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Abstract

Newly available memory-centric architectures to accelerate finite automata-based pattern recognition have

motivated the use of automata processing in new applications, such as bioinformatics, machine learning, and

natural language processing. However, the existing automata processing solutions, including von Neumann

and these new in-memory accelerators, are neither scalable nor efficient. Moreover, existing in-memory

automata processing accelerators are unable to process more complex pattern structures such as tree and

graph-shaped patterns.

This dissertation outlines five new contributions to improve the effectiveness of automata processing.

This includes accelerating two applications using automata processing by developing novel algorithms and

mapping them to in-memory automata processing accelerators: 1) frequent subtree mining, and 2) rule-based

part-of-speech tagging in natural language processing.

This dissertation then presents three novel architecture studies. Based on the preliminary results from

the above applications and their natural structures, and also by investigating the interconnect and scalability

inefficiency in the existing in-memory automata processing architectures, 3) we propose a reconfigurable

high-speed, high-density, and low-power automata processing architecture with a compact, low-overhead, and

yet flexible interconnect design. To evaluate our proposed architecture, we develop a cycle-accurate automata

processing simulator, flexible enough to be adopted by other researchers for automata processing research.

Motivated by our study on pattern matching in tree-shaped structures, 4) we propose a general-purpose,

scalable, and reconfigurable memory-centric architecture for processing complex patterns, such as tree-like data.

We take inspiration from previous automata processing architectures, but support the richer deterministic

pushdown automata computational model.

Finally, we observed that fixed 8-bit symbol processing, derived from ASCII processing, restricts throughput

and area efficiency of existing automata accelerators, causes resource underutilization, and limits the general

adoption of applications with very large symbol-set size. To address these issues, 5) we present FlexAmata,

a compiler solution that efficiently re-shapes an automaton structure to provide application compatibility

with existing and future memory-centric automata processing architectures, and hardware compatibility for
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big-data domain applications. The former allows execution efficiency and feasibility of applications with very

large or very small symbols-sets on memory-centric automata accelerators. Inspired by this exploration, we

present a comprehensive design space exploration for different bitwidth automata processing on FPGAs and

in-memory approaches. This study provides several insights to design future automata processing accelerators

more efficiently.
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Chapter 1

Introduction

The demand for high-speed mining and analysis of unstructured data is growing fast, especially in technical

and business data analytics applications. Fast information extraction from textual data can be critical for

business decision making. One prominent way of filtering and extracting information from collected data

is to use regular expressions. They are used in identifying complex patterns and variants of base patterns,

potentially the most time-consuming task in many big-data applications.

Finite automata (a form of finite state machines) are an efficient computational model for widely used

pattern recognition languages such as regular expressions, with important applications in network security

[3, 4], log analysis [5], and many more. There are many other applications in domains such as data-mining

[6, 7, 8, 9], bioinformatics [10, 11], machine learning [12, 13], natural language processing [14, 15], big data

analytics [16], and even particle physics [17], that shown to greatly benefit from accelerated automata

processing. The automata structure in these applications differ significantly in static structure and dynamic

behavior from existing regular expression benchmarks [2, 18]. Moreover, there is a large body of research on

using finite automata in formal verification such as satisfiability and model-checking problems in temporal

logics [19, 20, 21] with potentials to benefit from high-performance automata processing especially for real-time

needs.

Pattern recognition for regular languages can be computed by either deterministic finite automata (DFA)

or non-deterministic finite automata (NFA), which are equivalent in computational power. On CPUs, NFAs

and DFAs are represented by tables indicating each state’s successor state(s) upon a rule match. DFAs are

often the basis for implementing automata on CPUs, because they have predictable memory bandwidth

requirements; while an NFA may have many active states and may require many state lookups to process a

single input symbol (potentially leading to a very large memory bandwidth requirement), a DFA requires
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just one. On the other hand, DFA tables are often too large to fit in the processor caches, because DFAs

often suffer an exponential increase in the number of states relative to NFAs.

Graphics processing units (GPUs) provide a large number of parallel resources, which can help in hiding

the DRAM access latency. However, highly-random access patterns in automata processing exhibit poor

memory locality and increase branch divergence and need for synchronization [2]. Despite its foundations

importance, the efficient implementation of finite automata processing remains a challenging open research

problem and the subject of extensive research.

Researchers are increasingly exploiting memory-centric hardware accelerators to meet demanding real-time

requirements as performance growth in conventional processors is slowing down. The growing demand for

accelerated automata processing has motivated many efforts in designing regular expression and general

automata accelerators on ASIC [22, 5], FPGAs [23, 24, 25, 26, 27], and processing-in-memory (PIM)

designs [28, 29]. Spatial memory-centric accelerators, such as FPGAs and in-memory solutions, provide

a reconfigurable substrate to lay out the rules in hardware by placing-and-routing automata states and

connections onto a pool of hardware units in logic- or memory-based fabrics. This allows a large number of

automata to be executed in parallel, up to the hardware capacity, in contrast to von Neumann architectures

such as CPUs that must handle one rule at a time in each core.

To more efficiently process complex patterns, the automata accelerator should provide (1) a rich computa-

tional model to account for complex structures such as tree and graph-shaped patterns, (2) a low-overhead and

yet efficient interconnect architecture to support complicated interconnect structures of real-world automata

applications, and (3) a flexible bitwidth processing for better hardware utilization and compatibility.

Processing of tree-structured or recursively-nested data is intrinsic to many computational applications,

such as programming languages (such as C, C++, ...) and natural languages (such as English) [30]. However,

tree structure processing cannot be accomplished using finite automata. The tree structure is more complex

than a sequence and cannot be described with regular languages [31]. It means that we need a richer

computational model to count for the possible branches when processing a tree structure. The existing

automata accelerators are incapable of processing tree-structured data.

Moreover, the interconnect design of existing automata processing accelerators are either incapable of

efficient place-and-route of a highly-connected automaton or over-provision hardware resources for interconnect,

sometimes at the expense of resources for state-matching [28, 29, 24]. However, real-world benchmarks are

quite large in terms of the number of states, too big to fit in a single hardware unit, and thus usually need

multiple rounds of reconfiguration and re-processing of the data. This incurs significant performance penalties

and makes state-matching resources a scarce resource.
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In addition, because regular expressions have most commonly been used for text and packet processing,

existing automata accelerators are designed based on a fixed 8-bit (ASCII) symbol processing scheme, similar

to software solutions [32, 33]. This means that the automata structure is modeled based on 8-bit symbols and

an 8-bit input is processed in each cycle. However, we observed that the fixed-size symbol processing design

can be a source of area and throughput inefficiencies and it also limits the general adoption of applications

for automata processing.

1.1 Contributions

In this dissertation, we hypothesize that an efficient interconnect architecture, a more compu-

tationally powerful automata processing design, and the right bitwidth processing granularity

can unleash in-memory processing benefit for more complex pattern recognition tasks. To

evaluate this hypothesis, this dissertation proposes to unlock several previously unexplored problems in

memory-centric automata accelerators by investigating the strength and limits of existing memory-centric

automata processing accelerators, and proposing two new and complex use-cases and application domains in

(1) data mining and (2) natural language processing for automata-based acceleration, (3) improving existing

in-memory automata processing accelerators and investigate new architectures for automata processing, (4)

investigating a more-powerful automata processing model and architecture that can process more complex

patterns, and (5) introducing a HW/SW solution which allows execution efficiency and feasibility of applica-

tions with very large or very small symbols-sets on memory-centric automata accelerators, and also offers

insights for next-generation automata processing accelerators.

1.1.1 Accelerating Tagging in Natural Language Processing on Automata Ac-

celerators

In this chapter, using part-of-speech (POS) tagging as a case study, we show that automata processing

hardware accelerators can make rule-based techniques orders of magnitude faster than statistical- or machine

learning-based taggers. This allows rule-based approaches to employ more rules and achieve accuracy

competitive with statistical techniques. These observations motivate a re-evaluation of rule-based approaches

in natural language processing (NLP).

We study the relationship between the rule-set size and the accuracy of POS taggers, and observe that

more complex rules (from more diverse template rule-sets) and larger rule sets lead to accuracy almost as good

as statistical/ML-based techniques, especially with a larger training corpus. With hardware acceleration, this
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sets up a new tradeoff for designers of NLP applications. We utilize spatial automata processing architectures

(the Automata Processor (AP) [28] and the FPGA [23]) by transforming the rules to regular expressions.

This approach is scalable in the number and complexity of rules. Increasing the number of rules up to several

thousand has no overhead on the AP and a minimal overhead on the FPGA, because all the rules are laid

out in space across the chip and executed in parallel.

We then compare our solution on the AP and FPGA with rule-based, statistical-based, and machine-

learning-based approaches. Results show that we can achieve up to 2,600× and 1,914× speedups on the AP

and on the FPGA respectively over CPU-based Brill tagging in the rule-matching stage, up to 58× speedup

over the Perceptron POS tagger (CPU solution) in the total testing time, and up to 253× speedup over the

LSTM tagger (GPU solution) in total testing time at the expense of approximately 1% accuracy in a large

corpus.

1.1.2 Accelerating Tree Processing on Automata Accelerators

Frequency counting of complex patterns such as subtrees is more challenging than for simple itemsets and

sequences, as the number of possible candidate patterns in a tree is much higher than one-dimensional

data structures, with dramatically higher processing times. In this chapter, we first study difficulties of

directly implementing the frequent subtree mining (FTM) problem on the AP platform. Then, we propose

a multi-stage pruning framework to greatly reduce the search space of embedded FTM on the AP. This

provides a scalable solution in terms of both memory and execution time on large databases and lower support

thresholds.

Our solution on the AP achieves up to 353× speedup at the cost of a small reduction in accuracy, on four

real-world and synthetic datasets, when compared with PatternMatcher, a practical and exact CPU solution.

To provide a fully accurate and still scalable solution, we propose a hybrid method to combine out method

with a CPU exact-matching approach, and achieve up to 262× speedup over PatternMatcher on a challenging

database. We also develop a GPU algorithm for FTM, but show that the AP also outperforms this. The

results on a synthetic database show the AP advantage grows further with larger datasets.

1.1.3 In-Memory Pushdown Automata Accelerator

The existing memory-centric automata processing engines, such as the AP and Cache Automata (CA) [29],

do not support a computational model rich enough for tasks such as XML parsing or subtree mining. Inspired

by our study on pattern matching in tree-shaped structures, we propose a general-purpose, scalable, and

reconfigurable in-SRAM architecture for processing of tree-like data [34]. We take inspiration from previous
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automata processing architectures, such as Cache Automata and AP, but support the richer deterministic

pushdown automata (DPDA) computational model [34]. We propose a custom datapath capable of performing

the state matching, stack manipulation, and transition routing operations of pushdown automata, all efficiently

stored and computed in memory arrays.

We evaluate the run-time and energy consumption of architecture on subtree inclusion problem and we

compare it to the state-of-the-art CPU and GPU solutions. Our solution shows 67.2× and 6× end-to-end

performance improvement over optimized single-threaded CPU and GPU implementations of subtree mining.

Moreover, it achieves 3070× and 6279× improvements on average in total energy when compared to CPU-

and GPU-based implementations, respectively.

1.1.4 Efficient In-Memory Interconnect for Automata Processing

Motivated by preliminary results from the investigated applications and their natural structures, and

also by investigating the interconnect and scalability inefficiency in the existing in-memory automata

processing architectures, this chapter presents a reduced-crossbar (RCB) design, a low-overhead and yet

flexible interconnect architecture that efficiently implements state-transition. RCB design is inspired by

intrinsic properties of real-world automata connectivity patterns. RCB requires at least 7× fewer switches

compared to the FCB design used in previous interconnect designs [29]. This in turn reduces the wire length,

which results in shorter latency and lower power consumption. In addition, the area efficiency of RCB

provides an opportunity to design a denser state matching resources, which can accommodate more states

and results in fewer rounds of re-configuration and re-processing of data.

We then present eAP (embedded Automata Processor), a high-throughput and scalable in-memory

automata processing accelerator. Performance benefits of eAP are achieved by (1) exploiting subarray-level

parallelism in memory, (2) designing an optimal pipeline for state matching and state transition, (3) our

compact interconnect architecture, and (4) choice of memory technology.

To efficiently allow many-to-many transitions in an automaton, the underlying memory technology for

eAP should be able to support logical OR functionality within memory rows in a subarray. This requires

memory cells (a) to provide non-destructive read, and (b) to drive output to a ”stable” state (logical OR in

this case) when multiple bitcells drive a common bitline. 8T SRAM cells [35] and gain-cell embedded DRAM

(GC-eDRAM) [36, 37] are examples of feasible memory technologies to implement eAP. In this paper, we

evaluate eAP on both 8T and 2T1D (2 transistors 1 diode) memory cells. The 2T1D cell is a GC-eDRAM

designed and fabricated by [38]. 2T1D uses substantially fewer transistors than an 8T SRAM cell and thus
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incurs lower area overhead, which results in higher state density and therefore better throughput (due to the

reduced rounds of reconfiguration and re-streaming of input).

1.1.5 A Flexible Automata Processing Scheme

One advantage of using memory-centric solutions is that the processing bitwidth can be customized for

the application need. In this chapter aims to answer the following questions. What are the necessary

hardware/software modifications to efficiently support very large or very small bitwidth sizes on memory-

centric architectures? What is the best bitwidth size for automata processing on different platforms (including

CPU/GPUs, FPGAs, and in-memory architectures)? How to design next-generation automata accelerators

with higher throughput?

To answer the above questions, we propose FlexAmata, a compiler solution to provide application

compatibility with existing and future memory-centric automata processing architectures, and hardware

compatibility with the existing automata designs. FlexAmata transforms the automata shapes to support

different bitwidth processing and map them to in-memory architectures and FPGAs. It offers full hardware

utilization for the application with small symbol-set size, provides a feasible and low overhead solution for

the applications with very large number of symbols on the existing automata accelerators, and maintains

application compatibility with the future automata hardware accelerators.

Inspired by this exploration, we propose area efficient and high-throughput in-memory architectures and

FPGA automata processing engine. We present a design space exploration for various bitwidth automata

processing on our proposed FPGAs and in-memory solutions. Our exploration introduces hints on how

to design an automaton for more efficient hardware mapping and insights for next-generation automata

processing accelerators.

To evaluate FlexAmata, we develop an open-source toolkit, called APSim, for automata simulation,

minimization, transformation, and performance modeling on memory-centric architectures. FlexAmata also

generates HDL (Hardware Description Language) to be run on the FPGAs.

1.1.6 Summary

We propose a compact, but flexible interconnect design that enables efficient place-and-route of a complex and

highly connected automaton and provides full utilization of state matching resources, which results in higher

throughput and lower cost. We then present efficient in-memory hardware support for pushdown automata.

This enables processing thousand of complex tree-shaped patterns in parallel with high-throughput input

processing. We then introduce a compiler solution that can efficiently re-shape an automaton to a more
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complex or a more simple structure. This provides a feasible solution for applications with huge symbol-set

size. These set of works provide solutions to process complex patterns more efficiently, which confirms our

hypothesis.

1.2 Overview of Dissertation

The remainder of this dissertation is organized as follows:

Chapter 2: Background introduces automata processing, discusses automata-related theory, prior

approaches and architectures for automata processing.

Chapter 3: Accelerating Rule-Based Part-of-Speech Tagging presents a general solution to

accelerate rule-based methods in natural language processing by exploiting the highly-parallel regular-

expression-matching ability of the Automata Processor and FPGAs.

Chapter 4: Accelerating Frequent Subtree Mining on the Automata Processor presents an

approximate but fast solution for processing tree mining on in-memory automata accelerators.

Chapter 5: In-SRAM Accelerator for Pushdown Automata Processing presents a general-

purpose, scalable, and reconfigurable in-memory solution for high-performance processing of tree-shaped data

structures.

Chapter 6: Scalable and Efficient In-Memory Accelerator for Automata Processing presents

a novel and compact in-memory interconnect architecture for automata processing and map it to proper

memory technologies.

Chapter 7: Flexible Automata Processing presents a compiler solution to provide application

compatibility with existing and future memory-centric automata processing architectures, and hardware

compatibility with the existing automata designs.

Chapter 8: Conclusions summarizes the dissertation and discusses the implications of this work and

potential future directions of research.



Chapter 2

Background

2.1 Finite Automata

Finite automaton (FA) is a finite state machine (FSM) that accepts or rejects strings of symbols.

A FA is a mathematical model of computing and is represented by a 5-tuple, (Q,Σ,∆, q0, F ), where Q is

a finite set of states, Σ is a finite set of symbols, ∆ is a transition function, q0 are initial states, and F is a

set of final or accepting states. An automaton has one or more start states that initiate computation, and

one or more accept states that report a match. The transition function determines the next states using the

current active states and the input symbol just read. If an input symbol causes the automata to enter into

an accept state, the current position of the input symbol is reported.

A deterministic finite automaton (DFA) allows only one transition per input symbol. A non-deterministic

finite automaton (NFA) has the ability to be in several states at once, meaning that transitions from a state

on an input symbol can be to any set of states. DFAs and NFAs have equal computational power and can be

converted to each other. However, a DFA can have exponentially more states that an equivalent NFA, which

greatly increases the memory footprint. On the other hand, an NFA can have many parallel transitions,

which is bounded by the limited memory bandwidth in von-neumann architectures.

2.2 Deterministic Pushdown Automata

Pushdown automata (PDAs) extend basic finite automata by including a stack memory structure. A PDA is

represented by a 6-tuple, (Q,Σ,Γ, δ, S, F ), where Γ is the finite alphabet of the stack, which need not be the

same as the input symbol alphabet. The transition function, δ, is extended to consider stack operations. The

transition function for a PDA considers the current state, the input symbol, and the top of the stack and

8
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returns a new state along with a stack operation (one of: push a specified symbol, pop the top of the stack,

or no operation).

Deterministic pushdown automata (DPDAs) limits the transition function to only allow a single transition

for any valid configuration of the DPDA and an input symbol. This restriction prevents stack divergence, a

property we leverage for efficient implementation in hardware. Some transitions perform stack operations

without considering the next input symbol, and are refer as epsilon- or ε-transitions. To maintain the

determinism, all ε-transitions take place before transitions considering the next input symbol.

Unlike basic finite automata, where non-deterministic and deterministic machines have the same rep-

resentative power (any NFA has an equivalent DFA and vice versa), DPDAs are strictly weaker than

PDAs [39].

2.3 Automata Processing on von Neumann Architectures

On CPUs, NFAs and DFAs are represented by tables indicating each state’s successor state(s) upon a rule

match. DFAs are often the basis for implementing automata on CPUs because they have predictable memory

bandwidth requirements; while an NFA may have many active states and may require many state lookups to

process a single input symbol (potentially leading to a very large memory bandwidth requirement), a DFA

requires just one. On the other hand, DFA tables are often too large to fit in the processor caches, because

DFAs often suffer an exponential increase in the number of states relative to NFAs.

There are several efforts for high-speed regex processing on the CPUs and GPUs [33, 40, 32]. iNFAnt [32]

is a parallel engine for regular expressions on GPUs with the support for multi-striding (processing multiple

input bytes in each step). Graphics processing units (GPUs) provide a large number of parallel resources,

which can help in hiding the DRAM access latency. However, highly-random access patterns in automata

processing exhibit poor memory locality and increase branch divergence and need for synchronization [2].

Generally, automata processing on von Neumann architectures exhibits highly irregular memory access

patterns with poor temporal and spatial locality, which often leads to poor cache and memory behavior [2].

Therefore, even high-throughput off-the-shelf von Neumann architectures struggle to meet today’s big-data

and streaming line-rate pattern processing requirements.

2.4 Automata Processing on Memory-Centric Architectures

To cope with the memory wall problem in conventional von Neumann architectures, in-memory automata

processing hardware accelerators have been proposed and have shown several orders of magnitude speedup



Background 10

compared to CPUs and GPUs [41].

The Automata Processor (AP) [28] and Cache Automata (CA) [29] are two reconfigurable in-memory

solutions, both directly implementing NFAs in memory. They can place-and-route automata states in a

reconfigurable fabric, eliminating the need to access memory in von Neumann architectures. They also exploit

the inherent bit-level parallelism of memory to support many parallel transitions in one cycle. The AP

provides a DRAM-based dedicated automata processing chip, and Cache Automata proposes an on-chip

solution by re-purposing a portion of the last-level cache for automata processing.

2.4.1 Automata Processor

Micron’s Automata Processor (AP) [28] is an in-memory, non-von Neumann processor architecture that

computes non-deterministic finite state automata (NFAs) natively in hardware. The AP allows a programmer

to create NFAs and also provides a stream of input symbols to be computed on the NFAs in parallel. This is

a fundamental departure from the sequential instruction/data addressing of von Neumann architectures. A

benchmark repository for automata-based applications is presented in [42].

The AP re-purposes DRAM arrays for the state-matching and proposes a hierarchical FPGA-style

programmable interconnect design. Each AP chip consists of two disjoint half-cores. Each half-core has 96

blocks. Each block provides 256 STEs and thus each AP chip supports 48K STEs Micron’s current-generation

AP-D480 boards use AP chips built on 50nm DRAM technology, running at an input symbol (8-bit) rate of

133 MHz.

Input and Output The AP takes input streams of 8-bit symbols. The double-buffer strategy for both

input and output of the AP chip enables an implicit data transfer/processing overlap. Any type of element on

the AP chip can be configured as a reporting element (i.e., accepting state); one reporting element generates

a one-bit signal when the element matches the input symbol. If any reporting element reports on a particular

cycle, the chip will generate an output vector for all the reporting elements If too many output vectors are

generated, the output buffer can fill up and stall the chip. Thus, minimizing output vectors, and hence the

frequency at which reporting events can happen, is an important consideration for performance optimization.

To address this, we will use the structures that wait until a special end-of-input symbol is seen to generate all

of its reports in the same clock cycle.

Programming and Configuration Automata Network Markup Language (ANML), an XML-like

language for describing automata networks, is the most basic way to program AP chip. ANML describes the

properties of each element and how they connect to each other. The Micron’s AP SDK also provides C, Java
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and Python interfaces to describe automata networks, create input streams, parse the output and manage

computational tasks on the AP board.

Placing automata onto the AP fabric involves three stages: placement and routing compilation (PRC),

routing configuration and STE symbol-set configuration. In the PRC stage, the AP compiler deduces the

best element layout and generates a binary of the automata network. Depending on the complexity and the

scale of the automata design, PRC takes several seconds to tens of minutes. Macros or templates can be

precompiled and composed later. This shortens PRC time because only a small macro needs to be processed

for PRC, and then the board can be tiled with as many of these macros as fit.

Routing configuration/reconfiguration programs the connections, and needs about 5 ms for a whole AP

board. The symbol set configuration/reconfiguration writes the matching rules and initial active states for

the STEs and takes 45 ms for whole board. A pre-compiled automaton only needs the last two steps. If only

STE states change, only the last step is required.

2.4.2 Cache Automaton

Recently, Subramaniyan et al. [29] proposed an in-SRAM automata processing accelerator, Cache Automaton

(CA), by re-purposing last-level cache for the state-matching and using 8T SRAM cells for the interconnect.

The state-matching phase is based on the AP model. The crossbar interconnect adds 8T SRAM memory

arrays and a 2-level hierarchical switch topology with local switches providing intra-partition connectivity

and global switches providing sparse inter-partition connectivity. CA uses a full-crossbar topology for the

interconnect to support full connectivity in an automaton. The design has a better state density and

throughput compared to the Automata Processor.

To better understand the architecture of memory-centric models, the following example discusses a

simplified two-level pipeline architecture of automata processing used in the AP and CA.

2.4.3 Working Example on In-Memory Automata Accelrators

Homogeneous Automaton: The existing in-memory automata processing architectures use the homoge-

neous automaton representation in their execution model (same as ANML representation in [28]). In a

homogeneous automaton, all transitions entering a state must happen on the same input symbol [43]. This

provides a nice property that aligns well with a hardware implementation that finds matching states in

one clock cycle and allows a label-independent interconnect. Following [28], we call this element that both

represents a state and performs input-symbol matching in homogeneous automata a State Transition Element

(STE).
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Figure 2.1: (a) Different NFA representation, (b) A simplified in-memory automata processing model

Figure 2.1 (a) shows an example on classic NFA and its equivalent homogeneous representation. Both

automata in this example accept the language (A∣C)∗(C∣T )(G)+. The alphabets are {A, T,C,G}. In the classic

representation, the start state is q0 and accepting state is q3. In the homogeneous one, we label each STE

from STE0 to STE3, so starting states are STE0, STE1, and STE2, and the accepting state is STE3. In

all the architectures analyzed in this paper, any states can be starting states without incurring any extra

overhead.

In Figure 2.1 (b), memory columns are configured based on the homogeneous example in Figure 2.1 (a)

for STE0-STE3. Generally, automata processing involves two steps for each input symbol, state match and

state transition. In the state match phase, the input symbol is decoded and the set of states whose rule

or label matches that input symbol are detected through reading a row of memory (match vector). Then,

the set of potentially matching states is combined with the active state vector, which indicates the set of

states that are currently active and allowed to initiate state transitions; i.e., these two vectors are ANDed. In

the state-transition phase, the potential next-cycle active states are determined for the current active states

(active state vector) by propagating signals through the interconnect to update the active state vector for the

next input symbol operation.

In the example, there are four memory rows, and each is mapped to one label (i.e., A, T, C, and G).

Each state in the NFA example is mapped to one memory column, with ’1’ in the rows matching the label(s)

assigned to those STEs. STE0 matching symbols are A and C (Figure 2.1 (a)), and the corresponding
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positions have ’1’, i.e., in the first and third rows (Figure 2.1 (b)). Assume STE0 is a current active state.

The potential next cycle active states (or enable signals) are the states connected to STE0, which are STE0,

STE1, and STE2 (the enable signals for STE0, STE1, and STE2 are ’1’). Specifically, if the input symbol

is ’C,’ then Row2 is read into the match vector. Bitwise AND on the match vector and potential next states

(enable signal) determines STE0 and STE1 as the current active states.

2.5 Automata Processing on FPGAs

FPGA solutions for accelerating regex and general automata processing are proposed [23, 44, 25, 24]. REAPR

[23] is an FPGA-based implementation of an automata processing engine, and takes advantage of the one-

to-one mapping between the spatial distribution of automata states and hardware resources such as lookup

tables and block RAM. REAPR can achieve approximately 2× to 4× higher clock speeds (250-500 MHz)

than the AP, but lower than the estimated clock speed for CA. Large FPGA chips have approximately 2×

more STE capacity than a single AP chip, but 3-6× less capacity than CA when utilizing 10-20MB of LLC.

Moreover, power consumption of FPGA-based engines is higher compared to the AP and CA.

Yi-Hua et al. [25] propose a multi-symbols processing for NFAs on FPGA and utilizes both LUTs and

BRAMs. Their solution is based on a spatial stacking technique, which duplicated the resources in each stride.

This increases the critical path when increasing the stride value. Yamagaki [44] propose a multi-symbol

state transitions solution using temporal transformation of NFAs to construct a new NFA with multi-symbol

characters. This approach only utilizes LUTs, and does not scale very well due to a limited number of look-up

tables in FPGAs. Besides, in their multi-striding method, the benefit of improved throughput decreases in

more complex regexes (with more characters or highly connected automata) mostly due to routing congestion.

Moreover, the recent FPGA-based automata processing solutions fail to map complex-to-route automata to

the routing resources due to their logical interconnect complexity [24]

2.6 Automata Processing on ASIC

Several ASIC implementations have been proposed [5, 45, 46, 22] to accelerate pattern matching and automata

processing. The Unified Automata Processor (UAP) [22] and HARE[5] have demonstrated line-rate automata

processing and a regular matching expression on network intrusion detection and log processing benchmarks.

HARE uses an array of parallel RISC processors to emulate the AHO-Corasick DFA representation of regular

expression rule-sets. UAP can support many automata models using state transition packing and multi-stream

processing at low area and power costs. This framework proposes new instructions to configure the transition
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states, perform finite automata transitions and synchronize the operation of parallel execution. UAP uses an

array of parallel processors to execute automata transitions and can emulate any automata (not limited to

Aho-Corasick). In general, while ASICs provide high line rates in principle, they are limited by the number

of parallel matches and state transitions. HARE incurs high area and power costs when scanning more than

16 patterns, and UAP’s line rate drops for large NFAs with many parallel active states.

In general, while ASICs provide high line rates in principle, they are limited by the number of parallel

matches, state transitions, and shape of the automata. HARE implements DFA and has limitations on the

regex shape, and also incurs high area and power costs when processing more than 16 patterns. UAP’s

line rate drops for large NFAs with many parallel active states. Therefore, they do not provide general and

scalable solutions.



