




Abstract

As the internet of things (IoT) technology evolves and matures, billions of new
devices are expected to be deployed and provide value for applications in many dif-
ferent areas such as building automation, healthcare, industry, city management and
farming. While some IoT devices can rely on mains power, other devices might be
deployed in locations without access to any cabled infrastructure and require either
battery power or energy harvesting to operate. As the number of IoT devices in-
creases or if the device’s location is hard to reach, the burden of periodical battery
replacement becomes important. Therefore, self-powered IoT (SPIoT) devices capa-
ble of generating the energy they need to operate is a promising solution to enable
sustainable and scalable IoT infrastructure. However, enabling SPIoT applications is
challenging due to the coupled nature between energy generation, device’s hardware
operation, and application requirements, and due to the technological complexity
of integrating and deploying end-to-end IoT applications. For instance, if a SPIoT
adopter wants to replace a battery-powered device for a self-powered one, estimating
if this device would work as well as the old one depends on: (1) how much energy
this device can capture in the space; (2) how often does the application requires the
device to become active; (3) how efficiently does the device uses energy; (4) how
much energy the device can store; and (5) how easy is to integrate the device to the
old device’s infrastructure. Answering these questions requires an integrated cyber
physical perspective on SPIoT applications, combining models of environments, de-
vices and application requirements to provide a framework that supports the design,
evaluation, and deployment of SPIoT applications.

To address these challenges, we introduce an integrated cyber physical SPIoT
modelling framework and design tools that: (1) Enables evaluation of SPIoT appli-
cations by modeling energy generation, storage, and consumption; (2) Informs en-
ergy harvesting data collection that supports SPIoT hardware designers; (3) Allows
SPIoT designers to select harvesters and storage components that meet their appli-
cation requirements; and (4) Support SPIoT deployments by introducing the energy
harvesting score, a 100-0 value that reflects how much useful energy is available in
an environment, and, if used as a rating, indicating minimal energy requirements to
support SPIoT operation. We also introduce a cloud-based data storage and visual-
ization tool, easing end-to-end IoT application development. We use two practical
examples to motivate the design and evaluation of SPIoT, one being a water qual-
ity station powered by solar and water flow kinectic energy, and the other example
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being a water leak sensor powered by a thermal energy source. With this modeling
framework and deployment tools, we will enable ubiquitous end-to-end SPIoT appli-
cations by supporting the design and deployment of SPIoT devices comparable with
battery-powered devices without battery’s limited lifetime constraint.
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Chapter 1: Introduction

Motivated by a remarkable progress on information and communication technol-
ogy (ICT), researchers envisioned the internet of things (IoT), the idea of connecting
physical objects to the internet, allowing them to exchange information and to oper-
ate in coordination [83]. Since the IoT idea’s conception, many applications have been
demonstrated in different areas such as in agriculture [41], building automation [82],
smart factories [139], and stormwater system management [24]. As a reference for the
impact of IoT in modern society, analysts estimated that $1.6 trillion economic value
was generated from IoT solutions in 2020 [37] and the number of device connections
was expected to reach 14.7 billion by 2023 [35].

Although IoT end devices can be designed to use wired communication solutions,
adopting wireless communications is desirable among many applications since it al-
lows for better scalability by eliminating the cost and maintenance issues associated
with cabled network infrastructure as well as allowing increased IoT device mobility.
In a similar way, relying on cabled power infrastructure can either limit viable IoT
deployment locations to nearby existing AC wiring and outlets or result in increased
installation costs. If an application requires deploying IoT devices in locations free
from any cabled infrastructure, the IoT device cannot use mains power and must
instead rely on one of two main alternatives: either use battery power or generate
itself the energy required to operate. As the number of IoT devices increases or if
the device’s location is hard to reach, the burden of periodical battery replacement
becomes important. Therefore, self-powered IoT (SPIoT) devices capable of generat-
ing the energy they need to operate is a promising solution to enable sustainable and
scalable IoT infrastructure.

A major challenge to design SPIoT is the uncertainty associated with energy
generation, also known as energy harvesting [1]. Harvestable energy depends on the
dynamic characteristic of the energy source, for example, a solar panel placed in a
conference room with no windows will have its energy generation correlated with
the room’s lamp operation, which is in turn correlated with room occupancy, which
can vary across the day. The same solar panel placed outdoors will have its energy
generation correlated with sunlight radiation. While some energy sources are highly
predictable as it is the case for outdoor solar, other sources can be challenging to
predict, notably if they are associated with human behavior as it is the case for many
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indoor solar applications. Characterizing and modeling energy harvesting across the
range of energy sources and deployment locations is an important step to understand
the constraints that SPIoT devices need to satisfy.

Due to energy harvesting uncertainty, SPIoT designers face two main challenges:
(1) to properly size energy harvesters and energy storage; and (2) to dynamically
adapt the device’s operation to available energy, also known as dynamic power man-
agement (DPM). While energy harvester size impacts the overall energy availability,
DPM goal is to deliver optimal quality of service (QoS) with the available energy.
For instance, a solar-powered camera used in a security application could increase its
frame rate or image resolution at the cost of extra energy consumption to improve
QoS on sunny days and do the opposite to save power and avoid power outage on
cloudy days. However, if users are only interested in a fixed QoS (a fixed frame rate
for the solar-powered camera example), the SPIoT will only deliver the intended QoS
if the energy harvesting conditions meet the device’s energy consumption require-
ments. If a SPIoT device meets the intended QoS during all deployment lifetime, it
means that the SPIoT can replace a battery-powered IoT counterpart without any
drawback.

However, deploying SPIoT devices that can replace battery-powered IoT is not
trivial. From the SPIoT designer’s perspective, they don’t have enough information
about energy harvesting characteristics on deployment locations. From the SPIoT
adopter’s perspective, they don’t have enough information on the device operation
and use of energy. This information mismatch often translates in subpar deployments,
either resulting in oversized energy harvesters or unreliable and intermittent SPIoT
operation.

While IoT device-level reliability is required to achieve successful deployments,
data management is also critical to useful IoT applications. Data acquired by sensors
are usually transmitted to gateways, and then to servers, that store, and provide ac-
cess to the data. Deploying end-to-end IoT applications requires designers to navigate
through a challenging and ever changing array of solutions, from wireless communi-
cation protocols to cloud services. Lowering the barrier-to-entry to deploy end-to-end
IoT applications can foster the adoption of IoT solutions, including SPIoT.

In our work, we introduce an integrated cyber-physical modeling approach and
deployment tools to enable self-powered internet of things. The proposed modeling
approach leverages the coupled nature of energy harvesting and SPIoT device models
to: (1) Evaluate and design end-to-end applications, estimating energy harvesting
using harvester models and energy consumption requirements from application re-
quirements and off-the-shelf IoT hardware components; (2) Collect and share energy
harvesting datasets that supports SPIoT hardware designers; and (3) Support SPIoT
deployments by introducing the energy harvesting score and rating metrics, a 100-0
value that reflects how much useful energy is available in an environment and express
SPIoT minimal energy requirements to support operation. Finally we introduce a
cyber infrastructure tool to support IoT deployments by offering cost-effective, flex-
ible, and easy to maintain cloud infrastructure to store, and visualize sensor data.

2



We represent the scope of this thesis in Figure 1.1, with the deployment tools being
the energy harvesting score and the cloud cyber infrastructure. Our cyber-physical
framework for designing and deploying end-to-end SPIoT is represented in Figure 1.2,
with all analysis, designs and deployment tools in this work being related to blocks
in this flow chart.

Enabling Self-powered IoT applications

Cyber infrastructure for 
IoT applications

Energy harvesting score 
and rating metrics

Evaluating SPIoT 
applications

Energy harvesting profiling and energy generation estimation from models

Designing SPIoT 
applications

Design framework Deployment tools

Figure 1.1: Enabling Self-Powered Internet of Things with Integrated
Cyber-Physical Modeling and Deployment Tools. Energy harvesting profil-
ing, and models for energy generation are integrated with SPIoT models to provide
a framework to design and evaluate SPIoT applications. To support deployments,
energy harvesting information is translated to a score metric that can be used as
a reference to characterize spaces, and define ratings representing SPIoT minimum
energy requirements.

1.1 Thesis Statement

Designing and deploying end-to-end self-powered Internet of Things (SPIoT) is
challenging due to the intersection of challenges between unpredictable energy gen-
eration, increased hardware complexity, application requirements, and data man-
agement. A cyber-physical modeling framework that integrates energy harvesting
estimations and device energy-level simulations, along with a generic cloud-based
data management system, can allow SPIoT designers to select a harvester, deploy-
ment location, device operation rate, and data backend that enable 100% availability
at assumed harvesting conditions and a SPIoT design within size and total cost
constraints. This modeling framework and deployment tools will enable ubiquitous
end-to-end SPIoT applications by supporting the design and deployment of SPIoT
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Figure 1.2: Flow chart representing the cyber-physical framework for de-
signing and deploying end-to-end self-powered IoT. We demonstrate in each
chapter the use of different sets of components in this chart to support or perform a
SPIoT application design.

devices comparable with battery-powered devices without battery’s limited lifetime
constraint.

1.2 Contributions

We summarize our main contributions as follows.

1. Our data collection study resulted in the first publicly available multiple-week
dataset on thermal energy harvesting and also the first available dataset of
its length using I-V curve profiling technique, complementing existing datasets
in the literature for solar [115, 54] and kinetic [53] energy harvesting. We
found that we can characterize thermal energy harvesting output from a com-
mercially available thermoelectric generator, using a custom interface printed
circuit board and off-the-shelf components such as a raspberry pi and sensor
breakout boards;

2. We introduce a new energy harvesting score metric as a tool to support SPIoT
deployment by realistically representing usable harvested energy by a SPIoT
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device in a single number 0-100, and using a SPIoT model that expands on
available models [70, 31] by considering three energy conversion paths with
respective efficiencies. We found that we can use the simulated availability of a
set of reference SPIoT devices to score energy harvesting conditions;
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3. We introduced and performed a cost analysis for an open source cloud-based IoT
backend tool that uses flexible modern cloud services such as serverless functions
and API gateway to enable end-to-end IoT applications, as opposed to more
common end-to-end IoT applications using dedicated application servers [92,
24]. We found that cloud services initially developed for web applications can
be used together with The Things Network as building blocks of IoT end-to-end
applications at low design and maintenance effort;

4. We are the first work to use a large streamflow velocity dataset to analyze
the viability of using mini hydro turbines to power a water quality station IoT
device, complementing other works using estimated or measured solar energy
[70, 31]. We found that by using large available datasets with the selected
mini turbine and solar panel harvester models, we could estimate harvesting
conditions without the effort of doing field collection on all theses sites. We
combined the harvesting conditions with SPIoT device models to simulate how
a SPIoT application would perform in a wide range of deployment locations
and we evaluated the feasibility of a water quality application with different
harvesting modalities; and

5. The water leakage sensor design is one of the first works demonstrating how to
use a thermal energy harvesting dataset to inform SPIoT design, while other
state-of-the-art works adopt solar power [70, 31] and use datasets to calibrate
and validate their models[31]. We found that with our collected thermal dataset,
an energy harvesting front-end model and energy consumption data from a
commercially available water leak sensor, we are able to simulate different SPIoT
design options and choose harvesters and capacitor components as to reach 100%
availability under recorded energy harvesting conditions.
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Chapter 2: Related work

A considerable amount of research on ICT and IoT applications has been pub-
lished in recent years[4, 67, 86, 94, 118], contributing to the maturity of the tech-
nology by identifying and proposing solutions to numerous challenges [32, 112, 123].
To narrow down relevant literature for this work, we select three main areas to ex-
plore: (1) Self-powered IoT models, consisting of works that introduced models for
IoT devices, applications and energy generation; (2) Energy harvesting profiling, con-
sisting of works that proposed techniques and conducted energy harvesting profiling
experiments; and (3) End-to-end IoT applications, consisting of practical IoT system
designs from sensor to gateways, cloud infrastructure, and user interface tools.

2.1 Self-Powered IoT Models

An example of a typical SPIoT application is depicted in Figure 2.1, capturing
the energy flow from the solar radiation source to solar panel harvester, and to the
power conditioning circuitry of the IoT device where it will be stored and consumed
by controller, communication and sensing tasks to deliver a certain service to the user
through a network infrastructure. This system can be abstracted as a set of models
as depicted in Figure 2.2.

In their work [70], Kansal et al. introduced many model components of SPIoT
applications and proposed a dynamic power management (DPM) algorithm to predict
energy harvesting and adapt the IoT device operation based on energy availability
and application utility. Kansal et al. also introduced the concept of energy neutral
operation (ENO), an SPIoT operation mode where energy consumption matches en-
ergy generation at the end of a fixed time window. For the case study in [70], a
sensor operating in an outdoor environment harvests energy from solar radiation and
adapts its duty cycle based on actual and predicted energy generation in a way that
application utility is maximized and the energy stored in the beginning of a day is
approximately the same as in the end of that day.

For the power conversion model, Kansal et al. [70] assumes a constant average
efficiency term that represents the energy losses to charge and discharge a battery
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Figure 2.1: Example of SPIoT application domains from energy generation
to device operation to end user. Solar energy is captured by solar panel and
then stored in a battery or consumed by the SPIoT device. IoT tasks require en-
ergy consumption by controller, sensors or communication to deliver a service to the
application’s users through a network infrastructure.
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Figure 2.2: Block diagram of a model for a SPIoT application. Physical quan-
tities are models related with the energy source, as for instance the solar radiation.
Harvester, power conversion, energy storage and energy consumption models repre-
sent the power flow in an SPIoT device hardware. Communication model represents
non-idealities on the information path from device to application processing. Appli-
cation utility model represents how much weight a service tasks carries to the end
goal of the application.
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component. As for the energy storage model, only a constant energy leakage rate
term is considered.

To represent uncertainty on energy generation and consumption, Kansal et al. [70]
assumes a known, or measured profile of harvested and consumed energy. This model
represents the total energy time series inside a time interval by three parameters as
depicted in Figure 2.3, where ρ is the average power, σ1 captures the maximum energy
burst and σ2 captures the maximum energy drought.

Total energy 
consumed

Figure 2.3: Energy generation or consumption uncertainty 3-parameter
model. Energy bursts are represented by the two σ parameters and average power
is captured by the parameter ρ. If for instance the blue line represents generated
energy and the black line represents energy consumption, uninterrupted operation of
the SPIoT device requires σ2 as the initially stored energy in the battery and σ1 + σ2

as the maximum battery capacity.

The model introduced by Kansal et al. takes into consideration a communication
model for the case of a network of sensors, representing the relationship between an
SPIoT’s receiver duty-cycle and the reception of a wake-up signal.

The power management algorithm introduced by Kansal uses a simplified utility
model consisting of 3 regions, the first for which there is no value in duty cycle
operations bellow certain frequency, the second with linear returns for increased duty-
cycle frequencies and a third region for which the utility is constant for duty cycle
frequencies above certain threshold. This utility function and the simple efficiency
model for energy storage results in a power management algorithm that prioritizes the
use of energy while energy generation is above the expected average and keeps energy
consumption to the minimum value for energy generation bellow the expected average,
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then the algorithm spreads exceeding energy evenly until the maximum utility return
is achieved.

Following the introduction of the general model by Kansal et al., many works
focused on improved dynamic power management (DPM) algorithms with more com-
plex prediction models so devices can better adapt their operation based on energy
availability. Spies et al. [122] provide a summary of the SPIoT models available for
designers, as well as energy harvesting considerations, including an estimate range and
order of magnitude of energy harvesting for different energy sources. The authors of
[122] also make a compilation and expand on the models introduced by [70].Finally,
the authors of [122] mention design considerations about power management unit
(PMU) as minimum voltage required to operate, cold start and capacitors as inter-
mediate storage elements but they don’t further explore these considerations in the
modeling effort.

The work by Buchli et al. [31] uses similar models to [70], with the goal of
designing a SPIoT device that also harvests energy from outdoor solar source. Instead
of using daily energy generation measurements to predict future energy generation
as in [70], Buchli et al. use a physics-based solar radiation model to derive the
output power of a solar panel for multiple years of operation. Buchli et al. use this
multiple-year model to extend the time window considered for the ENO from a scale
of days in the case presented by [70] to a scale of years, allowing for instance the
system to store exceeding energy during the summer months, and then use it during
the winter months. Authors of [31] also consider an empirical attenuation factor
to account for average cloud coverage in their solar radiation based model, so they
can set SPIoT operation accordingly. Their coupled SPIoT and energy generation
models allows them to make design time decisions about energy storage capacity, as
to account to the expected needed capacity for the long term ENO. In a following
work, Buchli et al. [30] employ a more realistic utility function for the dynamic power
management operation, considering the error in the SPIoT application outcome when
the measurement frequency varies. Instead of the three region utility function used in
[70], their utility function has two regions, one where utility is zero and other where
utility assumes an exponential shape with diminishing returns as the SPIoT duty
cycle increases.

To achieve a more realistic SPIoT device model, Masoudinejad et al.[89] combined
subsystem models obtained from measured data over different domains, integrating
solar harvester models [88], power management unit model [91] and battery model
[90]. As their harvester model, Masoudinejad et al. characterized solar panels in [88],
with a benchtop equipment setup capable of reproducing a range of light radiation
intensities, temperatures, and light source types. For the power management unit
model, Masoudinejad et al. measured the average efficiency of power management
circuits in their work [91], varying input voltages and currents. For their energy
storage model, Masoudinejad et al. derived a measurement-based open-loop battery
model in [90]. The final integrated model was demonstrated in [89] as an useful tool
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for identifying bottlenecks in system design, but without including energy harvesting
dynamics models, neither application utility models.

More recently, Brunner et al. introduced an integrated simulation environment for
SPIoT devices [29] that allows designers to explore the complex design space of SPIoT
devices and applications. In their simulator, users can perform experiments combining
multiple SPIoT hardware components and energy harvesting models. In their work
[29], Brunner et al. also demonstrated how their simulator can be used to optimize
SPIoT component and operation parameter selections to achieve higher throughput
in intermittent operation applications. While Masoudinejad et al. introduced the
integration of SPIoT subcomponents to characterize their own platform [89], the
simulator introduced by Brunner et al. [29] provides a generic framework to describe
and simulate integrated SPIoT models that are able to support SPIoT application
analysis, and design time decisions.

