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Abstract

The classifying diagram was defined by Rezk and is a generalization of the nerve of a
category; in contrast to the nerve, the classifying diagram of two categories is equivalent if
and only if the categories are equivalent. In this thesis we prove that the classifying diagram
of any category is characterized in terms of classifying spaces of stabilizers of groups. We
also prove explicit decompositions of the classifying diagrams for the categories of finite
ordered sets, finite dimensional vector spaces, and finite sets in terms of classifying spaces
of groups. For the classification diagram, which was defined by Rezk to work with cat-
egories with weak equivalences, we prove analogous results that were previously known
for the classifying diagram. We close by comparing the classifying and classification di-
agrams, highlighting the differences and challenges of working with categories that have
weak equivalences.
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1. Introduction

A topological space can be built from a category using the machinery of the nerve, which
takes objects in the category to points and chains of n-composable morphisms to n-cells.
The resulting space is referred to as the “classifying space” of the category. However,
two categories that are not equivalent can produce equivalent classifying spaces because
the nerve does not place any value on the data that comes from a morphism being an
isomorphism. (See Example 2.15 below).

The classifying diagram, which is a generalization of the nerve, is an alternative machine
that can be used to study categories. The classifying diagram respects the data that isomor-
phisms provide, and as a result, the classifying diagram of two categories are equivalent if
and only if the categories are equivalent [2, 3.3.4]. The classifying diagram was defined
by Rezk in [13]. Rezk uses complete Segal spaces as a model for homotopy theory. The
classifying diagram of a category is a natural occurrence of a complete Segal space. (See
Proposition 3.2 below.)

The purpose of this thesis is to provide a deeper understanding of the classifying dia-
gram. We consider specific well-known categories, such as the category of finite ordered
sets, finite dimensional vector spaces, and finite sets; we describe the resulting classifying
diagrams in terms of classifying spaces of groups. In the process, we prove the valuable
result that for a general category we can characterize the classifying diagram in terms of
classifying spaces of stabilizers.

We also compare the classifying diagram with the classification diagram, which was
defined by Rezk [13]. The classification diagram respects the weak equivalences in the
category in the same way the classifying diagram respects isomorphisms. The classification
diagram has results that are analogous to the classifying diagram. (Compare Propositions
3.4 and 3.5 with Propositions 6.4 and 6.5.) We also show that there is a subtlety between
respecting isomorphisms and weak equivalences.

1.1. Future work. There are some results presented in this thesis we wish to expound on
in the future. In particular, we believe that the results for the classifying diagram of the
category of finite vector spaces in Section 5 can be furthered. In Section 6.3 we work with
the classification diagram for the connected model structure on graphs. There are several
other model structures on the category of graphs in [4]. Some future work ideas are to
compare the classification diagrams for the different models and see if a model leads to a
new natural approach for defining homotopy automorphisms.

Biedermann and Röndigs’ use model categories and localization as the foundational tools
in their perspective on functor calculus [3]. Another research goal is to use the classification
diagram to study and compare Biedermann and Röndigs’ model categories. In particular
we can consider the following questions.

Questions 1.1. Are there nice descriptions of the classification diagrams of Biedermann
and Röndigs’ model categories? How does Biedermann and Röndigs’ use of localization
affect the classification diagram?

The classification diagram is also used as a machine that takes categories into complete
Segal spaces. Unlike model categories, there is a nice notion of convergence in complete
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Segal spaces. Unveiling answers to the above questions will help guide the way to ap-
proaching the following deeper questions.

Questions 1.2. Does implementing the classification diagram on the Biedermann and Röndigs’
model categories give a nice notion of functor calculus in complete Segal spaces? What
is the appropriate notion of the cross effect? What is the correct notion of a derivative? Is
there a Taylor tower? If so, what do the layers look like? Does the Taylor tower converge?

1.2. Organization of the paper. We begin in Section 2 by recalling relevant category
theory tools, the definition and basic structure of simplicial sets, the nerve of a category,
and the definition of complete Segal spaces. In Section 3, we provide Rezk’s definition for
the classifying diagram of a category, explain why the classifying diagram is a complete
Segal space, provide some preliminary examples of the classifying diagram, and prove a
characterization of the classifying diagram using stabilizers of groups. In Sections 4 and 5
we address the classifying diagram of the categories of finite dimensional vector spaces and
finite sets, respectively. We close the paper in Section 6 by providing Rezk’s definition of
the classification diagram, proving results analogous to what is known about the classifying
diagram, and comparing the classification diagram’s behavior with the classifying diagram.

2. Background

In this section we review some relevant category theory tools and provide an overview
of simplicial sets, simplicial spaces, and complete Segal spaces.

2.1. Category theory tools. We recall some of the category theory tools that will be used
throughout this paper. In particular, we review definitions and relevant results for natural
transformations, equivalent categories, and diagram categories.

The data from a natural transformation η : F ⇒ G between two functors F,G : C → D
can be equivalently packaged as a functor η : C × {0→ 1} → D. First, recall the definition
of a natural transformation.

Definition 2.1. A natural transformation η : F ⇒ G is a function that assigns to each
object c in C a morphism ηc : F(c) → G(c) of D in such a way that for every morphism
f : c→ c′ of C, the diagram

F(c) G(c)

F(c′) G(c′)

ηc

F( f ) G( f )

ηc′

commutes.

Instead of using the labeling for the category with two objects and one nontrivial mor-
phism {0 → 1}, we suggestively use {F

η
−→ G}. First we show that given a natural transfor-

mation η : F ⇒ G, we can obtain a functor {F
η
−→ G} × C → D. We define the evaluation

functor ev : {F
η
−→ G} × C → D by ev(F, c) = F(c) and ev(G, c) = G(c). The diagram

(F, c) (G, c)

(F, c′) (G, c′)

(η,idc)

(idF , f ) (idG , f )

(η,idc′ )
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commutes in the category {F
η
−→ G} × C. Since functors preserve composition, applying the

evaluation functor ev to the above diagram gives us the same diagram from the definition
of natural transformations. In this manner, we obtain the functor ev : {F

η
−→ G} × C → D

from a natural transformation η : F ⇒ G.
The converse is also true. Meaning given functors F,G : C → D and ev: {F

η
−→ G}×C →

D where ev(F, c) = F(c) and ev(G, c) = G(c), then we obtain a natural transformation
η : F ⇒ G. To see that the converse is true, let f : c → c′ be a morphism in C. Then the
square

(F, c) (G, c)

(F, c′) (G, c′)

(η,idc)

(idF , f ) (idG , f )

(η,idc′ )

commutes in the category {F
η
−→ G} × C. Applying the functor ev to the above diagram

gives the commutative diagram

F(c) (G, c)

(F, c′) (G, c′)

ev(η,idc)

F( f ) G( f )

ev(η,idc′ )

in D. Thus if we define a function that assigns to each object c of (C) the morphism
ηc := ev(η, idc) : F(c)→ G(c) inD, we construct a natural transformation η : F ⇒ G.

For functors F,G : C → D, we say that a natural transformation η : F ⇒ G is a natural
isomorphism if the morphism ηc : F(c) → G(c) in D is an isomorphism for every object c
of C.

Definition 2.2. CategoriesC andD are equivalent categories if there exist functors F : C →
D and G : D → C as well as natural isomorphisms G ◦ F � idC and F ◦G � idD.

We can alternatively determine if two categories are equivalent using the following defi-
nitions.

Definition 2.3. Let F : C → D be a functor.
(i) If the function between hom-sets F : HomC(c, c′) → HomD(F(c), F(c′)) is injective

for any objects c, c′ ∈ C, then F is faithful.
(ii) If the function between hom-sets F : HomC(c, c′)→ HomD(F(c), F(c′)) is surjective

for any objects c, c′ ∈ C, then F is full.
(iii) If for any object d ∈ D there exists an object c ∈ C such that there is an isomorphism

F(c)
�
−→ d inD, then F is essentially surjective.

The following result says that there are necessary and sufficient requirements for a func-
tor to define an equivalence of categories.

Proposition 2.4. [11, IV.4.1] The categories C and D are equivalent if and only if there
exists a functor F : C → D that is faithful, full, and essentially surjective.

We can use categories to define new categories. If the collection of objects in the category
D form a set, then we say thatD is a small category.
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Example 2.5. Let C be a category and letD be a small category.
(i) The opposite category of C, denoted Cop, is the category where ob(C) = ob(Cop) and

f op : b→ a is a morphism in Cop if and only if f : a→ b is a morphism in C.
(ii) The functor category CD is the category whose objects are functors F : D → C

and the morphisms are natural transformations. We also refer to CD as a diagram
category.

Let [n] be the category consisting of a chain of n composable morphisms

0→ 1→ 2→ · · · → n.

The diagram category C[n] is of particular importance throughout this paper. An object of
C[n] is a chain of n composable morphisms in C

x0 x1 x2 · · · xn
f1 f2 f3 fn

and a morphism from ( f1, . . . , fn) to (g1, . . . , gn) is an (n+1)-tuple of morphisms (α0, α1, . . . , αn),
where each αi is a morphism in C, making the diagram

x0 x1 x2 · · · xn

y0 y1 y2 · · · yn

f1

α0

f2

α1

f3

α2

fn

αn

f1 f2 f3 fn

commute in C. If each αi is an isomorphism in C, then (α0, . . . , αn) is an isomorphism in
C[n].

Proposition 2.6. Let D and E be equivalent small categories. Also let C be a category.
Then the functor categories CD and CE are equivalent.

