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Machine Learning Approaches to Multi-Agent Inverse Learning Problems

by Xiaomin LIN

The problem to infer the goals of an agent on the basis of the observation

of its actions has been framed in the context of inverse reinforcement learn-

ing (IRL) and has been extensively studied in recent decades. However, this

model is valid only when no other adaptive agents exist or their interfer-

ence can be neglected. Otherwise, a new model taking other agents into ac-

count needs to be created in place of IRL. To this end, this dissertation pro-

poses a multi-agent inverse reinforcement learning (MIRL) model, using the

framework of stochastic games, which generalize Markov decision processes

to game theoretic scenarios. We develop algorithms for two fundamental

classes of MIRL problems: two-agent zero-sum and two-agent general-sum.

For the first class, we develop a Bayesian solution approach in which the

generative model is based on an assumption that the two agents follow a

minimax bi-policy. For the second, we consider five variants: uCS-MIRL,

advE-MIRL, cooE-MIRL, uCE-MIRL, and uNE-MIRL, each distinguished by

its solution concept. Problem uCS-MIRL is a cooperative game in which the

agents employ cooperative strategies that aim to maximize the total game

value. In problem uCE-MIRL, agents are assumed to follow strategies that

constitute a correlated equilibrium while maximizing total game value. The

HTTP://WWW.VIRGINIA.EDU
http://department.university.com
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uNE-MIRL is similar to uCE-MIRL in total game value maximization but a

Nash equilibrium is assumed to employ. The advE-MIRL and cooE-MIRL

problems assume agents constitute an adversarial equilibrium and coordina-

tion equilibrium, respectively. We propose novel approaches to address these

five problems under the assumption that the game observer either knows or

is able to accurately estimate the policies and solution concepts for players.

For uCS-MIRL, we first develop a characteristic set of solutions ensuring that

the observed bi-policy is a uCS and then apply a Bayesian inverse learning

method. For uCE-MIRL, we develop a linear programming problem subject

to constraints that define necessary and sufficient conditions for the observed

policies to be correlated equilibria. The objective is to choose a solution that

not only minimizes the total game value difference between the observed bi-

policy and a local uCS, but also maximizes the scale of the solution. We apply

a similar treatment to the problem of uNE-MIRL. We demonstrate these al-

gorithms on multiple grid-world experiments, concluding: 1) all these algo-

rithms are able to recover high-quality rewards comparable to ground truths;

2) perform better than other methods, such as decentralized-MIRL and IRL.
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Chapter 1

Introduction

Artificial intelligence (AI), informally speaking, aims to construct machines

that are capable of executing tasks and solving problems in ways normally

attributed to humans. A machine, once programmable to have an ability to

make right decisions in a specific environment, can be recognized as an “in-

telligent agent". There is a fundamental difference between automation and

AI. Automation is basically making a hardware or software that is capable of

doing things automatically. An example of automation is a fire alarm system.

Once the smoke sensor is activated, water starts pouring down the pipes. this

example, the fire alarm system has the ability to do things automatically. We

cannot claim, however, it is an AI system, due to the insufficient proof of

intelligence. Simply put, automation relies primarily on pre-programmed

controls and AI is capable of self-learning and evolving like human beings.

In academia, AI research is motivated by three philosophies (Millingto,

2009): 1. understanding the nature of thoughtïijŇas well as intelligence; 2.

understanding the mechanics of the human brain and mental processes, and;

3. implementing software to model the way of thinking and algorithms to

perform human-like tasks. This distinction is central to the view and activi-

ties of AI researchers (Millingto, 2009).

Human beings are cognitive agents. Cognitive agents think about the en-

vironment, evaluate various aspects of it and act upon their responsive deci-

sions. This is known as the doxast-conative loop. The defining characteristic
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of cognitive agents is that they employ doxast-conative by thinking about

the environment and acting uopon their perseptions (Pollock, 2006). This

decision-making process also partially defines rationality. An autonomous

agent envisaged in AI is considered as a cogitative agent if it posses this

characteristic. Hence the key aspect of AI research is to study, understand

and model the cognition, or more specifically, the rationality.

AI has revolutionized many areas since its inception. One emerging do-

main where AI has made breakthrough contributions is computer games.

The gaming industry has seen great strides in recent decades, with more

and more complex and intelligent games springing up. On the one hand,

game developers face the challenge of creating games that are increasingly

compelling (Greene, 2017; Lou, 2017). On the other hand, the development

of multi-core processors and other hardware advancements help computer-

aided AI evolve rapidly and thus profoundly change the industry. The most

recent achievement astonishing the whole world is AlphaGo, developed by

Google DeepMind (Mozur, 2017).

Learning from demonstrations (LD) is a traditional line of research in be-

havior learning, and attracts attention from AI community. In LD, policy

learning directly from observations has achieved remarkable success in large

part because it can benefit from advanced supervised learning techniques.

For example, Runarsson and Lucas use preference learning for policy learn-

ing (Runarsson and Lucas, 2014). The most recent work is to adopt a deep

convolutional neural network as the basis for policy learning (Maddison et

al., 2015).

Researchers from the machine learning community believe that behavior

is mainly reward-driven (Sutton and Barto, 1998; Ng and Russell, 2000; Rus-

sell, 1998). On the basis of this philosophy, Reinforcement Learning (RL) has

been studied extensively and has become one of the three pillars in machine

learning (Sutton and Barto, 1998). RL solves sequential decision problems
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by interacting with an environment. The model RL adopts for the sequential

decision process is a Markov Decision Process (MDP). For a single agent, RL

aims to find an optimal policy of actions for the purpose of maximizing its

total reward. Its “inverse” version, termed Inverse Reinforcement Learning

(IRL) aims to recover reward (equivalently, payoff or cost) functions given

measurements of an agent’s behavior over time as well as a model of the

environment. IRL was introduced by Russell (Russell, 1998) and then for-

malized by Ng and Russell (Ng and Russell, 2000) in the context of several

linear programming algorithms. One can view the IRL problem as being that

of learning the reward structure for a game given observations of the play

of an expert. The key assumption in IRL is that the agent has a clear reward

perception (though not available to us) and takes sequential actions in order

to maximize its total reward in the long run.

One major advantage of IRL, as pointed out by Ng and Russell (Ng and

Russell, 2000), is that in many applications, the reward function provides a

parsimonious description of behavior that is succinct, robust, and transfer-

able with respect to changes in the environment. The comparison between

policy learning and reward learning is discussed by Abbeel and Ng (Abbeel

and Ng, 2004).

IRL has found many applications such as control and transportation and

achieved solid success. Examples include simulated driver-less car (Abbeel

and Ng, 2004; Syed and Schapire, 2007), traffic navigation (Abbeel, Dolgov,

and Ng, 2008; Ziebart et al., 2008), path planning (Mombaur, Truong, and

Laumond, 2010) and human goal inference (Qiao and Beling, 2013). More

details about IRL can be found in Section 3.1.

A multi-agent system (MAS) aims to provide both principles for construc-

tion of complex systems involving multiple agents and mechanisms of in-

teraction among independent agents (Stone and Veloso, 2000). MASs can

be used to solve problems that are either difficult for an individual agent
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system to solve, or result in a poor performance if using a single agent ap-

proach. Two fundamental classes of MAS problems are of interest: 1. build

or optimize a MAS to meet some pre-determined requirements (Parka and

Sugumaran, 2005), and 2. learn some information from an established MAS

(Todd, Beling, and Scherer, 2016). The first one has been studied extensively,

while the second one lags behind. More details of MAS can be found in Sec-

tion 2.1.

RL can be extended to multi-agent reinforcement learning (MRL), where a

framework of stochastic game instead of MDP is adopted (Littman, 1994). A

major difference between IRL and MRL, as Hu and Wellman point out, is that

the concept of “optimality" loses its meaning in MRL as any agent’s reward

depends on others’ actions (Hu and Wellman, 1998). In a stochastic game,

equilibrium plays a vital role and is used as a solution concept, which ensures

that every agent achieves highest reward given others do not change their

strategies. Hence no one has the incentive to deviate from its equilibrium

strategy.

One difficulty MRL has is that for a general game, there could exist dif-

ferent types of equilibriums with different properties. For example, for every

game, there exists at least one or more correlated and Nash equilibriums.

The details of these two types of equilibrium concepts can be found in Chap-

ter 2. Therefore, the issue of convergence is still a roadblock to a general MRL

problem (Shoham, Powers, and Grenager, 2003).

Another class of important research problems, which is an “inverse" ver-

sion of MRL, is termed multi-agent inverse reinforcement learning (MIRL).

Specifically, in a multi-agent system, given all participants’ activities, we may

want to characterize/distinguish each individual for the purpose of: 1. learn

and understand all individuals’ behaviors, and; 2. use what we have learned

to make predictions. Representative works on MIRL include (Natarajan et al.,

2010; Waugh, Ziebart, and Bagnell, 2011; Reddy et al., 2012). On the whole,
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unfortunately, not much literature discusses this topic.

This dissertation focuses on multi-agent inverse learning problems and

handles them from a machine learning perspective. Specifically, we model

such problems as MIRL, adopting stochastic games as a framework and de-

veloping various algorithms to enable inference of their goals in different

situations given the observation of their behaviors. A basic assumption of a

certain degree of rationality of all agents with respect to some agreement or

equilibrium is required. Though we neither offer a universal algorithm that

is applicable to all MASs, nor propose a complete set of algorithms that cover

all situations, we contribute a major addition to the current theory of MIRL

and point out promising directions for further efforts.

1.1 Motivation

There are many real problems associated with agents that need to be ad-

dressed. We explore two typical problems in details here.

1.1.1 Sports

In competitive sports games, how to effectively learn your opponent’s prefer-

ences is an open-ended research question in sports psychology (Hodges, 2016;

Borum, 2009). At an individual level, an athlete’s preferences or subjective

utilities, depending on how he or she perceives the condition, determines his

or her actions. Suppose you play against your opponent. The advantages of

inferring his or her preferences include:

• If the opponent is an individual, you are able to understand his or her

tactics more deeply and adjust your own more effectively;

• If your opponent is a team, what you will learn is the coach’s prefer-

ences. In practice, each coach has his or her own style, strategies, or
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biases, all of which may plausibly remain stable long enough to be ex-

ploited if properly inferred.

There exists many statistical methods to measure the skills of an athlete or

a team (McGuigan, 2017; J. Albert and Koning, 2016) by observing their ac-

tions. However, the task of inferring preferences and subjective utilities from

observed actions in a sports game is beyond the capability of the existing

literature.

1.1.2 Manufacturing

Growth in intelligent manufacturing is a clear trend for the next couple of

decades. Many countries impose great importance in pursuit of this trend.

For example, Germany proposed Industry 4.0 Action Plan (Earls, 2015) and

China launched a even greater plan, called “Made in China 2025" (Kuo, 2017).

A key component of the intelligent manufacturing is intelligent robotics (Kopacek,

1999). As an example, Foxconn Technology Group, a major manufacturer of

Apple’s products, has replaced 60, 000 factory workers with robots (Wake-

field, 2016).

Intent inference is important to multi-robot control problems (Valtazanos

and Ramamoorthy, 2011; Kirchner et al., 2016). For example, one method for

training a robot to perform a task like a human is to let it infer the human

expert’s intent by observing his or her actions. Another interesting but more

realistic question is, for example, for a complex task that two human experts

are required to work together to accomplish, is it possible for two robots to

infer the intents from human experts and learn to cooperate?
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1.1.3 Difficulties and Proposed Solution

IRL is a good candidate approach for addressing agent learning problems.

However, an implicit assumption IRL requires is that only one agent is in-

volved in the problem and only its decision will impact the environment and

trigger a state transition dynamic. If more adaptive agents are involved, the

system becomes an MAS and creates more complicated issues with which

current IRL algorithms may fail to deal, such as:

• The state transition dynamic is controlled by all agents instead of any

individual’s action;

• When taking an action, each agent needs to take others’ actions/responses

into consideration, and;

• The relationship between agents can be complicated. For example, one

common situation is that every agent is selfish and just tries to max-

imize her own utility. Another circumstance could be that all agents

cooperate in order to achieve optimal social welfare. There are even

cases where agents are semi-cooperative or semi-competitive.

Obviously, the sports and manufacturing problems motivating our research

are both multi-agent problems. IRL may not be applicable a MAS. To see

this, consider a simple one-state example. In the single state, agent A can

take action X or Y and agent B is also allowed take action X or Y . Their

rewards are:

• If they both take action X , A will get 3 and B will get 0;

• If they both take action X , A will get 0 and B will get 3;

• If A takes action X and B takes action Y , A will get 1 and B will get 2;

• If A takes action Y and B takes action X , A will get 2 and B will get 1.
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Given A is rational, it cannot make decisions without taking B into account.

Although its largest possible reward is 3, A cannot takeX without hesitation,

otherwise may probably end up with receiving only 1. The essential reason

for this phenomenon, is that the “optimality" concept in IRL does not hold in

multi-agent conditions.

As a summary of all the above discussions, MIRL, if perfectly developed,

will be a suitable method to deal with the sports and manufacturing prob-

lems. However, comparing to RL and IRL, little progress has been made to

the theory of MIRL, as well as applications. That motivates our ambition to

build a solid theoretical foundation for MIRL.

1.2 Contributions

We address the problem of multi-agent learning from demonstrations. To

begin with, we build a new multi-agent based model in place of IRL, termed

multi-agent inverse reinforcement learning (MIRL). Though there are many

equilibriums, the MRL community has found several that have been proved

unique or empirically unique and lead to the corresponding MRL problems

being solvable with satisfying results (Hu and Wellman, 2003; Littman, 2001;

Greenwald and Hall, 2003). To our knowledge, they are:

1. Minimax equilibrium. For a fully competitive game where two agents

compete with each other and their rewards/payoffs sum to zero for

every game.

2. Coordination equilibrium (cooE). It belongs to a win-win-or-lose-lose

game where agents employ a special Nash equilibrium and fully coop-

erate for the sake of themselves.

3. Adversarial equilibrium (advE) It belongs to a competitive game where

agents play against each other. The game differs from a zero-sum game
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in the sense that it relaxes the zero-sum requirement of rewards, though

still a win-or-lose game.

4. utilitarian correlated equilibrium (uCE) is such an equilibrium that

agents employ one correlated equilibrium (a third-party mediator sends

private recommendation of action to each agent) which generates the

largest total game value among all CEs.

5. egalitarian correlated equilibrium (eCE) is such an equilibrium that

agents employ one correlated equilibrium which maximizes the mini-

mum of the agents’ rewards.

6. republican correlated equilibrium (rCE) is such an equilibrium that

agents employ one correlated equilibrium which maximizes the maxi-

mum of the agents’ rewards.

7. libertarian correlated equilibrium (lCE) is such an equilibrium that

agents employ one correlated equilibrium which maximizes the maxi-

mum of the agents’ rewards.

In addition, we develop another two equilibriums:

1. utilitarian Cooperative Strategy (uCS) belongs to a cooperative game,

by employing which agents fully cooperate with each other to achieve

a pre-determined goal.

2. utilitarian Nash equilibrium (uNE) is such an equilibrium that agents

employ one Nash equilibrium which generates the largest total game

value among all NEs.

From the above nine equilibriums, we select six: minimax, cooE, advE,

uCE, uCS and uNE and develop novel algorithms to address six MIRL prob-

lems associated with those equilibriums. Though the specific algorithms we

develop for these problems are different from each other, the general idea to
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treat these problems, in a high level, is similar: taking the advantage of their

uniqueness property, we first characterize a set of unknown rewards in which

each solution point is consistent with the observed polices, and then develop

algorithms to pick the most “reasonable" solution. This two-step paradigm

can be extended to other MIRL problems.

It is worth emphasizing the rationale for us to address the above six prob-

lems. First, zero-sum MIRL is interesting because in reality, zero-sum games

are very popular. For example, a basketball game, football game or other

purely win-or-lose competitive game is either actual or can be treated as a

zero-sum game. One potential advantage of zero-sum MIRL brings to the

table is, it is able to learn the opponents’ preferences, as is discussed in Sec-

tion 1.1.1 We show this in an abstract soccer game example in Chapter 4.

The uCS-MIRL is a fully cooperative game and an obvious application is

the manufacturing problem described in Section 1.1.2. The cooE-MIRL ap-

plies in a all- win or all-lose situation. It also applies in a manufacturing task

that can be accomplished only when workers coordinate their jobs closely

and carefully. The application for advE-MIRL is straightforward, and is ap-

plicable to more than two agents. One of its applications can be marketing:

by observing the competition among several local major automobile dealers

and applying advE-MIRL, a new dealer would be able to have a better insight

into not only the whole market (which can be obtained through a statistical

analysis), but also each of its potential opponents’ strategies. The uCE- and

uNE-MIRL can be regarded as a constrained uCS-MIRL problem. In the man-

ufacturing problem, they are particularly useful when the coordinated robots

are imposed a resource constraint.

There are two reasons that we do not select the remaining three equilibri-

ums, eCE, rCE and lCE. First, we do not think any of these equilibriums has

many real applications. Second, the way we treat the other six equilibriums

can be applied to them and thus this is our future work.
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To conclude, we are the first, to our knowledge, to propose a set of MIRL

algorithms covering all types of games, from cooperative to non-cooperative

games. In addition to the theory of MIRL we develop in this dissertation, our

contributions to the MIRL community also include:

• Formalize a stochastic game based framework for MIRL problems;

• Propose a two-step treatment that can be applicable to other MIRL

problems,and;

• Develop a novel way, Monte-Carlo simulation, to evaluate the quality

of solutions for MIRL problems.

1.3 Dissertation Organization

The remainder of this dissertation is organized into five chapters. In Chap-

ter 2, we give a brief introduction of multi-agent systems and game theory,

which are prerequisites of our MIRL algorithms. Chapter 3 reviews MRL

research findings and current MIRL research progress. Chapter 4 proposes

a Bayesian algorithm for zero-sum MIRL problems. Chapter 5 covers five

general-sum MIRL cases, and proposes five algorithms for the five cases, re-

spectively. Finally, in Chapter 6, we offer conclusions and suggestions for

future research.
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Chapter 2

Background

Agent interaction and learning relies upon existing concepts and ideas from

machine learning, statistics, economics and sociology. Two major theoretical

background of this dissertation, in addition to machine learning and other

statistical techniques, are multi-agent system and game theory. The former

one builds the system basis and the latter provides a rigorous mathematical

description of interactions between multiple agents.

2.1 Multi-agent Systems

Since the early 1980’s the multi-agent system MAS became an increasing pop-

ular architecture for solving computational problems of a distributed nature.