An important challenge for different applications is how to define the value of the
acquired sensor data. In [70], this value is defined as the utility function, a measure
of how much better an application performs with increased duty-cycle frequency.
Although the utility function in [70] was only superficially motivated, other works
have demonstrated how to use classification metrics [50] and application metric error
as utility functions [30]. Other aspects of information quality or utility were discussed
in [21] and concepts can be translated for each application. In [51], the authors
consider time varying utility, acknowledging that for some applications, data value
depends on when it was acquired.

Insights and takeaways on SPIoT modeling related works

While Kansal et al. [70] introduced some of the fundamental ideas in SPIoT
modeling, other authors contributed extensively with practical SPIoT design and
analysis considerations, including integration with energy generation models, SPIoT
component selection, and determining utility functions. We summarize the main
SPIoT modeling approaches discussed here in Table 2.1.

Our takeaway from this SPIoT modeling literature review is that estimating real-
world SPIoT operation behavior requires modeling of interdependent characteristics
of energy generation, conversion, storage, consumption, and application utility. We
also realize that SPIoT modeling is often used to support the design of SPIoT solu-
tions with the most efficient use of energy, as for instance informing dynamic power
management (DPM) strategies [75, 70, 30, 2, 50]. However, not all applications can
benefit from DPM, since this approach assumes that generated energy surplus can
always be used to increase the utility of applications, for instance increasing the sam-
pling rate of SPIoT devices. For applications where there is little to no benefit of
using DPM, the challenge is estimating if energy harvesting conditions can support
an required energy consumption level for most or all of the deployment time. From
this observation, we identify the following opportunities to support SPIoT design and
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Table 2.1: SPIoT modeling prior work

Related Energy generation SPIoT device Utility
work considerations considerations model

Kansal et al. [70] average energy, bursts efficiencies, max storage arbitrary,
and droughts capacity and leakage linear

Buchli et al. [31] physics based efficiencies, max storage application based,
astronomical model capacity and leakage exponential

Spies et al. [122] average energy, bursts efficiencies, max storage Not considered
and droughts capacity and leakage

Masoudinejad et al. [88] Not considered empirical models for harvester, Not considered
energy conversion and battery

Brunner et al. [29] Energy harvesting empirical models Not considered
traces supported supported

increase its adoption by applying integrated SPIoT models to perform: (1) Energy
harvesting data acquisition that is useful for SPIoT hardware designers, as we show
in Chapter 4; (2) Analysis of potential SPIoT applications with different harvesting
modalities, as we show in Chapter 7; and (3) Informed SPIoT deployments, as we
show in Chapter 5 and Chapter 7.

2.2 Energy Harvesting Profiling

Although harvesters have been thoroughly studied and modeled in laboratory
bench top setups [88, 56, 42, 40, 78, 101], estimating how much energy can be har-
vested in real deployment conditions is challenging since the harvesters can be ex-
posed to a wide range of changing and hard-to-predict environments, depending on
the energy source of choice. One common approach to characterize energy harvest-
ing is collecting profiles in relevant environments and using them as a proxy to the
expected energy generation dynamics for a given SPIoT application.

As an example of early energy harvesting profiling work, Gorlatova et al. collected
energy irradiance data from indoor and outdoor light sources [54, 55], and kinetic
energy sources [53, 38]. To estimate energy available to an EH IoT device using
these datasets, we need to model the harvester’s transfer function from raw energy
measurements to estimated converted electric power. Other examples of datasets that
can be used to derive raw available energy are The National Solar Radiation Data
Base (NSRDB) [111] and SolarAnywhere [36] for outdoor solar energy harvesting, and
National Water Information System (NWIS) [124] for hydro power. We demonstrate
the use of solar and hydro kinetic datasets to estimate harvested energy in Chapter 7,
and in its associated published work[85].

In a following energy harvesting profiling effort, Sigrist et al. [115, 116] collected
energy harvesting data from indoor light in office spaces. They measured environment
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parameters, as well as voltage and current traces of their energy harvesting front
end, containing an indoor solar panel connected to a power management circuit that
supplies a virtual battery. Their dataset provides a valuable insight on realistic energy
conversion efficiencies from their used solar panel coupled with a maximum power
point tracking power management circuit. Their dataset can be used to estimate how
much power is available to an EH IoT device, assuming the same energy harvesting
front-end of their data acquisition platform. We use their dataset as a reference for
our work in Chapter 5 to estimate typical harvesting conditions and support our
analysis.

Fan et al. demonstrated a recording platform in their work [49] with similar capa-
bilities to [115] while also being able to simulate super capacitor storage components
and a controlled load. Fan et al. only recorded short energy harvesting traces in the
scale of hours, while Sigrist et al. made available multiple years of profiled energy
harvesting data.

Another approach to collect energy harvesting traces was proposed by [58], where
the I-V curve of harvesters are measured in real deployment conditions. I-V curves of
harvesters are achieved by sweeping the impedance attached to the harvester output
and measuring the loaded harvester voltages and currents. The I-V curve information
can be useful to circuit designers to simulate power management solutions as these
curves are sufficient to emulate harvesters in a range of loading scenarios. For instance,
we show in Chapter 4, and in our published work [121, 76], how we collected a dataset
of thermal energy harvesting conditions from residential settings by estimating the
current-voltage curves of a thermoelectric generator (TEG). This information can be
used to simulate the TEG model adopted in our data acquisition system, allowing
designers to simulate power management circuits of EH IoT devices. A disadvantage
of the I-V energy harvesting profiling approach is the large amount of data that needs
to be collected to reproduce the I-V curve in fast changing harvesting conditions.

Insights and takeaways on energy harvesting profiling related works

While all previously discussed works provide valuable information for designers,
there is a trade-off between generality and accuracy when using their collected data
to estimate the actual harvested energy by a SPIoT device. For instance, measuring
raw available energy is an upper bound on the available energy to be harvested, but
it requires a model for the harvester efficiency. If more information is collected about
the conditions, or environment parameters where the harvester is deployed (temper-
ature, orientation, etc.), it is possible to adopt a more precise harvester model. Both
these approaches are general, in the sense that they are not biased to any particu-
lar harvester component. On the other hand, measuring parameters from a specific
harvester, power management circuit, or complete SPIoT design is a better represen-
tation of the operation of these measured devices, but it becomes more challenging
to translate the collected data from the hardware components used to collect data
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to other alternative parts and circuits. We summarize the main energy harvesting
profiling approaches discussed here in Table 2.2.

Table 2.2: Energy harvesting profiling prior work

Measurement approach Mathematical representation Usefulness

Raw available energy [54] ̂Pharv = ηPraw, e.g. irradiance (W/m2) Upper bond on Pharv

Environment parameters [53] ̂Pharv = f(p1, p2, . . .), e.g. acceleration Harvester design

Harvester output [58] (Vharv , Iharv) = f(load), e.g. ̂Pharv@Rload Hardware design

PMU output[116] ̂Pharv = PPMU More realistic Pharv

Stored energy [49] Estr = Estr(last) + EPMU − Econs, e.g. Vcap Operation evaluation

Our takeaway from this energy harvesting profiling literature review is that all pro-
filing approaches are valuable to different stages of the SPIoT design, and hardware-
biased approaches are more suited to be integrated with SPIoT application models.
We select the harvester output profiling approach used by Hester et al.[58] to profile
thermal energy harvesting in Chapter 4, demonstrating a practical way of capturing
realistic energy generation data with an off-the-shelf thermoelectric generator compo-
nent. We later use the profiled data to inform the design of the energy harvesting front
end of a water leakage sensing application in Chapter 7. We select the environment
parameters approach to estimate the energy output of harvesters where harvester out-
put measurements are not available. We estimate power output of a solar panel from
illuminance measurements in Chapter 5, to support the characterization of harvesting
conditions in indoor office spaces. We also estimate energy generation of a miniature
hydro kinetic turbine and a solar panel in Chapter 7, to evaluate if the generated
energy would meet the consumption requirements of a water quality sensor station.

2.3 End-to-End IoT Applications

To understand the real-world constraints and usefulness of IoT applications, we
investigate the general architecture of IoT systems, from sensor to gateway, and appli-
cation server. While in the previous sections we discussed device-level operation and
energy harvesting conditions, in this section we will focus on practical deployment
and application server design challenges to build useful and cost effective IoT solu-
tions. As an example end-to-end IoT application, we design and deploy a smart city
flood warning tool consisting of commercial IoT sensors, gateways and cloud based
tools for data storage and visualization. The developed IoT cyberinfrastructure is
discussed in Chapter 6 and in our published work [77].
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As information and communication technologies (ICT) diversifies and becomes
more complex, selecting, developing and integrating hardware and software solutions
for IoT smart city and building automation projects ([67], [126], [92]), requires a
broad range of technical knowledge, frequently resulting in an important adoption
barrier to many communities. To implement a complete IoT solution, the designer
must develop or select components as sensor hardware and respective communication
technology, gateway infrastructure, and application software, which nowadays often
includes cloud computing resources. To address this challenge and to make IoT
solutions more accessible, The Things Industry (TTI) [66] created and maintained The
Things Network (TTN) [98], a set of open-source tools and APIs to provide the basic
software infrastructure to deploy IoT sensors based on LoRaWAN [93, 114], a low-
power and wide-area network (LPWAN) communication protocol. This open-source
project enables contributors around the globe to publicly share TTN compatible
gateways that can connect LoRaWAN sensors to a cloud backend service maintained
by TTI. Using TTN for smart city projects has been successfully demonstrated in the
literature for different applications (e.g. [24, 43]) while also benefiting communities
by creating an open LoRaWAN communication infrastructure that can be leveraged
by other projects.

To illustrate some of the possible IoT architecture solutions to smart city projects,
we selected two works, the first one targeting Radon gas concentration monitoring
[92] and the second one a smart stormwater system using LoRaWAN and TTN [24].
The Radon gas concentration monitoring work was selected to represent a typical
IoT project, where the study made use of available components and tools to build
their own remote sensing solution. The smart stormwater system work was selected
as an example of a similar application goal using LoRaWAN and TTN, but adopting
alternative design components to our system.

Radon Gas Monitoring Application.

To monitor concentrations of Radon gas at indoor locations, the authors of [92]
presented an IoT system that collects and transmits data to a remote server where
values are stored. We summarize the IoT system architecture used for the Radon gas
application in Figure 2.4.

As sensing devices, the authors of [92] adopted a commercially available Radon
Scout gas sensor connected to a Raspberry Pi 3 device used as a controller and
connected to the internet. The Raspberry Pi was programmed to read and transmit
sensor data to their remote server through a Message Queuing Telemetry Transport
Protocol (MQTT) [95] communication interface. The server receives sensor data
through a MQTT broker that publishes received messages to a subscribed MQTT
client managed by a Node-RED [102] application responsible for parsing and storing
the data in a MySQL database [103]. Finally, a web server interface was created to
read the database and display a table of stored sensor readings to users.
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Figure 2.4: IoT system architecture diagram for the Radon gas monitoring
application.

For our flood warning use case, we adopted commercially available LoRaWAN
gateway and sensors. While our LoRaWAN gateway requires internet connectivity
similarly to the Raspberry Pi controller used in this related work [92], the LoRaWAN
sensors can be deployed hundreds of meters away from the gateway, which allowed us
to reach our desired deployment locations. We used TTN as our network server to
register and manage devices, reducing development time and enabling better scalabil-
ity as new sensors only need to be registered to our TTN application. For this related
work [92], authors needed to individually configure the MQTT clients in each one of
their Raspberry Pi devices to publish sensor measurements to their server’s MQTT
broker, as well as individually manage any security key. Instead of using Node-RED
to parse and ingest data as adopted in [92], we used a python script to manage the
data ingestion and parsing system that periodically receives data from our TTN ap-
plication through a MQTT client. As our data storage solution, we also adopted
a MySQL database, similarly as presented in [92], but we also decided to create a
dedicated long-term cloud-based storage solution using AWS S3 as a backup to the
MySQL database. For this long-term data storage backup, we used AWS Lambda
service to create a serverless and independent data ingestion solution to periodically
request data from TTN storage integration and store it in AWS S3. Instead of dis-
playing sensor data through a website server, we created a dashboard on a Grafana
application [74] to plot relevant sensor information such as measurements and battery
voltage level. Although the authors of [92] were targeting an indoor Radon gas mon-
itoring application, some of their system components could be adopted by other IoT
applications such as collecting and displaying data from LoRaWAN sensors connected
to TTN. For instance, TTN offers a MQTT Broker service that can publish received
LoRaWAN messages to subscribed clients, making it possible to re-use the server
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infrastructure described in [92] by updating the broker address, client credentials,
parsing function, database configuration and sensor measurement variables.

Smart Stormwater System Application

For the stormwater monitoring system introduced in [24], the authors deployed
a set of sensors around the Illawarra-Shoalhaven region in Australia. Their sensors
relied on either LoRaWAN or 4G cellular network to communicate, depending on
each sensor’s required data rate. Sensing devices included water-level sensors, tipping
bucket rain gauges sensors, pressure and humidity sensors, lagoon monitoring devices,
and culvert blockage monitoring system. To receive data collected by the LoRaWAN
based sensors, the authors deployed a network of TTN gateways in the study region.
This gateway infrastructure was also seen by the authors as an investment to support
other future applications including education related projects. We summarize the IoT
system architecture used for the smart stormwater system application in Figure 2.5.
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Figure 2.5: IoT system architecture diagram for the related work storm
water monitoring application.

To store and display the collected data, authors of [24] adopted the open-source
solution provided by the ThingsBoard [22], using MQTT protocol to receive Lo-
RaWAN sensor data from TTN and store it in a PostgreSQL database. ThingsBoard
also provides alerting and graphical interface tools to generate custom dashboards to
display sensor data in real time and send automated alert messages. Authors have
not specified if the server solution was hosted in a computer owned by them or a
cloud solution, however ThingsBoard offers a platform as a service solution where
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they host their system in the cloud with pricing currently ranging from $10/month
to $749/month.

Despite offering data storage, API access and visualization tools, Thingsboard is
a turnkey software solution that requires users to have an always-running server to
ingest, store and visualize data. On the other hand, our solution leverages cloud
services to break down data ingestion from other on-demand uses, namely: (1) a
serverless data ingestion and storage cloud application using AWS Lambda [17] and
AWS S3 [9]; (2) a virtual machine instance with a MySQL database to provide re-
sponsive data access; and (3) a second virtual machine hosting a Grafana server [74]
to provide data visualization. Our serverless data ingestion solution requires only a
few lines of code to query sensor data from TTN, parse, and store data as a csv file
in AWS S3, thus reducing complexity to manage bugs and update the system when
compared to full servers such as ThingsBoard[22]. Using dedicated virtual machines
for a database and visualization allows for tailored resource allocation based on the
application needs, the flexibility to provide only the needed service, and code isola-
tion to facilitate upgrading, adding, or switching services (e.g. replacing MySQL with
PostgreSQL).

Insights and takeaways on end-to-end IoT application related works

We realized that end-to-end SPIoT applications can be penalized by over complex,
costly and hard to manage cyberinfrastructure, hindering IoT adoption, and lower-
ing IoT application cost-benefit. We also identify data storage and visualization as
fundamental services required for most IoT applications. To provide these services,
developers usually deploy their own servers at high cost, both in terms of money and
time. This task is specially demanding when developers have backgrounds other than
computer science, such as in embedded system design or instrumentation for exam-
ple. On the other hand, more cloud services are recently becoming available that can
reduce the burden on application server development, system maintenance and cost,
such as serverless functions, and low-cost data storage. Another advantage of cloud
services is the flexibility to tailor the system to the IoT application needs, allocating
computational resources and storage when needed.

Our takeaway from this end-to-end IoT applications literature review is that nav-
igating through IoT application technology can be challenging to developers without
background on cloud services, and sharing experiences of application servers using
cloud based solutions can be very valuable to them. We discuss the development of
a cloud based data storage and visualization tool in Chapter 6, with serverless data
ingestion capabilities, and on-demand resource allocation for data visualization.
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Chapter 3: Motivating Applications of IoT Deployment

Tools and SPIoT Modeling

To motivate our integrated self-powered IoT analysis framework, we selected two
applications that illustrate practical challenges to design SPIoT devices: (1) water
leakage detection; and (2) water quality monitoring. As to motivate our IoT deploy-
ment frameworks, we selected two example use cases to highlight our approaches: (1)
Informing deployment of indoor solar SPIoT for smart buildings; and (2) Deploying
IoT cyber infrastructure for smart city stormwater applications. While the context
is based on these example use cases and applications, the fundamental concepts we
discuss for each of them are translatable to many other smart city and building in-
frastructure use cases and applications. In this chapter we will discuss the highlighted
flow chart elements depicted in Figure 3.1.

3.1 Water Leakage Detection

In an indoor air quality survey performed in 100 randomly selected buildings,
the Environment Protection Agency (EPA) listed water damage as one of the main
sources of pollution [131] as it can lead to mold growth, which in turn can cause serious
health problems to people [20]. In this same study, the EPA found that 85% of the
surveyed buildings experienced water damaged in the past and 45% were experiencing
ongoing problems with leaks causing water damage, with some of the most common
water leakage locations being occupied spaces, basement, roof and mechanical rooms.
To prevent increased property damage, mold growth and associated health risks to
building occupants, IoT sensors can perform early detection of leakages by being
placed close to locations with high risk of experiencing water damage.

A requirement for these leakage detection devices is to be able to timely communi-
cate to some alarm system when a leakage event is detected. An IoT designer can also
set the device to periodically send a simple communication event known as heartbeat
to inform the application that the sensor is still operational and build up confidence
that the leakage detection system is working. To make efficient use of energy and
increase the leakage detector sensor availability, designers need to choose a low power
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Figure 3.1: Flow chart components related with application requirements.
Application requirements informs possible harvesting modalities, SPIoT hardware
capabilities, and operation modes.

sensor and wireless communication strategy, as well as an adequate heartbeat report-
ing frequency.