Proof. Let F : D → E and G : E → D be functors such that G ◦ F � idD and F ◦G � idC.
Define F : CE → CD by F( f ) = f ◦ F, and define G : CD → CE by G(g) = g ◦G. Then

G ◦ F( f ) = G( f ◦ F) = ( f ◦ F) ◦G = f ◦ (F ◦G) � g ◦ idE = g

and similarly F ◦G(g) � g. Thus F and G define the desired equivalence of categories. �

Proposition 2.7. Let C andD be equivalent categories and let E be a small category. Then
the functor categories CE andDE are equivalent.

The proof of the above proposition is similar to the proof of Proposition 2.6.

2.2. Simplicial sets. A brief account of the definition of simplicial sets and a description
of its model category structure are included here.

Before we can provide the definition of a simplicial set, we define the categories Set and
∆. Let Set denote the category whose objects are sets and morphisms are functions. Let ∆

be the category whose objects are finite ordered sets, denoted as [n] = {0 ≤ 1 ≤ 2 ≤ · · · ≤
n}, and the morphisms are order-preserving functions.

Definition 2.8. A simplicial set is a functor from ∆op → Set.

If X is is a simplicial set, we denote its geometric realization by |X| [8, §I.2]. The
category of simplicial sets, which we denote by SSet, has simplicial sets as objects and
natural transformations for morphisms.
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Example 2.9. The standard n-simplex is the simplicial set ∆[n] := Hom∆(−, [n]). The
geometric realization |∆[n]| is a n-cell.

The data from a simplicial set X can be rewritten in terms of sets X([n]) =: Xn along with
maps

di : Xn → Xn−1, 0 ≤ i ≤ n (face maps)
s j : Xn → Xn+1, 0 ≤ j ≤ n (degenercy maps)

which satisfy simplicial identities [8, §I.1]. We say that Xn is the nth level of the simplicial
set X. By the Yoneda Lemma, the set Xn � HomSSet(∆[n], X).

There is a model structure for SSet where a map f : X → Y is a weak equivalence if the
induced map from geometric realization, | f | : |X| → |Y |, is a weak homotopy equivalence
[8, Ch. 1]. An expository account for model categories may be found in [6]. The following
proposition says that the hom-sets in SSet have the structure of a simplicial set.

Proposition 2.10. [8, II.2.2] The category SSet is enriched in SSet. That is, given any
two simplicial sets X and Y, the hom-set HomSSet(X,Y) is a simplicial set.

2.3. The nerve of a category. In this section, we see that the nerve of a category gives a
simplicial set. Using the data that a natural transformation encodes, we show that nerves
of categories are weakly equivalent if there exists functors between the categories with
appropriate natural transformations with the identity functors.

Definition 2.11. The nerve of a category C is the simplicial set defined levelwise by

nerve(C)n := HomCat([n],C).

Proposition 2.12. Given two functors F,G : C → D and a natural transformation η : F ⇒
G, there exists an induced homotopy |nerve(F)| ' |nerve(G)|.

Proof. As described in Section 2.1, the notion of a natural transformation η : F ⇒ G
equivalent to a functor η : C×{0→ 1} → D. More specifically, we can think of η : F ⇒ G
as giving the commutative diagram

C × {0}

C × {0→ 1} D.

C × {1}

F

η

G

The functor |nerve(−)| can now be applied to this diagram. Note that |nerve({0 → 1})| ' I
where I is the unit interval [0, 1]. Also note that |nerve(C × {0 → 1})| ' |nerve(C)| × I
because |nerve(−)| preserves products [9, 14.1.5, 13.1.12]. As a result, the diagram

|nerve(C)| × 0

|nerve(C)| × I |nerve(D)|

|nerve(C)| × 1

|nerve(F)|

|nerve(G)|



6

commutes and hence |nerve(η)| induces the desired homotopy, |nerve(F)| ' |nerve(G)|. �

Corollary 2.13. If the categories C andD are equivalent, then the simplicial sets nerve(C)
and nerve(D) are weakly equivalent in the model structure for SSet.

Proof. Suppose C and D are equivalent categories. Then there exist functors F : C → D
and G : D → C such that G ◦ F � idC and F ◦G � idD. By Proposition 2.12, the diagrams

|nerve(C)| × {0} |nerve(D)| × {0}

|nerve(C)| × I |nerve(C)| |nerve(D)| × I |nerve(D)|

|nerve(C)| × {1} |nerve(D)| × {1}

|nerve(G◦F)| |nerve(F◦G)|

|nerve(idC)| |nerve(idD)|

commute. It should be noted that, for example, |nerve(G ◦ F)| = |nerve(G)| ◦ |nerve(F)|
and |nerve(idC)| = id|nerve(C)|. So we have homotopies |nerve(G ◦ F)| ' id|nerve(C)| and
|nerve(F ◦G)| ' id|nerve(D)| and hence we have a homotopy equivalence between |nerve(C)|
and |nerve(D)|. Thus nerve(C) is weakly equivalent to nerve(D) in the model structure for
SSet. �

There is a more general result.

Proposition 2.14. Given functors F : C → D and G : D → Cwith natural transformations
η : G ◦ F ⇒ idC and θ : F ◦ G ⇒ idD, nerve(C) is weakly equivalent to nerve(D) in the
model structure for SSet.

Proof. By Proposition 2.12, we have homotopies |nerve(G ◦ F)| ' id|nerve(C)| and |nerve(F ◦
G)| ' id|nerve(D)|. Thus |nerve(C)| is homotopy equivalent to |nerve(D)| and hence nerve(C)
is weakly equivalent to nerve(D) in SSet. �

Note that the direction of the natural transformations η and θ had no effects on the proof
for Proposition 2.14.

2.4. A motivating example. In Proposition 2.14 the categories C and D are not required
to be equivalent in order for nerve(C) and nerve(D) to be weakly equivalent in SSet. In
fact, as we see in the following example, two categories can have weakly equivalent nerves
even if the categories are not equivalent.

Example 2.15. Let C be the category with one nontrivial morphism between two objects,
f : x → y, and let D be the subcategory containing just the object x and its identity mor-
phism. Let F : C → D be the functor sending every object of C to x and every morphism
to the identity morphism on x. Let G : D → C be the natural inclusion. By construction,
F ◦ G is the identity functor idD. Now we want to construct a natural transformation be-
tween G ◦ F and the identity functor idC. Note that G ◦ F( f ) = idx. We can construct a
natural transformation η : G ◦ F ⇒ idC by letting ηx := idx and ηy := f . Thus, by Proposi-
tion 2.14, the nerves of C andD are weakly equivalent. But we claim that the categories C
andD are not equivalent.

To see that C and D are not equivalent, note that the functor F : C → D is the only
possible functor we can construct going from C to D. Note that HomC(y, x) is the empty
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set, but HomD(F(y), F(x)) = HomD(x, x) = {idx}. Thus F is not faithful and hence the
categories C andD are not equivalent.

This example highlights the necessity for a finer tool than the nerve in order to distin-
guish the difference between categories that may not have been equivalent. The classifying
diagram, which is defined in Section 3, is a generalization of the nerve and it can distin-
guish the difference between the categories described in the above example. The purpose
of this thesis is to provide a deeper investigation into the classifying diagram.

2.5. Simplicial spaces and the Reedy model structure. We provide the definition of a
simplicial space, explain two different ways to build a simplicial space from a simplicial
set, and describe what it means for simplicial spaces to be weakly equivalent.

Definition 2.16. A simplicial space is a functor ∆op → SSet.

We denote the category of simplicial spaces by SSpace. That is, SSpace has simplicial
spaces as objects and natural transformations as morphisms. Because SSpace is enriched
in SSet, we let Map(X,Y) denote the the mapping space between X and Y .

The data for a simplicial space X can be rewritten in terms of simplicial sets X([n]) =: Xn

along with face and degeneracy maps.
Given a set X, we define the constant simplicial set by applying the functor const :
Set → SSet which maps the set X to the simplicial set defined levelwise const(X)n := X
where the face and degeneracy maps are identity maps.

If instead we have a simplicial set X, we define two different simplicial spaces by apply-
ing two different functors SSet→ SSpace.

(i) We define a constant simplicial space by applying the functor SSet→ SSpacewhich
maps the simplicial set X to the simplicial space where each level is the simplicial set
X and the face and degeneracy maps are identity maps. We also denote the resulting
constant simplicial space by X.

(ii) Let Xn be the nth level of the simplicial set X. We define a discrete simplicial space,
denoted by Xt, by applying the functor SSet→ SSpace levelwise; it maps the set Xn

to the simplicial set Xt
n := const(Xn).

The “t” in the notation of the simplicial space Xt is used because Xt is an analog for the
“transpose” of the constant simplicial space X.

The category SSpace is enriched in SSet. The simplicial space ∆[n]t is representable
and hence we have

Xn � Map(∆[n]t, X)

using the enriched version of the Yoneda Lemma [13, §2.3].
In this paper we use the Reedy model category structure on SSpace. The weak equiva-

lences in the Reedy model structure are the levelwise weak equivalences of simplicial sets
[12, A].

2.6. Segal spaces. In this section we see that a Segal space is a simplicial space with
additional structure. In particular, if X is a Segal space, then Xn can be written in terms of
X0 and X1.
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In the category ∆, define maps αi : [1] → [n] for 0 ≤ i < n where αi(0) = i and
αi(1) = i + 1. Using the construction of the αi’s, we construct the simplicial set

G(n) :=
n−1⋃
i=0

αi∆[1] ⊂ ∆[n].

