
Page 1 of 44

SELF-CORRECTING PING PONG BALL LAUNCHER

A Technical Report submitted to the Department of Electrical and Computer Engineering

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Engineering

By

Angus Chang

December 13, 2022

On my honor as a University student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISOR

Harry Powell, Department of Electrical and Computer Engineering

Page 2 of 44

Statement of Work:
Kai Barzdukas

 The primary responsibility assigned to me was the embedded software on the

microcontroller. This includes the pulse-width modulation (PWM) commands to aim and shoot

the balls, the Kalman filter to self-correct miss-shot balls, and dealing with user input from the

user interface (UI) with the universal asynchronous receiver-transmitter (UART) communication

protocol. These were all written using C-language code in Code Composer Studio (CCS).

Relevant libraries include the MSP432 source files and Texas Instruments (TI) driverlib for

function declarations or standard functions for use with the TI MSP432P401R microcontroller.

 Another responsibility of mine was the assembly and testing of the electronic hardware –

these being the printed circuit board (PCB), microcontroller, and pan/tilt servo system. A good

portion of my time on this project was spent wiring and debugging various stages and

configurations of the PCB, embedded, and launching systems. This includes adding or modifying

components on the PCB to get expected signal response, reconfiguring the pin placement at the

various stages of development, tweaking PWM or Kalman values to aim and shoot properly, and

the complete refactoring of the embedded code during the switch from our initial microcontroller

– the TI Simplelink CC3220SF – to the MSP432. As a result of working closely with these

sections of the project, I was largely involved with the final testing process – ensuring the

launcher was accurate when shooting balls into the target grid.

Angus Chang

 My main project area was the UI and object detection aspects, as well as the

encompassing system that would combine them and communicate from the laptop to the

microcontroller. The UI runs using the Tkinter package in Python and provides target selection

capabilities to the user. When a box has been selected, it relays this to the microcontroller which

initiates a launch. For object detection, it also uses a Python library called OpenCV to detect

where the ping pong ball lands after being launched. It uses a live video feed from a webcam to

pinpoint which of the nine boxes has the ball. The combined system connects these sections

together into one flow of actions: the user selects a box to target, which is relayed to the

microcontroller. After launching, the video portion detects which box the ball landed in, and the

result is also relayed to the microcontroller to make aiming adjustments if needed.

Communication between the laptop system and the microcontroller was another area that

required some planning. We chose to use the UART protocol and used a USB to serial adapter in

order to allow serial communication to originate from the laptop. I was responsible for choosing

the adapter part to use, and getting it integrated with our software system and the header board.

On the software side, the pySerial library was used to allow serial communication using Python,

transmitting out through where the adapter was plugged in. On the hardware side, the adapter

had certain pins that needed to be routed correctly, connecting to the correct inputs on the

microcontroller.

Page 3 of 44

David Chen

 My main role in this team was designing the mechanical enclosure and frame of our

device. I started off by designing the frame in which the pan/tilt mount would operate in CAD

using SolidWorks. Upon creating the initial CAD design and acquiring parts for the build. I

constructed the aluminum frame and the platform for which the mount would rest on. This was

done using leftover 80/20 aluminum from previous capstone groups and wood purchased from

Lowes. Along with the mechanical frame of the launching side, I also created the design and

implementation for the receive side which was a target grid box made entirely of wood. The

initial design was developed in CAD via SolidWorks. I was primarily responsible for all building

and construction of all designs. These two mechanical pieces directly affected the project's

overall look and how the electrical components would be harnessed for the project.

 In addition, to the mechanical design of the frame, I also designed the track and

launching platform for the push solenoid. Initially, the design was created in CAD and then 3D

printed. After going through many versions, the final solenoid track was decided on and

implemented onto the final prototype. The track was critical in allowing the ball to be reloaded

and for the plunger to return to its primed state efficiently. Once all the designs were set up, the

solenoid track was placed as well so that final testing and prototyping could occur.

 Along with my main role as the mechanical designer, I also was involved in the selection

of electrical parts and components for the PCB. I worked hand in hand with Jake to properly

integrate components onto the board to ensure that all parameters matched, and all drivers would

work as intended. This also included testing and evaluation of the board to ensure that the

hardware worked as intended.

Jake Coughlin

My role was to design the schematics and layout of our PCB. I used a hierarchical design

with several subcircuits connected to one power supply providing power to the entire board. The

PCB is a header to a microcontroller used to control our overall system, so I had to ensure the

design was correctly interfaced between the PCB and the layout of the microcontroller. My

design process was to effectively start from the top and work down. I knew the basic

requirements to our system was to control two servo motors and one electromagnetic solenoid.

These devices had specific input and power requirements. From there, I researched the electronic

parts necessary to control these devices, ensured that they were available, and compiled a bill of

materials necessary for the PCB. With this design, I formulated a test plan for each section of the

design. This plan primarily involved using test points to verify that the correct voltages are

observed and that input signals from a signal generator are also observed where they are needed.

 I then designed the PCB layout using KiCad. This involved arranging the component

footprints in an orientation that could satisfy the design rules and functional requirements of the

PCB. I generated the files necessary for manufacturing and submitted them. Once the board

arrived, I worked with David, Kai, and Angus to populate the board and test within the system.

The testing involved connecting the board to power, testing the power levels at specific points on

the board, connecting each of our servo and solenoid devices, and testing their functionality.

Page 4 of 44

Table of Contents
Statement of Work: ... 2

Table of Contents .. 4

Table of Figures .. 5

Table of Tables ... 6

Abstract ... 7

Background ... 7

Physical Constraints .. 8

Design Constraints .. 8

Cost Constraints .. 8

Tools Employed .. 8

Societal Impact Constraints .. 9

Environmental Impact ... 9

Sustainability... 9

Health and Safety .. 10

Ethical, Social, and Economic Concerns .. 10

External Considerations .. 10

External Standards .. 10

Intellectual Property Issues ... 10

Detailed Technical Description of Project .. 11

Mechanical Design.. 11

Servo Motor Driver ... 16

Solenoid Driver ... 19

Drive Current .. 20

Power Dissipation and Temperature ... 21

PCB Power Supply ... 22

Object Detection ... 25

User Interface .. 26

USB to Serial Communication.. 27

Pulse Width Modulation Motor Commands ... 28

Kalman Filter .. 30

Project Time Line ... 31

Test Plan.. 33

Page 5 of 44

PCB Test Plan ... 33

Solenoid Test Plan .. 34

Servo Motor Test Plan .. 34

Overall System Test Plan .. 35

Final Results.. 35

Costs .. 37

Future Work .. 38

References ... 39

Appendix ... 42

Appendix A: Bill of Materials for PCB Header.. 42

Appendix B: Bill of Materials and Costs of Project ... 43

Table of Figures
Figure 1: Initial Design Frame .. 12

Figure 2: Final Design Frame ... 12

Figure 3: Initial CAD Design for Target Box ... 13

Figure 4: Final Target Box Design ... 14

Figure 5: Initial CAD Design and 3D Part of Solenoid Track V1 .. 14

Figure 6: Versions of Solenoid Track ... 15

Figure 7: Solenoid Track Final Version – Mounted ... 15

Figure 8: Fully Harnessed Frame .. 16

Figure 9: Servo Motor Driver Circuit ... 18

Figure 10: Servo Motor Connector ... 18

Figure 11: ULN2003 Driver Chip... 19

Figure 12: Maximum Collector Current vs. Duty Cycle .. 20

Figure 13: Solenoid Driver Circuit ... 22

Figure 14: DC Barrel Jack .. 22

Figure 15: 12V to 5V Converter ... 23

Figure 16: 5V to 3.3V Regulator .. 23

Figure 17: PCB Layout ... 24

Figure 18: Pin Connections to MSP.. 25

Figure 19: Live Video Feed of Target Boxes ... 26

Figure 20: UI for Target Selection .. 26

Figure 21: DEV-09873 Header Pins ... 27

Figure 22: Original Gantt Chart .. 31

Figure 23: Midterm Review Gantt Chart .. 32

Figure 24: Final Gantt Chart ... 32

Page 6 of 44

Table of Tables
Table 1: Servo Motor Characteristics Necessary for PCB Header Design 17

Table 2: Solenoid Characteristics Relevant to PCB Design ... 19

Table 3: PCB DC Voltage Test Points .. 34

Table 4: Launcher vs. Human Player Trials ... 36

Table 5: Letter Grade Criteria ... 37

Page 7 of 44

Abstract

This project is a user-controlled ping-pong ball launching mechanism which plays against

a human opponent. Both sides aim to shoot balls into 1 of 9 target squares with better accuracy

than the opponent. The mechanism uses a combination of a pan/tilt mount controlled by servo

motors, a kick solenoid, and a computer user interface (UI) as a control mechanism for the in/out

(I/O) system that aims at the targets and launches the ping-pong balls. This system is controlled

by a MSP432 microcontroller [1] board communicating with a laptop running a python3-based

[2] user interface via the Universal Asynchronous Receiver/Transmitter (UART) communication

protocol [3]. To automatically provide feedback and adjustments, an image processing module

observes the result of the launch. This communicates back to the computer and then to the

microcontroller which adjusts programmatically and physically.