A current challenge with such leakage detection applications is that plumbing in-
frastructure is usually located in hard-to-reach environments where might not be any
AC wiring and outlets available and the cost for periodical IoT battery replacement
can be significant. Furthermore, these are usually low-light locations, as inside wall
gaps or in machinery rooms and therefore using solar powered sensors might not be
practical. An alternative solution to power these water leakage sensors is using the
thermal energy from pipes carrying warm water. The temperature difference from
the pipe surface and the surrounding air can be used by a thermoelectric generator
to power a water leakage sensor. Since the pipe temperature depends on water us-
age behavior, energy harvesting will also be correlated with warm water usage and
therefore complex to model.

3.2 Water Quality Monitoring

Monitoring water resources with in-situ sensing systems is an important tool to
address many hydrological and environmental problems such as flooding, runoff pol-
lution, and aquatic ecosystem degradation [105, 25, 106]. For instance, government
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regulators or citizen scientists can monitor a stream’s water quality by sampling
parameters such as water’s PH, conductivity, temperature, dissolved oxygen and ox-
idation reduction potential to identify runoff pollution and assess the potential risk
to both the aquatic life and people making recreational use of the stream. In typical
water quality monitoring applications, designers select one or a set of the previously
mentioned sensors and set up a monitoring station to periodically acquire and re-
port sampled measurements. Designers can set the sampling rate to be dynamically
adjusted to capture more data during particular events like rainfalls or to provide
better time domain resolution when power is abundant. Applications can require the
data to be locally stored or transmitted through available wireless communication
infrastructure like cellphone network.

While some water monitoring stations might be deployed in locations with access
to mains power, many locations of interest do not have access to any cabled infrastruc-
ture and therefore they must rely on battery power or energy harvesting. Although
researchers have proposed different energy harvesting sources to power water mon-
itoring stations[69, 34], many research applications and commercial products adopt
solar energy harvesting as it is a cost effective and reliable solution[99, 65, 84, 100, 5].
However, for some low-light locations as inside canyons or under dense canopy, relying
on solar energy to power water monitoring stations might not be practical. An alter-
native source of energy that is currently under explored is the Kinetic power of flowing
water. Extracting energy from flowing water in a small scale has been demonstrated
by commercial mini turbines of up to 180mm of diameter and capable of delivering
up to 15 Watt of power[64]. Self-powered water sensing stations powered by water
flow’s kinetic energy has the potential to increase the number of viable deployment
locations, however also introducing energy generation uncertainty, since, for instance,
water flow velocity can drastically change based on precipitation, which is usually
more complex to model than solar radiation.

3.3 Informing deployment of indoor solar SPIoT for smart
buildings

About of 40% of the energy use in the United States and the European Union
is consumed in homes and buildings, according to the United States Department of
Energy [129] and the European Commission [47]. In the United States, this energy
consumption costs over $400 billion each year, and 75% of the produced electric-
ity [129]. To make buildings more efficient, save energy, and comply with energy use
regulations [72, 135], researchers developed complex automation systems with IoT
sensors, capturing detailed information about the building state and energy use [87].
In this context, energy harvesting is a promising solution to enable large-scale IoT
systems to gather building data, since battery replacement and waste management
becomes impractical as the number of IoT devices increase.
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However, designing and deploying energy harvesting Internet of Things devices
is challenging due to the spatial-temporal variability of harvestable energy. For in-
stance, a device harvesting energy from indoor lights is dependent on how often its
deployment space is illuminated. This device might operate as intended in a high-
occupancy and frequently illuminated space, yet underperform in less used spaces and
when occupancy rates drop. Contrast this with a battery-powered device, which will
operate as intended regardless of human activity (until the battery runs out). This
inherent uncertainty suppresses the adoption of energy harvesting devices.

We propose a framework to support informed energy harvesting IoT deployment
based on a new construct called the energy harvesting score. This score is a number
from 0-100 that characterizes the usable energy in an environment available to an
energy harvesting device. This same score serves as a rating for devices, characterizing
the energy requirements of a device. If the score is above the rating, that device will
function as expected in the environment. This framework can be used to characterize
energy generation at potential deployment locations and guide the installation of
SPIoT devices in smart buildings. We discuss our energy harvesting score and rating
deployment tool in Chapter 5.

3.4 Deploying IoT cyber infrastructure for smart stormwater
applications

With aging infrastructure and climate change, existing stormwater infrastructure
has been failing to respond to atypical precipitation events in many cities. To ad-
dress this challenge and avoid flooding events, some cities have invested in expensive
stormwater infrastructure expansion and complex control systems. However, a more
cost effective solution was demonstrated by [25], where IoT sensors collect real-time
data as precipitation and water level in different parts of the city’s stormwater in-
frastructure, supporting management decisions and making optimal use of existing
infrastructure. This approach also allows stormwater infrastructure managers to make
informed decisions on infrastructure expansion investments to make their cities more
resilient.

Building an useful smart stormwater IoT solution requires not only deploying the
physical sensors and gateway devices, but also cyber infrastructure to store and give
users access to data. It is important that the cyber infrastructure is flexible, cost
effective, easy to maintain, and integrate with other solutions.
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Chapter 4: Energy Harvesting Profiling

Energy harvesting characterization and modeling is an important step to address
energy harvesting uncertainty and support the motivating SPIoT applications dis-
cussed in Chapter 3. As each deployment location and energy source have their own
dynamic characteristics, data collection in relevant environments is a critical to ob-
tain a realistic representation of SPIoT device’s energy harvesting constraints. In this
chapter we will discuss the highlighted flow chart elements depicted in Figure 4.1. To
drive the discussion on energy harvesting profiling, we will use the block diagram on
Figure 4.2 as a reference for a typical energy harvesting device. Each energy harvest-
ing profiling approach consists in measuring parameters from the different stages of
the energy conversion and consumption path.

4.1 Energy harvesting profiling approaches

The most general approach for energy harvesting profiling is measuring Praw as
the upper bound of the total available energy at the profiled deployment location. For
instance, in the solar energy harvesting profiling dataset colected by [54], irradiance
measurements in W/cm2 can be readily translated to raw available energy Praw by
multiplying irradiance by the harvester area in cm2. While this approach provides
useful information to SPIoT designers, it is most valuable for energy harvester de-
signers so they can optimize energy harvesting efficiency for the typical operating
conditions. Another factor that can play a role in energy conversion efficiency are
environment parameters such as temperature, humidity or air flow velocity. If circuit
designers want to estimate the power output of an energy harvester, they need to
create a model that converts Praw and relevant environment conditions to harvested
output power Pharv. This process can be complex depending on the energy harvesting
modality and adopting simplified models might result in inaccurate harvester output
power estimation. For example, in thermoelectric energy generator (TEG) appli-
cations, while temperature difference is a good indicator of output power, energy
generation is driven by heat transfer and other more complex factors as airflow and
heatsink design can have a significant impact on realistic power output estimation.
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Figure 4.1: Flow chart components related with energy harvesting charac-
terization. Energy harvesting characterization is required to understand the design
and deployment constraints of a SPIoT application.
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Figure 4.2: Block diagram of the power system of a typical energy harvesting
device. Praw is the maximum available power that an ideal harvester could convert
to electricity. Pharv is the actual power output of a given harvester. The energy
storage block represents capacitors or battery elements used to store energy. The
energy consumption block represents all power consuming circuitry of the SPIoT
device including, for instance, microcontroller, radio, and sensors.
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Another possible energy harvesting profiling approach is deploying a particular en-
ergy harvester device and measuring its output voltages and currents under a range
of loading conditions. This approach was presented by [58], where they periodically
sweep the resistance of a load connected to the harvester output, recording the har-
vester’s resulting output currents and voltages during each sweep. By assuming stable
harvesting conditions across each load sweep, the set of measured voltages and cur-
rents during a sweep is an I-V curve that models the harvester’s output behavior for
this harvesting conditions. This I-V curve can be used by SPIoT circuit designers
to calculate the maximum power that the harvester can deliver at each moment in
time (also known as maximum power point) and to simulate the efficiency of power
management circuits that convert voltage levels provided by the harvester to volt-
age levels suitable to remaining SPIoT device components. While this approach is
less general than measuring the raw available power, it is more easily translatable
to parameters useful to circuit designers and it allows them to make a more realistic
estimation of available energy.

By deploying an energy harvesting front-end consisting of harvester, power man-
agement unit circuit and a constant-voltage current sink as a virtual battery, the
authors of [115] collected voltages and current measurements of both the harvester
output and the power management circuit output. This approach is still less gen-
eral than the harvest output characterization, but it provides realistic estimates of
available power to SPIoT circuit designers as long as they use the same energy har-
vesting front-end. One of the challenges of adopting this approach is to accurately
capture current output from power management units using pulse frequency modu-
lation because of the high sampling frequency required to properly characterize these
fast current pulses. Another limitation is that the measured Pharv depends on the in-
ternal power management unit state, since the integrated circuit component that they
adopted in their study (BQ25505) performs maximum power point tracking around
every 16 seconds. This means that the voltages and currents measured for the power
management unit are usually close, but they could not be exactly at the maximum
power point of the harvester.

Finally, another alternative indirect energy harvesting profiling approach would
be to actually deploy a complete SPIoT solution and monitor its energy storage state
of charge and the device’s operation behavior. This approach results in the lowest
flexibility to translate energy harvesting measurements to other applications, but,
as a field test, it can be very informative to a SPIoT device designer. Other major
drawbacks of this approach is the information loss when the energy storage voltage
saturates and when the devices suffers a power outage.

As a good trade-off between realistic energy harvesting representation and flexi-
bility to apply the profiles in circuit level simulations, we selected the harvester I-V
curve monitoring approach described by [58] as our energy profiling methodology. We
assume that collecting a time-series of I-V curves can provide enough information for
SPIoT circuit designers to optimize their power management unit circuits and enables
realistic SPIoT generated energy simulation.
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4.2 Energy harvesting profiling platform

To collect I-V curves from harvesters, we need a controllable load and circuits
to measure current and voltage. If the controlled load is resistive, currents can be
calculated by dividing the measured voltage values by the known resistance values.
Then a controller is required to timely sweep the controlled load values and collect
voltage measurements. The general architecture of the designed energy harvesting
profiler platform is depicted in Figure 4.3, where the harvester output is connected
to a controlled load and voltage measurements are amplified by a programmable
gain amplifier (PGA) and taken by an analog-to-digital converter(ADC). A controller
is responsible to read ADC values and control the resitive load values through an
inter-integrated circuit (I2C) interface. Measurements are then stored locally and
transmitted to a database hosted in the cloud.

Harvester

I2C

Controller
Cloud

infrastructure

ADC

Controlled load

I2C

PGA

Figure 4.3: Block diagram of an energy harvesting profiler using the har-
vester I-V curve method. Harvester output is connected to a small filtering capac-
itor and a controlled resistive load. Harvester’s output voltage is amplified by a PGA
and read by an ADC. A controller is responsible to set the controlled load resistance
values, collect voltage measurements and locally store or transmit collected data to a
cloud-hosted database.

To collect energy harvesting profiles of thermal energy sources, we selected a
commercial thermoelectric generator (TEG) module that was compact and easy to
use, the EHA-PA1AN1-R03 which is manufactured by II-VI Marlow Industries. Since
the TEG device manufacturer indicated that the optimal load resistance for this
TEG is around 1.5 ohms, we designed a controlled load circuit to have configurable
resistances around this value and capture points evenly spread in the range of the
TEG I-V curve. We selected the resistance values of 0.1, 0.47, 1.5, 4.7 ohms and
open circuit as the possible controlled resistance values to characterize the TEG I-
V curve. To calibrate the platform measurements, We measured the resistance of
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each active channel (0.2251, 0.5990, 1.6245, 4.8070 ohms respectively), as well as the
short-circuited probe’s resistance (0.1080 ohms). The ADC used was an ADS1015,
configured to provide 12-bit voltage readings and a gain of 8, resulting in a voltage
range of [-0.512V, +0.512V] and resolution of 0.25mV. The interface between the
TEG and the controlled load and measurement setup is depicted in Figure 4.4 and a
typical TEG I-V curve is depicted in Figure 4.5.

Rint

VTEG 0.1μF
0.1Ω 0.47Ω 1.5Ω 4.7Ω

P1P0 P2 P3

ADS1015AN0

TEG

Figure 4.4: TEG I-V curve profiler interface. We consider the TEG model as
an internal resistance in series with a voltage source and we connect its output to
a filtering ceramic capacitor, a controlled load and an analog to digital converter.
Our controlled load circuit interface uses four resistance paths controlled by low on-
resistance MOSFETs operating as switches. We use an ADS1015 integrated circuit
to perform the PGA and ADC functions.

To capture some information about the environment conditions for which the TEG
I-V curves were recorded, we added a thermocouple type K temperature sensor and
respective off-the-shelf conditioning circuit to the energy harvesting profiler recording
platform. The temperature sensor is attached to the same thermal energy source
surface as the TEG device and it records the hot temperature surface and the ambient
temperature. We selected a Raspberry pi as the controller of the energy harvesting
profiler recording platform and programed it to set the controlled load resistance path,
collect ADC and temperature sensor readings and manage data record and cloud
database streaming. The block diagram for the complete TEG energy harvesting
recording platform is depicted in Figure 4.6. The thermal energy harvesting recording
platform uses the components listed in Table 4.1 and the deployed platform is depicted
in Figure 4.7.
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Figure 4.5: TEG I-V curve measurements example. By switching the load
resistance, we can sample different points in the TEG I-V curve.If, for instance, the
TEG internal resistance is 1.5 ohms, connecting a load resistance of this same value
will result in a voltage output of half the magnitude of the open circuit voltage.

Table 4.1: Thermal energy harvesting recording platform components

Component list specification

Raspberry pi 3 model A+ with a 32GB microSDHC UHS-1 A1 card (Sandisk) and a 2.5A microUSB power supply (Pro-elec).
Qwiic pHat board (Sparkfun) and 2 qwiic cables to connect modules over I2C interface.

Qwiic Thermocouple Amplifier - MCP9600 (Sparkfun) with a K-type thermocouple (Pimoroni).
Custom PCB for TEG I-V curve profiling based on PCA9536 and ADS1015 integrated circuits.

Mini-Harvester Thermal Energy Generator (Marlow EHA-PA1AN1-R03) with 1.5 ohms optimal load and 20x20mm surface area.
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Figure 4.6: TEG energy harvesting recording platform. The designed platform
records the TEG voltage outputs for five different conditions: open-circuit and load
resistance set to 0.1, 0.47, 1.5 and 4.7 ohms. We record both the energy source surface
temperature where the TEG is attached and ambient temperature. The whole system
is controlled by a Raspberry pi, also responsible to manage the collected data.
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Figure 4.7: Thermal energy harvesting recording platform deployed at a
water boiler location. (dataset: TEG001 env1.h5).
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4.3 Thermal Energy Source Profiles in Residential Settings

As a demonstration of the thermal energy harvesting profiling platform, we con-
ducted a study to characterize thermal energy sources in residential settings[121]. We
submitted this study to the University of Virginia’s Social and Behavioral Sciences
Institutional Review Board (IRB-SBS) and we obtained a waiver (UVA IRB-SBS #
4406) to deploy the energy harvesting profiler boards at the residence of volunteers.
Since this study was conducted during the COVID pandemic, we kept social distanc-
ing by asking the volunteers to install the device themselves, following up with a zoom
call to guide their steps.

In this study we deployed the thermal energy harvesting profilers in 16 differ-
ent locations including pipes carrying warm water, electronic devices, a refrigerator
compressor, and an HVAC vent. The data collection period varied for each loca-
tion, the shortest deployment lasting 19 days and the longest 53 days. In total, the
dataset contains 544 days worth of thermal energy recordings. Using the collected
measurements, we estimated the TEG’s internal resistance, then computed the TEG’s
maximum power point (MPP) and simulated the output current of a LTC3108 boost
converter circuit. To the best of our knowledge this was the first study to spatially
and temporally characterize thermal energy sources in residential settings for multi-
ple weeks. This study generated a dataset available in [76] through LibraData, the
University of Virginia’s data repository (https://doi.org/10.18130/V3/M9CP9C).
The thermal energy harvesting trace collections represents the highlighted block in
the SPIoT design framework flow chart of Figure 4.8.

4.3.1 The dataset

The thermal energy harvesting recording platform was configured to perform one
measurement every 0.5 seconds consisting of: the TEG hot surface and ambient
temperature; and the TEG output voltage under open-circuit condition as well as
connected to each load resistor (0.1, 0.47, 1.5 and 4.7 ohms). Measured data points
are saved as CSV files in the Raspberry Pi SD card. The sampling period of 0.5
seconds was chosen as a compromise between data set size and time domain resolution
to monitor typical thermal sources present in residential settings.

Volunteers installed the energy harvesting recording platform in 16 residential
locations following an approved IRB protocol and they provided a picture of each
installation setup, shared as part of the dataset. Seven of the selected locations were
over warm water conducting pipes close to water boilers. Five were under sinks,
either over warm water conducting pipes or over wastewater conducting pipes. The
following locations only had one deployment: over a WiFi router, over a NAS data
storage system, attached to a heater system, and over a refrigerator’s compressor.
Due to practical deployment challenges of the profiling devices, accidents during the
deployment resulted in disconnected TEG devices or invalid temperature readings.
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Figure 4.8: Flow chart components related with thermal energy source pro-
files. Collected I-V curves can be used directly with the SPIoT hardware model to
simulate the device operation.

To help filtering data, boolean flag columns were added to the dataset to identify
data points related to poor deployment conditions.

To complement the dataset, we estimated the TEG internal resistance from our
measurements by performing a least squares fit of the I-V curve data points at each
timestamp value. For the used TEG device under typical operating conditions, the
estimated internal resistance is approximated to either 1.2 or 1.3 ohms. Using the
estimated internal resistance, we calculated the maximum power point (MPP) of the
TEG device and the maximum power density of this device by dividing the MPP
to the TEG surface area. Finally, we interpolated the LTC3108 curves provided
in the manufacturer data sheet [19] to derive the relationship between TEG open-
circuit voltage and output charging current for the estimated TEG internal resistance
of either 1.2 ohms or 1.3 ohms. This open-circuit voltage to charge current curve
represents a LTC3108 based boost converter circuit with a 1:100 ratio transformer as
specified in page five of [19]. All the dataset measured and calculated parameters are
summarized in Table 4.2. The dataset was formatted using python Pandas module
as dataframes and saved as Hierarchical Data Format (HDF) files using the function
”pandas.to_hdf()” with default settings.
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4.3.2 Dataset usecase examples

A straight forward dataset use case would be evaluating how much energy can
be generated at different locations as a first estimate of application feasibility. For
instance, the calculated TEG MPP output represents the best case scenario for the
used TEG device in the recorded conditions. Figure 4.10 depicts power generation
distribution at MPP for two boiler locations deployments as in Figure 4.7. An IoT
designer could use these distributions to evaluate what fraction of the time the power
available could support an specific application or it could also be used to determine if
an application outcome is expected to be similar for these locations. As a reference,
the harvesting levels of hundreds of micro-watts recorded at the boiler environments
is comparable to the energy harvested by small solar cells in low-level indoor light
conditions [115].