Although today’s AI problems are increasingly complex with high computa-

tional expenses, the development of salable and reliable distributed system

offers the possibility to handle these problems. Hence MAS plays a more and

more vital role in AI. Although the MAS has found a huge number of appli-

cations, many of them can be classified in terms of objectives into three main

categories:

• Simulation and Prediction. A MAS can be constructed by simulating tens

of thousands of individual agents. The goal is to search for explanatory

insight into emergent properties of the group of agents. For example,
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local police can treat a local resident as an agent, assigning various at-

tributes to him or her with some randomness added to model his or her

behavior (Zhang and Brown, 2014). This may yield insight into societal

trends or provide a forecast of potential events.

• Optimization. This category applies when the research question is fo-

cused on resource allocation, coalition formation and cooperative de-

centralized decision making. For example, a robotic soccer team design

is to find state-of-the-art algorithms to guide individual activities and

thus optimize team performance (Ould-Khessal, 2005).

• Learning. To understand how the MAS works or evolves, one way is to

break the whole system down and either focus on individual agents (for

a distributed MAS), or consider their mutual interactions as well (for a

centralized MAS). Learning from them help us understand some phe-

nomenon arised from the system and predict the system evolvement.

The literature offers a variety of definitions of agent, without a univer-

sal understanding of the term. Definitions tend to be strongly biased by the

fields in which they arise, such as artificial intelligence or cognitive science.

In our opinion, the following definition given by Maes (Maes, 1995) repre-

sents the perspective of AI community.

“Autonomous agents are computational systems that inhabit some com-

plex, dynamic environment, sense and act autonomously in this environ-

ment, and by doing so realize a set of goals or tasks for which they are

designed."

The above definition holds for a MAS. Each agent in a MAS takes actions

purposely and interact with each other. Stone and Veloso define a MAS as

follows (Stone and Veloso, 2000).
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“A multi-agent system is a loosely coupled network of problem-solving

entities (agents) that work together to find answers to problems that are

beyond the individual capabilities or knowledge of each entity (agent)."

As few system involves exactly only one agent, modeling most problems

as MASs leads to a higher accurate solution than modeling them as single-

agent systems; in our opinion, it has the following advantages:

• From a perspective of resource distribution, a single-agent system may

suffer from resource limitation, which potentially leads to performance

performance bottlenecks or even failures. In contrast, an MAS is able to

break through this restriction in the sense that one agent’s failure does

not cause the callapse of the whole system (Lynch, 2009).

• A single-agent system, in many cases, approximates an MAS by treat-

ing other adaptive agents as passive objects or part of the environment.

This approximation simplifies the model at the cost of losing accuracy.

• In a highly large complex system where interconnection of multiple

sub-systems exists, an MAS provides such a two-layer hierarchical so-

lution that in the upper layer, treating each sub-system as a single agent

and building a wrapper around it while in the bottom layer, unwrap-

ping them and applying a MAS treatment.

The main objective of the agents in an MAS is to learn how to act for

some purpose. For any agent, however, learning is more difficult in an MAS

than in a single agent system because of the presence of multiple decision

makers, which raises issues such as interferences, communications and co-

ordinations. Since its inception, a lot of research efforts have been put into

the field of MAS and thus enables us to apply MAS approaches to enormous

fields, such as AI (Stone and Veloso, 2000), machine learning (Hu and Well-

man, 1998; Littman, 1994), distributed systems (dInverno et al., 2004), com-

munications (Giles and Jim, 2002; Pitt and Mamdani, 2000), robotic systems
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(Liu and Wu, 2002), operations research (Gabel and Riedmiller, 2007) and

economics (Bajo, Mathieu, and Escalona, 2017). There are many frameworks

and schematics to model an MAS, and one of them is to borrow ideas from

Reinforcement Learning and game theory. This is the perspective adopted in

this dissertation.

2.2 Game Theory

Borrowing the definition of agent in Section 2.1, Game Theory is a mathemat-

ical framework for studying the interactions between rational agents. In a

game, a number of agents interact, in either a cooperative or noncooperative

fasion, take actions accordingly, and eventually receive some benefit or loss

upon joint actions (Ferguson, 2008). Game theory has been widely used in

economics, social science, psychology, biology and computer science (Owen,

1968). By studying game theory, we are able to:

• Find the best actions to taken in consistent with our objectives, and;

• Understand what is happening in order to make better predictions about

the future.

Another topic in game theory attracs our attention is mechanism design,

which is also called “inverse game theory". Mechanism design aims to de-

sign economic mechanisms or incentives to achieve some desired objective

(for example, system-wide goal or designer’s selfish objective), based on the

assumption that players act rationally (Hurwicz and Reiter, 2006).

2.2.1 Strategic Form Game

In game theory, Strategic Form, or Normal Form is a simultaneous game rep-

resented by a matrix where the rows denote actions of one agent and the

columns denote actions of other agents (Fudenberg and Tirole, 1991). When
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there are only two agents involved the game is known as a bimatrix game. For

example, the famous Prisoner’s Dilemma (Amadae, 2016), shown in Figure 2.1,

is a normal form game in which players act simultaneously (or at least do not

observe the other player’s act before taking their own) and receive payoffs as

specified for the joint actions taken. In each cell, the first number represents

the payoff to the row player (in this case player #1), and the second number

represents the payoff to the column player (in this case player #2). For exam-

ple, if both players take Cooperate action, both of them will receive a payoff

of -1. In each game, we have to define

• The set of players;

• The strategy of each player, and;

• The payoffs to each player depending their joint actions.

FIGURE 2.1: Normal form game example: Prisoner’s Dillema

A more rigorous and formal definition of normal form game is (Ozdaglar,

2010):

Definition 2.1. A strategic form game is a triplet
〈
I, (Ai)i∈I , (ui)i∈S

〉
where I is

the finite set of players; Ai is the set of available actions for player i; ai ∈ Ai is an

action for player i; ui : A → R is the payoff (utility) function of player i where

A =
∏

iAi is the joint action.

One more important concept in game theory is strategy (Ozdaglar, 2010).

A strategy is a complete description of how to play the game. A pure strat-

egy determines an action that a player will always take. A mixed strategy
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determines a probability distribution over all pure strategies and according

to that distribution, a player is allowed to select a pure strategy. Since prob-

abilities are continuous, there are infinitely many mixed strategies available

to a player. In addition, a set of strategies of all players is a strategy profile.

Finally, it is worth noting that in Section 2.1, the sums of payoffs of the

two players are not all 0 for all cells. This type of game is called a general-sum

game. Otherwise the game is called a zero-sum game and in this case, we

usually only put player #1’s payoff in each cell.

2.2.2 Nash Equilibrium

In game theory, a major class of games is Noncooperative Game. In general,

communication is not allowed for players in a noncooperative game so that

no binding agreements can be achieved. Thus the only agreements that may

to occur are those that are self-enforcing, in which no player is able to gain by

unilaterally violating the agreements. Such an agreement is called strategic

equilibria or Nash equilibria (NE) (Ferguson, 2008). The formal definition of

NE is:

Definition 2.2. A mixed strategy profile π is a (mixed strategy) Nash equilibrium

if and only if for each player i,

Ri (πi, π−i) ≥ Ri (ai, π−i) , ai ∈ Ai (2.1)

where πi and ai denote a mixed and pure strategy of player #1, respec-

tively, and π−i denotes the joint strategies of others.

To better illustrate NE, we now use the Prisoner’s Dilemma example in

Figure 2.1. To find a NE in that game, we examine each pure strategy profile

in turn, as follows (C andD are short forCooperate andDefect, respectively):
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• (C,C): player #1 tends to choose D rather than C because she would

obtain a payoff of 0 rather than -1, given player #2 does not change.

Thus this strategy profile is not a NE.

• (C,D): player #1 tends to choose D rather than C because she would

obtain a payoff of -2 rather than -5, given player #2 does not change.

Thus this strategy profile is not a NE.

• (D,C): player #2 tends to choose D rather than C because she would

obtain a payoff of -2 rather than -5, given player #1 does not change.

Thus this strategy profile is not a NE.

• (D,D): Neither player can increase theirs payoffs by changing strate-

gies. Thus this strategy profile is a NE.

The most important theorem regarding to the existence of NE is as follows

(Nash, 1951; Owen, 1968):

Theorem 2.3. (Nash existence) Every finite game has at least one mixed strategy

Nash equilibrium.

A rigorous proof of this theorem can be found in several works (Ozdaglar,

2010; Owen, 1968). Note that in the above Prisoner’s Dilemma game, there is

only one pure NE (Defect, Defect). It is worth emphasizing that a pure NE is

not guaranteed to exist for a finite game. Theorem 2.3 is important because

• It is difficult to understand its properties without knowing the existence

of NE, and;

• We can focus on developing algorithms of finding the NEs.

We have just introduced the Nash’s existence theorem applied for finite games.

There are also similar Nash’s existence theorems (for pure and mixed) for in-

finite games (Ozdaglar, 2010), but that is beyond the scope of this disserta-

tion.
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Although the problem of finding NE has found increasing applications

in many fields, it has been shown that it is a NP-hard problem (Daskalakis,

Goldberg, and Papadimitriou, 2009). So far, many algorithms, such as Lemke-

Howson Algorithm, have been developed to address this problem. More

details of the Nash-finding works include (Abbot, Kane, and Valiant, 2004;

Daskalakis, Goldberg, and Papadimitriou, 2009).

2.2.3 Correlated Equilibrium

To interpret Correlated Equilibrium (CE), it is better to first go through an

example. Consider the Chicken game (Rapoport and Chammah, 1966) shown

in Figure 2.2. This is a two-player general-sum game. Player #1 (row player)

has the option to play C or D and and so does Player #2 (column player). In

each cell, the first number is the payoff to player #1 and the second number

is the payoff to player #2. More formally, the cell indexed by row x and y

represents a payoff pair (a, b), where a = u1 (x, y) and b = u2 (x, y).

FIGURE 2.2: Chicken Game

Assume there is a trusted mediator devising a joint bi-strategy π for Player

# 1 and Player # 2 as the following:

1. Player # 1 takes action C and Player # 2 takes action C, with probability

πCC ;



2.2. Game Theory 21

2. Player # 1 takes action C and Player # 2 takes action D, with probability

πCD;

3. Player # 1 takes action D and Player # 2 takes action C, with probability

πDC ;

4. Player # 1 takes actionD and Player # 2 takes actionD, with probability

πDD;

where πCC +πCD +πDC +πDD = 1. The mediator picks one of the above four

pure bi-strategies according to this probability distribution. Once a pure bi-

strategy is picked, the mediator will make a recommendation to both players

accordingly. However, both players receive the recommendation regarding

their own actions without knowing what recommendation the other player

receives. Each player has the option to accept the recommendation or not.

A CE is such an equilibrium that each player will accept the recommen-

dation with the belief that the other player will also accept the recommenda-

tion. In other words, in the case that the other player takes the recommended

action, one will not benefit from deviating from his recommendation.

In the above game, a trusted party designs a probability distribution over

joint actions, π = (πCC , πCD, πDC , πDD). Then it pick one among the four, ac-

cording to π, say (C,C) to player 1 and 2. If π is a CE, the following inequality

must hold:
6πCC + 2πCD ≥ 7πCC + 0πCD

6πCC + 2πDC ≥ 7πCC + 0πDC

(2.2)

Similarly, we will have

7πDC + 0πDD > 6πDC + 2πDD,

6πCC + 2πDC > 7πCC + 0πDC ,

7πCD + 0πDD > 6πCD + 2πDD

(2.3)
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Armed with some intuition of CE given by the preceding example, we

now formally define CE as follows:

Definition 2.4. Let ∆ (A) denote the set of probability distribution over A, and

R be a random variable taking values in A =
∏

i∈I Ai distributed according to a

π ∈ ∆ (A). Then π is a correlated equilibrium if and only if

Σa−i∈A−i
P (R = a|Ri = ai) [ui (ai, a−i)− ui (ǎi, a−i)] ≥ 0,

for all ai ∈ Ai such that P (Ri = ai) > 0 and all ǎiAi \ ai.

One real application of CE is the traffic light control shown in Figure 2.3.

A traffic light sends a private message with action recommendation to each

car (“stop" for A and C and “go" for B and D). Each car can decide whether

to accept it or not. Rationally, no car will reject the recommendation from the

traffic lights by assuming that all other cars will obey the rules.

FIGURE 2.3: Traffic light control

Similar to NE, an important theorem regarding to the existence of CE is

as follows (Hart and Schmeidler, 1989):

Theorem 2.5. (Correlated equilibrium existence) Every finite game has at least one

Correlated equilibrium.
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In fact, CE is a superset of NE (Aumann, 1974), and hence for any general

sum game, the number of CEs is larger than or equal to that of NEs. Take the

above chicken game as an example. There are three NEs, as the following:

1. pure strategy - (C,D), with game values R1 = 2, R2 = 7

2. pure strategy - (C,D), with game values R1 = 7, R2 = 2

3. mixed strategy - π1 :
(
2
3
C, 1

3
D
)
, π2 :

(
2
3
C, 1

3
D
)
, with game values R1 =

R2 = 14
3

It is easy to show that π =
{
πCC = 1

2
, πDC = 1

4
, πCD = 1

4

}
is a CE but not a NE.

Each player’s game value, under this equilibrium, is 5.25.

In contrast to NE, for which no efficient method of computation is known,

finding CEs can be done in polynomial time via linear programming. How-

ever, the non-convergence issue still occurs for MRL unless a particular and

unique CE is agreed.

2.3 Bayesian Inference

Throughout this dissertation we extensively use an approach to inverse learn-

ing problems that is grounded in the framework of Bayesian statistical infer-

ence. Bayesian statistical inference provides a probabilistic method for prob-

lems involving the estimation of unknowns, where the uncertainty in the val-

ues of these unknowns can be characterized by probability models. There are

two major methods for Bayesian estimation, maximum likelihood (ML) and

maximum a-posteriori (MAP) (Casella and Berger, 2001). While both meth-

ods use observations to make estimations, MAP offers an additional benefit

of taking advantage of the prior knowledge of the unknowns, usually in the

form of a probability distribution over possible of values of the unknowns.

Therefore, MAP is a compromise between the prior and the likelihood. MAP

performs better when an informative prior is available.
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We use an example for illustration. Suppose a scalar parameter θ needs

to be estimated. Our initial uncertainty in the value of θ, which is the prior,

could be described by a probability distribution f(θ). We then receive a se-

quence of observations x1, . . . , xn that are generated from some random pro-

cess related to θ. Each observation is often considered i.i.d. We also assume

that a conditional PDF f(xi | θ) that characterizes the likelihood of observing

a specific value xi given θ is available to us. The MAP of θ given the sequence

of observations can be expressed as

θMAP = argmaxθ {f(θ |x1, . . . , xm)}

where

f(θ |x1, . . . , xm) ∝ f(θ)f(x1 | θ) · · · f(xm | θ)

The PDFs of many common random variables, particularly if they belong

to the exponential family, are log-concave (Marshall and Olkin, 1988). Thus

the above optimization problem is often convex.
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Chapter 3

Related Work

This chapter reviews IRL, MRL, and the most recent MIRL research results.

3.1 IRL

A finite-state, infinite horizon Markov decision process (MDP) is defined as a

tuple M = (S,A,P , γ, r), where S = {s1, s2, · · · , sn} is a set of n states; A =

{a1, a2, · · · , am} is a set of m actions; P = {Pa}ma=1 is a set of state transition

probabilities; γ is a discount factor; r is a state dependent reward vector of

length n such that r(s) is the immediate reward received upon arriving state

s. For any a ∈ A, each row of the n × n matrix, Pa, denoting as Pas, is the

probability distribution over all next states transiting from current state s

upon taking action a (Ng and Russell, 2000).

Let π be a policy of actions to take over all states, the value function at state

swith respect to policy π is defined as V π(s) = E[
∑∞

t=0 γ
trπ(st)|s = s0], where

the expectation is over the distribution of the state sequence {s0, s1, . . . } (su-

perscripts index time) given policy π. The Q-function Qπ(s, a) is defined, as

a function of state s and action a under policy π, to be the expected return

from state s, taking action a and thereafter following policy π. Given a policy
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π, we can have

V π(s) = rs + γ
∑
s′

Pπ(s′)V π(s′)

Qπ(s, a) = rs + γ
∑
s′

Pas(s
′)V π(s′)

for all s ∈ S and a ∈ A. The well-known Bellman optimality conditions state

that π is optimal if and only if, ∀s ∈ S, we have π(s) ∈ arg maxa∈AQ
π(s, a)

(Bellman, 1957).

An inverse Markov decision process (IMDP) MI = (S,A,P , γ,O) is defined

as a tuple includes the states, actions, and state transition dynamics and

a reward discount factor. While it lacks a specification of the reward vec-

tor, MI includes a set of observations O of state-action pairs generated. We

can define the inverse reinforcement learning (IRL) problem associated with

MI = (S,A,P , γ,O) to be that of finding a reward vector r such that the ob-

servations are results of an optimal policy for M = (S,A,P , γ, r). The IRL

problem is, in general, ill-posed in nature, which has motivated researchers

to develop various models for restricting the set of feasible solutions (Abbeel

and Ng, 2004; Neu and Szepesvári, 2007; Syed, Michael, and E., 2008; Krish-

namurthy and Todorov, 2010). Ng and Russel (Ng and Russell, 2000) charac-

terize the feasible reward vectors that are consistent with an observed policy

π, as (Pπ − Pa) (In − γPπ)−1 r ≥ 0,∀a ∈ A, where Pπ is the transition probabil-

ity matrix relating to observed policy π and Pa denotes the transition proba-

bility matrix for any other action. Note that the trivial solution r = 0 satisfies

these constraints, which highlights the underspecified nature of the prob-

lem and the need for reward selection mechanisms. Ng and Russel (Ng and

Russell, 2000) propose the idea of selecting a reward which maximizes the

margin between the optimal and suboptimal policies. Another typical idea is

to take advantage of MAP estimation or other Bayesian methods (Qiao and

Beling, 2011; Ramachandran and Amir, 2007; Levine, Popović, and Koltun,

2011). Recent advancements in IRL include apprenticeship learning via IRL
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(Abbeel and Ng, 2004), policy matching (Neu and Szepesvári, 2007), the treat-

ment of partial policy observation (Choi and Kim, 2009) and linearly-solvable

stochastic optimal control (Krishnamurthy and Todorov, 2010).