Background
From the conditions that cause a baseball to sail over the outfield wall [4], to the long-

term evolution of the development of ballistics for combat [5], the study of projectile motion is

extensive and important. To continue this study in the context of a simple game, we created an

electronic control, launching, and feedback system to play a game wherein the objective is to

land the ball into a specified target square.

A similar project that launched racquet balls into targets was developed by Hujae Choi,

Woohyun Jung, and Nakwan Kim in 2017 [6]. Another similar project was developed by Kober,

Mulling, and Kromer through 2010 to 2013 [7]. This design did not have any error-correction

methods, as it was used in a competition-style environment with only one chance to hit targets.

Our variation allows the launcher to incorporate small adjustments to the aiming trajectory if a

ball misses its target the first time. In 1997, Yamada et al. published a paper detailing the use of a

solenoid coil to launch a steel ball [8]. Another paper detailing the launching of ping-pong balls

in robotics is described by Acosta et al. in 2004 [9]. Our launching mechanism uses a similar

launching mechanism of a solenoid coil with an internal pushing plunger to strike the ball and

propel it forward.

The entire design encompasses a full set of hardware and software areas. Using

microcontrollers to send movement instructions to the motors as well as the launcher involved

our embedded system design knowledge from ECE 3430 “Introduction to Embedded Computer

Systems". Our project uses the MSP432 microcontroller and its capability for pulse width

modulation (PWM) to set the current flowing to the solenoid as well as control the servo motors.

The user input portion involves some UI and software design which draws upon material from

CS 3240 “Advanced Software Development Techniques” and CS 2150 “Program and Data

Representation”. CS 3240 was important for the use of front-end development such as buttons

the user can select in an interface, while CS 2150 was important for being a bridge between high

and low-level coding. These aspects were essential for the UI to communicate with the

microcontroller.

Finally, our solenoid coil launching mechanism required a circuit board to control and

power it, so this needed printed circuit board (PCB) design knowledge from ECE 3750 “ECE

Fundamentals III”. and ECE 2660 “ECE Fundamentals II”. Understanding the solenoid push

Page 8 of 44

mechanism and the physics behind it also draws information from ECE 3209 “Electromagnetic

Fields”. These courses were necessary for proper PCB design and the understanding of crucial

electronic components such as integrated circuits (ICs), transistors, diodes, and power supplies.

Physical Constraints

Design Constraints

 The MSP432 Microcontroller is limited to 256kB of flash memory at a speed of 16MHz

[10]. This is more than sufficient for our project. The software necessary for this project were

written in Integrated Development Environments (IDEs) called Code Composer Studio [11] and

PyCharm [12], using Python language [2]. These tools were all free to use.

 The only manufacturing limitation relevant to our PCB design was the inability for

Advanced Circuits to make non-circular through holes for our student boards. This affects one

piece, the DC Barrel Jack [13]. The PCB also used components all components that could be

soldered by hand. Another design constraint was the space we had to work in. Given that our

project launches ping-pong balls, they could only travel the length of the tables in the NI Lab.

There was also the design constraint of part orders occurring at specific times. In order to give

enough time for testing, we had to order certain parts on our own.

When discussing design constraints for the mechanical design, most of the constraint was

due to the lack of excess 80/20 aluminum present that could be used. Using leftover pieces from

previous capstone groups made it so that the design had to be slightly altered due to the limited

amount of aluminum frame present. The target boxes, dimensionally, was constraint based on the

field of view of the webcam used which was roughly 65 degrees.

Cost Constraints

 The cost constraint was a budget of $500. No single item posed a large strain on cost, but

many small items together added up. Equipment like Virtual Bench, soldering irons, and other

items were available for use in the NI lab for free. The budget means that there was not a lot of

room for purchasing many backup items.

Tools Employed

The entirety of the main system UI, including the video capture and serial

communication, is coded in the Python programming language. This was chosen for its

simplicity and wide selection of compatible libraries which offer the extra functionality needed

for the project. For example, object detection came from the OpenCV library [14], and serial

communication came from the pySerial library [15]. The software used to compile and run this

code was the PyCharm IDE. This allows each component of the system (webcam/object

detection, UI, and serial communication) to be coded in separate files, and then imported and

called when necessary.

Code for the microcontroller was developed in the C programming language and

compiled using the Code Composer Studio software, which acts as both an IDE and the

mechanism to flash code onto the microcontroller chip. The MSP432 source code [10] and TI’s

driverlib [16] were used in this project for general things such as MSP432-specific variable

Page 9 of 44

declaration for pin initialization or clock-register manipulation. Our original microcontroller, the

CC3220SF, used similar tools with the inclusion of TI’s CC3220SF source code [17].

For the mechanical design, two specific software tools were used for design and

implementation. SolidWorks was used to create the initial design for both the mechanical frame

and the target grid box. It was also used to design the solenoid track that was then 3D printed.

Cura software was used to slice the STL files of the solenoid track in preparation of it being

printed. Various power tools like jigsaw, power drill, and bandsaw were used to construct the

wood portions of the project.

For designing schematics and PCB layout, KiCad and its libraries were used to create

hierarchical designs and fully implement the layout of the PCB. The actual manufacture of the

PCB was done using a company called WWW and the population was done by hand by team

members in the NI lab.

Societal Impact Constraints

Environmental Impact

The project did not have a large carbon footprint as no nonrenewable resources were used

to power our robot. The plastic ping-pong balls were reused for the entirety of the semester –

meaning the project did not produce extraneous amounts of waste outside of the approximately 3

grams of carbon emissions per gram of plastic used in our project [18]. With many of the

primary components such as the MSP432 microcontroller board and the 80/20 steel recycled

from projects in previous semesters, we believe that this trend of reusing larger-ticket items

which have a larger environmental manufacturing cost in coming years will continue. This helps

mitigate the environmental impact of around 400 grams of carbon dioxide emission in the

production of microcontrollers, for example [19].

The electronic components, including the launching mechanism, were all electrically

powered passive elements and motors/servos – not requiring nonrenewable resources such as

pressurized gas. Unfortunately, there is no guarantee that the electricity used in this project was

clean. With approximately 60% of electric power in the State of Virginia derived from natural

gas, it is highly likely that our project has used energy sourced from nonrenewable sources [20].

Sustainability

It was determined that the deliverable was environmentally safe and can be disposed of

relatively easily, if not re-used for future projects. For disposal of other parts, electronics abided

by the City of Charlottesville’s E-recycling policy and other plastic parts were properly recycled

or disposed of [21]. Furthermore, as many of the components such as the 80/20 aluminum used

in this project were reused from prior years, it is likely that the same components will be

recycled in future projects of ECE 4991. The parts with a high environmental impact will be

used longer than a single semester or year and thus will prevent the creation of waste stemming

from parts manufacturing.

Page 10 of 44

Health and Safety

From a health and safety aspect, our project was relatively safe. Containing no heavy

machinery or sharp pieces, there was no danger of users or bystanders getting severely injured by

our device. The motors and servos are low-powered devices and did not pose a danger for any

persons near the device. The solenoid exerts less than a pound of force meaning direct contact

with an extending solenoid will not cause any harm. The solenoid used (McMaster-Carr 12V

Push Linear Solenoid [22]) is a UL Recognized Component, which certifies that it meets UL

safety standards [23] as a device.

The projectile being launched was a ping pong ball, which has very low safety risks

associated with it. Nittaku, a ping pong ball manufacturer, cites only a couple items of interest

regarding safety [24]. The balls are flammable and should be kept away from sources of ignition.

Although difficult to ingest, medical help should be sought out immediately in that event.

Finally, these plastic balls should not be released into the environment and instead be properly

disposed of in the trash. These safety constraints are straightforward, and our group was able to

adhere to them throughout the project.

Ethical, Social, and Economic Concerns

Aside from physical safety concerns, there were also ethical concerns which led to the

scrapping of our original idea for the Nerf dart shooting device, as it contained a model gun

which was deemed insensitive given recent events surrounding violence in schools. The new

iteration of our project idea featured a solenoid ball launcher instead, which has a neutral image

that is not associated with any weaponry. We believe this change has addressed the concerns and

presents an ethically sound game-playing robot.