While the TEG MPP represents an upper bound on the available energy to an IoT
device, the boost converter output current provides a more realistic estimation of the
IoT’s net usable energy by taking into account practical circuit efficiency parameters.
Using the TEG internal resistance and the LTC3108 boost converter circuit model
curves previously mentioned, it is possible to estimate the output current that is
available to charge a storage device, for instance a super capacitor. Figure 4.9 depicts
the estimated charging current output profile of the LTC3108 boost converter if it
was connected to the TEG in the recorded environments. This profile can inform how
long it would take to a capacitor to fully charge in these conditions and what is the
expected maximum average current consumption of a energy harvesting IoT device
for this environment. Furthemore, energy harvesting prediction algorithms to adapt
IoT operation given energy generation fluctuations can also be evaluated using this
dataset as performed by [115].

Table 4.2: Thermal energy harvesting profiler dataset parameters

Parameter Unit Description

timestamp milliseconds Unix timestamp in UTC
voltage_open_circuit volts TEG open-circuit output voltage

voltage_R_p1 volts TEG output voltage with 0.1 ohm load
voltage_R_p47 volts TEG output voltage with 0.47 ohm load
voltage_R_1p5 volts TEG output voltage with 1.5 ohm load
voltage_R_4p7 volts TEG output voltage with 4.7 ohm load

temperature_ambient degree Celsius Ambient temperature
temperature_surface degree Celsius TEG hot surface temperature

teg_internal_resistance ohms Internal resistance of the TEG model
teg_mpp_uw microwatts TEG maximum power point (MPP) output

teg_mpp_density_uw_per_cm2 microwatts / centimeter squared TEG MPP density
boost_voc_mv millivolts TEG open circuit voltage input for LTC3108 model
boost_ichg_ua microamperes Charging current output of LTC3108 model

flag_thermocouple_invalid - Boolean flag for invalid temperature measurements
flag_teg_disconnected - Boolean flag for invalid TEG measurements
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Figure 4.9: LTC3108 output current.Using the dataset with a LTC3108 circuit
model, we simulated the net current available to an IoT device. For the shown period
of dataset TEG001 env1, an IoT designer can select an energy storage device to buffer
energy through one hour windows and set an energy-adaptive device to operate with
average current consumption modes between 32 and 56 µA..
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Figure 4.10: Comparison of energy harvesting at two boiler locations. Both
recorded environments near boilers have potential to generate 330 µW or more for
two thirds of the time, however environment TEG010 env1 can generate at least 260
µW more consistently than TEG001 env1.
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4.4 Contributions and Outcomes

From the best of our knowledge, our data collection study resulted in the first
publicly available multiple-week dataset on thermal energy harvesting and also the
first available dataset of its length using I-V curve profiling technique. We show that
we can characterize thermal energy harvesting output from a commercially available
thermoelectric generator, using a custom interface printed circuit board and off-the-
shelf components such as a raspberry pi and sensor breakout boards. Our dataset
complements state-of-the-art energy harvesting profiling studies [116, 115], and ear-
lier literature [54, 53] by providing a dataset for a new harvesting modality in thermal
energy, while also using the data collection approach introduced by [57].This ther-
mal energy harvesting dataset can be used by SPIoT designers to simulate, compare
and evaluate device design solutions powered by thermal energy sources as we previ-
ously demonstrated. This dataset and data acquisition platform will facilitate SPIoT
designs adopting thermal energy harvesting modality.
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Chapter 5: Energy Harvesting Score

Energy harvesting (EH) is a promising solution to power Internet of Things (IoT)
devices without burdensome and wasteful battery replacement, enabling manageable
large-scale IoT systems to be deployed. However, after two decades of research [81,
138, 80, 59, 60, 39] and compelling predictions [60], widespread adoption of small,
indoor, energy efficient energy harvesting devices remains elusive.

Why has adoption remained limited, with only a few commercially available ex-
amples [46, 48]? We posit the inherent uncertainty of devices powered by energy
harvesting hinders their marketplace acceptance. A battery powered device will work
out-of-the-box every time as the device designer can specify and provide a suitable
battery. With energy harvesting, that guarantee is much more tenuous; the device
designer cannot control, or even know, the energy availability where the device is
deployed. Likewise, the device user also does not know what level of available energy
the device designer expected for the particular IoT device.

Existing approaches for this uncertainty aim to allow devices to operate even with
minimal intermittent harvestable energy. Approaches including checkpointing [107,
119, 3], dynamic power management[70, 30, 75, 2], and energy-neutral computing [134,
117, 128] all equip devices to operate even with variable energy availability. Yet, these
approaches still operate within expected bounds: too little energy and the device will
fail to meet user expectations (e.g., not sampling data often enough) or not operate at
all; too much energy and the device may be overprovisioned for the deployment (e.g.,
too large or expensive). Ultimately, while these techniques do address some of the
challenges with computing on harvested energy, they do not resolve the uncertainty
about how a device will perform in a given environment.

We claim a new technique is needed to bridge the gap between the expectations
of the device manufacturer and the realities of the user’s deployment. To this end,
we propose a new rating system for both energy-generating environments and energy
harvesting devices. We introduce the energy harvesting score, a rating from 0-100
that holistically captures not just the amount of available energy in an environment
but also its utility for real-world devices. A score of 0 indicates that there is virtually
no harvestable energy, and a score of 100 indicates that there is abundant available
energy suitable to power a wide range of energy harvesting devices. In addition to
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Device A ($$$,  rating 32+)

Device B (  $$,   rating 75+) ✘

Device C (    $,   rating 83+) ✘ ✘
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Figure 5.1: Energy harvesting score framework. IoT users can determine if an energy
harvesting device is suitable for their deployment by comparing the device’s rating to
the environment’s energy harvesting score.

scoring how much energy is available, our approach also serves as a rating for energy
harvesting devices. Manufacturers can rate their energy harvesting device to indicate
what energy harvesting score this device needs to operate as expected. If the device
is deployed in an environment with a score of at least its rating, the device will have
the energy available to operate as the designer expects. This effectively eliminates
the uncertainty with using energy harvesting devices.

This approach abstracts the complexity of reasoning about how a device’s energy
requirements match with what energy is available in a particular space. Today, to
estimate how well an energy harvesting device will operate, users need to not only
have a deep knowledge of the device’s energy consumption behavior, but also need to
estimate how much energy this device will be able to harvest over its lifetime wherever
it is deployed. We believe this uncertainty leads to risk when using energy harvesting
devices, serving as a major adoption barrier for energy harvesting IoT solutions as
users usually cannot quantify the risk of failing to meet application goals.

Other approaches for characterizing available energy provide extensive, detailed
information about what energy is available. Sigrist et al. performed a long-term
EH profiling experiment [116], characterizing indoor solar energy harvesting in of-
fice spaces over multiple years. Such traces enable researchers to simulate energy
harvesting devices in such environments to determine device requirements to achieve
levels of availability comparable with battery powered devices. Additionally, tools
like Ekho [57] capture and replay full I-V curves to simulate devices under precise
conditions.

What is missing from these techniques is that they assume the specific energy-
harvesting device is known to test under the captured conditions. This is beneficial for
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device manufacturers, but doesn’t provide a generic way to reason about how devices
will operate in arbitrary environments. This mismatch occurs due to two reasons.
First, analyzing a harvesting trace requires knowing more than just the available
energy, it requires considering the combination of a device’s energy harvester, energy
storage, and energy consumption. Depending on exactly how much energy is available
and when, how much energy the device already has stored and how much it can store,
and what the device’s instantaneous energy needs are determines how the device will
actually operate. As such, capturing a trace and performing just a statistical summary
(e.g., an average) is insufficient for scoring an environment. For example, a “spiky”
harvesting trace with high, short peaks of harvestable power might have a reasonably
high average, but a device with a small energy storage element will be unable to
effectively capture the available energy. Second, the device manufacturer is likely not
the device installer, and while the manufacturer can test the device under various
conditions, the manufacturer does not know which conditions are representative of a
particular deployment. Further, without laborious in-situ profiling, it is difficult for
the manufacturer to learn that information. What is missing is a way to characterize
each side (the manufactured device and the deployment environment) independently,
and then compare when making purchasing and installation decisions.

To accomplish this, our approach is able to characterize an environment by sim-
ulating how a representative energy harvesting device would perform in that envi-
ronment. Simulating the device’s operation is key to understand failures due to long
energy droughts or lost energy due to a full energy reservoir. If the average device
performs exactly as expected we assign a score of 50. If the device performs above
its expected utility (e.g., samples more frequently), we proportionally increase the
score. If the device must be enhanced to operate as expected (e.g., with a larger
harvester or more energy storage), we decrease the score. While conceptually simple,
enabling this property in a way that is useful for rating devices as well requires a
particular mechanism for mapping increased or decreased performance to the score.
Also, this scoring can be done independently of knowing the types of devices that are
available or which devices the user might be considering. With the scoring capability,
we can then assign scores to the traces (for example traces generated by Ekho [57])
manufacturers use when testing their devices. The score of the minimal trace where
their device operates as expected becomes the device’s rating. The device will then
operate successfully in environments with a score at or above the device’s rating.
Now, comparing potential devices with a particular deployment no longer requires
evaluating traces, but instead is just comparing two numbers.

We define the energy harvesting score algorithm and create a prototype to calcu-
late the score for both rooms in energy harvesting datasets as well as from our own
building. We then show how various spaces compare, and how spaces with similar
average harvestable power traces can actually have diverging utility for real devices.
We also prototype a realistic energy-harvesting device, assign it a rating, and then
compare how it functions in spaces with scores above and below that rating. The
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prototype achieves 100 % availability in the higher score space and 55 % availability
in the lower score space.

With this design, we contribute a new approach for helping realize the vision of
batteryless devices by mitigating the risk adopters encounter when sacrificing the pre-
dictability of batteries for the uncertainties of energy harvesting. We provide a new
algorithm for characterizing the utility of an energy-harvesting trace for actual devices
that is not only representative but also prescriptive as it facilitates matching devices
with environments. Additionally, we provide realistic use cases for this approach,
and implement an end-to-end prototype to demonstrate how this approach works in
representative environments. The energy harvesting score introduced in this chap-
ter uses all the highlighted flow chart components of SPIoT design and deployment
framework shown in Figure 5.2.

SPIoT application 
design is complete

Start SPIoT 
application design

SPIoT application 
design is not viable

Energy harvesting 
conditions

SPIoT simulations Design and deployment 
decisions

Energy traces

Environment traces Harvester simulation

Hardware simulation

Does the operation 
meet application 

requirements?

Application 
requirements

Is it possible to 
select new harvester, 
storage component, 
deployment location 

or to reduce power 
consumption?

Iterate SPIoT design 
with new component 

or operation mode

Informs
Informs

Yes

No

No

Yes

Update 
hardware or 
operation 
parameters

Update 
deployment 
location

Or

Figure 5.2: Flow chart components related with the energy harvesting score.
To obtain the energy harvesting scores, we simulate a reference SPIoT device with
the energy harvesting dataset collected by Sigrist et al. [115] and with the energy
harvesting conditions estimated from our office spaces illuminance dataset.
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5.1 Energy Harvesting and IoT Modeling Complexity

A complete model of energy-harvesting operation should determine how much
energy an EH IoT device has at any location at any point in time. However, creating
an accurate model is challenging on multiple fronts. First, energy availability often
depends on physical phenomena and human behavior, which can be difficult to model.
Second, energy consumption by the device requires models for energy conversion,
storage and consumption for each device design. And third, the first two facets are
coupled, meaning they cannot be modeled entirely individually. In this section we
describe these various modeling challenges to highlight what our proposed energy-
harvesting score design must be able to address.

For simplicity, we use a photovoltaic-powered IoT device to exemplify the modeling
challenges. However, these challenges exist with other harvesting modalities as well.

5.1.1 Energy Harvesting Challenges

Stochastic events: Consider a solar-powered IoT device in a conference room illu-
minated with artificial light: energy generation is correlated to the state of the room’s
light. Modeling this energy source would require us to model human behavior related
with this room’s occupancy, what is often challenging.
Multiple sources: If a solar-powered sensor is exposed to a combination of natural
and artificial lights, the resulting model would be required to capture both behaviors,
what increases the complexity of the model.
Local deployment variation: Deploying a solar-powered IoT device in different
locations inside the same room can drastically impact the energy harvesting avail-
ability for that device, due to light intensity variations, and the angle between panel
and light source. A scaling factor can be used to model the effect of these deployment
variations, but like the harvesting parameters it is not straightforward to estimate.

5.1.2 IoT Device Challenges

Harvester parameters: The efficiency of solar panels varies with the angle, intensity
and spectrum of the light source. The manufacturing model of a solar panel and its
size can be represented as a scaling factor for the generated energy by an EH IoT,
but this factor is not straightforward to estimate.
Power management circuit parameters: Energy conversion circuits can improve
harvesting efficiency by employing maximum power point tracking, increase the en-
ergy storage capacity by charging capacitors at high voltages, and provide regulated
voltage sources to the efficient operation of the remaining IoT components. Modeling
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power management circuits is non trivial because energy conversion efficiencies can
depend on the coupled state of harvester, storage and load.
Energy storage parameters: An ideal energy storage device would be capable of
buffering an unlimited quantity of energy, filtering any harvesting trace and provid-
ing a constant energy output. However, realistic energy storage devices are complex
components with leakage, charging and discharging efficiency and capacity limita-
tions, while also being subject to aging and temperature effects.
Operation driven by application: Energy requirements of an EH IoT device can
be complex or depend on human behavior. For example, a door open/close sensor
activates when a door is opened or closed, and understanding the workload requires
modeling human behavior. For sensors with more complicated analytics (e.g. on-
device machine learning algorithms) the compute requirements can vary significantly.

5.1.3 Energy Harvesting-Consumption Coupling Challenges

Energy Generation Spikes: Large energy generation events (energy spikes) can
surpass the buffering capabilities of the EH IoT energy storage component and result
in energy being wasted as there is no on-board capacity to store it. Due to this EH
IoT device limitation, a model for energy harvesting conditions should not over value
energy generation spikes.
EH drought periods: On the other hand, severe low harvesting events can cause
the EH IoT device to run out of energy even if the energy storage was at full capacity
before the event. A useful model for energy harvesting conditions should consider
droughts as a primary factor to determine if an EH IoT device is suitable to an
energy harvesting environment.

5.2 Vision and Use Cases

To contextualize our design, we first articulate our vision for an energy harvesting
score which attempts to reduce the uncertainty in using energy-harvesting devices
in real-world use cases. Then, we illustrate some example scenarios of how various
stakeholders might use the energy harvesting score.

5.2.1 Energy Harvesting Score

We envision the energy harvesting score (EH score) as a number from 0-100 that
captures how much energy is available to a realistic EH IoT device in a particular
location. The higher the score, the more usable energy is available. Of particular
importance is addressing the challenges from Section 5.1.3. The score must not simply
be a statistical reduction of an energy trace as that fails to incorporate the limitations
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of real-world devices. Instead, the score must capture the variability of available
energy in that location and the ability of a typical EH IoT device to make use of that
energy.

The same scale also serves as a rating for devices. Manufacturers of EH IoT
devices can assign their devices an energy harvesting rating (EH rating) that denotes
the minimal energy harvesting score needed for the device to function as expected.
Lower ratings represent more resilient and adaptable EH IoT devices that are able to
operate in a wider range of energy harvesting conditions. However, it is infeasible for
manufacturers to test in all conditions, so the score must be able to simplify rating a
device.

With these two properties, the EH score can reduce the uncertainty of using EH
IoT devices. Users can characterize their spaces and assign a score, and manufacturers
can rate their devices on the same scale. If a space has a score higher than the
device’s rating, the device should work as expected. The EH score improves the
communication between designers and adopters to align expectations, support EH
IoT deployments, and drive EH IoT adoption.

5.2.2 Example Use Cases for Users

We illustrate potential use cases for users of EH IoT devices.

Informing EH IoT deployments

To decide if an EH IoT is a viable option to their application, adopters can es-
timate the EH score of their spaces and compare with the rating of their EH IoT
device options. For example, consider a facility that wants to install solar-powered
temperature and humidity sensors in an office space. First they would calculate the
EH score of their rooms by measuring the illuminance level when lights are on and
the duty cycle of those lights. Then, they can compare that EH score to the ratings
of available EH IoT devices. If there are no EH IoT devices available with rating
below the EH score value, the facility can choose between accepting reduced data
availability with intermittent operation, or using battery powered devices.

Adapting EH IoT deployments

EH IoT adopters can use EH score calculations to understand how changes to their
spaces can impact available energy to EH IoT devices. For example, a solar-powered
air quality sensor can have plenty of natural light coming from a nearby window,
then experience energy shortages if the user decides to install sun-blocking curtains.
Other example situations affecting energy generation can be: changing lamp models
from diffuse to spot illumination; and reallocating furniture and causing a shaded
area over the IoT device. EH IoT adopters can recalculate the EH score of the new
spaces and decide if they will need to replace the EH IoT for another one with lower
rating, move the EH IoT deployment location, or use primary battery IoT options.
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5.2.3 Example Use Cases for Manufacturers

We illustrate potential use cases for manufactures of EH IoT devices.

Commercializing EH IoT devices

EH score rating can communicate the value of an engineering investment to cre-
ate a more efficient EH IoT device. This device will have a lower rating (i.e., it can
operate effectively with less available energy) and signal that the device can be used
more broadly. This can also justify an increased cost for the device. For example,
an IoT manufacturer can have two versions of a solar-powered outdoor camera, a
more expensive product containing a complex power management circuitry, and an-
other cheaper product with a simpler diode-based solution. A lower EH IoT rating
can be used to justify to a consumer a higher price tag, while also helping EH IoT
adopters to avoid frustration with devices incapable of consistent operation in the
energy harvesting conditions of the deployment location.