For a simplicial set X and n ≥ 2,

HomSSet(G(n), X) � X1 ×X0 · · · ×X0 X1︸               ︷︷               ︸
n

= lim
(
X1

d0
−→ X0

d1
←− X1

d0
−→ · · ·

d1
←− X1

)
.

The inclusion G(n) ⊂ ∆[n] of simplicial sets induces an inclusion G(n)t ↪→ ∆[n]t of
simplicial spaces. For a fixed simplicial space X, this inclusion of simplicial spaces induces
a map

Map(∆[n]t, X) Map(G(n)t, X)

Xn X1 ×X0 · · · ×X0 X1︸               ︷︷               ︸
n

ϕn

between simplicial sets for n ≥ 2. We call ϕn a Segal map.

Definition 2.17. [13, §4.1] A simplicial space W is a Segal space if W is Reedy fibrant and
the Segal maps ϕn are weak equivalences for n ≥ 2.

Generally speaking, in a model structure, every object is weakly equivalent to a fibrant
object. In the definition of a Segal space, we require W to be Reedy fibrant in order to
guarantee pullbacks and homotopy pullbacks coincide. We also note that the Segal maps
ϕn in a Segal space are acyclic fibrations [13, §4.1].

2.7. Complete Segal spaces. In order to arrive at the definition of a complete Segal space,
we observe that a Segal space mimics the structure of a category.

Definition 2.18. [13, §5.1] The set of objects of a Segal space W is ob(W) := W0,0, which
is the zeroth level of the simplicial set W0.

Now that a Segal space has objects like a category, we need to define the analog of the
hom-space between two objects.

Definition 2.19. [13, §5.1] Let W be a Segal space and x, y ∈ ob(W). The mapping space
mapW(x, y) is defined by the pullback square

mapW(x, y) W1

{(x, y)} W0 ×W0

(d1,d0)

of simplicial sets.
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The requirement that W is Reedy fibrant means that the the map (d1, d0) : W1 → W0 ×

W0 is a fibration [13, §5.1]. Hence mapW(x, y) is also a homotopy pullback in the above
diagram.

Given a Segal space W, note that if x ∈ W0, then s0x ∈ W1 and d1s0x = x = d0s0x. So if x
is in the set of objects of W, then s0x ∈ map(x, x)0, which leads to the following definition.

Definition 2.20. [13, §5.1] Given a Segal space W and x ∈ ob(W), the identity map of x is
defined to be idx := s0x ∈ mapW(x, x)0.

In a Segal space, so far we have objects, mapping spaces between objects, and the
identity map. In a category, composition is unique. However, if f ∈ mapW(x, y)0 and
g ∈ mapW(y, z)0, what does “g ◦ f ” mean, and is it in mapW(x, z)0? To see how Rezk an-
swered this question, we first define what it means to be homotopic in the mapping space,
and then generalize the definition of the mapping space.

Definition 2.21. [13, §5.3] Let f , g ∈ mapW(x, y)0 where x and y are objects in a Segal
space W. We say f and g are homotopic, denoted f ' g, if they lie in the same component
of mapW(x, y).

In order to get to the point where we can talk about composition, we need to be able to re-
late, for example, mapW(x, y)×mapW(y, z) with mapW(x, z). To accomplish this relationship,
we generalize the definition of the mapping space between two objects and define a map-
ping space between a finite collection of objects. In particular, given x0, . . . , xn ∈ ob(W),
mapW(x0, . . . , xn) is defined by the pullback square

mapW(x0, . . . , xn) Wn

{(x0, . . . , xn)} W0 × · · · ×W0︸           ︷︷           ︸
n+1

.

Let V := mapW(x0, . . . , xn) where W is a Segal space. Then the Segal map

ϕn : Vn
'
−→ V1 ×V0 · · · ×V0 V1︸               ︷︷               ︸

n

is actually the map

ϕn : mapW(x0, . . . , xn)
'
−→ mapW(x0, x1) ×mapW(x1, x2) × · · · ×mapW(xn−1, xn).

Let ( f , g) ∈ mapW(x, y)0×mapW(y, z)0 where W is a Segal space. We want to define what
it means to “compose” g and f . Recall that the Segal map mapW(x, y, z) → mapW(x, y) ×
mapW(y, z) is an acyclic fibration and the map ∅ → {( f , g)} is a cofibration in the model
structure for SSet. Thus, by the fourth model category axiom [6, 3.3], there exists a lift
{( f , g)} → mapW(x, y, z) making the diagram

∅ mapW(x, y, z)

{(x, y, z)} mapW(x, y) ×mapW(y, z)

' ϕ2

commute. Thus we can define a composition of g and f as a lift k ∈ mapW(x, y, z) of ( f , g)
along the Segal map ϕ2. The result of a composition k is d1k ∈ mapW(x, z)0. A result is not
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unique, but a result is unique up to homotopy. We let g◦ f denote a result of a composition.
In particular, as seen in the following proposition, a Segal space has a category theory
structure up to homotopy.

Proposition 2.22. [13, 5.4] In a Segal space W, let w, x, y, z ∈ ob(W) and ( f , g, h) ∈
mapW(w, x)0 × mapW(x, y)0 × mapW(y, z)0. Then

(i) (h ◦ g) ◦ f ' h ◦ (g ◦ f ) and
(ii) f ◦ idw ' f ' idx ◦ f .

We can use the up-to-homotopy category structure in a Segal space to define a category.

Definition 2.23. [13, §5.5] The homotopy category of a Segal space W, denoted as HoW,
has ob(W) as objects and HomHo(W)(x, y) = π0mapW(x, y).

If f ∈ mapW(x, y)0, let [ f ] ∈ HomHo(W)(x, y) denote its associated equivalence class.

Definition 2.24. [13, §5.5] Let W be a Segal space with objects x and y. We say f ∈
mapW(x, y)0 is a homotopy equivalence if [ f ] ∈ HomHo(W)(x, y) is an isomorphism.

In other words, f ∈ mapW(x, y)0 is a homotopy equivalence if there exists g, h ∈ mapW(y, x)0

such that f ◦ g ' idy and h ◦ f ' idx. Observe that Proposition 2.22 implies g ' h. Also
note that idx ∈ mapW(x, x)0 is a homotopy equivalence.

The following result shows us that we can define a subspace using the homotopy equiv-
alences in a Segal space.

Proposition 2.25. [13, 5.8] If [ f ] = [g] ∈ HomHo(W)(x, y), then f is a homotopy equivalence
if and only if g is a homotopy equivalence in the Segal space W.

So in a Segal space W, the space of homotopy equivalences is defined as the subspace
Wheq ⊆ W1 which consists of the components of W1 whose 0-simplices are homotopy
equivalences.

Note that for any object x in W, s0x := idx is a homotopy equivalence and hence the
degeneracy map s0 : W0 → W1 factors through Wheq.

Definition 2.26. [13, §6] A complete Segal space W is a Segal space such that the map
s0 : W0 → Wheq is a weak equivalence.

To see the importance of requiring s0 to be a weak equivalence, consider the category
I[1], which is given by

0 1.
�

�

We let i j denote the isomorphism i→ j in I[1] where i, j ∈ {0, 1}. Let E[1] := nerve(I[1]).
Then E[1]0 = {0, 1} and E[1]1 = {00, 11, 01, 10}. Note that the categories [0] and I[1]
are equivalent. Now compare the Segal space ∆[0]t and E[1]t. Levelwise ∆[0]t is con-
tractible, but E[1]t is not levelwise contractible. For example, E[1]t

0 is the constant sim-
plicial set given by the set {0, 1}. By definition, ob(E[1]t) := E[1]t

0,0 = {0, 1}. Note that
01 ∈ mapE[1]t(0, 1) and 10 ∈ mapE[1]t(1, 0) are homotopy equivalences. So the objects 0
and 1 have homotopy equivalences going between them. However the simplicial set E[1]t

0
is discrete; there is no path in E[1]t

0 between 0 and 1. So in the definition of complete
Segal spaces, the whole point of requiring s0 : W0 → Wheq to be a weak equivalence is to
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guarantee that if there is a homotopy between two objects, then there is also a path between
the objects.

In the next section we show that the classifying diagram is a complete Segal space.

3. The classifying diagram

In this section we see that Rezk’s classifying diagram, which is a generalization of the
nerve, is a simplicial space that naturally has the structure of a complete Segal space. In
Example 2.15 we saw that the nerve fails at distinguishing between categories that are
not equivalent; we revisit the categories from this example and show that the classifying
diagrams are in fact not equivalent. We compute the classifying diagram of two preliminary
examples: a finite ordered set [n], and the category of finite ordered sets ∆. Additionally
we show that the classifying diagram of a category C is equivalent to the discrete simplicial
space nerve(C)t if and only if the identities are the only isomorphisms in C. We close the
section by proving for a general category that the levels of the classifying diagram can be
written in terms of classifying spaces of stabilizers. Every classifying diagram description
we provide in this paper is decomposed into classifying spaces of groups.

3.1. The definition of the classifying diagram. Before we can define the classifying dia-
gram, we need to specify the notation used in the definition. If D is a category, let iso(D)
denote the subcategory where the objects are the same as in D, but the morphisms are
only the isomorphisms of D. In the literature, iso(D) is sometimes called the maximal
subgroupoid ofD.

Definition 3.1. [13, §3.5] The classifying diagram of a category C is denoted by NC and
is the simplicial space defined levelwise by

(NC)n := nerve(iso(C[n])).