Chapter 3

A Scalable Solution for Rule-Based

Part-of-Speech Tagging on Novel

Hardware Accelerators

As we are living in the era of big data and mobile computing, effective and efficient natural language

processing (NLP) applications become increasingly important, and they significantly affect the quality of

human-computer interaction (HCI). The most efficient and high-quality NLP applications use extensive,

time-consuming statistical or neural-network models, which make them infeasible for real-time applications.

A part-of-speech tagger assigns part-of-speech tags (e.g., noun, verb) to words in a sentence. POS tagging

is a building block for a wide range of NLP tasks. For example, in parsing, words’ parts of speech determine

proper word combinations [47]; in named-entity resolution, it identifies the entities and the relationships

between them [48]; and in detecting sentiment contrasts, some words could have different sentiments in

different parts of speech [49]. Moreover, in software engineering, POS tagging helps in recognizing essential

words from software artifacts such as bug reports [50, 51, 52].

Generally in NLP, and specifically in POS tagging, statistical and neural network (NN)-based approaches

have been favored over rule-based approaches because they have shown higher accuracy and the training is

straightforward to automate, while early rule-based tagging required manual rule generation and execution

time increased linearly with the number of rules. This limits the number of rules, thus limiting accuracy.

However, rules can now be learned automatically and incorporate textual information (i.e., surrounding tags

and words) [53].

15



A Scalable Solution for Rule-Based Part-of-Speech Tagging on Novel Hardware Accelerators 16

In this work, using POS tagging as a case study, we show that hardware accelerators can make rule-based

techniques orders of magnitude faster than statistical/ML-based taggers. This allows rule-based approaches to

employ more rules and achieve accuracy competitive with statistical techniques. These observations motivate

a re-evaluation of rule-based approaches in NLP.

Execution efficiency is addressed by observing that rule-based techniques map well to regular-expressions

(regex), which in turn map well to “spatial” hardware that provides a reconfigurable substrate to lay out

the rules in hardware. This allows a large number of patterns to be executed in parallel, in contrast to

von Neumann architectures such as CPUs that must either handle one rule at a time in each core, or build

large lookup tables in memory and the communication between the cores imposes a significant overhead

[54]. Specifically, the Automata Processor (AP) and the Field-Programmable Gate Array (FPGA) are two

spatial architectures suitable for pattern-matching. They both allow native execution of non-deterministic

finite automata (NFAs), an efficient computational model for regular expressions. They achieve this with

reconfigurable elements that efficiently implement automata states and matching rules, and reconfigurable

routing that efficiently implements next-state activation. A single chip can implement up to tens of thousands

of regular expressions, depending on rule complexity, with little or no change in throughput.

We study the relationship between the rule-set size and the accuracy of POS taggers, and observe that

more complex rules (from more diverse template rule-sets) and larger rule sets lead to accuracy almost as

good as statistical/ML-based techniques, especially with a larger training corpus. With hardware acceleration,

this sets up a new tradeoff for designers of NLP applications. The rule-based approach can give much better

testing speed, at the expense of a small drop in accuracy and longer training time.

Because the AP or FPGA can efficiently process large and complex sets of regular expressions, we propose

that other NLP tasks involving rules or patterns can also be accelerated this way. For instance, in sentiment

analysis, negation scope detection solutions [55][56] are typically rule-based.

In summary, this study makes the following contributions.

• We study the effect of different baseline taggers and different number of tagging rules for rule-based

POS tagging. We show that using the unigram (i.e, one word at a time) tagger as a baseline tagger as

well as larger and more complex tagging rules results in a higher testing accuracy.

• We utilize spatial architectures (the AP and the FPGA) by transforming the rules to regular expressions.

This approach is scalable in number and complexity of rules. Increasing the number of rules up to

several thousand has no overhead on the AP and a minimal overhead on the FPGA, because all the

rules are laid out in space across the chip and executed in parallel.
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• We compare our solution on the AP and FPGA with several modern statistical approaches. Results

show that we can achieve up to 2,600× and 1,914× speedups on the AP and on the FPGA respectively

over CPU-based Brill tagging in the rule-matching stage, up to 58× speedup over the Perceptron POS

tagger (CPU solution) in the total testing time, and up to 253× speedup over the LSTM tagger (GPU

solution) in total testing time at the expense of approximately 1% accuracy in a large corpus.

An important lesson learned from this research is that rule-based POS tagging on hardware accelerators can

compete with the accuracy of statistical/ML-based approaches, especially in a larger corpus. As mentioned,

this sets up a very interesting tradeoff to evaluate when designing an NLP application: a small decrease in

testing accuracy in exchange for vastly faster testing, at the expense of slower training. This suggests that

rule-based approaches are valuable for use cases where testing performance is critical, as long as training

time can be tolerated.

3.1 Background on Part of Speech Tagging

Part-of-speech-tagging is the process of assigning parts of speech, such as noun, verb, etc., to each word.

It has a wide range of applications in parsing, text-to-speech conversion, named entity resolution, machine

translation, etc. POS tagging is generally categorized as a rule-based, statistical-based, or neural network-

based model. In rule-based methods, tags are assigned based on rules that embody repeatable patterns

indicating a specific tag, and in statistical methods, tags are assigned based on a probability model.

Rule-based POS tagging: The rule-based approach is the earliest POS tagging system, where a set of

rules is constructed and applied to the text. The rule-based POS tagging identifies the most appropriate

tag for each input token based on contextual rules learned in the training phase. A transformation-based

POS tagger (TBT) [53] is a rule-based tagger that assigns POS tags to words based on linguistic knowledge

learned from a training corpus. Then it uses the training information to tag new untagged corpora in the

testing phase in two stages. In the first stage, it uses a simple statistical tagger, called a baseline tagger or

back-off tagger, to assign an initial tag (usually the most frequent POS) for a word. In the second stage,

the initial tags are updated based on the contextual rules (the learned rules update the tag if the baseline

tag is incorrect in this context). The Brill tagger [57] is a rule-based approach that is the most widely used

POS tagger for English texts. The same authors also propose an unsupervised approach [58] that assigns

all possible tags to the words in the initial step, and in the next step, uses rules to reduce the number of

tags to remove the ambiguity. Mohammed et al. [59] improve the original TBT-based approach and propose

guaranteed pre-tagging, which fixes the initial tags of the words that are known to be correct. This approach

works well if prior information is known.
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Statistical-based POS tagging: The Unigram Tagger is a statistical tagger that assigns the most likely

tag to the word based on the training corpus. To identify the most likely tag for each word, a unigram tagger

counts the frequency of tags for each word in the training corpus. The default tag noun is used for unseen

words. The unigram POS tagger is simple and fast, and it is usually used as a baseline tagger for rule-based

approaches.

A Hidden Markov Model (HMM) tagger assigns POS tags by searching for the most likely tag for each

word in a sentence (similar to a unigram tagger). Unlike with the unigram tagger, an HMM tagger detects a

tag sequence for a sentence as a whole, instead of assigning a tag for each word independently. First-order

and second-order HMM taggers are usually called Bigram and Trigram taggers, respectively. Given a sentence

w1...wn, an HMM-based tagger chooses a tag sequence t1...tn that maximizes the following joint probability:

P (t1...tn, w1...wn) = P (w1...wn∣t1...tn)P (t1...tn)

The TnT [60] Tagger (also known as a trigram POS tagger) uses second-order Markov models and

considers triples of consecutive words to simplify the probability computation. In TnT, the tag of a word is

determined by the POS tags of the two previous words.

The Maximum Entropy (ME) Tagger incorporates more complex features into probabilistic models [61].

Given a sentence w1...wn, an ME-based tagger models the conditional probability of a tag sequence t1...tn as:

P (t1...tn∣w1...wn) ≈
N

∏
i=1

P (ti∣ci)

where C1, ...Cn are contexts for each word w1...wn in the sentence. An ME-based tagger models features as

binary-valued functions representing constraints to compute P (ti∣ci). It will learn the weights of the features

that can maximize the entropy of the probability model using the training corpus. The Stanford POS-tagger

[62] is an example of ME-based tagger.

Neural network-based POS tagging: POS tagging simply can be seen as a supervised classification

problem where the input of classifier is a word (or a feature-based representation of a word) and the output

is the score of belonging to each class (tag). In Avarage Perceptron tagger [63], a huge set of hand crafted

features is extracted and provided for a single layer perceptron with linear activation function to classify

the word based on its tag. This method selects the class with highest score as the potential tag. Deep

neural network solves the potential drawback of designing handcrafted features by letting the network to

pick the features by itself. Bi-directional recurrent neural networks-based taggers [64] (e.g., LSTM) perform

the tag classification for the whole sentence as a single decision problem and provide the opportunity of

utilizing information coming from left and right-side at the same time. However, these benefits come with

the computational cost of training and testing a deep neural network.
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3.2 Related Work

Regex matching is an important computation kernel in many applications. However, the efficiency on CPUs

is not satisfying due to memory bandwidth limitations. Therefore, several regular-expression processing

hardware acceleration methods have been proposed. Micron’s AP is an efficient semiconductor architecture

for parallel automata processing [28]. It uses a non-von-Neumann reconfigurable architecture, which directly

implements NFAs in hardware, to match complex regular expressions in parallel. REAPR is a reconfigurable

engine for automata processing on the FPGA. It provides a flexible framework which synthesizes RTL for

applications involving automata processing with high throughput [23]. iNFAnt2, an optimized version of

iNFAnt, is a prototype framework for NFA-based automata processing on NVIDIA CUDA-enabled GPU

cards [2], and DFAGE
12

is a DFA-based automata processing on GPU. However, neither GPU automata

processing engine provides clear advantages over CPU, let alone AP/FPGA [2] [10]; therefore, we focus on

the AP and FPGA in our paper. Both the AP and FPGA have been proved their strengths in many different

applications [7, 65, 66, 6, 16, 12].

We are aware of very little work to accelerate POS tagging. A recent study [15] of Brill tagging on the

AP shows 30x to 270x speedup over the CPU solution. However, [15] only uses 218 rules in Brill and only

evaluates them on a small dataset (e.g. picking 5 sample files from the Brown corpus). Furthermore, they just

present the speedup for the second stage of the testing phase, which is simply the rule-matching. However, in

our paper, we focus on scalability with number of rules and on accuracy, generating more complicated rule

template sets and creating up to 4,000 newly-learned rules using the entire Brown corpus (containing 500

sample files), and achieve a better accuracy than [15]. We also study the performance improvements for the

whole testing phase (both the baseline tagger and rule-matching stages). Moreover, [15] uses a character

position array to process various look-ahead steps among rules, while we propose a padding technique to

synchronize the reports from the AP, which works much faster and significantly simplifies the post-processing

of the match-reports.

3.3 Methodology

Rule-based part-of-speech tagging is a challenging task on CPUs when the tagging rule set becomes larger and

more complex, while the AP and FPGA excel in parallel rule matching even for large numbers of rules. In

this section, we show how to implement the tagging task as a parallel regex matching task on these hardware

accelerators, including converting tagging rules to NFAs and encoding the input string. Then, we describe

1
https://github.com/vqd8a/DFAGE

2
https://github.com/vqd8a/iNFAnt2
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how to prepare tagging rules and input text for applying to the AP and the FPGA. Furthermore, we discuss

matching results in the post-processing phase and method of tagging rules with character-level features.

3.3.1 Tagging Rules and Input Text Preparation

We create POS tagging rules based on the fnTBL [67] rule-set template. A rule template defines a dependency

pattern in the tagging context without assigning specific tags or words. For example, a rule template w−1, w0

(previous tag and current word) means that the tagger will check the previous part-of-speech tag and current

word to determine if the current tag needs to be corrected. Specific rules can be derived from rule templates

by filling in specific part-of-speech tags and words. The fnTBL rule-set with 37 templates is shown in Table

3.1. For comparison, we also show the original Brill tagging rule-set with 24 templates.

Table 3.1: The fnTBL Template Set (37 Templates)

w0, w1, w2 * w0 * (t1, t2, t3)
w−1, w0, w1 * w1 * (t−3, t−2, t−1)
w0, w1 * w−1 * t1, w0, w1

w0, w−1 * w2 t1, w0, w−1

w0, w2 * w−2 * t−1, w−1, w0

w0, w−2 * t−1, t1 t−1, w0, w1

* (w1, w2) * t1, t2 t−2, t−1
* (w−2, w−1) * t−1, t−2 t1, t2
(w1, w2, w3) * t1 t1, t2, w1

(w−3, w−2, w−1) * t−1 —
w0, t1 * t2 ** (w−1, w0)
w0, t−1 * t−2 ** (w0, w1)
w0, t2 * (t1, t2) ** w−1, t−1
w0, t−2 * (t−2, t−1) ** w1, t1

* Original Brill templates (24 templates) in the fnTBL sets
** Original Brill templates that are not in the fnTBL sets

() If a specific tag or word is contained in this range

We use the Brill tagger to learn tagging rules, which requires tagged training data and a set of rule

templates. We choose the Penn Treebank corpus and the Brown corpus as training data. During training,

the Brill tagger generates specific tagging rules based on the rule templates, ranks learned rules by score and

picks the top-k rules as learned results. The score of a tagging rule is defined as Equation 3.1, where Nfixed

is the number of places that a rule can change an incorrect tag to a correct tag, and Nbroken is the number of

places that a rule changes a correct tag to an incorrect tag. A match will not be counted if a rule changes an

incorrect tag to another incorrect tag. A higher score means the the rule can correct more tags in training

data while limiting incorrect tag changes.
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Score(rule) = Nfixed −Nbroken (3.1)

There are two steps for performing a typical rule-based POS tagging on testing data. The first step is to

tag the input text initially with a light-weight tagger such as the unigram or bigram tagger. The second step

is to correct initial POS tags using learned tagging rules. We use various baseline taggers for the first step,

which can be done fast but may have low tagging accuracy. Then we extract the outputs of the first step,

which contains the original text and initial part-of-speech tags, and use them as the input data for our rule

matching experiments on the hardware accelerators.

3.3.2 Accelerating Rule-Based POS Tagging on the AP and FPGA

In order to to accelerate the rule-based POS tagging using the AP and the FPGA, we implement the

multi-rule tagging task as a parallel regex matching task on the hardware accelerators. Figure 3.1 represents

the workflow of rule matching for updating the baseline tags on the AP and FPGA. We first convert all

learned tagging rules to regular expressions and then convert regular expressions to ANML representation

[28], which is an XML-based file format expressing finite state machines and connections, used on the AP

and FPGA. For the AP, we compile these rules directly onto the hardware using Micron’s compiler, and for

the FPGA, we use REAPR to generate an FPGA configuration as an xclbin and use Amazon’s toolchain to

create an Amazon FPGA Image (AFI) for the xclbin file. If users use their own FPGAs on local nodes, they

do not need to create the AFI. Then, for both the AP and the FPGA platforms, we stream in the encoded

input text (e.g., encoded Treebank) to match against all rules. The matching results can tell us which tags

match a learned rule and thus needs to be corrected. The hardware will report these results back and the

CPU can correct the corresponding tags. For the AP and FPGA, we apply padding in both NFAs and input

text to support different degrees of look ahead in tagging rules, so that we can get matching results from the

AP synchronously (see below).

Tagging Rules to Regular Expressions Conversion:

Table 3.2 shows how to convert each tagging rule to a regular expression. For rules with fixed words or

tags, we directly fill in the words and tags into regex templates. For rules that check if a word or a tag is in a

range, we use the regex string-OR operation to represent them. An example rule with ranges derived from

template ‘(w−3, w−2, w−1)’ is shown below. It means that, if the word ‘hadn’t ’ is shown in last three words, we

need to correct the current tag from VBD to VBN, i.e. from past-tense verb to past-participle verb.

VBD → VBN : if Word:hadn’t@[-3,-2,-1]
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Figure 3.1: POS Tagging workflow on the AP and FPGA.

We use string-OR regex syntax to capture the cases when such a word may appear at any places in

the range. A regex for the above range rule is shown below. The string-OR regex syntax can be efficiently

converted to NFAs with branches, which the AP and FPGA support.

/\s+(hadn’t\/[^\s]+\s+[^\s]+\s+[^\s]+|

^\s+\s+hadn’t\/[^\s]+\s+[^\s]+|

^\s+\s+[^\s]+\s+hadn’t\/[^\s]+)

\s+[^\s]+/VBD\s/

Padding Technique: In the fnTBL template set, there are rules with 0 to 3 look-ahead steps, i.e. the

tag of a word may depend on some words ahead of itself. If we directly convert these rules to NFAs and

match them with the input word sequence on the hardware, we may get matching results of the same word

asynchronously, i.e., for a specific word, some matching results may appear at the end of this word, while
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Table 3.2: Converting Tagging Rules to Regexes

Rules Regex
Regex rule templates ...word−1\/tag−1\s+word0\/tag0\s+word1\/tag1\s+word2\/tag2\s+word3\/tag3\s
A known word “word” word

An unknown word [^\s]+
A known tag “NN” NN

An unknown tag [^\s]+
Word tag delimiter \/
An unknown word-tag pair [^\s]+
A word “word” in a range 1 to 3 (word\/[^\s]+\s+[^\s]+\s+[^\s]+|[^\s]+\s+word\/[^\s]+\s+[^\s]+|

[^\s]+\s+[^\s]+\s+word\/[^\s]+)

some matching results may appear after streaming in one or two or three more words. This would introduce

more overhead when applying the results to update tags. For example, this could occur in a rule derived

from template ‘w0, w1, w2’, which looks two words ahead to determine whether to correct current tag.

To solve such problems, we use a padding technique. We first analyze the maximum look-ahead step in the

rule template set, then pad all rules to this maximum look-ahead, so that we can delay some early matching

results. The padding technique only consumes a marginal amount of hardware resources for each tagging

rule, e.g., two extra NFA state elements for each look-ahead padding step. With this padding technique, the

hardware accelerators can conduct regex matching in parallel for consecutive words and tag the words in a

pipelined fashion. This technique can generate matching results for each word synchronously, which improves

throughput and simplifies the following step. With the padding technique, the output is a vector of 0s and 1s,

from which we know which tagging rules are triggered and whether the input POS tag needs to be corrected.

3.3.3 A Working Example

In the training phase of rule-based POS tagging, the following rule has been learned from the Treebank corpus.

NN → JJ if Word:the@[-1] & Word:future@[0]

& Word:growth@[1]

It means if word[−1] == the, and word[0] == future, and word[1] == growth, and tag[0] == NN , then,

replace tag[0] which is NN with JJ . The rule is then converted to the following regular expression (according

to Table 3.2):

/\s+the\/[^\s]+\s+future\/NN\s+growth\/[^\s]+\s/

Assume that the maximum look-ahead step is 3, this regular expression is padded to three look-ahead
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words as follows:

/\s+the\/[^\s]+\s+future\/NN\s+growth\/[^\s]+\s/

+[^\s]+\s/+[^\s]+\s/

Figure 3.2 shows the generated automaton on the AP/FPGA for the padded regular expression. The

automata generate a report (in the “report” state shown in the figure) when the input stream matches the

padded regular expression.

Figure 3.2: An example automaton for a regex rule with padding.

Such automata are stored on the AP/FPGA and the input sequence will be streamed into the hardware.

The input string is the baseline-tagged word sequence with dummy word-tag pairs between sentences.
3

Assume the sentence we intend to tag is ”the future growth of our economy”. After applying the baseline

tagger, the words are initially tagged as follows:

the/DT future/NN growth/NN of/IN our/PRP economy/NN

We encoded the input string with sentence delimiters as follows:

3
An example input sentence can be separated by space using word-tag pairs, e.g. “word0/tag0 word1/tag1 word2/tag2 ...”.

If the tagging rules are learned at the sentence-level, we need to use dummy word-tag pairs to separate adjacent sentences, so
that the boundary words will not affect other sentences during regex matching, e.g. “sentence0 ./. ./. ./. sentence1 ...”.
The number of dummy word-tag pairs depends on the maximum look-ahead steps in the rule template set.
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the/DT future/NN growth/NN of/IN our/PRP economy/NN ./. ./. ./.

The regex rule mentioned above matches the input string at the space character right after ’our/PRP ’, so

we need to correct the tag for future to JJ.

The encoded text is matched against all the tagging rules in parallel. If multiple tagging rules match the

input, the tag is updated using the rule with higher score.

One can find the details of our implementations here.
4

3.3.4 Character-Level Regex Features

Character-level regex can capture features inside a word, which can be more discriminative in POS tagging

task. Some example character-level features that can be important include hyphens, uppercase letters, specific

prefixes or suffixes, root words, or words with mixed digits and letters. Since the AP and FPGA excel at

general regex matching, it will be interesting future work to extend the tagging rule set to include rules with

character-level features without significant performance overhead.

3.4 Experimental Results

3.4.1 Execution Environment and Data Sets

We perform experiments on a Linux server with a 3.3GHz Intel Core-i7 5820k CPU and 32GB DDR4 RAM.

GPU experiments use an NVIDIA K80 in this same system. We use taggers in NLTK 3.2.1 in Python 2.7 as

our baseline taggers. In addition, NLTK contains Java interface for running the Stanford log-linear tagger

(3.6.0). For all measurements, I/O times are excluded, assuming data are already loaded.

We use the Penn Treebank and Brown corpora, the built-in corpora in NLTK, as our datasets. The Penn

Treebank corpus contains 199 tagged documents (wsj 0001 to wsj 0199), 3,914 sentences and 100,676 words.

The Brown corpus contains 500 documents, 57,340 sentences and 1,161,192 words. Some experiments are

performed using just the news category of the Brown corpus, which has 44 documents, 4,623 sentences and

100,554 words.

On both the AP and FPGA, because all regexes are processed in parallel, a new input symbol can be

processed every clock cycle. The kernel execution time of the AP is estimated, because fully-functional AP

hardware is not yet available. But it is simple to estimate, because with the input processing rate fixed at one

character per cycle at 133 MHz, throughput is 133MB/s. The kernel execution time on FPGA is evaluated on

4
https://github.com/elaheh-sadredini/BrillPlusPlus
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the Amazon EC2 F1 instance equipped with a Xilinx Virtex UltraScale VU9P FPGA and four memory banks.

The synthesized clock rate can vary with rule complexity, with a maximum of 250 MHz. The deployment on

F1 also allows other users who have access to EC2 to easily use our proposed method or reproduce the results.

Table 3.3: Testing accuracy of the Brill tagger with different baseline taggers with 5-fold cross validation on
the Treebank corpus and Brown news corpus.

Baseline
Treebank Brown (News) Entire Brown

Baseline Brill (24) fnTBL (37) Baseline Brill (24) fnTBL (37) Baseline Brill (24) fnTBL (37)
RU 91.37 93.76 93.82 87.58 91.03 91.14 92.60 94.36 94.55

RUB 92.26 92.60 92.65 88.59 89.55 89.71 92.69 94.45 94.59
RUBT 92.16 92.32 92.37 88.51 89.28 89.37 92.74 94.18 94.31

3.4.2 Accuracy of the Brill Tagger

In order to study how baseline taggers affect the overall testing accuracy of a rule-based tagger like Brill, we

evaluate the accuracy of Brill tagger using unigram tagger (U), bigram tagger (B), and trigram tagger (T) as

the baseline on Treebank, Brown News, and entire Brown corpus with 5-fold cross validation on the datasets.

We also test the Brill tagging testing accuracy with both the original 24 rule templates and the fnTBL 37

rule templates.

Results are shown in Table 3.3. For each corpus, the first column (Baseline) represents the baseline

testing accuracy for the corresponding baseline tagger. The second and third columns show testing accuracy

when using the corresponding baseline tagger as their back-off tagger for 24 rule-templates and fnTBL 37

rule-templates respectively. The maximum number of rules generated for Brill is 500 for this experiment.

For the unigram tagger, we use the regex tagger as its backoff tagger (denoted as RU). The regex tagger

(R) can assign tags to words based on common rules, such as defining “.*able” as adjective and defining

“.*ness” as noun. Since we only use 9 common rules, the accuracy of pure regex tagger is very low (23.92% on

the Treebank corpus, 30.41% on the Brown news corpus, and 29.61% on the entire brown corpus). For the

bigram tagger, we use the unigram tagger as the backoff of the bigram tagger (denoted as RUB). Finally, for

the trigram tagger, we use the bigram tagger as the backoff of the trigram tagger (denoted as RUBT).

Results show that by choosing the unigram tagger (RU) as the baseline, the Brill tagger achieves the

highest testing accuracy for Treebank and Brown (news) corpora, which is 1% more than choosing other

taggers as baseline taggers. The reason for this is that Treebank corpus and Brown (news) are small, so

there are many unseen words in the bigram and trigram taggers, and they may overfit the training data.

Interestingly for entire Brown corpus, by using bigram tagger (RUB) as the baseline tagger, the brill tagger

achieves the highest testing accuracy. This is because there are fewer unseen words in the bigram tagger model

for larger datasets. Furthermore, for all corpora, the larger rule template set (fnTBL 37) helps to improve
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Table 3.4: Testing accuracy (%) and testing time (in seconds) for Brill++ on CPU, AP, and FPGA for
Treebank and Brown (news) corpora while increasing the number of tagging rules.

#Rules
Treebank Brown (News)

Test Acc (%)
Test Time (second)

Test Acc (%)
Test Time (second)

CPU AP FPGA CPU AP FPGA
100 93.57 0.23 0.0015 0.0008 90.36 0.345 0.0015 0.0008
200 93.73 0.37 0.0015 0.0008 90.78 0.475 0.0015 0.0008
300 93.76 0.52 0.0015 0.0009 91.00 0.594 0.0015 0.0009
400 93.82 0.55 0.0015 0.0009 91.09 0.720 0.0015 0.0009

the accuracy. This shows that more diverse and complex template for rule-set is beneficial to accuracy, but

processing them on the CPU is very time-consuming, and this is where having a hardware accelerators can

play an important role.

3.4.3 Brill tagging with different number of rules

In the training phase of Brill tagging, we can set a score threshold and the number of rules to be learned.

More rules usually lead to higher training/testing accuracy, although too many rules may cause overfitting. In

this section, we show that a larger number of rules significantly increases computation time on the CPU and

slows down the training and testing speed. However, the AP and FPGA shows a constant or near-constant

processing time for testing when the number of rules increase. In this work, we focus on improving the testing

time, because the learning phase is executed rarely, and the results are used many times for new texts.

Table 3.4 presents the testing accuracy and testing time (for rule-matching stage) of the Brill tagger when

increasing the number of generated rules on Treebank and Brown news corpora. We refer to Brill as Brill++

when using our approach for increasing the number of rules. We choose the unigram tagger as the baseline

tagger, and learn 100 to 400 rules from the training folds based on the fnTBL 37 rule templates (based on the

results in Section 3.4.2, unigram tagger and fnTBL rule templates perform better). We observe that testing

accuracy improves in both corpus when increasing the number of learned rules.

Table 3.4 also shows rule-matching time, i.e., the testing stage, for the Brill++ tagger on the CPU, AP,

and FPGA for the Treebank and Brown news corpora. The testing time of the Brill tagger on the CPU is

proportional to the number of rules and it increases when generating more rules. However, the computation

time on the AP remains constant (0.0015 seconds) as long as the rule-set can fit on the AP board. Moreover,

the computation time for the FPGA is even less than the AP, which is about 0.0009 second for both corpora.

This is because all the rules configured on the AP and FPGA can be matched against the input stream (the

baseline tagged word sequence) in parallel at the rate of 133MB/s for the AP and 250MB/s for the FPGA.
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Table 3.5: Testing accuracy (%) and testing time (in seconds) for Brill++ on CPU, AP, and FPGA for the
entire Brown corpus while increasing the number of tagging rules.

#Rules

Entire Brown Corpus
Test Acc(%) Test Time (second)

Brill++ Brill++ Brill++
RU RUB CPU AP FPGA

100 93.48 94.02 2.40 0.0172 0.0093
200 93.98 94.28 3.82 0.0172 0.0093
300 94.25 94.41 5.44 0.0172 0.0098
400 94.43 94.52 6.90 0.0172 0.0098
500 94.58 94.6 8.40 0.0172 0.0098
1000 94.90 94.8 15.7 0.0172 0.0098
2000 95.17 94.91 30.05 0.0172 0.0157
3000 95.25 94.94 40.02 0.0172 NA
4000 95.29 94.96 44.59 0.0172 NA

We perform a set of similar experiments on the entire Brown corpus, which has 500 documents and 1.16

million words. Table 3.5 shows the testing accuracy of Brill++ when the number of rules increases from 100

to 4,000. We run the experiments for Brill++ using both unigram tagger and bigram tagger as the back-off

tagger, with baseline accuracy of 92.60% and 92.69% respectively. Accuracy is improved up to 95.21% when

increasing the number of learning rule from the training folds. In Section 3.4.2, we observed that bigram

tagger performs better as the baseline tagger for Brill on the entire Brown corpus. However, when increasing

the number of rules, we see that the unigram tagger starts to perform better. This implies that more tagging

rules work best with a simpler baseline tagger. Therefore, we use unigram tagger as a reliable baseline tagger

for rule-based taggers, independent of the corpus size.