External Considerations

External Standards

In terms of interconnects and industrial harnessing, we abided by the IPC/WHMA-A-620

[25] standard. For board design, our PCB was required to abide by the Institute for Printed

Circuits (IPC) and its regulations [26]. Following these standards helped our project stay

consistent with industry board practices. Even though the project involved transmitting data,

there were no wireless components involved, so wireless communication standards such as

802.11 [27] were out of the scope of considered standards.

Intellectual Property Issues

To determine whether the project is patentable, it was compared to 3 similar US-patented

designs. The first of the three patents are a ‘Mechanical projectile and target game’ [28] based on

the same idea of a player versus player ping pong ball launching game. In this design, players

take turns launching ping pong balls from mounted, aimable launchers. It is a purely mechanical

design, with players launching the balls using spring-like apparatuses. There are several claims

in this patent – all of which are independent design choices such as the positioning of the goals

or launcher. While the general idea of our project was based off the same idea of launching ping

pong balls into cups, we believe the idea of playing against a robotically assisted player with

Page 11 of 44

nearly perfect accuracy and the various electronic components make the two projects

significantly different from one another regarding the gameplay loop.

The second and third patents are a ‘Table tennis robot’ [29] and ‘Table tennis ball serving

device’ [30] which both use a set of spinning wheels to launch a ping pong ball for a player to hit

back. These are essentially pitching machines to practice playing ping pong against. Like the

‘Mechanical projectile and target game,’ the claims for both are all independent, only relating to

the functionality of the physical design of the system. While similar in the fact that they launch

ping pong balls, this and other relevant mechanical ping pong ball launching mechanisms seem

to prefer a flywheel system compared to our kick solenoid design to launch the ball. This is

likely due to their ability to apply spin and a lesser emphasis on the accuracy of shots.

After looking through the US patents for something more comparable to the project than

these designs, we can comfortably say that our design is patentable. Compared to other designs,

our launcher has several unique components such as the image processing to provide user

feedback which was nonexistent in any other designs. The choice to use a solenoid to launch a

ball was also unique. Furthermore, our design fulfills a niche as a perfect opponent which

showcases nearly flawless play when playing Beirut (the official name of launching ping pong

balls into cups).

Detailed Technical Description of Project
In order to achieve the goal of a self-targeting and self-correcting ping-pong ball

launcher, three major electrical systems are necessary on the PCB. They are the servo motor-

controlled pan/tilt mount that aims the launching mechanism towards the target, the solenoid-

powered launching mechanism itself, and the real-time communication between the computer

user interface and the microcontroller. The power, protection, and connections to these major

systems are all housed in a Texas Instruments MSP432 microcontroller [1] header board. A full

bill of materials for PCB parts can be seen in Appendix A. Included with the electrical systems is

an efficient mechanical design that encloses all necessary components safely.

Mechanical Design

The overall mechanical design of the project covers multiple aspects. The first subsystem

is the mechanical frame for the launching side. The initial CAD design can be shown on the next

page.

Page 12 of 44

Figure 1: Initial Design Frame

Originally, the frame dimension was 16” x 10” x 10” and consisted predominantly of

reused 80/20 aluminum slots. Angled and T-shaped mounting brackets were to be used to fix the

pieces of 80/20 together. The top square housing would house both the pan/tilt mount and the

solenoid launcher. Initially, angled trusses were designed to create additional support and prevent

any components from moving. Once the design was created, construction began and as result the

final design is shown below.

Figure 2: Final Design Frame

Page 13 of 44

In the finalized version there are some slight differences. Due to insufficient 80/20, there

were no longer angled trusses supporting the frame. Instead, four parallel supports were

constructed so that the mounting platform can lay perpendicular to the supports like a square.

The initial dimensions also changed drastically due to the size of 80/20 that was available.

The second subsystem for the mechanical design is the receiving target grid box. Figure 3

below shows the initial CAD design for the target grid box.

Figure 3: Initial CAD Design for Target Box

Originally, the grid box was to be comprised of a 4” x 4” design with 16 individual target

spaces. Due to table constraints in the NI lab, this was changed to a 3” x 3” design that had 9

spaces instead. The dimensions of each target space, however, stayed the same at 3.5” x 3.5”. To

stay consist with dimensions, the depth of the box was also similar. The initial plan for the target

box was to construct it out of plexiglass and PVC, t, this was later changed to all wood to make it

easier to and construct.

Page 14 of 44

Figure 4: Final Target Box Design

Figure 4 above shows the finalized wooden target box. As discussed earlier, the

dimensions stayed the same as the initial design. The plexiglass inserts around the enclosure

were added so that the ping pong ball does not go flying in different directions when launched. It

can also be seen in the photo that foam inserts were glued on the back side of each target to

soften and prevent additional bouncing from the ball when it is launched into the target box. The

target box was painted black to create a color gradient so that the image processing could detect

the orange ball. Along with that, white padding was placed on the bottom of the box to soften the

bouncing of the ball and to create a color gradient for easier detection from the camera.

The third mechanical subsystem that was implemented was the solenoid track. For the

ball to be launched properly and effectively, there was a need to fix the solenoid onto the pan/tilt

mount as well as have a track for the ping pong ball to sit on. The initial CAD design had a

housing for the solenoid as well as a track and was meant to be mounted on the flat side of the

pan/tilt mount. Figure 5 on the next page shows a side-by-side of the initial CAD design and the

3D printed part with the intended components on it.

Figure 5: Initial CAD Design and 3D Part of Solenoid Track V1

The reasoning behind the solenoid track design was that it would enclose the solenoid

and fix it onto the pan/tilt mount. The design had a back to it so that the plunger would maximize

its distance traveled and strike the ball with a full stroke length. There were a couple of issues

Page 15 of 44

with the first version of the track. The first being that there were no through holes to screw on

top of the pan and tilt mount. Also, the four supports were not able to fix the solenoid in place

during launching. The biggest issue was that the strike location of the ball was too close to the

solenoid, meaning that the plunger did not have enough speed which meant that the ball did not

travel very far. Versions of the design afterwards improved on these issues and ultimately three

versions were created as pictured in Figure 6.

Figure 6: Versions of Solenoid Track

Once the final version was finalized, the track was fixed onto the pan/tilt mount. Figure 7

and Figure 8 on the next page show the finalized mechanical design of the project that includes

all components fixed onto it.

Figure 7: Solenoid Track Final Version – Mounted

Page 16 of 44

Figure 8: Fully Harnessed Frame

In Figure 8, the square mount on the top house the pan and tilt mount as expected and the

wood piece on the left of the image is where the PCB and Microcontroller are housed. This

image is of the frame during demo day and is the final fully harnessed frame.

Servo Motor Driver

 The first subsystem housed on the header board will be the servo motor driver. Given that

there are two servo motors needed to control the pan/tilt aiming mount, two of these drivers are

present on the header board.

 To design the servo motor driver circuit, the first consideration is the servo motor that

will be used. The motor of choice is the Hitec Commercial Solutions Continuous Rotation DC

Motor Servomotor HS-485HB [31]. These motors were chosen as specification of the pan/tilt

aiming mount. This mount of choice is the Servocity SPT200H [32]. This mount was chosen for

its capability to “pan” and “tilt”. These functions create the ability to, at the command of servo

motors, rotate vertically and horizontally. Thus, there will be an ability to “aim” the launcher

header. The pan/tilt kit specifies: “The SPT200 will accept any standard size servo with a 24 or

25 tooth spline (2 servos are required to assemble the kit). For loads up to 1lb, the HS-485HB or

HS-645MG servos work well.” Given that the load is the McMaster-Carr 12V Push Linear

Page 17 of 44

Solenoid (its purpose explained in a subsequent section) which weighs 0.355lb [22], the HS-

485HB servo motor was chosen due to the quality of it fitting the 1lb recommendation and its

availability.

 With the selection of this specific servo motor, its necessary peripheral electronic

components can be chosen for the header board design. The important characteristics of this

device pertinent to the driver header board are noted in Table 1.

Table 1: Servo Motor Characteristics Necessary for PCB Header Design

Operating voltage range 4.8V 6.0V

Standing current 8.0mA 10.0mA

No load running current 180mA 200mA

Stall current 1000mA 12000mA

First, a transistor will be used as a switch between the microcontroller signal and the

servo motor. The function of this is such that when the microcontroller is not sending an active

signal to the servo motor, it is in an off-state and can’t be controlled. The transistor chosen is the

Diodes Incorporated ZVN3306A N-Channel MOSFET [33]. It has a gate-source threshold

voltage of 0.8-2.4V. This will be sufficient to operate as a switch for the 3.3V control signal

from the microcontroller.

