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ABSTRACT

Contagions—such as viruses, misinformation,
and technology—are ubiquitous in real-life;
however, many of them are harmful to
society. A UVA professor and I propose a
novel method of blocking contagions in social
networks, using nodes from dominating sets.
Our method produces a prioritized list of
dominating nodes using a Python program.
By “inoculating” these nodes from the
contagion, we effectively reduce the
contagion’s damage—in many networks,
eliminating up to 40% of contagion spread.
We also demonstrate the effectiveness of our
approach by comparing blocking results with
those from the high degree heuristic (HDH), a
common standard in blocking studies. Our
research will help scholars and policymakers
make informed decisions; additionally, the
resulting paper will soon be published at a
social network conference. In the future, we
would like to improve the speed of the
algorithm, so it can be applied to large social
networks.

1. INTRODUCTION

Real-life contagions like misinformation,
technology and viruses, including COVID-19,
can be both harmful and damaging. For
example, since 2020, COVID-19 and
misinformation have led to billions of dollars
of losses, and a pronounced decline in
people's well-being. To combat these
contagions, decision-makers, like

governments and social media platforms,
need effective ways to contain their spread.

2. RELATED WORKS

Researchers have done extensive work to
block contagions spread on social networks.
Often, they model each individual in the
network as a node. The connections between
nodes are called edges. Computer scientists
have developed numerous approaches based
on this node-edge model of networks. Among
them, the one most widely used is node
removal. With this approach, the blocking
algorithm removes or inoculates individual
nodes that can contract contagions. Berge
(1962) was among the first to suggest
eliminating susceptible nodes as a potential
solution to reduce contagion spread. Since
then, many scientists have adapted this
method for specific use cases, like controlling
epidemics (Chen, 2018). As an alternative
method, other scientists have proposed
blocking contagions by removing edges
(Tong, 2012). Although less wused, this
solution is applicable in situations where
removing nodes carries a high cost.

We have considered both node and edge
removal methods. In the end, we decided to
build a novel algorithm based on the node
removal method described by Berge, for its
ease of implementation and fast performance.
Specifically, we developed the algorithm to
select nodes to “inoculate” based on
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Dominating Sets, thus building defenses
against the spreading contagion.

3. PROJECT DESIGN

For this project, I have developed a novel
algorithm to block contagions. We also tested
its performance using simulations with three
well-known network datasets.

3.1 The Dominating Set Algorithm
Our Dominating Set Algorithm (DSA) has the
following key steps. First, for each node,
determine the set of all of its neighbors.
Second, build dominating sets from each
node. Identify the node v; with the greatest
number of neighbors ¢;. Third, the program
writes this pair (v, ¢;) to the output file of
prioritized dominating nodes. The algorithm
repeats the steps until the prioritized node
count reaches the blocking budget.

3.2 Networks Used in Simulations

To comprehensively test our algorithm, we
used three well-known network datasets.
They were collected from real-world
scenarios; thus, they offer a realistic
assessment of DSA’s performance. They also
come from very diverse sources, ensuring a
sufficiently wide analysis scope.

Network Type Num. Num. Ave.

Nodes Edges Deg.
AstroPh  collaboration 17903 196972 22.0
Enron Email 33696 180811 10.7
Epinions online social 75877 405739 10.6

Table 1: Mined networks and selected properties.

As shown in Table 1, the social networks are
AstroPh, Enron, and Epinions. AstroPh stands
for AstroPhysics, and it covers collaborations
between astrophysicists in authoring papers.
Enron, meanwhile, is a communication
network. It contains the email interactions
between employees of Enron Corporation

before its collapse. Lastly, Epinions contains
social connection data from Epinions.com, a
social site focused on consumer reviews.

3.3 The Simulation Pipeline and
Processes

To examine our algorithm in action, we ran
simulations with our algorithm on the
networks in Table 1. In real life, it is often
unrealistic to “inoculate” every individual.
Thus, for each simulation, we set a blocking
budget, the maximum number of nodes we
are allowed to “inoculate.” Its value ranges
from 10 to 7000. Also, some contagions
require multiple contacts to infect an
individual. So, we set a different threshold,
the number of contacts required for a node to
be “infected,” for each simulation. The
threshold ranges from 1 to 10.

Then, for each network, we ran simulations
following the steps in Figure 1. First, we used
DSA to generate candidate blocking nodes for
each network dataset. Then, we randomly
generated 100 sets of seed nodes that will be
“infected” at the beginning of the simulation,
for each preset seed set size, n ;. Next, we
selected the blocking nodes based on our
budget. We ran simulations for all 100
scenarios. Finally, we computed the fraction
of nodes infected in the end and used it to
evaluate the algorithm’s performance.
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Determine 100 node set, and

blocking node sets of seed each blocking
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_— nodes for each
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Figure 1: Diagram of Simulation Process. This
pipeline is for one network only.

3.4 Challenges

In developing and testing the algorithm, we
encountered several major challenges. First, it
was challenging to select the most
representative network datasets for testing.
The conference enforces a strict length limit
for papers (within four pages). Thus, it was



crucial to use a minimal number of networks
to save space, while assessing the algorithm
thoroughly. To address the issue, we searched
twelve network datasets for the three with the
most representative properties As shown in
Table 1, the selected networks cover a diverse
set of traits, including type, size (measured by
the number of nodes), and average degrees. In
the end, they were able to show the full
spectrum of the DSA’s performance through
testing.

The second challenge we faced was
optimizing the algorithm. The early version
of DSA was resource intensive. For example,
for large networks like Epinions, the
algorithm often consumes over 64 GB of
memory. This makes the algorithm unrealistic
for real-world applications, where large input
networks are common. To optimize the
program, I restructured it to incorporate a
more efficient hash map data structure. It
improved the speed by 2x, which proved to
be sufficient.

4. RESULTS

Through simulations, we were able to show
that our algorithm does offer a significant
defense against contagions, stopping 25% of
the spread.

Figure 2 provides time-history results for the

Enron graph. Each curve is the fraction of

infected nodes as a function of time. There

are four pairs of curves, corresponding to four

values of threshold. For each pair, one curve

is for the case with no blocking nodes, while

the other is for the case with budget = 1000.

The blocking (solid) curve is below the
non-blocking (dashed) curve.
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Figure 2: Time-histories of cumulative fraction of
infected nodes in the Enron network.

The number of nodes infected at the start is 1000.
The blocking results (budget=1000, solid curves)
are for the DSA, for comparisons with no-blocking
baselines (dashed curves) of the same color.

As shown in Figure 2, the strengthened
network finished with 25% fewer infections.
Note that Enron is a large network with over
30,000 nodes, and our “inoculated” nodes
account for only 3% of its members. Thus,
our algorithm had an outsized impact on
preventing contagion spreads.

The results show that the DSA can efficiently
block contagion spread and it could be an
important tool for decision-makers in the
future. For example, it may help manage a
future outbreak or limit the spread of
misinformation on social media. Moreover, as
the blocking method will soon be publicly
available, this research will help other
scientists further their own research, building
more effective contagion-blocking methods.

5. CONCLUSION

In this research, we developed a novel
algorithm to block contagion spread using
networks. We also evaluated its performance
using three well-known social network
datasets. This project will help policymakers
make informed decisions, giving them a
strong tool to contain harmful contagions like
viruses or misinformation. It will also enable
researchers to further their research and create
robust tools to counter contagions.

6. FUTURE WORK

Future work includes analyzing the
algorithm's blocking performance in detail,
and optimizing it for large-scale datasets. We
may also explore additional social network
datasets, testing the algorithm more
extensively.
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