Table 3.5 also presents the rule-matching time for the Brill++ tagger on the CPU, AP, and FPGA for

the full Brown corpus. The length of input string generated from testing folds of the Brown corpus is about

2.3MB and the AP frequency is 133MB, so the AP testing time is only 17ms (calculated as 2.3MB / 133MB/s).

The FPGA rule-matching kernel is around 2× faster than the AP, and this is because the rule processing

frequency on the FPGA is higher than the AP (about 250MB/s). However, the testing time of the Brill++

on the CPU consumes up to 44.59 seconds.

As a result, if we only compare the matching part, that is, deducting the baseline tagging time from the

Brill++ tagging time, the AP and FPGA can achieve up to 2600× and 1914× speedup over the CPU-based

implementation respectively.

3.4.4 Performance Discussion and Future Work

Errors in initial stages of an NLP pipeline have negative effects on the overall accuracy. Therefore, the main

focus of many state-of-the-art POS taggers is to improve the accuracy. However, the runtime of POS taggers
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Table 3.6: Timing/accuracy trade-off for different methods on Treebank corpus and entire Brown corpus.

Method
Character Treebank Entire Brown

Embedding Train Time (s) Test Time (s) Test Acc Train Time (s) Test Time (s) Test Acc
Brill (CPU) No 27.21 0.55 93.82 4980 45.43 95.29

Brill++ (AP-FPGA*) No 27.21 0.091 (0.090*) 93.82 4980 0.837 (0.835*) 95.29
TnT (CPU) No 0.46 157 89.95 3.74 15736 94.05

Stanford Tagger (CPU) No NA 3.39 91.30 NA 117.58 62.86
Perceptron (CPU) No 17.01 0.82 95.89 941 48.61 96.24

LSTM (GPU) No 210.64 1.25 89.3 1832 184.29 91.7
LSTM-ChE (GPU) Yes 223 2.78 96.15 2676 212.06 96.67

is very important for time-sensitive tasks (e.g., online machine translation). Therefore, in this section, we

discuss the trade-off between accuracy and time for different methods.

Table 3.6 shows training time, testing time, and testing accuracy of rules-based, statistical-based, and

neural network (NN)-based approaches on Treebank and entire Brown corpora. Testing times for Brill and

Brill++ include both baseline tagger and rule-matching stages. For the Brill++ (AP-FPGA*), numbers on

the parenthesis with asterisks represent testing time for the FPGA. The TnT (Trigrams’n’Tags) tagger [60] is

a statistical POS tagger based on Markov models. The Stanford POS tagger [68] is also a statistical POS

tagger based on a maximum-entropy model. The Stanford tagger is pre-trained on the TreeBank corpus, so

we do not report the training time for that. Moreover, because the Stanford tagger is trained on Treebank,

its accuracy on Brown corpus is low. The Perceptron tagger (or averaged Perceptron tagger) is a one-layer

NN-based solution. TnT, Perceptron, and Stanford Taggers are all from the NLTK package
5
. LSTM

6
is

a bidirectional long-short term memory tagger using conditional random field (CRF). LSTM is based on

word-level features while LSTM-ChE employs character embedding features in addition to word-level features

(both run on the K80 GPU). The testing time is measured using mini-batch size of 20.

The TnT tagger has the lowest accuracy and the longest testing time. However, it has the shortest

training time. The Perceptron tagger has the highest accuracy among the methods that does not use

character-embedding information, for both corpora. However, its testing time on the CPU is up to 58×

slower than Brill++ on the AP and the FPGA. Perceptron tagger would have a better performance on GPUs

and will be an interesting point of comparison for the future work. Brill++ has the second highest testing

accuracy and by far the lowest testing time (on the AP and FPGA) among the taggers that does not use

character-embedding features. The training time of the rule-based approach is higher than Perceptron tagger.

Although the training is conducted just once and the rules are used multiple times for the unseen textual

data, accelerating the training phase of Brill++ using the AP or the FPGA or other hardware accelerators is

an interesting area for future work.

5
http://www.nltk.org/api/nltk.tag.html

6
https://github.com/guillaumegenthial/sequence tagging



A Scalable Solution for Rule-Based Part-of-Speech Tagging on Novel Hardware Accelerators 30

We ran LSTM and LSTM-ChE for 7 epochs on the Treebank corpus and 4 epochs on the Brown corpus.

Results show that by adding character-embedding feature to LSTM-ChE, the accuracy can increase by 6.85%.

Clearly, LSTM-ChE achieves the highest accuracy among other methods; however, testing time of Brill++

on the AP/FPGA is still 253%× less than LSTM-ChE on the GPU.

Most state-of-the-art POS taggers that report high accuracy (about 96%- 97%) take advantage of character-

level features in addition to word-level features [69, 70, 71]. A recent study on machine-learning-based POS

taggers [72] compares the accuracy of three state-of-the-art taggers, MarMot
7

(a generic conditional random

field framework), bilstm-aux
8

(bidirectional long-short term memory tagger) and its own CNN-based tagger

for three variations of input features: word only, character only, and word-character combination ([72], Table

1). The results show that combining word feature and character feature can increase the accuracy by 2%-3%.

Compared to word-level POS taggers, Brill++ achieves competitive accuracy with a superior short runtime.

Based on the character-level POS tagger study, we hope that adding character-level rules will increase the

accuracy of rule-based POS taggers by a similar margin, and make Brill++ fully competitive in accuracy to

these statistical/ML-based approaches with superior efficiency. The AP and FPGA have plentiful capacity to

extend the tagging ruleset with character-level features while maintaining good runtime.

3.5 Conclusions

The main objective of this paper is to motivate re-consideration of rule-based approaches when real-time

computation is needed for NLP applications. To this end, we utilize two state-of-the-art accelerators, the

Automata Processor and FPGA, and propose an efficient, rule-based POS tagging approach. We observe

that increasing the number of rules, especially from more diverse template-sets and in a larger corpus, results

in a higher accuracy that nearly matches the accuracy of statistical/ML-based approaches. Increasing the

number of rules only adds minor computational overhead on the AP and FPGA, while the processing time

of CPU solutions increases linearly with the number of rules. This is because both hardware accelerators

can process a large number of rules against the input corpus in parallel, due to their abundant hardware

resources that lay out all the rules in space for concurrent processing. The results show orders-of-magnitude

speedup over CPU-based solutions, thus providing NLP application designers with a tradeoff between losing

a small amount of accuracy (approximately 1%) in exchange for much faster processing.

7
http://cistern.cis.lmu.de/marmot/

8
https://github.com/bplank/bilstm-aux



Chapter 4

Frequent Subtree Mining on the

Automata Processor: Challenges and

Opportunities

Frequent subtree mining (we name it FTM for not to confuse it with frequent structure mining) refers to

finding all the patterns in a given forest (database of trees) whose support is more than a given threshold

value, called the minimum support. A subtree pattern is called frequent if the number of trees in the dataset

that have at least one subtree isomorphic to the given pattern is more than the minimum support. Frequent

subtrees have proven to be extremely important and informative in many real world applications such as

XML data, parse-trees in natural language processing, bioinformatics, and patient treatment awareness. For

instance, in natural language processing (NLP), frequent subtrees mined from the parse tree databases can be

used to increase the accuracy of NLP tasks, such as sentiment analysis and question classification problems

[73]. However, finding all frequent subtrees becomes infeasible for a large and dense tree database, due to the

combinatorial explosion of the subtree candidates.

Any mining process, including subtree mining, has two steps, candidate generation and candidate

enumeration. The first one generates candidate subtrees, which are evaluated for their frequency in the

latter stage. The main challenges in FTM are efficiently traversing the search space and performing subtree

isomorphism. A number of research studies have attempted to improve the performance of the task by

proposing different data structures and counting strategies. These are either based on breadth-first search

(BFS) or depth-first search (DFS). BFS is a level-wise iterative search method and usually uses a horizontal

31
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tree representation. BFS suffers from a long processing time because it requires passing through the entire

dataset in each iteration. However, DFS usually projects the database into a vertical tree representation for

fast support counting, but encounters memory capacity challenges and costly I/O processing because the set

of candidates and their embedding list tend to overflow memory [74][75].

Researchers are increasingly exploiting accelerators as performance growth in conventional processors is

slowing down. The Micron Automata Processor (AP) is a non-von Neumann, native-hardware implementation

of non-deterministic finite automata (NFA). The high bit-level parallelism of the memory-based architecture

makes it capable of performing high-speed search and analysis on complex data structures. Recent studies on

frequent itemset mining [8], sequential pattern mining [7], disjunctive rule mining [9], and entity resolution

[16] have proved that the AP is a promising target accelerator in data-mining and data-matching applications,

and these studies have achieved orders of magnitude speed-up over conventional processors. However, the

main difficulty in exploiting the AP for FTM is that the AP was intended to support regular languages,

whereas tree structures will typically need to be represented by a context-free grammar. By relaxing some of

the tree structure constraints, the AP can be effectively utilized to prune the search space of FTM.

In this work, we first study difficulties of directly implementing the FTM problem on the AP platform.

Then, we propose a multi-stage pruning framework to greatly reduce the search space of embedded FTM on

the AP. This provides a scalable solution in terms of both memory and execution time on large databases

and lower support thresholds. Frequent subtree candidates can be the potential features in classification

tasks, and the surviving candidates with lower frequency are especially beneficial to boost classification

accuracy of rare classes, because these frequent subtree patterns can represent unique and discriminative

features of classes with fewer members. In order to maintain both ancestor-descendant relationship and

sibling properties on the tree structure, and at the same time provide a feasible computation to exploit the

AP, four complementary string representations of the tree structure and their mapping to the automaton

representation are proposed. Pruning kernels presented in this work result in a set of potentially frequent

candidates (close to the final set of frequent patterns) which may contain a small number of false positives

(however, recall is 100%). For the applications that demand an exact solution, we adapt TreeMinerD [74], a

quick DFS approach that detects the distinct occurrences of a pattern, to prune the AP results and provide

an exact solution. Finally, we develop a BFS-based solution for embedded FTM on GPU in order to compare

the AP solution with an additional accelerator architecture.
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4.1 Frequent Subtree Mining

4.1.1 Problem Statement

A tree is an acyclic connected graph, and a forest is an acyclic graph of multiple trees. A rooted tree is a tree

with one distinct node called root. A tree can be defined as an ordered or unordered tree. In the ordered

tree, the children of each node are ordered from left to right according to some common property, so we can

enumerate them from left to right as the first child, second child, and so on. If the order does not matter, the

tree is called unordered. And finally, a labeled tree is a tree where each node has an associated label.

Tree Mining Problem: We define D to be a dataset of trees and a transitive subtree relation S ⪯ T for

some of the trees (T ) in D. Define t1, t2, ..., tn to be the nodes in T and s1, s2, ..., sm be the nodes in S. Then,

S is a subtree of T if there are matching labels of the nodes ti1 , ti2 , ..., tim such that (1) label(sk) = label(tik )

for all k = 1, 2, ...,m; and (2) for every branch (sj , sk) in S, tij should be an ancestor of tik in T . The latter

condition preserves the structure of S in T . This definition of subtree refers to an embedded subtree. By

restricting the ancestor-descendant relationship to parent-child relationships in T for the second condition, a

new kind of subtree, called induced subtree, can be defined. Fig. 4.1 shows an example on different types of

subtrees on T0. There are several other subtree types such as maximal subtree, closed subtree, and partial

subtree, which put restrictions on the induced and embedded subtrees and are not considered in this work.

The relative minimum support number (Rminsup), defined as the ratio of minimum support number

to the total number of transactions (input trees), is used in this paper. We define the size of a tree as the

number of nodes in it. Moreover, we represent a candidate of size k with k-candidate and a frequent candidate

of size k with k-frequent-candidate throughout the paper. Many applications are only interested in counting

the number of database trees that contain at least one match of a subtree, which is called counting distinct

occurrences. On the other hand, weighted counting refers to enumeration of all possible occurrences over all

possible trees in the database. In this work, we focus on mining distinct occurrences of embedded subtrees

from rooted, ordered, and labeled trees as those types of datasets dominate in data mining applications [74].

Embedded subtree mining has a larger search space and higher mining complexity than induced subtrees [76]

[74], and CPU solutions have difficulties dealing with them. The proposed pruning method is not limited to

binary trees and can be adopted by unordered embedded and ordered/unordered induced subtree mining

with minimal changes.
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Figure 4.1: An example of subtrees (I = Induced, E = Embedded, O = Ordered, U = Unordered)

4.1.2 Candidate Generation

Our candidate-generation step is based on an equivalence-class, right-most extension approach adopted from

[77]. In this approach, the (k+1)-candidates are generated from the known k-frequent-candidates within an

equivalence-class (having the same string prefix). Two frequent patterns can be merged based on the position

of the last extended node. In this approach, all the candidates are generated once (avoiding redundancy) and

all are the valid candidates. We do not describe the candidate-generation method in detail, as the main focus

of the paper is accelerating the candidate enumeration step, which is the bottleneck of the algorithm. Details

of the candidate-generation and proof of correctness can be found in [77].

4.2 State-of-the-Art Subtree Mining Algorithms on CPUs and

GPUs

A considerable amount of research has been devoted to frequent subtree mining, due to its significance in

different domains such as bioinformatics, web mining, and natural language processing. Frequent subtree

mining techniques can be classified based on the subtree and the ordering types to induced ordered, induced

unordered, embedded ordered, and embedded unordered subtrees. The way the candidate patterns are

generated, the data structure representation in the memory, and the candidate subtree enumeration approach

can significantly affect the efficiency of the algorithm.

Several algorithms have been proposed to mine labeled, embedded, and ordered subtrees. TreeMiner [77]

is the first algorithm for mining embedded ordered subtrees, suggested by Zaki, which is based on DFS search,
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and it introduces the concept of vertical tree representation, a space-efficient string encoding of the tree.

New candidates are generated by adding one node to the right-most path of the tree (right-most extension

approach). TreeMiner uses an extension and join approach for the candidate-generation and enumeration

and stores the matches in a vertical representation, which can be very large and consume a lot of memory,

especially when the number of overlapping matches is high. The same author proposes TreeMinerD [74], an

algorithm which enumerates only distinct occurrences of a pattern, and can be beneficial for some applications.

However, when the average number of embeddings of a subtree in a tree is low, TreeMiner and TreeMinerD

have almost the same performance. XSpanner [78] is another solution for mining embedded, ordered subtrees

and adopts the FP-Growth concept and its enumeration model generates valid candidates, and counts the

distinct trees. An expensive pseudo-projection phase results in poor cache performance in XSpanner. The

idea of pseudo-projection techniques is that, instead of physically constructing a copy of the subtree, they

reuse the trees in the original tree database. MB3-Miner [79], yet another solution, applies a Tree Guided

Model to efficiently generate the candidates. However, Tatikonda in [75] shows that the MB3-Miner solution

suffers from high memory usage.

The TRIPS and TIDES [80] solutions are proposed to mine embedded and induced subtrees that can

be ordered or unordered. They are based on sequential encoding strategies that provide fast generation

of a complete and non-redundant set of candidate subtree patterns. They use an embedded list for the

candidate-generation and a hash table for the support counting step. Even though their approaches are

cache-conscious due to the simple array-based data structure, they still suffer from high memory consumption

with larger datasets and with smaller support thresholds. The same authors proposed an architecture-aware

FTM algorithm [75] targeting multi-core systems. Several optimizations are adopted to decrease memory

access latency and bandwidth pressure, and a parallel pattern-growth approach in the context of the TRIPS

[80] algorithm on multicore systems is proposed. They show a nice scale-up with the number of cores, however,

their solution crashes far sooner than a single-core implementation. This work is the only parallel solution for

FTM, to the best of our knowledge.

PATTERN-MATCHER [77] instead employs a breadth-first iterative search to find frequent subtrees. It

employs an equivalence-class notion for candidate-generation and counting, and a prefix-tree data structure

for indexing the candidates. It prunes the candidates of size (k + 1) using the frequent candidates of size k.

We consider this algorithm as a baseline to compare with TreeMiner. Furthermore, a level-wise push-down

automata-based approach for the candidate enumeration step of FSM is proposed in [31]. A deterministic

finite automata is generated for each candidate and the experiments are run on a Pentium 4 CPU. However,

the authors do not compare the performance of their method with the FP-growth algorithms, which are

known to be faster than the level-wise solutions.
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Chopper [78] proposes a two-stage solution to find frequent subtrees. In the first stage, the database is

converted to a preorder traversal label sequence representation and then, frequent sequences are found using

sequential pattern mining, which acts as the pruning stage. Then, frequent subtrees are found by removing

the false positives. XSpanner outperforms Chopper [78] and Tree Miner [77] outperforms Xspanner, so we

do not consider them in the performance comparison. Furthermore, there is no parallel implementation of

frequent subtree mining problem on GPU or FPGA architectures.

4.3 Frequent Subtree Mining on the Automata Processor: Chal-

lenges

The AP mainly supports regular languages, however, boolean and counter elements provide stack functionality

with a very limited element size, stack size, and population on the AP. We have designed a balanced parenthesis

checking structure for the induced FTM problem, which implements a simplified stack structure using counter

and STE elements on the AP. The parenthesis checking structures keep track of the branch position in the

subtree and require to be repeated for each node in the subtree, and this repetition consumes a large portion

of the available STEs and counters. Furthermore, the depth of the parenthesis checking structure depends on

the maximum depth of the trees in the database, which makes it impossible to have a database-independent

solution. The actual stack functionality is also designed using boolean and STE elements for embedded tree

mining problem. For a stack of size 3 and symbol-set of size 4, the stack design needs more than 20 booleans

and 48 STEs. Subsequently, it is practically impossible to extend the design for larger symbol set and deeper

stack.

Therefore, subtree inclusion checking cannot be accomplished using deterministic finite state machines.

The tree structure is more complex than a sequence and cannot be described with regular languages [31]. It

implies that instead of a finite state machine, a pushdown automaton (PDA) is needed in order to count the

length of a possible branch when searching for a subtree in the input tree. A PDA is a finite automaton with

access to a potentially unlimited amount of stack, which is more capable than finite state machines.

We concluded that the AP is an excellent accelerator to prune the search space of the candidates in

FTM, when relaxing some of the tree constraints in order to make the simpler representations of a tree. In

the following section, we propose a set of pruning kernels implemented on the AP to shrink the subtree

candidate-set size, which provides a scalable solution to the larger databases and lower support thresholds.
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4.4 Frequent Subtree Mining on the Automata Processor: Oppor-

tunities

The AP architecture excels at computing regular expressions and as we have already discussed, it is not

practical to directly and accurately implement the enumeration step of FTM on the AP. In addition, the

existing techniques for itemsets and sequential patterns mining cannot be naturally and accurately extended

to the FTM problem. Nevertheless, the AP huge parallelism can be exploited to prune the large search space

of the candidate enumeration by simplifying the tree structure to some elementary representations such as

FIM and SPM, where the AP can understand and directly implement them.

In this section, we propose four kernels, (1) subset pruning, (2) intersection pruning, (3) downward

pruning, and (4) connectivity pruning. The first two kernels are independent from the input transaction,

while the last two create a new presentation of the trees in the database and use them as the input stream to

match against the candidates. The proposed kernels are complementary to each other to avoid overlapping

pruning and applied to the candidates in sequence to accommodate more candidates in the early stage.

4.4.1 Preliminaries

Frequent Itemset Mining (FIM): The FIM problem was initially studied to find regularities in the

shopping behavior of customers of supermarkets and has since been applied to very broad application domains.

We define I = i1, i2, ..., im as a set of interesting items. Let T = t1, t2, ..., tn be a database of transactions,

each transaction tj is a subset of I. Define xi = {is1, is2, ..., isl} be a set of items in I, called an itemset. The

itemset with k items is called k-itemset. A transaction tp is said to cover the itemset xq iff xq ⊆ tp. The

support of xq, Sup(xq), is the number of transactions that cover it. An itemset is frequent iff its support is

greater than a given threshold value called minimum support, minsup. The goal of FIM is to find all itemsets

with support greater than minsup. Wang et al. [8] proposed a novel automaton template (an automata

structure that can be configured with different symbol-set) for matching and counting stage of FIM on the AP

that can handle variable-size itemsets (ME-NFA-VSI) and avoid routing reconfiguration. The whole design

makes full usage of the massive parallelism of the AP. By using this template structure, one AP board can

match and count 18,432 itemsets in parallel with sizes from 2 to 40 for 8-bit encoding and 2 to 24 for 16-bit

encoding (for symbol alphabets > 256). Note that the processing rate is 133 MB/s regardless of encoding.

Sequential Pattern Mining (SPM): We define I = i1, i2, ..., im as a set of items, where ik is usually

represented by an integer, call item ID. Let s =< t1t2...tn > denotes a sequential pattern, where tk is a

transaction and also can be called as an itemset. We define an element of a sequence by tj = {x1, x2, ..., xm}
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where xk ∈ I. We assume that the order within a transaction (itemset) does not matter, so the items within

one transaction can be lexicographically ordered in preprocessing stage. A sequence with a size k is called a

k-sequence. Sequence s1 =< t1t2...tm > called to be a subsequence of s2 =< r1r2...rj >, if there are integers

1 ⪯ k1 ≺ k2 ≺ .. ≺ km−1 ≺ km ⪯ j such that t1 ⊆ rk1, t2 ⊆ rk2, ..., tm ⊆ rkm. Such a sequence sj is called a

sequential pattern. A sequence is known as frequent iff its support is greater than a given threshold value

called minimum support, minsup. The goal of SPM is to find out all the sequential patterns with support

greater than minsup. In [7] Wang et al. derive a compact automaton design for matching and counting of

SPM on the AP. A key insight that enables the use of automata for SPM is that hierarchical patterns of

sequences can be flattened into strings by using delimiters and place-holders. Again, a template is proposed to

accommodate variable-structured sequences. This allows a single, compact template to match any candidate

sequence of a given length, so this template can be replicated to make full use of the capacity and massive

parallelism of the AP. One AP board can match and count 6,144 sequence patterns in parallel with sizes

from 2 to 20 for 8-bit and 16-bit encoding. The detail of the design capacity can be found in [7]. Table 4.1

and 4.2 represent capacity information of the SPM macros for different sequence sizes and support threshold.

Table 4.1: Number of macros that fit into one block with 8-bit encoding

k <= 10 10 < k <= 20 20 < k <= 40
sup < 4096 4 2 1
sup >= 4096 2 2 1

Table 4.2: Number of macros that fit into one block with 16-bit encoding

k <= 5 5 < k <= 10 10 < k <= 20
sup < 4096 4 2 1
sup >= 4096 2 2 1

4.4.2 Pruning Kernels

We propose four pruning kernels in this section. Each kernel maps to FIM or SPM definition, and we use the

automata structures proposed for FIM [8] and SPM [7] problems, from our previous works, to implement the

kernels on the AP and calculate the AP board utilization.

Subset Pruning:

According to the downward-closure principle, all sub-patterns of a frequent pattern must themselves be

frequent. This means that, when generating a (k+1)-candidate, all of its k-candidates should be frequent as

well. BFS-based FTM approaches can greatly benefit from this property in order to reduce the search space,
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whereas DFS implementations do not have all the k-frequent-candidates when looking at a (k+1)-candidate.

The subset pruning kernel checks the downward closure property for all the candidates of size three and

more. This property can be directly mapped to FIM, where each generated (k+1)-candidate represents a

candidate itemset and the items in the itemset are the set of k-candidates. In Fig. 4.2, C5i (a 5-candidate) is

generated from F4i, which is a 4-frequent-candidate, by extending the edge AE. In subset pruning, we should

check C4j , C4k, and C4l, the other subsets of C5i, to verify they are frequent as well. The itemset candidate

corresponding to C5i is C5i = {C4j , C4k, C4l} and the input dataset has only one transaction, which consists of

all the frequent candidates of size 4, e.g., {F40, F41, ..., F4m}, where m is the number of 4-frequent-candidates.

Therefore, the set of all C5 creates the candidate itemsets for FIM. A subtree candidate will survive at this

stage if it occurs in the input transaction (Rminsup is 100% here).

Figure 4.2: An example of subset pruning

The CPU implementation adds each individual frequent subtree into a hash table. Thus, each subtree

check takes O(1) time, and since there can be k subtrees of length k-1 and n candidates, it takes O(nk) time

to perform the pruning check for the patterns in each iteration. In the AP implementation, many candidate

itemsets are configured on the AP and checked against the input transaction in parallel. The time complexity

of the AP solution is O(m), where m is the number of frequent candidates of the previous level. Because the

support threshold here is 100%, we can remove the counter element of the FIM AP design [8], which is the

main constraint of the AP board utilization. When the number of generated candidates is relatively small,

the CPU solution beats the AP, because of the AP configuration overhead. However, when the number of

candidates starts to grow, the AP implementation provides a faster solution. This kernel is very light-weight

and does not require a pass of input trees (the input for this kernel is the set of frequent-candidates of the

previous iteration), however, it prunes a large number of candidates in the early stage.
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Table 4.3: An example on intersection pruning

T1 F4i F4j F4k F4l F4x

T2 F4i F4k F4x F4x F4x

T3 F4k F4l F4x F4x F4x

T4 F4i F4j F4l F4x F4x

Intersection Pruning:

In order to pass this pruning stage, (1) all the subsets of a (k+1)-candidate, which are the members of a

k-frequent-candidates, should happen in the same input tree, and (2) the number of joint occurrences must be

more than the minimum support threshold. Let’s assume C5i from Fig. 4.2 has passed the subset pruning

stage and all its subset has been frequent. Also, assume there is a database of four trees {T1, T2, T3, T4},

where F4i occurs in {T1, T2, T4}, F4j occurs in {T1, T4}, F4k occurs in {T1, T2, T3}, and F4l occurs in {T1, T4}.

As we see, the set of {F4i, F4j , F4k, F4l} (which are the subset of C5i) jointly happens in only T1. As a result,

if the Rminsup is less than 25%, F5i will pass the second stage, otherwise, it will be pruned.

Intersection pruning can directly map to FIM, where itemsets are the set of (k+1)-candidates and items

in the itemsets are the set of k-frequent-candidates for each candidate. The number of input transactions

is equal to the number of trees in the database and the size of each transaction is the number of frequent

candidates contained in the transaction, which creates the AP input stream. If all the frequent candidates fit

into the AP boards, one pass of the input stream checks the frequency of intersection pruning for all the

candidates at the same time; otherwise, the automaton macros will be loaded with a new set of candidates,

which requires another pass of the input stream. The CPU implementation uses a 1D array for each frequent

candidate to list the set of trees in which it occurs. The size of the array is equal to the number of trees in

the database.

Downward Pruning:

To further prune the search space, the downward pruning kernel simplifies tree representation to a sequence

of root-to-child paths in order to check the ancestor-descendant relationships of a subtree in an input tree.

Clearly, the original tree cannot be constructed using these paths, but it has some unique properties which

help to identify a set of frequent subtrees and reduces computational complexity.

Downward string representation (DSR): It starts from the root of the tree and traverses all the

paths from the root to the terminal children. The delimiter
′
,
′

separates different paths and the delimiter
′
#
′

represents the end of the downward representation string of an input tree. When mining ordered subtrees, it

is important to traverse from the left-most path to the right-most path in order to preserve the order. For
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example in Fig. 4.3, the vertical representation of subtree ST2 is AC,AB#. When delimiter
′
#
′
, encoded at

the end of subtree downward representation, matches to the input stream, the associated counter counts up

by one and then, matching for the next tree starts from the root of the subtree.

Downward Pruning on the AP: For all the surviving (k+1)-candidates from the previous stage, the

DSR will be created. These candidates can be interpreted as the candidate sequences in SPM, where the

nodes in a path represent an itemset and paths create the itemsets. The DSR for the input tree is considered

as the input stream for this kernel. We adopt the SPM-AP implementation in [7] for this stage.

DSR creates a sequential pattern of the tree structure, which preserves ancestor-descendant relationships

and ignores the sibling information. Fig. 4.3 shows the DSR of an input tree and three example subtrees.