Connected to the gate of the transistor is the voltage signal from the microcontroller.

Since the motor can operate on 5V as specified in Figure 1, the transistor switch will need to

perform the voltage translation to 5V between the microcontroller and the 5V supply. In between

the supply and the drain is a pull up resistor with the value of 10kΩ. This value was chosen to

ensure that the transistor switch does not float and when turned on is pulled up to 5V. The

relationship between the transistor and the 5V power supply is that the transistor is simply a

switch for the low voltage Pulse Width Modulation (PWM) input that controls the rotation of the

servo motors. This will be further described in the Pulse Width Modulation Motor

Commands section. The power supply is from where the servo motors draw the necessary current

to operate. The full servo motor driver schematic can be seen in Figure 9.

Page 18 of 44

Figure 9: Servo Motor Driver Circuit

From Error! Reference source not found., the “PWMin” port is the input for the pulse

width modulation signal from the microcontroller. The length of the pulses from the

microcontroller determines the behavior of the servo. As stated in the datasheet, the motor will

rotate 40° per one side pulse traveling 400usec [31]. This is sourced from a General-Purpose

Input/Output (GPIO) pin on the microcontroller. The specific GPIO pin choice is arbitrary but

will be configured with the PWM control setup. The “5Vpwr” input port is the 5V power supply

to the servo motor. This is sourced from the PCB power supply that will be described in the PCB

Power Supply section. Similarly sourced is the GND port.

The three output ports on the driver board in Figure 9 all connect to the servo motor

connector wires. The connector wires are for the PWM signal, the Power, and the GND. The

connecter from the motor is pictured in Figure 10.

Figure 10: Servo Motor Connector

To connect to the servo connector, the PCB will have a 3-terminal block connecter

(Phoenix Contact) [34] that is routed to the three ports: PWM, Power, and GND. This entire

driver setup is duplicated with a second driver for the second servomotor. A different GPIO pin

from the microcontroller is used for the second driver’s PWM input, and a second 3-terminal

block connector is used to connect to the second driver.

Page 19 of 44

Solenoid Driver

The second subsystem to be housed on the header board is the solenoid driver circuit.

There will be one solenoid in the overall system. As previously mentioned, it is the McMaster-

Carr 12V Push Linear Solenoid [22], and its function is to push or “kick” the ping-pong ball into

the air towards the target. To design the solenoid driver circuit, its main important characteristics

are noted in Table 2.

Table 2: Solenoid Characteristics Relevant to PCB Design

Voltage 12V DC

Electrical connection Quick-Disconnect Terminals

Current @ retracted stroke 0.67A

Power draw 8W

To drive this device, there are specific chips that already exist for this purpose. The

selected chip is the Texas Instruments ULN2003AIN Power Switch/Driver NPN 500mA 16-

PDIP [35]. This is a Darlington transistor array with each pair having the capability to output

500mA. The datasheet states that a typical application for this device, “includes motors,

solenoids, and relays.” In section 9.2, Figure 9-1 of the datasheet, it provides an example of a

typical application. This is pictured in Figure 11 below.

Figure 11: ULN2003 Driver Chip

Their specified application closely resembles the desired application for this system.

However, instead of three inductive loads in the example, this system only requires one. The

current output is driven by the 3.3V logic input which will be sourced from the microcontroller.

A graph of the device current output vs. input duty cycle – % from datasheet Figure 6-5 can be

seen in Figure 12 below.

Page 20 of 44

Figure 12: Maximum Collector Current vs. Duty Cycle

By the specification in Table 2, the current at retracted stroke (0.67A), the driver chip

needs to provide a current surrounding this value depending on the desired force which is a

variable value depending on how far the launch needs to go. Since there is only one inductive

load necessary to drive, all of the outputs of the ULN2003AIN can be paralleled. Thus, the curve

the chip will operate on will be the N=7 curve in Figure 12. Based on the duty cycle of the input,

the amount of current provided to the solenoid can be controlled. With this driver chip there are

several important characteristics to ensure proper functionality. By specifications of the solenoid,

the chip will need to provide a drive current. This will lead to a level of power dissipation in the

chip. The following calculations show the expected drive current and power dissipation. These

equations are found in the device datasheet [35].

Drive Current

The coil voltage (VSUP), coil resistance (RCOIL), and low-level output voltage (VCE(SAT) or

VOL) determine the coil current.

𝐼𝐶𝑂𝐼𝐿 = (𝑉𝑆𝑈𝑃 − 𝑉𝐶𝐸(𝑆𝐴𝑇))/𝑅𝐶𝑂𝐼𝐿

VCE(SAT) is determined by IC. In this calculation IC is set at ~120mA. From the datasheet, VCE(SAT)

= 1V. Vsup = 12V. RCOIL is not specified, however the datasheet does specify 12V and 8W power

draw. From this, RCOIL can be calculated as ~18 Ohms. Thus,

𝐼𝐶𝑂𝐼𝐿 =
12 − 1

18
= 0.61𝐴

when IC = 120mA. This value is determined by Figure 12. Thus, ICOIL can be increased or

decreased with the duty cycle chosen.

Page 21 of 44

Power Dissipation and Temperature

To calculate ULN2003A device on-chip power dissipation PD:

𝑃𝐷 = ∑ 𝑉𝑂𝐿𝑖 ∗ 𝐼𝐿𝑖

𝑁

𝑖=1

Where:

• N is the number of channels active together

• VOLi is the OUTi pin voltage for the load current ILi. This is the same as VCE(SAT)

So, for this application, N = 7, VOli ~= 1V. IL for each will again be ~100mA at most. So, the on-

chip power dissipation is:

𝑃𝐷 = ∑ 1𝑉 ∗ 0.1𝐴 = 0.7𝑊

7

𝑖=1

To ensure reliability of ULN2003A device and the system, the on-chip power dissipation must

be lower than or equal to the maximum allowable power dissipation (PD(MAX))

𝑃𝐷𝑀𝐴𝑋 =
𝑇𝐽(𝑀𝐴𝑋) − 𝑇𝐴

𝛳𝐽𝐴

Where:

• TJ(max) is the target maximum junction temperature

• TA is the operating ambient temperature

• RθJA is the package junction to ambient thermal resistance

• 𝛳𝐽𝐴 is found to be 67 from the datasheet

Thus,

𝑃𝐷𝑀𝐴𝑋 =
125 − 25

67∗
= 1.49𝑊

We can confirm here that the power dissipation required by the solenoid will not surpass

the maximum allowed power dissipation of the ULN2003A. The solenoid driver circuit can be

seen in Figure 13.

Page 22 of 44

Figure 13: Solenoid Driver Circuit

PCB Power Supply

The power supply is required to provide power to the MSP432 Microcontroller, the two

servo motor drivers, the solenoid driver chip, and the solenoid. The MSP432 requires a 3.3V

supply, the servo motors require a 5V supply each, the solenoid driver chip requires a 12V

supply, and the solenoid itself also requires a 12V supply. The 12V is supplied from a wall

adaptor that delivers power through a 12V DC power jack. The power jack of choice is the Adam

Tech ADC-028-1-T/R-PA10T [13]. This delivers 12V at 1A. The 12V is run directly to one

terminal of the solenoid using another 3-terminal block connector. The 12V is also routed to the

ULN2003AIN chip supply pin. The servo motors require 5V with as much as 1A. Therefore, the

Mean Well USA Inc. SKM10A-05 DC-DC [36] converter is used to convert 12V to 5V with the

ability to deliver 2A. This is sufficient for the servo motors. To supply power to the MSP432, the

Microchip Technology MCP1700-3302E/TO Linear Voltage Regulator [37] is used to convert

5V to 3.3V. The power is routed to the 3.3V supply pin of the MSP432. The barrel jack,

SKM10A-05, and MCP1700-3302E/TO can be seen in Figure 14, Figure 15, and Figure 16,

respectively.

Figure 14: DC Barrel Jack

Page 23 of 44

Figure 15: 12V to 5V Converter

Figure 16: 5V to 3.3V Regulator

Finally, the PCB also includes a 6-pin male connector that is used in the USB to serial

communication. This will be described in a subsequent section. The overall layout for the PCB

header can be seen in Figure 17. The pin connections from the PCB to the microcontroller can be

seen in Figure 18. The RX and TX connections will be described in a future section. D36

through D38 are pulse width modulation outputs.