3.2 MRL Summary

One shortcoming of IRL that is particularly relevant to games is that it as-

sumes no other adaptive agents exist in the environment. However, many

games are multi-agent, mutually influential systems. To jointly consider the

decision making processes of interacting rational agents, we need different

models and techniques. In the forward direction, multi-agent reinforcement

learning (MRL), proposed by Littman (Littman, 1994), extends RL to a multi-

agent framework. Littman makes use of stochastic games (Owen, 1968) to

model MRL, limiting consideration to the special case of two-player zero-sum

games, in which one agent’s gain is always the other’s loss, and applies this

algorithm in a simple grid-world soccer game. Hu and Wellman (Hu and

Wellman, 1998) extend Littman’s work, proposing a two-player general-sum

stochastic game framework for the MRL problem. They point out that the

concept of optimality loses its meaning in MRL problems since any agent’s

payoff depends on the action choices of others. Consequently, they adopt as

a solution concept the Nash equilibrium, in which each agent’s choice is the

best response to other agents’ choices. Later MRL work has focused on the

development of solution concepts and methods, in competing games as well

as cooperative games, including (Abdallah and Lesser, 2008; Ghavamzadeh,

Mahadevan, and Makar, 2006; Patek, Beling, and Zhao, 2007; Zhao, Patek,

and Beling, 2008). Representative applications include traffic control (Baz-

zan, 2009) and robotics (Duan, Cui, and Xu, 2012).
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3.3 zero-sum MRL

The simplest MRL problem, proposed by Littman (Littman, 1994), is that two

agents play a zero-sum stochastic game. Though simple enough, there are

still many applications in reality. A two-person zero-sum stochastic is de-

fined as follows:

Definition 3.1. A two-player zero-sum stochastic game Γ is a 6-tuple {S,A1, A2, r, P, γ},

where S is the common discrete state space, which is finite; Ak is the discrete action

space of player k for k = 1, 2; r : S × A1 × A2 7→ r is a reward function map-

ping state and joint actions to a scalar, for player 1 (−r is the reward for player 2);

P : S × A1 × A2 7→ ∆ is the transition probability map, where ∆ is the set of prob-

ability distributions over state space S conditioning on different joint actions; and

γ ∈ (0, 1) is a reward discounted factor.

Like Markov Decision Processes (MDP) in RL, two assumptions are im-

plicitly made:

• Stationary: for every s, s′ ∈ S, the transition probability from s to s′

given that the players take actions a1 ∈ A1 and a2 ∈ A2, is independent

of time, i.e., p (s′|s, a1, a2, t) := P (St+1 = s′|St = s, At1 = a1, A
t
2 = a2), for

all t = 0, 1, 2, ....

• Markovian: for each player, the transition probability to st, besides At1

and At2, only depends on st−1, i.e.,

P
(
St+1 = s′|St = s, St−1 = st−1, · · · , S0 = s0, A

t
1 = a1, A

t
2 = a2

)
=P
(
St+1 = s′|St = s, St−1 = s′t−1, · · ·S0 = s′0, A

t
1 = a1, A

t
2 = a2

)
.

Recall that the stationary and Markovian assumptions guarantee that a tra-

ditional RL problem is solvable, i.e., a convergence solution exists for a MDP.

Likewise, for MIRL, a stationary solution a zero-sum stochastic game, i.e.,
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each player selects a stationary policy over the state space, taking the other’

strategies into account, in order to maximize her expected discounted sum of

rewards. The minimax equilibrium catches our eye because of the following

theorem (Ferguson, 2008):

Theorem 3.2. Minimax Theorem. For every finite two-person zero-sum game

1. there is a number V , called the value of the game,

2. there is a mixed strategy for Player I such that I ′s average gain is at

least V no matter what II does, and

3. there is a mixed strategy for Player II such that II ′s average loss is at

most V no matter what I does.

The algorithm is described in Algorithm 1. The strength of the minimax

criterion is that it allows each agent to find a “stationary" strategy that is

guaranteed to exist such that a minimum payoff would be achieved no mat-

ter what its opponent behaves. Another advantage is that due to linear pro-

gramming, even large size problems can be solved efficiently.

Algorithm 1 Zero-sum Q-Learning Algorithm (Littman, 1994)

Initialize:
For all s ∈ S, a1 ∈ A1, a2 ∈ A2, let Q (s, a1, a2) := 1
For all s ∈ S, let V (s) := 1
For all s ∈ S, a1 ∈ A1, let π (s, a1) := 1

|A|
Choose an action:
With probability explor, return an action uniformly at random. Otherwise,
if the current state is s, return action a1 with probability π1(s, a1).
Learn:
After receiving reward r1 for moving from s to s′ via action a1 and oppo-
nent’s action a2
Let Q1 (s, a1, a2) := (1− α)Q1 (s, a1, a2) + α [r1 + γV1(s

′)]
Use linear programming to find π(s, ·) such that
π1 (s, ·) := argmax {π′1 (s, ·) ,min {a′2, sum {a′1, π (s, a′1)Q1 (s, a′1, a

′
2)}}}

Let V1 (s) := min {a′2, sum {a′1, π (s, a′1)Q1 (s, a′1, a
′
2)}}

Let α = alpha ∗ decay
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3.4 Nash-Q MRL

The Nash-Q algorithm, proposed by Hu and Wellman (Hu and Wellman,

1998), is an extension of Q-learning to a competitive general-sum MRL prob-

lem. Like Littman’s work (Littman, 1994), a stochastic game is adopted as the

basic framework in place of MDP. With an assumption that all agents, due to

their rationality, will behave to achieve a Nash equilibrium, each agent main-

tains Q-functions over joint actions and updates the values in an exploration

and exploitation fashion.

There are many algorithms to calculate Nash equilibria in a general-sum

game. For a bi-matrix game, Lemke-Howson algorithm (Lemke and How-

son, 1964) is most popular, and it is said to be “the best known among the

combinatorial algorithms for finding a Nash equilibrium". However, it is

only applicable for two player games. Though computing Nash equilibria in

small games (two players and only a handful of actions for each player) us-

ing sequential algorithms is tractable, real-life situations can rarely be mod-

eled using small size games. Rather, the involvement of many players and

many actions makes finding the Nash equilibria quite difficult. In the worst

case, current algorithms cannot guarantee better than exponential time to

find even one Nash equilibrium.

Due to this reason, a major drawback of the Nash Q-learning algorithm is

the lack of convergence guarantee. For example, if multiple Nash equilibria

exist in a game, which is often the case, agents may not pick the same Nash

equilibrium because they update their Q-values in a decentralized way. But

authors demonstrate that if each game has a global optimal point or a sad-

dle point which is also a Nash equilibrium, empirical convergence is able

to achieve. The Nash-Q algorithm, demonstrated using two players, can be

summarized in Algorithm 2 (Hu and Wellman, 1998).
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Algorithm 2 Multi-agent Q-Learning Algorithm (Hu and Wellman, 1998)

Initialize:
Let t = 0, start from s0
For all s ∈ S, a1 ∈ A1, a2 ∈ A2, let Qt

1 (s, a1, a2) = 1, Qt
2 (s, a1, a2) = 1,

Loop:
Choose action at1 based on π1(st), which is a mixed strategy Nash equilib-
rium solution of the bimatrix game (Q1(st), Q1(st)).
Observe rt1, rt2, at2 and st+1

Update Q1 and Q2 such that
Qt+1

1 (s, a1, a2) = (1− αt)Qt
1 (s, a1, a2)+αt [rt1 + βπt1 (st+1)Q

t
1 (st+1) π

t
2 (st+1)]

Qt+1
2 (s, a1, a2) = (1− αt)Qt

2 (s, a1, a2) +αt [rt1 + γπt1 (st+1)Q
t
2 (st+1) π

t
2 (st+1)]

Let t := t+ 1

However, as the authors point out, this Nash-Q algorithm is not applica-

ble to a general case because the convergence depends on certain restrictions

on the bimatrix games during learning. Therefore, the application of Nash-Q

learning in reality is limited. In addition, even if the convergence is achieved,

it is required that every action has been tried and every state has been vis-

ited. Though it is still not close to be able to solve real applications, Nash-Q

learning algorithm is an important addition to the theory of MRL.

3.5 MIRL Summary

Inverse learning problems for MRL, which we term MIRL, include the prob-

lem of estimating the game payoffs being played, given only observations of

the actions taken by the players. Compared to the IRL problem, MIRL is more

challenging in that it is formalized in the context of a stochastic/Markov

game (Shapley, 1953; Owen, 1968) rather than a MDP. Games bring two pri-

mary challenges: First, the concept of optimality, central to MDPs, loses its

meaning and must be replaced with a more general solution concept, such as

the Nash equilibrium. Second, the non-uniqueness of equilibria means that

in MIRL, in addition to multiple reasonable solutions for a given inversion

model, there may be multiple inversion models that are all equally sensible

approaches to solving the problem. IRL is a special or approximate version
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of MIRL in the sense that the former treats other agents in the system as part

of the environment, ignoring the difference between responsive agents and

passive environment.

MIRL can be potentially useful in many real applications. For example,

the use of IRL is proposed in quantitative finance, specifically, to understand

the behaviour of stock trading algorithms and furthermore identify some

particular type of trading (Yang et al., 2015). This treatment is reasonable

in a typical trading market. Usually there are many traders involved and

their activities give rise to “cancellation effects". Thus for a particular trader,

she does not need to take into account what every other trader is doing (and

impossible) but can regard the whole market as a noisy system. In some un-

usual cases, however, it may not work. For example, if there are two traders

with high volumes of trades and dominate the price trend, the market can no

longer be able to regarded as a passive system. Rather, one dominator has

to take the other’s possible strategies into account before making decisions.

Obviously, MIRL fit more into in this circumstance than IRL.

Recently MIRL has attracted some interest from the machine learning re-

search community, but the research findings are quite limited. Natarajan et al.

address MIRL using an IRL model for multiple agents without dealing with

interactions or interference among agents (Natarajan et al., 2010). Waugh

et al. (Waugh, Ziebart, and Bagnell, 2011) contribute to the inverse equilib-

rium problem, but in the context of simultaneous one-stage games, rather

than the sequential stochastic games that are the subject of MIRL. Reddy et

al. (Reddy et al., 2012) use the concept of subgame perfect equilibrium (SPE)

(Maskin and Tirole, 2001), a refinement of NE used in dynamic games, to

address MIRL for general-sum stochastic games that have the property that

each player’s rewards do not depend on the actions of the others. Hadfield-

Menell et al. (Hadfield-Menell et al., 2016) introduce a cooperative IRL prob-

lem, motivated from an autonomous system design problem, where the robot
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is required to align its value with those of the humans in its environment in

such a way that its actions contribute to the maximization of values for the

humans. Their problem is not modeled as a MIRL problem in a stochastic

game context.





35

Chapter 4

Zero-sum MIRL

4.1 Introduction

This chapter proposes a novel Bayesian approach to MIRL. We establish a

theoretical foundation for competitive two-agent zero-sum MIRL problems

and describe Bayesian MIRL (BMIRL), a Bayesian solution approach in which

the generative model is based on an assumption that the two agents follow a

minimax bi-policy. To our knowledge, this topic has not been deeply studied

in the literature. Natarajan et al. (Natarajan et al., 2010) present an inverse

reinforcement learning model for multiple agents. However, that paper does

not consider competing agents or game-theoretic models, a key characteristic

of our work. Waugh et al. (Waugh, Ziebart, and Bagnell, 2011) do consider

a form of the inverse equilibrium problem. However, that paper considers

simultaneous one-stage games, rather than the sequential stochastic games

we consider here. A similar method, termed decentralized MIRL (d-MIRL), is

a decentralized linear IRL approach based off work by Reddy et al. (Reddy

et al., 2012), while our work is centralized and set in a Bayesian framework.

Several numerical experiments are performed in the setting of an abstract

soccer game with simple grid structure and movement actions and probabil-

ity models governing ball exchange and the outcomes of ball kicks at the goal

(the agents’ shoot action). For the inverse learning problem, the unknown re-

wards correspond to location of goals and player perception of a successful
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shot from each position on the field. Investigation centers on relationships

between the extent of prior information and the quality of learned rewards.

The quality of learned rewards is measured by distance metrics in reward

and probability space and by the game playing success of agents that use the

rewards as the basis for an equilibrium policy. The weakest priors result in

learned rewards that would give an agent using them no chance of winning

the game, while the strongest priors result in learned rewards essentially as

good as ground truth. Additionally, results suggest that covariance structure

is more important than mean value in reward priors.

The remainder of this chapter is structured as follows: Section 4.2 intro-

duces notation, terminology, definitions, and some basic properties needed

for later work. Section 4.3 provides the main technical results, including a

Bayesian framework for MIRL and formulation of a convex optimization

problem for learning rewards. Section 4.4 and Section 4.5 extend the BIRL

and d-MIRL approaches to the case where reward is also action dependent.

Section 4.6 introduces the soccer model and compares the results generated

from the three methods. Section 4.7 provides evaluation of learned rewards

of our BMIRL method in terms of game playing success in simulations of the

soccer game. Section 4.9 offers concluding remarks.

4.2 Preliminaries

4.2.1 Zero-sum Stochastic Games

A two-player zero-sum discounted stochastic game is played as follows. The

game begins in one of finitely many states. There is a reward for each player.

In each state, each player simultaneously selects one of finitely many actions,

and hence receives a reward that associates with current state and sometimes,

as well as the actions selected by one or both players. The game then makes



4.2. Preliminaries 37

a stochastic transition to a new state, where the transition is dependent on

the starting state and the jointly selected actions. This process is repeated

over an infinite time horizon, where geometrically discounted rewards are

accrued additively.

Under these rules, we can specify an instance of a two-person zero-sum

discounted stochastic game in terms of the state space S = {1, 2, · · · , N}, the

action spaces A1 = A2 = {1, 2, · · · ,M} (Note that it is not required for the

two agents share the same action space), two reward vectors r1 and r2 of the

two agents involved, state transition probabilities p (s′|s, a1, a2), and a reward

discount factor γ ∈ [0, 1). Reward values are assumed to be dependent on

state and the actions taken by the two agents. Hence, the dimension of r1 (r2)

depends on the the size of S, A1 and A2. We use r1 (·) (r2 (·)) to denote a

scalar; e.g., r1 (s, a1, a2) represents the reward value gained by agent 1 when

the two agents take actions a1 and a2, respectively, in state s. As it is zero-

sum, r1 (s, a1, a2) = −r2 (s, a1, a2). The symmetry of rewards between the two

players allow to use r to denote r1.

A solution to a stochastic game is a bi-policy, which provides the rules

that each player follows when selecting actions at each state. Without loss

of generality, a bi-policy can be specified by a collection of conditional prob-

ability mass functions π1 and π2, where player k selects action ak in state s

with probability πk(ak|s). Each πk(·|s) is referred to as the strategy played by

player k in state s.

Given that each player can select from among M actions, the strategy fol-

lowed by player k in state s can be represented by theM×1 vector πk (s). The

bi-policy for state s is the set of two column vectors that denote the strategies

employed by player 1 and player 2 in state s,

π (s) = {π1 (s) , π2 (s)} .
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In this notation, the bi-policy is defined as the set of all bi-strategies over all

states,

π = {π (1) , π (2) , · · · , π (N)} .

We use r̃π (s) to denote the single-stage expected reward value received by

agent 1 at state s under bi-policy π. Then r̃π is a column vector with its ith

component r̃π (s). Define r̃π (s) to be

r̃π (s) =
∑
a1,a2

π1 (a1|s) π2 (a2|s) r (s, a1, a2)

= [π1 (s)]T r (s)π2 (s) ,

(4.1)

where r (s) is a M ×M matrix, whose entries are independent of π (s). We

can express this relationship in matrix notation as

r̃π = Bπr, (4.2)

where Bπ is a N ×NM2 matrix constructed from bi-policy π, whose kth row

is: [
Φπ

1,1 (k) ,Φπ
1,2 (k) , · · · ,Φπ

M,M (k)
]
,

where

Φπ
i,j (k) =

0, · · · , 0︸ ︷︷ ︸
k−1

, φπi,j (k) , 0, · · · , 0︸ ︷︷ ︸
N−k

 ,
and

φπi,j (k) = π1 (i|k) π2 (j|k) .

The concepts of the value function and Q-function in MDPs have natural

analogs in zero sum stochastic games. In particular, let us define the value

function to be the bi-policy-dependent, discounted expected sum of rewards
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of player 1 as a function of the initial state s:

Vπ (s) =
∞∑
t=0

γtE (r̃π (st) |s0 = s) , (4.3)

where st denotes the state of the game at stage t and r̃tπ denotes player 1’s

expected reward under bi-policy π at that stage. Note that the superscript

t can be removed because of the Markov property. Vπ denotes the column

vector with ith component Vπ (i).

In addition, we define player 1’s Q-function of state s and action pair

(a1, a2), under bi-policy π, as

Qπ (s, a1, a2) = r (s, a1, a2) + γ
∑
s′

p (s′|s, a1, a2)Vπ (s′) . (4.4)

Over all states and actions, we can write equation (5.4) in matrix notation as

Qπ = r + γPVπ, (4.5)

where P is a NM2 ×N matrix with p (s′|s, a1, a2) as its elements.

Let Gπ denote transition matrix under bi-policy π. Specifically, Gπ is the

N ×N matrix with elements

gπ (s′|s) =
∑
a1,a2

π1 (a1|s) π2 (a2|s) p (s′|s, a1, a2) . (4.6)

Note that

Vπ (s) = r̃π (s) +
∞∑
t=1

γtE (r̃π (st) |s0 = s)

= r̃π (s) + γ
∑
s′

gπ (s′|s)Vπ (s′) .

(4.7)

This equation can be written in matrix notation as

Vπ = r̃π + γGπVπ. (4.8)
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Thus

Vπ = (I − γGπ)−1Bπr, (4.9)

where (I − γGπ) is always invertible for γ ∈ [0, 1) since Gπ is a transition

matrix. The value function Vπ (s) can be expressed in terms of the Q-function

as

Vπ (s) = [π1 (s)]T Qπ (s) π2 (s) , (4.10)

where Qπ (s) is a M ×M matrix for agent 1, whose (i, j) element is given by

Qπ (s, i, j). Note that while Qπ (s) is a matrix, the Qπ introduced in (5.11) is

an NM2× 1 vector. We will use this relationship between the Q-function and

the value function to define a minimax bi-policy for a stochastic game.