According to the SPM definition, both DSR-ST1 and DSR-ST3 are the subsequences of DSR-T0, so they

survive the downward pruning and will be checked further at the next pruning kernel. ST3 is not a true

subtree of T0 and connectivity kernel, a complementary pruning strategy, will prune it in the next stage.

DSR-ST2 is not a subsequence of DSR-T0 and ST2 can be safely pruned from the set of candidate subtrees.

Downward pruning ensures that, for all the subtrees candidates with degree no more than one (we call

them line-shaped candidates), the final decision regarding their frequency will be made at this stage and no

false positive candidate will survive from this kernel. This is particularly true because line-shaped candidates

are equivalent to an itemset in SPM, where no branching information is required. The quality of downward

pruning directly depends on the topology of the input trees. Deeper trees will benefit more from the downward

pruning.

Figure 4.3: An example of downward pruning
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Figure 4.4: An example of connectivity pruning

Connectivity Pruning:

Connectivity pruning addresses situations when the downward string representation generates two itemsets

out of one node, which allows some false positives to survive downward pruning. Connectivity pruning finds

a mapping of the subtree root-path to the input tree and then looks for the child sequences of the last node in

the root-path from left to right in the tree. The root-path of a subtree is the path from the root to the first

node with degree more than one. For example, the root-path of ST2 in Fig. 4.4 is AB.

Connectivity string representation (CSR): CSR of a subtree consists of the root-path followed

by the delimiter ’:’, and then, the pre-order representation of the children from the left-most path to the

right-most path separated by the delimiter ’,’. For example in Fig. 4.4, the CSR of ST1 is A ∶ BC,BD#,

where the root-path is A and the pre-order representations of its children are BC and BD, which are separated

by the ’,’. In order to detect the subtree in an input tree, the CSR of the input tree should be extended

by all the paths from the root to all the node with degree more that two. Take the input tree T0 as an

instance, where first, A is considered as the root-path and is followed by the left-side children (BCD) and the

right-side child (E), and second, AB is considered as the root path followed by the B’s children. Delimiter

’#’ separates root path sets in the trees and subtree inclusion checking starts from the subtree root after ’#’

appears in the input stream.

Connectivity Pruning on the AP: This kernel can directly map to the SPM, where the root path and

children are the itemsets and the nodes are the items. In SPM, the order between the itemsets matters while

the order between the items does not matter. However, having a pre-defined order of the items helps simplify

the automata structure [7]. In sequences generated by CSR, both items and itemsets have a pre-defined

ordering, which means that the CSR can be easily map to the SPM automata structures. Connectivity

pruning does not cause any false negatives, because it just relaxes necessary tree structure properties in order

to check subtree inclusion.
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Figure 4.5: The workflow of the AP-accelerated FTM

4.4.3 Pruning Corollaries

3-candidates can only have two different topologies; (1) a root and two children connect to the root (triangle-

shaped), and (2) a root with one child and one grandchild (line-shaped). As discussed before, lined-shape

patterns will be properly pruned in the downward stage. Connectivity pruning also perfectly trims triangle-

shape ones. This is because the root path has just one node, which is the root itself and the left and right

child are the only node and do not have hierarchical structure, and they only need to appear (in order) in two

different branches of the equivalent tree node to the subtree root. These make all the surviving 3-candidates

in the final set to be true 3-frequent-candidates. This property is very useful because more precise pruning in

early iterations will greatly reduce the chance of getting false positives in the later stages.

4.4.4 Program Infrastructure

Fig. 4.5 shows the complete workflow of the AP-accelerated FTM proposed in this paper. The input database

is in horizontal, string-encoded format (the horizontal format is the pre-order traversal of trees, including

backtracking information). The following describes the data pre-processing steps:
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Computing 1-frequent-candidates (F1) and 2-frequent-candidates (F2): To compute F1, for each item (node

label) in the tree, its count in a 1D array will be incremented, where the total time for each tree with size n

is O(n). Other database statistics, such as the maximum number of labels and number of trees, is calculated

as well. F2 counting is done using a 2D integer array of size F1 × F1 and the total time is O(n2) per tree.

Recoding the input trees: Depending on the number of frequent items, the item can be encoded by 8-bit or

16-bit symbols. Different encoding schemes lead to different automaton designs and capacity of patterns for

each pruning stage.

Making input streams: We create downward and connectivity string representation of the input trees according

to the recoded items and keep them in the memory.

After pre-processing and generating tree candidates, the corresponding AP input stream will be generated

for each pruning stage. Then, the appropriate pre-compiled template macro of automaton structure for FIM

or SPM pattern is selected according to k (size of itemset or sequence candidate) and is configured on the AP

board. The candidates are generated on the CPU and are filled into the selected automaton template macro.

The input data formulated in pre-processing is then streamed into the AP board for counting. While there

are k-candidates left to be processed on the AP, the AP computation (symbol replacement and matching)

and the AP input generation of the next-level pruning kernel can be done in parallel. Fortunately, the

latency of symbol replacement could be significantly reduced in future generations of the AP (because symbol

replacement is simply a series of DRAM writes), which would improve the overall performance greatly. At

the end of connectivity pruning stage, either k has reached the maximum size or k-frequent-candidates set is

empty, we have the approximate solution, which is a set of potentially frequent candidates. Depending on the

final application, the approximate results can either be directly used with no further final pruning or can be

considered as the ground candidate set for an exact FTM solution. We will later show how TreeMinerD [74]

can be used to provide an exact solution over the AP results.

4.5 FTM GPU Implementation

Despite the DFS strategies, where memory becomes a limiting factor for performance and scalability, especially

in large datasets and lower support thresholds, BFS solutions do not require a large memory footprint, as

they do not project the dataset into memory. However, they require a pass of the dataset in each iteration.

Thus, to implement FTM on the GPU platform, we chose to adopt the BFS-based candidate-generation and

enumeration strategy because (1) the solution will not be bound by the finite GPU global memory, and (2) it

exposes many ready-to-process candidate subtrees in order to fully utilize the GPU cores and ultimately,

reduces the overhead of database scanning.
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FTM-GPU: After recoding labels, the whole dataset is transferred to the GPU global memory. Then, the

algorithm iterates over three steps: (1) generating (k + 1)-subtree candidates from the frequent k-subtrees on

the CPU, (2) pruning the candidates using subset pruning on the CPU, and (3) identifying the frequent (k

+ 1)-subtrees on the GPU. For the GPU computation, we convert both input trees and subtree candidates

to one-dimensional array. In the CUDA kernel function, each thread is responsible for matching one tree

in the input dataset to a candidate. We explore two memory region targets for the subtree candidates. In

the first approach, we transfer all the candidates to constant memory (in iterations, if candidate array is

larger than constant memory size) and all the threads start matching one candidate to their bound trees.

Alternatively, we transfer the candidates to global memory and at each iteration, take just one to shared

memory for matching. The constant memory implementation provides a faster solution when the trees in the

dataset are similar in terms of size and node labels, otherwise, the shared memory approach shows a better

result.

To improve the performance of FTM-GPU, we sort the trees in the database according to the tree size.

This sorting tries to provide each warp with a batch of trees of roughly the same size. This greatly helps

reduce branch divergence and lessen synchronization time. Once the matching and counting phase is done for

all the (k+1)-candidates, the results are transferred back to the CPU for the next-level candidate-generation.

FTM-GPU is capable of counting both distinct occurrences of subtrees and weighted support. To the best of

our knowledge, this is the first implementation of frequent subtree mining on the GPU platform.

4.6 Experimental Results

The number of patterns that can be placed into the board, and the number of candidates that must be

checked in each stage, assuming a 32-chip Micron D480 AP board, determines how many passes through the

input are required for each pruning kernel, and the input processing rate is fixed at 133 MB/s, which allows a

simple calculation to determine the total time on the AP (see hardware parameters in [28]). All the automata

designs are selected from the 16-bit encoding for simplicity, so there is no need for reconfiguration when the

number of labels is more than 256. In each step of pruning, an appropriate FIM or SPM corresponding to

the candidate size will be selected and configured on the AP.

4.6.1 Comparison with Other Implementations

We compare the performance and accuracy of the proposed AP multistage pruning for FTM (FTM-AP)

versus (1) a BFS-based GPU implementation of FTM (FTM-GPU), (2) a multi-core implementation using

pthread (TRIPS-12C) [75], (3) a single-core DFS-based implementation capable of weighted counting (TRIPS)
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[80], (4) a single-core DFS-based implementation which counts distinct occurrences of a pattern (TreeMinerD)

[74], and a single-core level-wise BFS approach (PatternMatcher) [77].

We consider PatternMatcher in our comparison because it is the only method that does not fail on

challenging datasets in lower support thresholds. Despite being very slow, it gives us a baseline for calculating

both performance and accuracy for the proposed AP solution. Similarly to TreeMinerD, the FTM-AP

solution is designed to only enumerate distinct occurrences of a pattern, thus providing a very fast solution in

comparison with TreeMiner [74]. Therefore, we do not compare FTM-AP with TreeMiner. Moreover, TRIPS

and TIDES [80] claim that they are orders of magnitude better than TreeMiner. In the same paper, they

show that XSpanner is worse than TreeMiner, so we do not compare with XSpanner either.

FIM and SPM implementations on the AP are much faster than their GPU solutions, especially for large

datasets [8] [7]. In FTM-AP, all the kernels are mapped to either FIM or SPM, and we can conclude that

FTM-AP will outperform the GPU implementation of pruning kernels. Moreover, GPU implementations of

subsequence inclusion checking in a sequence and subtree inclusion checking in a tree have almost similar

complexity and synchronization overhead. Thus, we predict that exact FTM solution on the GPU (FTM-GPU)

will outperform the GPU implementation of pruning kernels (inexact-FTM-GPU), because inexact-FTM-GPU

requires at least twice as many subsequence inclusion checking operation as FTM-GPU requires subtree

inclusion checking.

4.6.2 Platform and Parameters

All of the above implementations are tested using the following hardware:

• CPU: Intel CPU i7-5820K (6 cores, 3.30GHz), memory: 32GB, 2.133 GHz

• GPU: Nvidia Kepler K80C, 560 MHz clock, 4992 CUDA cores, 24GB global memory

• AP: D480 board, 133 MHz, 32 AP chips (simulation)

Furthermore, we test CPU solutions in a large-memory machine with 512GB of memory later in Section

4.6.7. For each benchmark, we compare the performance of the above implementations over a range of relative

minimum support (Rminsup) values. To observe the behavior of different implementations and finish all our

experiments in a reasonable amount of time, we select Rminsup numbers that produce computation times

up to one day.
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4.6.3 Datasets

We evaluate the proposed algorithm on four different datasets, two real-world (CSLOGS
1

and TREEBANK

2
), and two synthetically generated by the tree generation program provided by Zaki

1
(T1M and T2M). Table

5.1 shows the details of the datasets. CSLOGS consists of user browsing subtrees of the CS department web

site at the Rensselaer Polytechnic Institute. TREEBANK is widely used in computational linguistics and

consists of XML documents. It provides a syntactic structure of the English text and uses part-of-speech tags

to represent the hierarchical structure of the sentences. T1M and T2M are generated based on a mother tree

with the maximal depth and fan-out of 10. The total number of nodes in T1M and T2M are 1,000,000 and

100,000, respectively. The datasets are then generated by creating subtrees of the mother tree. The synthetic

tree generator provides a preorder-like representation, while TRIPS and TRIPS-12C work with the Prüfer

sequence and postorder tree representation. Thus, we convert the datasets to their compatible input format

offline and do not consider it in the time calculation.

Table 4.4: Datasets

Name #Trees Ave Node SD Node #Items Size (MB)
T1M 1,000,000 5.5 6.2 500 49.3
T2M 2,000,000 2.95 3.3 100 60.1
CSLOGS 59691 12.94 22.47 13361 6.3
TREEBANK 52581 68.03 32.46 1387266 27.3

Ave Node = Average number of nodes per tree
SD Node = Standard deviation of number of nodes per tree
#Items = Label set size

4.6.4 AP-FTM Breakdown and Speedup Analysis

We choose TREEBANK dataset to study the pruning efficiency of each kernel and compare the performance

of the CPU implementation and the AP-FTM for each of them. We also compare the scalability and efficiency

of the kernel methods with the counting stage of PatternMatcher. TREEBANK is the most challenging

dataset, because it consists of very wide and large trees (the largest tree has 684 nodes) and it has a large

number of items and relatively high standard deviation of tree size, which makes it difficult for the CPU

solutions to process. Excluding PatternMatcher, other solutions either crash or quickly run out of memory

when decreasing the support threshold.

We have implemented all four pruning kernels on the CPU (in C++) in order to isolate the performance

difference of the AP vs. CPU for the same work and highlight the AP architectural contribution. Fig. 4.6

1
http://www.cs.rpi.edu/˜zaki/software/

2
http://www.cs.washington.edu/research/xmldatasets/
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shows that subset, intersection, downward, and connectivity kernels achieve up to 163×, 19×, 3144×, and

2635× speedups over their counterpart CPU implementations, while they prune at least 80%, 0.5%, 3.5%,

and 4.8% of the total generated candidates in TREEBANK, when ranging Rminsup from 0.9 to 0.3 (Fig.

4.7). Due to the AP configuration time overhead, subset pruning CPU is faster than subset pruning AP at

higher support thresholds. However, when Rminsup decreases and more candidates are generated, searching

the larger dictionary of a frequent subtree on the CPU takes longer, while the AP solution is almost constant.

However, the subset kernel has a very small effect in total execution time, yet at the same time, it has a major

contribution in pruning the candidates. Although intersection pruning has the lowest pruning contribution

among others, it has the highest computation time on the AP, because the necessary input stream for this

kernel is very large (due to the repetition of frequent candidates in different input trees). In total, the

AP kernels show up to 215× speedup over the CPU pruning kernels, which implies the AP architectural

contribution (black bars in Fig. 4.6).
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Figure 4.6: Kernels’ execution time and speedup

The subset kernel is more effective in lower Rminsup, where larger candidates are introduced and survive.

This is because larger candidates have more frequent subsets, which increases the probability of pruning false

positives. On the other hand, downward and connectivity kernels are more efficient on the smaller candidates

because the effect of relaxing tree constraints is less destructive on them. This observation can be clearly

seen in Fig. 4.7, where by decreasing the Rminsup (which means the population of the larger candidates

relative to the smaller ones grows), the contribution of subset pruning increases, whereas the contribution of
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Figure 4.7: Generated subtrees’ breakdown

the other three kernels decreases.

We also compare the AP-FTM solution with PatternMatcher in order to show the trade-off between

accuracy and execution time, and also study the algorithmic/heuristic contribution of our pruning kernels (the

ratio of red to black bars in Fig. 4.6). In total, at least 86% of the generated candidates are pruned using the

pruning kernel within less than 105 seconds for the lowest support threshold, where the PatternMatcher takes

more than 10 hours to find the exact frequent candidates (about 353× speedup considering pre-processing

time). Note that the pruning portions and timing are calculated just for the candidates of size three and

more, and we do not consider the number of candidates for 1-frequent-candidates and 2-frequent-candidates,

as they will be easily detected either on the AP or on the CPU. In order to further study the behavior

of the pruning kernels, we test the effects of taking the intersection kernel out of the pruning framework,

because as we have already observed, it has the least pruning efficiency and largest computational time. The

results show that the AP achieves up to 1530× and 2190× speedup over the CPU-based pruning kernels and

PatternMatcher, respectively. However, the AP worst case accuracy decreases from 86% to 83%. Therefore,

having more sophisticated kernels can improve the accuracy and depend on the target constraints, and the

user can make the trade-off between kernel selection and desirable speedup.
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4.6.5 AP-FTM vs. Other FTM Algorithms

Fig 4.8 - 4.11 represent performance comparison (left vertical axis) among single-core CPU implementations

(TreeMinerD, PatternMatcher, TRIPS), a multi-core (TRIPS-12C) approach, a GPU solution (FTM-GPU),

and our proposed method (FTM-AP) for mining distinct occurrences of embedded subtrees in four databases

of ordered labeled trees. All methods are end-to-end solutions and apart from FTM-AP, have an accuracy of

100% for the final frequent set. The right vertical axes in the graphs represent the percentage of the false

positives in the output of FTM-AP. The main goal of these graphs is to compare the trade-off between the

speed and accuracy of the AP solution versus the existing FTM implementations.

Most existing state-of-the-art tools have difficulty with larger inputs and smaller support thresholds

and fail due to scalability limits. Common limits include long execution time, insufficient system memory,

limitations in internal data-structures, or crashing/reporting an error due to their design not anticipating

a large input. TRIPS and TRIPS-12C either crash or get struck for unknown reasons when decreasing

the Rminsup. For example, in TREEBANK, TRIPS-12C breaks at Rminsup = 0.65 and TRIPS stucks

at Rminsup = 0.5. TRIPS-12C shows an unstable behavior in T1M and T2M, and from our experience,

changing the number of running threads and turning hyper-threading off do not make a difference.
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Figure 4.8: Performance comparison on CSLOGS
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Figure 4.9: Performance comparison on TREEBANK
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Figure 4.10: Performance comparison on T1M
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Figure 4.11: Performance comparison on T2M

TreeMinerD is the fastest accurate solution in real-world datasets for smaller thresholds. In CSLOGS

(Fig. 4.8), TreeMinerD is even faster than the FTM-AP solution, however, it runs out of memory when

Rminsup<0.005 (we will discuss the memory usage of TreeMinerD in the next subsection). PatternMatcher

requires the least amount of memory among other solutions, but its execution time takes more than 10 hours

at Rminsup<0.006 and Rminsup<0.35 in CSLOGS and TREEBANK, respectively.

Database statistics such as average and standard deviation of the number of nodes per tree, the number

of items, and the number of trees directly affect the performance of the FTM-GPU. In Fig. 4.8 and 4.9,

FTM-GPU shows almost the worst performance results among others. This is because SD Node and #Items

in TREEBANK and CSLOGS are relatively high. Higher SD Node implies uneven distribution of trees

with different sizes in the database, and causes the synchronization time between the thread in a warp to

increase. Higher #Items increases the chance of thread divergence in a warp, because the possibility of

checking the subtree node against different labels in the input trees of the same warp increases. In CSLOGS

at Rminsup ≤ 0.008 and TREEBANK at Rminsup ≤ 0.45, the FTM-GPU takes more than 10 hours to run.

T1M and T2M in Fig. 4.10 and 4.11 show that FTM-GPU has much better relative performance among

accurate solutions as the SD Node and #Items are lower (Table 5.1). Overall, the FTM-GPU results show

that the GPU platform does not provide a reliable and scalable solution for the FTM.

In Fig. 4.8, for Rminsup ≥ 0.008, the execution time of TreeMinerD and FTM-AP are almost the same,

which is less than a second. In the range of 0.008 < Rminsup ≤ 0.006, PatternMatcher is the only running
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accurate solution, which takes 31,456 sec when Rminsup = 0.006. Eventually, for Rminsup ≤ 0.006, FTM-AP

continues to be the only reliable running solution, and we are not able to calculate the accuracy of the

AP-FTM, as there is no exact solution running in this range. The maximum accuracy reduction for FTM-AP

in CSLOGS is 0.09%. For T1M and T2M, AP-FTM beats TRIPS, which is the fastest solution, by factors of

22× and 9.2×, while losing at most 6.5% and 0.1% accuracy, respectively. Overall, FTM-AP, with at most

7.5% false positives, beats PatternMatcher, the feasible and exact CPU solution, by a factor of 394×. The low

memory requirement and huge speedup achieved by the AP-FTM makes it a scalable and reliable solution

with a final application tolerance of a few percentage points for false positives. Another advantage of the AP

is that it gives consistently good performance, while the performance of other techniques varies based on the

database characteristics.

4.6.6 Performance Scaling with Data Size and Support Threshold

In this subsection, we study the scaling of performance as a function of input data sizes and minimum support

threshold. In order to generate synthetic datasets, we adopt the parameters used to generate T1M (Table 5.1)

and increase the number of trees from 10
6

(49MB) to 2× 10
6

(99MB), 4× 10
6

(196MB), 8× 10
6

(386MB), and

16×10
6

(770MB), while preserving the other parameters. Fig. 4.12 represents the performance of TreeMinerD,

FTM-GPU, PatternMatcher, TRIPS, and FTM-AP for these five synthetically generated dataset using two

relative minimum supports. FTM-AP beats FTM-GPU by a factor of 2.6× at Rminsup = 0.04 and 3.9× at

Rminsup = 0.02, and PatternMatcher by a factor of 3.3× at Rminsup = 0.04 and 45.1× at Rminsup = 0.02,

while losing at most 1% accuracy. TreeMinerD and TRIPS do not provide a scalable solution, because they

both run out of memory when increasing the input size and when decreasing the minimum support threshold.

The results show that the FTM-AP always has the lowest execution time and its performance advantage

grows when Rminsup decreases and input size increases. We are evaluating FTM performance for one node.

Sufficiently large CPU/GPU clusters can handle larger FTM problems and run them faster than a single AP,

but a cluster of APs would be even faster.

4.6.7 Exact Solution on the FTM-AP

The output of the AP pruning kernels is a set of potentially frequent candidates that preserve a subset of tree

topological and label attributes. Depending on the target application, one can directly use the AP output

as the set of frequent subtrees, especially in classification tasks, where the applications are able to recover

from the introduced false positives. Frequent subtrees are used in many natural language processing (NLP)

tasks, because tree structures can capture and represent the complex relations and dependencies of a natural
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Figure 4.12: Performance scaling with input data-size and Rminsup

language. Agarwal et al. in [73] demonstrated how combining subtree features with sequential patterns

and bag-of-words can increase sentiment analysis accuracy. Since the AP results are already examined for

sequential properties in downward pruning, and all the false positives in the final candidate set can be

translated as sequential pattern features (albeit with low support), it suggests that the AP final results can be

directly used for those tasks without potentially affecting the final accuracy, while achieving a huge speedup.

On the other hand, having an exact set of frequent subtrees is a must for some applications. In order

to prune the false positives from the AP output, we propose APHybrid-FTM, to combine the AP with

TreeMinerD, where the AP solution can help to reduce the memory requirement and increase the speed of the

TreeMinerD approach while maintaining its 100% accuracy. As mentioned before, TreeMinerD implements

a DFS-based algorithm, and a (k+1)-candidate is generated by combining two k-candidates on the same

equivalent-class, under some circumstances [74]. We store the set of potential frequent subtrees in a dictionary

(⊔) and check whether the (k+1)-candidates, generated by the TreeMinerD candidate-generation step, exist in

⊔. If it is a hit, TreeMinerD continues the matching and counting stage (as discussed in Section 4.4.3, the set

of 3-candidates and line-shaped candidates are 100% accurate and do not need to be checked for frequency),

otherwise, the candidate is infrequent, which avoids the unnecessary enumeration step, and the algorithm

continues to generate the next candidate. The AP-FTM framework greatly helps TreeMinerD to (1) reduce

its execution time, and (2) alleviate its memory footprint because many infrequent candidates in TreeMinerD

will be pruned early in the candidate-generation step and their occurrences (embedding information in the
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database) do not need to be stored in memory.
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Figure 4.13: Exact solutions memory usage - TREEBANK
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Figure 4.14: Exact solution execution time - TREEBANK

In order to analyze APHybrid-FTM performance and study the effect of memory usage on the FTM

scalability, we run TreeMinerD, APHybrid-FTM, PatternMatcher, and TRIPS on a node
3

with 512GB memory

for TREEBANK. Fig. 4.13 represents the required maximum memory size and Fig. 4.14 shows the execution

time of these methods on a log scale. The speed and memory trade-off among TreeMinerD, PatternMatcher,

3
Intel(R) Xeon(R) CPU E5-2670 (24 cores, 2.30GHz), memory: 512GB, 2.133 GHz
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and TRIPS on the CPU can be easily observed by looking at these two graphs, where TreeMinerD is the

fastest tool among these three and demands the largest memory footprint, whereas PatternMatcher, with the

lowest performance, requires the smallest memory capacity (less than 100MB). However, APHybrid-FTM is

the best. It alleviates memory usage of TreeMinerD up to 5.8× and reduces its execution time up to 4.14

at Rminsup = 0.3. For Rminsup ≤ 0.3, TreeMinerD runs out of memory, while APHybrid-FTM continues.

Furthermore, APHybrid-FTM performs 262× better than PatternMatcher at Rminsup = 0.25 (it takes more

than a day for Rminsup < 0.25) and 30× better than TRIPS at Rminsup = 0.45 (lowest working threshold

for TRIPS).

In summary, APHybrid-FTM provides the fastest exact solution (Fig. 4.14), which in turn extends the

scalability of TreeMinerD and its advantages increase at lower support thresholds and larger databases.

Overall, the proposed pruning approach can be adopted as a general strategy to accelerate complex and/or

memory-intensive pattern-mining problems.

4.7 Conclusions and Future Work

We develop FTM-AP, a multi-stage pruning strategy on the AP, to reduce the candidate search space of the

frequent subtree mining problem in a very short amount of time, providing a fast and scalable solution at the

cost of a small reduction in accuracy. FTM-AP achieves up to 394× speedup with at most 7.5% false positives

over PatternMatcher, a feasible and exact CPU solution. For problems requiring an exact solution, we use

the output of FTM-AP as the candidate screen for TreeMinerD, a DFS-based exact solution, in order to

remove the false-positive candidates, limit the memory requirements, and achieve up to 262× speedup. The

benefits the AP provides for FTM increase with larger datasets and lower support thresholds. The pruning

framework on the heterogeneous architecture (CPU and the AP) can also potentially be adopted to extend

the scalability of the other subtree types and graph mining problems, an interesting direction for future work.

Additional performance improvements could be achieved with hardware support to minimize symbol

replacement latency and maximize capacity of resources on the AP, as well as better support for push-down

automata capabilities. The proposed pruning kernels are capable of running in a pipeline system, assuming

four AP boards are available, and this also allows scaling of larger problems to cluster- or datacenter-scale

resources, another interesting direction for future work.



Chapter 5

A Scalable In-SRAM Architecture for

Pushdown Automata

Processing of tree-structured or recursively-nested data is intrinsic to many computational applications.

Data serialization formats such as XML and JSON are inherently nested (with opening and closing tags or

braces, respectively), and structures in programming languages, such as arithmetic expressions, form trees of

operations. Further, the grammatical structure of English text is tree-like in nature [30]. Reconstructing and

validating tree-like data is often referred to as parsing.

Studies on data processing and analytics in industry demonstrate both increased rates of data collection

and also increased demand for real-time analyses [81, 82]. Therefore, scalable and high-performance techniques

for parsing and processing data are needed to keep up with industrial demand. Unfortunately, parsing is

an extremely challenging task to accelerate and falls within the “thirteenth dwarf” in the Berkeley parallel

computation taxonomy [83]. Software parsing solutions often exhibit irregular data access patterns and branch

mispredictions, resulting in poor performance. Custom accelerators exist for particular parsing applications

(e.g., for parsing XML [84]), but do not generalize to multiple important problems.

We observe that deterministic pushdown automata (DPDA) provide a general-purpose computational

model for processing tree-structured data. Pushdown automata extend basic finite automata with a stack.

State transitions are determined by both the next input symbol and also the top of stack value. Determinism

precludes stack divergence (i.e., simultaneous transitions never result in different stack values) and admits

efficient hardware implementation. While somewhat restrictive, we demonstrate that unlike NFAs and DFAs,

DPDAs are powerful enough to mine for frequent subtrees within a dataset.

In this work, we present ASPEN, the Accelerated in-SRAM Pushdown ENgine, a realization of deterministic

57
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pushdown automata in Last Level Cache (LLC). Our design is based on the insight that much of the DPDA

processing can be architected as LLC SRAM array lookups without involving the CPU. By performing DPDA

computation in-cache, ASPEN avoids conventional CPU overheads such as random memory accesses and

branch mispredictions.

ASPEN supports processing of hundreds of different DPDAs in parallel as any number of LLC SRAM

arrays can be re-purposed for DPDA processing. This feature is critical for applications such as frequent

subtree mining which require parsing several trees in parallel.

ASPEN is inspired from memory-centric architectures, such as Micron’s D480 Automata Processor

(AP) [85] and Subramaniyan et al.’s Cache Automaton (CA) [86] which leverage the massive bit-level

parallelism of memory arrays (DRAM and L3 cache, respectively) to perform tens of thousands of input

comparisons and state transitions in parallel. While the one-cycle-per-byte processing performance of the

AP and CA is enticing, the finite automata processing model of computation is too restrictive to directly

support parsing of tree-like data. Thus we develop ASPEN, a memory-centric acceleration framework for

DPDA processing.