Page 24 of 44

Figure 17: PCB Layout

Page 25 of 44

Figure 18: Pin Connections to MSP

Object Detection

The object detection subsystem is how our project determines whether the ping pong ball

was successfully launched into the correct box. This starts with the live video feed from a

webcam that is mounted to have a bird’s-eye view of all nine boxes. Our code reads in frames

from the webcam and applies a couple filters to make object detection easier. The first is a

gaussian blur, which reduces high frequency noise and makes structural objects more apparent.

The second is a conversion from a Red Green Blue (RGB) to a Hue Saturation Value (HSV)

color space. This means that color representation changes from values of Red/Green/Blue on a

scale of 0-255, to values of Hue (0-179), Saturation (0-255), and Value (0-255).

blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)

The conversion is necessary to proceed to the next step, where color boundaries are

defined. A lower and upper bound are set in a range around the color of the ping pong ball. The

OpenCV library [14] requires these to be defined with HSV values rather than RGB values,

hence the color space changes. Using the lower and upper bounds, the program looks for areas of

the frame where pixel color falls within the range. Since the target boxes are painted black with a

white base, nothing else within the video feed resembles the orange of a ping pong ball. Thus,

the only area that is singled out is the ball.

yellowLower = (10, 100, 100)
yellowUpper = (30, 255, 255)

Finally, the singled-out area is masked, meaning everything except the object of interest

in the frame is removed. Now the program can easily detect a circular shape, assuming that the

ball is in the frame, and the area is marked out with a circle. The center point of the ball is also

tracked, as the value of it will determine which box the ball is in. An example of the video feed is

shown in Figure 19 below. Lines are drawn to mark out roughly the shape of each target box.

Page 26 of 44

Figure 19: Live Video Feed of Target Boxes

The red dot tracks the center of the ball and has a pair of coordinates associated with it.

The value of those coordinates determines which box the ball is in, and that information is saved

for future communication with the microcontroller.

User Interface

Although its appearance is simple, behind the scenes the UI acts as the central point of

the whole software subsystem. Information about where the ball lands is fed to the UI, and the

UI initiates communication with the microcontroller (more detail on the communication method

is provided in the section below). There are nine buttons on the interface that when pressed,

initiate a launch to that box in the targets. The display is shown in Figure 20 below.

Figure 20: UI for Target Selection

Page 27 of 44

When the user clicks a button, for example, number 4, the system uses serial

communication to send the number 4 to the microcontroller. After a time delay allows for the

aiming and launching of the ping pong ball, the object detection system is activated. Once the

location of the ball is determined, the UI system receives that information and then again

communicates it to the microcontroller. If both the initial launch target and the actual landing

box are the same, this is regarded as a successful launch. Otherwise, aiming adjustments will

have to be made.

USB to Serial Communication

In order to create a more professional connection between the UI and Microcontroller, we

chose to use a USB to Serial converter which allows UART communication between the laptop

where our system UI is running, and the microcontroller that powers our solenoid and servos.

There are several devices which perform this function, ranging from header boards to cables.

Both will require connections to the UART TX/RX pins on our MSP432 microcontroller. There

is a header board situated on the microcontroller, so that board needed the corresponding pins to

be extended above allowing another adapter board to be plugged in on top.

The chosen adapter was a SparkFun Electronics DEV-09873 USB Bridge [38]. Figure 21

below shows the 6-pin setup which allows it to plug into an Arduino device normally. We did

not use an Arduino, but the outputs still correspond to pins on the MSP432.

Figure 21: DEV-09873 Header Pins

The header board which contains circuitry for the servo and solenoid also features pins

for this adapter board to connect to, which is the TX channel needed for UART communication

as well as ground and power. Once connected to the laptop, a program called Docklight can

interface with the COM port and communicate with the launchpad. This is as specified in the

official MSP432 datasheet published by Texas Instruments [10]; however, in order to integrate

serial communication with the UI system, the Pyserial library [15] was called to allow Python

code to interface with the COM port and send data to the microcontroller.

Page 28 of 44

To further simplify communication, we kept it as a one-way transfer from the laptop to

the microcontroller so that flow control was not needed. This means that only the ground (GND)

and TX (TXO) pins needed to be connected. RX was not needed as the laptop would not be

receiving any response, and lack of flow control means the CTS and DTR were also unneeded.

The aforementioned Pyserial library sends a character that indicates where the user chose to

launch, and then after launching it sends another character corresponding to where the ball

actually lands. Parameters are available to match the baud rate, byte size, parity, and stop bit

settings of the MSP. Our communication has a baud rate of 9600, 8-bit data size, no parity, and

one stop bit, as shown below.

SerialObj = serial.Serial('COM3')
SerialObj.bytesize = serial.EIGHTBITS
SerialObj.parity = serial.PARITY_NONE
SerialObj.stopbits = serial.STOPBITS_ONE

Once this function receives a character from the main UI system, it encodes the character

and sends it through the laptop’s COM port where the USB to serial adapter is plugged in. The

data travels through the USB cable to the adapter, and then exits from the TX output of the

adapter and through the header board before it is received at the RX pin of the microcontroller.

box_encoded = str(box_num).encode('utf-8')
SerialObj.write(box_encoded)

Pulse Width Modulation Motor Commands

 Pulse width modulation is the reduction of electrical signals by chopping up a DC signal

into periods of on/off phases. By taking the average of the signal over a predetermined time

frame, the voltage level will functionally be representative of this average, also known as the

duty cycle of the PWM signal. For example, a duty cycle of 50% of a 5V DC signal will

effectively be a 2.5V DC signal.

PWM inputs were required to control the servos used in our project. By stepping up or

down the duty cycle of the inputs, the servos would turn clockwise or counterclockwise

respectively. In order to generate a fine-tunable square wave representative of a PWM signal,

early versions of the project incorporating the TI Simplelink CC3220SF microcontroller [17] and

the corresponding software development kit (SDK) used a system of PWM instances. Besides

the eventual switch to a different hardware scheme, an issue that arose with this method was the

lack of modifiability – particularly for pin configuration. The use of macros was another issue –

overcomplicating function manipulation and removing abstraction.

/* Call driver init functions. */
PWM_init();

PWM_Params_init(¶ms);
params.dutyUnits = PWM_DUTY_US;
params.dutyValue = angle;
params.periodUnits = PWM_PERIOD_US;
params.periodValue = pwmPeriod;

if(motor == 0)
{

Page 29 of 44

pwm1 = PWM_open(CONFIG_PWM_0, ¶ms);
if (pwm1 == NULL) {
/* CONFIG_PWM_0 did not open */
while (1);
}

PWM_start(pwm1);

 …

 Following the shift from the CC3220SF to the MSP432, the PWM commands were

updated to directly manipulate the timers instead of using prepackaged driver functions. This

method of enabling pins on the microcontroller and using the corresponding timer registers is

like work done in ECE 3430. For our servos, the period value was set to around 166 Hz (or 3

MHz/18000) as frequencies greater than 10000 Hz or less than 100 Hz would not work with the

servos. Higher frequency divisors would also allow for a larger number of steps – allowing the

servos to turn more smoothly. Therefore, PWM frequencies closer to the 100 Hz minimum were

used in our project. In our final design, we found that duty cycles between 5-10% were ideal in

preventing signal clipping from the transistors on the PCB which were more prevalent at higher

duty cycles.

 //servo 1 (pan servo)
 if(motor == 0)
 {
 //Configure P2.4 as Timer A0.1 (pin 38, 5th bit
for 2.4) The number after decimal can be changed by
doubling/halving hex values
 P2->SEL0 |= 0x10;
 P2->SEL1 &= ~0x10;
 P2->DIR |= 0x10;

 //PWM values: CCR0 is PWM period, CCR1 is initial
duty cycle, do not touch the other two - these are the
clock mode settings
 //WILL NOT MOVE WHEN ATTACHED TO BOARD UNLESS
PERIOD IS LESS THAN 10ms (FREQUENCY > 100Hz)
 TIMER_A0->CCR[0] = 17999;
 TIMER_A0->CCR[1] = 17999 - angle;
 TIMER_A0->CCTL[1] = 0xE0;
 TIMER_A0->CTL = 0x0214;

…

While the solenoid used a PWM signal, the best results distance-wise were when the duty

cycle was set near 100%. We found that the duty cycle had a direct relationship on the force – as

duty cycle was increased, the force exerted on the plunger increased. The solenoid would

perform a plunging action by switching between a predetermined duty cycle for the ‘on’ state

and an ‘off’ state with a duty cycle of 0. For this reason, the period did not have as large of an

impact on the solenoid as it did on the servos.