Standardization and communication

To efficiently communicate the EH IoT requirements, manufacturers can include
EH rating information in their device’s product manual and data sheet. Manufac-
turers could also provide the respective EH rating values for power-saving operating
modes of EH IoT, enabling the EH IoT adopters to understand the energy require-
ments for each device use case. Extensive investigation of EH scores in typical IoT
deployment spaces can inform EH IoT manufacturers what range of EH conditions
they are expected to support.

5.3 Design

To introduce our rationale behind designing the energy harvesting scoring system,
we gradually increase complexity of potential score metrics until we meet the vision
and use cases discussed in Section 5.2. Then we discuss a methodology derive the
energy harvesting rate of an EH IoT device. Finally we discuss the steps to calculate
the EH score of a real world energy harvesting trace.

5.3.1 Energy Harvesting Score

The score must holistically capture the available harvestable energy in an envi-
ronment. The score is generic to any harvester modality. We start with a simple
approach, explain why that is inadequate, and build to our proposed solution.
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Calculating mean energy as an EH score

Mean available energy is a simple and intuitive way of representing energy harvest-
ing environments. An ideal EH IoT device is able to convert any energy generation
trace into a constant energy source with amplitude equal to the mean energy value,
given enough time. Therefore, mean energy is a good upper bound on how much
energy can be harvested by an EH IoT device in a given location.

However, energy buffering capabilities are limited in real-world EH IoT devices.
Energy storage components are limited to a maximum capacity and they can’t store
arbitrarily large bursts of energy. Therefore, simply averaging available energy is
ineffective when energy generation is very inconsistent, such as in large bursts followed
by long droughts.

Incorporating harvesting consistency in an EH score

To better quantify inconsistent and bursty energy, one way is to consider how
average energy varies with time in a rolling fixed-length time window. For illustration,
assume we calculate the average energy generation for the first 24 hours of a week long
EH time series. Then we shift this 24 hour window by one hour, and we repeat this
calculation. We continue until the end of the week. The resulting points represent
the distribution of average generated energy expected within every one-day long time
window. The lowest value is the 24 hour period with lowest average energy generation,
and therefore characterizes the energy generation drought that an EH IoT device must
be able to tolerate.

While averaging energy generation within a fixed time-window provides valuable
insight on the effects of limited energy storage capacity, understanding how much
storage is needed requires knowing the power draw of the device in its operation.

Including energy consumption

To create an EH score that takes into account application-level consumption (i.e.,
for tasks like compute and communication), we need a reference EH IoT device model
with power consumption requirements. We can then simulate this reference design
using the available energy trace and estimate what proportion of time the device will
have enough available energy to meet its energy consumption requirements. However,
we must define what a reasonable reference design is.

To select a reasonable energy consumption profile, we analyze real-world traces
and assume that for a reasonable consumption profile: (1) energy generation and con-
sumption are reasonably balanced in typical harvesting environments; (2) there exists
surplus generation in high harvesting environments; and (3) there exists insufficient
generation to meet consumption demands in poor harvesting environments. These
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assumptions are based on assuming that devices will be developed to match their
general deployment scenarios. If this assumption does not hold, then either devices
are significantly overprovisioned and will work everywhere, or are very constrained
and will operate in nearly no scenarios. Either extreme largely invalidates the utility
of the score (as the operation of the device is already known), so we consider these to
a reasonable method for determining a reference consumption level. Then, to deter-
mine the typical harvesting conditions, we select median average energy traces from
real-world energy harvesting measurements. From there we simulate a reference EH
IoT device using those traces, varying the energy consumption, and select the con-
sumption level that results in balanced generation-consumption. This then informs
how much energy storage is required. However, running this simulation requires a
reference IoT device so we can input realistic energy conversion efficiency parameters
and energy storage leakage and capacity parameters.

Defining reference devices

To create a reasonable reference model for an IoT device we start with existing
models such as the ones available in the literature [70, 31]. To obtain reasonable ref-
erence EH IoT device parameters for those models, we search examples of achievable
performance from available off-the-shelf components documentation and EH IoT de-
signs in the literature. For instance, commonly used power management circuits for
solar energy harvesting claim energy conversion efficiencies of 70% to 90%. As energy
storage solutions, EH IoT designs in the literature use super capacitor components
with capacitance values around 1 F. As for reference harvesters, energy harvesting
profiling datasets have shown reasonable energy generation from off-the shelf solar
cells and thermoelectric generators. With this, we have a device model we can use
to evaluate harvesting traces under realistic conditions. But, we still require some
evaluation criteria.

Defining successful operation

To analyze how well our reference design operates in a given environment, we
record the percentage of time the device is available. We consider that the device is
available when the energy available to the device (both current harvesting and stored
energy) is higher than the minimum required level for the instantaneous intended
operation. Essentially, this implies the device operates as it would with a new battery:
when the device is sleeping or active is not constrained by the power supply but
rather by the device’s code. This also has the desirable side effect that the score is
compatible with existing energy harvesting programming techniques. Platforms such
as checkpointing schemes and energy prediction algorithms can still be very effective
at ensuring successful operation. We are only interested in observing when the device
is prevented from operating due to lack of energy.
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Availability is then the fraction of the deployment or simulation time that the
device is available. This enables matching the reference consumption to the avail-
able energy within the bounds of realistic hardware to understand the suitability of
the environment. However, using availability as the score directly would only al-
low the score to meaningfully represent a small window of environments (specifically
those environments which are similar to the median average traces mentioned in Sec-
tion 5.2), as for many traces the availability will always be 100%. We require a way
to characterize a broader set of environments.

Calculating over- and under-supply

With our setup from Section 5.2, we can calculate the reference device’s availability
on the harvesting trace from the target location. However, many harvesting traces will
likely lead to 100% availability, yet are not necessarily the same. We need a method
to differentiate these harvesting traces. To characterize more points, we linearly scale
the harvesting trace to increase and decrease the available harvestable energy. This
effectively models the differences when using larger or more efficient harvesters (or
vice-versa). With this, we can better characterize the harvesting trace.

To effectively match the trace to our reference device, we attempt to find the
lowest scaling factor where the device is just able to reach 100% availability. This is
the point where any less incoming energy means the device suffers an outage. This
scaling factor can be above or below one depending on the the environment. If none
of the scaling factors in our considered range is suitable we discontinue the search and
assign a score of 0 to the environment. With this scaling factor, we derive a second
device model with different harvesting parameters.

With this second device model, we simulate both this device and the reference
device across the range of scaled harvesting traces to determine each device’s avail-
ability at each scaling point. An example is shown in Figure 5.3. This then captures
both how the reference design functions, but also how well the minimal device that
works just as expected in the environment functions. Importantly, we can use this
to determine how much better (or worse) the reference design is than the minimal
design.

To calculate this difference, we calculate the area between the two availability
curves (e.g., area in between the purple and green lines in Figure 5.3). We then
normalize this value (i.e., the area) by dividing it by the area above (or below) the
availability curve for the reference device. In the case where the reference design
outperforms the minimal device, we use the area above the reference availability
curve. This effectively computes a ratio of how much of the extra available energy is
not required to support the same workload in this environment. If this ratio is close
to 1, then the minimal device needs almost none of the excess energy provided by
the environment, meaning the score will increase significantly. If the ratio is close to

45



Figure 5.3: Resulting availability from scaled energy generation traces.

0, the minimal device is very similar to the reference device and the score will only
increase by a small amount. In the case where the minimal device outperforms the
reference device, we use the area below the reference availability curve. This computes
the ratio of how much of the hypothetical extra energy is required to have the device
work satisfactorily in the given environment. A low ratio means the score drops only
a little, and a high ratio means much more energy is required and the score drops
more significantly.

Incorporating varying capacitance

With the technique from Section 5.2, the score can reflect the interplay between
harvesting capability and a particular space. However, energy harvesting devices can
also use varied energy storage elements for size, cost, longevity, leakage, and other
reasons. The score must be able to reflect this dimension as well. That is, if an
environment has more consistently available energy, and therefore requires a smaller
storage element, the score should be higher. This signals that the environment can
support more constrained energy harvesting devices.

We incorporate this by repeating the algorithm in Section 5.2 with differing sized
capacitors. We record the smallest capacitor that still enables the scaled device to
reach 100% availability. We then use that capacitor value to assign the numeric score.
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Assigning a numeric score

Finally, we are able to assign a score from 0-100. We first divide the range into
sequential bins based on the number of capacitance values used in Section 5.2. For
example, if we used four values then we consider bins 1-25, 25-50, 51-75, and 76-100.
The harvesting environment is then assigned a bin based on the smallest storage size
that was successful. If the smallest capacitor worked, then the trace is assigned the
highest bin (i.e., 76-100). If only the largest capacitor worked, then the bin is the
lowest (i.e., 1-25).

Within the bin, we use the output of Section 5.2 to determine the specific score. If
the ratio was 0, meaning the reference device just worked for the harvesting trace, then
the score is set at the middle of the bin. If the reference device was overprovisioned,
then we use the ratio to increase the score within the upper half of the bin. If the
reference device underperformed the minimal device, we use the ratio to decrease the
score within the lower half of the bin.

EH score summary

The EH score reflects how much usable energy can be generated by an EH IoT
device at a given location. The score is calculated by estimating how well a real-
istic reference EH IoT device achieves full operation (i.e., stored energy is always
sufficient for intended operation) under a given location’s harvesting conditions. If
the exact median reference device works exactly as intended (i.e., has no excess en-
ergy and 100% availability) the score is 50. If the reference device works better (i.e.,
has surplus energy) or worse (i.e., does not reach 100% availability), we alter the
harvesting capability and storage capacity to determine a new optimal device design
point. By comparing that design point to the reference device we can adjust the score
accordingly.

Critically, using realistic device simulations and adjusting both storage and har-
vesting capabilities ensures the score accurately reflects the interplay between the
device characteristics and the environmental energy availability characteristics. This
makes the score not just a representation of the energy profile, but a realistic sum-
mary that is useful for characterizing devices. This, then, makes the score suitable for
rating devices and enabling the matching we propose to help reduce the uncertainty
when using energy harvesting devices.

5.3.2 EH IoT Device Rating

The energy harvesting rating is the minimum EH score required by the EH IoT
device to operate at 100% availability. To obtain a device’s rating, the device creator
runs the device using a collection of synthetic energy harvesting traces that cover a
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range of EH scores. Each trace is assigned a score using our scoring algorithm. Then
we find the minimum scores of the traces that were able to fully support the device
and use those scores to assign a rating to the device.

5.3.3 Calculating the EH Score in Practice

To calculate the EH score of a deployment location, we need to obtain an EH time
series representing that space. This EH time series can be obtained by (1) directly
measuring the reference device harvester output at the deployment location; (2) mea-
suring variables that can be used to estimate the energy harvesting output, such as
temperature for TEGs, or radiance and illuminance for solar cells; (3) modeling the
energy source behavior over time, for example modeling the sunlight hours that an
outdoor solar harvester will be exposed to. Note that each method to obtain this EH
time series has its own uncertainties and assumptions associated with it.

Along with the EH time series, we also need to define the reference EH IoT param-
eters. We select the desired harvesting modality and typical device parameters such
as reference harvester, energy conversion efficiencies and energy storage component
characteristics. Then we assume what are typical harvesting conditions to estimate
the respective maximum energy consumption that supports nearly 100% availability
under these typical conditions. We define a harvester scaling range, and a list of
storage capacity values to evaluate. Finally, we start the EH score calculation by
simulating the reference EH IoT with lowest capacity under a range of scaled versions
of the EH time series previously obtained. If no simulation results in 100% availabil-
ity, the EH score is zero, otherwise we find the optimal scaling factor by taking the
lowest factor that results in 100% availability for the EH IoT device simulation. We
assume an optimal EH IoT model with the optimally scaled harvester, and we repeat
the simulations with the same harvesting scale factors. Finally we compare the area
in between the availability curves to find the EH score for the lowest capacity storage
value. If the score is zero, we move on to the next larger capacity parameter and we
repeat the previous steps until finding capacity and scaling factors that are adequate
for the harvesting conditions. If EH score is zero for all energy storage capacities, the
combined EH score is also zero.

5.4 Modeling and Simulations

To derive the EH scoring framework, we introduce the model and parameters used
to simulate the reference EH IoT device.
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5.4.1 Simulation design

We decided to base this EH score metric analysis on indoor solar modality of
energy harvesting, so we could use the EH dataset collected by Sigrist et al. [116] as
a reference for harvesters, efficiency parameters, and typical harvesting environments.
We decided to perform all simulations to calculate the EH score using python, due
to its flexibility and popularity. Our simulations calculate the stored and consumed
energy for an EH IoT device.

5.4.2 EH IoT model

We base our EH IoT model on the analysis of energy harvesting devices by Kansal
et al. [70], assuming three possible energy paths: from harvester to storage; from stor-
age to load; and from harvester to load. We consider that each path has an efficiency
parameter, and the energy storage device has maximum capacity and leakage param-
eters. The adopted EH IoT model is depicted in Figure 5.5. We consider that at each
simulation step the model checks if available energy meets target energy consumption
requirements, and we consider that the device is turned off when the stored energy is
bellow a certain minimum energy parameter. The complete discrete time simulation
model equations are listed in Figure 5.5.

Energy 
harves�ng

Energy 
consump�on

Energy 
storage

Overflow

Wasted 
energy

Wasted 
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Figure 5.4: Energy flow diagram for the EH IoT model. This flow energy model
is a high level representation of how an EH IoT device generates, stores and consumes
energy. The model assumes losses due to non-ideal energy conversion efficiency, energy
storage leakage, and energy storage capacity saturation.
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EHC(t) = min(EH(t),E∗
C(t)/ηHC)

EHS(t) = EH(t)− EHC(t)

EL(t) = LRES(t− 1)

ESC(t) = max(min((1/ηSC) ∗ (E∗
C(t)− ηHCEHC(t)),ES(t− 1)− EL(t)−Bmin),0)

EC(t) = ηSCESC(t) + ηHCEHC(t)

EO(t) = max(ES(t− 1) + ηHSEHS(t)− ESC(t)− EL(t)−Bcapacity,0)

ES(t) = max(min(ES(t− 1) + ηHSEHS(t)− ESC(t)− EL(t),Bcapacity),0)

Figure 5.5: Set of equations for the EH IoT energy flow model. These equa-
tions describe the behavior of the model, capturing efficiency parameters, energy
storage leakage and capacity saturation.

5.4.3 Reference device

To derive the parameters of the reference EH IoT device, we first selected power
management solutions and energy storage components that are reasonable for indoor
solar EH devices. To obtain the energy conversion efficiency parameters, we selected
the bq25505 harvesting circuitry used in the indoor solar EH dataset. We select a
super capacitor as the energy storage element with 1F capacitance and leakage of
6 µA at 5V. We assume that the required minimum capacitor voltage to operate
the EH IoT is 2.1V and the maximum allowed capacitor voltage is 4.5V. We assume
average efficiency of 80 % for the energy conversion from harvester to storage, also
80 % efficiency from storage to consumption, and 95 % efficiency for direct harvester
to load conversion. We consider a simulation step of one minute, and the EH IoT
operation as being one minute of active energy consumption every 10 minutes.

Then we select the typical energy harvesting conditions from the EH dataset [116]
by selecting profiles with one-month window length, and calculating average energy
generation within each month worth of data. We select the median values of the
monthly average energy generation distribution, between the 49 and 51 percentiles.
We found that the location referred as ”pos06” of the dataset contains most of the
30 day periods with median monthly average energy generation. We use these win-
dowed profiles as a reference of typical energy harvesting conditions for indoor solar
applications. We simulate the reference EH IoT device with varying average energy
consumption, and we find that consuming 0.54 Joules/day will result in 99 % EH IoT
availability in average for the selected energy harvesting profiles. Figure 5.6 depicts
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the simulations results used to obtain the reference device average energy consump-
tion values.

Figure 5.6: Simulating the reference EH IoT device availability for a range of average
daily energy consumption values. We find that 0.54 Joules/day is the maximum power
consumption value for which most of the simulated typical harvesting conditions
achieve 99 % availability.

In summary, the adopted reference EH IoT model parameters are: Harvesting to
consumption efficiency of 95 %; Harvesting to storage efficiency of 80 %; Storage to
consumption efficiency of 80 %; Maximum stored energy of 10.125 J (1 F, 4.5 V);
Minimum operational stored energy of 2.205 J (1 F, 2.1 V); Energy storage leakage
rate of 1.44E-4, which is the fraction of the stored energy lost as leakage in one minute
(6 µA at 5 V); and Initial stored energy of 6.165 J (half of the usable range).

To cover a wider range of possible EH IoT reference devices, we select a harvesting
scaling range, and also a set of energy storage components. We choose the harvesting
scale between 0.05 and 5, as to consider harvesters generating between 20 times less
energy to five times more energy than the reference IoT device. We consider capacitor
values of 2 F, 1 F, 500 mF, 250 mF, and 125 mF as typical choices for EH IoT devices.

5.4.4 EH score calculation

To calculate the EH score, first we take a 30-day period trace window of energy
harvesting data as an arbitrary long trace to capture daily energy generation varia-
tions. Then we start by assuming the EH IoT model with the lowest capacitor of the
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reference range (125mF), and running EH IoT simulations for each scaled harvesting
trace from 0.05x to 5x in 0.05 steps. If 100 % availability was reached in any of these
simulations, we assume the optimal harvester scale as being the lowest scaling factor
resulting in 100 % availability. If 100% availability is not reached in any of the sim-
ulations, we change the capacitance parameter to the next larger value (500mF) and
repeat the previous steps. With the optimal harvester scale, we run again EH IoT
simulations for each scaled harvesting trace, now multiplied by the optimal harvester
scale. We calculate the normalized area between the optimal device availability and
the original reference device availability to obtain an area score. Finally this area
score is mapped to the respective region 0-100 range of the EH score (for instance, if
the normalized area score was 0.8 with the 125mF storage parameter, the score range
is between 80 and 100, the resultant EH score then being 96). If we go through all ref-
erence capacitance values without finding simulations resulting in 100 % availability,
we assume the EH score is zero. We summarize this procedure in algorithm 1, with
the function simRefEHIoT(cap,scale) returning the availability of the reference EH
IoT device with storage element capacitance cap and energy harvesting input trace
scaled by scale.