5.1 Homogeneous Deterministic Pushdown Automata

For hardware efficiency, we extend the definition of homogeneous finite automata to DPDA. In a homogeneous

DPDA (hDPDA), all transitions to a state occur on the same input character, stack comparison, and stack

operation. Concretely, for any q, q
′
, p, p

′
∈ Q, σ, σ

′
∈ Σ, γ, γ

′
∈ Γ, and op, op

′
that are operations on the stack,

if δ(q, σ, γ) = (p, op) and δ(q′, σ′, γ ′) = (p′, op′), then

p = p
′
⇒ σ = σ

′
∧ γ = γ

′
∧ op = op

′
.

This restriction on the transitions function does not limit computational power, but may increase the number

of states needed to represent a particular computation.

Claim 1. Given any DPDA A = (Q,Σ,Γ, δ, S, F ), the number of states in an equivalent hDPDA is bounded

by O(∣Σ∣∣Q∣2).

Proof. We consider the worst case: A is fully-connected with ∣Σ∣ ⋅ ∣Q∣ incident edges to each state and each

of these incoming edges performs a different set of input/stack matches and stack operations. Therefore, we

must duplicate each node ∣Σ∣(∣Q∣ − 1) times to ensure the homogeneity property. For any node q ∈ Q, we add

∣Σ∣ ⋅ ∣Q∣ copies of q to the equivalent hDPDA, one node for each of the different input/stack operations on

incident edges. Therefore, there are at most ∣Σ∣ ⋅ ∣Q∣ ⋅ ∣Q∣ = ∣Σ∣∣Q∣2 vertices in the equivalent hDPDA.
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Figure 5.1: An example CFG (a) and parse tree (b). The grammar represents a subset of arithmetic
expressions. We use ⊣ to signify the endmarker for a given token stream, which is needed for transformation
to a DPDA. The parse tree given in (b) is for the expression 3 ∗ (4 + 5). Note that integer numbers are
transformed to int tokens prior to deriving the parse tree.

In practice, DPDAs tend not to be fully-connected and have a fixed alphabet, resulting in less than

quadratic growth. Even in the worst case, hDPDAs do not significantly increase the number of states (cf. the

exponential NFA to DFA transformation).

5.2 Tree Mining to Deterministic Pushdown Automata

In this section, we describe context-free grammars and our method to compile such grammars to pushdown

automata.

5.2.1 Context-Free Grammars

While DPDAs provide a functional definition of computation, it can often be helpful to use a higher-level

representation that generates the underlying machine. Just as regular expressions can be used to generate

finite automata, context-free grammars (CFGs) can be used to generate pushdown automata. We briefly review

relevant properties of these grammars (the interested reader is referred to references such as [39, 87, 88, 89]

for additional details).

CFGs allow for the definition of recursive, tree-like structures using a collection of substitution rules or

productions. A production defines how a symbol in the input may be legally rewritten as another sequence of

symbols (i.e., the right-hand side of a production may be substituted for the symbol given in the left-hand

side). Symbols that appear on the left-hand side of productions are referred to as non-terminals while

symbols that do not are referred to as terminals. The language of a CFG is the set of all strings produced by
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Figure 5.2: Rules for creating a pushdown automaton for a candidate tree

recursively applying the productions to a starting symbol until only terminal symbols remain. The sequential

application of these productions to an input produces a derivation or parse tree, where all internal nodes are

non-terminals and all leaf nodes are terminals.

An example CFG for a subset of arithmetic operations is given in Figure 5.1 (a). This particular grammar

demonstrates recursive nesting (balanced parentheses), operator precedence (multiplication is more tightly

bound than addition), and associativity (multiplication and addition are left-associative in this grammar).

Figure 5.1 (b) depicts the parse tree given by the grammar for the equation 3 ∗ (4 + 5).

5.2.2 Trees to DPDAs

Figure 5.2 describe the rules that are used for generating a pushdown automaton for detecting a subtree in

an input tree and is taken from [31]. The notations for the rules are described as follows:

• λ: the set of labels for labeling the trees.

• ∑ = λ ∪ {−}: the alphabet for the automaton

• Γ = λ ∪Z0 ∪ ⟨λ, i⟩: stack symbols, where ⟨λ, i⟩ denotes a structure containing a symbol and a number of

a state

• τ = {τ0, τ1, ..., τk−1}: the string encoding of the candidate tree for which the automaton is created, where

τi is the i
th

character in τ .

• Q = {q0j0 , q1j1 , ..., qkjk}: The states of the automaton were ji denotes the level of the node in the tree

for which the given state was created.

• ∗: Any symbol on the top of the stack.
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Figure 5.3: An example of tree and subtree. Using DPDA, we check of subtree exist in the tree.

Figure 5.3 represent a tree in the dataset and an candidate subtree. The task is to check if subtree exist in

the tree. The trees are represented with strings as follows. The tree is traversed in preorder manner starting

from the root, and the label X of the current node is added to the end of string (τ). Whenever the is a

backtrack from a child to its parrent, a − symbol is added. When the last label is reached, the algorithm

terminates and it does not traverse back to the root.

Figure 5.4 shows the pushdown automaton generated for the candidate subtree in Figure 5.3 using the

rules shown in Figure 5.2.

5.3 Architectural Design

In this section, we describe the ASPEN architecture that augments LLC slices with support for DPDA

processing. We also discuss the design of a DPDA processing pipeline based on ASPEN and the tradeoffs

involved.

5.3.1 Cache Slice Design

The proposed ASPEN architecture augments the last level cache slices of a general purpose processor to

support in-situ DPDA processing. Figure 5.5 (a) shows an 8-core enterprise Xeon-E5 processor with LLC

slices connected using a ring interconnect (not shown in figure). Typically, the Intel Xeon family includes 8-16

such slices [90, 91, 92]. Each last-level cache slice macro is 2.5 MB and consists of a centralized cache control
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Figure 5.4: The DPDA generated for candidate tree in Figure 5.3

box (CBOX). A slice is organized into 20 ways, with each way further organized as five 32 kB banks, four of

which constitute data arrays, while the fifth one is used to store the tag, valid and LRU state (Figure 5.5

(b)). All the ways of the cache are interconnected using a hierarchical bus supporting a bandwidth of 32

bytes per cycle. Internally, each bank consists of four 8 kB SRAM arrays (256 × 256).

A bank can accommodate up to 256 states and a DPDA can span several banks. We repurpose two of

the four arrays in each bank to perform the different stages of DPDA processing. The remaining two arrays

(addressed by the PA[16] bit) can be used to store regular cache data. State-transitions are encoded in a

hierarchical memory-based interconnect, consisting of local and global crossbar switches (L-switch, G-switch).

A 256-bit register is used to track the active states in each cycle (Active State Vector in Figure 5.5 (c)). We

provision input buffers in the C-BOX to broadcast input symbols or tokens to different banks. Output buffers

are also provided to track the report events generated every processing cycle.

5.3.2 Operation

This subsection provides the details of DPDA processing. Recall that, in a DPDA, only a single state is

active in every processing cycle, and initially, only the start state is active. Each input symbol from the

DPDA input buffer is processed in five phases. In the input match and stack match phases, we identify the

active DPDA state which has the same label as that of the input symbol and the top of stack (TOS) symbol

respectively. In the stack action lookup phase, the stack action defined for that state is determined (i.e., push

symbol or number of symbols to pop from the stack). The stack is updated in the following phase (stack
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Figure 5.5: The figure shows (a) 8-core Xeon processor, (b) one 2.5MB Last-Level Cache (LLC) slice and (c)
Internal organization of one 32kB bank with two 8kB SRAM arrays repurposed for DPDA processing.

update). Finally, in the state-transition phase, a hierarchical transition interconnect matrix determines the

next active state.

Cycles in which states with an ε-transition are active require special handling. These states do not

consume an input symbol but perform a stack action in that cycle (i.e., push or pop). A 256-bit ε-mask

register tracks the ε-states in each bank. A logical AND of the ε-mask register and Active State Vector is

used to determine if an ε-state is active in the next processing cycle. If an ε-state is active, a 1-bit ε-stall

signal is sent to the C-BOX to stall the input for the next processing cycle.

While a single stack action per cycle is sufficient to support DPDA functionality, reducing stalls to the

input stream can significantly improve performance. The multipop optimization, discussed in Section ??,

reduces stalls due to ε-transitions and is supported in hardware by manipulating the stack pointer and

encoding the number of popped symbols in the stack action lookup phase. We now proceed to discuss the

different stages involved in DPDA processing.

(1) Input-Match (IM): We adapt the state-match design of memory-centric automata processing models

[85, 86] for the input-match phase. Each state is mapped to a column of an SRAM array as shown in

Figure 5.5 (c). A state is given a 256-bit input symbol label which is the one-hot encoding of the ASCII

symbol that it matches against. The homogeneous representation of DPDA states ensures that each state

matches a single input symbol and each state can be represented using a single SRAM column. The input

symbol is broadcast as the row address to the SRAM arrays using 8-bits of global wires. By reading out the

contents of the row into the Input Match Vector, the set of states with the same label as the input symbol

can be determined in parallel.

(2) Stack-Match (SM): In contrast to NFAs, where all active states that match the input symbol are

candidates for state-transition, DPDA states have valid transitions defined only for those states that match
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both the input symbol and the symbol on the top of the stack (8-bit TOS in Figure 5.5). We re-purpose an

SRAM array in each bank to determine the set of DPDA states that match the top of stack (TOS) symbol.

Similar to Input-Match, we provision 8 bits of global wires to broadcast the TOS symbol as the row address

to SRAM arrays. By reading out the contents of the row into the TOS Match Vector and performing a logical

AND with the Input Match Vector and the Active State Vector, the candidate states for state-transition are

determined. We refer to these candidate states simply as active states.

We leverage sense-amplifier cycling techniques [86] to accelerate the IM and SM stages.

(3) Stack Action Lookup (AL): Each DPDA state is also associated with a corresponding stack action.

The supported stack actions are push, pop and multipop. The stack action is encoded with 16 bits. Each

push action uses 8 bits to indicate the symbol to be pushed onto the stack. The remaining 8 bits are used by

the pop action to indicate the number of symbols to be popped from the stack (> 1 for multipop).

The stack action corresponding to each state is packed along with the IM SRAM array in each bank.

However, in the AL stage, we lookup this SRAM array using the 256-bit result vector obtained after logical

AND in the previous step (see Figure 5.5). This removes the decoding overhead from the array access time.

We reserve 16 bits of global wires to communicate the stack action results from each bank to the stack control

logic in the C-BOX.

(4) State Transition (ST): The state-transition phase determines the set of states to be activated in the

next cycle. We observe that the state transition function can be compactly encoded using a hierarchy of local

and global memory-based crossbar switches. The state transition interconnect is designed to be flexible and

scales to several thousand states. The L-switches provide dense connectivity between states mapped to the

same bank while the G-switch provides sparse connectivity between states mapped to multiple banks. A

graph partitioning based algorithm [93] is used to satisfy the local and global connectivity constraints while

maximizing space utilization.

The crossbar switches consisting of N input and output ports and N×N cross-points are implemented

using regular 6-T SRAM arrays (e.g., L-switch in Figure 5.5 (c)). The 6-T bitcell holds the state of each

cross-point. A flip-flop or register can also be used for this purpose but these are typically implemented using

24 transistors making them area inefficient. A ‘1’ is stored in bitcell (i, j) if there is a valid transition defined

from state i to state j. All the cross-points are programmed once during initialization and used for processing

several MBs to GBs of input symbols. The set of active states from the previous phase serve as inputs to the

crossbar switch. For DPDAs, only a single state can be active every cycle and we can use 6-T SRAM arrays

for state transition, since only a single row is activated.

(5) Stack Update (SU): To allow for parallel processing of small DPDAs, (e.g., in subtree mining), we

provide a local stack in each bank. We repurpose 8 columns of the SM array to accommodate the local stack.
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Figure 5.6: DPDA processing on ASPEN. (a) Dependency graph between stages. (b) Serial processing of
input symbols.

Larger DPDAs (e.g., in XML parsing) make use of a global stack to keep track of parsing state. The global

stack is implemented in the C-BOX using a 256×8 register file and is shared by all the DPDAs mapped to

two adjacent ways. Providing a stack depth of 256 is sufficient for our parsing applications (see Section 5.5).

Note that only one sort of stack (local or global) is enabled at configuration time based on the DPDA size.

The stack pointer is stored in an 8-bit register and is used to address the stack. We also store the symbols at

stack positions TOS and TOS+1 in separate 8-bit registers. This optimization saves a write and read access

to the larger stack register file and ensures early availability of the top-of-stack symbol for the next processing

cycle. The push operation writes the stack symbol to TOS+1. A lazy mechanism is used to update the stack

with the contents of TOS. Similarly, the pop operation copies TOS to TOS+1, while lazily reading the stack

register file to update TOS.

5.3.3 Critical Path

ASPEN’s performance depends on two critical factors: (1) the time taken to process each symbol in the input

stream (i.e., clock period) and (2) the time spent stalling due to ε-transitions. The multipop optimization

reduces stalls due to ε-transitions. We now consider the clock period.

In a näıve approach, each input symbol would be processed sequentially in five phases, leading to a

significant increase in the clock period. However, not all phases are dependent on each other and need to

be performed sequentially. Figure 5.6 (a) shows the dependency graph for the DPDA processing stages.

The intra-symbol dependencies are shown in black, while the inter-symbol dependencies are marked in red.

Using the dependency graph, each of the five stages can be scheduled as shown in Figure 5.6 (b), where

the propagation through the interconnect (wire and switches) for state-transition is overlapped with stack

action lookup and stack update. Since the top of stack cannot be determined until the stack has been

updated based on the previous input symbol, DPDA processing is serial. We contrast this to NFA processing,

which has two independent stages (input-match and state-transition) which can be overlapped to design a
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two-stage pipeline [86]. We find that the critical path delay (clock period) of ASPEN is the time spent for

input/stack-match and the time taken for stack action lookup and update. The time spent in state-transition

is fully overlapped with stack related operations. Section 5.4.3 discusses the pipeline stage delays and

operating frequency.

5.3.4 System Integration

ASPEN shares the last level cache with other CPU processes. By restricting DPDA computation to only 8

ways of an LLC slice, we allow for regular operation in other ways. Furthermore, the cache ways dedicated to

ASPEN may be used as regular cache ways for non-parsing workloads. Cache access latency is unaffected

since DPDA-related routing logic uses additional wires in the global metal layers.

DPDAs are (1) placed and routed for ASPENs hardware resources, and (2) stored as a bitmap containing

states and stack actions. At runtime, the driver loads these binaries into cache arrays and memory mapped

switches using standard load instructions and Intel Cache Allocation Technology [94]. The input/output

buffers for ASPEN are also memory-mapped to facilitate input streaming and output reporting, and ISA

extensions are used to start/stop DPDA functions. We disable LLC slice hashing at configuration time. The

configuration overheads are small, especially when processing MBs or GBs of input, but are included in our

reported results. To support automata-based applications that require counting, we provision four 16-bit

counters per way of the LLC.

5.4 Experimental Methodology

5.4.1 Experimental Setup

All CPU-based evaluations use a 2.6 GHz dual-socket Intel Xeon E5-2697-v3 with 28 cores in total, GPU-based

evaluations use NVIDIAs’s TITAN Xp. We used PAPI [95] and Intel’s RAPL tool [96] to obtain performance

and power measurements and NVIDIA’s nvprof utility [97] to profile the GPU. We utilize the METIS graph

partitioning framework [93] to map DPDA states to cache arrays.

We compare ASPEN against TreeMatcher [77], a single-threaded CPU implementation, and GPUTreeMiner

[98], a GPU implementation. Both employ a breadth-first iterative search to find frequent subtrees. We

evaluate using three different datasets, one real-world (TREEBANK
1
), and two synthetically generated by

the tree generation program provided by Zaki
2

(T1M and T2M). Table 5.1 shows the details of the datasets.

TREEBANK is widely used in computational linguistics and consists of XML documents. It provides a

1
http:// www.cs.washington.edu/research/xmldatasets/

2
http://www.cs.rpi.edu/˜zaki/software/
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syntactic structure for English text and uses part-of-speech tags to represent the hierarchical structure of the

sentences. T1M and T2M are generated based on a mother tree with a maximal depth and fan-out of 10.

The total number of nodes in T1M and T2M are 1,000,000 and 100,000, respectively. The datasets are then

generated by creating subtrees of the mother tree. First, the database is converted to a preorder traversal

labelled sequence representation. Then, for each subtree node, depending on its label and position, a set of

predefined rules determines the corresponding DPDA. Detailed information on these rules can be found in

Iváncsy and Vajk [31]. The total number of subtrees summed over all the iterations of the frequent subtree

mining problem is given in the #Subtrees column.

5.4.2 Database

We evaluate the proposed architecture on three different datasets, one real-world (TREEBANK
3
), and two

synthetically generated by the tree generation program provided by Zaki
4

(T1M and T2M). Table 5.1 shows

the details of the datasets. TREEBANK is widely used in computational linguistics and consists of XML

documents. It provides a syntactic structure of the English text and uses part-of-speech tags to represent

the hierarchical structure of the sentences. T1M and T2M are generated based on a mother tree with the

maximal depth and fan-out of 10. The total number of nodes in T1M and T2M are 1,000,000 and 100,000,

respectively. The datasets are then generated by creating subtrees of the mother tree. #Subtree shows the

total number of subtrees in all the iterations of frequent subtree mining problem.

Table 5.1: Datasets

Dataset #Trees Ave Node #Items Max Depth #Subtrees

T1M 1M 5.5 500 13 9825

T2M 2M 2.95 100 13 3711

TREEBANK 52581 68.03 1387266 38 5280

Ave Node = Average number of nodes per tree

#Items = Frequent label set size

Max Depth = Maximum tree depth in the dataset

5.4.3 ASPEN parameters

Each 256 × 256 6-T SRAM array in the Xeon LLC can operate at 4 GHz [91, 92]. In the absence of

publicly-available data on array area and energy, we use the standard foundry memory compiler at 0.9 V

3
http://www.cs.washington.edu/research/xmldatasets/

4
http://www.cs.rpi.edu/˜zaki/software/
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Table 5.2: Stage Delays and Operating Frequencies

Design IM/SM ST AL SU Max Freq. Freq Oper.

ASPEN 438 ps 573 ps 349 ps 349 ps 880 MHz 850 MHz
CA 250 ps 250 ps - - 4 GHz 3.4 GHz

in the 28nm technology node to estimate the power and area of a 256 × 256 6-T SRAM array. The energy

to read out all 256 bits was calculated as 22 pJ. Since ASPEN is based on a Xeon-E5 processor modeled

at 22nm, we scale down the energy per access to 13.6 pJ. The area of each array and 6-T crossbar switch

were estimated to be 0.015 mm
2

and 0.017 mm
2

respectively. Each LLC slice contains 32 L-switches and 4

G-switches to support DPDA computation in up to 8 ways. These switches can leverage standard 6-T SRAM

push-rules to achieve a compact layout and have low area overhead (∼6.4% of LLC slice area). Being 6-T

SRAM based, these switches can also be used to store regular data when not performing DPDA computation.

Similar to the Cache Automaton [86], we use global wires to broadcast input/stack symbols and propagate

state transition signals. These global wires with repeaters have a 66ps/mm delay and an energy consumption

of 0.07pJ/mm/bit.

Table 5.2 shows the stage delays for DPDA processing on ASPEN. The IM/TM phases leverage sense-

amplifier cycling [86] and take 438 ps. The ST stage requires 573 ps, composed of 198 ps wire delay and 375

ps due to local and global switch traversal. AL and SU each take 349 ps, composed of 99 ps wire delay and

250 ps for array access.

5.5 Evaluation

To evaluate the benefits of DPDA hardware acceleration for the subtree inclusion kernel, we consider the

frequent subtree mining (FTM) problem, where the major computation is subtree inclusion checking. FTM is

composed of two steps. In the first step, the subtree candidates of size k + 1 ((k+1)-candidates) are generated

from the frequent candidates of size k (k-frequent-candidates), where k is the number of nodes in a subtree.

Candidate-generation details and a proof of correctness are provided by Zaki [77]. In the second stage, for

each candidate subtree, we count the number of occurrences (inclusions) of that subtree in the dataset. If the

count exceeds a specified support threshold, we report the candidate as frequent and use it as a seed in the

next generation step.

Table 5.3 lists the architectural parameters for the FTM application on different datasets. This application

is compatible with the hardware restrictions, including maximum stack depth and supported alphabet size.

In contrast to XML parsing, there are no ε-transitions in the subtree inclusion DPDAs, which means that

runtime is linear in the length of the input data. The homogeneous DPDAs designed for FTM have an

average node fan-out of 2.2 (maximum of 4).
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Table 5.3: Architectural Parameters for Subtree Inclusion

Dataset Automata Alphabets Stack Alphabets Stack-Size

T1M 16 17 29
T2M 38 39 49
TREEBANK 100 101 110
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Figure 5.7: Speedup of ASPEN over CPU and GPU.

Figure 5.7 shows the kernel and total speedup of ASPEN over CPU and GPU baselines. For ASPEN, we

include timing for pre-processing, intermediate processing (between iterations) on the CPU, loading time

(transferring data from DRAM to LLC), and reporting time (moving report vectors back to DRAM), in

addition to the kernel time.

ASPEN shows 67.2× and 6× end-to-end performance improvement over CPU and GPU (Figure 5.7).

TREEBANK consists of larger trees with higher average node out-degree, which makes its processing difficult

on the CPU and GPU. In particular, TREEBANK has an uneven distribution of trees with different sizes

in the database, which causes the synchronization overhead between the threads in a warp to increase. In

addition, larger trees also increase the thread divergence in a warp, because the possibility of checking a

subtree node against different labels in the input tree of the same warp increases. Therefore, GPUs are not an

attractive solution for larger trees. On the other hand, GPUs show 2× speedup over ASPEN on T1M. This is

because the T1M dataset consists of small and evenly sized trees. Unlike CPUs or GPUs, the complexity of

subtree inclusion checking in ASPEN is independent of the input dataset.

Figure 5.8 shows the total energy for ASPEN, CPU, and GPU implementations. The trends in energy

are similar to that of performance. The unevenly-sized large trees in TREEBANK increase the runtime

of CPU and GPU, leading to an increase in total energy. On average, ASPEN achieves 3070× and 6279×

improvements in total energy when compared to CPU- and GPU-based implementations, respectively.

5.6 Conclusion

We present ASPEN, a general-purpose, scalable, and reconfigurable memory-centric architecture that supports

rich push-down automata processing for tree-like data. We design a custom datapath that performs state
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Figure 5.8: Total Energy of ASPEN compared to CPU and GPU.

matching, stack update, and transition routing using memory arrays capable of the state matching, stack

manipulation, and transition routing operations of pushdown automata, all efficiently stored and computed in

memory arrays. We also develop a compiler for transforming large classes of existing grammars to pushdown

automata executable on ASPEN.

Our evaluation against state-of-the-art CPU and GPU tools shows that our approach is highly performant

(up to 37.2× faster for subtree inclusion), and energy efficient (3070× lower for subtree inclusion). By providing

hardware support for DPDA, ASPEN brings the efficiency of recent automata acceleration approaches to a

new class of applications.



Chapter 6

A Scalable and Efficient in Memory

Accelerator for Automata Processing

The interconnect design of existing automata processing accelerators are either incapable of efficient place-

and-route of a highly-connected automaton or over-provision hardware resources for interconnect, at the

expense of resources for state-matching. However, real-world benchmarks are quite large in terms of number

of states, too big to fit in a single hardware unit, and thus usually need multiple rounds of reconfiguration

and re-processing of the data. This incurs significant performance penalties and make makes state-matching

resources a scarce resource.

The AP re-purposes DRAM arrays for the state-matching and proposes a hierarchical FPGA-style

programmable interconnect design. Our study on a diverse set of 19 automata benchmarks reveals that

congestion in the AP routing matrix cripples efficient state utilization, especially for difficult-to-route automata.

This means that only 13% of the state matching resources in a block are utilized in Levenstein automata, and

the remaining 87% cannot be used because there are not enough routing resources left. Moreover, although

density of DRAM memory is high, one AP chip can only store 1.5MB of data (i.e., state matching rules),

whereas a conventional DRAM of equal area can store 25MB of data [99, 29]. This implies that a majority of

the chip area is likely spent for the interconnect and hiding DRAM latency.

Recently, Subramaniyan et al. [29] proposed an in-SRAM automata processing accelerator, Cache

Automata (CA), by re-purposing last-level cache for the state-matching and using 8T SRAM cells for the

interconnect. To address routing congestion in the AP, CA proposes to use a full-crossbar (FCB) topology for

the interconnect to support full connectivity in an automaton, meaning there can be an edge between every

two states. This implies a full-crossbar of size 256 needs 256
2

switches. This means that more than 50% of

71
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the hardware resources in CA are spent for interconnect! However, our study of 19 automata benchmarks

reveals that on average, only 0.53% (maximum 1.15%) of the switches are utilized. Therefore, full crossbars

are extremely inefficient and costly for the automata processing applications. This expensive interconnect has

an opportunity cost in terms of using that area for state matching.

To address the interconnect inefficiencies in the existing in-memory automata processing architectures,

this work presents a reduced-crossbar (RCB) design, a low-overhead and yet flexible interconnect architecture

that efficiently implements state-transition. RCB design is inspired by intrinsic properties of real-world

automata connectivity patterns. RCB requires at least 7× fewer switches compared to the FCB design used

in CA. This in turn reduces the wire length, which results in shorter latency and lower power consumption.

In addition, the area efficiency of RCB provides an opportunity to design a denser state matching resources,

which can accommodate more states and results in fewer rounds of re-configuration and re-processing of data.

Across 19 application from [2, 100], 17 of them can entirely map to RCB design and no FCB is required.

To provide a general interconnect solution for every possible connectivity topology, we design a reconfigurable

memory array for state-matching, in which blocks can be re-purposed as an FCB to provide full connectivity

when needed (at the expense of some state capacity). In addition, to support an automaton with larger

number of states, we design global switches that provide inter-block connectivity between RCBs and FCBs

blocks.

To efficiently allow many-to-many transitions in an automaton, the underlying memory technology for

eAP should be able to support logical OR functionality within memory rows in a subarray. This requires

memory cells (a) to provide non-destructive read, and (b) to drive output to a ”stable” state (logical OR

in this case) when multiple bitcells drive a common bitline. 8T SRAM cells [35] and gain-cell embedded

DRAM (GC-eDRAM) [36, 37] are examples of feasible memory technologies to implement eAP. Note that

conventional DRAM and Reduced-Latency DRAM (RLDRAM) [101] cannot be used for this purpose. They

have destructive reads and the value of the simultaneously-activated rows cannot be recovered in the write-back

phase.

CA design uses 8T SRAM cells. In this work, we evaluate eAP on both 8T and 2T1D (2 transistor 1 diode)

memory cells. The 2T1D cell is a GC-eDRAM designed and fabricated by [38]. 2T1D uses substantially fewer

transistors than an 8T SRAM cell and thus incurs lower area overhead, which results in higher state density

and therefore better throughput (due to the reduced rounds of reconfiguration and re-streaming of input).

The scalability of gain-cells has been extensively studied in FinFET technology [102, 103, 104], which show

gain cells have the potenetial to scale to smaller technology nodes in FinFETs.

Interestingly, the wire-OR capability of 8T or 2T1D memory arrays can also be utilized for in-situ

computation of other important kernels in neural networks and graph processing. For example, very recent
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studies explore the potential of processing binary neural networks computations using 8T SRAM cells and its

alternatives [105, 106].

6.1 The Importance of Capacity

In CA, the authors use the ANMLZoo benchmarks to calculate cache utilization and report 1.2MB of cache

usage on average. The automata provided in ANMLZoo benchmark suite [2] represent just a small portion of

the actual application (normalized to fill one AP chip). However, real applications are much larger, with many

independent automata comprising the various patterns that make up the full application, which requires

orders of magnitude more states than reported in Table 1 in [2].

We illustrate this issue using sequential pattern mining (SPM) [7] benchmark, used in ANMLZoo. SPM

is an iterative algorithm where in each iteration of the algorithm, a set of sequence candidates (automata)

are checked against the input stream. A relatively small but realistic dataset in SPM requires about 300×

more state capacity compared to SPM benchmark in ANMLZoo in order to run the whole application. This

means that in order to execute one iteration of the algorithm on a parallel automata accelerator such as

one AP chip (48K state capacity), we need to reconfigure the hardware 300 times (reconfig), each with a

subset of the overall problem, and each time stream the whole input string. This incurs a large overhead

from repeatedly re-streaming the input, as well as reconfiguration time. The overall execution time for a

large application is shown in Equation 6.1.