We will assume that rational agents playing two-player zero-sum stochas-

tic games seek a minimax bi-policy. A minimax bi-policy is an equilibrium, in

that it has the property that neither player can change the game value in their

favor given that the other player holds their policy fixed. To give a precise

definition of a minimax bi-policy, we will start by reviewing the notion of a

minimax bi-strategy for a static game (Neumann and Morgenstern, 1944).

First consider a static (single-stage) zero-sum game, where two players

simultaneously choose an action and both players receive a reward deter-

mined by the joint choice of actions. The minimax theorem states that for

every two-person zero-sum game with finitely many actions, there exists a

value V and a mixed strategy for each player such that

• Given player 2’s strategy, the best expected reward possible for player

1 is V .

• Given player 1’s strategy, the best expected reward possible for player

2 is −V .

As before, the strategies played by both players in a certain state s can be

expressed in terms of probability mass functions π1 (s) and π2 (s). Expressing
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the reward received by player 1 as an M ×M matrix Qπ (s), the value of the

game for player 1 under a minimax bi-strategy is given by

value (Qπ (s)) = max
π1(s)

{
min
π2(s)

{
[π1 (s)]T Qπ (s) π2 (s)

}}
.

A pair π1 (s) and π2 (s) that achieves this value is called a minimax bi-

strategy. For zero-sum games, a minimax bi-strategy is also a Nash equilib-

rium.

The concept of a minimax bi-strategy can be extended to two-player dis-

counted stochastic games via the following theorem (Shapley, 1953).

Theorem 4.1 (Shapley’s Theorem). There exists a bi-policy π such that

Vπ (s) = value (Qπ (s)) (4.11)

for all s ∈ S.

A bi-policy that satisfies Theorem 4.1 is called a minimax bi-policy. For a

minimax bi-policy, Vπ (s) gives the game value from each initial state s ∈ S .

Throughout the following sections it is assumed that agents are observed

playing a game according to a minimax bi-policy and that the complete bi-

policy is observable. The minimax nature of the bi-policy can then be used to

infer the reward structure of the game.

4.3 Bayesian MIRL

We will formulate two-agent MIRL problems in a Bayesian setting. Bayesian

methods have been widely adopted for IRL problems (Baker, Saxe, and Tenen-

baum, 2009; Choi and Kim, 2011; Dimitrakakis and Rothkopf, 2011; Engel,
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Mannor, and Meir, 2005; Michini and How, 2012; Qiao and Beling, 2011; Ra-

machandran and Amir, 2007). In a Bayesian setting, we assign a prior distri-

bution to the reward functions. This prior distribution encodes the learner’s

initial belief about the reward functions before any observations are made.

Given an observed bi-policy, we can generate a point estimate of the re-

ward function from the posterior distribution over reward functions. To con-

struct this point estimate, we must know the likelihood of observing each

bi-policy for each given reward function. So, consideration must be given to

determining the appropriate likelihood function for the MIRL problem and

to the development of optimization models that can be used to generate point

estimates of the reward function.

The BMIRL approach we propose is a maximum a posteriori probability

(MAP) estimate of reward under a likelihood function that encodes the no-

tion of a minimax equilibrium. Let f (r) denote the prior distribution on the

reward of agent 1 (recalling that we denote r = r1 and r1 = −r2 for zero-

sum games). We will discuss the selection of prior distributions further in

Section 4.6.2. Also, let p (π|r) denote the likelihood of observing a bi-policy

π when the true reward is r. Hence now our objective is to maximize f (r|π),

the posterior of rewards given an observed bi-policy, as follows,

f (r|π) ∝ p (π|r) f (r) .

4.3.1 Prior Distributions on Rewards

In BMIRL, we use prior distributions over reward functions to model our

initial uncertainty in the reward. Although any prior may be used, in this

chapter we prefer Gaussian priors for rewards. Gaussians are a reasonable

choice of prior since they provide a straightforward model for representing

uncertainty around a nominal choice of reward function, and have the added
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benefit of leading to analytically tractable inference procedures.

Specifically, we model r ∼ N (µr,Σr), where µr is the mean of r and Σr is

the covariance matrix. The probability density function of r is

f (r) =
1

(2π)N/2 |Σr|1/2
exp

(
−1

2
(r − µr)T Σ−1r (r − µr)

)
. (4.12)

4.3.2 Likelihood Function (Unique Minimax bi-policy)

To model the likelihood function p(π|r), we assume that the bi-policy which

the two agents follow is a unique minimax bi-policy given r. The likelihood

is then a probability mass function given by

p (π|r) =


1, if π is minimax for r

0, otherwise.
(4.13)

4.3.3 MAP Estimation Model

The posterior distribution of rewards for a given observed bi-policy is now

f (r|π) ∝ p (π|r) f (r) =


f (r) , if π is minimax for r

0, otherwise.

The MAP estimate of rewards is the vector r that maximizes f (r|π). Thus we

wish to solve the problem

maximize: f (r)

subject to: p (π|r) = 1.

(4.14)

The remainder of this section will be devoted to developing a tractable char-

acterization of the set of feasible r. Consider, as a first step, the class of static,

single-stage, zero-sum games. In these games, minimax strategies satisfy the
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conditions of the following theorem (Neumann and Morgenstern, 1944; Fer-

guson, 2008).

Theorem 4.2 (Minimax Theorem). Consider a two-person zero-sum game with

M ×M payoff matrix A. There exists a value V , a mixed strategy p for player 1,

and a mixed strategy q for player 2 such that

ATp ≥ V 1M

Aq ≤ V 1M ,

(4.15)

where 1M is the M × 1 vector in which every element is 1. Moreover, p and q are an

equilibrium bi-strategy and V is the game value if and only if (4.15) holds.

This theorem has direct implications for inverse learning problems. Con-

sider a static game as a special case of the MIRL problem, where the goal is

to recover a A such that the given bi-strategy (p, q) is a minimax bi-strategy.

Hence, the linear constraints (4.15) give a characterization of the desired con-

straint set for a two-person zero-sum static game.

We will now extend this approach to a multi-stage stochastic game. Com-

bining Theorem 4.1 with Theorem 4.2, a bi-policy π is a minimax bi-policy if

and only if

[Qπ (s)]T π1 (s) ≥ Vπ (s) 1M

Qπ (s) π2 (s) ≤ Vπ (s) 1M ,

(4.16)

for all s ∈ S . The linear inequalities (4.16) provide conditions that must hold

for the Q-function and value function of a stochastic game if π is a minimax

bi-policy.

Since our ultimate goal is to estimate the reward function of a stochastic

game, we must introduce additional constraints relating the Q-function and
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value function to rewards. From (5.11) and (5.10), recall that

Qπ = r + γPVπ

Vπ = (I − γGπ)−1Bπr,

(4.17)

and from (5.1), (5.2) and (5.8), we can deduce that

Vπ = BπQπ. (4.18)

Let Bπ1|a2=j denote the Bπ obtained when π1 is used as player 1’s policy, and

player 2 selects action a2 = j in all states. In this notation, the inequalities

(4.16) can be expressed as

Bπ1|a2=jQπ ≥ BπQπ,∀j ∈ A2

Bπ2|a1=iQπ ≤ BπQπ,∀i ∈ A1.

(4.19)

Substituting the expression for Vπ into the expression for Qπ in (4.17), we

obtain

Qπ = r + γP (I − γGπ)−1Bπr (4.20)

=
(
I + γP (I − γGπ)−1Bπ

)
r. (4.21)

Finally, letting

Dπ =
(
I + γP (I − γGπ)−1Bπ

)
, (4.22)

the inequalities (5.34) can be expressed as

(
Bπ1|a2=j −Bπ

)
Dπr ≥ 0,∀j ∈ A2(

Bπ2|a1=i −Bπ

)
Dπr ≤ 0,∀i ∈ A1.

(4.23)

Now we can formulate a convex quadratic program equivalent to (4.14).

Recall that we use a Gaussian prior in this chapter, so the objective function
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in (4.14) is log-concave. To obtain an equivalent convex optimization prob-

lem, we will instead minimize − ln (f (r)). Combining (4.23) with the nega-

tive log-prior objective, the optimization problem (4.14) can be solved as the

following equivalent convex quadratic program:

minimize:
1

2
(r − µr)T Σr

−1 (r − µr)

subject to:
(
Bπ2|a1=i −Bπ

)
Dπr ≤ 0(

Bπ1|a2=j −Bπ

)
Dπr ≥ 0,

(4.24)

for all i ∈ A1 and j ∈ A2.

The optimization problem (4.24) is specific to two-person zero-sum MIRL

problems, which is a class of problems in which the reward value depends on

both state and bi-actions. The equivalent problem for the case where reward

values only depend on state is as follows:

minimize:
1

2
(r − µr)T Σ−1r (r − µr)

subject to:
(
Gπ −Gπ2|a1=i

)
(I − γGπ)−1 r ≥ 0(

Gπ −Gπ1|a2=j
)

(I − γGπ)−1 r ≤ 0

for all i ∈ A1 and j ∈ A2.

It is worth discussing the scalability of the optimization problem. When

the problem size, n, is large, the inversion of the covariance matrix, which is

usually sparse, is computationally expensive (O(n3)). And even if we obtain

the inverse of the covariance matrix (which generally will not be sparse), the

objective of this problem includes O(n2) quadratic monomials, which may

not fit into memory. One way to tackle this problem is to first compute the

Cholesky upper-triangle factorial R of Σ, which often is sparse as Σ itself is

sparse. Then let e = RT (r − µr) and add it to the constraints. Finally, we

rewrite our objective as 1
2
eT e. This reformulation helps avoid the memory

issue.
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4.3.4 Discussion on Nonunique bi-policies

In the definition of the likelihood function and the convex program (4.24) we

have implicitly assumed that the stochastic game has a unique minimax bi-

policy. It is important to note that this assumption need not hold. Indeed

for a static two-person zero-sum games there may exist an infinite number of

minimax bi-strategies, even though each such game has a unique Nash equi-

librium value. In (Ferguson, 2008), a sufficient condition for the existence of

unique bi-strategy for a static matrix game is given: the square game matrix

A is nonsingular and 1TA−11 6= 0.

So it is clear we must consider cases where multiple minimax bipolices

exist. For ease of expression in doing so, define the following notation:

• G (r): the stochastic game given one agent’s reward vector is r.

• U (r): the set of r in which the necessary condition (5.34) is satisfied.

• U∗ (r): a subset of U (r) where π is a unique minimax bi-policy for G (r).

• M (U (r)): the optimization problem (4.24) where r ∈ U (r).

• M (U∗ (r)): a subproblem of (4.24) constrained by r ∈ U∗ (r).

We would like to solve the MAP problem for G (r) that accounts for the possi-

bility of multiple minimax strategies. Even with a generative notion such as

the idea that agents will select among equal-value equilibrium strategies with

uniform probability, however, it is difficult to develop a likelihood for this

problem because we cannot easily characterize the set of minimax equilib-

rium strategies as a function of r. As a surrogate, one might adoptM (U∗ (r)),

but again this problem is difficult to define directly. An alternate approach

is to first solve M (U (r)). Let r̃ be the optimal solution to this problem. If

r̃ ∈ U∗ then r̃ is optimal for M (U∗ (r)). If r̃ 6∈ U∗ then form r̂ = r̃ + ε, for

small random perturbation ε. With high probability r̂ ∈ U∗(r) (cf. (Rudelson

and Vershynin, 2014)) and will be nearly optimal forM (U∗ (r)).
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4.3.5 Uniqueness of bi-policy

For a static two-person zero-sum games there may exist multiple minimax bi-

strategies, even though each such game has a unique Nash equilibrium. In

(Ferguson, 2008), a sufficient condition for the existence of unique bi-strategy

for a matrix game is given: the square game matrix A is nonsingular and

1TA−11 6= 0. Note that this is not the necessary condition for the existence

of unique minimax bi-strategy. Rudelson and Vershynin (Rudelson and Ver-

shynin, 2014) show that a perturbation of any fixed square matrix by a ran-

dom unitary matrix is well invertible with high probability. From these find-

ings, we can come to conclusion that in a real world two-person zero-sum

MIRL problem, a unique bi-policy exists with high probability.

4.4 Linear d-MIRL

In this section, we extend the decentralized MIRL approach (Reddy et al.,

2012) to a two-person zero-sum MIRL problem in which each agent’s reward

depends on state and the actions of both agents. As before, let r denote player

1’s reward vector.

In (Reddy et al., 2012), the assumption is made that in a multi-agent sys-

tem all agents reach a Markov Perfect Equilibrium (MPE). This implies that, for

all s ∈ S and all i ∈ A1,

Qπ (s) > Qπ|a1=i (s) .

In (Reddy et al., 2012), rewards are selected to maximize the difference be-

tween the Q value of the observed policy and those of pure strategies, which

is analogous to the classical approach to single-agent IRL given in (Ng and

Russell, 2000). For our notation, the equivalent problem for agent 1 is the
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following linear program:

maximize:
N∑
s=1

min i∈A1

(
r̃π (s)− r̃π|a1=i (s)

)
+ γ

(
Gπ (s)−Gπ|a1=i (s)

)
(I − γGπ)−1Bπr

− λ ‖r‖1

subject to:
(
Bπ2|a1=i −Bπ

)
Dπr ≤ 0,

where λ is an adjustable penalty coefficient for having too many non-zero

values in the reward vector.

4.5 Bayesian IRL

In this section, we will model the two-person zero-sum multi-agent inverse

problem as an IRL problem, by focusing on one agent, which can be called

the agent of interest and regarding the other agent as part of the inadaptive

environment. We extend the BIRL approach developed in (Qiao and Beling,

2011), which is only applicable to state-dependent reward recovery, to our

case where the reward depends on both state and the action of the agent

of interest. Note that the reward we want to recover is r (s, a1) instead of

r (s, a1, a2), or r (s, a1, j) = r (s, a1) for all j ∈ A2. Although we now turn to

the MDP framework, the terminology and notation introduced in Section 4.2

will be used here, unless otherwise specified.

In (Qiao and Beling, 2011), rewards are selected to maximize the posterior

of the observed state-action pairs given a reward vector r, with the likelihood

being 1 if the observed actions are optimal and 0 otherwise for r. For our

notation, the equivalent problem for agent 1 is the following linear program:

minimize:
1

2
(r − µr)T Σr

−1 (r − µr)

subject to:
(
F π1
a1=i
− Ca1=i

)
r > 0,

(4.25)
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for all i ∈ A1, where

F π1
a1=i

=
[
γ
(
Gπ −Gπ2|a1=i

)
(I − γGπ)−1 + I

]
Cπ1 ,

and where Cπ1 is a N × NM sparse matrix constructed from π1, whose ith

row is,

0, · · · , π1 (i, 1) , · · · , 0︸ ︷︷ ︸
N

, · · ·︸︷︷︸
(M−2)N

, 0, · · · , π1 (i,M) , · · · , 0︸ ︷︷ ︸
N

 ,
and Ca1=i is conceptually similar to Cπ1 , except for being constructed from a

pure policy.

In the above formulation, µr is the mean of the unknown reward vector

as a prior, and Σr is its covariance matrix. Note here we use the notation

introduced in Section 4.6.2.

4.6 Numerical Example

In this section, we illustrate the BMIRL method developed in the previous

sections on a two-player stochastic game modeled on soccer, and compare

results with those obtained from d-MIRL and IRL. Though styled after soccer

abstractions in (Littman, 1994), the game considered here is richer in that it

models an action shoot, which is a direct attempt to score through a ball kick.

4.6.1 Game and Model

The game is played on a 4× 5 grid as depicted in Figure 4.1. We use A and B

to denote two players, and the circle in the figures to represent the ball. Each

player can either stay unmoved or move to one of its neighborhood squares

by taking one of 5 actions in each turn: N (north), S (south), E (east), W (west),

and stand. If both players land on the same square in the same time period,
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the ball is exchanged between the two players with some probability. In ad-

dition, the player who has the ball can shoot, which is to kick the ball toward

their opponent’s goal, with a probability of successful shot (PSS) distribution

shown in Table 4.1. A shot can be taken from any field position, and the PSS

is independent of opponent’s position. It is worth noting that the PSS at one

spot is the probability that the agent believes she would make a successful

shot if she kicked the ball at that spot, rather than the actual probability of

success she achieves during the play. Otherwise the PSS can be statistically

calculated easily through observations once we have inferred the goal area

by applying an appropriate MIRL approach.

In the game setting, both players act simultaneously in each time period.

Player A attempts to score by reaching with the ball or shooting the ball into

squares 6 or 11, and player B attempts to score by reaching with the ball or

shooting the ball into squares 10 or 15. Once a point is scored or a shooting is

missed, the players take the positions shown in Figure 4.1 and ball possession

is assigned randomly.

As a third-party observer, we have very limited knowledge about the

game they play. We know that this is a zero-sum game. We also know that

both players aim to score points by taking or kicking the ball to somewhere

in the field. Assume that we watch their playing sufficiently long so that we

can statistically calculate their complete policies and their ball exchange rate

β = 0.6 with a perfect accuracy. We will infer which squares each player must

reach in order to score a point (the goal squares), as well as the PSS of each

player, by means of recovering their reward vector. For example, the PSS of

A in position pos (pos = 1, 2, · · · , 20) equals the corresponding reward value

because

r (s, a1 = kick, a2) = 0×
(
1− PSS1

pos

)
+ 1× PSS1

pos

= PSS1
pos,
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where s is the state where A’s position is pos. There are in total 800 states in

this model, corresponding to the positions of the players and ball possession.

Since each player has 6 different actions to choose, each one has a reward

vector with a length of 800 × 6 × 6 = 28800. Both players aim to maximize

their own total expected points scored, subject to discount factor of γ = 0.9.

FIGURE 4.1: Soccer game: initial board

PSS = 0.7 PSS = 0.5 PSS = 0.3 PSS = 0.1 PSS = 0
A 1, 7, 12, 16 2, 8, 13, 17 3, 9, 14, 18 4, 10, 15, 19 5, 20

PSS = 0.7 PSS = 0.5 PSS = 0.3 PSS = 0.1 PSS = 0
B 5, 9, 14, 20 4, 8, 13, 19 3, 7, 12, 18 2, 6, 11, 17 1, 16

TABLE 4.1: Original PSS distribution of each player

It is worth mentioning that in the simulations done in Section 4.7 the PSS

of the two agents happens to be symmetric. As there is some possibility this

structure might give rise to confusion with the negative symmetry property

of rewards, note that reward symmetry is due to the precondition of zero-

sum and is unrelated to the PSS distributions of the agents. The experiments

could be performed with arbitrary PSS and ball exchange probabilities.