//solenoid
 if(motor == 2)

Page 30 of 44

 {
 P6->SEL0 |= 0x40;
 P6->SEL1 &= ~0x40;
 P6->DIR |= 0x40;

 TIMER_A2->CCR[0] = 24000 - 1;
 TIMER_A2->CCR[3] = angle * 240 - 1;
 TIMER_A2->CCTL[3] = 0xE0;
 TIMER_A2->CTL = 0x0214;

 delayMs(100*time);

 TIMER_A2->CCR[3] = 0;
 }

Kalman Filter

 Although the motor commands were accurate enough to reliably land balls into the target

boxes, a self-correction algorithm was implemented in the event a shot managed to land into an

incorrect box. To accomplish this, the UART connection from the UI would send a character to

the MSP432 microcontroller corresponding to the landing location of the ball after a short delay

following the launch of the ball. In most cases, the numerical instruction sent by the UI to the

microcontroller would align with the character and no changes would occur within the system. In

cases where the instruction was not consistent with the landing location, however, the Kalman

filter algorithm would update the set of motor commands corresponding to the aimed location to

improve the accuracy of future launches.

 The Kalman filter, also known as linear quadratic estimation, is a common and simple

estimation algorithm. At its most basic level, the Kalman filter calculates unknown variables in a

system using prior measurement data, noise levels in a system, and the current state of the system

[39]. While traditional applications include object tracking or image detection, Kalman filters

can be as simple as maintaining data values and updating functions on data input. In our project,

the motor commands were to be updated on any discrepancy of launch and location.

 move(pan2 + panAd*randHor + panAd*values[0][4], 0);

 //waits for 1 second
 delayMs(delay);

 move(92 + tiltAd*randVert + tiltAd*values[1][4], 2);

 moveR(pan2 + panAd*randHor + panAd*values[0][4], 0);

 delayMs(delay);

By treating the target boxes as a grid of coordinate boxes, the distance between the shot

instruction and actual location can be stored in an array. On subsequent shots, this array is

accessed to slightly vary the pan, tilt, or solenoid strength to shoot closer to the intended

location.

 int xDif = (((aimed - 1)%3)+1)-xInt;

Page 31 of 44

 int yDif = (int) floor((aimed - 1)/3)-yInt;

 switch(xDif)
 {
 case -2:
 //printf("Ball landed far right of aim\n");
 col = false;
 //printf("Shifting launcher 2 units
left...\n");
 values[0][aimed-1] -= 2;
 break;

 case -1:
 //printf("Ball landed right of aim\n");
 col = false;
 //printf("Shifting launcher 1 unit
left...\n");
 values[0][aimed-1] -= 1;
 break;

 case 0:
 //printf("Ball landed in same column\n");
 col = true;
 break;

…

Project Timeline

Figure 22: Original Gantt Chart

Page 32 of 44

Figure 23: Midterm Review Gantt Chart

Figure 24: Final Gantt Chart

Page 33 of 44

 As seen in all major iterations of the Gantt chart, there were minimal changes to the

scheduling of tasks between the beginning of the semester to shortly after the midterm review.

This is due to these events occurring before any consideration for rescheduling could occur and

many of these tasks such as the ordering of parts, research, or software being doable prior to

relevant hardware arriving. The free time allotted for tasks which were serial such as the testing

of the complete system or the finalization of component designs can be seen being redistributed

in Figure 24, the final Gantt chart. Another noticeable change is the shortening of time allotted

for certain tasks and the condensing of tasks to maintain parallelization as best as possible

 Generally, the Gantt charts and schedule were designed to keep parallelizable tasks to be

done simultaneously and serial tasks that require previous stages of work to be complete to

follow the necessary parallelized prerequisites. This can be seen in the various primary tasks

such as the PCB design, hardware design, embedded coding, and UI development being followed

by the connection of these systems or the assembly of these components. Due to the modularity

of the four primary tasks, they tended to be parallel tasks that each member would work on

individually to showcase progress at team meetings.

 Of the primary tasks mentioned, Jake was responsible for the PCB design, David was

responsible for the hardware and mechanical design, Kai was responsible for the embedded

coding, and Angus was responsible for the software. Looking at the Gantt charts, one may notice

that each team member is delegated to a specific task or two at any point in time. This method of

splitting up work naturally reduces serial tasks which can act as blockers for the team and

project.

 While secondary tasks were not directly outlined, team members generally worked on

side tasks tangential to their primary task. Some of the examples include assembly tasks being

done by David or motor calibration and testing being performed by Kai. Regarding the dates

discussed in class, the overall schedule was designed to have tasks start and end on team meeting

dates – Tuesdays for our team. Of course, many tasks had hard deadlines for major events such

as the PCB design being finalized by board send out dates, testing and calibration being the final

task before the final demonstration, and major demo-able subsystems being completed near the

midterm review.

Test Plan

PCB Test Plan

For the header board, there are test points placed in numerous locations. For the servo

drivers, they are placed on the gate of the transistor as well as the servo power, PWM, and GND.

For the solenoid driver, there are test points on the microcontroller input, the 12V supply, and the

output port. At the highest-level, there are also test points on the microcontroller signal outputs,

power supplies, and GND pins.

In order to ensure correct functionality, specific voltage levels must be observed at

specific locations on the board. The chart on the next page lists where DC voltage levels should

be observed.

Page 34 of 44

Table 3: PCB DC Voltage Test Points

Location Expected DC Voltage

Barrel jack in + 12V

Barrel jack in - 0V (GND)

12V to 5V DC/DC converter in + 12V

12V to 5V DC/DC converter in - 0V (GND)

12V to 5V DC/DC converter out + 5V

12V to 5V DC/DC converter out - 0V (GND)

5V to 3.3V Regulator in 5V

5V to 3.3V Regulator out 3.3V

5V to 3.3V Regulator GND 0V (GND)

MSP432 3.3V pin 3.3V

Servo Driver 1 5Vpwr 5V

Servo Driver 1 GND 0V (GND)

Servo Driver 2 5Vpwr 5V

Servo Driver 2 GND 0V (GND)

Solenoid Driver 12Vpwr 12V

Solenoid Driver GND 0V (GND)

These values were experimentally observed with one exception. We misidentified where

the 12V barrel jack ground pin and 12V pins were. This created a -12V signal on the board. The

solution to this was to simply reorient the barrel jack to be in accordance with its geometry as

opposed to our expected board layout.

Solenoid Test Plan

 The solenoid is a two-terminal device. One terminal is connected to the 12V supply, and

one is connected to the output of the driver chip. To test it, these connections were made. The

goal was ultimately to maximize the distance that the ping-pong ball traveled after being struck

by the solenoid plunger. Given that the current output from the driver chip is determined by input

duty cycle, the input to the chip was first tested to see if it was receiving a PWM input signal.

Then, this signal was varied, and the solenoid’s behavior observed. It was determined that simply

a 100% duty cycle input created the strongest force in the extension of the solenoid plunger.

Additionally, the solenoid was packaged with two plungers. The lighter of the two was selected

because it was observed to propel forward with more speed since it was lighter. Finally, the

solenoid also included a return spring. This spring brought the solenoid plunger back to a starting

position after extending. However, it was also observed that the return spring slowed down the

extension velocity. Thus, it was removed from the device.

Servo Motor Test Plan

 To test the servo motors, their behavior was observed experimentally while testing

according to the datasheet. The datasheet specified that the motor will rotate 40° per one side

pulse traveling 400usec [31]. With the pulse width modulation code configured in Code

Composer Studio, functions were written to vary this PWM in a controlled way and input to the

servo motors. After verifying that the PWM signal was being correctly provided to the servo

Page 35 of 44

motor inputs on the PCB driver board, the remaining testing was trial and error. With the small

added complication that the transistor in our servo motor drivers inverted the PWM signal, we

tweaked the code and observed the servo motor behavior. Eventually, we settled on the optimum

commands to turn the motors in the way we desired.

Overall System Test Plan

Upon completion of the individualized test plans form the PCB, servos, and solenoid, we

underwent full integration testing. The PCB was mounted onto the MSP432 and the UART

module connected to the board. Once communication between the UI and MSP was established,

testing of movement and launching commenced.