Proposition 3.2. [13, 6.1] The classifying diagram of a small category C is a complete
Segal space.

Proof. We refer the reader to [2, 9.1.1] for the proof that NC is Reedy fibrant. By construc-
tion, the Segal map

ϕn : (NC)n → (NC)1 ×(NC)0 · · · ×(NC)0 (NC)1︸                                ︷︷                                ︸
n

is an isomorphism for all n ≥ 2, and hence NC is a Segal space. Now we need to show that
NC is complete. Note that for any x, y ∈ ob(C) � ob(NC), there is a natural bijection be-
tween the sets mapNC(x, y)0 and HomC(x, y). So if f ∈

(
(NC)heq

)
0

where f ∈ mapNC(x, y)0,

then there exists g ∈
(
(NC)heq

)
0

where f ◦ g = idy, g ◦ f = idx, and g ∈ mapNC(y, x)0. To

see that (NC)heq ' nerve(iso(CI[1])), note that f ∈
(
(NC)heq

)
0

with inverse g ∈ mapNC(y, x)0

if and only if ( f , g) ∈ ob
(
iso(CI[1])

)
� nerve

(
iso(CI[1])

)
0
. Since the categories I[1] and [0]

are equivalent, we have that CI[1] ' C[0] by Proposition 2.6. Thus, using Corollary 2.13, we
have

(NC)0 := nerve
(
iso(C[0])

)
' nerve

(
iso(CI[1])

)
' (NC)heq

and hence NC is complete. �
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The fact that the Segal maps

ϕn : (NC)n → (NC)1 ×(NC)0 · · · ×(NC)0 (NC)1︸                                ︷︷                                ︸
n

are isomorphisms means that if we want to describe the nth level of the classifying diagram
of a category C, it suffices to describe (NC)0 and (NC)1 because (NC)n is n copies of the
(NC)1 glued together along (NC)0. Thus in many examples presented in this paper, we only
provide a description for the 0th and 1st levels.

Let us revisit the motivating example from Section 2.4.

Example 3.3. Let us consider the categories that were discussed in Example 2.15 and
justify the claim that the classifying diagram of these two categories are different. In order
to show that the classifying diagrams of these two categories are not weakly equivalent in
the Reedy model structure, it suffices to find one level in which the respective simplicial
sets are not weakly equivalent in the model structure on for simplicial sets. Let us begin
with the subcategoryD, which just has one object, x, and its identity morphism. Note that
iso(D[0]) ' iso(D) = D, and hence

(ND)0 ' nerve(D).

Now, for the category C, note that the morphism f : x → y is not an isomorphism and
hence iso(C) only has the two objects, x and y, along with their identity morphisms. So we
have iso(C[0]) ' iso(C) ' D

∐
D, and hence

(NC)0 ' nerve(D) q nerve(D).

Therefore the classifying diagrams NC and ND are not weakly equivalent.

3.2. Categories with only isomorphisms. In contrast to the category C in the previous
example, we only consider categories whose morphisms are only isomorphisms in this
section. We show that the classifying diagram of a category with only isomorphisms is
levelwise equivalent to its classifying space.

Any group G can be thought of as a category. Namely, G is a category with one object
whose morphisms are given by each element in the group. Since each group element has
an inverse, all of the morphisms in the category G are isomorphisms.

Proposition 3.4. [13, §3.5] Let G be a group thought of as a category with one object.
Then

(NG)n ' nerve(G)
for any n ≥ 0.

In other words, the classifying diagram of a group G is levelwise equivalent to the classi-
fying space of G. The proof of the above proposition follows from Proposition 3.5. When
describing the classifying diagram in the following sections, we write the levels in terms of
classifying spaces of groups.

Recall that a groupoid is a category in which every morphism is an isomorphism. We
acquire the following general result.

Proposition 3.5. [13, §3.5] Let G be a groupoid. Then the classifying diagram of G is
levelwise equivalent to the classifying space of G. That is,

(NG)n ' nerve(G)

for any n ≥ 0.
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Proof. Note that iso(G[n]) = G[n] because every morphism in the category G and hence G[n]

is an isomorphism. By Corollary 2.13, it suffices to prove the categories G and G[n] are
equivalent. Here we prove that G and G[2] are equivalent, which can be extended to the
more general result. Define a functor ι : G → G[2] on objects by

x
(

x x xid id
)

and on morphisms by

x

y

f

x x x

y y y.

id

f

id

f f

id id

It is a straightforward observation that ι is full and faithful, so we only show that ι is

essentially surjective. Let x
g
−→ y

h
−→ z be an arbitrary object in G[2]. Note that the diagram

x x x

x y z.

id

id

id

g h◦g
g h

commutes and hence the triple (id, g, h ◦ g) defines a morphism from ι(x) to x
g
−→ y

h
−→ z

in G[2]. In fact, (id, g, h ◦ g) is an isomorphism with inverse (id, g−1, g−1 ◦ h−1) because
G is groupoid. Thus ι is essentially surjective. Therefore the categories G and G[n] are
equivalent. �

In the following sections we use the following notation.

Notation 3.6. (i) We use classifying space notation, BG, instead of writing nerve(G).
(ii) Let G and H be categories. We use G

∐
H to denote the category with subcategories

G and H such that an object (resp. a morphism) is in G
∐

H if and only if it is an
object (resp. a morphism) of G or H.

Observation 3.7. Let Gi be a category for each i. Then

B (qiGi) ' qiB(Gi).

The above observation follows from the construction of the nerve because if we have a
chain of n composable morphisms in the category qiGi, then the chain of morphisms lies
only in Gi for some i.

3.3. Preliminary examples. In this section we consider two categories in which the clas-
sifying diagram is decomposed into disjoint unions of the classifying space of the trivial
group.

A finite ordered set. Consider the category [m], which consists of (m+1) objects 0, 1, . . . ,m
and there exists one morphism j→ k if and only if j ≤ k.

Proposition 3.8. The 0th level of the classifying diagram of the category [m] is given by

N([m])0 '
∐
m+1

B({e})
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where {e} is the trivial group, and the 1st level of the classifying diagram is given by

N([m])1 '
∐

1
2 (m+1)(m+2)

B({e}).

Proof. To compute the 0th level, we need to consider iso([m]). Since the only isomorphisms
in [m] are identities, iso([m]) consists of m + 1 objects and only the identity morphisms.
Thus

N([m])0 '
∐
m+1

B({e}).

Now to compute the 1st level, consider the functor category iso([m][1]). The number of
objects in this functor category is the same as the number of morphisms in the category
[m]. Observe that each object k in [m] has k + 1 morphisms mapping into it, and hence the
number of morphisms in the category [m] is given by

m∑
k=0

(k + 1) =
(m + 1)(m + 2)

2
.

Since the only isomorphisms in [m] are identities, the only isomorphisms in [m][1] are also
only given by identities. Thus

N([m])0 '
∐

1
2 (m+1)(m+2)

B({e}).

�

The category of finite ordered sets. Consider the category of finite ordered sets ∆. That is,
the objects are given by finite ordered sets [m] = {0 ≤ 1 ≤ 2 ≤ · · · ≤ m} and the morphisms
are order preserving functions.

Proposition 3.9. The 0th and 1st levels of the classifying diagram of ∆ are both weakly
equivalent to a disjoint union of countably many contractible spaces, but N∆ is not weakly
equivalent to the constant simplicial space

∐
N B({e}).

Proof. Note that the only isomorphisms in ∆ are the identity morphisms, hence, since the
objects of ∆ are in bijection with the natural numbers, we get

N(∆)0 '
∐
N

B({e}).

For the first level of the classifying diagram, the objects in iso(∆[1]) are morphisms f :
[n] → [m] in ∆, and the morphisms in the category iso(∆[1]) are given by pairs of isomor-
phisms (α, β) making the diagram

[n] [n]

[m] [m]

α

f g

β

commute in ∆. Since the only isomorphisms in ∆ are identities, the only morphisms in the
category iso(∆[1]) are given by pairs of identities. For any given pair of natural numbers,
n and m, there is only a finite number of morphisms f : [n] → [m] in ∆. Also, we have
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already observed that there are a countable number of objects in ∆. Thus there is a countable
number of morphisms in ∆ and hence we get our desired result

N(∆)1 '
∐
N

B({e}).

It remains to show that N∆ is not the constant simplicial space
∐
N B({e}). For each

[n], let B({e})[n] denote the copy of B({e}) in N(∆)0 corresponding to [n]. Similarly, let
B({e}) f :[n]→[m] denote the copy of B({e}) in N(∆)1 corresponding to the morphism f : [n]→
[m] in ∆. The diagram

B({e}) f :[n]→[m]

B({e})[n] B({e})[m]

d1 d0

shows how the face maps d0, d1 : (N∆)1 → (N∆)0 interact for a given morphism f : [n] →
[m]. In particular, since m can be any nonnegative integer, we have a countable (not finite)
collection of copies of B({e}) in (N∆)1 that map via d1 to B({e})[n] for each n. Also note that
s0(B({e})[n]) = B({e})id:[n]→[n]. Thus N∆ is not weakly equivalent to the constant simplicial
space. �

In Proposition 3.5, we saw that the classifying space of a groupoid G is the weakly
equivalent to the constant simplicial space BG; in particular (NG)0 ' (NG)1 ' BG and
the face/degeneracy maps are essentially identities. In contrast, we just proved that the
0th and 1st levels of N∆ are both countable disjoint unions of contractible spaces, but the
face/degeneracy maps are not essentially identities. It is not a surprise that N∆ is not a
constant simplicial space because ∆ is not a groupoid.