4.6.2 Specification of Prior Information

Recall that the MIRL optimization program requires the specification of two

Gaussian prior parameters for A, the mean of the rewards vector µr and the

covariance matrix Σr. Below we define a concept of strength for prior in-

formation that can be expressed independently in the mean and covariance
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matrix. Later subsections focus on the impact of different priors on the qual-

ity of learned rewards.

Mean of the Prior

We will use three types of mean reward vectors, namely weak mean, median

mean and strong mean, respectively. Note that since this is a zero-sum game,

the rewards assigned to B are the negatives of these rewards assigned to A.

• Weak Mean: we assign 0.8 point to player A in every state where A has

possession of the ball and −0.8 point in every state where player B has

possession of the ball;

• Median Mean: guessing that A’s goal might be among the rightmost

squares, or squares 5, 10, 15 and 20, and symmetrically, B’s goal might

be among the leftmost squares, or squares 1, 6, 11 and 16, we assign 1

point to A whenever A has the ball and is in the four leftmost squares,

and −1 point to A whenever B has the ball and is in four rightmost

squares. Also, when A has the ball and takes a shot, no matter where

she is, we assign 0.5 point to A. Similarly, we assign −0.5 point to A

when B has the ball and takes a shot. Otherwise, no points will be

assigned to A.

• Strong Mean: we have a foresight to predict where the goals are for both

players, but cannot make a good guess of their PSS distributions. So

comparing to median mean, the only difference is that now the potential

goal area includes only 2 squares (square 6 and 11 for A and square 10

and 15 for B), rather than 4 squares, for both players.
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Covariance Matrix

The covariance matrix of the reward vector encodes our belief of the structure

of the prior. Based off of our knowledge of this soccer game, we can develop

two types of covariance matrices.

• Weak Covariance Matrix: an identity matrix, indicating that the reward

vector is assumed independently distributed. This is a universal covari-

ance matrix suitable for those MIRL problems in which we neither have

knowledge of the structure of unknowns, nor want to make a guess.

• Strong Covariance Matrix: a more complex matrix encapsulating some

internal information of the reward structure subject to our following

beliefs.

1. When A has the ball and takes a shot, the PSS depends only on A’

s position in the field; likewise for B.

2. In any state, the reward for A for any non-shoot action is a state-

dependent constant; likewise for B.

Note that the strong covariance matrix can be constructed from the correla-

tion matrix, by assuming that the standard deviation of each random variable

in the unknown reward vector is the same. In order to avoid singularity, we

will add a small perturbation α to the diagonal of the covariance matrix.

4.6.3 Results Evaluation Metric

To evaluate a recovered result, we simply compute its average reward distance

(ARD), which is the average Euclidean distance from the true rewards as fol-

lows:

ARD =

{
1

2NM2

[(
rrec
1 − r1

)T (
rrec
1 − r1

)
+
(
rrec
2 − r2

)T (
rrec
2 − r2

)]}1/2

,

(4.26)
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where the NM2 × 1 column vector rrec
k and rk denote the recovered and

original reward of player k. Obviously, the smaller the ARD is, the more

accurate the result is.

If only the players’ PSS distributions are of interest, a similar version of

the evaluation metric, termed Average PSS Distance (APD) can be defined as

APD =

{
1

40

[
20∑
i=1

(
θrec
1 (i)− θ01 (i)

)2
+
(
θrec
2 (i)− θ02 (i)

)2]}1/2

, (4.27)

where the 20×1 column vector θrec
k and θ0k denote the recovered and original

PSS of player k, respectively.
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FIGURE 4.2: Inferred rewards and PSS: weak mean & weak co-
variance
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FIGURE 4.3: Inferred rewards and PSS: weak mean & strong
covariance
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FIGURE 4.4: Inferred rewards and PSS: median mean & weak
covariance
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FIGURE 4.5: Inferred rewards and PSS: median mean & strong
covariance
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FIGURE 4.6: Inferred rewards and PSS: strong mean & weak
covariance
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FIGURE 4.7: Inferred rewards and PSS: strong mean & strong
covariance

4.6.4 Results

Experiments were performed on 6 different priors formed by combining 3

different means and 2 different covariance matrices. A pertubation α = 10−4

was used in the construction of the strong covariance matrices. In all cases,

the bi-policy followed by the players (the observed input to MIRL) was com-

puted iteratively from Shapley’s Theorem. Experiments on Bayesian IRL

(we can also specify 6 different priors similar to those introduced in Sec-

tion 4.6.2) and d-MIRL were also carried out. Note that the reward vector

recovered from IRL can be extended to a MIRL reward vector by letting

r (s, a1, j) = r (s, a1) for all j ∈ A2.

Results are shown in Figure 4.2-Figure 4.7. Take Figure 4.3 as an example.

Recall that we aim to recover 28800 reward values. In each subfigure in (a),

the x-axis represents the reward value index (from 1 to 22800) and the y-

axis denotes the reward value. The inferred rewards of BMIRL, BIRL and d-

MIRL are shown in blue stars, green triangles and black crosses, respectively,

with the benchmark ground truth drawn in red circles in each subfigure. The

right three subfigures in (b) show the results of A’s PSSs corresponding to

each case. Note that although no shots will be taken at goal positions, for
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convenience, we set PSS = 1 for each player in their goal positions. Table 4.2

sorts each experiment with a case number, maps each case to a figure and

computes the corresponding APD of the BMIRL rewards. In Case 4, we are

Weak Covariance Strong Covariance
Weak Mean Case 1, Figure 2, 0.4535 Case 3, Figure 4, 0.0671

Median Mean Case 3, Figure 4, 0.2169 Case 4, Figure 5, 0.0387
Strong Mean Case 5, Figure 6, 0.2058 Case 6, Figure 7, 0.0259

TABLE 4.2: BMIRL results summary

also interested in whether the three methods can recover the actual goals for

A. We calculate the average reward A receives when A is in square 1, 6, 11 and

16. Results are shown in Figure 4.8a. Now focus on the BMIRL method. It is

interesting to consider how the ball exchange rate β affects the PSS recovery

result. We repeat Case 6 by changing β from 0 to 1, and calculate the APD of

the inferred PSS distributions. The result is shown in Figure 4.8b.
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4.6.5 Analysis of Results

First, we compare the results generated from the three approaches by nu-

merically measuring the difference between the an estimated vector x̂ and

the benchmark vector x. The metric we use is root mean squared error (RMSE),
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as the following

RMSE =

√
‖x̂− x‖2
dim(x)

WMWC WMSC MMWC MMSC SMWC SMSC

BMIRL 0.063 0.045 0.042 0.016 0.025 0.011

BIRL 0.066 0.073 0.047 0.049 0.053 0.045

d-MIRL 0.052 0.052 0.052 0.052 0.052 0.052

TABLE 4.3: Numerical results comparison

We compute the RMSE of every recovered reward with respect to the true

reward and summarize the results in Table 4.3. Note that although there are

six types of BMIRL as well as BIRL due to different priors, there is only one

d-MIRL reward. we can see that almost all BMIRL results are numerically

closer to the ground truths comparing to the other two approaches, except

when weak mean and weak convariance are selected as the prior.

Next, for the six priors we select for BMIRL, we evaluate how close every

prior mean is to the recovered result using the metric of RMSE, and summa-

rize them in Table 4.4. The purpose is to measure how much our selected

priors are improved with the observed bi-policy. We can see a clear pattern:

when the covariance is strong, the prior mean is shifted more to the posterior.

In comparison, when the covariance is weak, the prior mean is not updated

much. It is then reasonable to guess that the covariance may be more impor-

tant the prior mean.

WMWC WMSC MMSC MMWC SMSC SMWC

0.037 0.061 0.041 0.023 0.024 0.015

TABLE 4.4: Comparison between prior mean and posterior

From Figure 4.8a we see that BMIRL successfully learns the goals for A,

while the other two methods fail to do so. Finally, Figure 4.8b shows that the
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smaller the β is, the less accurate the recovered PSS will be. The reason is

that players are inclined to dribble the ball rather than shoot it toward their

opponents’ goal when β is small, and consequently, observing the strategy of

dribbling will not generate constraints that substantially alter the mode of the

priors on shooting rewards. For example, when β = 0.2, the probability of

successfully dribbling the ball to the destination for each player is, at worst,

(1 − β)4 = 0.407, which means that a shot will never be taken in positions

where the agent’s PSS is 0.3 or 0.1.

4.7 Monte Carlo Simulation using Recovered Re-

wards

In the previous section, distance metrics in reward and PSS space are used

to evaluate the quality of learned rewards. In this section we measure the

reward quality in terms of the quality of the forward solution that would

be based on the rewards. IRL is often set in the context of apprenticeship

learning, in which learned rewards form the basis for anticipating or mim-

icking the response of agents to unknown situations. In MIRL, the analogous

notion is to use learned rewards as the basis for game play in different en-

vironmental settings. In this section, we will simulate a series of games, by

letting different agents use different rewards generated from the three meth-

ods discussed above and play against each other. Being rational, all agents

will employ a minimax policy based off of which is the rewards they learned.

Specifically, define the following agents:

• A, which uses true rewards;

• B, which uses BMIRL rewards;

• C, which uses BIRL rewards;
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• D, which uses d-MIRL rewards.

A full set of agent-to-agent competition then includes the following scenar-

ios:

• B against A;

• B against C;

• B against D.

All those games are simulated in three different environment settings, where

the ball exchange rates β are 0, 0.4 and 1, respectively. Note that the sym-

metry of PSS values means that the two agents are equally skillful and are

supposed to be equal in match if both of them follow reasonable policies

generated from learned rewards.

The simulation results are presented in Table 4.5-Table 4.7. In each ta-

ble, the first column is the different sets of BMIRL rewards that B employs

to develop her minimax policy, where WM, MM, SM, WC and SC stand for

weak mean, median mean, strong mean, weak covariance matrix and strong covari-

ance matrix, respectively. The remaining columns are the win or lose (W/L)

outcomes of 10000 rounds of games between B and other agents in cases

where β being 0, 0.4 and 1. For example, in Table 4.5, 24.69/25.10 means

B beats A with probability 24.69% and loses with probability 25.10%. It in-

dicates that the remaining 50.21% rounds end in a tie. A tie occurs when

neither player scores a point. For a more clear comparison, we only count

those game episodes ending in win-lose outcomes. Each column except for

the first presents B’s winning percentage. Note that in Table 4.6, since there

are also 6 sets of BIRL rewards, comparisons are between corresponding sets,

e.g., SM-SC BMIRL vs SM-SC BIRL.

Let us coin the term Application Metric (AM) to refer to B’s probability of

winning in the soccer example. Table 4.5 shows that A outperforms or ties B
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Base Rewards W/L% (β = 0.4) W/L% (β = 1) W/L% (β = 0)
WM & WC 0/24.80 0/62.53 0/50.30
WM & SC 24.69/25.10 25.10/25.30 50.66/49.34
MM & WC 15.28/25.34 14.36/24.69 28.44/49.43
MM & SC 24.73/25.03 24.12/25.18 49.84/50.16
SM & WC 14.85/24.52 14.94/25.50 49.31/50.69
SM & SC 24.77/25.32 24.55/25.43 49.84/50.16

TABLE 4.5: B vs A games simulation results

Base Rewards W/L% (β = 0.4) W/L% (β = 1) W/L% (β = 0)
WM & WC 0/0 13.50/0 0/0
WM & SC 23.36/0 24.64/0 50.29/0
MM & WC 13.55/0 15.64/0 26.82/0
MM & SC 22.73/6.74 25.45/14.80 49.55/27.58
SM & WC 15.82/0 14.27/0 49.87/0
SM & SC 23.36/0 24.64/0 50.13/0

TABLE 4.6: B vs C games simulation results

in general. This result is reasonable because A uses true rewards. In addition,

we compare AM with the previous numerical metric ARD in Figure 4.9. As

expected, a larger ARD results in a smaller probability of winning. What is

notable is the sudden crash in probability of winning experienced when ARD

becomes sufficiently large. Equivalently, the probability of B’s winning drops

sharply when both the mean and covariance are weak. The implication is that

inferring the structure of the unknowns, is much more crucial than inferring

their true values. As for the other two methods, Table 4.6-Table 4.7 show that

B generally outperforms C or D.

FIGURE 4.9: Two evaluation metrics comparison
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Base Rewards W/L% (β = 0.4) W/L% (β = 1) W/L% (β = 0)
WM & WC 0/0 0/0 0/0
WM & SC 25.52/0 26.36/0 49.98/0
MM & WC 12.52/0 16.75/0 50.26/0
MM & SC 24.60/0 27.30/0 49.20/0
SM & WC 12.24/0 13.26/0 49.46/0
SM & SC 25.22/0 26.48/0 49.90/0

TABLE 4.7: B vs D games simulation results

4.8 Additional Experiments

Thus far we have demonstrated the performance of our BMIRL algorithm

through a numerical experiment. There remain, however, two important

questions to address. First, how does our BMIRL approach compare to super-

vised learning based policy learning approaches? Second, can we still expect

good performance if the game is played on a larger size grid, say, 5 ∗ 5?

This section is dedicated to addressing these two questions through two

more experiments in the context of the soccer game. The first experiment is

to use multivariate linear regression to learn a linear relationship between

predictors (state and the ball exchange rate) and the response (bi-strategies)

and then to infer the response in a new environment. Note that normalization

is needed before applying the regression. The second experiment is to re-

design the game on a 5 ∗ 5 grid, as shown in Figure 4.10, where A and B’s

starting positions are 19 and 7, and their goals are 1 and 25, respectively. The

PSS distributions are also re-assigned. Other settings and rules of this new

game remain as they are in the old one.

Performance evaluations in these two experiments are conducted through

Monte-Carlo simulation as in Section 4.7. Specifically, in the first experiment,

we define agent Bp as using policy-learning method and simulate the sce-

nario of B against Bp. In the second experiment, we investigate B5∗5 against

A5∗5, where B5∗5 and A5∗5 denote agents using BMIRL rewards and true re-

wards in the new game, respectively.
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The results of the first experiment, presented in Table 4.8, show that BMIRL

generally outperforms the policy-learning method when a strong covariance

matrix is applied in the prior, and generates comparable results with those

of the policy-learning method in other cases with the exception of the worst

prior condition. In the second experiment, we offer more combinations of

mean and covariance as prior information is very critical in the performance

of BMIRL. Specifically, we provide one more median covariance matrix, de-

noted as MC, subject to our beliefs that: (1) when A has the ball and takes a

shot, the PSS depends only on A’ s position in the field; and (2) the reward for

A for any non-shoot action is generally strongly correlated. As shown in Ta-

ble 4.9, results are similar to those from the experiments reported in Table 4.5

and confirm the associated conclusions.

FIGURE 4.10: Soccer game: 5*5 board

Base Rewards W/L% (β = 0.4) W/L% (β = 1) W/L% (β = 0)
WM & WC 0/14.91 0/21.30 0/36.40
WM & SC 22.54/21.16 19.19/18.11 47.15/36.45
MM & WC 20.82/23.38 19.70/17.90 40.65/36.85
MM & SC 28.89/24.46 27.98/16.86 49.48/40.08
SM & WC 19.79/23.61 19.52/17.88 50.15/35.65
SM & SC 29.04/23.56 30.94/20.76 50.26/35.44

TABLE 4.8: B vs Bp games simulation results
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Base Rewards W/L% (β = 0.4) W/L% (β = 1) W/L% (β = 0)
WM & WC 20.20/20.60 5.07/4.93 25.42/49.78
WM & MC 20.90/21.20 4.44/4.46 24.46/50.34
WM & SC 20.12/21.19 24.89/25.80 43.60/50.24
MM & WC 19.41/18.79 4.17/4.23 24.19/49.11
MM & MC 20.94/20.86 5.32/5.28 25.56/49.94
MM & SC 21.02/20.60 24.27/24.62 43.60/49.98
SM & WC 20.02/20.88 5.23/5.27 25.06/51.34
SM & MC 20.03/20.07 4.23/4.37 26.14/51.06
SM & SC 24.81/25.78 25.32/24.72 49.84/50.16

TABLE 4.9: B5∗5 vs A5∗5 games simulation results

4.9 Conclusions

This chapter introduces the MIRL problem in the setting of zero-sum stochas-

tic games and presents a solution based on Bayesian inference. Although

it seems that MIRL is a natural extension of IRL, it in fact presents more

challenges. Even in simple static games two important distinctions between

inverse learning for optimization and inverse learning for games emerge.

While the model in this chapter assumes that the complete bi-policy of two

players is observed, it is more likely that only actions of the individual play-

ers are observed. In an optimization setting, since deterministic policies are

assumed, strategies can be inferred exactly from finitely many observations

of actions. In the case of games, strategies are often mixed, and so strate-

gies cannot be inferred exactly from finitely many observations of the actions

taken in each state. Therefore, we cannot model a player’s strategy as an ob-

servation as it can be done in IRL. In the setting of games, strategies must be

treated as latent variables that are not observed directly, but bridge the gap

between reward functions and observable actions.

Though ideally structured, the numerical examples considered in this sec-

tion serve to demonstrate the ill-specified nature of the MIRL problem. Nei-

ther BIRL nor d-MIRL perform satisfactorily on the numerical examples. The
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rationale underlying this phenomenon is that there always exist multiple fea-

sible solutions that are consistent with the observations. It is extremely dif-

ficult to select a reward function that is closest to the ground truth without

a certain amount of domain knowledge. Our proposed BMIRL approach

makes use of domain knowledge expressed as priors on the reward function.

That distinction, new to the literature of MIRL methods, is why our Bayesian

method is superior to the d-MIRL method in the numerical examples. For-

tunately, in many real problems domain knowledge would be available to

observers.

A principal motivation for the study of MIRL in game settings is that the

approach offers insight into how agents will behave if the game environment,

rules, or dynamics change. Such insight may be useful in game design and

management, such as balance adjustment. Effective supervised methods ex-

ist for learning policies from observed actions, but policies learned in this

fashion do not project into new game environments. The reason is that the

optimal policy often changes with environment and hence learning from an

old policy may not help to infer a new policy. To see this, consider the ab-

stract soccer game. In Section 4.7, three additional agents B, C and D come up

with their own minimax policies by using rewards learned from three differ-

ent methods, and compete with A in three different environmental settings:

the ball exchange rate β = 0, 0.4 and 1. Recall that rewards were learned

when β = 0.6. The similarity of two policies, say p1 and p2, can be measured

using the Frobenius distance F , defined as: Fp1,p2 =
√

tr
(
(p1 − p2) (p1 − p2)′

)
.