 Part of full system testing was implementing the required calibration for the device so

that all launches would accurately land into the correct target box. Calibration began with

creating divisions in the three vertical columns and finding the respective rotational angle

required. The aiming from an X-Y standpoint was done through inspection, seeing specifically

where the track was aimed based on the intended box designated from the UI. The accuracy of

column aiming was strictly based on the PWM signal from the servos. The accuracy of row

aiming was determined based on the varying current from PWM to the solenoid. Changes in the

PWM to the solenoid would affect the strike force, this meant that consistently calibrating the

row accuracy required legitimate launches. During calibration, it was found that there were

instances where the servo mount would not return to its resting position. The original design had

the resting position of the launcher aimed at the left side. This was changed so that the resting

position was centered on the middle column. This was done partially to alleviate the mount from

moving too much but more importantly to reduce the amount of angle required for the servos to

move to aim properly. During testing, it was found that the PWM waveform clipped at the sides

and thus was causing some inaccuracies when aiming at the rightmost column. It was deduced

that the transistor was causing the clipping, but we did not remove it to protect it from

overcurrent on the board. It was decided that despite the inconsistencies, if the ball was

relaunched into the same box, it would always hit that requested target.

 Once calibration finished further system testing was done on the self-correction

algorithm. In order to test the Kalman filter, a controlled experiment was done where a random

target was selected on the grid and launched at. The intention was for the ball to launch in the

middle target box and when relaunching at the target box it would recalibrate based on given

information from image processing and launch into the correct box. Doing this system test

validated the software design of the Kalman filter. Initially, the Kalman was implemented as a

part of the main method when running through the servo commands, to isolate a Kalman

demonstration this was removed and a Kalman processes was created through code that ran the

function when the Kalman experiment button was pressed on the UI side.

Final Results
The final iteration of the project meets the main criteria for accuracy that was initially set

out - for the launcher to beat out a human player. This means that given a fixed set of shots

where the target box must be called beforehand, the launcher should successfully make more

Page 36 of 44

shots than the human player, but not necessarily have 100% accuracy. A few test trials were

performed to confirm this, and the results are shown in Table 4 below.

Table 4: Launcher vs. Human Player Trials

Total shots taken Shots made by launcher Shots made by player

9 8 4

9 9 3

10 9 4

15 13 6

Since the launcher is consistently more accurate than a human player, the accuracy

requirement is met. Other aspects of the project also have grading standards that were set out in

the proposal, and these are detailed in

Page 37 of 44

Table 5 below. As evidenced by its ability to beat a human player, the launcher does have

a fully functional launching mechanism and pan/tilt mount. The solenoid is activated when a

launch command is issued and successfully propels the ball toward the target boxes. The pan/tilt

mount swivels and aims when a launch command is issued and aims the ball in the right

direction for launch.

On the software side, the UI and camera feed are both fully functional. The UI allows the

user to specify a target box for the launcher to aim at and can issue a launch command to the

microcontroller when a choice is made. Video from the webcam is also integrated into the

system, as it feeds into the object detection portion which determines the location of the ball and

relays this to the microcontroller.

Lastly, the launcher can self-correct its aiming if the ball misses and lands in a different

target box than intended. For example, if the user selects box five to aim at and the video feed

shows that it landed in box 7, the microcontroller can perform an adjustment to aim farther right

and provide more power to the solenoid. The next shot that aims for box five will successfully

land in the correct box. Each subsystem is functioning as intended and meets the criteria listed

for a letter grade of A for the project.

Page 38 of 44

Table 5: Letter Grade Criteria

Letter Grade Criteria

A • Fully functional launching mechanism

• Fully functional pan/tilt mount

• Fully functional UI and integration

with camera feed

• User specified accuracy, i.e., targeting

a specific box

• Self-correction of the launch trajectory

if a ball misses due to unforeseen

variables

B • Fully functional throwing mechanism

• Fully functional pan/tilt mount

• Limited UI functionality with only

target selection

• Some level of user specified accuracy,

i.e., targeting a cluster of boxes

C • Fully functional throwing mechanism

• Fully functional pan/tilt mount

• Bare minimum UI with only launch

activation

• Bare minimum accuracy (not user

specified).

D and under • No Functional Prototype

• Unable to fulfill any of the

aforementioned criteria

Costs
As shown in Appendix B, the total cost of the project was roughly $474.82. A large part

of the budget was purchasing the necessary power tools to build the necessary mechanical

features. Assuming that a professional manufacturer would not need to purchase additional tools,

this reduces the overall material cost to roughly $400. However, due to the reuse of 80/20

aluminum, mounting brackets, and microcontrollers from past capstone projects, this would

increase the overall manufacturing price back to around $470. When looking at DigiKey and

other distribution companies that we used, purchasing components for over 10000-unit quantities

drastically decreases the overall cost of our project. Overall, there was roughly a 60% decrease in

the price of components. If we were to manufacture our product in 10000-unit quantities, it

would only cost $188. This price would further decrease by using automated equipment when

manufacturing. All 3D printed parts would be cheaper when using automated equipment instead

of 3D printers. Also included in our detailed budget in Appendix B there was a plethora of

backup components and items that were purchased just in case of an emergency. By optimizing

how much of each component we use, we can further drive the price down when considering

adding high volume manufacturing for our project.

Page 39 of 44

Future Work
 One of the biggest limitations to the system's self-correction was the design of the target

boxes. Ping-pong balls could easily bounce off walls of the box and fly completely off course

from where they would have landed had the targets been on a flat surface. Because of this, the

system could only self-correct if the ball landed properly inside one of the boxes. If future

iterations of this project are worked on, a flat substitute for the target boxes should be developed.

This could use some sort of extremely adhesive material to ensure that the ball stays exactly

where it first contacts the target. This allows the system to catch that location and perform a

more robust self-correction. The ball bouncing off the target grid made it so that the image

processing could not detect where it landed first, by using a flat target system with a way to stick

the ping pong balls onto the surface we can implement the Kalman filter to always have micro

adjustments.

 Another unforeseen difficulty was ensuring that the target boxes stayed in the right

location relative to the launcher. It was known that this distance needed to stay constant, but in

practice the system was much more sensitive to small movements than anticipated. For example,

bumping the table could shift the targets slightly and cause some shots to become uncalibrated

and miss their boxes. A more solid way of securing these two parts at a fixed distance would

reduce the amount of extra time spent recalibrating the launcher during each new work session.

 An additional shortcoming of our project is the launch distance. Initially, based on the

datasheet provided by McMaster-Carr we believed that the push solenoid would exert enough

force to launch the ball comfortably across the table. As we later tested the push solenoid was

only able to launch the ball around ¾ of the table’s length. This is in part due to the force at a

desired stroke length. One thing to reconsider is the push solenoid that was decided and to

potentially find one that has a larger force. The reason we were unable to change solenoid is to

do the power management done on the PCB. Because the solenoid proved to be an extremely

consistent launching mechanism, the device could be greatly improved if it were more powerful

and launched a further distance.

Page 40 of 44

References

[1] "MSP430G2553," Texas Instruments, [Online]. Available:

http://www.ti.com/product/MSP430G2553. [Accessed 01 December 2022].

[2] "Python," Python Software Foundation, [Online]. Available: https://www.python.org/.

[Accessed 24 September 2022].

[3] E. Peňa and M. G. Legaspi, "UART: A Hardware Communication Protocol Understanding

Universal Asynchronous Receiver/Transmitter," AnalogDialogue, vol. 54, no. 4,

December 2020.

[4] R. K. Adair, "The Physics of Baseball," Physics Today, vol. 48, no. 5, p. 26, 1995.

[5] M. Denny, Their Arrows Will Darken the Sun: The Evolution and Science of Ballistics,

Johns Hopkins University Press, 2011.

[6] H. Choi, W. Jung and N. Kim, "Development of autonomous ball launcher system on

surface vehicle for detect and deliver mission in 2016 Maritime RobotX Challenge," in

IEEE Underwater Technology, Busan, 2017.

[7] J. Kober, K. Mülling, O. Krömer, H. C. Lampert, B. Schölkopf and J. Peters, "Movement

templates for learning of hitting and batting," in IEEE International Conference on

Robotics and Automation, Anchorage, 2010.

[8] H. Yamada, M. Yamaguchi, Y. Gohdo, H. Ota, K. Takeuchi and H. Yamagami,

"Continuous electromagnetic launcher using soleniod coil," IEEE Transactions on

Magnetics, vol. 23, no. 5, pp. 3263-3265, 1987.

[9] L. Acosta, J. Rodrigo, J. Mendez, G. Marichal and M. Sigut, "Ping-pong player

prototype," IEEE Robotics & Automation Magazine, vol. 10, no. 4, pp. 44-52, 2003.

[10] "MSP432P401R, MSP432P401M Mixed-Signal Microcontrollers," July 2016. [Online].

Available: https://www.ti.com/lit/ds/slas826e/slas826e.pdf. [Accessed 24 September

2022].

[11] "Code Composer Studio™ integrated development environment (IDE)," Texas

Instruments, [Online]. Available: https://www.ti.com/tool/CCSTUDIO. [Accessed 24

September 2022].