5.5 Evaluation

To evaluate the energy scoring framework, we perform EH score calculations for
energy generation profiles available in the previously adopted dataset [116]. Also
using the dataset, we show that it is possible to estimate the energy generation and
consequently the EH score from lux data. We then use this lux to power estimation
to calculate the EH score of another set of office building spaces for which illuminance
data is available to us.

We perform controlled experiments with an energy harvesting front-end connected
to a commercial Bluetooth sensor device, showing its energy storage element charg-
ing and discharging behavior to estimate its rating. We then deploy two versions of
this setup, one in a consistent but low-intensity harvesting location and the other in
a consistent and high-intensity harvesting location. We observe the EH IoT oper-
ation behavior in these real-world deployment locations to show either intermittent
operation, or energy storage charge build up. We also evaluate a third higher con-
sumption EH-IoT device using a similar energy harvesting front-end and a commercial
LoRaWAN IoT device. We deploy this device in a location with consistent energy
generation but intermediate harvesting intensity when compared to the previous two
deployments. We record energy storage level and device operation, showing that the
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Algorithm 1: EH score calculation algorithm
Scaling factor list = 0.05 until 5, with 0.05 step;
Capacitance list = [125, 250, 500, 1000, 2000];
Function Calculate EH score

forall cap in Capacitance list do
forall scale in Scale factor list do

avList = simRefEHIoT(cap,scale);
end
if 100% in avList then

scaleList100av = find scale where avList is 100%;
scaleopt = min(scaleList100av);
forall scale in Scale factor list do

avListopt = simRefEHIoT(cap,scale ∗ scaleopt);
end
areaScore = Find and normalize area between avList and
avListopt;
EHscore = areaScore mapped to respective 0-100% region of
respective cap value;

return EHscore
end

end
return zero

end
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Figure 5.7: Simulating the reference EH Score for synthetic harvesting traces. We
assume simple traces of energy generation events of 750 lux intensity followed for
droughts of zero energy generation. The vertical axis represents how long energy
generation bursts last, and the horizontal axis how long the droughts last. The dots
represents the points of the grid that were simulated.As we move from left to right,
we can see clear boundaries where the storage element couldn’t survive the droughts.
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higher energy consumption results in intermittent behavior and requires additional
harvesting capabilities to operate.

5.5.1 Calculating scores for the EH dataset

To calculate the EH score from the long term energy harvesting dataset, we ran-
domly select a 30-day sample of each available dataset location and we perform the
steps described in Section 5.4.4 to obtain the EH score from measured generated
power traces. We find EH scores of 64.3, 70, 99.7, 98.1, 92.7, and zero for the respec-
tive locations pos06, pos13, pos14, pos16, pos17, and pos18. We find that locations
pos14, pos16, and pos17 have the best harvesting conditions.

To calculate EH score in a wider range spaces, we investigate if lux measurements
are a good proxy for indoor solar energy generation traces. We take as reference the
location pos06 of the long term indoor solar energy harvesting dataset [116], and we
calculate a simple second order polynomial fit as a model to estimate from average
lux data what would be the energy generation during a time step of one minute. Our
model coefficients are (2.66e-08 ,2.44e-05, -4.71e-05), and the mean absolute error of
the model is 44 µJ. We find that the model is adequate for locations ”pos13” and
”pos14”, in addition to location ”pos06”, with EH score estimation error lower than
1.

5.5.2 Calculating scores for a smart building using lux data

We use the lux to power model obtained previously to estimate the EH score for
other real-world indoor locations in an office space. We obtain the lux dataset for
this space from commercially available Enocean [46] and Awair [23] smart building
sensors. Figure 5.10 depicts the office space floor plan and the calculated EH score
values for each space.

5.5.3 EH IoT controlled experiments

To estimate the rating of an energy harvesting device, we place it in a light-proof
box, with a controllable smart LED as a light source. We expose the device to a
constant lux source of 186 lux until the main storage element is completely charged,
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Figure 5.8: EH scores estimated from Enocean devices lux measurements at office
space settings.

Figure 5.9: EH scores estimated from Awair devices lux measurements at office space
settings.
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Figure 5.10: EH Scores for an office space. We use historical lux measurements from
Enocean and Awair sensors to estimate energy generation.

then we turn the light source off and we record the device operation behavior until
shutdown. This experiment allow us to roughly estimate the rating of each device
by comparing it to an reference IoT device model with similar capabilities (rating >
80+, 186 lux is enough to support operation). More precise EH rating is possible with
extensive testing, or developing precise device operation models, but we considered
it out of the scope of this work.

5.5.4 EH IoT deployments

To evaluate the EH score in real-world deployments we select two locations to
deploy the energy harvesting devices, one with score 96.2 and the other with score
83.1 (Figure 5.11).
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Figure 5.11: Temperature sensor deployment showing intermittency on lower score
environment with availability around 55%.

Figure 5.12: Deployment high power consumption, intermittency disrupts operation.
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5.6 Limitations

Calculating EH scores and device ratings is challenging in real-world scenarios due
to a myriad of factors related with data availability, deployment variability and EH
IoT hardware/software complexities.
EH data availability: To understand the viability of deployments of EH IoT de-
vices, we need to collect more EH data. Not only long-term data acquisition is
important to understand complex energy sources characteristics over time, but also
collecting metadata about factors driving energy sources can be helpful to group and
classify harvesting characteristics. An extensive and coordinate effort to collect and
share EH data can be very beneficial to accelerate EH IoT technology development
and adoption.
Deployment variability: Energy generation can be significantly affected by de-
ployment variability, for instance if the angle of between a solar panel and an energy
source changes, or if a shadow is cast on the solar panel. Some of this variability
can be expressed as a scaling factor in the energy generation trace, but other might
require more complex models. It is important to explore what are real-world fac-
tors contributing to deployment variability and investigate their impact in EH IoT
deployments.
EH IoT hardware/software and application complexity: Estimating an EH
IoT device rating based on its components specification is challenging due to the
large design space available when combining available harvesters, power management
circuits and energy storage components. Manufacturers are the ones best positioned
to provide an energy model model of their systems, but they rarely make detailed
information available.For some applications, energy consumption is triggered by hard
to predict events, what increases the complexity of device rating. Design decisions
on buffering sensor data, re-transmitting information and performing local processing
can also make EH IoT modeling more complex.

5.7 Conclusion

The energy harvesting score is a tool for concisely (with just one number from
0-100) communicating both the harvestable energy available in a given environment
and the energy requirements of an energy harvesting device. This brings the type of
predictable pairing that has been long used in other computing systems (e.g., spec-
ifying minimum RAM requirements for software, the required version of a software
dependency, or the physical interface plug of a hardware module) to energy harvest-
ing devices. Designing this score requires carefully balancing characterizing available
energy with the real-world limitations of embedded devices while also supporting a
diverse range of environments on the same 0-100 scale.
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We propose this mechanism to help accelerate the deployment of more sustain-
able energy harvesting devices by quantifying and minimizing the risk of using inter-
mittently powered devices instead of comparatively safe, but hard to maintain and
environmentally hazardous, battery powered devices. With this score, device manu-
factures have a standard mechanism for communicating what conditions their devices
require to work as expected. Further, we envision the calculation of the device rating
becoming standard fare in future datasheets to communicate exactly how a device
operates under intermittent energy. Likewise, future Internet of Things deployments
have a tool for quickly assessing how well various options for self powered, batteryless
devices will work in their scenarios. This approach helps mitigate the downsides of
harvesting uncertainty to help make energy harvesting ubiquitous.

5.8 Contributions and Outcomes

From the best of our knowledge, our energy harvesting score is the first energy
harvesting metric to represent the realistic available energy to a SPIoT device, by
assuming real-world hardware limitations expressed as energy storage capacity, mini-
mal stored energy to support operation, stored energy leakage and energy conversion
efficiencies. We found that we can use the simulated availability of reference SPIoT
devices to characterize harvesting conditions, with a higher score being assigned to
more consistent and plentiful energy harvesting deployment locations. The energy
harvesting score allows SPIoT adopters to match deployment locations with device
energy harvesting requirements by selecting a deployment location with a score sup-
ported by the SPIoT device rating. To calculate the score, we modify the SPIoT
model by Kansal et al. [70] to account for energy storage discharge efficiency and
the efficiency of direct power consumption from harvester as to provide a more gen-
eral framework to describe real-world SPIoT hardware. Compared with the model
adopted by Buchli et al. [31], our model takes into account the direct path between
energy generation and consumption and energy storage leakage. Our introduced
SPIoT model is given by a set of equations representing a discrete-time system, what
facilitates its implementation into simulators.
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Chapter 6: IoT Cyber Infrastructure for Smart Cities

Recent advances in information and communication technologies (ICT) are en-
abling internet of things (IoT) smart city projects to collect and analyze vast amounts
of data as an effort to support more environmentally and economically sustainable
communities [113, 127]. For instance, smart stormwater projects have shown success-
ful IoT based infrastructure monitoring applications to address communities’ opera-
tion and planning challenges [24, 104, 44]. As IoT devices become more pervasive,
collected data is expected to play an increasingly central role to inform communities’
decisions and, therefore, it is critical to develop and maintain cyber infrastructure to
collect, store and visualize sensor data.

However, as a growing number of new ICT technologies become available, the
task of developing and integrating hardware and software solutions for IoT smart
city projects can demand extensive specialized knowledge in different ICT domains
[126, 67], which can be challenging to IoT system designers. To reduce IoT systems
design effort and to make IoT solutions more accessible, The Things Industry (TTI)
[66] created and sponsored The Things Network (TTN) [98], a set of open-source
tools to provide the basic software infrastructure to deploy IoT sensors based on
LoRaWAN [93, 114], a low-power and wide-area network (LPWAN) wireless commu-
nication protocol. This open-source project enables contributors around the globe
to publicly share TTN compatible gateways that can connect LoRaWAN sensors to
a network server known as The Things Stack, which is maintained by TTI. Using
TTN for smart city projects has been successfully demonstrated in the literature for
different applications (e.g. [24, 43]) while also benefiting communities by creating an
open LoRaWAN communication infrastructure that can be leveraged by other IoT
projects such as air quality monitoring [26].

Although deploying an IoT system is greatly simplified by using TTN tools, their
goal is to provide only the network server infrastructure and leave the application
server to be developed by users. For instance, long-term data storage, graphical
user interfaces (e.g., plotting tools) and the capacity to send alarm notifications are
functionalities not supported by TTN’s network server. To achieve such functionali-
ties, users need to develop their own application server or adopt third-party service
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providers such as Ubidots [130] and myDevices [96]. Another possible solution is to
develop a custom server using TTN open-source networking solution and modify it to
include application layer functionalities; however, this solution implies an increased
server workload and code maintenance requirements when compared to only devel-
oping and hosting application layer functions. While third-party application servers
might provide great value to many applications, users might still decide to develop
their own application server solution to achieve more control over their data, to create
customized application solutions, or to reduce recurring costs. However, developing
an application server implies selecting, developing and integrating software modules
to achieve application’s goals, which can be challenging due to the large diversity of
architecture options and software solutions currently available as commercial prod-
ucts and open-source modules. In this context, IoT application case studies can offer
users a valuable insight into developing and integrating software systems to meet
application goals. To help guide users on the path of creating integrated IoT smart
city applications, we introduce our use case of a flood warning system for a suburban
watershed in Virginia, USA. Our system uses a pressure sensor and two ultrasonic sen-
sors to monitor water levels at three locations on the stream network, and a weather
station to monitor precipitation rates. All our monitoring devices use LoRAWAN
to communicate to TTN’s network server. We developed and integrated a scalable
set of cloud-based application tools to perform long-term data storage, data visual-
ization, and automated alarm notification functionality. We discuss implementation
challenges and insights for our system, as well as a cost analysis using Amazon Web
Services (AWS). To support user’s planning and decision-making, we included a cost
analysis section where we evaluate how costs currently evolve with time, number of
sensors, and data storage requirements.

The main contributions of this end-to-end IoT application development can be
summarized as: (1) our work provides practical insights on the development of cloud-
based tools for IoT applications, an emerging area that is frequently overlooked on
empirical IoT research; (2) we propose a general cloud back-end system architecture
that can guide IoT developers to quickly prototype smart city applications by using
our demonstrated tools such as serverless data ingestion for IoT historical backup data
storage, on-demand MySQL database and Grafana servers, and a RESTful API for
programmatic data access; and (3) we perform a cost analysis for the first few years of
using AWS cloud services in an IoT application, highlighting the cost-effectiveness of
our proposed solution, and providing to IoT developers a cost estimate of these cloud
services under varying number of sensors and data rate. In this chapter we discuss
the highlighted block of the SPIoT design and deployment framework flow chart in
Figure 6.1.
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Figure 6.1: Flow chart components related with the cloud-based cyber in-
frastructure. Designing an end-to-end IoT applications requires making system-
level decisions that impact SPIoT hardware component selection, for instance defining
a communication protocol such as LoRa.

6.1 Example Application Motivation and Objectives

With the increase of weather variability and flooding [61], it is vital that com-
munities launch flood mitigation initiatives for the safety and quality of life of their
residents. To create a sensing and alert system, we need to collect real time sensor
data from various locations around a city, parse, store, provide responsive visualiza-
tion, and transmit alert messages. For preemptive flood management strategies, we
also need to collect data about existing infrastructure and land features to model
storm-water flow and forecast future flood conditions.

This example application’s main goal was to demonstrate cloud-based application
solutions to support monitoring and alerting of flooding events. Basic features of our
application system include data collection, storage, visualization and alert creation as
well as a RESTful API to provide data access to data-driven environmental forecast-
ing, and physics-based stormwater flow simulation. Although this use case is focused
on flood warning, we describe each component and lessons learned in a general way,
so it can be easily translated to other smart city use cases.
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6.2 Methodology

6.2.1 System Architecture Overview

Data flows from sensors to our cloud-based software solution as depicted in the
system architecture diagram in Figure 6.2. We built our cloud-based system using
Amazon Web Services (AWS) to take advantage of their latest resources and capa-
bilities such as serverless functions (AWS Lambda [17]), data storage (Amazon S3
[9]), API gateway interfaces (Amazon API Gateway [6]), and computing instances
(Amazon EC2 [16]).
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Figure 6.2: Our system architecture diagram using Amazon Web Services
and The Things Network.

Using AWS Lambda [17], sensor measurements are queried from our TTN appli-
cation, transformed, and uploaded as csv files to our long-term cloud data storage
solution in an AWS S3 bucket [9]. We adopted a MySQL database server to provide
responsive data access to our application. The MySQL database is hosted in an AWS
EC2 instance [16] alongside a python script that ingests historical sensor data when
the virtual machine starts up, and another script that connects to our application’s
TTN MQTT broker to receive and ingest real time sensor data. The data is then
queried for visualization, monitoring, and alerts through a graphical user interface
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(GUI) tool, Grafana [74]. Both MySQL and Grafana EC2 instances are only started
under demand if users need fast access to structured data or a monitoring dashboard
respectively. Sensor data can also be programmatically downloaded using our REST-
ful API, as for instance in scripts to perform data analysis tasks in Jupyter notebooks
[68], or to perform modeling tasks with Storm Water Management Model (SWMM)
software [132]. We also hosted a static website to document the API interface and of-
fer users direct access to data download using Swagger UI [125]. While not explicitly
shown, we assume simulation and modeling tasks will be performed by users in their
own servers that could either be hosted by EC2 instances in AWS, by other cloud
providers, or also hosted on their own computer machines.

6.2.2 Design Requirements

Our cloud-based system requires several different components to work in conjunc-
tion to meet application requirements. First, the deployed IoT sensors must success-
fully relay messages to the TTN network server to deliver real time data. The data
must then be received, processed and stored in our MySQL database and the S3 long-
term data storage for backup purposes. To make the system simpler to develop and
manage, we adopted a single cloud service provider to develop our application’s ser-
vices and tools. In this system’s case, it was hosted by provisioning services through
Amazon Web Services (AWS). Next, for this system to be sustainable and meet dif-
ferent users’ cost constraints, it must operate at minimum cost and have efficient
resource consumption. The system must also be intuitive and straightforward to
deploy, use, maintain, and modify.

6.2.3 System Components

Sensors, TTN and Ingestion to Cloud Platform

As proof of concept, we deployed three water level monitoring sensors and one
weather station in a flood prone watershed in Charlottesville, VA. All four devices
were connected to The Things Network (TTN) through a LoRaWAN gateway in-
stalled in the same neighborhood region as the devices. We utilized commercial
sensors from Decentlab [52] to focus efforts on data gathering, storage, and analysis
systems rather than sensor’s hardware and software. Another motivation behind this
decision was to make our solution more general and easily translatable to other smart
city projects based on sensor hardware compatible with The Things Network (TTN).
We have left sensor deployment details out of the scope of this work, since our main
goal is to advance the software back-end infrastructure of IoT systems.

Sensors communicate using LoRaWAN [93, 114] with TTN compatible gateways
that interface with TTN network server through an internet connection. The sensors
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were connected to TTN to enable cost effective interfacing and management, and to
utilize the platform’s available single-day storage via TTN’s data storage integration
service. To query data from TTN and upload it to the Amazon Web Service (AWS)
stack, we wrote a python function to perform a HTTP Get request to retrieve data
for a particular application. This data querying python function runs as an Amazon
Lambda service that is periodically executed, set initially to run in one-hour intervals.
To ingest real-time data to our MySQL database, we used MQTT clients connected to
our TTN applications’ MQTT brokers. TTN network server MQTT broker publishes
new sensor data to our MQTT clients as soon as it is available in their server, providing
our application with timely access to information.

Cloud Platform and Used Services

We decided to develop our application using AWS tools, but the same application
architecture can be reproduced using equivalent services from other cloud providers.
For regions impacted by flooding, high availability of the computing backend is im-
perative due to the need for quick analysis of incoming weather and real time water
level data. AWS offers high availability, which includes regional failovers in case a
data center is taken offline. Deploying and redeploying resources on AWS can also be
quickly automated using AWS CloudFormation [13], a tool used to provision specified
resources (such as Lambda, EC2, RDS, etc.) through a provided script. The code
written for the backend of the cloud-based system can be found at [133].