3.4. The classifying diagram and the discrete simplicial space given by the nerve. In
Proposition 3.9, the structures of 0th and 1st levels of N∆ are reminiscent of the 0th and 1st
levels of the discrete simplicial space nerve(∆)t. In the following proposition, we provide
the necessary and sufficient conditions on a category C to guarantee NC and nerve(C)t are
isomorphic simplicial spaces; as a consequence N∆ is isomorphic to nerve(∆)t.

Proposition 3.10. The classifying diagram of a category C is isomorphic to the discrete
simplicial space nerve(C)t if and only if iso(C) is discrete.

Proof. Recall that nerve(C)t
n := const(nerve(C)n) is the simplicial set given by the set

nerve(C)n at each level in which the face and degeneracy maps are identities. The only
morphisms in iso(C[n]) are identities if and only if the only isomorphisms in C are identi-
ties. Thus any functor [m] → iso(C[n]) maps [m] to a chain of length m of identity mor-
phisms for an object in iso(C[n]) if and only if the only isomorphisms in C are identities;
hence HomCat([m], iso(C[n])) � ob(iso(C[n])) if and only if the only isomorphisms in C are
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identities. Therefore

N(C)n,m := nerve(iso(C[n]))m

= HomCat([m], iso(C[n]))

� ob(iso(C[n]))

� ob(C[n])
� HomCat([n],C)
= const(HomCat([n],C))m

=: const(nerve(C)n)m

if and only the only isomorphisms in C are identities, which gives the desired result. �

3.5. The stabilizer characterization of the classifying diagram. In Proposition 3.13, the
0th level of the classifying diagram is written in terms of classifying spaces of automor-
phism classes of the category. One way to extend Proposition 3.13 to the higher levels of
the classifying diagram is to describe the higher levels in terms of stabilizers of products of
automorphism groups. We begin the section by recalling the definition of a stabilizer and
the fact that it is a group.

Proposition 3.11. [10, II.4.2] Let G be a group that acts on a set S .

(i) The relation on S defined by

x ∼ x′ ⇐⇒ g · x = x′ for some g ∈ G

is an equivalence relation.
(ii) The stabilizer for some x ∈ S , Gx = {g ∈ G|g · x = x}, is a subgroup of G.

In an category C, the automorphisms on an object form a group. The following proposi-
tion uses automorphisms and hom-sets in a category to define a group action.

Proposition 3.12. Let x0, x1 . . . , xn be objects in the category C. Given the (n + 1)-tuple
x = (x0, . . . , xn), consider the group

Aut(x) := Aut(x0) × Aut(x1) × · · · Aut(xn)

and the set

Hom(x) := HomC(x0, x1) × HomC(x1, x2) × · · · × HomC(xn−1, xn).

The map

• : Aut(x) × Hom(x) Hom(x)

((α0, . . . , αn), ( f1, . . . , fn))
(
α1 f1α

−1
0 , . . . , αn fnα

−1
n−1

)
,

where each αi is an automorphism on xi and fi : xi−1 → xi is a morphism in C, defines a
group action.



17

Proof. It suffices to check that • is a group action on each coordinate of Hom(x). In other
words, we show that the map

· : (Aut(xi−1) × Aut(xi)) × HomC(xi−1, xi) HomC(xi−1, xi)

((αi−1, αi), fi) αi fiα
−1
i−1

defines a group action for 1 ≤ i ≤ n. Note that (idxi−1 , idxi) · fi = idxi fiidxi−1 = fi. So
it remains to show the compatibility of the action. To see that the action is compatible,
observe that

((αi−1, αi)(βi−1, βi)) · fi =(αi−1βi−1, αiβi) · fi

= (αiβi) fi (αi−1βi−1)−1

=αiβi fiβ
−1
i−1α

−1
i−1

=αi
[
(βi−1, βi) · fi

]
αi−1

i−1

=(αi−1, αi) ·
[
(βi−1, βi) · fi

]
.

Thus, since • is defined coordinate-wise and we have shown that · defines the action on
each coordinate, • defines an action of Aut(x) on Hom(x). �

Before we use • to describe the higher levels of the classifying diagram, we first provide
the known description of the 0th level the served as inspiration.

Proposition 3.13. [1, §7.2] Let C be a category. For a given object x, let 〈x〉 denote its
isomorphism equivalence class. Then

N(C)0 '
∐
〈x〉

B(Aut(x)).

Proof. Note the categories iso(C[0]) and
∐
〈x〉 Aut(x) are equivalent. By Corollary 2.13,

N(C)0 ' B
(∐

〈x〉 Aut(x)
)
. Applying Observation 3.7 gives the desired result.

�

Moving onto to higher levels, it was previously shown that the 1st level of the classifying
diagram can be written in terms of automorphisms of morphisms.

Proposition 3.14. [1, §7.2] Let C be a category. Then

N(C)1 '
∐
〈x〉,〈y〉

∐
〈α:x→y〉

B(Aut(α))

where 〈α : x→ y〉 is the automorphism class of the morphism α : x→ y in C.

We use the action • to form a new characterization of the higher levels for the classifying
diagram by using stabilizers under the action.

Theorem 3.15. Let 〈 f1, . . . , fn〉 denote the equivalence class of ( f1, . . . , fn) ∈ Hom(x) de-
fined by the group action •. Then for n ≥ 1,

N(C)n '
∐
〈 f1,..., fn〉

B
[
Aut(x)( f1,..., fn)

]
where Aut(x)( f1,..., fn) is the stabilizer of ( f1, . . . , fn).
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Proof. It suffices to argue that the categories

iso(C[n]) and
∐
〈 f1,..., fn〉

Aut(x)( f1,..., fn)

are equivalent. Note that the objects in iso(C[n]) are given by chains of n composable
morphisms f1, f2, . . . , fn between objects x0, x1, . . . , xn in C:

x0 x1 · · · xn.
f1 f2 fn

We denote this object in iso(C[n]) by the n-tuple ( f1, f2, . . . , fn). A morphism between ob-
jects ( f1, f2, . . . , fn) and (g1, g2, . . . , gn) in iso(C[n]) is given by an n-tuple (α1, α2, . . . , αn)
where each αi is an isomorphism in C making the diagram

x0 x1 · · · xn

y0 y1 · · · yn

f1

α1�

f2

α2�

fn

αn�

g1 g2 gn

commute in C. As we saw in Proposition 3.13, it suffices to consider the automorphism
classes of objects in iso(C[n]). So, in other words, for a given ( f1, . . . , fn), we need to
describe all possible morphisms (α1, . . . , αn) that fix ( f1, . . . , fn). But this is exactly what
the stabilizer Aut(x)( f1,..., fn) does. Thus, iso(C[n]) is equivalent to∐

〈 f1,..., fn〉

Aut(x)( f1,..., fn).

�

4. The classifying diagram for the category of vector spaces

In this section prove that the classifying diagram of finite vector spaces can be written
in terms of classifying spaces general linear groups; we use the group action defined in
Proposition 3.12 as well as the other results from Section 3.5. We then produce a more
detailed description if we work over the field F2 and restrict the dimension of the matrices.

The category of finite dimensional vector spaces over the field F has finite vector spaces
as objects and linear maps as morphisms. Recall that every finite dimensional vector space
is isomorphic to Fn. Let Vect(F) denote the subcategory of finite vector spaces where the
objects are Fn and the morphisms are matrices with entries in F. Note that Vect(F) is
equivalent to the category of finite dimensional vector spaces over F. We let Matn×m(F) be
the set of n × m matrices. Also let GLn(F) denote the general linear group of dimension
n.The following proposition is a well-known result in linear algebra and is a specific case
of the action • from Proposition 3.12, but it is used to prove Corollary 4.2.

Proposition 4.1. The map

• : (GLn(F) × GLm(F)) ×Matn×m(F) Matn×m(F)

(( f , g), A) gA f −1

defines a group action.



19

Proof. For simplicity, we refrain from referencing the underlying field F in this proof.
Specifically, we write GLn := GLn(F) and Matn×m := Matn×m(F). We need to verify two
things to verify that • is a group action. First we need to verify that the action of the identity
element in GLn × GLm preserves any element of the set Matn×m. Let A ∈ Matn×m and let In

denote the identity n × n matrix. So the identity element in the group GLn × GLm is given
by (In, Im). Thus

(In, Im) • A = ImAI−1
n

= ImAIn

= A.

Next, the compatibility of the action must be verified. Let ( f1, g1) and ( f2, g2) be elements
in GLn × GLm. Therefore

(( f1, g1)( f2, g2)) • A = ( f1 f2, g1g2) • A

= (g1g2)A( f1 f2)−1

= g1g2A f −1
2 f −1

1

= g1 (( f2, g2) • A) f −1
1

= ( f1, g1) • (( f2, g2) • A)

and hence • defines a group action. �

Let A, B ∈ Matn×m(F). The matrices A and B are in the same equivalence class under the
group action • if and only if there exists some g ∈ GLn(F) × GLm(F) such that g • A = B.
We let 〈A〉 denote the equivalence class of A under this equivalence relation. Note that the
stabilizer of A, (GLn(F) × GLm(F))A, is a subgroup of GLn(F) × GLm(F).

Now we have enough background to state the result for the classifying diagram of the
category of finite vector spaces over a field.