Table 4.10 shows the similarity of player B’s policies as a function of β. The

conclusion to be drawn is that as the environment changes, so does the pol-

icy.

β = 0.4 β = 1 β = 0

Fβ,0.6 5.71 8.53 20.49

TABLE 4.10: Policy difference w.r.t. β
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Chapter 5

General-sum MIRL

5.1 Introduction

In this chapter, we consider five special classes of two-person general-sum

MIRL problems, uCS-MIRL, advE-MIRL, cooE-MIRL, uCE-MIRL, and uNE-

MIRL, each distinguished by its solution concept. The first problem, uCS-

MIRL, is a cooperative game in which the agents employ cooperative strategies

(CSs) that aim to maximize the sum of their value functions, or the total game

value. The second and third problems consider circumstances that two player

constitute two very special and unique NEs: advE is in general a win-or-lose

equilibrium, but not necessarily for a zero-sum game; cooE is such an equilib-

rium that players maximize their own payoffs by “coordinating" with others.

In the fourth problem, uCE-MIRL, the agents are assumed to follow strate-

gies that constitute a utilitarian correlated equilibrium (uCE), which achieves

the maximum total game value among all CEs. In the last problem, uNE-

MIRL, are assumed to follow strategies that constitute a NE that maximizes

total game value. These five MIRL variants are motivated from real applica-

tions and hence worth studies. On the one hand, uCS, uCE and uNE are such

equilibriums where agents try to achieve a socially efficient outcome, with or

without certain constraints, that maximizes the sum of their value functions,

which is a Pareto optimum, meaning that it is not possible to make one player

better off without also making the other player worse off (Barr, 2012). They
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are particular of interest in welfare economics, in which policy makers try

to design rules of games to achieve Pareto optimum in social welfare. On

the other hand, though advE/cooE-MIRL is less usual due to the possible

non-existence of advE/cooE, they are still useful in practice. For example,

consider an example where two power suppliers compete with each other in

the local market. Though it is a competitive game, the outcome is less likely

dominate-or-exit. Hence it might be more reasonable to formulate the prob-

lem as an advE-MIRL than zero-sum MIRL. As for cooE, one classic academic

example, the Stag Hunt (Skyrms, 2004), highlights its value of investigation:

there are two hunters, each can chose to hunt hare or stag, with symmetric

payoffs. If they both hunt stag(hare), they both will get a payoff of 2(1); and

if their targets are different, the one who hunts stag will fail to get anything

and the other will get a payoff of 1. In this game, (stag, stag) is a cooE.

We propose novel approaches to address these five problems under the

assumption that the game observer knows the policies and solution concepts

for the players. For uCS/advE/cooE-MIRL, we first develop a characteristic

set of solutions ensuring that the observed bi-policy is a corresponding strat-

egy/equilibrium and then apply a Bayesian inverse learning method. For

uCE-MIRL, we develop a linear programming problem, subject to constraints

that define necessary and sufficient conditions for the observed policies to be

CE. For the objective function, we propose novel heuristics to choose a so-

lution that not only minimizes the total game value difference between the

observed bi-policy and its local uCS, but also maximizes the scale of the solu-

tion. We apply a similar treatment to the problem of uNE-MIRL.

The remainder of this chapter is structured as follows: Section 5.2 intro-

duces notations, terminologies and definitions that will be used through-

out this chapter, as well as some basic game theory equilibrium concepts

through some examples. Section 5.3 summarizes several conventional MIRL
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algorithms. Section 5.4 provides the main technical work, developing dif-

ferent approaches for different problems to learn rewards. Section 5.5 and

Section 5.6 demonstrate our algorithms through several benchmark experi-

ments. Section 5.7 offers concluding remarks.

5.2 Preliminaries

This section serves two purposes: 1. introduce concepts/notations of MRL

that will be used throughout this chapter, and; 2. explain some game theory

concepts through examples and manifest their properties mathematically in

the context of two-person general-sum. To make it simple for presentation,

we restrict our attention to the two-player general-sum case.

5.2.1 General-sum Stochastic Game

A two-player general-sum discounted stochastic game is a tuple {S,Ai, Ri, P, γ},

where S is the common state space for all players, Ai and Ri are the action

space and reward for player i, respectively. P is the probabilistic function

controlling state transitions, conditioned on the past state and joint actions.

γ ∈ [0, 1) is a reward discount factor. In this chapter, we assume that both

players share the same action space. The state and action spaces are both

finite, i.e., |S| = N and |Ai| = M . A stochastic game is a sequence of single-

stage games, or subgames, induced in every state s ∈ S, such that both players

need to determine an individual strategy πi (s) or negotiate a bi-strategy π (s)

that guides their actions in every subgame. The collection of all bi-strategies

is a bi-policy π. Note that an individual strategy can be a mixed strategy,

which is a probability distribution over all available actions. We define a pure

bi-strategy a ∈ A = A1 × A2 as a bi-strategy where both players select de-

terministic actions. Each player’s reward values are assumed dependent on

state and possibly, bi-strategies, but are independent of each other.
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5.2.2 MRL

Let r̃πi (s) be the expected reward value received by agent i at state s under bi-

policy π, specifically,

r̃πi (s) =
∑
a

π1 (a1|s) π2 (a2|s)Ri (s, a)

= [π1 (s)]T Ri (s) π2 (s) , ∀s ∈ S,
(5.1)

where a is a pure bi-strategy, πi (s) is a M × 1 vector denoting the probability

distribution over actions in state s. Ri (s) is a M ×M matrix, each entry of

which denotes a pure bi-strategy dependent reward value. Structuring all

Ri (s, a) into a column vector as ri, we can simplify and represent (5.1) in a

matrix notation as

r̃πi = Bπri. (5.2)

The linear transformation operatorBπ is aN×NM2 matrix constructed from

π, whose kth row is:

[
Φπ

1,1 (k) ,Φπ
1,2 (k) , · · · ,Φπ

M,M (k)
]
,

where

Φπ
i,j (k) =

0, · · · , 0︸ ︷︷ ︸
k−1

, φπi,j (k) , 0, · · · , 0︸ ︷︷ ︸
N−k

 ,
and

φπi,j (k) = π1 (i|k) π2 (j|k) .

Player i’s value function, starting at state s and under π, is defined as

V π
i (s) =

∞∑
t=0

γtE (r̃πi (st) |s0 = s) , (5.3)
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and its Q-function, upon s and a, is

Qπ
i (s, a) = ri (s, a) + γ

∑
s′

p (s′|s, a)V π
i (s′)

= ri (s, a) + γPs,aV
π
i .

(5.4)

A major difference between RL/IRL and MRL/MIRL, is the definition of

the value function. In MRL/MIRL,

V π
i (s) ∈ solution concepti (Q

π
1 (s) , Qπ

2 (s)) ,∀s ∈ S (5.5)

Theoretically and empirically, players are free to employ any solution con-

cept.

Let Gπ denote a transition matrix under bi-policy π. Specifically, Gπ is the

N ×N matrix with elements

gπ (s′|s) =
∑
a

π1 (a1|s) π2 (a2|s) p (s′|s, a) . (5.6)

Then

V π
i (s) = r̃πi (s) + γ

∑
s′

gπ (s′|s)V π
i (s′) . (5.7)

In addition, V π
i (s) can also be expressed in terms of the Q-function as

V π
i (s) = [π1 (s)]T Qπ

i (s) π2 (s) , (5.8)

where Qπ
i (s) is a M ×M matrix. We can rewrite (5.7) in matrix notation as

V π
i = r̃πi + γGπV

π
i . (5.9)

Thus

V π
i = (I − γGπ)−1Bπri, (5.10)
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where (I − γGπ) is always invertible for γ ∈ [0, 1) since Gπ is a transition

matrix. Restructuring Qπ
i (s, a) into a column vector, denoting ~Qπ

i , we can

rewrite equation (5.4) in matrix notation, over all states and joint actions, as

~Qπ
i = ri + γPV π

i , (5.11)

where P is aNM2×N matrix with p (s′|s, a) as its elements. Combining (5.11)

and (5.10) leads to

~Qπ
i = ri + γP (I − γGπ)−1Bπri (5.12)

=
(
I + γP (I − γGπ)−1Bπ

)
ri. (5.13)

In addition, (5.8) can be rewritten more compactly as

V π
i = Bπ

~Qπ
i . (5.14)

Lastly, we define the total game value of a two-player stochastic game starting

at state s, under a bi-policy π, V π (s), as the sum of the value functions of

both players, i.e., V π (s) = V π
1 (s) + V π

2 (s).

5.2.3 Cooperative Strategy

Both NE and CE introduced previously are equilibriums of competitive games.

In a cooperative game, an agreement over a joint strategy of players can be

called a cooperative strategy (CS). A Characteristic Function v defines the type of

cooperation between players (Ferguson, 2008), and for a two-player single-

stage game (state s), can be defined as

v (s, a) = Val (R1 (s, a) , R2 (s, a)) , a ∈ A = A1 ×A2. (5.15)

Val (·) is self-defined, based on the type of cooperation.
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5.3 Conventional MIRL Approaches

Before diving into our new algorithms, we introduces several approaches to

a MIRL problem. The first one is a decentralized MIRL (d-MIRL) algorithm

developed by Reddy et al., where all agents are assumed to follow a Nash

equilibrium at every single game. The key idea is to find reward that maxi-

mize the difference between the Q value of the observed policy and those of

pure strategies, which is analogous to the classical approach to single-agent

IRL given in (Ng and Russell, 2000). Though in their original algorithm ver-

sion reward is assumed dependent only on state, we can extend it to treat

action dependency as well. Using our notations, the d-MIRL approach to a

two-person general-sum MIRL problem, take player 1 as an example, is to

solve the following linear program:

maximize:
N∑
s=1

min a1

(
r̃π1 (s)− r̃π|a11 (s)

)
+ γ

(
Gπ (s)−Gπ|a1 (s)

)
(I − γGπ)−1Bπr1

− λ ‖r1‖1

subject to:
(
Bπ|a1 −Bπ

)
Dπr1 ≤ 0

where λ is an adjustable penalty coefficient for having too many non-zero

values in the reward vector.

The key idea of the second approach is to model a two-person general-

sum MIRL as an IRL problem. This approach requires us to select one player

(e.g. player 1) and treat the other as part of the passive environment. We

extend the Bayesian IRL (BIRL) approach developed in (Qiao and Beling,

2011), which is only applicable to state-dependent reward recovery, to in-

volve action-dependence cases. Note that the reward can be recovered is

R1 (s, a1) instead ofR1 (s, a1, a2), as player 2 is not considered adaptive. That’s
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to say, R1 (s, a1, a2) = R1 (s, a1) for all a2 ∈ A2. Using our notation, the algo-

rithm to recover player 1’s reward is:

minimize:
1

2
(r1 − µr1)

T Σ−1r1 (r1 − µr1)

subject to:
(
F π1
a1
− Ca1

)
r1 > 0,

(5.16)

for all a1 ∈ A1, where

F π1
a1

=
[
γ
(
Gπ −Gπ1|a1

)
(I − γGπ)−1 + I

]
Cπ1 ,

and Cπ1 is a N ×NM sparse matrix constructed from π1, whose ith row is,

0, · · · , π1 (i, 1) , · · · , 0︸ ︷︷ ︸
N

, · · ·︸︷︷︸
(M−2)N

, 0, · · · , π1 (i,M) , · · · , 0︸ ︷︷ ︸
N

 ,
and Ca1 is conceptually similar to Cπ1 , except for being constructed from a

pure strategy a1 for all states.

In fact, the BIRL approach, strictly speaking, is not an algorithm but just a

treatment of MIRL problems. It is worth attention, however, as people might

wonder if MIRL can be “covered" by IRL. Obviously, the topic of MIRL will

lose importance if the answer is yes.

The third approach is not applicable to a general MIRL problem but a

restricted family: zero-sum. That algorithm to recover one player’ reward

vector (assuming the other player’s reward is additive inverse) is

minimize:
1

2
(r − µr)T Σ−1r (r − µr)

subject to:
(
Bπ|a1 −Bπ

)
Dπr ≤ 0(

Bπ|a2 −Bπ

)
Dπr ≥ 0,

(5.17)

for all a1 ∈ A1 and a2 ∈ A2. More details can be found in (Lin, Beling, and

Cogill, 2017).
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These three approaches will be revisited as benchmarks in later sections.

5.4 MIRL Model Development

This section proposes five two-player general-sum MIRL problems and cor-

responding approaches to them. We first informally define a MIRL prob-

lem: a two-player general-sum MIRL problem is such a problem that given

{S,Ai, P, γ,O}, find both players’ rewards ri that can explain the observed

behaviors. HereO is an observation of the game play that is used to estimate

the bi-policy (and P as well when P is not explicitly known). However, in

this chapter, we assume that π is already available to us in place of O.

The MRL literature suggests that an agreement over a specific solution

concept may be needed to solve a MRL problem. Similarly, in our approaches

to MIRL, one basic assumption is required: both players agree on a specific

strategy/equilibrium to play and this information is available to us. Armed

with some basic knowledge of game theory introduced in Section 2.2.2 and

Section 2.2.3, we focus our attention to the following five interesting strate-

gies/equilibriums and build models from them.

1. utilitarian Cooperative Strategy (uCS). In (5.15), we only consider Val (·) =∑
(·). A single-stage game in state s and taking action a is a utilitarian

cooperative strategy (uCS) if and only if

∑
i

Ri (s, a) ≥
∑
i

Ri (s, a
′) , a′ ∈ A = A1 ×A2 \ a. (5.18)

2. Adversarial Equilibrium (advE). It is a variant of NE (Littman, 2001;

Hu and Wellman, 1998). In addition to the property that NE has, an

advE has another feature that no player is hurt by any change of others.

That’s to say, in a two-player single-stage game (state s), π (s) is an advE
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if and only if, in addition to (2.1),

Ri (s, πi (s) , π−i (s)) ≤ Ri

(
s, πi (s) , π

′
−i (s)

)
, π′−i (s) ∈ Π−i \ π−i (s) ,

(5.19)

3. Coordination Equilibrium (cooE). Similar to advE, coordination equi-

librium (cooE) is also a variant of NE (Littman, 2001; Hu and Well-

man, 1998), in the sense that all players’ maximum expected payoffs

are achieved given all of them employ a cooE. Specifically, π (s) is a

cooE if and only if, in addition to (2.1),

Ri (s, π (s)) ≥ Ri (s, π
′ (s)) . (5.20)

4. utilitarian Correlated Equilibrium (uCE). We borrow the concept of

utilitarian correlated equilibrium (uCE) from (Greenwald and Hall, 2003)

and state that in a two-player single-stage game (state s), π (s) is a uCE

if and only if,

ΣiRi (s, π (s)) ≥ ΣiRi (s, π̌ (s)) , π′ (s) ∈ ΠCE \ π (s) . (5.21)

5. utilitarian Nash Equilibrium (uNE). Similar to uCE, in a two-player

single-stage game (state s), a NE π (s) is a utilitarian Nash equilibrium

(uNE) if and only if

ΣiRi (s, π (s)) ≥ ΣiRi (s, π
′ (s)) , π′ (s) ∈ ΠNE \ π (s) . (5.22)

Among the above five equilibriums, it is easy to show that uCS always exists

and unique in a cooperative game. In a noncooperative game, advE and cooE

are shown to be unique, though they are essentially NEs (Hu and Wellman,

1998; Littman, 2001). However, neither of them is guaranteed to exist (Hu
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and Wellman, 1998; Littman, 2001). In comparison, it is easy to conclude that

uNE and uCE always exist and unique in any noncooperative game.

Readers who are new to game theory may get confused with cooE and

uCS. Intuitively, cooE is a special Nash equilibrium, which means that agents

are essentially selfish. However, they are forced to cooperate in order to max-

imize their own benefits. In contrast, when following a CS, agents cooperate

with each other actively and even prepare to sacrifice their own benefits if

necessary. Section 5.5 will help illustrate their difference.

5.4.1 Extension to stochastic games

Filar and Vrieze (Filar and Vrieze, 1996) show how the Q function links a

stochastic game and a single stage game: treat the Q functions at each state

as payoffs for single stage games, and the stochastic game is in an equilibrium

if and only if the overall multi-stage strategies are in equilibrium. We now

extend our definitions of the five strategies/equilibriums from a single game

to a two-player stochastic game, as follows,

Definition 5.1. A bi-policy π is a uCS/advE/cooE/uNE/uCE of a two-player stochas-

tic game G if only if π (s) is a uCS/advE/CooE/uNE/uCE of its sub-game G (s), for

all s ∈ S.

Correspondingly, we define that a uCS-MIRL/advE-MIRL/CooE-MIRL/uNE-

MIRL/uCE-MIRL problem is such a MIRL problem that players employ a

uCS/advE/CooE/uNE/uCE.

5.4.2 uCS-MIRL

One main result characterizing the set of solutions to a two-player uCS-MIRL

problem is the following:
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Theorem 5.2. Given a two-player stochastic game {S,Ai, ri, P, γ}, the observed

bi-policy π is a uCS if and only if

(Bπ −Ba)Dπ (r1 + r2) ≥ 0, a ∈ A = A1 ×A2 (5.23)

where Dπ = I + γP (I − γGπ)−1Bπ. Ba is obtained from such a bi-policy that

players employ the bi-strategy a in all states.

Proof. According to the definition of uCS, π is a uCS if and only if, for any

state s and pure bi-strategy a ∈ A = A1 ×A2, we have

π (s) ∈ arg max
a∈A

∑
i

Qπ
i (s, a)

⇔
∑
i

Qπ
i (s, π (s)) ≥

∑
i

Qπ
i (s, a)

⇔r1 (s, π (s)) + r2 (s, π (s)) + γPs,π(s) (V π
1 + V π

2 )

≥ r1 (s, a) + r2 (s, a) + γPs,a (V π
1 + V π

2 )

⇔Bπ (r1 + r2) + γBπP (I − γGπ)−1Bπ (r1 + r2)

≥ Ba (r1 + r2) + γBaP (I − γGπ)−1Bπ (r1 + r2)

⇔ (Bπ −Ba)
(
I + γP (I − γGπ)−1Bπ

)
(r1 + r2) ≥ 0

⇔ (Bπ −Ba)Dπ (r1 + r2) ≥ 0

(5.24)

Since any solution that is consistent with (5.23) ensures a unique uCS,

we can borrow the idea introduced in (Lin, Beling, and Cogill, 2017) and

propose a Bayesian approach. The general idea is to maximize the posterior

probability of the inferred rewards p (r1, r2|π),

p (r1, r2|π) ∝ f (r1, r2) p (π|r1, r2) , (5.25)
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where p (π|r1, r2) is the likelihood of observing π given r1 and r2 and f (r1, r2)

is a joint prior of r1 and r2 that we need to specify. Recall our “reward inde-

pendence" assumption, which is

f (r1, r2) = f (r1) f (r2) , (5.26)

we can specify the prior over r1 and r2 independently. Particularly, we prefer

a Gaussian prior for both, ri ∼ N (µri ,Σri), where µri is the mean of ri and

Σri is the covariance. The PDF of ri is

f (ri) =
1

(2π)N/2 |Σri |
1/2

exp

(
−1

2
(ri − µri)

T Σ−1ri (ri − µri)
)
, i = 1, 2. (5.27)

To model the likelihood function p(π|r1, r2), we assume that the bi-policy

which the two agents follow is a unique uCS given r1, r2. The likelihood is

then a probability mass function given by

p (π|r1, r2) =


1, if π is uCS for r1, r2

0, otherwise.
(5.28)

Putting it together, we formulate the optimization problem for uCS-MIRL as,

maximize: f (r1, r2)

subject to: p (π|r1, r2) = 1.