[12] "PyCharm," JetBrains, [Online]. Available: https://www.jetbrains.com/pycharm/.

[Accessed 24 September 2022].

[13] "ADC-028-1-T/R-PA10T," Digi-Key Electronics, [Online]. Available:

https://www.digikey.com/en/products/detail/adam-tech/ADC-028-1-T-R-

PA10T/9832093. [Accessed 25 September 2022].

[14] "OpenCV: Open Source Computer Vision," OpenCV, [Online]. Available:

https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html. [Accessed 10 October

2022].

[15] C. Liechti, "pySerial," pySerial, [Online]. Available:

https://pyserial.readthedocs.io/en/latest/. [Accessed 1 November 2022].

[16] "MSP Driver Library," Texas Instruments, [Online]. Available:

https://www.ti.com/tool/MSPDRIVERLIB. [Accessed 10 October 2022].

Page 41 of 44

[17] "CC3220 SimpleLink™ Wi-Fi® LaunchPad™ Development Kit Hardware," March 2020.

[Online]. Available:

https://www.ti.com/lit/ug/swru463c/swru463c.pdf?ts=1670845285702. [Accessed 10

October 2022].

[18] ICF International, "Documentation for Greenhouse Gas Emission and Energy Factors

Used in the Waste Reduction Model (WARM)," U.S. Environmental Protection

Agency, 2016.

[19] "Footprint of a Microcontroller," STMicroelectronics, [Online]. Available:

https://www.st.com/content/st_com/en/about/st_approach_to_sustainability/sustainabil

ity-priorities/sustainable-technology/eco-design/footprint-of-a-microcontroller.html.

[Accessed 26 September 2022].

[20] "U.S ENERGY ATLAS WITH TOTAL ENERGY LAYERS," U.S. Energy Information

Administration, [Online]. Available: https://www.eia.gov/state/?sid=VA. [Accessed 26

September 2022].

[21] "Recycling," City of Charlottesville, [Online]. Available:

https://charlottesville.gov/397/Recycling. [Accessed 26 September 2022].

[22] "McMaster-Carr Linear Solenoid Continuous, Push, DC Volts, 0.5" Stroke, 15 oz. Force,"

[Online]. Available: https://www.mcmaster.com/70155k121/.

[23] "NDERSTANDING UL STANDARDS FOR INDUSTRIAL ELECTRICAL

CONTROLS," [Online]. Available: https://www.c3controls.com/white-

paper/understanding-ul-standards-for-industrial-electrical-controls/ .

[24] "Nittaku," [Online]. Available: https://www.nittaku.com/wp-

content/uploads/2019/11/152.pdf. [Accessed 26 September 2022].

[25] "IPC/WHMA-A-620," Wiring Harness Manufacturer's Association, [Online]. Available:

https://whma.org/ipcwhma-a-620/. [Accessed 24 September 2022].

[26] "IPC Standards," IPC, [Online]. Available: https://www.ipc.org/ipc-standards. [Accessed

24 September 2022].

[27] "IEEE 802.11-2016," IEEE Standards Association, [Online]. Available:

https://standards.ieee.org/ieee/802.11/5536/. [Accessed 26 September 2022].

[28] D. G. Dahl and S. D. Buss, "Mechanical projectile and target game". United States of

America Patent US20150137452A1, 21 May 2015.

[29] G. Berliner, "Table tennis robot". Canada Patent CA1047341A, 30 January 1979.

[30] G. Gatchel, J. E. Newgarden and G. E. Lynn, "Table tennis ball serving device". United

States of America Patent US4854588A, 8 August 1989.

[31] "HS-485HB General Specification," [Online]. Available:

https://media.digikey.com/pdf/Data%20Sheets/Hi-Tech/HS-485HB.pdf.

[32] "Servocity SPT200 Pan & Tilt Kit," [Online]. Available:

https://www.servocity.com/spt200-pan-tilt-kit/ .

[33] "Diodes Incorporated ZVN3306A MOSFET N-CH 60V 270MA TO92-3," [Online].

Available: ZVN3306A N-channel enhancement mode vertical DMOS FET datasheet

(diodes.com).

[34] "TERM BLOCK HDR 3POS 90DEG 7.62MM," [Online]. Available:

https://www.digikey.com/en/products/detail/phoenix-contact/1766246/348813.

Page 42 of 44

[35] "Texas Instruments ULN200x, ULQ200x High-Voltage, High-Current Darlington

Transistor Arrays," [Online]. Available:

https://www.ti.com/lit/ds/symlink/ulq2004a.pdf?HQS=dis-dk-null-digikeymode-dsf-

pf-null-

wwe&ts=1663852020165&ref_url=https%253A%252F%252Fwww.ti.com%252Fgen

eral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253

Dhttps%253A%252F%252Fwww.ti.co.

[36] "DC DC CONVERTER 5V 10W," [Online]. Available:

https://www.meanwellusa.com/upload/pdf/SKM10/SKM10,DKM10-spec.pdf.

[37] "IC REG LINEAR 3.3V 250MA TO92-3," [Online]. Available:

https://ww1.microchip.com/downloads/en/DeviceDoc/MCP1700-Data-Sheet-

20001826F.pdf.

[38] "DEV-09873," Digi-Key Electronics, [Online]. Available:

https://www.digikey.com/en/products/detail/sparkfun-electronics/DEV-

09873/5318746. [Accessed 10 October 2022].

[39] "Kalman Filter Explained Simply," The Kalman Filter, [Online]. Available:

https://thekalmanfilter.com/kalman-filter-explained-simply/.. [Accessed 26 September

2022].

Page 43 of 44

Appendix

Appendix A: Bill of Materials for PCB Header

Capstone Team Powell Rangers Microcontroller Header Board Bill of Materials

Rev A

Line Quantity Reference Value MANU PART# MANU

1 2 C1, C2 1uF C315C105K3R5TA KEMET

2 3 J5,J6,J7 1766246 1766246 Phoenix Contact

3 1 J8 Conn01x06Male
2011-
1X06G00SI025B Oupiin

4 1 J9 BarrelJack
ADC-028-1-T/R-
PA10T Adam Tech

5 1 PS1 SKM10B-05 SKM10A-05 MEAN WELL USA Inc.

6 2 Q1, Q2 ZVN3306A ZVN3306A Diodes Incorporated

7 19 TP1-TP19 TP 5000 Keystone Electronics

8 2 R1,R3 10k Ω
Supplied, axial,
horizontal Sourced from FUN kit

9 2 R2,R4 100k Ω
Supplied, axial,
horizontal Sourced from FUN kit

11 1 U3 ULN2003AIN ULN2003AIN Texas Instruments

12 1 U4
MCP1700-
3302E/TO MCP1700-3302E/TO Microchip Technology

13 10 N/A 390088-2-ND 390088-2-ND
TE Connectivity AMP
Connectors

Page 44 of 44

Appendix B: Bill of Materials and Costs of Project
Digikey Part # McMaster Part # Qty Req'd Per Unit Price Cost

70155K121 1 46.3 46.3

296-16971-5-ND 2 0.94 1.88

296-26053-5-ND 1 5.62 5.62

2589-32645S-ND 2 34.99 69.98

296-CSD18537NKCS-ND 4 1.42 5.68

3046-9V-MN1604-ND 4 2.46 9.84

36-2242-ND 4 1.16 4.64

296-16971-5-ND 2 0.94 1.88

296-26053-5-ND 1 5.62 5.62

2589-32645S-ND 2 34.99 69.98

296-CSD18537NKCS-ND 4 1.42 5.68

3046-9V-MN1604-ND 4 2.46 9.84

36-2242-ND 4 1.16 4.64

A24732CT-ND 4 0.18 0.72

2057-ADC-028-1-T/R-PA10TTR-ND 1 0.81 0.81

277-5943-ND 1 1.62 1.62

277-5830-ND 1 4.82 4.82

36-5000-ND 25 0.42 10.5

2368-02-P4R7-1-ND 10 2.49 24.9

277-5994-ND 2 2.33 4.66

277-5783-ND 2 7.28 14.56

2057-PA-013-ND 1 9.66 9.66

1568-1104-ND 1 16.95 16.95

2011-1X06G00SI025B 1 0.18 0.18

1866-4619-ND 1 22.91 22.91

MCP1700-3302E/TO-ND 4 0.5 2

399-9714-ND 4 0.8 3.2

S6106-ND 2 1.26 2.52

277-5783-ND 2 7.28 14.56

277-5994-ND 2 2.33 4.66

296-35013-ND 4 1.88 7.52

Additional Costs

Wood and Tools from Lowes 86.49

Total Cost 474.82