Corollary 4.2. The 0th level of the classifying diagram of Vect(F) is given by

N(Vect(F))0 '
∐
n∈N

B(GLn(F))

and the 1st level is given by

N(Vect(F))1 '
∐

n,m∈N

 ∐
〈A〉∈Matn×m

B ((GLn × GLm)A)


where 〈A〉 is the equivalence class of A under the relation defined by the group action • of
GLn × GLm acting on Matn×m(F), and (GLn × GLm)A is the stabilizer of A.

Proof. The characterization of the 0th level follows from Proposition 3.13 and the fact that
the isomorphisms in Vect(F) are given by GLn(F) for all non negative integers n. Since
morphisms from Fn to Fm are given by A ∈ Matn×m and isomorphisms between two n × m
matrices are given by pairs ( f , g) ∈ GLn × GLm, the desired decomposition of the 1st level
of N(Vect(F)) follows from Theorem 3.15. �

We now turn our attention to finding the classifying diagram of a subcategory of Vect(F2),
where F2 is the finite group with two elements.
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Example 4.3. Let Vect≤2(F2) be the subcategory of Vect(F2) where the objects are F2

and F2
2, and the morphisms are given by linear maps. For the 0th level of the classifying

diagram, we get B(GL1(F2))
∐

B(GL2(F2)). Observe that B(GL1(F2)) = B({e}).
The 1st level of the classifying diagram is more interesting. We break the functor cate-

gory iso
(
Vect≤2(F2)[1]

)
into four types of objects:

(i) F2 → F2,
(ii) F2 → F

2
2,

(iii) F2
2 → F2, and

(iv) F2
2 → F

2
2.

If two objects Fi
2 → F

j
2 and Fn

2 → F
m
2 are isomorphic, then i = n and j = m. Note that an

isomorphism between two objects A, B : Fn
2 → F

m
2 is given by a pair of matrices (C,D) in

GLn(F2) × GLm(F2) such that the diagram

Fn
2 Fn

2

Fm
2 Fm

2

C
�

A B

D
�

commutes. Observe that the objects A and B in the category iso
(
Vect≤2(F2)[1]

)
are m × n

matrices with entries in F2.
Type (i). There are only two 1 × 1 matrices with entries in F2, namely, [0] and [1].

Thus [0] and [1] are the only objects of this type. Both objects have ([1], [1]) as the only
automorphism and there is no isomorphism between these objects. So type (i) objects
contribute B(GL1)

∐
B(GL1) to the first level of the classifying diagram.

Type (ii). There are four objects of this type:[
0
0

]
,

[
1
0

]
,

[
0
1

]
, and

[
1
1

]
.

Under the action •, we have the two equivalence classes〈[
0
0

]〉
=

{[
0
0

]}
= {A ∈ Mat2×1(F2) : rank(A) = 0}

and 〈[
1
0

]〉
=

{[
1
0

]
,

[
0
1

]
,

[
1
1

]}
= {A ∈ Mat2×1(F2) : rank(A) = 1}.

To verify that [
0
1

]
∈

〈[
1
0

]〉
,

observe that

(4.4)
([

1
]
,

[
0 1
1 0

])
•

[
1
0

]
=

[
0 1
1 0

] [
1
0

] [
1

]−1
=

[
0
1

]
.

By Corollary 4.2, it suffices to consider the stabilizer of a representative from each equiva-
lence class. Using matrix multiplication, one can check that

(GL1 × GL2) 0
0

 = GL1 × GL2 � GL2
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and

(GL1 × GL2) 1
0

 =

{(
[1],

[
1 0
0 1

])
,

(
[1],

[
1 1
0 1

])}
� F2.

Thus type (ii) objects contribute B(GL2)
∐

B(F2) to the first level of the classifying dia-
gram.

Type (iii). Using properties of the transpose of matrices, we get that (C,D) ∈ (GL1 × GL2)A
if and only if (DT ,CT ) ∈ (GL2 × GL1)AT . Thus, just like type (ii), type (iii) also contributes
B(GL2)

∐
B(F2) to the first level of the classifying diagram.

Type (iv). There are 16 objects of this type, which, under the group action •, fall into
three equivalence classes:〈[

0 0
0 0

]〉
=

{[
0 0
0 0

]}
= {A ∈ Mat2×2(F2) : rank(A) = 0},

〈[
1 0
0 0

]〉
= {A ∈ Mat2×2(F2) : rank(A) = 1},

and 〈[
1 0
0 1

]〉
= GL2(F2) = {A ∈ Mat2×2(F2) : rank(A) = 2}.

Note that to verify the above equivalence classes, we use a similar process as (4.4). Us-
ing matrix multiplication, one can check that the stabilizers of representatives from each
equivalence class are given by

(GL2 × GL2) 0 0
0 0

 = GL2 × GL2,

(GL2 × GL2) 1 0
0 0


=

{([
1 0
0 1

]
,

[
1 0
0 1

])
,

([
1 0
0 1

]
,

[
1 1
0 1

])
,

([
1 0
1 1

]
,

[
1 0
0 1

])
,

([
1 0
1 1

]
,

[
1 1
0 1

])}
� F2 × F2,

and
(GL2 × GL2) 1 0

0 1

 =
{
(C,D) ∈ GL2 × GL2 : D = C−1

}
� GL2.

Thus type (iv) contributes B(GL2 × GL2)
∐

B(F2 × F2)
∐

B(GL2) to the first level of the
classifying diagram.

Putting together what we obtain from all four types of objects in iso
(
Vect≤2(F2)[1]

)
, we

can describe the first level of the classifying diagram as

N(Vect≤2(F2))1 '∐
2

[
B(GL1)

∐
B(GL2)

∐
B(F2)

]∐ B(GL2 × GL2)
∐

B(F2 × F2)
∐

B(GL2).
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5. The classifying diagram for the category of finite sets

In this section we prove that the classifying diagram for the category of finite sets, de-
noted by FinSet, can be decomposed into the classifying spaces of products of wreath
products. As a consequence, we also prove decompositions of the subcategories FinSetin j

and FinSetsur j, the subcategories consisting of injective and surjective functions, respec-
tively. In order to work with the 1st level of the classifying diagram, as we have seen pre-
viously, we need to understand automorphisms of morphisms; each function between finite
sets can be depicted by a tree. The section begins with the definition of a wreath product
and recalling the relationship between wreath products and automorphisms of trees.

5.1. Wreath products and trees. Let us recall the definition of the wreath product. Let K
and L be two groups and ρ : K → Σn be a homomorphism where Σn is the nth symmetric
group. Let H := Ln; an injective homomorphism φ : Σn → Aut(H) can be constructed
by letting the elements of Σn permute the n factors of H. The wreath product of L by
K, denoted by L o K, is the semidirect product H o K with respect to the homomorphism
φ ◦ ρ : K → Aut(H) [5, §5.5, Ex. 23]. Wreath products are nice tools for describing the
group of automorphisms of specific types of rooted trees. We recall definitions relevant to
trees.

Definition 5.1. (i) A rooted tree is a connected simple graph without cycles and with a
distinguished vertex called the root.

(ii) A vertex u is adjacent to a vertex v in a tree if there is an edge between u and v.
(iii) The level of a vertex v in a rooted tree is the length of the unique path from the root

to this vertex.
(iv) If u is a vertex at level j that is adjacent to a vertex v at level j + 1, then v is said to

be a child of u and u is the parent of v.
(v) The height of a rooted tree is the length of the longest path from the root to any

vertex.
(vi) Let V be the set of vertices for a rooted tree Γ. An automorphism of Γ is a bijection

φ : V → V such that u and v are adjacent if and only if φ(u) and φ(v) are adjacent.

We only consider trees of height 2. To see how wreath products are used to describe
automorphisms on rooted trees of height 2, consider the tree

a1

e1

r

a2 a3 b1

e2

b2 b3 c1

e3

c2 c3 d1

e4

d2 d3

with root r; each level 1 vertex is the parent of 3 children. An automorphism on this tree
has two different group actions on the vertices. First, we have a Σ4 action occurring on
the vertices {e1, e2, e3, e4}. We also have four different Σ3 actions occurring; Σ3 acts on the
children of each ei. For example, we have a Σ3 action on {a1, a2, a3}. This is a good example
for what a wreath product captures. The automorphisms on the above tree are described be
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the wreath product of Σ3 by Σ4, or using the wreath notation, it is Σ3 o Σ4. We denote the
above tree as Γ3,4.

The more general result also holds. Let Γn,m denote the rooted tree where the root has
children e1, . . . , em and each ei has n children. The group of automorphisms Aut(Γn,m) is
isomorphic to Σn o Σm.

5.2. The classifying diagram. So what is the purpose of talking about automorphism on
trees like Γn,m? We can use these trees to describe a morphism from a set of order n to a set
of order m; in the first level of the classifying diagram, we need to describe the group of
automorphisms for a morphism. The above pictured tree, Γ3,4, is an example of how a set
of order 12 can map to a set of order 4. But there are many other ways for a set of order 12
to map to a set of order 4. For example, the tree

is another way for a set of order 12 to map to a set of 4; the group of automorphisms is now
given by a product of wreath products: (Σ2 o Σ2) × (Σ4 o Σ2). We denote this latter tree as
Γ2,2 ∪ Γ4,2.

In general, given two rooted trees Γ1 and Γ2, the rooted tree Γ1 ∪ Γ2 is given by the trees
Γ1 and Γ2 identified at the root.