(5.29)

or, equivalently,

minimize:
1

2

∑
i

(ri − µri)
T Σ−1ri (ri − µri)

subject to:
(
Bπ −Bπ|a

)
Dπ (r1 + r2) ≥ 0, a ∈ A = A1 ×A2

(5.30)
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5.4.3 advE-MIRL

The main result characterizing the set of solutions to a two-player advE-

MIRL problem is the following:

Theorem 5.3. Given a two-player stochastic game {S,Ai, ri, P, γ}, the observed

bi-policy π is an advE if and only if

(
Bπ|a1 −Bπ

)
Dπr1 ≤ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ

)
Dπr2 ≤ 0,∀a2 ∈ A2(

Bπ|a1 −Bπ

)
Dπr2 ≥ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ

)
Dπr1 ≥ 0,∀a2 ∈ A2,

(5.31)

whereBπ|a1 is obtained from such a bi-policy that player 2 employs her original policy

while player 1 always chooses action a1 in any state (game).

Proof. Eqs (5.31) contains four inequalities. In this proof, we will first show

that the first and second inequalities constitute a sufficient and necessary con-

dition for π being a NE. Recall that a bi-policy π is a minimax equilibria for a

two-player zero-sum game if and only if (Lin, Beling, and Cogill, 2017)

[Qπ (s)]T π1 (s) ≥ V π (s) 1M

Qπ (s) π2 (s) ≤ V π (s) 1M ,

(5.32)

Similarly, π is a NE if and only if

[Qπ
2 (s)]T π1 (s) ≤ V π

2 (s) 1M

Qπ
1 (s) π2 (s) ≤ V π

1 (s) 1M .

(5.33)

Combining (5.14) and (5.33) leads to

Bπ|a2
~Qπ
2 ≤ Bπ

~Qπ
2 ,∀a2 ∈ A2

Bπ|a1
~Qπ
1 ≤ Bπ

~Qπ
1 ,∀a1 ∈ A1,

(5.34)
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Substituting (5.12) into (5.34) and rearrange the two sides of the inequalities

yields (
Bπ|a1 −Bπ

)
Dπr1 ≤ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ

)
Dπr2 ≤ 0,∀a2 ∈ A2,

(5.35)

We now turn to the additional feature that an advE has. Recall (5.19), it is

easy to derive that an advE for a two-player general-sum game if and only if,

in addition to (5.33)

[Qπ
1 (s)]T π1 (s) ≥ V π

1 (s) 1M

Qπ
2 (s) π2 (s) ≥ V π

2 (s) 1M .

(5.36)

Following similar steps as we derive (5.34)-(5.36) is eventually reduced to

(
Bπ|a1 −Bπ

)
Dπr2 ≥ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ

)
Dπr1 ≥ 0,∀a2 ∈ A2.

(5.37)

Since it has been proved that in a one-stage game, if an advE exists, it

must be unique (Littman, 2001), an advE for a stochastic game, if exists, is

also unique. Therefore, we can still use Bayesian approach to solve advE-

MIRL problems. The prior (5.27) is also valid here. But the likelihood would

be

p (π|r1, r2) =


1, if π is an AdvE for r1, r2

0, otherwise.
(5.38)
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And the optimization problem for advE-MIRL is

minimize:
1

2

∑
i

(ri − µri)
T Σ−1ri (ri − µri)

subject to:
(
Bπ|a1 −Bπ

)
Dπr1 ≤ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ

)
Dπr2 ≤ 0,∀a2 ∈ A2(

Bπ|a1 −Bπ

)
Dπr2 ≥ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ

)
Dπr1 ≥ 0,∀a2 ∈ A2.

(5.39)

In fact, there is a direct link between the minimax equilibrium of a com-

petitive zero-sum game and an advE for a special zero-sum case, as the fol-

lowing proposition,

Proposition 5.4. The minimax equilibrium of a single competitive zero-sum game

is an advE, and vice versa.

Proof. Let r1 = r = −r2, eqs. (5.31) reduce to

(
Bπ|a1 −Bπ

)
Dπr ≤ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ

)
Dπr ≥ 0,∀a2 ∈ A2,

(5.40)

which is exactly eqs. (23), the sufficient and necessary condition for π being a

minimax equilibrium for a zero-sum game, in (Lin, Beling, and Cogill, 2017).

From Theorem 5.4 we can see that advE is a more general concept for

general-sum games whereas the minimax equilibrium corresponds specifi-

cally for zero-sum games.

5.4.4 cooE-MIRL

The main result characterizing the set of solutions to a two-player CooE-

MIRL problem is the following:
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Theorem 5.5. Given a two-player stochastic game {S,Ai, ri, P, γ}, the observed

bi-policy π is an CooE if and only if

(
Bπ|a1 −Bπ

)
Dπr1 ≤ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ

)
Dπr2 ≤ 0,∀a2 ∈ A2

(Bπ −Ba)Dπr1 ≥ 0,∀a ∈ A = A1 ×A2

(Bπ −Ba)Dπr2 ≥ 0,∀a ∈ A = A1 ×A2.

(5.41)

In (5.41), the first two inequalities, which guarantee π is a NE, has been

proved in Section 5.4.3. The latter two inequalities warrant the unique prop-

erty of CooE, the proof of which is sketched below.

Proof. According to the definition of CooE, π is a CooE if and only if, for any

state s and pure bi-strategy a ∈ A = A1 ×A2,

π (s) ∈ arg max
a∈A

Qπ
i (s, a)

⇔Qπ
i (s, π (s)) ≥ Qπ

i (s, a)

⇔ri (s, π (s)) + γPs,π(s)V
π
i ≥ ri (s, a) + γPs,aV

π
i

⇔Bπri + γBπP (I − γGπ)−1Bπri

≥ Bari + γBaP (I − γGπ)−1Bπri

⇔ (Bπ −Ba)
(
I + γP (I − γGπ)−1Bπ

)
ri ≥ 0

⇔ (Bπ −Ba)Dπri ≥ 0

(5.42)

We can also develop a similar optimization problem for cooE-MIRL. It is

easy to show that an cooE for a stochastic game, if exists, is unique, for the

reason for advE. As a result, the Bayesian approach is also valid here, with
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the same prior (5.27) but a different likelihood as follows

p (π|r1, r2) =


1, if π is an CooE for r1, r2

0, otherwise.
(5.43)

Hence the optimization problem for cooE-MIRL is

minimize:
1

2

∑
i

(ri − µri)
T Σ−1ri (ri − µri)

subject to:
(
Bπ|a1 −Bπ

)
Dπr1 ≤ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ

)
Dπr2 ≤ 0,∀a2 ∈ A2

(Bπ −Ba)Dπr1 ≥ 0, ∀a ∈ A = A1 ×A2

(Bπ −Ba)Dπr2 ≥ 0, ∀a ∈ A = A1 ×A2.

(5.44)

5.4.5 uCE-MIRL

The result which characterizes the set of solutions to a two-player CE-MIRL

problem is as follows:

Theorem 5.6. Given a two-player stochastic game {S,Ai, ri, P, γ}, the observed

bi-policy π is a CE if and only if

~πTH (s, ai)
T [H (s, ai)−H (s, ǎi)]Dπri ≥ 0, i = 1, 2,∀ai ∈ Ai, ǎi ∈ Ai \ ai,

(5.45)

where ~π is restructured from π to be a column vector of length NM2, and H(s, ai)

is a linear transformation operator as described in the proof below.
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Proof. By definition of CE, for a two-player general-sum stochastic game G, a

bi-policy π is a CE if and only if

∑
a2

π (a1, a2|s)Qπ
1 (s, a1, a2) ≥

∑
a2

π (a1, a2|s)Qπ
1 (s, ǎ1, a2) , ∀a1 ∈ A1, ǎ1 ∈ A1 \ a1

∑
a1

π (a1, a2|s)Qπ
2 (s, a1, a2) ≥

∑
a1

π (a1, a2|s)Qπ
2 (s, a1, ǎ2) , ∀a2 ∈ A2, ǎ2 ∈ A2 \ a2

(5.46)

for all s ∈ S. Rearranging (5.46) yields

π (a1, : |s)
(

[Qπ
1 (s, a1, :)]

T − [Qπ
1 (s, ǎ1, :)]

T
)
≥ 0

[π (:, a2|s)]T (Qπ
2 (s, :, a2)−Qπ

2 (s, :, ǎ2)) ≥ 0,

(5.47)

where π (a1, : |s) is a row vectors of 1 ×M , spanning over all a2 ∈ A2, and

π (:, a2|s) is a column vectors of M × 1, spanning over all a1 ∈ A1. Recall

Qπ
i (s, a) = Ri (s, a) + γ

∑
s′

p (s′|s, a)V π
i (s′) . (5.48)

So
[Qπ

1 (s, a1, :)]
T = [R1 (s, a1, :)]

T + γp (: |s, a1, :)V π
1

Qπ
2 (s, :, a2) = R2 (s, :, a2) + γp (: |s, :, a2)V π

2

(5.49)

Substituting (5.49) into (5.47) leads to

π (a1, : |s)
{

[R1 (s, a1, :)]
T − [r1 (s, ǎ1, :)]

T + γ [p (: |s, a1, :)− p (: |s, ǎ1, :)]V π
1

}
≥ 0

[π (:, a2|s)]T {R2 (s, :, a2)− r2 (s, :, ǎ2) + γ [p (: |s, :, a2)− p (: |s, :, ǎ2)]V π
2 } ≥ 0.

(5.50)

The above inequality can be further simplified. First, let [R1 (s, a1, :)]
T =

H (s, a1) r1 and R2 (s, :, a2) = H (s, a2) r2, where H(s, ai) is a sparse M ×NM2

matrix. It is also easy to see p (: |s, a1, :) = H (s, a1)P and p (: |s, :, a2) =

H (s, a2)P . In addition, we can also have π (a1, : |s) = [H (s, a1)~π]T = ~πTH (s, a1)
T ,

and π (:, a2|s) = H (s, a2)~π. Substituting (5.10) into (5.50) and rearranging it,
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we can get

~πTH (s, ai)
T [H (s, ai)−H (s, ǎi)]

(
I + γP (I − γGπ)−1Bπ

)
ri ≥ 0, i = 1, 2

(5.51)

Recall

Dπ = I + γP (I − γGπ)−1Bπ, (5.52)

we can express (5.51) compactly as

~πTH (s, ai)
T [H (s, ai)−H (s, ǎi)]Dπri ≥ 0, i = 1, 2,∀ai ∈ Ai, ǎi ∈ Ai \ ai,

(5.53)

Clearly, any sensible point that is consistent with (5.53) constitutes a CE

for the stochastic game. Many points in the convex hull of CE, however, are

less “meaningful” because only the uCE is of interest. Hence we desire to

find some way to choose between solutions satisfying (5.53). A first idea is

to maximize
∑

s V
π (s). That is not enough though, because reaching a uCE

is in practice difficult. Instead, arriving at a uCS is much easier. This fact

gives us another idea. Before going into details, we need to introduce a new

concept, namely, local uCS,

Definition 5.7. A local uCS, corresponding to a bi-policy π and starting state s, in

a two-player general-sum stochastic game, is such a bi-policy that the two players

act fully cooperatively at current state s but employ π afterwards.

It is obvious that for a two-player general sum stochastic game, among all

its CEs, the uCE is “closest" to its uCS in terms of the total game value, shown

in Figure 5.1 (A). In a uCE-MIRL problem, however, all CEs except uCE are

unobservable. Therefore, we need to find a way to infer a set of r1&r2 such

that the observed π is most likely the uCE of the game.
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(A) (B)

FIGURE 5.1: (A) describes the relationship between uCE, uCS
and other CEs. (B) explains local uCS.

By definition, a local uCS “improves" V π (s) by employing a uCS strategy

only at current state s, resulting in a local improvement (see Figure 5.1 (B)).

Adding up all those local improvements over all states gives us a way of

measuring how “close" the bi-policy π is to a uCS, in terms of the total game

value. Since a uCE is “closer" to a uCS than any other CE, the less its total

local improvement is, the more likely a CE π is a uCE. Thus, given a CE π, a

desired pair of r1&r2 satisfies

minimize:
∑
s

y (s)− V π (s)

subject to: Qπ
1 (s, a) +Qπ

2 (s, a) ≤ y (s)

V π (s) ≤ y (s)

for all a ∈ A = A1 × A2. Putting all the above together, we propose the

following linear programming problem to find the desired r1&r2,

maximize:
∑
s

V π (s)− λ (y (s)− V π (s))

subject to: Qπ
1 (s, a) +Qπ

2 (s, a) ≤ y (s)

V π (s) ≤ y (s)

Constraint (5.53)

(5.54)

where λ is a regularized coefficient. Expressing V π
i and Qπ

i (s, a) as functions
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of ri and reformulating those inequalities more compactly in matrix notation

leads to

maximize: 11×N ×
[
(1 + λ) (I − γGπ)−1Bπ (r1 + r2)− λy

]
+ other problem-specific regularized terms

subject to: πTH (s, ai)
T [H (s, ai)−H (s, ǎi)]Dπri ≥ 0, i = 1, 2,∀ai ∈ Ai, ǎi ∈ Ai \ ai

Dπ (r1 + r2) ≤ y · 1M×M

(I − γGπ)−1Bπ (r1 + r2) ≤ y.

(5.55)

We now discuss the “other problem-specific regularized terms" shown

in the above problem. One challenging issue for MIRL is that there often

exists many solutions equally sensible so that it is more likely than IRL to

recover rewards which are far from actual ones. For example, in (Lin, Beling,

and Cogill, 2017) the authors emphasize the importance of the structure of

rewards. Therefore, some prior knowledge or assumption of the game, as

well as the structure of the unknown rewards, is very helpful. For example,

it is often assumed that, all other things being equal, an unknown reward

vector is sparse (Ng and Russell, 2000). One easy way to incorporate this

assumption is to add this penalty term to the objective function to regularize

non-sparsity. There might be other problem-specific knowledge/assumption

available and taking advantage of it will help infer higher-quality rewards.

5.4.6 uNE-MIRL

Recall that the sufficient and necessary condition for an observed bi-policy π

being a NE for a two-player general-sum stochastic game is given by

(
Bπ|a1 −Bπ

)
Dπr1 ≤ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ

)
Dπr2 ≤ 0,∀a2 ∈ A2

(5.56)
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Since NE is a subset of CE, we can borrow the idea proposed in Section 5.4.5

and solve a uNE-MIRL problem by solving the following LP problem

maximize: 11×N ×
[
(1 + λ) (I − γGπ)−1Bπ (r1 + r2)− λy

]
+ other problem-specific regularized terms

subject to:
(
Bπ|a1 −Bπ

)
Dπr1 ≤ 0,∀a1 ∈ A1(

Bπ|a2 −Bπ

)
Dπr2 ≤ 0,∀a2 ∈ A2

Dπ (r1 + r2) ≤ y · 1M×M

(I − γGπ)−1Bπ (r1 + r2) ≤ y.

(5.57)

5.5 Numerical Examples I: GridWorld

This section describes the behaviour of our algorithms (except advE-MIRL)

using two grid games (GGs), shown in Figure 5.2, namely GG1 for the left

and GG2 for the right. These games have been used extensively in many

theory-oriented MRL works (Hu and Wellman, 1998; Littman, 2001; Green-

wald and Hall, 2003). In both GGs, there are two agents, A and B, and two

goals (aka. homes). The two agents act simultaneously and can move only

one step in any of the four compass directions. When adjacent to a wall,

choosing a direction into a wall results in a no-op, where the agent remains

in the current position. If both agents attempt to move into the same cell,

a collision occurs and they are pushed back to their original positions im-

mediately, except for cells in the bottom row. Either agent will be rewarded

once reaching its goal under some condition. However, since the reward is

discounted with time, the earlier to reach the goal, the better. GG1 and GG2

are similar in basic game rules but different in board setup in two aspects.

First, in GG1, the two players’ goals are separate while their goals coincide

in GG2. Second, in GG2, there are two barriers and if any agent attempts to

move downward through the barrier from the top, then with 1/2 probability
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this move fails and results in a no-op.

FIGURE 5.2: Grid games. The circle indicates A’s goal and the
hexagon indicates B’s goal.

We let agents A and B play the go-back-home games together according

to either uCS, uCE, uNE or cooE. Our task is to recover their rewards given

the equilibrium, the bi-policy, and the state transition dynamics. The basic

rewarding rule is: either player receives reward 1 (discounted with time)

once reaching home and the game stops immediately, and 0 otherwise. When

employing cooE, however, neither player receives reward unless they reach

home simultaneously.

Our experiments are conducted as follows. First, we apply the cooE-MRL

algorithm by Hu and Wellman (Hu and Wellman, 2003), and the uCE-MRL

algorithm proposed by Green and Hall (Greenwald and Hall, 2003) to obtain

cooE and uCE bi-policies, respectively. Then we develop similar Q-learning

based iterative algorithms for uCS-MRL and uNE-MRL. The general proce-

dure, namely multi-Q-learning algorithm, is the same for all these four MRL

algorithms and described in 3. It is worth emphasizing that the multi-Q-

learning algorithm can be applied to many variants of Q-learning problems

as long as the equilibria exists and is unique (Hu and Wellman, 1998; Littman,

2001; Greenwald and Hall, 2003). It is easy to show that uCS, uCE, uNE and

cooE all meet this requirement.

The second step is to apply our uCS-MIRL, cooE-MIRL uCE-MIRL and

uNE-MIRL algorithms accordingly, incorporating our basic knowledge and
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some reasonable assumptions into our Gaussian priors for uCS and cooE.