Total time = #reconfig × [configOverhead + (#inputSymbols × cycleT ime)] (6.1)

Therefore, providing an accelerator with higher state capacity can significantly improve performance.

6.2 Interconnect Architecture

In this section, we first describe a simple implementation of interconnect using memory subarrays (FCB) and

then, we present an efficiently compact and reconfigurable interconnect design (RCB) and its feasibility in

hardware. Then, we discuss the potential switch cells (memory cells) that can be used in our interconnect

architecture.
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Figure 6.1: Full-crossbar utilization

6.2.1 Reduced Crossbar Interconnect

The interconnect should provide functionality for every STE to wake up all their successors in one step. This

process should be done in one cycle, since the triggered successors are needed to process the next symbol in

the next cycle. This implies an interconnect that is statically programmed and can ensure that all required

paths are routable, non-blocking, and contention-free. More conventional interconnects would require many

steps to process all the activations for each symbol. For example, buses can carry many bits simultaneously

but cannot support a large number of clients. Ring, mesh, and hypercube are multihop, typically many hops,

and contention is a problem.

Full Crossbar Interconnect (FCB) is a straightforward interconnect topology for connecting STEs in an

automata, where every state is connected to every other state (including itself) at the cost of O(N2) (N is the

number of states). To model transitions from multiple STEs to one STE, the output should be connected

to multiple inputs. This is equal to logical OR of active inputs. Therefore, there is no need for dynamic

arbitration. Cache Automata (CA) uses the FCB interconnect topology for both local and global switches.

NFAs for real-world automata applications are typically composed of many independent rules or patterns,

which manifest as separate connected components (CCs) with no transitions between them. Each connected

component has usually a few hundred states. All the connected components can thus be executed in parallel,

independently of each other. Therefore, a crossbar switch can be utilized by packing connected components

as densely as possible using a greedy approach [29].

However, using an FCB is very inefficient in routing resources. Assume the FCB switch block’s size is

256×256. In a greedy approach, CCs are first sorted based on the number of states in each component and

then, are assigned to the interconnect resources. Assume there are three CCs of size 100, 100, and 140.

Figure 6.1 shows mapping of CCs to the FCB switch blocks. Switches in gray areas are configured for the

corresponding CC. White areas (70% of total area), are unused switches. Moreover, within each connected

component, transitions are sparse, meaning very few switches in the gray areas are used.

We observed that in our 19 real-world and synthetic benchmarks, in average, fewer than 0.48% (maximum

1.1% in Levenshtein) of switch cells (256
2

cells) are utilized in the FCB interconnect solution. This shows
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Brill Dotstar Levenshtein Snort Entity Resolution

Figure 6.2: Union heatmap of routing switches with BFS labeling

that FCB model is extremely inefficient for automata processing applications and forces larger area overhead,

power consumption, and delay in the state-transitions phase.

To motivate our efficient and compact interconnect, we visualize the connectivity matrix for the automaton

in each benchmark with an image. We first label each node in an automata with a unique index using breadth

first search (BFS) numeric labeling, since BFS assigns adjacent indices to the connected nodes. To draw the

image, we model an edge (transition) between two nodes (with indices i and j) in an automaton with a black

pixel at coordinate (i,j).

In Figure 6.2, each graph shows the union over all connectivity images for connected components in one

benchmark. We chose union to make sure that we have considered every possible transition, even for rare

connection patterns. Except Snort and Entity Resolution, the rest of the benchmarks (17 out of 19) represent

a nice diagonal connectivity property. The union image and average image for the rest of benchmarks can be

found here
1
.

This diagonal connectivity pattern motivates a more compact and efficient interconnect, and comes

from two properties: first, the power of numeric BFS labeling, which tries to label a child node closely

to its parent(s); second, CCs are mostly tree-shape graphs with short cycles and the nodes have a small

out-degree. Motivated by these observations, we propose a reduced crossbar interconnect (RCB), which has

switch patterns similar to what we observed in the union images. RCB will have a smaller area overhead,

lower power consumption, and smaller delay compared to FCB. Moreover, it can be applied to CA or AP

without reducing their computation power.

Feasibility support for RCB Design: In order to actually save area in RCB design, we need to

compact the memory array, still with the same amount of input and output signals similar to an FCB, but

with smaller area overhead, since it needs less switches. This might complicate the layout process because

wiring congestion may happen while compacting the array. Automated layout generation tools sometimes are

not clever enough to provide the best compacting scheme even for regular patterns like RCB. Therefore, we

propose a simple scheme to compact a FCB array to a smaller RCB array.

1
https://github.com/anonymousUser0/isca/tree/master/Heatmap
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Figure 6.3: FCB to RCB compression

Simply flipping the diagonal-shape interconnect to a horizontal or vertical block forces the wire congestion

in one dimension and it does not utilize the other available dimension to contribute in signal routing. However,

squeezing the diagonal-shape to a square shape would significantly compact the subarray and at the same

time, spread the burden of signal routing in both dimensions.

Figure 6.3 shows a toy example for an FCB subarray of size (9,9) with diagonal width of 3. In each square,

the first index shows the row-index and second one shows the column index. For example, a switch in the

location (4,3) shows that the input signal comes from a STE labeled 4 (in BFS) and it is connected to a STE

labeled 3. The left block shows the initial naive mapping of diagonal memory cells, while all the white regions

are the wasted areas (or switches). The right block shows how moving nearby memory cells close to the lower

left side can reduce 9 × 9 array to 7 × 6. Our placement guarantees that in each row and column, wire counts

has increased to a maximum of 3 times compared to the original FCB placement. For example, in row 4 of

RCB, there are two input signals (word-line signal), 2 and 9, and in column-3, there are two output signals

(bitline signal), 3 and 6.

Our calculation shows that an FCB of size 256 × 256 and diagonal width 21 can be reduced to a RCB

of size 96 × 96, which results in approximately 7× switch saving. From our experiments, we found that the

diagonal width of 21 is a safe margin to accommodate all the transitions (except in Entity Resolution and

Snort). It should be noted that in the routing subarrays, there is no need for decoding the input, because

the ”active state vectors” (or an array of registers) are directly connected to the wordlines. Therefore, RCB

does not incur any extra area overhead for extra decoders. Moreover, RCB has smaller bit-lines due to area

compression, which potentially leads to a shorter memory access cycle.

6.2.2 Mapping to Memory Technologies

As discussed earlier, to implement the proposed interconnect in memory, the underlying memory technology

should be able to support logical-OR functionality among memory rows in a subarray. This requires memory
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cells (1) to provide non-destructive read (it means data is maintained after read operations and write-back is

not necessary), and (2) to drive output to a ”stable” state (logical OR in this case) when multiple bitcells

drive a common bitline.

Clearly, conventional DRAM and Reduced-latency DRAM (RLDRAM) [101] cannot be adopted, because

they have destructive reads and wired-OR destroys the value stored in every node participating in the OR

operation. Furthermore, 6T SRAM is not also able to perform wired-OR, because if two cells with different

values drive the same bitline, the resulting value would be unstable or undefined. On the other hand, 8T

SRAM cells [35] and gain-cell embedded DRAM (GC-eDRAM) [36, 37] appear to be the most suitable

memory technologies to implement eAP.

Gain Cell embedded DRAMs (GC-eDRAMs) are comprised of 2-3 standard logic transistors and optionally

an additional MOSCAP or diode [107]. Recent adoption of GC-eDRAMs as on-die caches [37, 36, 108] provide

realization for in-eDRAM acceleration of the state-of-the-art applications. Three-transistor (3T) [37] and

two-transistor (2T) [109, 38] GC-eDRAMs are particularly beneficial for providing (1) a fast read-cycle time,

and (2) non-destructive read, by splitting read and write paths to the cell. The latter property is especially

useful for the interconnect design, where wired-OR functionality is needed.

In this paper, we adopt two memory cell technologies as the reconfigurable switches to evaluate our

architecture: (1) 8T SRAM cells, as used in CA [29], and (2) the 2T1D (2 transistor 1 diode) GC-eDRAM

cell [38]. Compared to 8T SRAM, 2T1D cell uses substantially fewer transistors and has lower leakage current

[110, 109, 36]. Both cell types provide the wired-OR. The scalability of gain-cells has been extensively studied

in FinFET technology [102, 103, 104], suggesting that gain cells are promising to scale to smaller technology

nodes in FinFETs and to maintain an area advantage over 8T.

2T1D Switch Cell: The 2T1D DRAM cell holds the connectivity value in the switch, which is ’1’ if

the switch is connected and ’0’ if it is disconnected. A connected switch implements an existing transition

between two STEs in a state machine. Figure 6.4 shows the details of the 2T1D cell. The cell itself consists of

a PMOS (PW) transistor for write operation, an NMOS (NS) for read operation, and an N-Type Gated-Diode

(NC) for reducing coupling effect.

The cell has two modes: write mode and route mode. As shown in Figure 6.4, during the write mode,

Write-Worldline is ’1’ and the value on the Write-Bitline is stored in the node “X“. The Write-Bitline value

controls a switch between STEs to be connected or disconnected. Write-Bitline is V DD for the connected

switch and GND otherwise. During the route mode, the values that are stored determine whether there is a

connection between a source STE (active state) and destination STEs (potential next states).

In the state transition part of Figure 2.1, vertical wires are Read-Wordlines and horizontal wires are

Read-Bitlines. There is one switch in each cross point and the ones with the black dots show that the
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Figure 6.4: 2T1D switch cell

switch is connected. If the switch is connected and the source STE is in an active state, then coresponding

Read-Bitlines activate the potential next states (in more detail, the Read-Bitlines are discharged. Therefore,

the sense amplifier connected to the Read-Bitline will sense ’0’ and then is conveted to ’1’ after a NOT gate).

8T Switch Cell: We adopt the switch cell design from CA [29]. The cell consists of a 6T SRAM cell

and two additional transistors, which connect the cell to a bitline. This allows a 6T cell to drive the bitlines

only when the cell holds ’1’ and the input signal (active state vector in this case) is ’1’. This implies that 8T

cells can support OR functionality.

6.3 Embedded Automata Processor

In this section, we explain the design of eAP architecture for one bank. The bank design of eAP 2T1D and

eAP 8T is very similar. The banks are replicated to in order to accommodate large number of automata.

The overall capacity of eAP 2T1D and eAP 8T is different and is discussed in Section 6.6.6.

6.3.1 eAP Bank Design

Figure 6.5 shows the general overview of a bank in eAP. Each bank consists of multiple subarrays (Figure 6.5

(a,b)), which share a global decoder, a global sense amplifiers, and a set of global bitlines that connect local

sense amplifiers to the global sense amplifiers. Each subarray has its own local sense amplifiers and local

decoder. Based on subarray-level parallelism (SALP) idea [111], with small changes in the global decoder, we

can access to more than one row by reducing the shared resources and enable activation to different subarrays

to be done in parallel. Therefore, activation and precharging can be done locally within each subarray. In

this paper, we utilize SALP for the state-matching phase in automata processing in order to match an input

symbol with multiple automata in parallel.
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Figure 6.5: (a) Bank abstraction. (b) Physical implementation of a bank. (c) General overview of eAP
architecture in one bank. (d) Inside one tile with datapath and communication to local (RCB) and global
switches (FCB)

In our design, a memory bank supports two modes; normal mode (NM), ie. for data storage as last level

cache, and automata mode (AM) (Figure 6.5 (b)). During the NM, the global decoder only selects one of the

connected subarrays based on the input address, and then selects one row within the subarray. During the

AM, all the local decoders get the same address (input symbol) from the global decoder and activate the

same row in each subarray, in parallel, based on the input symbol. The entire row corresponding to that

symbol is read to the sense amplifiers, yielding a vector of all the states accepting the input symbol. This

arrangement is shown in Figure 6.5 (c) maps to the blue square-blocks.

There is no need for column addressing, because all the local sense amplifiers (match vectors) should be read

and propagated to the state transition stage. Automata mode only requires read operations. Configuration

of STEs (memory columns) is done at context-switch time in normal mode using write operations.

In Figure 6.5 (c), each bank has eight columns of automata processing arrays (APA) with maximum

capacity of 4096 STEs each. Each APA consists of eight tiles and each tile contains two automata processing

units (APUs). Each APU hosts a memory subarray of 256 × 256 for state matching (blue squares) and a

RCB subarray (smaller gray square) with aggregate size of 256 nodes as local interconnect. Inside each APA,

tiles are connected to work collaboratively through a global switch (FCB of size 256 × 256) to process larger

connected components that do not fit in a single APU. These choice of parameters are based on some prior

organizations [28, 29].
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The global FCB switch allows 16 states in each APU, called port nodes (PNs), to communicate with all

PNs of different APUs in the same APA. The global FCB is positioned in the middle of the APA to minimize

the longest required wire to/from bottommost and topmost APUs.

For uncommon cases in which a connected component does not fit into an RCB interconnect (such as

EntityResoloution, see Fig. 6.2), eAP repurposes state matching subarrays as FCB interconnects. Specifically,

it combines the state-matching subarray of one of the APUs in the tile (as a full crossbar interconnect) and

the state-matching of the other APU in the same tile. When a subarray needs to be configured as an FCB

instead of regular state match operation, the FCB/SM signal (Fig. 6.5.d right blue square) of that tile is set

to one. This signal selects the word lines of the target subarray to be driven by the match vector register bits

instead of the decoder output (See Fig. 6.5.d). This mode halves state capacity of the contributed tile but

provides the ability to accept connected component without any limitation on interconnect shape.

To support this functionality, an array of 2:1 multiplexers needs to be added for one of the subarrays in

each tile (FCB/SM mutliplexers in the right blue square of Fig. 6.5.d). This has less than 2.5% area overhead

based on industry 28 2:1 mux area numbers
2
. This reconfiguration promotes a tile to embed any connected

component (with size less than 256) plus having 16 PNs to communicate with other APUs in the same APA

to provide more flexible interconnect topology in a column.

6.3.2 Pipeline Design

To process a single input symbol, two memory accesses are required; one for finding the match vector in the

state-matching phase and one for finding the potential next state vector in the state-transition phase (see

Figure 2.1 (b)). The result of state matching of the current symbol is stored in the Match Vector registers,

which acts as a pipeline registers, and can be overlapped with the state transition routing from the previous

input symbol matches.

Cache Automata [29] proposes a three-stage pipeline for automata processing, shown in Figure 6.6 (a)

(SM: State-Match, GS: Global-Switch, LS: Local-Switch). However, we have found that this pipeline has a

data-hazard issue. To process input symbol i+1, the result of state-match of the current cycle (i+1) and

state-transition (including LS and GS) of the previous cycle (i) should be ready at the end of stage-2. However,

the LS output is only ready at the end of third stage. To solve this, one pipeline stall is necessary for each

input to resolve the hazard, which decreases the throughput by factor of 2. Another solution (to avoid data

hazard) is merging GS and LS in one stage, but they need to operate sequentially (see Figure 1(d) in [29]).

2
This is obtained using a standard cell library provided under NDA, so while we can describe the result, we cannot identify

the vendor.
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Figure 6.6: CA (a) vs eAP (b) pipeline

This means that stage 1 has one memory access whereas stage 2 has two consecutive memory accesses. Figure

6.6 (b) shows our refined version of CA pipeline design. This has been verified with the authors.

Unlike CA, our proposed pipeline tries to balance the amount of work between the two stages of pipeline,

since the final frequency is determined based on the slowest stage. Figure 6.5 (d) represents the interconnect

organization. Both global and local switches can operate in parallel in one stage and the result from the global

switch is ORed with the corresponding wires from the local switch (Figure 6.6 (c)). Performing an additional

16-bit OR operation costs much less than one memory access. Similar pipeline optimization (parallel GS and

LS) can be applied to CA. Performance results for both designs are shown in Section 6.6.3.

6.3.3 Input and Output

eAP has two asynchronous FIFOs to hold the input symbols in the input buffer (IB) and reports in the output

buffer (OB). The host CPU communicates with the IB and OB using interrupt triggered memory-mapped IO

or DMA while the interrupt service routine (ISR) is responsible to fill in the IB and evict the OB. Assuming

1.5 and 2.5 working frequency for eAP 2T1D and eAP 8T respectively (see Section 6.6.3) and 1 frequency for

interrupt, an IB of size 2.5KB can store enough data to feed the eAP until the next IB interrupt. Recently,

[112] has characterized the reporting statistics of ANMLZoo’s benchmark. The results show that 10 out of 12

benchmarks produces less than 0.5 reports per cycle (in average). This investigation motivates us to use 512

entries for the OB (4 bytes each for report meta-data) to keep a similar interrupt rate as the IB.

After writing the automata configuration bits in the normal operation mode (NM), eAP switches to

automata mode (AM) and starts consuming inputs from the IB. Buffers have two output signals (E and

F) to show if they are full or empty. E-signal of the IB and F-signals can raise the interrupt signal of the
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CPU to service the device as needed. In Automata mode, in each cycle, the symbol at the front of the IB is

popped and drives the shared address bus of all banks contributing in eAP symbol matching. Each APU is

equipped with a report vector mask to identify report states in each cycle by simply performing a bitwise

AND operation with the active vector. We use the Report Aggregator Division (RAD) mechanism proposed

in [112] (which is an improvement over Micron’s AP reporting procedure) to fill up the OB with report state

IDs and cycle information. RAD adaptively shrinks the report message based on the current number of

active states to use the OB space efficiently. When the OB is filled up, an interrupt signal is raised to ask for

service from the host CPU and free space for future report events.

6.3.4 System Integration

This section discuss the possible integrations for eAP with 2T1D GC-eDRAM cells (eAP 2T1D) and 8T

SRAM cells (eAP 8T). High-bandwidth On-Package Memory (OPM) introduces a new on-package memory

layer between off-chip DRAM and on-chip cache in conventional memory hierarchy. Intel has included

eDRAM as an OPM in its Haswell, Broadwell and Skylake architectures to fill the the gap between on-chip

and off-chip memory bandwidth. For Haswell and Broadwell processors, eDRAM with 1T1C cells was used

as L4 cache [113, 114]. For eAP 2T1D, we replace the 1T1C eDRAM cells with 2T1D and then, re-purpose a

postion of banks in L4 cache for automata processing.

For eAP 8T, we assume the same integration as Cache AUtomata [29]. Cache Autoamta re-purposes last

level cache (L3) slices for automata processing and access the cache ways by leveraging Cache Allocation

Technology (CAT) [115]. For both eAP designs, in automata mode, the compiler generates a configuration

array (the state match and interconnect configuration bits) and writes it in the eAP memory address space

to start offloading the input task.

6.4 Compiler

Our compiler has two main tasks. First, it should check if a connected component can fit into a RCB switch

template or needs to be mapped to an FCB. Second, it should provide a mapping from each state of the

automaton to its hardware representation (STE). To accomplish the decision problem (RCB or FCB), a fixed

matrix representation of the RCB interconnects is initially generated (See Figure 6.3), called a diagonal matrix

(DM). We assign a ‘1‘ in row i and column j, if there is a switch at location i and j in RCB interconnect.

For any given automaton, we first number nodes using BFS traversal, starting from a fake root connected

to all nodes that are start nodes in the automata. Then, we calculate the connectivity matrix of given
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automaton using BFS assigned numbers. If the calculated matrix is a subset of the DM, then it can be fit

into a diagonal switch box (RCB). Otherwise, the given automaton should fit into a FCB.

For diagonal automata, we search through all the previously-assigned RCB interconnect blocks and try to

find the one with the least free capacity that can still fit the current automaton being placed. We keep the

same BFS order of labels to assign inputs of the assigned interconnect block, but with an offset equal to the

last-used input of that interconnect block, instead of 1 for the first automaton (connected component) that

was assigned to this interconnect block. If there is no such partially used interconnect with enough spare

capacity, we initialize a new RCB interconnect block from the pool of available interconnect blocks.

Our compiler supports a set of optimizationa such as enforcing constraints on fan-in and fan-out, automaton

merging, and minimization. The utilization for RCB and FCB blocks is discussed in Section 6.6.1.

Input : list of automatas L
Output : mappings M[RCB,FCB] from L to interconnects
foreach automata A in L do

label A using BFS
find C, connectivity matrix of A, using BFS labels
if C is a subset of RCB routing matrix then

RoutingType ← RCB
else

RoutingType ← FCB
end
find Mi in M[RoutingType] with smallest number of unmarked inputs that can fit C
if Mi = ∅ then

initialize Mi, a new RoutingType interconnect
add Mi to M[RoutingType]

end
add C to Mi

mark used inputs of Mi

end
Algorithm 1: Mapping Algorithm

6.5 Evaluation Methodology

Applications: We evaluate the eAP architecture using ANMLZoo [2] and Regex [100] benchmark suites.

ANMLZoo represents a set of diverse applications including machine learning, data mining, and security. We

use the standard 10MB inputs stream included in ANMLZoo.

Experimental Setup: We evaluate eAP architecture on memory arrays with 2T1D cells (we call it

eAP 2T1D) and 8T cells (we call it eAP 8T). In eAP 8T, both state matching and interconnect memory

arrays are based on 8T cells. This is because we sometimes re-purpose state-matching arrays for interconnect

and they should be able to provide the required logical OR functionality (6T SRAM cells are unable to provide
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OR functionality because multiple cells cannot drive one bitline). We compare eAP 2T1D and eAP 8T with

CA, CA opt, and the AP, all using (or scaled to) 28nm technology. In CA, state-matching is based on 6T

SRAM arrays and interconnect is based on 8T SRAM arrays. To calculate area, power, and row cycle time of

memory arrays, we use a standard memory compiler. For 2T1D analysis, we rely on the results from the

designed and fabricated chip in [38].

We develop an in-house cycle-accurate automata simulator
3

to perform software optimization on the

automata, map them to the proposed architecture, and extract per-cycle statistics for the energy estimation.

6.6 Results

In this section, first we present architectural contributions of our interconnect compared to FCB. Then, we

evaluate the overall area, performance, and power for eAP with 8T and 2T1D and compare it with CA and

AP. Then, we discuss scalability of eAP.

6.6.1 Interconnect Efficiency

In this section, we first compare overall architectural benefits of our proposed interconnect design, RCB, over

the CA interconnect architecture, FCB. As we presented earlier in Section 6.2, RCB interconnect is a memory

block of 96×96, whereas FCB is a memory block of 256×256, meaning that RCB consumes 7× fewer switches

(or memory cells) than FCB, which reduces area overhead for the interconnect. RCB has also faster row cycle

time because of shorter wires and consumes less power.

To study the applicability of RCB design in real-world and synthetic automata applications, we calculate

the number of required RCB and FCB blocks for each application. The compiler iterates over the connected

components (CCs) and checks if they can fit in a RCB switch block. If not, a FCB switch is needed to

accommodate connectivity. In Table 6.1, we compare the number of required routing blocks of our interconnect

approach, which is a hybrid of RCB and FCB, versus the baseline FCB, which is proposed in CA and assumes

full connectivity for all the connected components.

As shown in Table 6.1, all the connected components in 17 out of 19 applications can entirely map to

RCB blocks and no FCB block is needed. This means that when using RCB blocks, the total number of

switches (memory cells) required for these applcaitons is 7.1× less than when using FCB blocks. This again

confirms confirms that the FCB is extremely excessive for automata applications.

In Entity Resolution, there are many long distance loops, and none of the CCs can fit in the RCB switch

block (Figure 6.2). In Snort, our interconnect accommodates most of the CCs in RCB blocks (only 19 FCB

3
https://github.com/anonymousUser0/isca
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Table 6.1: Comparison of our interconnect approach (hybrid RCB and FCB) with CA interconnect (FCB
only). Our idea requires up to 7.1X fewer switches (memory cells) than CA.

Benchmark #Transitions
#Connected Baseline Our Idea Switch
Components #FCB #FCB #RCB Reduction (times)

Brill 62054 1962 168 0 168 7.1
Dotstar 94254 2837 378 0 378 7.1

EntityResolution 219264 1000 500 500 0 1
Fermi 57576 2399 160 0 160 7.1

Hamming 19251 93 47 0 47 7.1
Levenshtein 9096 24 12 0 12 7.1
PowerEN 40271 2857 160 0 160 7.1

Protomata 41635 2340 165 0 165 7.1
RandomForest 33220 1661 139 0 139 7.1

Snort 81380 5025 270 19 252 5
SPM 211050 2687 419 0 419 7.1

BlockRings 44352 192 192 0 192 7.1
Dotstar03 12264 299 49 0 49 7.1
Dotstar06 12939 298 50 0 50 7.1
Dotstar09 12907 297 50 0 50 7.1
Ranges05 12472 299 50 0 50 7.1
Ranges1 12406 297 50 0 50 7.1

ExactMath 12144 297 50 0 50 7.1
Bro217 2130 187 10 0 10 7.1

and 256 RCB), whereas the baseline uses 270 FCBs. Levenshtein is a difficult-to-route automata. The

AP compiler can fit this benchmark in an AP chip with 48K states. However, the total number of states

in Levenshtein is 2784. This implies that much of the STE and interconnect resources of an AP chip are

wasted in order to deal with the routing congestion. However, in our interconnect model, we just need 12

RCB switches (9% routing resources of a eAP bank and 0.07% of routing resources on eAP 128 banks) to

accommodate all the automata in Levenshtein.

Our compiler provides optimizations such as forcing constraints on the number of fan-in and fan-out of

each node. Based on our sensitivity analysis, forcing each automata to have maximum fan-in and fan-out of 5

results in the minimum number of switches. The proposed interconnect optimization is general and can be

applied to any memory-based interconnect, such as variations of gain cells or non-volatile memorty (NVM),

where memory cells have non-destructive read property and can implement OR functionality for routing.

6.6.2 Overall Area Overhead

In this section, we discuss the area overhead of state matching arrays, interconnect arrays, and total overhead

for supporting state capacity equivalent to 32K STEs (one eAP bank). Furthermore, we separate architectural

contribution from technology contribution in our analysis.
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A subarray size of 512 by 128 with 2T1D cell is fabricated in 65nm with area 0.085mm
2

[38]. From

the die image, we estimate the area for a block of 256 by 256 to be 0.084mm
2

(60% of which is spent for

memory cells and 40% is spent for decoder and sense amplifiers), which is 11mm
2

to support 32K states.

The projected area to support 32K states in 28nm is 2mm
2
. Therefore, the area of a 2T1D memory cell in

28nm is estimated 0.143µm
2

and calculated as:

0.6×2×106

32×1024×256
= 0.143µm

2
(6.2)

In [103], Bhoj et. al presented two architectures for 2T1D cells in 30nm FinFET technology. According

to their work, the area of a 2T1D memory cell is between 0.137 − 0.163µm
2
, which is consistent with our

scaling assumptions.

Figure 6.7 shows the area overhead for state matching, interconnect, and total overhead of different

architectures, assuming supporting 32K states. Compare to CA, eAP 8T reduces area overhead of interconnect

~4× (resulting from architectural contribution, i.e., RCB design) and eAP 2T1D reduces area overhead of

interconnect ~8× (~4× resulting from architectural contribution, i.e., RCB design and ~2× resulting from

technology choice).

Figure 6.7: Comparing area overhead of eAP, CA, and AP normalized for 32K states all in 28nm. CA
interconnect is ~4× higher than eAP 8T (architectural contribution) and ~8× higher than eAP 2T1D (~4×
architectural contribution and ~2× technology contribution).

Overall area overhead (both state match and routing) of eAP 2T1D is 2.2×, 2.3×, 22× less compared to

eAP 8T, CA, and the AP respectively, all in 28nm technology.
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6.6.3 Overall Performance

Zhang et al. [38] report the read-cycle frequency of 6T SRAM array is twice that of a 2T1D gain cell array in

65nm technology. We assume a similar ratio in order to estimate the read-access frequency of a 2T1D array

of size 256 × 256 (for FCB) in 28nm, using the read-access frequency of 6T SRAM array of size 256 × 256 in

28nm (which is 229 ps and calculated using standard SRAM compiler in nominal voltage 0.8V). In other work

on 2T1D, Bhoj et. al [103] presented two architectures for 2T1D cells in 30nm FinFET technology. According

to their work, a 2T1D memory array can operate at 2GHz, which is consistent with our assumption. Despite

the area reduction in RCB (96 × 96), we still assume the worst-case delay for RCB to be the same as FCB.