Let us revisit the trees Γ3,4 and Γ2,2 ∪ Γ4,2; these trees depict functions from a set of
order 12 to a set of order 4. Let ki be the number of children of the root that has i
children. For the tree Γ3,4, (k0, k1, k2, k3, k4) = (0, 0, 0, 4, 0), and for the tree Γ2,2 ∪ Γ4,2

(k0, k1, k2, k3, k4) = (0, 0, 2, 0, 2). In either case, and in general for the tree associated with
an arbitrary morphism going from a set of order 12 to a set of order 4, the equations
k1 + 2k2 + 3k3 + 4k4 = 12 and k0 + k1 + k2 + k3 + k4 = 4 are satisfied. We get an anal-
ogous system of equations if we instead considered functions from a set of order n to a set
of order m.

Now that we have set up the desired notation for trees and their correspondence with
functions between finite sets, we can state the result for the classifying diagram of FinSet.

Theorem 5.2. The 0th level of the classifying diagram of FinSet is given by

N (FinSet)0 '
∐
n∈N

B(Σn).

And the 1st level is described as

N (FinSet)1 '
∐

B
(
Σk1 ×

(
Σ2 o Σk2

)
× · · · ×

(
Σn o Σkn

))
where the disjoint union is over solutions to the equations

k1 + 2k2 + · · · + nkn = n and k0 + k1 + · · · + kn = m

given that n,m, k0, . . . , kn are non negative integers.
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Proof. We begin by starting with the 0th level of the classifying diagram. The functor

ι :
∐

n

Σn → iso(FinSet),

which is given by sending, for each n, the subcategory Σn to a set of order n defines an
equivalence of categories. Applying the nerve functor gives the desired result.

Now we consider the 1st level of the classifying diagram. Note that the objects in
iso(FinSet[1]) are functions between finite sets, f : A→ B, where A is a set of order n and
B is a set of order m. Let ki be the number of elements in B whose preimage under f has
cardinality i. The function f : A→ B can be identified with the tree Γ0,k0 ∪Γ1,k1 ∪· · ·∪Γn,kn .
The tree Γ0,k0 represents a function from the empty set to a set of order k0. There are no
functions from the empty set to a set of order k0, so we cannot include the tree Γ0,k0 when
computing the automorphisms of the tree that is identified with f : A → B. Thus, in
order to find the group of automorphisms on f : A → B, we consider instead the tree
Γ1,k2 ∪ · · · ∪ Γn,kn , which has automorphism group Σk1 ×

(
Σ2 o Σk2

)
× · · · ×

(
Σn o Σkn

)
. For a

fixed n and m, note that there is a bijective correspondence between automorphism classes
of f : A→ B and nonnegative integer solutions to the equations

k1 + 2k2 + · · · + nkn = n and k0 + k1 + · · · + kn = m.

Thus for a fixed n and m,∐
B

(
Σk1 ×

(
Σ2 o Σk2

)
× · · · ×

(
Σn o Σkn

))
,

where the disjoint union is over solutions to the above equations, captures the contributions
to the first level of the classifying diagram of functions from sets of order n to sets of order
m. Ranging over all possible n and m gives the desired result. �

Observe that the diagram

B
(
Σk1 ×

(
Σ2 o Σk2

)
× · · · ×

(
Σn o Σkn

))
B(Σn) B(Σm)

d1 d0

shows how the face maps d0, d1 : N(FinSet)1 → N(FinSet)0 interact where the equations
k1 + 2k2 + · · · + nkn = n and k0 + k1 + · · · + kn = m

are satisfied.
Let FinSetin j denote the subcategory of FinSet where the objects are the same as
FinSet, but the morphisms are restricted to the injective functions.

Corollary 5.3. The zeroth level of the classifying diagram of FinSetin j is given by

N
(
FinSetin j

)
0
'

∐
n∈N

B(Σn).

And the first level is described as

N
(
FinSetin j

)
1
'

∐
n,m∈N,n≤m

B (Σn) .
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Proof. The proof for the 0th level is identical to Theorem 5.2. So it remains to justify the
description of the 1st level. Using the same setup at the proof of 5.2 with the exception that
we require f : A→ B to be injective and hence n ≤ m, the function f : A→ B is identified
with the tree Γ0,k0 ∪ Γ1,k1 ∪ · · · ∪ Γn,kn where ki = 0 if i ≥ 2 since f is injective. Following
the argument of the proof of 5.2, the system of equations is simplified to just

k0 + n = m.

Thus for a fixed n and m where n ≤ m,

B(Σn)

captures the contributions to the first level of the classifying diagram of injective functions
from sets of order n to sets of order m. Ranging over all possible n and m, where n ≤ m,
gives the desired result. �

Let FinSetsur j denote the subcategory of FinSet where the objects are the same as
FinSet, but the morphisms are restricted to surjective functions.

Corollary 5.4. The zeroth level of the classifying diagram of FinSet is given by

N
(
FinSetsur j

)
0
'

∐
n∈N

B(Σn).

And the first level is described as

N
(
FinSetsur j

)
1
'

∐
B

(
Σk1 ×

(
Σ2 o Σk2

)
× · · · ×

(
Σn o Σkn

))
where the disjoint union is over solutions to the equations

k1 + 2k2 + · · · + nkn = n and k1 + · · · + kn = m
given that n,m, k0, . . . , kn are non negative integers and n ≥ m.

Proof. The proof of the 0th level is identical to Theorem 5.2. To get the desired result
for the 1st level, we implement the same setup as the proof of 5.2 with the exception that
we require f : A → B to be a surjective function. Since f is surjective, n ≥ m. Hence
f : A → B is identified with the tree Γ0,k0 ∪ Γ1,k1 ∪ · · · ∪ Γn,kn where k0 = 0 since f is
surjective. Following the same argument of the proof of 5.2 with the added restrictions that
k0 = 0 and n ≥ m gives the desired result. �

6. The classification diagram

In Section 3, we saw that the classifying diagram of a category is a simplicial space; the
isomorphisms in the category impact the structure of the classifying diagram. However, in
homotopy theory we work with categories that have a weak notion of equivalences, such as
weak homotopy equivalences in the category of topological spaces; the classifying diagram
treats weak homotopy equivalences that are not homeomorphisms like ordinary morphisms.
The classification diagram has a similar structure as the classifying diagram, but the weak
equivalences are the morphisms that impact the structure of the resulting simplicial space
instead of solely the isomorphisms.

Definition 6.1. The pair (M,W) denotes a categoryM along with a subcategoryW where
ob(C) = ob(W) and the morphisms inW are called weak equivalences.
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• Suppose f : x→ y and g : y→ z are morphisms inM. The category (M,W) satisfies
the 2-of-3 axiom if two of f , g, and g ◦ f belong toW implies the third also belongs
toW [6, 3.3].
• The pair (M,W) is a category with weak equivalences if iso(M) ⊆ W and the 2-of-3

axiom is satisfied.

Notation 6.2. Let (M,W) be a category with weak equivalences. We sometimes let
we(M) denote the subcategoryW.

The letter choice of “M” for the underlying category hints at the fact that the classifi-
cation diagram is used to study model categories. But, in general we do not need the full
power of a model category.

Definition 6.3. [13, 1.2] Let (M,W) be a category with weak equivalences. The classi-
fication diagram of (M,W) is denoted as N(M,W) and is the simplicial space defined
levelwise as

N(M,W)n = nerve(we(M[n])).

Note that in the case whereW = iso(M), then the classification diagram and the classi-
fying diagram are the same. In general, the classification diagram is not a complete Segal
space because it fails to be Reedy fibrant. However, the classification diagram of a category
is weakly equivalent to a complete Segal space [1, 6.2][13, 8.3].

6.1. Categories with only weak equivalences. Let us consider the analog to the clas-
sifying diagram of a group G. Since iso(G) ⊆ we(G) and every morphism in G is an
isomorphism, (G, iso(G)) is a category with weak equivalences and N(C) = N(C, iso(G)).
So an appropriate analog for G is a category C with one object and every morphism a weak
equivalence.

Proposition 6.4. Let C be a category with one object and in which every morphism is
a weak equivalence. Then the classification diagram N(C,W) of C is levelwise weakly
equivalent to the nerve of C. In other words N(C,W)n ' BC for any n ≥ 0.

Proof. Note that N(C,W)0 = BC since every morphism in C is a weak equivalence. For
n > 0, by Proposition 2.14, it suffices to show that there exist functors ι : C → C[n] and
ρ : C[n] → C along with natural transformations α : ρ ◦ ι⇒ idC and β : ι ◦ ρ⇒ idC[n] . Here
we prove the case when n = 2; the proof can be extended to an arbitrary n.