For example, one assumption is that both players’ reward vectors are sparse,

only depending on reaching home or not. In addition, one agent’s position

might have a small affect on the other agent’s reward or possibly no affect.

For each experiment, we compare recovered rewards of both players rrec
A

and rrec
B , with the true values rA and rB numerically. We use a normalized

root mean squared error (NRMSE) metric, where we first normalize a recovered

reward vector rrec on [0, 1], as follows:

rnrec =
rrec −min(rrec)

max(rrec)−min(rrec)
,

and then compute

NRMSE =

√∥∥rnrec
A − rA

∥∥
2

dim(rA)
+

√∥∥rnrec
B − rB

∥∥
2

dim(rB)

In addition, in order to compare our MIRL algorithm with IRL. We use

IRL algorithms to solve the uCS-, cooE- and uNE-MIRL problems, namely

uCS-, cooE- and uNE-IRL respectively. Specifically, we focus on B, and try

to infer its reward. Obviously, inferred IRL reward is a function of the state

and B’s own action. The IRL algorithm we use is BIRL, proposed in (Qiao

and Beling, 2011). Note that the reward vector recovered from IRL can be

extended to a MIRL reward vector by letting R (s, a1, a2) = R (s, a2) for all

a1 ∈ A1. Let a third player B̂ learn this reward and figure out its own IRL

policy πB̂. Finally, for uCS, let B̂ play with A, with B̂ employing πB̂ and

A employing the corresponding πA, compute their total game value over all

states and compare with true total game values. Note that we cannot model

a uCE-MIRL problem as an IRL problem because uCE permits dependen-

cies among agents’ policies (there is often a trusted mediator sending private

information to game players).
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Numerical results are shown in Table 5.1 and Table 5.2. Some plots are

also presented for readers to have a better insight of our MIRL algorithms

recovered results. In Figure 5.3, the top 2 subplots are for grid game #1 and

bottom 2 are for grid game #2. The two subplots in (A) and (C) describe the

true reward (in red circles) and uCS-MIRL recovered reward (in blue stars).

The two subplots in (B) and (D) demonstrate the recovered reward in terms

of total game value compared to true reward. In each of these subplots, red

circles, blue stars and green squares represent the total game value generated

from true reward, uCS-MIRL recovered reward and IRL recovered reward,

respectively. Figure 5.4 describes the cooE-MIRL results. The left two plots

are for grid game #1 and right two are for grid game #2. In each set, the top

subplot shows player A’s recovered reward (in blue stars) and the bottom

one shows that of player B. We can see that both uCS-MIRL and cooE-MIRL

recovered rewards are not numerically close the true values, with an obvious

scale difference. That’s why for a fair comparison purpose, we normalize

them on [0, 1] first.

From all the above results, we can easily conclude that our MIRL algo-

rithms generate satisfactory results and performs much better than IRL algo-

rithms for all the four problems.
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Algorithm 3 General Multi-Q-learning algorithm

Require: f : uCS, cooE, uCE or uNE; α: learning rate
1: procedure MULTI-Q(f, T, r1, r2, α)
2: Initialize: s, a,Q1, Q2, t = 0
3: while t < T do
4: agents choose bi-strategy a in state s
5: observe rewards and next state s′

6:
7: for i = 1→ N do
8: Vi (s

′) = fi (Q1 (s′) , Q2 (s′))
9: Qi (s, a) = (1− α)Qi (s, a) + α [(1− γ) ri (s, a) + γVi (s

′)]
10:
11: agents choose bi-strategy ~a′
12: s = s′, a = a′

13: decay α
14: t = t+ 1

Grid Game #1 Grid Game #2

uCS-MIRL 1.50× 10−3 2.27× 10−4

uCS-IRL 0.122 0.121

cooE-MIRL 0.026 0.026

cooE-IRL 0.409 0.319

uCE-MIRL 1.30× 10−3 1.39× 10−10

uCE-IRL 0.287 0.311

uNE-MIRL 0 0

uNE-IRL 0.271 0.283

TABLE 5.1: NAED results for reward values comparison

Grid Game #1 Grid Game #2

uCS-MIRL 0.099 2.50× 10−4

uCS-IRL 0.223 0.179

TABLE 5.2: total game value comparison for uCS
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FIGURE 5.3: The uCS-MIRL results
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FIGURE 5.4: cooE-MIRL experiment result
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5.6 Numerical Examples II: Abstract Soccer Game

This section dedicates to demonstrate our advE-MIRL algorithm. Two-player

soccer games in many versions are popular among MRL researchers for algo-

rithm demonstration & comparison purposes (Littman, 1994; Greenwald and

Hall, 2003; Lin, Beling, and Cogill, 2017). In (Lin, Beling, and Cogill, 2017),

where the most complicated version is created, authors propose a zero-sum

MIRL algorithm and demonstrate its good performance. However, their al-

gorithm works on the basis of a zero-sum assumption, which is too strong. In

this section, we relax this zero-sum assumption and just assume that the two

players are foes, which enables us to rely on a weaker assumption that they

employ an advE.

The soccer game (see Figure 5.5) is depicted as follows. Players A and B

compete with each other, aiming to score by either bringing or kicking the

ball (represented by a circle) into their opponents’ goals (A’s goal are 6 and

11, and B’s goal are 10 and 15). Both players can move simultaneously either

in four compass directions, ending in a neighbouring cell or stay unmoved.

A ball exchange may occur with some probability in case of a collision in the

same cell. A kick action is also available to players. Each one has a perception

of how likely she is making a scoring shot, or the probability of a successful

shot (PSS), if kicking the ball at a given position. For simplicity, one’s PSS

is assumed not affected by its opponent’s position. The position based PSS

distribution is shown in Table 5.3.

PSS = 0.7 PSS = 0.5 PSS = 0.3 PSS = 0.1 PSS = 0
A 1, 7, 12, 16 2, 8, 13, 17 3, 9, 14, 18 4, 10, 15, 19 5, 20

PSS = 0.7 PSS = 0.5 PSS = 0.3 PSS = 0.1 PSS = 0
B 5, 9, 14, 20 4, 8, 13, 19 3, 7, 12, 18 2, 6, 11, 17 1, 16

TABLE 5.3: Original PSS distribution of each player

It is worth clarifying a confusion point: a player’s PSS at a particular spot

is her perceived likelihood of a scoring short, rather than the actual probability
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FIGURE 5.5: Soccer game: initial board

of a successful shot. So statistically calculating the "successful shot" rate from

observation data does not help reflect the player’s own belief of her shooting

skills, which is, the player’s reward.

With this setting, we let the two players play against each other, both

employing a minimax equilibrium. In other words, this is a zero-sum game.

But this information is not available to us. Instead, we are given: 1. the bi-

policy of the two players over all states, and; 2. the state transition dynamics

(including the ball exchange rate β = 0.6). In fact, this information can be

statistically calculated or estimated with sufficient observations. We simply

skip this data pre-processing stage as it is not the emphasis of this chapter.

We then assume that the two players follow an advE and try to infer their

rewards on this basis.

5.6.1 Prior Specification

As indicated in Section 5.4.3, one of the key specifications of the advE-MIRL

model is the prior, which encodes our beliefs of the unknown rewards. We

use two Gaussian priors for the unknowns of A and B with three types of

means and two types of covariance matrices, as follows:

• Weak Mean: for A, assign 0.5 point in every state where A has possession

of the ball and−0.5 point in every state where A loses possession of the
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ball. Same setting for B.

• Median Mean: for A, assign 1 point whenever it has the ball and is in one

of the corner squares 1, 6, 11 and 16, and −1 point to A whenever B has

the ball and is in its hypothesized goal area 5, 10, 15 and 20. When A

has the ball and takes a shot, it is assigned 0.5 wherever it is; when B has

the ball and takes a shot, A is assigned -0.5 wherever B is. Otherwise,

no points will be assigned. Same setting for B.

• Strong Mean: Similar to Median Mean except for a more accurate per-

ception of where the goals are for A and B.

• Weak Covariance Matrix: an identity matrix for both A and B, which

implies no knowledge or guess about the relationship between any two

reward values is available.

• Strong Covariance Matrix: a more complex covariance matrix constructed

from our following hypothesis of the reward structure, same for both A

and B.

1. when one player has the ball and takes a shot, its PSS depends

only on its’ current position in the field, and;

2. at any state, one’s reward for any non-shoot action is one’s own

position dependent.

To make it clear, our prior specifications do not imply a zero-sum relationship

between A and B’s reward. As the singularity issue may occur when using

strong covariance matrices, we add a small numerical perturbation to the

diagonal.
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5.6.2 Monte Carlo Simulation using Recovered Rewards

By solving an advE-MIRL problem (5.39), we recover A and B’s reward vec-

tors, over all states and all actions. For both of them, there are 6 advE-MIRL

reward vectors recovered corresponding to the 6 pairs of means and covari-

ance matrices. Since we have seen that evaluating the quality of recovered

reward by simply measuring its numerical difference from true value may

lead to misleading conclusion, we adopt a Monte Carlo simulation method

implied in Section 5.5, by taking the following two steps:

1. Create agents

• C, which uses advE-MIRL reward

• D, which uses true reward

• E, which uses zero-sum MIRL reward

• F, which uses dMIRL reward

• G, which uses BIRL reward

2. Design competitive games

• C against D;

• C against E;

• C against F;

• C against G;

Note that agent E, F and G use rewards recovered from three conventional

MIRL approaches covered in Section 5.3. Here we let C plays the role of

A and others take the place of B (due to symmetry, two parties can switch

roles as well). All those games are simulated in three different environmental

settings, where the the ball exchange rates β are 0, 0.4 and 1. 5000 round

games are simulated per case.
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The simulation results are presented in Table 5.4–Table 5.7, where WM,

MM, SM, WC and SC stand for weak mean, median mean, strong mean, weak

covariance matrix and strong covariance matrix, respectively. To interpret the

result, take the 2nd row of Table 5.5 as an example: C uses WM and SC as

prior and recovers A’s advE-MIRL reward, while E also use the same prior

and learns a zero-sum MIRL reward vector of B. They come up with their

own minimax policies according to their learned rewards and environmen-

tal settings and play against each other. 32.28/36.40 means C beats E with

probability 32.28%, loses with probability 36.40%, and end in a tie with prob-

ability 31.32%, when the ball exchange rate is 1. Note that 0/0 shown in these

tables means the both parties learn very bad rewards such that no one is able

to score a single point even if its opponent is also poorly skilled.

advE-MIRL Rewards W/L% (β = 0.4) W/L% (β = 1) W/L% (β = 0)
WM & WC 0/32.44 0/58.00 0/49.98
WM & SC 20.40/25.46 20.50/38.24 42.88/50.16
MM & WC 4.60/30.12 9.36/44.00 10.44/49.88
MM & SC 24.86/24.94 25.10/24.80 49.97/50.02
SM & WC 14.90/30.52 6.80/42.50 15.42/50.08
SM & SC 25.26/24.80 25.00/24.80 50.14/49.86

TABLE 5.4: C vs D

advE-MIRL Rewards W/L% (β = 0.4) W/L% (β = 1) W/L% (β = 0)
WM & WC 0/2.40 0/0 0/0
WM & SC 22.76/28.94 32.28/36.40 43.14/50.14
MM & WC 0/0 9.20/5.60 4.12/16.86
MM & SC 24.86/25.12 25.04/24.96 49.54/50.44
SM & WC 11.24/10.60 8.80/9.18 16.10/24.46
SM & SC 25.28/25.06 24.94/25.12 50.13/49.86

TABLE 5.5: C vs E

From all the above results, as a whole, we can see that our advE-MIRL

algorithm

• performs, if not better, comparatively with zero-sum MIRL algorithm,

though the latter requires a stronger assumption.
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advE-MIRL Rewards W/L% (β = 0.4) W/L% (β = 1) W/L% (β = 0)
WM & WC 0/0 0/0 0/0
WM & SC 27.10/0 25.42/0 50.04/0
MM & WC 6.04/0 8.64/0 18.02/0
MM & SC 25.28/0 26.06/0 49.86/0
SM & WC 13.98/0 9.00/0 49.26/0
SM & SC 24.90/0 26.08/0 49.90/0

TABLE 5.6: C vs F

advE-MIRL Rewards W/L% (β = 0.4) W/L% (β = 1) W/L% (β = 0)
WM & WC 0/0 0/0 0/0
WM & SC 25.10/0 24.84/0 50.12/0
MM & WC 5.52/0 8.76/0 16.20/0
MM & SC 28.50/10.12 25.12/12.00 49.26/20.46
SM & WC 14.20/0 8.64/0 44.25/0
SM & SC 25.80/0 25.28/0 50.12/0

TABLE 5.7: C vs G

• performs notably better than d-MIRL and BIRL algorithms, particularly

when using a strong covariance in prior.

5.7 Conclusions

We present novel and computationally tractable algorithms to five special

variants of MIRL problems, as well as demonstrations with several bench-

mark grid-world examples. advE-MIRL requires weaker assumptions whereas

achieves similar performance compared to zero-sum MIRL, and works much

better than d-MIRL and BIRL. uCS and cooE generate good results if scales

can be tweaked. uCE and uNE perform remarkably well in two benchmark

grid-world examples, not only qualitatively good but also numerically close

to true values. There are three reasons why the results are so good. First,

these two small GGs are well-defined in the sense that there is no chance of

moving in another direction by accident once a certain direction is selected

(no noise in action). Second, the bi-policy π we use is exactly the equilibrium
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of interest because it is generated from a corresponding MRL-Q-learning al-

gorithm. Third, we have incorporated strong prior information about the

game, and a good solution can be achieved by tuning the regularized coeffi-

cients.
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Chapter 6

Conclusions

This chapter summarizes the dissertation, concludes our research findings,

state the significance of our work, discusses the limitations and outlines di-

rections for future research.

In Chapter 4, we propose an MIRL algorithm for two-person zero-sum

stochastic games. This problem is of particular intest because there are many

real world applications where our algorithm could be potentially applicable.

Another reason that we select this problem to investigate first is that it is rela-

tively simple, in the sense that 1. there are only two agents involved and their

relationship is “clear" - fully competitive, and; 2. since their reward is zero-

sum, we only need to infer one agent’s reward. To address this problem, we

first assume that the two agents have been following minimax equilibriums

at every sequential game. Second, we characterize a set of feasible solutions

in which each solution is consistent with the observations. And most im-

portantly, the minimax equilibrium is unique. We set up a MAP estimation.

Specifically, we select a Gaussian prior, with the mean of the unknown re-

ward vector and its covariance matrix, and aim to maximize the posterior of

the unknowns given policy. Luckily, the likelihood here is simply 1. One ob-

vious advantage of our algorithm is that it is convex and thus tractable. We

also discuss the scalability of our algorithm, particularly when the covari-

ance matrix is large and non-sparse. In the experiment, we demonstrate that

our zero-sum MIRL algorithm is able to generate high quality solution, that
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is to say, the policy generated from our solution behaves as well as the true

optimal policy, particular when a strong covariance matrix is selected. We

also show that in case of environment changes, our algorithm works better

than other three treatments: 1. infer new policies directly from given policy

in the old environment; 2. model the problem as an IRL, in particular, focus

on one agent and treat the other as part of the passive environment, and; 3.

use the decentralized-MIRL method proposed in (Reddy et al., 2012).

In Chapter 5, we study a more difficult MIRL problem where two or more

agents are involved and their rewards are not zero-sum. We clearly empha-

size two challenges that general-sum MIRL problems have: 1. there could

be many “relationships" between multiple agents, in other words, they not

necessarily follow one particular type of equilibriums, and; 2. even if we

know what type of equilibriums they employ, the equilibrium of that partic-

ular type may not be unique (actually, it is often not unique). Thus we focus

on five particular equilibriums and propose corresponding MIRL algorithms.

To use these five algorithms, it is required: 1. each agent’s full policies over

all states is given or can be estimated through observations; 2. the equilib-

rium they follow is known. For uCS/advE/cooE-MIRL, we first develop a

characteristic set of solutions ensuring that the observed bi-policy is a corre-

sponding strategy/equilibrium and then apply a Bayesian inverse learning

method. For uCE-MIRL, we develop a linear programming problem, subject

to constraints that define necessary and sufficient conditions for the observed

policies to be CE. For the objective function, we propose novel heuristics to

choose a solution that not only minimizes the total game value difference be-

tween the observed bi-policy and its local uCS, but also maximizes the scale

of the solution. Similar ideas have been borrowed to tackle uNE-MIRL. Ex-

periments have shown remarkable performance of each algorithm. As we do

in Chapter 4, comparisons are conducted against a Bayesian IRL algorithm.

We propose in total six algorithms to six different MIRL problems, one for
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zero-sum and the other five for five general-sum problems, and demonstrate

them using various benchmark grid world experiments. We can come to the

following conclusions: 1. our algorithms generally work well; 2. the more

informative prior to select, the better our algorithms’ performance; 3. For

a Gaussian prior, selecting a reasonable covariance is more important than

picking a good prior mean of the unknown rewards, and; 4. Monte-carlo

simulation metric is another important metric to measure the quality of our

results.

In addition to theoretical contributions Chapter 1, this thesis has clearly

answered two fundamental questions regarding to MIRL:

• Why is MIRL problem worth investigation?

• For some MIRL problem, is it necessary to come up with a MIRL algo-

rithm? Or in other words, are current algorithms/treatments, such as

policy learning and IRL, enough for solving a MIRL problem?

However, this work is by no means a complete treatment of MIRL prob-

lems, particularly in terms of real applications, as it has several technical lim-

itations:

• Human beings are very unlikely to always employ a same type of equi-

librium that we cover in this dissertation, in every sequential game. But

in this dissertation, we do not take action noise into account.

• It is very difficult to obtain accurate estimates of state transition ma-

trices, as well as policies, through limited observations of state-multi-

action trajectories. But how to quantify the impact of the inaccuracy of

these two inputs, or algorithm stability, is not yet considered.

• The assumption of knowing the type of employed equilibrium is not

always valid. We thus need to come up with a equilibrium selection

scheme based on their policies.
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As a result, future MIRL research efforts can be put into how to break

through the above limitations. In addition, we often see, in reality, the games

in which two groups play against each other while within each group, mem-

bers employ another cooperative or non-cooperative equilibria. An imme-

diate idea comes to our mind is to set up a hierarchical MIRL problem and

solve it in an iterative way. To the best of our knowledge, no such problems

have been address. Our work can serve a starting point.
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