Amazon Lambda. AWS provides a serverless computing platform known as Ama-
zon Lambda [17], which allow users to run their custom functions on demand. The
underlying infrastructure of Lambda is maintained by AWS, which means the sys-
tem developer must only worry about choosing the correct runtime environment to
deploy their code. Using Lambda, the sensors are queried for uplink data at specified
intervals. The uplink is then parsed, and the data is transformed to only include
information pertinent to the application. The sensors’ uplink data is uploaded to S3
for long-term storage and becomes available to be queried into the MySQL database
when needed. After the Lambda function finishes uploading the transformed data,
it automatically shuts off, allowing the user to pay only for the computing time
and memory resources used rather than provisioning a continuously running machine
(e.g. EC2). Lambda was chosen for our solution due to ease of scalability with future
added devices, monitoring, high availability, and resource efficiency. For instance, if
a new TTN application is added to the system, the existing Lambda function can be
promptly updated to query sensor data. Should multiple applications need to report
data in overlapping intervals, the same Lambda function can run in parallel of up to
1,000 instances if needed.
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The Lambda functions for this use case requires modification from the default
settings. We used the AWS SDK Pandas Lambda Layer [14] to query from TTN,
parse data and to store or read data from a S3 bucket. Python’s Pandas module is
used to quickly transform and manipulate data. The urllib3 module is used to send
HTTP requests to The Things Network storage integration and retrieve sensor data.
Other configurations for the Lambda function include setting the allocated memory
to 192 MB (determined by AWS Compute Optimizer [8]), timeout limit of 1 minute,
and being triggered to run once every hour. The lambda function triggering period
can be adjusted based on application needs, where shorter periods translate to lower
latency between data being available on TTN and stored in the S3 bucket but also
resulting in higher costs for the lambda function computing service.

Another use we make of AWS Lambda is to return stored sensor data requested
by our RESTful API and manage user authentication. When receiving a query from
Amazon Gateway API, a lambda function is initially executed to check an autho-
rization token provided in the API request and authorize or deny the API request.
If authorization is granted, a second lambda function reads, and parse data stored
in the long-term data storage solution in the S3 bucket to return the required data
to the API gateway. This lambda function to query data from S3 and return to the
API gateway is configured to allocate 512 MB of data as a compromise between cost
and performance to serve the API functionality and timeout limit of 1 minute. The
authorizer function uses default settings of 128 MB memory allocation and 3 second
timeout due to the simplicity of our currently adopted solution that only checks if
the authorization key input matches a hard coded string value.

Amazon S3 Data Storage. Amazon Simple Storage Solution (S3) is a cost-
effective way to store data for ex-tended periods. Data collected by sensors are
uploaded in S3 for long-term storage as a read-only resource of the raw data feed.
These readings can be used to repopulate the database in case of a database failure
or migration and can be done using the python library created for this system. AWS
also maintains a python module (BOTO3 [18]) that allows users to download a copy
of the readings from S3 to a local machine. All readings in S3 are currently stored as
the AWS Standard tier for regular access for this application example.

Another use for the S3 storage is hosting static websites. We used a S3 bucket
to store our RESTful API documentation using the Swagger UI interface [125]. Our
website is based on the Swagger UI demonstration provided in their github page,
adapted to read an OpenAPI 3.0 description of our API service. The static website
contains the API server address, a description of the required header, all accepted
parameters and the possibility to perform an API GET request trial with parameters
provided by the user.
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Amazon Elastic Cloud Compute. To host MySQL and Grafana, two Amazon
Elastic Compute Cloud (Amazon EC2) instances were provisioned. Amazon EC2
allows for a continuous computing platform on the cloud, which allows access to the
database and Grafana when needed. The developed system uses t3.micro instances
with 10 GB storage, which fits the needs of this example application by minimizing
costs while still maintaining reliable performance for the relatively low number of
sensors currently in the system. A more capable instance could be used to serve
a larger number of users or for a use cases requiring quicker response times. For
this study, MySQL and Grafana were hosted on two separate EC2 instances for
simpler management and increased flexibility, allowing for example easy replacement
of visualization software or on-demand use of MySQL database to allow fast data
access to applications. It may also be worthwhile to adopt AWS Relational Database
Service (RDS) [11] instead of an EC2 instance running MySQL as the system database
solution and then scale the RDS database based on the application’s requirements for
maintainability and access speed. This was considered, but not implemented in this
study because RDS comes at a higher cost. However, RDS has the advantage that
it provides built-in scalability as data volumes and users grows. The Results section
includes a cost comparison between these alternatives for hosting the database and a
discussion of pros and cons of each alternative.

Relational Database Design and Implementation

As our relational database, we selected MySQL as a simple solution with wide
community support. We deployed MySQL on the cloud through Bitnami [28], which
provides a preconfigured virtual machine image which is ready to be loaded to an
Amazon EC2 instance. We created an entity relationship diagram (ERD) to nor-
malize the sensor readings as shown in Figure 6.3. The ERD is centered around the
Measurements entity, which stores the value of individual data points along with the
time of data collection (Received at). The Devices entity stores the device’s unique
identifier (Device ID), device’s model (Device model), the last received battery read-
ing of the device (Last battery) and the last activity timestamp (Last activity). Sim-
ilarly, the Locations entity contains data on the latitude, longitude and altitude for
each location that data is collected from, along with a unique identifier for each loca-
tion. For each value in the values table, the Variables entity stores the data points’
unique display name and the unit of the variable. The Measurements entity has a
one-to-many relationship with the three other entities, meaning that each value data
point can only have one device, variable, and location, while the remaining entities
can have many values for each data point in their tables. This ERD was developed by
advancing an approach by previous related research [33]. This design of the database
allows for easy further advancement and change as additional devices and variables
can be more easily incorporated.
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Figure 6.3: Entity relationship diagram for database design.

Graphical User Interface

This system allows users to visualize and monitor data through Grafana, an open-
source analytics platform for querying, visualizing, and alerting on data metrics.
Grafana was selected as the software solution to visualize incoming data due to its
dynamic dashboards, built-in alerting capabilities, and its specialization in time series
data. Grafana was deployed on the cloud through Bitnami [28], which provides a
system image of a pre-configured Grafana stack on AWS. A connection was then made
to the MySQL database in Grafana to access the data for visualization. Dashboards
of each monitoring station were created to display relevant information for users. In
Figure 6.4 we show an example of the dashboard for the water depth monitoring
station. This dashboard includes a graph of the water depth over time, statistics
on the water depth values for the set time range, a water level gauge of the current
depth, a map of the sensor station location, and a gauge of the sensor battery level.
The water depth graph and gauge allow users to view the current and past water
levels in relation to a threshold of 0.4m to signify flooding. Grafana’s built-in alert
system can send alert notifications if the incoming data triggers a set alert rule. As an
example, the water depth dashboard has alert rules set to send a notification through
the messaging application Slack [120] if the 0.4m threshold is met, although sending
alerts to other systems or via email is also possible.

RESTful API

Our RESTful API serves as a programmatic interface for users to quickly down-
load data from sensors. We created the API using Amazon API Gateway service [6]
and lambda functions both to manage API access and to read, parse and return data
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Figure 6.4: Grafana decision support dashboard of a water depth monitoring
sensor.

from our long-term data storage solution in AWS S3. To document our RESTful API
and provide easy access to sensor data, we created a static website using Swagger
UI and it is currently hosted using AWS S3 buckets. We also enabled CORS in our
API Gateway service, and we added a custom header with an authorization token
for access control. We described our API following the Open API 3.0 framework
and stored it as a json file loaded to a specification variable in the javascript code
for our documentation website. To download data using the API, the user will be
required to input a valid authorization token to be granted access. Although we are
currently using a simple custom lambda function to grant access, other more compre-
hensive user access management tool can be used in future versions, such as Amazon
Cognito [10]. Other available parameters to customize the sensor data request are:
“application”, which selects which TTN application do download data from; “de-
vice id” which selects de-vices using a unique identifier; and “last” or “start date”
and “end date” which al-lows selection of periods of time to download data. Using
the “last” parameter, users can retrieve data collected by the sensors from the time
of querying to the day specified. Using the “start date” parameter, users can specify
the beginning of the time range of the dataset to download. By default, if only one
of “start date” or “end date” parameters are provided, data from the single specified
day will be returned. Using the API, the user can request datasets for any of the
available sensors. In Figure 6.5, we illustrate a typical use of the API to request data
from a pressure sensor by using the Swagger graphical user interface. In Figure 6.6
we show a typical API call with parameters and the response.
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Figure 6.5: Example of parameters for the sensor data download API.

Figure 6.6: Response from API using example parameters.
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6.3 Results and Discussion

6.3.1 Discussion of Alternative System Components and Po-
tential System Enhancements

Cost Analysis of Cloud Services

The first two versions of the databases created for this application example were
hosted in a MySQL database using Amazon Aurora [12] and then Amazon RDS [11].
For the application example needs, Aurora and RDS costs presented a constraint,
which is the reason we chose two EC2 instances to host MySQL and Grafana that
meets user requirements at a lower average cost. The current virtual machine cyber
infra-structure costs between $24 and $210/year, depending on how long the EC2 in-
stances will be required to be available. However, the database hosted this way may
require maintenance such as updating software, or service to fix bugs, along with
providing no regional failover. In the event an AWS region experiences an outage, re-
gional failover allows a copy of the database hosted in a separate region to quickly take
over operations. Since in our use case we might not need Grafana and the MySQL
database to be always available, the EC2 instances can be shut down and only started
under demand, for example when users expect an incoming storm. Turning off the
EC2 instances reduces the recurring costs to only the instance’s storage units, which
costs around $12/year for each instance using currently 10GB of memory space or
around $24/year for both EC2 instances. Should the application require seamless re-
gional failover and high database performance, one alternative solution is to provision
two redundant in-stances running Amazon RDS for MySQL with multi availability
zone support. This configuration estimated costs are $623.28/year, considering on-
demand instance base costs and 10 GB of SSD storage. Memory storage calculations
and associated costs with S3 and the database configurations are provided in the
tables (2-7). Our calculations for tables (2-7) were done based on the current sensor
device configuration of the system (Figure 6.7), pricing rates at the development time
(January 2023) and a projected 5-year use. The default measurement frequency for
the system is 1 measurement every 10 minutes, averaging 4380 readings per month.
To account for temporary measurement frequency increases during storm events, cal-
culations instead used a figure of 4800 readings per month. One csv file is uploaded
every hour to S3 for each registered TTN application, with each write request to S3
costing $0.000005. Sensor devices currently in use are 1 eleven parameter weather sta-
tion (DL-ATM41), 1 pressure/liquid level and temperature sensor (DL-PR26), and
2 ultrasonic distance/level sensors (DL-MBX), with one TTN application for each
sensor model type, resulting in a total of 3 TTN applications. The average payload
size for these 4 sensors is 343 bytes after parsing and transforming and the csv file
header average size is 822 bytes. Since the weather station contains more measure-
ments per reading than the other 2 sensor type, its sampling frequency has the most
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significant impact in the used data storage space. It is important to note that, when
data is stored in the MySQL database, the weather station requires almost 5 times
as much storage capacity as either of the other 2 sensor devices. Since the current
system is based on these 4 sensor devices, AWS storage configurations may need to
be readjusted based on the chosen sensors for the application’s system.

Figure 6.7: Adopted Sensors for the Proof-of-Concept IoT System.

Figure 6.8: MySQL database storage (MB) requirements over time per
device type (4800 readings/month).

Overall yearly system costs can also be lowered by configuring S3 and EC2 in-
stance provisioning and by using built-in AWS cost optimization tools. For S3, if the
backup data will not be frequently accessed, it is recommended to change the access
tiers of the data. For this application example, the data is stored under Standard
tier, which costs $0.023 per GB. In future iterations of the system, it is recommended
to use Intelligent-Tiering: Standard-Infrequent Access ($0.0125 per GB), One Zone-
Infrequent Access ($0.01 per GB), or even Glacier tiers ($0.004 per GB). For the
Infrequently Ac-cessed and Glacier tiers, there is a retrieval fee for every gigabyte
retrieved. Infrequently Accessed will allow for millisecond latency to the user when
requesting data, whereas with Glacier it can take minutes or hours. Deleting data
from non-standard S3 tiers before their minimum storage duration will charge the user
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Figure 6.9: S3 storage costs calculations for generic sensor devices in the
first year (343 Bytes/ sensor payload, 828 Bytes/csv header, 4800 sensor
payloads/month and 3 TTN applications).

Figure 6.10: MySQL database storage (GB) requirements over time based
on number of generic IoT devices (1kB/reading and 4800 readings/month).

Figure 6.11: Database cost on single EC2 instance (t3.micro) assuming a
single instance, storage requirements for 5 years, and generic IoT devices
(1kB/reading and 4800 readings/month).
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Figure 6.12: Database cost on 2 separate RDS EC2 instance (db.t3.micro)
with multi availability zone deployment and assuming generic IoT devices
(1kB/reading and 4800 readings/month).

Figure 6.13: Database cost on Aurora (t3.small)1 and assuming generic IoT
devices (1kB/reading and 4800 readings/month).

for the respective minimum storage duration. Infrequently Accessed and Glacier tiers
also have a minimum capacity charge per object, so it is recommended to combine
individual readings into larger datasets (i.e. monthly readings per sensor) to store
as one file in these tiers. To reduce costs of EC2 instance provisioning (including for
RDS and Aurora), AWS allows for reserving instances in 1 and 3 year increments
instead of using on-demand instances, bringing costs down by up to 38%. The costs
calculated in this paper are using the current configuration of the system which uses
on-demand EC2 instances and considering they will remain always on.

As shown in Figure 6.8, our current configuration of four sensors reporting on
average between six and seven samples per hour (4800 samples/month) results in a
MySQL database of less than 140 MB of data at the end of the first year of operation.
In Figure 6.9, we show that storing this amount of data in AWS S3 service would cost
$0.14 for the first year and even scaling to 100 sensors with the same average data rate
would result in $0.38 storage costs. This indicates that many small to medium scale
applications could benefit from this data storage service to backup sensor data at low
costs. In Figure 6.10, we estimate the size of a MySQL database for the first five
years, assuming generic sensor samples of 1kB size being uploaded at the rate of 4800
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samples/month as we adopted in our example application. The estimated MySQL
database size is then used to inform the storage requirement of the virtual machines
hosting the respective MySQL databases as shown in Figure 6.11. Our system with
4 sensors would cost about $97.10/year with each one GB increase in storage space
resulting in an additional cost of $1.20/year. This analysis shows that up time of EC2
servers has the greatest impact on the overall system cost and turning them off while
not being required can result in substantial savings. To reduce costs even further,
MySQL server disk images can be saved in the S3 data storage service, eliminating
EC2 server costs while they are shut down for long periods. As a brief exploration
on alternative robust database services offered by AWS, we assume in Figure 6.12
two Amazon RDS EC2 instances with multi availability zone deployment, and, in
Figure 6.13, Amazon Aurora managed database on a more powerful EC2 instance.
Both solutions result in total costs over $600/year, representing six times the cost of
running a database in a single EC2 MySQL server. Therefore, we recommend using
our proposed EC2 MySQL server solution when a failover system is not critical to
the application due to the substantial cost savings. In figure 8 we estimate how the
cost of S3 data storage varies with sampling rate, operation total duration, number
of sensors, and sampling rate. For these calculations we used a simplified estimation
model considering only a fee of $0.023 per GB stored, and $0.000005 fee of per write
request. As in the tables previously introduced, we assume up to 3 TTN applications
and one data request and ingestion operation per hour.

With the S3 storage costs curves depicted in Figure 6.14, IoT application devel-
opers can estimate how the number of sensors and data rate parameters influence the
total S3 storage costs, as well as how these costs accumulate with time. For instance,
in Figure 6.14d, we can verify that the cost of S3 data storage of an application with
50 sensors for the first ten years is comparable to an application with 200 sensors for
the first five years.

Discussion About the RESTful API Limitations and Data Access

We identified some limitations when testing the sensor data download Application
Programming Interface (API). Through an endpoint provided by the Amazon API
Gateway, a user request gets passed to the Lambda function to retrieve datasets from
the S3 storage, which needs to be parsed before being returned to the user. The first
limitation of the solution adopted in this example application is the maximum 30
second timeout on API Gateway requests when large datasets are requested. Even
after the retrieval code was optimized to run faster, there was a second limitation
through Lambda, which is a payload limit size of 6 MB. For large datasets (e.g. 1
month of data from the weather sensor), the Lambda is not able to send to the user
their requested dataset. Therefore, we recommend only using the RESTful API to
download data for a few days at each GET request. An alternative and faster solution
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to download a large amount of data is using the AWS provided BOTO3 python library
[18] and downloading the raw csv files directly. We recommend downloading the
raw csv files when data is needed in order of a few months of sensor data. Another
available alternative solution to perform more responsive data exchange in larger sizes
is to query data directly from the MySQL database running in the EC2 instance. We
recommend using the MySQL database when data in order of a few weeks is needed
for applications such as dynamic websites requiring fast responses or time sensitive
simulations.

Security Considerations

Cloud service providers such as AWS acknowledge that security is a major concern
for users and provide management tools to support the creation of secure applications.
For instance, when deploying a cloud-based system, it is recommended to create an
AWS organization with trusted users to manage AWS Identity and Access Manage-
ment (IAM) roles and policies. Although in hindsight we agree that creating an AWS
Organization from the beginning would be best, our research team initially used sep-
arate AWS accounts to create and manage Lambda, S3, and EC2 instances based on
who was working in each part of the system, resulting in a poor managing practice.
Therefore, we recommend access privileges to AWS services to be tailored to develop-
ers and systems administrators that oversee each subsystem. We utilized secure shell
(SSH) with key pair generated by AWS to access the EC2 instances, using SSH port
forwarding to access the Grafana user interface. Although this approach limits the
number of EC2 instance ports accessible through the web, it also results in a worse
user experience due to the increased number of required steps to access the Grafana
dashboards. For future versions of the system, we recommend creating a user access
webpage using AWS Cognito service and reverse proxy to serve the Grafana applica-
tion, without having the need to use SSH tunnels and still avoiding directly exposing
ports of the EC2 instance to the web.