CA proposes a sense-amplifier cycling technique and assumes 4× reduction in the read-access delay.

However, sensing is just 25% of the total row-access delay. We re-calculated the delay in local and global

switches in CA with best-case assumptions using an SRAM memory compiler. Fixing (1) switch delay

calculation and (2) pipeline data-hazard problem in CA reduces the clock frequency from 2.2GHz to 1.43GHz.

This correction has been verified with the authors.

Table 6.2: Pipeline stages delay. All designs are in 28nm.

Design State-Match L-Switch G-Switch Freq. Max Freq. Operated
eAP 2T1D 500 ps 599 ps 599 ps 1.66 GHz 1.5 GHz

eAP 8T 349 ps 349 ps 349 ps 2.8 GHz 2.5 GHz
CA 438 ps 349 ps 349 ps 1.43 GHz 1.3 GHz

CA opt 438 ps 349 ps 349 ps 2.2 GHz 2 GHz

Based on the SPICE simulation in CA, the wire delay is calculated as 66ps/mm. Considering a cache

slice of 3.19mm × 3mm, the switch delay is estimated as 99ps, assuming 1.5mm wire length. We assume the

same wire delay for FCB and RCB in eAP 2T1D and eAP 8T (this is the worse-case assumption for RCB as

it requires shorter wires).

Table 6.2 shows the delay for pipeline stages in CA and eAP in 28nm. As discussed in Section 6.3.2,

in the new, CA-refined pipeline, L-Switch and G-Switch should be done sequentially in one stage, which

means the pipeline delay is 698ps (349ps+349ps). In eAP optimized pipeline, L-switch (RCB) and G-switch

(FCB) can be done in parallel. Therefore, pipeline delays for eAP 2T1D and eAP 8T are 599ps and 349ps

respectively. Similar optimization proposed for eAP can be applied to CA (we call it CA opt) which improves

CA frequency from 1.43GHz to 2.2GHz. Therefore, the architectural contribution of our optimized pipeline

improves the clock frequency of eAP (both 2T1D and 8T) ~2× and CA ~1.5×.

Like commodity DRAM, 2T1D cells also require periodic refreshes to retain stored bit values. The refresh

operation is a sequence of dummy reads and write-backs to the memory rows. eAP 2T1D refresh time is

0.01%, which is calculated by dividing the time required for refreshing 256 rows (meaning 256 reads and 256
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Figure 6.8: Comparison of throughput normalized per area. eAP 2T1D performs best due to its interconnect
and technoloy benefits.

writes) by the retention time. Refresh is performed among all the subarrays in parallel and blocks the normal

read/write operations.

6.6.4 Throughput per Unit Area

In the AP, CA, and eAP, each input symbol can be processed in one cycle. Therefore, they have a deterministic

throughput of one input symbol per cycle, which is independent of input benchmarks. Another important

metric in addition to frequency is state-matching capacity; if the capacity is not enough to accommodate all

the automata in one iteration, several passes of the input stream, each with some reconfiguration overhead,

are needed.

Figure 6.8 represents the throughput of different architecture normalized to area. The throughput here

is defined as the number of states that can run in parallel multiplied by clock frequency (Tera-states per

second). The AP is based on 45nm technology and operates at 133 MHz frequency, while CA and eAP are

based on 28nm. To compare the different architectures in the same semiconductor technology node, we also

show technology projection of the AP on 28nm.

Overall, eAP 2T1D achieves 1.7×, 5.1×, 3.3×, and 210× better throughput per unit area over eAP 8T, CA,

CA opt and the AP respectively, all in 28nm technology. As expected, eAP 8T has 1.8× better throughput per

area over CA opt. CA design uses 6T arrays of size 256×256 for state matching and 8T arrays of 280×256 for

interconnect, and thus, the interconnect overhead is more than 50%. eAP 8T adopts 8T arrays for both state

matching (of size 256×256) and interconnect of size (96×96), thus as previously mentioned, the interconnect

overhead is ~4× less than state matching resources.
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Figure 6.9: Overall energy consumption of eAP 2T1D compared to eAP 8T, CA opt, and ideal AP.

6.6.5 Energy/Power Consumption

This section discusses the energy and power consumption of eAP 2T1D and eAP 8T and compares to CA opt

and the AP. To calculate energy consumption, we need to know (1) the number of active partitions for

state-matching and switch blocks, and (2) the number of transitions between local switches to consider for

the energy consumed driving wires.

Note that it is not possible to power-gate state-matching memory arrays on a cycle-by-cycle basis. In

order to power-gate these subarrays, it is necessary to know the potential next states beforehand. However, in

the pipeline, the state matching results and next potential state are calculated simultaneously, which prevents

the power-gating. (One can still power-gate an array that is unoccupied.) This observation is not considered

in CA. We update the energy/power results in CA paper [29] based on this observation.For the AP, we adopt

the ideal AP model presented in CA. All the statistics per cycle are extracted from our compiler.

Static power consumption of eAP 2T1D system consists of two main components: (1) the leakage current

of the cell itself and (2) the refresh power to keep the data alive. The refresh power of 2T-based gain cells is

the dominant portion of static power [38]. Moreover, the static power of 2T1D memory array is 20% of static

power in 6T SRAM array. We use the same ratio to calculate static power for eAP 2T1D. We estimate the

dynamic energy consumption for RCB and FCB 8T blocks using a standard memory compiler.

Figure 6.9 shows the energy per input symbol for eAP 2T1D, eAP 8T, and CA opt on 28nm, and ideal

AP model. We can observe that benchmarks with larger number of states, such as Entity Resolution, Dotstar,
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Figure 6.10: Overall power consumption of eAP 2T1D compared to eAP 8T, CA opt, and the AP (reported
by Micron).

Snort, and SPM, consume higher energy. This is because these benchmarks have utilized more state matching

and switch arrays to accommodate larger number of states. Furthermore, Entity Resolution cannot utilize

lower-energy RCB resources for the local interconnect (as shown is Table 6.1) and needs to use FCB, which

results in higher energy consumption. Overall, the energy consumption of eAP 2T1D is about 3× less than

eAP 8T and CA opt. Energy efficiency of eAP 2T1D comes from its density and a compact RCB design,

which results in consuming lower dynamic energy due to shorter wires and smaller number of switches.

Figure 6.10 shows the average power consumption across benchmarks. The power consumption of

eAP 2T1D is 5.4× and 4.1× less compared to eAP 8T and CA opt respectively. As expected, the power of

the eAP 2T1D is the highest, because it has fastest clock speed.

6.6.6 Performance Scaling with Application Size

In Section 6.6.4, we discussed the throughput per unit area. In this section, in order to show the effect of

larger benchmarks on performance, we increase the number of automata in the ANMLZoo benchmark up to

1024× and study two power-constrained and non-power-constrainted scenarios. In non-power-constrainted

scenario,

In this section, we study the scalability of different designs in two we assume CA, CA opt, and eAP 8T

can utilize the 40MB L3 cache [29], which is equal to accommodating 1280K STEs. The Intel 4
th

-generation
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Core processor (Haswell and Broadwell) has a 0.5Gb/1Gb embedded memory die connected to CPU as L4

cache [113, 116]. For eAP 2T1D, we assume 1Gb of embedded memory with 128 banks. Therefore, eAP 2T1D

can support up to 4096K STEs

Table 6.3 summarizes the key properties of eAP 2T1D relative to eAP 8T, CA, CA opt, and AP. In

short, eAP 2T1D has a density advantage compared to other designs. When the area allocation for automata

processing is small enough that the total power is not a limiting factor, the density advantage will apply. At

some point, enough area is allocated that power becomes a limiting factor. Then eAP only has a capacity

advantage.

Table 6.3: Summary of different memory-based automata architectures (for 32K states, including interconnect
blocks)

eAP 2T1D eAP 8T CA CA opt AP
Freq. (GHz) 1.5 2.5 1.3 2 0.133
Power (W) 4.15 29.69 22.57 14.69 2.6

Area (mm
2) 2.47 5.41 8.12 8.12 140

However, some benchmarks in ANMLZoo represent just a portion of actual applications (normalized to

fill one AP chip). While one bank is enough for regex-based applications such as Snort, Brill, and Dotstar,

which will not require much power, the density advantage will pertain; but other applications require orders

of magnitude more states. This will then require multiple passes over the input, with each pass implementing

a portion of the overall automata set. In such cases, reconfiguration overheads will apply, and as mentioned,

this is more costly for CA.

Figure 6.11 shows the performance of CA, CA opt, eAP 2T1D, and eAP 8T averaged on ANMLZoo,

normalized to the AP performance, with and without power constraints.

Figure 6.11: Performance scaling with benchmark size

In the non-power-constrained scenario, we assume CA and CA opt can utilize the whole 40MB L3 cache

in their design [29], which is equal to accommodating 1280K STEs. In eAP designs, we assume the whole 128

banks are utilized, which can support up to 4096K STEs (See Section 4). In this scenario, the relationship



A Scalable and Efficient in Memory Accelerator for Automata Processing 92

among the designs follows Table 6.3, except for the additional factor of reconfiguration overhead, so the

speedup of eAP 8T is 5×, 3.6×, and 1.4× over CA, CA opt, eAP 2T1D respectively. This is because eAP 8T

has the highest clock speed.

In the power-constrained scenario, we assume the maximum power of 75W for all the designs. This in turn

reduces the allowable number of active processing blocks. eAP 8T has 1.6×, 1.1×, and 1.4× better performance

over CA, CA opt, eAP 2T1D on the original-size benchmarks in ANMLZoo (1X), because eAP 8T has

higher frequency than others. However, when increasing the benchmark size, hardware reconfiguration and

multi-processing of the input stream become a limiting factor for CA and CA opt (due to less capacity and

lower frequency) and eAP 8T (due to high power consumption) - see Equation 6.1.

eAP 2T1D shows up to 2×, 2.1×, and 4.9× better performance over CA, CA opt, eAP 8T when increasing

the benchmark-size up to 1024×. This is because eAP 2T1D has higher density and lower power consumption.

The performance benefits of eAP increase when processing larger automata benchmarks. Furthermore, the

advantages of eAP 2T1D over CA, CA opt, and eAP 8T increase when increasing the input size.

6.7 Conclusions

In this paper, we propose eAP, a high-speed, dense, and low-power reconfigurable architecture for automata

processing. We exploit inherent bit-level parallelism in memory to support multiple concurrent transitions

in NFA and utilize subarray-level parallelism in memory to process thousands of automata in parallel.

Motivated by connectivity patterns in the real-world automata benchmarks, we propose a reduced crossbar

interconnect for state transitions, which compacts the switch patterns in a full crossbar interconnect and

provides a 7× reduction in the number of switches. This in turn reduces power consumption and delay due to

shorter wires. Overall, eAP presents 5.1× and 207× better throughput normalized to area compared to the

previously designed in-memory automata accelerators, Cache Automata (CA) and the Automata Processor

(AP) respectively. Benefits of eAP are even higher for applications that require multiple passes.



Chapter 7

FlexAmata: A Flexible Automata

Processing Engine

Because regular expressions have most commonly been used for text, packet, and other byte-oriented

processing, existing automata accelerators are designed based on a fixed 8-bit (ASCII) symbol processing

scheme, similar to software solutions [32, 33]. This means that the automata structure is based on 8-bit

symbols and an 8-bit input is processed in each cycle. However, we observed that the fixed-size symbol

processing could be a source of area and throughput inefficiencies and it also limits the general adoption of

applications for automata processing.

In memory-based solutions, symbols are encoded in memory columns, such that each symbol activates a

different row of memory. This tends to reinforce designs based on 8-bit symbols, because 256 (2
8
) is a fairly

conventional subarray height. However, this can be extremely inefficient, especially when the application

alphabet (symbol-set) size is very small and the number of rows in a subarray is more than required. For

example, in genomics, the alphabet is A, T,C, and G, and a 2-bit automata organization with only 2
2

rows is

enough to perform the string matching. This is 64× smaller than what existing spatial architectures provide!

On the other hand, the 8-bit symbol processing architectures can limit the generality of the architecture

for applications that have more than 256 symbols. For example, in sequential pattern mining [7], the input

database can be quite large, such as the product database from Amazon, and the number of unique items

(or symbols) can be very large (on the order of 2
20

or more). In formal verification problems, the symbols

map to the events, and thus, the automata symbol-set size can be extremely large [117, 19]. However, due to

delay, power issues, and signal integrity, it is impractical to change the hardware to support 2
20

rows in each

memory subarray. Moreover, simply daisy-chaining multiple states to support larger alphabets result in false

93
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report generation.

One more problem with the existing 8-bit approach for spatial accelerators is that, if the memory subarray

size of the underlying memory technology changes, then there is a need to make sure that the application

symbol-set size is still compatible to the memory architecture. For example, Cache Automaton [29] re-purposes

caches in conventional processors for automata processing. If the number of rows in the subarrays of a cache

structure changes, then the automata structure and input bitwidth consumption need to be changed for

correct functionality and full hardware utilization.

One advantage of using custom in-memory solutions or FPGAs as automata accelerators is that the

processing bitwidth can be customized for the application need. In this paper, we aim to answer the following

questions. What are the necessary hardware/software modifications to efficiently support very large or very

small alphabets on spatial architectures? How can an application make better use of existing hardware for

automata acceleration? What is the best bitwidth size for automata processing on spatial platforms? How to

design next-generation automata accelerators with higher throughput? To the best of our knowledge, this is

the first work that explores these research questions.

To answer these questions, we propose FlexAmata, a software solution that transforms an automaton

structure with arbitrary symbol alphabets to support different bitwidth processing. FlexAmata accepts

an m − bit processing automaton as the input and then, (1) generates the binary automaton and applies

several minimization techniques, and (2) converts the binary automaton to an n − bit processing unit, where

n can be larger or smaller than m, depending on the target architecture. Thanks to the fine-grain, bit-level

optimizations in FlexAmata, state and transition overhead of a transformed automaton is reasonably low.

FlexAmata offers arbitrary bitwidth processing, thus improving efficiency for small alphabets, enabling

hardware acceleration for large alphabets that were nearly impossible to process efficiently up till now, and

maintains application compatibility with the future automata hardware accelerators. Furthermore, FlexAmata

can improve efficiency and provide large-symbol-set compatibility even for conventional in-memory solutions

such as Cache Automata. By analyzing FlexAmata on several automata applications from the ANMLZoo [2],

AutomataZoo [118], and Regex [100] benchmark suites, we propose in-memory and FPGA solutions for the

most efficient bitwidth processing.

Figure 7.1 shows throughput per unit area of our two solutions across different bitwidths. In summary,

we find that 4-bit processing has 2.3× higher throughput per unit area than 8-bit processing in in-memory

architectures, and 16-bit FPGA solution has 2.5× higher throughput per unit area than 8-bit FPGA solution.

Moreover, in-memory architectures perform at least two orders of magnitudes better than FPGAs. The area

efficiency introduced by FlexAmata provides an opportunity to design denser state-matching resources, which

can accommodate more states and results in fewer spatial resources.



7.1 FlexAmata 95

Figure 7.1: Comparing in-memory and FPGA solutions in different bitwidths.

This paper makes the following technical contributions:

We present FlexAmata, a compiler solution to provide application compatibility with existing and future

memory-centric automata processing architectures, and hardware compatibility for existing application by

transforming automata structure. The former allows execution efficiency and feasibility of applications with

very small or large alphabets on spatial accelerators.

We propose area efficient and high-throughput in-memory architectures and FPGA automata processing

engine and explore various bitwidth automata processing using FlexAmata. Our exploration introduces

hints on how to design an automaton for more efficient hardware mapping and insights for next-generation

automata processing accelerators.

We present an open-source toolkit for automata simulation, minimization, transformation, performance

modeling on memory-centric architectures, and performance evaluation on FPGAs.

7.1 FlexAmata

FlexAmata transforms an m-bit (m is 8 for ASCII) automaton A to an n-bit automaton B, where n can

be larger or smaller than m. This transformation is done in two steps; (1) converting A to a bit-level

representation (Ab), and (2) generating automaton B by transforming Ab to process n-bit in each cycle. To

generate the n-bit automaton, we find all the unique paths of size n in Ab and represent them as a single

edge (or equivalently transition rule) in B. The algorithm performs bit-level minimization on the automata

and merges the states and transitions in binary path when applicable. Finally, automaton B is converted to

its homogeneous representation to properly be configured on an in-memory or FPGA accelerator.
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In Figure 7.2, we explain how an 8-bit automaton is transformed into 3-bit and 4-bit automata. In the

notation STE
y
x , x is state index and y is the bitwidth size. The original homogeneous automaton (a) has two

states and accepts language (A∣B)C+
. Using FlexAmata, we generate binary automata (b) and minimize the

states when possible. For example, the first 6 bits of symbol A and B can be merged. Then, 3-bit (c) and

4-bit (d) are generated from the bit-automaton.

Figure 7.2: An 8-bit automaton (a) is converted to the minimized 1-bit automaton (b). The 3-bit (c) and
4-bit (d) automata are generated from the 1-bit automaton.

In the 3-bit automaton, STE
3
0 is an start state and STE

3
5 , STE

3
8 , and STE

3
11 are final states. Each state

processes one or more 3-bit symbol. STE
1
16 in bit-automata is equivalent to reaching the state STE

3
4 in

the 1-bit automaton. STE
1
17 is a report state and there is a loop back to the state STE

1
10. Assume STE

3
4

is an active state, and the next input character is ”1”, then it should generate a report. Equivalently in

3-bit, STE
3
4 is an active state, and because the next input is 3-bit, then, ”1**” should generate a report.

In order to address this unalignment in the bitwidths, we generate residual states (Res) to report when a

match happens in the middle of a multi-bit input. STE
3
5 is a residual state that reports when the matching

happens in the first bit of the 3-bit input. The residual states can be used to find the exact location where a

match is happened.

The generation of the 4-bit automaton is straight-forward and no residual state is needed. This is because

8 (from original 8-bit automaton) is divisible by 4, and this avoids the unalignment in input characters. In

order to get the correct functionality, we always make sure the input size is divisible by the bitwidth size by

padding input streams.

Non-divisible bitwidths effect: as Figure 7.2 illustrates, the 3-bit automaton has more state and

transition overhead than 4-bit. From our experiments, we observed that when re-shaping an n-bit automaton

to an m-bit automaton, the overhead would be minimum if either m mod n = 0 or n mod m = 0. Figure

7.3 explains the reason with one state in an automaton with four 8-bit symbols. First, 1-bit automaton is

generated. Then, 3-bit and 4-bit are generated from 1-bit. In 3-bit, because 8 mod 3 ! = 0, it needs to generate
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more states and transitions to consider for combinations of paths when a jump is needed. The overhead

of non-divisible bitwidths is more severe for automata with more symbols sets and complex interconnect

typologies.

Figure 7.3: State and transition overhead is less in divisible bitwidths (4-bit) than non-divisible bitwidths
(3-bit).

Interval effect: We observed that the applications with the states containing symbol ranges have more

state and transition overhead when transforming to a different bitwidth. For example, if an STE matches on

[a − f ], it accepts a range of symbols and can be activated with any of these characters if its parent(s) is in

an active state. When constructing the 1-bit automaton, these characters are potentially split into different

states to preserve the correctness of matching. This is an extra source of state and transition overhead when

transforming the automata to process different bitwidths.

When symbols of a state are any character except one specific character, we call it a negation operation.

Assuming an application with 256 symbols, a negation operation can accept 255 characters, and need to be

split when transforming automata. Figure 7.4 demonstrates an example of how to avoid negation operation

when possible. Both automata accept language a[ˆb]∗b, meaning that any pattern that contains sequence

”ab” with any character between the occurrence of ’a’ and ’b’ is a match. The left-side design has one active

transition in each cycle, but when generating the 1-bit automaton, the state with symbol [ˆb] generates up to

255×8 1-bit states. The right-side design has the same functionality as the left-side one, and can have up to

two active transitions. However, when generating the 1-bit automaton, the state with the ∗ symbol generates

only 8 1-bit states with symbol ’*’, which means each of 1-bit states can be either ’0’ or ’1’. Therefore,

designing an automaton with a ’*’ symbol rather than a negation symbol (when possible) can utilize the

parallel transitions resources for NFA processing and reduce the state and transition overhead significantly.
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Figure 7.4: Both automata detect language a[ˆb]∗b. The right one results in a more efficient automata
transformation.

We found that 6 out of 20 applications have a large number of negation operations. To reduce the

overhead of transformation, we redesign the automata benchmarks by changing the negation symbols with

the ’*’ symbols when possible, verifying that the change does not alter the semantics of the automata. Our

experimental results show that this change reduces the transformation overhead significantly (more discussion

Section 7.3.1). This observation can help application developer to design regexes or automata more efficiently

for this purpose.

7.1.1 Application Implications and Software Optimizations

The existing automata processing accelerators are designed based on 8-bit symbol processing scheme.

However, the applications can have a very small or large alphabets (symbol-set). FlexAmata provides software

compatibility for the existing automata hardware accelerators, meaning that if the application has small

symbol-set, then FlexAmata can generate the 8-bit automata to fully utilize the hardware. On the other

hand, if the application has a very large symbol-set, FlexAmata transforms the automata to 8-bit automata,

which provides feasibility support for the application.

Utilization for smaller symbol-sets: Figure 7.5 shows an example of how FlexAmata improves

utilization and throughput of an application with small symbol-set on an existing 8-bit automata accelerator.

The original automaton has four symbols, A, T, C, and G. Therefore, 2-bit is enough to encode the symbols.

Directly processing the automata on an 8-bit in-memory automata accelerator wastes the state-matching

resources 64×. This is because in the 8-bit scheme, state symbols are encoded in a 256-bit memory column,
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Figure 7.5: (a) Original automata has 4 symbols and can be represented with two bits. (b) FlexAmata
generates 1-bit from original automaton. (c) Then 8-bit is generated from 1-bit, and can process 4× more
symbols at a minimal state and transition costs compared to the original automaton.

however, the 2-bit application only needs 4-bit memory column. To fully utilize the 256-bit memory column,

we generate the 8-bit automaton from the 2-bit original automaton. This is done by generating the 1-bit

automaton. In this example, the 8-bit automaton has 25% more state 25% more transitions compared to

the original 2-bit automaton. However, it processes 4 2-bit symbols in each cycle. This means that this

transformation can increase the throughput of the application 4× with minimal resource overhead, totally

based on a software solution (no hardware modification is needed).

Feasibility for larger symbol-sets: As discussed, there are some applications that have very large

symbol-sets. For example, in natural language processing, each word can be a symbol. In pattern mining

tasks, an entity can be an item in Amazon or name of a person. Clearly, increasing the memory column size

is not a feasible and cheap solution. Moreover, simply breaking a state with 16-bit symbols to 2 states with

8-bit symbols (or in other word, daisy-chaining two symbols) results in false report generations when one

state accepts more than one symbol. We explain the problem using Figure 7.6. For simplicity, assume the

architecture A supports 2-bit symbols, but the application has 16 symbols and requires the support for 4-bit

processing.

The left-side automaton (a) accepts (0011∣1100)+. To process this automaton in a 2-bit architecture,

chaining to two states introduces false positives. (b) breaks the STE
4
0 to two states STE

2
0 and STE

2
1 .

However, it accepts (0011∣1100∣0000∣

1111)+. (c) To preserve the semantic of original automata, FlexAmata splits the states where chaining the
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states causes false positive. Several minimizations are applied on the 1-bit automaton to reduce state and

transition overhead when splitting the states.

Figure 7.6: The problem with chaining two symbols to support larger symbol-sets.

7.1.2 Hardware Implications

To better understand the effect of different bitwidths on automata and its hardware implications, we ran

FlexAmata across a diverse set of 20 applications from [2] and [100]. Figure 7.7 shows the average number of

states and transitions in different bitwidths normalized to the number of states and transitions in the original

8-bit automata in log2 scale. These averages mask some important individual application behaviors that are

addressed later in the paper.

Figure 7.7: Average increase in the state and transition count for different bitwidths normalized to original
8-bit automata.

2-bit and 4-bit designs process one-fourth and half of an 8-bit symbol in each cycle, and incur 5.2×

and 2.4× state overhead, and 6.6× and 2.8× transition overhead on average, compared to the 8-bit design,
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respectively. However, the 8-bit design requires memory subarrays with 256 rows (see Section ??), while 2-bit

and 4-bit designs only need memory subarrays with 4 and 16 rows, respectively.

16-bit design incurs only 1.2× state overhead and 1.6× transition overhead on average, and propose higher

processing rate. However, it is very costly and inefficient to encode a 16-bit symbols to a memory column with

2
16

rows. On the other hand, 16-bit symbols can be efficiently store in look-up-table resources on FPGAs.

The larger bit-width processing (e.g., 32-bit, 64-bit, etc.) causes dramatic increase in the number of symbols

(e.g., up to 2
32

symbols in 32-bit processing). We leave exploration for very large bitwidths to future work.

Based on these observations and different properties of automata in each bitwidth, we investigate different

bitwidth automata processing on spatial architectures and find the best bitwidths size for each architecture.

We present and evaluate in-memory solutions for 1-bit, 2-bit, 4-bit, and 8-bit automata processing, and we

call them reduced bitwidth designs (RBDs). The results show that 2-bit and 4-bit performs better than 8-bit

processing. We then present and evaluate a reconfigurable FPGA solution for different bitwidth processing

(2, 4, 8, 16). The results show the middle-sized bitwidths (such as 8-bit and 16-bit) work best on FPGAs.

Finally, we compare our solutions with other spatial architectures.

Reduced Bitwidth Designs

NFAs for real-world automata applications are typically composed of many independent rules or patterns,

which manifest as separate connected components (CCs) with no transitions between them. Each connected

component has usually a few hundred states. All the connected components can thus be executed in parallel,

independently of each other.

Figure 7.8(a) represents the 2-stage pipeline architecture of a 4-bit automata processing unit, which can

process a connected component with up to 256 states and any connectivity pattern. In the state matching

phase, the 4-bit input is decoded as the input of the SRAM-based memory subarray. The state whose labels

matches the input is read to the row-buffer and stored in the match vector.

In the state transition stage, the potential next states (the states that are connected to the current active

states), are discovered through the local switches. Finally, bitwise AND operation of the potential next states

and match vector recognizes the states that (1) are matched with the current input symbol and (2) their

parent(s) were an active state(s) in the previous cycle.

To support connected components of larger size, which is especially needed when processing a different

bitwidth automaton, we design a hierarchical interconnect to connect local switches through a global

interconnect. Global switches allow 64 states in each automata processing unit to communicate with 64

states in three other automata processing units. Figure 7.8(b) shows an overview of the reduced bitwidth

architecture, which allows a 4-bit connected component with up to 1024 states. Both local and global
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interconnects are full-crossbar and support full connectivity in an automaton, meaning there can be an edge

between every two states. A switch in the crossbar is modeled with an 8T SRAM memory cell, same as Cache

Automaton interconnect design [29]. The transition overhead from an automaton transformation translates

to a more switch utilization in the full-crossbar design, thus does not incur a resource overhead.

Figure 7.8: (a) A 4-bit automata processing unit, (b) Using 2-level switch structure to support larger
automata.

The 1-bit and 2-bit designs would be similar to Figure 7.8, but with state matching subarrays of 2×256

and 4×256, respectively. Compared to the 8-bit design, the subarray size decreases 128×, 64×, and 16× for 1,
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2, and 4-bit designs, respectively. Moreover, the memory decoder size, the memory access latency, and energy

consumption for accessing state matching subarrays of 1, 2, and 4-bit designs decrease accordingly.

Memory technologies such as reduced latency DRAMs (RLDRAM) [101] have smaller column sizes in

each subarray to achieve higher memory access rate. The efficiency of 4-bit automata processing architecture

introduces the potential of alternative use of memory technologies (e.g., RLDRMAs) for automata processing.

FPGA

FlexAmata transforms the automata to the target bitwidth, and then, generates the HDL code for FPGA

backends. This section discusses the automata processing engine on the FPGA to highlight the insights of

processing variable bitwidths on this target platform.

Figure 7.9: Mapping an automaton to FPGA resources.

In Fig. 7.9, a simple homogeneous automaton has been shown which process two symbols (16-bit) in each

cycle. States have been color-coded to represent their equivalent units in a circuit. Symbol matching is being

done entirely in LUTs based on the 16 bits input symbol. Theoretically, Flip-flops (FFs) are equivalent to

potential next state registers in Figure 7.8 and they represent that a state is potential to be active in the

next cycle if the next input symbol matches the matching conditions.

