Watch Series 6 was unable to detect a significant difference in stress responses as compared to the

baseline measurements. When comparing the low workload and high workload conditions directly, the

Apple Watch Series 6 detected a significant increase in HR, but no significant change in HRV. The

significant increase in HR could be explained by a number of variables such as the limited number of

participants, extraneous movement during ECG measurement, or time delay from trial end to ECG start,
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among others. Equivalency tests between the AliveCor Kardia ECG datastreams and the Apple Watch

Series 6 ECG datastreams show that they cannot be considered equivalent, which contradicts our third

hypothesis: the data streams produced from the smartwatch ECGs will align with the data streams from

the official, FDA-approved ECG device. These findings contribute to a new and growing body of work

that aims to test the validity of health features on wrist-wearable smart devices. Further, this research

supports the findings of variability in data collection in current smartwatches (Siirtola, 2019; Ciabattoni,

2017).

Limitations and Future Work

This study was affected by multiple limitations which must be considered. It is important to consider

the differences in confidence levels of participants and their individual perception of how equipped they

are to handle the MATB-II tasks presented to them. It has been shown that if an individual feels they have

the necessary skills or tools to achieve a task, their experience will be less stressful when compared to an

individual that has a lower confidence level, regardless of the workload intensity (Selye, 1984). This can

result in variability in data collection between participants, even though each participant was subjected to

the same two MATB-II evaluations.

Another limitation to this study was the availability of the data streams from the two industry leading

smartwatches. As mentioned in the Data Stream Accessibility section, the Apple Watch Series 6 is unable

to provide extractable continuous HR data, and the Fitbit Sense is unable to provide extractable ECG data.

Due to the limitations of the devices used, we are not currently able to directly compare the two devices in

regards to HR and HRV in a testing environment. This limitation may reduce the potential knowledge

gained in the understanding of the stress detection capabilities of these devices. The data streams that

were made available for data analysis are not exported in a uniform file format, so there is also potential

for error in the data conversion process.

The ECG data in this study was collected immediately following the completion of each trial in order

to capture the stress responses directly elicited by the tasks of the MATB-II evaluation. As a result of this,

we must consider the limitation that the smartwatches are unable to passively record ECGs while the

participant is actively taking the examination. To take an ECG in this experiment, the participant had to

stop what they were doing, place their index finger on the smartwatch sensors, and remain still in this

position for the duration of the ECG recording (30 seconds). It has been shown that heart rates can

decrease up to 22 beats per minute (bpm) in 60 seconds of recovery, so it may be likely that by the time

the ECGs have finished recording, the participant was not at their peak stress level (Shetler et al., 2001).

This claim is supported by the fact that on average, the HRs at the time of ECG recording were 13 bpm

less than the maximum HRs experienced during the examination periods in this study. This can help
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explain why there were no significant detectable differences in HRV between the low workload and high

workload conditions.

Finally, the ECG data is affected by user movement during the ECG recording process, as the devices

are non-intrusive and rely on tactile contact with the user to generate a recording. It has been shown that

there is a significant correlation between HRV measurement error and user movement, so any movement

or brief lack of contact with the sensors in the smartwatches could contribute to error in the data (Maritsch

et al., 2019).

It is critical for future work to be informed of potential sources of error in the data production and

collection processes with the smartwatch technology that is currently available to the public. For these

reasons, we recommend that future research gathers data on a larger scale to offset some of the variations

in data seen in this study. This will hopefully highlight the capabilities and validity of the extractable

health metrics in these devices as technology continuously improves.

KEY POINTS

● Stress responses were highest during examination conditions, supporting previous work showing

that workload can affect stress responses in the human body.

● Measured stress responses aligned with the participant's perception of how hard they were

working and how stressed they were feeling. This supports assertions from previous work

measuring changes in heart rate and heart rate variability that these measures hold the potential to

accurately measure stress responses in humans.

● The accessibility of data gathered using current smartwatches for in depth analysis is very limited,

and these devices are susceptible to variability when heart measurements are being taken.

● Stress and the ability to detect stress-related responses is crucially important, and smartwatches

must be considered as viable health tracking options, especially as technology continuously

improves.
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