Let • be the object of C. Define ι : C → C[2] on objects by

•

(
• • •

id id
)

and on morphisms by

•

•

f

• • •

• • •.

id

f

id

f f

id id

Also define ρ : C[2] → C on objects by(
• • •

g1 g2
)

•
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and on morphisms by

• • •

• • •

g1

f0

g2

f1 f3
h1 h2

•

•.

f0

Note that ρ ◦ ι = idC : C → C and hence α : ρ ◦ ι ⇒ idC can be taken to be the identity
natural transformation. Also note that ι ◦ ρ : C[2] → C[2] on morphisms is given by

• • •

• • •

g1

f0

g2

f1 f3
h1 h2

• • •

• • •.

id

f0

id

f0 f0
id id

We need to define a natural transformation β : ι ◦ ρ⇒ idC[2] . Let x :=
(
•

g1
−→ •

g2
−→ •

)
and

y :=
(
•

h1
−→ •

h2
−→ •

)
be objects in C[2]. Let βx : ι ◦ ρ(x) → idC[2](x) be the morphism in C[2]

defined by the triple (id, g1, g2g1). In other words, βx is given by the vertical arrows in the
commutative diagram

• • •

• • •.

id

id

id

g1 g2g1

g1 g2

In order to show β is a natural transformation, it needs to be checked that for any morphism
f := ( f0, f1, f2) : x→ y in C[2], the diagram

ι ◦ ρ(x) x

ι ◦ ρ(y) y

βx

ι◦ρ( f ) f

βx

commutes. This diagram can be rewritten as

• • •

• • •

• • •

• • •

id

id
f0

id

g1

f0
g2g1

f0g1 g2

f2
id

id

id

h1 h2h1
h1

f0

h2

f1

where the front, back, top and bottom faces commute. (Note that the front faces commute
by the definition of a morphism f : x → y in C[2].) In the above diagram, there are three
squares formed by only dotted arrows; it remains to show that these three squares commute.
The commutativity of these three squares follows from the commutativity of the front faces.

�
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We generalize the previous result by considering the analog to the classifying diagram
of a groupoid G. More specifically, we consider a category C where each morphism is a
weak equivalence.

Proposition 6.5. Let C be a category where every morphism is a weak equivalence. Then
the classification diagram N(C,W) of C is levelwise weakly equivalent to the nerve of C.
In other words N(C,W)n ' BC for any n ≥ 0.

Proof. Note that N(C,W)0 = BC. By Proposition 2.14, it suffices to show that there exist
functors ι : C → C[n] and ρ : C[n] → C along with natural transformations α : ρ ◦ ι ⇒ idC
and β : ι ◦ ρ⇒ idC[n] . Here we outline the case when n = 2.

Define ι : C → C[2] on morphisms by

c

d

f

c c c

d d d.

id

f

id

f f

id id

Also define ρ : C[2] → C on morphisms by

c0 c1 c2

d0 d1 d2

g1

f0

g2

f1 f3

h1 h2

c0

d0.

f0

Observe that ρ ◦ ι = idC and hence we let α be the identity natural transformation. It

remains to define a natural transformation β : ι ◦ ρ ⇒ idC[2] . Let x :=
(
c0

g1
−→ c1

g2
−→ c2

)
and

y :=
(
d0

h1
−→ d1

h2
−→ d2

)
be objects in C[2]; let the triple ( f0, f1, f2) define a morphism x → y.

Note that ι ◦ ρ : C[2] → C[2] on morphisms is given by

c0 c1 c2

d0 d1 d2

g1

f0

g2

f1 f3

h1 h2

c0 c0 c0

d0 d0 d0.

id

f0

id

f0 f0

id id

If we let βx : ι ◦ ρ(x)→ idC[2](x) be the morphism in C[2] defined by the triple (id, g1, g2g1),
it follows that β defines the desired natural transformation using a similar argument as the
proof of Proposition 6.4.

�

If C is a category that has morphisms that are not weak equivalences, describing the
classification diagram is a much more difficult task.

Here we say a category C is weakly connected if there exists a zigzag of morphisms
between any two objects x and y inC. Also, a subcategoryD is a maximal weakly connected
subcategory of C if there does not exist a weakly connected subcategoryD′ of C such that
D is a proper subcategory ofD′.
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Remark 6.6. If C =
∐

iDi, where each Di is a distinct maximal weakly connected subcat-
egory of C, then observe that levelwise the classification diagram of C is given by

N(C,W)n ' BC '
∐

i

B(Di).

Unfortunately, it is harder to classify the classification diagram in a more enlightening
way. We saw in Theorem 3.15 that the classifying diagram can be written in terms of
classifying spaces of stabilizers of automorphism groups. Perhaps having the capabilities
to describe the classification diagram in terms of classifying spaces of groups is too much to
wish for because we(C) does not naturally have a group structure. In the next two sections
we see some of the difficulties that arise when a naive approach to a notion of homotopy
automorphisms is used.

6.2. Comparing the classifying diagram and the classification diagram. It is tempting
to naively define a homotopy automorphism by treating the weak equivalences like isomor-
phisms. There are categories where the classifying diagram and the classification diagram
may appear to be levelwise weakly equivalent, but they give surprisingly different results.
We observe in this section that the direction of the weak equivalences actually matters.

For example, consider the category C depicted as

a b

c d.

�

f1

� f2

�
g1

�g2

For any object in C, observe that the only automorphism is the identity. Let (D,W) be
the analogous category where the morphisms f1, f2, g1, g2 are weak equivalences instead of
isomorphisms. It is tempting to think that N(C) is equivalent to N(D,W). However, we
show that the zeroth level of the classifying diagram of C is not weakly equivalent to the
zeroth level of the classification diagram of (D,W).

Let us consider the zeroth level of the classifying diagram of C. Since C is a groupoid,
we can apply Proposition 3.5 which gives us N(C)0 ' nerve(C) ' B(Aut(a)). Note that
ida = f1g−1

2 g1 f −1
2 , and hence Aut(a) = {ida}. Thus we have that |N(C)0| ' ∗. Now we turn

our attention to the zeroth level of the classification diagram of (D,W). Note that there are
only degenerate simplices in nerve(we(D))n for n ≥ 2. Thus we get that |N(D,W)0| ' S 1.
Therefore we have shown that N(C) and N(D,W) are not levelwise weakly equivalent.

In the next section we see a more in-depth example.

6.3. The connected model structure on the category of graphs. When describing the
classifying diagram, we relied heavily on automorphism classes of objects. More specif-
ically, if x is an object in a groupoid G and there exists an isomorphism between x and
any other object of G, then the subcategory 〈x〉 is equivalent to G. In this section we use
a model structure on the category of graphs to highlight the fact that a naive approach to
defining homotopy automorphisms does not work. We work with undirected finite graphs
that may have loops but have at most one edge between any two (not necessarily different)
vertices.
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Definition 6.7. A graph G is a symmetric binary relation on a finite set. We write G =

(VG, EG) where VG is the underlying set of vertices and EG is a set of unordered pairs of
vertices called edges.

Definition 6.8. A homomorphism f between the graphs G and H is a map f : VG → VH

such that for any vertices x and y in VG such that (x, y) is an edge in EG, then ( f (x), f (y)) is
an edge in EH.

Let Gall denote the category where the objects are given by graphs, and the morphisms
are given by graph homomorphism. Let G be the full subcategory of Gall with set of objects
obtained by choosing one representative for each isomorphism type of graph. Thus Gall and
G are equivalent categories. We choose to work with the category G because it is small.

Definition 6.9. [4, 4.2] Let CC be the connected component model structure on G where
the morphisms inducing isomorphisms between the sets of connected components of the
two graphs are the weak equivalences.

This model structure is interested to consider because of the following theorem.

Theorem 6.10. [4, 4.2] The homotopy category of CC is isomorphic to the category of
finite sets.

With this theorem in mind and since the classification diagram is a generalization of the
classifying diagram, a natural question arises. Is the classifying diagram for the category
FinSet the same as the classification diagram for the category CC? More specifically, are
N(FinSet) and N(CC,W) levelwise weakly equivalent?

Notation 6.11. (i) Let n• denote the graph with n vertices and no edges.
(ii) Let n◦ denote the graph with n vertices where each vertex has a loop. For example,

the graph

is 3◦.

Let G be a graph with n connected components. In general the nth symmetric group Σn

describes the collection of weak equivalences
(i) n• → n•,

(ii) n◦ → n◦,
(iii) n• → n◦, and
(iv) G → n◦.

There are no homomorphisms (and hence no weak equivalences) n◦ → n• because there are
no edges to map the loops to in n•. We can always find weak equivalences n• → G; there
are at least |Σn| = n! such weak equivalences, but the exact number of weak equivalences
depends on the number of vertices in each connected component of G. Also the weak
equivalences G → G are not necessarily described by Σn. Consider the following examples.

Example 6.12. We consider a couple of graphs with 2 connected components.
(i) For the graph G depicted below

the only weak equivalence G → G is the identity map.
(ii) Consider the graph G
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.
There are 3 weak equivalences G → G, which are depicted below

.

Note that 2• is the initial graph in G that has 2 connected components, and 2◦ is the
terminal graph with 2 connected components; the group Σ2 describes the collections of
weak equivalences {2•

'
−→ 2•}, {2◦

'
−→ 2◦}, and {2•

'
−→ 2◦}. Let G be a graph with two

connected components. We can find a chain of weak equivalences 2•
'
−→ G

'
−→ 2◦ and we

only have two options for the result of the composition. However, as we saw in the above
examples, the collection of weak equivalences {G

'
−→ G} are not necessarily described by

Σ2.
So since n• is initial and n◦ is terminal in the collection of graphs with n connected

components, it is tempting to naively want to define the homotopy equivalences classes
based of the weak equivalences n•

'
−→ n◦, but this fails to consider what happens with an

arbitrary graph with n connected components.

Remark 6.13. When we gave characterizations of classifying diagrams in Section 3, we
relied heavily on automorphism classes of objects and morphisms. It would be nice if we
could use a similar approach for classification diagrams, but we showed above that a naive
approach for handling weak equivalences to get a notion of a homotopy automorphism does
not work.

In [1, §6], a notion of homotopy automorphisms for simplicial model categories is de-
fined.It is shown that the classification diagram is weakly equivalent to a complete Segal
space that is decomposed in terms of classifying spaces of homotopy automorphisms of the
appropriate simplicial category [1, 7.3].
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