The input signals of the FFs come from an OR gate, which is the OR signal of all the states that have

incoming transitions to that specific state (parent states). This is compatible with our previous definition,

where a state is activated, all of its children are considered as potential active states. The states that have

common set parents can share their FFs and save hardware resources. However, in theory, their corresponding

states cannot be merged since they are not equivalent states. Same as Figure 7.8, the report signals of the

final states are generated from the AND gate of matching signals and potential active states.

We observed that small bitwidths does not utilize FPGA LUT resources well. This is mainly because LUTs

can implement up to two functions with one input, and thus, store the 1, 2, and 4-bit symbols inefficiently on
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6-bit LUTs. On the other hand, processing more symbols per cycle leads to a more complex matching with

many intervals from different states combined to a single state. This situation makes matching using 6-inputs

LUTs inefficient in terms of resource usage and clock frequency (longer critical path). We observed that the

middle-sized bitwidths can efficiently utilize the resources and achieve decent performance.

7.2 Evaluation Methodology

NFA workloads: We evaluate our proposed claims and architectures using ANMLZoo [2], AutomataZoo

[118], and Regex [100] benchmark suites. They represent a set of diverse applications including machine

learning, data mining, and network security. We present a summary of the applications in Table 7.1, including

the number of states and transitions in each benchmark as well as the average degree (the number of incoming

and outgoing transitions) for each state, the total number of loops in each benchmark, and symbol density.

Symbol density shows the average number of symbols per state, and is calculated by dividing the total number

of symbols over the total number of states in each benchmark. We later show that the higher state density

causes higher state and transition overhead when transforming an automaton.

Table 7.1: Benchmark Overview

Benchmark #Family #States #Transitions
Ave. Node Symbol
Degree

Density
Brill [2] Regex 42658 62054 2.90 52.2
Bro217 [100] Regex 2312 2130 1.84 1.8
Dotstar03 [100] Regex 12144 12264 2.01 3.1
Dotstar06 [100] Regex 12640 12939 2.04 4.8
Dotstar09 [100] Regex 12431 12907 2.07 6.7
ExactMath [100] Regex 12439 12144 1.95 1
PowerEN [2] Regex 40513 40271 1.98 5.8
Protomata [2] Regex 42009 41635 1.98 116
Ranges05 [100] Regex 12621 12472 1.97 1.2
Ranges1 [100] Regex 12464 12406 1.99 1.2
Snort [2] Regex 100500 81380 1.61 7.5
TCP [100] Regex 19704 21164 2.14 10.1
Hamming [2] Mesh 11346 19251 3.39 113
Levenshtein [2] Mesh 2784 9096 6.53 1
EntityResolution [2] Widget 95136 219264 4.60 47
Fermi [2] Widget 40783 57576 2.82 7.1
RandomForest [2] Widget 33220 33220 2 179
SPM [2] Widget 69029 211050 6.11 26.5
BlockRings [2] Synthetic 44352 44352 2 1
CoreRings [2] Synthetic 48002 48002 2 1

Experimental setup: To calculate area, power, and clock cycle for RBDs, we use CACTI 7.0. We
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assumed a 4MB SRAM-based memory with eight banks on 22nm technology and operating temperature

360K.

All FPGA results are obtained on a Xilinx Virtex UltraScale+ XCVU9P with a PCIe Gen3 x16 interface,

75.9 Mb BRAM and 1182k CLB LUTs in 16nm technology. The FPGAs host computer has an 8 cores Intel

i7-7820X CPU running at 3.6 GHz and 128 GB memory. Designs are synthesized with the default synthesis

option.

Because the AP, RDB designs and our FPGA solution have similar run-time execution models and all

are PCI-Express boards, we can disregard data transfer and control overheads to make general capacity and

performance comparisons between these platforms.

Comparison metric: To compare spatial automata processing architectures (the AP, CA, RBDs, and

FPGAs), we use throughput per unit area. Throughput is defined as the number of bits that can be processed

in one second (frequency ×Bitwidth size). We then calculate throughput per area (total area used for a

benchmark) to consider the effect of consumed spatial resources used in each architecture. If the automata

(connected components) in a benchmark cannot fit in one hardware unit (HU), we replicate HUs until all

the automata are accommodated. The total area is calculated by multiplying the area of one HU and the

number of required HUs for each benchmark.

A full LUT utilization on FPGA means that the board cannot be used to run any other application.

Therefore, we use the FPGA die area to calculate total area by each benchmark. Hardware replication can

avoid the costly reconfiguration of FPGAs. This increases hardware cost, but cloud computing providers,

such as Amazon, offer instances with several FPGAs with reasonably cheap price.

ANMLZoo benchmarks are designed to fit into an AP chip (with up to 48K states). However, because of

the AP inefficient routing, the ANMLZoo benchmarks cannot utilize all 48K states, and thus, the benchmarks

are pretty small and do not indicate a real-size application. We replicate each benchmark 1000 times to

create a larger set of automata for each benchmark. This makes sure that all the benchmarks require at least

one unit of hardware in our studied architectures.

7.3 Results

In this section, first, we evaluate the effect of negation operation and analyze the state and transition overhead

in various bitwidths on ANMLZoo and Regex benchmark suites. Next, we evaluate hardware implications

of FlexAmata on our RDB and FPGA designs and compare them with the AP and CA architectures.

AutomataZoo provides an open-source tool to generate automata applications with different configurations.
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Figure 7.10: State overhead in different bitwidths normalized to original 8-bit automata.

Figure 7.11: Transition overhead (#edges) in different bitwidths normalized to original 8-bit automata.

We then use AutomataZoo to generate automata with very large or small alphabets to evaluate software

implications of FlexAmata.

7.3.1 Complexity Analysis of Different Bitwidths

This section discusses the state and transition overhead in different bitwidths and evaluates interval effect

explained in Section 7.1.

We observed that benchmarks with higher symbol density (last column in Table 7.1), such as Brill,

EntityResolution, Hamming, Protomata, RandomForest, and SPM, have highest state and transition overhead

in different bitwidths. Except for RandomForest, the rest of these applications have many states with negation

operation (ˆs, where s is a single symbol). We redesigned the automata for these applications and changed

ˆs symbols to ’*’ symbols when possible. This reduces the number of symbols significantly, because in

FlexAmata, ’*’ is translated as one symbol whereas ˆs is translated as 255 symbols (assuming 8-bit symbols)

- see more details in see Section 7.1, interval effect. Figure 7.12 shows that our interval reduction can decrease

the state overhead up to 5.8× (average 3×) and transition overhead up to 13.9× (average 6.8×) in small

bitwidths. The rest of the paper is based on the refined version of these applications.

We generate n-bit automata (n=1-16) with FlexAmata for the benchmarks. Figure 7.10 and 7.11 show the

number of states and transitions in each bitwidth normalized to the number of states and transition in the

original 8-bit automata design. Due to space limitation, we only represent the ones with lowest overhead (1, 2,

4, and 16-bit designs). RandomForest has the highest overhead because its symbol density is relatively high

and we could not apply interval reduction technique (negation operation removal) to this benchmark (because
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Figure 7.12: Reduction in state and transition overhead of bitwidth transformation in FlexAmata after
removing the negation operations relative to the state and transition overhead with the negation operations
in the original designs.

it changes the functionality of the application). Interestingly, the number of states in EntityResolution in

16-bit design is less than original 8-bit design. This is because when the original design is converted to

bit-automata, FlexAmata applies bit-level minimizations to maximally merge the states. Therefore, the 16-bit

designs generated from the optimized bit-automata have fewer states compared to the original 8-bit design.

This shows that FlexAmata can be useful to minimize an automaton when its original design is not optimized

and have redundancy. Moreover, the applications with high average degree node, such as Levenshtein, have

higher state/transition overhead.

On average, 1, 2, 4, and 16, designs have 9.9×, 5.2×, 2.3×, and 1.1× more states and 10.5×, 6.6×, 2.8×,

and 1.6× more transitions over the original 8-bit designs. The increase in the number of states translates

to higher utilization of memory columns in in-memory designs and LUTs in FPGAs. The increase in the

number of transitions translates to more interconnect resources in FPGAs. However, transitions in RBDs are

implemented with a memory-based full crossbar interconnect (Figure 7.8), which supports full connectivity.

This means that the higher transition count in smaller bitwidths utilizes the existing hardware switches in

full crossbar and does not incur extra resource overhead.

Using these analysis, architects can identify the best bitwidth-size for designing an efficient state matching

and interconnect architecture. The following subsections outline the bitwidth implications for RBDs.
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Table 7.2: Comparison among 1, 2, 4, and 8-bit RBDs and the AP. RBDs are all based on 4MB SRAM-based
memory.

Architecture
Symbol Subarray Number of Number of State matching Interconnect Frequency Area Total Dynamic R/W Total leakage

size (bit) Size subarrays States delay (ns) delay* (ns) (GHz) (mm
2
) energy (nJ) per access power (mW)**

RBD (22nm)

1 R=2, C=256 65,536 16,384K 0.11 2.7 0.368 13.14 0.53 1895
2 R=4, C=256 32,768 8,192K 0.11 0.368 2.7 10.29 0.45 1969.24
4 R=16, C=256 8,192 2048K 0.15 0.368 2.7 7.76 0.39 1664
8 R=256, C=256 512 128K 0.23 0.368 2.7 5.06 0.35 1396

AP (50nm) 8 R=256, C=256 192 48K 7.5 7.5 0.133 144 N/A N/A

* In RDBs, critical path is state transition stage (interconnect), which is similar for all RDBs. Therefore, they all have a
similar clock frequency.
** The details of energy and power are not available for the AP. The estimated TPD is 4W maximum.

Figure 7.13: Comparing throughput per area (mega-bit processing per second per 1mm
2

area) in RBDs
and the AP. RDBs are in 22nm and the AP is scaled to 16nm technologies. On average, 2-bit and 4-bit
processing have 1.6× and 2.3× higher throughput per unit area than 8-bit processing, respectively, and more
than 100× than the AP.

Figure 7.14: Comparing throughput per area (kilo-bit processing per second per 1mm
2

area) in FPGA
solutions. On average, 16-bit has 1.3×, 4.4×, and 25× higher throughput per unit area than 2-bit, 4-bit,
and 8-bit designs, respectively. Moreover, on average, 16-bit has 2.5× higher throughput per unit area than
8-bit design when ignoring three applications with highest average node degree (SPM, Levenshtein, and
EntityResolution. See Table 7.1).

7.3.2 Reduced Bitwidth Designs (RBDs)

This section evaluates reduced bitwidth designs and compares them with the Automata Processor and Cache

Automaton models. Table 7.2 presents the architectural parameters for different RDBs (1, 2, 4 and 8-bit) and

the AP. The 8-bit design represents Cache Automata model. Generally, in an in-memory automata design,

the number of states shows the number of required memory columns and 2
biwidth−size

shows the number of

required memory rows.
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All RDBs are designed assuming a 4MB SRAM-based memory. The smaller bitwidth designs have smaller

subarrays, and thus, they have a higher state density and smaller read and write access time. To calculate

clock frequency, we found that the critical path is the state transition stage, where local and global switch

arrays are calculating the potential next states in parallel (see Figure 7.8). The global switch stage requires

0.368ns composed of 0.125ns due to wire-delay (SPICE modeling) and 0.243ns due to global switch. The

distance between SRAM arrays and global switch arrays is estimated to be maximum 1.9mm assuming

maximum state matching dimension of 3.5mm × 3.75mm (for 1-bit design). The pipeline clock frequency is

determined by the slowest stage. Thus, the maximum possible frequency is 2.7GHz. We choose to operate at

2.5GHz. The area, total read/write access, and total leakage power of a smaller bitwidth design are higher.

This is because more subarrays incur more sense-amplifier and wiring overhead.

Figure 7.13 compares throughput per unit area in 1-bit, 2-bit, 4-bit, and 8-bit RDB designs and the AP

across several benchmarks. The applications with more states, such as Entity Resolution and Snort require

more hardware resources, and therefore, have lower throughput per unit area. Within each application, the

1-bit design has the lowest throughput per area. This is because the state and transition overhead in 1-bit

design will not be amortized by higher state density of 1-bit architecture. On average, 2-bit and 4-bit designs

have 1.6× and 2.3× higher throughput per area than original 8-bit design, respectively. This means that to

reach the same throughput, an 8-bit design requires 1.6× and 2.3× more hardware units on average than

2-bit and 4-bit designs, respectively.

This is mainly because state density in the 2-bit and 4-bit designs is exponentially (64× and 16×,

respectively) higher than 8-bit design (column 5 in table 7.2). This means that more automata can be

configured in similar amount of area, which reduces the total hardware resource requirements. The higher

state density can pay for 5.2× and 2.3× higher state count and larger total area (column 9 in table 7.2) in the

2-bit and 4-bit designs compared to the 8-bit design. On average, 2-bit and 4-bit designs have 138× and 206×

higher throughput per area than the AP.

Using FlexAmata toolchain, we calculated that the number of states in a connected component does not

exceed 1024, which is in compliant with our architecture model (Figure 7.8). Moreover, our investigations

show that the interconnect of larger connected components can entirely fit into a four 256×256 crossbar

switch designs, with allowing up to 64 connections between each with a global switch.

7.3.3 FPGA Results

Performance results for FPGA-based implementations are presented in Table 7.3. A modified REAPR is

presented in [1] on thirteen benchmarks from ANMLZoo. We compared our results to this implementation
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Table 7.3: Comparing FPGA performance results for different bitwidths and a modified version of REAPR
(8-bit) [1] on original size of ANMLZoo [2] benchmarks.

Benchmark
2-bit 4-bit 8-bit 16-bit REAPR 2-bit 4-bit 8-bit 16-bit REAPR 2-bit 4-bit 8-bit 16-bit REAPR

Brill 118,220 65,589 39,102 87,191 27,621 147,768 72,044 32,441 44,772 27,782 93 141 165 214 166
PowerEN 130,193 88,252 49,526 53,711 35,359 192,418 89,281 38,398 23,427 31,530 153 174 286 279 163
Protomata 127,237 73,745 47,092 46,706 49,791 194,629 90,628 34,491 19,866 36,285 116 196 167 263 126
Snort 75,754 43,829 22,601 31,610 43,061 345,239 148,443 58079 44,456 28,047 97 117 89 162 98
Hamming 31,170 13,876 7,380 9,302 5,602 139,885 17,884 6,702 3,450 6,637 62 118 187 210 312
Levenshtein 14,286 4,209 2,278 9,877 2,538 17,921 6,090 2,346 3,128 2,242 609 514 719 406 434
Entity Resolution 423,515 178,125 65,020 244,925 50,349 412,980 165,450 53,605 61,890 47,102 85 82 175 97 212
Fermi 113,460 44,729 27,804 38,743 36,314 165,495 71,682 29,555 20,127 32,261 183 376 393 225 116
Random Forest 215,066 89,544 41,907 27,971 50,349 321,262 118,944 30,961 15,571 25,769 80 135 205 233 200
SPM 254,038 14,441 87,435 219,014 64,615 381,749 173,161 57,008 84,244 59,106 185 136 264 168 126
BlockRings 110,782 88,507 41,201 22,496 44,446 177,675 88,875 44,367 22,368 44,185 126 53 123 86 256

Average 146,702 75,893 39,213 71,959 37,276 227,002 94,771 35,268 31,209 30,995 163 186 252 213 201

from the published results and thus, limit Table 7.3 to these thirteen benchmarks. Compared to REAPR

(which is an 8-bit design), our 8-bit design has a higher frequency and higher LUTs/FFs usage. Our design

uses a staging technique to localize signals and avoid high fanout wires (e.g., input signal). This reduces the

critical path, which increases frequency by 25% at the expense of 4% more LUTs and 12% more FFs.

On average, 2-bit and 4-bit processing require 3.7× and 1.9× more LUTs and 6.4× and 2.7× more FFs

compared to the original 8-bit design, respectively. This is mainly due to the higher state and edge overhead

in the smaller bitwidths (see Figure 7.10 and 7.11). LUTs can have one input and up to two outputs, and

thus, they cannot accommodate more states in smaller bitwidth designs. They also have 26% and 35% lower

frequency and smaller input processing rate compared to 8-bit design. All these confirm that small bitwidth

processing is not suitable for FPGAs.

Compared to 8-bit, 16-bit design has 1.8× more LUTs, 11% fewer FFs and 15% lower frequency. However,

the input rate processing of 16-bit design is twice as 8-bit design. This implies that for the applications with

real-time processing needs, a 16-bit design with 2× higher throughput can be used. In larger bitwidths (e.g.,

16-bit), the number of symbols increases, and thus, more LUTs are required. However, in 16-bit design, there

are more states with common parents than 8-bit design, and can share the FFs. Therefore, more LUTs are

used than FFs in larger bitwidths. In smaller bitwidths (e.g., 2-bit), more FFs are used than LUTs. This is

because there is a higher chance that two states share one LUT when having 2-bit symbols.

Figure 7.14 compares different bitwidths in our FPGA solution. As expected, 2-bit and 4-bit designs have

lower throughput per unit area than 8-bit design. Benchmarks with higher average node degree, such as

Levenshtein, EntityResolution, and SPM, require relatively more LUTs in 16-bit design than 8-bit design

(see Table 7.1 and Table 7.3). This decreases throughput per area in these applications in 16-bit design.

On average, the 16-bit design has 2.5× higher throughput per area that 8-bit design (ignoring these three

applications). Overall, for regular expressions with relatively lower average node degree than mesh and

widgets, 16-bit designs perform best on FPGAs.
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Table 7.4: All are 8-bit architectures. Throughput is mega-bit per second per mm
2
, and is averaged over 20

benchmarks in Table 7.1. Each benchmark is replicated 1000×.

Architecture Technology Ave. Throughput
(8-bit) Size (nm) per Area

RDB 22 (original) 19.6
AP 50 (original) 0.007
FPGA 16 (original) 0.5
RDB 16 (projected) 47.1
AP 16 (projected) 0.22

7.3.4 8-bit Processing Across Architectures

This section compares 8-bit designs across spatial architectures, the AP, FPGA, and an in-memory solution

(8-bit RDB). On average, 8-bit RDB has 94× and 214× higher throughput per area than FPGA and the

AP solutions on the same technology node (16nm). This means that to achieve similar throughput for an

application, an FPGA needs on average 94× and the AP needs on average 214× more spatial resources than

an in-memory solution (RDB).

RDB efficiency is derived from an efficient and flexible routing architecture, which is a memory-based

full-crossbar interconnect that can connect any two states. This results in higher automata density because the

state-matching resources are not underutilized due to routing congestions. The automata with more complex

routing structures incur routing congestion on the AP and FPGA (FPGAs can handle more complex routing

better than the AP), and thus, incur higher area overhead than RDB to accommodate all the automata in a

benchmark.

Moreover, our place-and-route algorithm on RDB is 1-2 orders of magnitude faster than the AP compiler,

and the AP compiler is 1-2 orders of magnitude faster than the FPGA tools. With a large application and

limited number of hardware units, the application might need several rounds of reconfigurations on the

hardware. This implies that the AP or FPGA will incur a significant performance penalty for place-and-route

when an application do not fit on the available hardware resources.

7.3.5 Hardware Utilization for Smaller Bitwidths

This section evaluates FlexAmata for applications with smaller bitwidths running on existing 8-bit automata

accelerators. Many pattern matching applications have smaller alphabets and cannot fully utilize the existing

8-bit accelerators. We use Levenshtein automata
1

in AutomataZoo benchmark suite [118] to evaluate

throughput per unit area on 8-bit RDB when using FlexAmata. Levenshtein automata are designed to

calculate edit distance between two strings, and are useful for genomics applications.

1
https://github.com/tjt7a/AutomataZoo/tree/master/Levenshtein
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First, we generate Levenshtein automata for different string lengths with 2% edit distance. The strings

are randomly generated with A, T,C and G symbols to resemble read-alignment in genome sequencing.

Clearly, two-bit is enough to represent the state symbols and input characters. However, the original design

assumes 8-bit symbols. Then, using FlexAmata, we (1) reduce symbol-size from 8-bit to 2-bit, (2) generate

bit-automata from 2-bit Levenshtein automata, and (3) generate 8-bit automata from bit-automata. The

generated 8-bit design can be processed on the existing 8-bit accelerators. The 8-bit automata processes four

2-bit symbols in each cycle, which results in up to 4× increase in throughput with just software modifications.

Figure 7.15: Comparing throughput per unit area for Levenshtein with different string lengths in original
8-bit automata design and optimized FlexAmata 8-bit design on 8-bit RDB. On average, FlexAmata design
has 2.5× higher throughput per area than original design on RDB.

Fig. 7.15 compares the throughput per unit area for Levenshtein with different sizes in original 8-bit

automata design (1 symbol per cycle) and FlexAmata 8-bit design (4 symbols per cycle). On average,

FlexAmata design has 2.1× more states than the original design. However, because of its higher processing

rate (4 symbols per cycle), it has 2.5× higher throughput per area.This all implies that using FlexAmata as a

backend compiler can increase the throughput of applications with smaller symbol-set size without the need

to change the existing hardware accelerators.
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7.3.6 Feasibility Support for Large Symbol-Set Size

Many pattern matching kernels in data mining and natural language processing have a large symbol-set

size. To evaluate the generality of FlexAmata, we use SPM (sequential pattern matching)
2

benchmark and

generate frequent sequences for BIBLE dataset
3
. The automata are constructed from frequent sequences in

several iterations. BIBLE has 13905 distinct items (symbols), so 14 bits are required.

Figure 7.16: Comparing the number of states and transitions in different sequence sizes for original and
8-stride automata.

Fig. 7.16 shows the average number of states and transitions for SPM automata in each iteration. The

original automata require a 14-bit symbol processing architecture. This means that the memory should

provide 2
14

rows in each subarray, which is very costly and extremely inefficient for one-hot encoding of

symbols. The symbol-set size can easily increase in a larger dataset, which makes increasing the memory

column size unfeasible.

FlexAmata provides a scalable and feasible solution by (1) generating 1-bit automata from the original

14-bit automata and then, (2) create 8-bit automata from the 1-stride automata. The resulting 8-bit design

provides a low-overhead and feasible solution on the existing architectures and requires only up to 2.1× more

states and 1.5× more transitions compared to the original automata (Figure 7.16). This is a very small price

to pay for feasibility!

7.4 Conclusions and Future Work

This paper presents a software solution, FlexAmata, to transform an automaton structure to process symbols

with various bitwidth sizes. This flexibility introduces software and hardware compatibility for automata

2
https://github.com/tjt7a/AutomataZoo/tree/master/SeqMatch

3
http://www.philippe-fournier-viger.com/spmf
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processing in a broad range of new applications. Our explorations show that FlexAmata provides higher

hardware utilization for applications with small alphabets and feasibility for the applications with very large

alphabets. Inspired by the properties of transformed automata on a wide range of applications, we propose

in-memory architectures and FPGA solutions to process automata with different bitwidths. Our investigation

reveals that 4-bit automata processing on an in-memory architecture has 2.3× higher throughput per unit

area than native 8-bit processing. Moreover, 16-bit automata processing performs 2.5× better than 8-bit

processing on FPGAs for most of the applications. To summarize, our 4-bit in-memory solution has higher

throughput per unit area than all the existing spatial architectures. Future work will explore long bitwidth

processing (or multi-symbol processing) on in-memory architectures and FPGAs.



Chapter 8

Conclusions

This dissertation focuses on the design and evaluation of memory-centric accelerators for finite automata

processing and deterministic pushdown automata. Accelerating finite automata processing benefits regular-

expression workloads, such as network intrusion detection and virus scanning [4], and a wide range of

other applications that do not map obviously to regular expressions, including pattern mining [6, 9, 7, 119,

16], bioinformatics [10, 120], natural language processing [121, 15], and machine learning [12]. Moreover,

accelerating pushdown automata processing benefits tree-structured workloads such as natural language

processing and XML parsing [34].

This dissertation first proposes a new application domain that could benefit from accelerated automata

processing: rule-based part-of-speech tagging [14]. We use part-of-speech tagging as a case study to show

that spatial automata processing hardware accelerators can make rule-based techniques orders of magnitude

faster than statistical-based and machine learning-based taggers. This allows rule-based approaches to employ

more rules and achieve competitive accuracy with state-of-the-art techniques. This motivates re-evaluation

of rule-based approaches in natural language processing. This work shows that memory-centric hardware

accelerators are up to 2,600× and 253× more efficient than CPU-based and GPU-based techniques in the

literature, respectively.

This dissertation then introduces another new application domain that can exploit accelerated automata

processing hardwares: subtree mining [6]. Subtree structures are more complex than sequences and cannot

be represented with regular languages. Therefore, existing finite automata processing accelerators cannot

provide an exact solution for tree-based structures. This work proposes a multi-stage pruning strategy on

memory-centric automata processing platforms to reduce the search space of the subtree mining problem in a

short amount of time, providing a fast and scalable solution at the cost of a small reduction in accuracy. Our

115
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technique improves the performance of subtree mining problem up to 394× over state-of-the-art CPU and

GPU solutions, while having 7.5% false positives. To provide a fast and accurate solution for tree mining, we

then combine our pruning approach with an exact CPU solution. Our hybrid solution achieves up to 262×

better performance than pure CPU solutions. The benefits of our pruning and hybrid approach increase with

increasing tree candidates and tree dataset size.

This dissertation then presents a general-purpose, scalable, and reconfigurable in-SRAM architecture

that supports rich pushdown automata processing for more complex patterns, such as tree-like data. This

provides an exact solution for the tree mining application. We design a custom datapath that performs state

matching, stack update, and transition routing using memory subarrays. We also develop a compiler for

transforming tree structure to pushdown automata executable on our proposed architecture. By providing

hardware support for DPDA, this study brings the efficiency of recent automata acceleration approaches to a

new class of applications.

This dissertation then identifies existing in-memory automata processing accelerators suffer from inefficient

routing architectures. They are either incapable of efficiently place-and-route a highly connected automaton

or require an excessive amount of hardware resources, which both limits the efficiency of complex pattern

matching on existing solutions. Motivated by connectivity patterns in the real-world automata benchmarks,

we propose a high-speed, dense, and low-power reconfigurable in-memory reduced crossbar interconnect

for state transitions in automata. RCB compacts the switch patterns in a full crossbar interconnect and

provides a 7× reduction in the number of switches. This, in turn, reduces power consumption and delay

due to shorter wires. Then, we map our interconnect model and state-matching resource to an efficient

memory technology and propose eAP (embedded Automata Processor), a high-speed, dense, and low-power

reconfigurable architecture for automata processing. We exploit inherent bit-level parallelism in memory to

support multiple concurrent transitions in NFA and utilize subarray-level parallelism in memory to process

thousands of automata in parallel. Overall, eAP presents 5.1× and 207× better throughput normalized to

area compared to the previously designed in-memory automata accelerators, Cache Automata (CA) and the

Automata Processor (AP) respectively. Benefits of eAP are even higher for larger applications

This dissertation then identifies a lack of toolset and investigation for variable bitwidth automata

processing on memory-centric architectures. Therefore, we present a software solution, FlexAmata, to

transform an automaton structure to process symbols with various bitwidth sizes. This flexibility introduces

software and hardware compatibility for automata processing in different applications. Our explorations

show that FlexAmata provides higher hardware utilization for applications with small symbol-set size and

feasibility for the applications with very large symbol-set size. Inspired by the properties of transformed

automata on a wide range of applications, we propose in-memory architectures and FPGA solutions to process



Conclusions 117

automata with different bitwidths. Our investigation reveals that 4-bit automata processing on an in-memory

architecture outperforms native 8-bit processing. Moreover, 16-bit automata processing performs better than

8-bit processing on FPGAs for most of the applications. Overall, our 4-bit in-memory solution has higher

throughput per unit area than all the existing spatial architectures.

The first insight is that rule-based methods on automata hardware accelerators can compete with the

accuracy of statistical/ML-based approaches, especially in larger datasets. This sets up a very interesting

tradeoff to evaluate when designing an application: a small decrease in accuracy in exchange for vastly faster

execution. This suggests that rule-based approaches are valuable for use cases where performance is critical,

as long as a small drop in accuracy can be tolerated.

The second insight is that the conventional 8-bit automata model does not provide the most efficient

computation on memory-centric architecture for real-world automata applications. There are applications

with smaller character-set, and their automata do not utilize the 8-bit supported hardware accelerators. On

the other hands, there are applications with very large character-set, which cannot be mapped to the existing

8-bit automata accelerators. Moreover, to design the next generation of automata processor, 8-bit designs

will not provide the best implementations for general automata processing. This research provides toolset

and insights on (1) how the existing automata applications can fully utilize the existing architectures and (2)

how to efficiently design future automata accelerators.
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