Alternatives for Graphical User Interface

Providing users with easily understandable information in a clear and efficient
manner is paramount when working with large amounts of time series data. In this
application example, were compared three data visualization platforms to find the
best tool to effectively communicate information, namely Grafana, AWS QuickSight
[7], and AWS SageMaker [15]. QuickSight was initially determined as the platform
that best met cost, visualization, analysis, and alerting capabilities requirements.
However, after creating a QuickSight account and working with the platform, we
found that it does not support embedding visualizations in websites without assigning
each user with permissions to view. We then determined that QuickSight was not a
suitable tool as it did not meet some of our envisioned uses for the application. After
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conducting more research on data visualization platforms, we decided that Grafana
would be the best tool for this application due to its ability to easily share and
embed visualizations. Grafana allows for the creation of snapshots of dashboards
which can then be used to share interactive dashboards publicly through snapshot
links. Additionally, Grafana is designed for time series data and allows for alerts to
be sent out through many alert notifiers such as text message, email, and Slack.

Opportunities for Forecasting and Advanced Analytics

The long-term data gathered by this monitoring system can support the gener-
ation of accurate forecasting real time models in the areas of interest. Developing
such models with longer observation periods would better assess seasonality effects
and, therefore, could reduce the uncertainty arising from precipitation effects, creat-
ing more accurate forecasts. Users can feed sensor data from our RESTful API to
simulate the generated models and provide real time forecasts on demand. Another
potential study that could benefit the creation of forecasting models would be evalu-
ating optimized sampling intervals for each location, as wide variation of water depth
between collection intervals can hide patterns and result in less accurate statistical
analysis.

6.3.2 Discussion of the System Performance

To analyze the system performance, we can break down the proposed system to a
few main data paths, namely: (1) serverless data ingestion, receiving data from TTN
and saving to the S3 bucket; (2) MySQL server startup and historical data ingestion
from the S3 bucket; (3) MySQL live data ingestion through MQTT; (4) Grafana
data query from MySQL; and (5) RESTful API data query. The serverless data
ingestion operates independently of the other system com-ponents and its latency is
dominated by the lambda function execution time, which takes up to 4.8 seconds.
The MySQL server startup includes the EC2 instance boot up, queries to historical
data from the S3 bucket, and most recent data from TTN storage integration, leading
to a startup latency of up to 10 minutes in the current version of the system. This
startup time can be improved, but we assume that the MySQL server can typically
be turned on hours before an event of interest (in our example application, triggered
by a storm forecast). For the live data ingestion, data is received from TTN through
MQTT and a python script ingests data to the database within milliseconds. More in
depth study is still required to analyze the impact of high sensor data rates, but EC2
instance computational power can be upgraded to avoid possible bottlenecks. For the
Grafana query from the MySQL database, the co-location of EC2 servers in the same
availability zone results in overall good performance. Again, more in depth study is
required to analyze performance degradation when scaling the number of users logged
to the Grafana server. Finally, as previously discussed in the subsection 5.1.2, the
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RESTful API has some significant limitations, and its use should be restricted to ac-
cessing small batches of data. RESTful API latency can be improved by optimizing
the S3 querying lambda function and creating larger S3 objects aggregating a larger
number of measurements.

6.3.3 Broader Impacts of this Study

In this work we introduced a cloud-based data storage and visualization tool for
smart city IoT projects that can be leveraged by researchers in academia and industry
to quickly prototype applications, allowing them to promptly evaluate the impact
of their solutions in the real world. The low cost and maintenance requirements
of cloud solutions can enable a higher range of experimentation and collaboration
between smart city projects, combining IoT data accessibility with computational
resources for modeling and simulation. Furthermore, lowering the barrier-to-enter
of cloud systems can foster the development of new smart city solutions, supporting
more environmentally and economically sustainable communities.

6.4 Conclusion

While data collected by IoT smart city applications are a central asset in sup-
porting management and planning decisions for many communities, designing, and
deploying IoT solutions is still challenging due to system integration complexity, re-
liability limitations and cost. We presented a cloud data storage and visualization
system for smart cities, leveraging reliable existing technology to integrate a complete
IoT monitoring solution hosted in AWS and costing under $26/year for long-term
data storage and $0.0204/hour of use for MySQL database and Grafana servers. By
using this cloud-based solution together with TTN infrastructure and commercial
LoRaWAN sensors, users can collect, store, and visualize datasets to address their
needs and integrate their own services. We demonstrated the use of the system for a
flood warning system application example with river and weather LoRaWAN sensors.
The cloud-based system design uses serverless data ingestion to provide a simple and
cost-effective data storage solution that is independent of other services such as data
visualization. An on-demand database and visualization servers offer flexibility to
adapt to application needs while saving costs and simplifying maintenance operations.
Furthermore, we explored the different AWS tiers and their respective reliability/cost
trade-off so users can make informed decisions when tailoring our system to their own
application. As opposed to focusing mainly on the example application as commonly
done in the literature, we highlight common tasks that are required by IoT project
and share our insights in leveraging modern cloud services to simplify IoT back-end
system design and optimize costs.
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6.5 Contributions and Outcomes

From the best of our knowledge, the proposed IoT cyber infrastructure is one
of the first public works to demonstrate the use of modern serverless functions and
API gateway cloud services to support an end-to-end IoT application, while also
performing a cost analysis of the solution and making the code open source. We
found that cloud services initially developed for web applications can be used together
with The Things Network as building blocks of IoT end-to-end applications at low
design and maintenance effort. While existing works introducing end-to-end IoT
applications in the literature [92, 24] focus on a dedicated application server, our
cloud-based solution relies on cloud services to provide cost-effective resources that
can be allocated on demand with the high reliability offered by cloud providers.
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Chapter 7: Case Studies

To demonstrate how SPIoT modeling approaches can support applications, we
selected two case studies introduced in Chapter 3: water quality monitoring; and wa-
ter leakage detection. The first case study on water quality monitoring demonstrates
how we can use existing datasets and models to evaluate a self-powered water quality
station design and assess the potential of a small water turbine energy harvester for
this application when compared to solar energy harvesting. The second case study
on water leakage detection demonstrates how our collected thermal energy harvesting
dataset and our SPIoT models can help to inform the design of a self-powered water
leakage detection sensor for use in building automation applications.

7.1 Water Quality Monitoring

As introduced in Chapter 3, exploring different energy harvesting solutions for
water quality stations can increase the range of possible deployment locations and
allow government regulators and citizen scientists to collect important water qual-
ity information on streams. The goal of this case study is to investigate what is
the energy harvesting potential of small commercial hydro turbine harvesters when
compared to solar panels to support water quality stations. To achieve this goal, we
modeled a water quality station based on the Open Storm platform [25], considering
typical water quality sensing modalities: turbidity, PH, specific electrical conductiv-
ity, temperature, dissolved oxygen and oxidation reduction potential. To simulate
energy generation, we used harvester models and available datasets of solar irradi-
ance and water flow velocity. In our published work [85], we also derived a model to
represent the average energy loss in solar panels due to shades from canopy cover [85].
We assumed that the application is concerned with the up time of the water quality
station and its sampling rate (or sampling interval) metrics. Finally, we evaluated the
energy wasted as overflow when the energy storage device is full and no more energy
can be stored. This self-powered water quality station analysis uses the highlighted
blocks in Figure 7.1.

The overall modeling framework used in this case study is illustrated in Fig-
ure 7.2. Streamflow velocity time series collected by the United States Geological
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Figure 7.1: Flow chart components related with the self-powered water
quality station design. We use streamflow velocity and solar radiation parameters
as environment traces, then we simulate a SPIoT device. We adjust the sampling
interval to evaluate potential SPIoT applications.

Survey (USGS) is used with a hydro turbine model to simulate the energy generation
from the water kinect energy, while solar irradiance, wind speed and ambient temper-
ature are used with a photovoltaic panel model to simulate solar energy generation.
The water station design follows a harvest-store-use model as in [30], with charge con-
troller and battery charging efficiencies of 90% and battery discharging efficiency of
70%. The battery model was based on a commercially available device with capacity
and energy leakage of 0.4kWh and 0.66J/min respectively.

7.1.1 Datasets

Hydro energy harvesting dataset

The United States Geological Survey (USGS) has recorded and shared stream-
flow velocity for about 400 locations out of 14,481 (active and inactive/discontinued)
stream locations across the United States. These 400 sites are located on natu-
ral streams or man-made channels [124]. Velocity measurements are recorded using
acoustic Doppler velocity meters. This data is often used to estimate the flow dis-
charge in waterbodies [79]. The available velocity time series for each USGS site
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Figure 7.2: Simulation model diagram for self-powered water quality sta-
tions. We used available solar and streamflow datasets to simulate an energy har-
vesting water quality station model and assess harvestable energy, wasted energy due
to battery overflow and sample loss due to power outages.
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is either a reading from the sensor directly (identifiable using the USGS parameter
code 72254), mean streamflow velocity over the cross-sectional area of the waterbody
(identifiable using the USGS parameter code 72255), or both. Because the streamflow
velocity time series is either measured at a point or represents the mean streamflow
velocity at a cross section, it does not capture the variation of streamflow velocity
in depth, width, and along the river. Additionally, there were a few negative values
reported at many of the USGS sites, which can happen due to backwater flow con-
ditions that can occur at stream confluences, streams flowing into lakes or reservoirs,
tide-affected streams, regulated stream flows (dams or control structures), strong
prevailing winds, or where structures (e.g., bridges and culverts) restrict flow.

The available streamflow velocity record duration varies across the 400 sites from
about four months to about 12 years. Most often, streamflow velocity measurements
are recorded on a 15-minute interval. We chose to use a five-year study period of
2010 to 2014 because it had the maximum number of sites with recordings during
this period. We identified 42 sites with a low missing data fraction during this period.
In total, 2.1% of the dataset was missing due to data gaps. The largest gap within the
data was 23.47 days and the median gap across all sites was 1.1 hours. Across all sites,
80% of the data gaps were less than 4.2 hours. Because the missing data made up a
small fraction of the overall dataset, and because the gaps tended to be small relative
to the overall period of analysis, we used a simple linear interpolation as a standard
gap filling technique applied consistently across all data gaps. The resulting gap-filled
streamflow velocity time-series for the 42 sites were used to estimate the harvestable
energy using a flow-velocity to power transfer curve from a small hydro-turbine, which
was provided by the manufacturer.

Solar energy harvesting dataset

To estimate the harvestable solar energy, historical satellite-derived estimated
weather data provided by Clean Power Research’s SolarAnywhere for the continental
United States was used [36]. The dataset includes solar irradiance (global horizontal
irradiance, direct normal irradiance, and diffuse horizontal irradiance), wind speed
at a height of 10 meters, and ambient dry bulb temperature. The spatial resolution
of the data is 10 km and the data is available on an hourly time step. The weather
dataset was linearly interpolated for every minute to be consistent with the streamflow
velocity dataset. The interpolated dataset was used as input for a photovoltaic (PV)
model to estimate the harvestable solar energy.

7.1.2 Sensor stations specifications

The water monitoring sensor station simulation model has four main factors: (1)
energy from the external environment, (2) one or more harvesters, (3) an energy
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storage component, and (4) an electrical load from sensors and other electronic com-
ponents. The energy from the external environment (e.g., water kinetic energy or
solar radiation) is collected and converted to a usable energy form (i.e., electrical
energy) by the harvester to meet the power demand of the load. The energy storage
component is necessary to store energy during periods when the harvested energy is
greater than the consumed energy and then provide the stored energy during periods
when the energy consumption by the unit exceeds the harvested energy. The external
environment was explored in the previous section. Here we provide specifications of
the harvesters, energy storage component, and the power consuming unit (load) that
were used in the study.

Energy harvesters

To estimate the harvestable hydro power, a small commercial portable hydro-
turbine called “WaterLily” was considered [64], one of the very few commercially
available options of its kind. Depending on the stream hydrology and channel mor-
phology, customized hydro-turbines to adopt with the conditions can be considered.
Figure 7.3 depicts the WaterLily hydro-turbine streamflow velocity to power transfer
curve provided by the manufacturer. The minimum streamflow velocity value re-
quired to generate energy is 0.5 m/s and the peak power of about 14.3 W is achieved
at approximately 3.2 m/s. We assumed the hydro-turbine could harvest energy from
both positive and negative flows, thus the negative velocities described earlier were
treated the same as positive velocities. Throughout all the hydro simulations, we used
a parallel combination of two WaterLily hydro-turbines. Therefore, at a given flow
velocity, the harvested power from Figure 7.3 is doubled. Using two hydro-turbines
was necessary to provide enough energy for the water monitoring station.

To estimate the harvestable solar power, we used pvlib python, an open-source
community supported tool [63]. In this study, we used pvlib python version 0.6.4
[62]. For all the harvesting locations, the simulations assumed a 20 Watt 12 Volt
solar panel [73] operating at the maximum power point. The surface azimuth of the
solar panel was set to 180 degrees for all energy harvesting sites during the entire
simulation period while the solar panel surface tilt was considered to be equal to the
latitude of the energy harvesting location. The weather dataset described previously
in the section ”solar energy harvesting dataset” was used as input to the solar energy
harvester system simulations.

Power consumption model for the water quality station

The sensor station power consumption model assumed in this work includes three
main modules: controller, sensor, and communication. The whole station was as-
sumed to have two operating modes: active, where all modules are consuming energy,
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Figure 7.3: Water Lilly turbine streamflow to power transfer curve. This
curve provided by the manufacturer indicates how much power we can expect to
generate at different streamflow velocities.

and idle (or sleep), where all modules are inactive. The sensor station alternates be-
tween active and idle modes, acquiring sensor measurements and periodically trans-
ferring data over the cellular network in active mode, while saving energy in between
measurements by alternating to idle mode. The station’s average energy consumption
is then used as input to the simulator. For the purposes of the analysis performed in
this work, the sensor station hardware platform from the Open Storm project [25] is
used as a reference of a possible implementation of such system.

The controller module is a programmable device capable of interfacing and turn-
ing sensor and communication modules on and off. For example, the Open Storm
project adopts a custom printed circuit board with a Cypress CY8C5888LTI-LP097
Programmable System-on-Chip (SoC). The controller module together with the low-
est power consuming sensing modality was reported by the Open Storm project team
to consume about 10 mA at 3.7V voltage source on active mode. For the purposes
of the analysis performed in this work, the controller power consumption is assumed
to be 37mW and it should be viewed as a target power consumption budget that
the controller module must adhere to. The idle or sleep mode was reported by the
Open Storm project team to consume up to 60µA at 3.7V and this worst case will be
considered on the sensor station model.

The sensor modules selected for this analysis and supported by the Open Storm
project comprises of a collection of typical water sensors used in a sensor station
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(Table 7.1). The active power consumption for each module together with the recom-
mended inline voltage isolator (part number BE-IVI) is provided by the manufacturer
[110]. The Open Storm project team reported that it typically performs one mea-
surement every 10 minutes and it takes 5 seconds to perform a measurement.

Table 7.1: Water quality sensors and their respective power consumption at 3.3V
power supply. Total energy consumption was calculated based on a 5-second sampling
duration on-time.

Sensor Part Number Power (W) Energy per meas. (J)

Temperature EZO-RTD 0.287 1.435
Dissolved Oxygen EZO-DO 0.277 1.386
Elec. Conductivity EZO-EC 0.320 1.600

PH EZO-PH 0.287 1.435
Oxid. Red. Pot. EZO-ORP 0.277 1.386

Sum - 1.448 7.242

One additional parameter typically measured on water quality sensor stations is
turbidity. Since Atlas Scientific currently does not commercialize turbidity sensors,
we considered the turbidity sensor manufactured by Global Water [137] in this work.
The Global Water turbidity sensor WQ730 consumes up to 60mA at 12 V power
supply, resulting in a power consumption of 720mW. The WQ730 sensor requires a
recommended warm-up time of 8 seconds before start measuring and for the purposes
of this analysis, we considered a one-second window to actually acquire the measure-
ment, resulting on a total of 9 seconds of active time and consuming a total of 6.48
Joules per measurement.

The communication module is an electronic device capable of transmitting and
receiving information through a cellphone network. The Open Storm project [25]
sensor node uses the module Telit CC864-DUAL to perform the communication task
and an average of 25 mA current consumption at 3.7 V voltage source was reported
by the Open Storm project team. Each communication event was reported to happen
every hour and take up to 60 seconds. In this work, the worst case of 60 seconds for
a communication event (total energy consumption of 5.55J per event) is assumed,
while no energy is consumed while in idle or sleep mode. It is also assumed that the
controller will remain active for the whole transmission event of 60 seconds, consuming
a total of 2.22J per transmission event. Each communication event is assumed to
happen every 24 sampling events, what would result in one communication event
every two hours for a five-minute sampling interval. The average energy consumption
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per measurement spent on the communication task is therefore estimated to be 0.324J
per measurement event.

To calculate the total energy consumption per measurement of the complete sta-
tion using all sensors (All five Atlas Scientific sensors and the Global Water turbidity
sensor), we add the energy consumption per measurement of all sensors (13.722J),
the energy consumption of the controller device during sensor measurements (0.333J
for 9 seconds operation due to the turbidity sensor) and the average energy consump-
tion per measurement of the communications module (0.324J), resulting in a total of
approximately 14.38J. The average energy consumption per simulation step (Eload )
is calculated by Equation (7.1).

Eload =
SimStep ∗ Eactive

SI
+ SimStep ∗ Pidle ∗ (1− 9

SI
− 60

TI
) (7.1)

Where SimStep is the simulation step in seconds, SI is the sampling interval
in seconds, Eactive is the total energy consumption per measurement in Joules, Pidle
is the sensor station power consumption during idle mode in Watts (assumed to be
222 µW) and TI is the transmission interval in seconds, the time between successive
communication events. For a simulation step of one minute, a sampling interval of five
minutes and transition interval of two hours, (Eload ) is calculated to be approximately
2.89 Joules per minute.

Since it is usually more than enough to measure the water quality parameters at
waterways at sub-hourly intervals, which successfully captures the dynamics of the
change in parameters, the default sampling interval for all the water quality sensors
was fixed to five minutes unless another sampling interval is noted.

Energy storage unit and charge controller

Power storage is necessary to manage the energy harvesting fluctuations over the
deployment period of the energy harvesting system to store energy during high energy
harvesting periods and use the stored energy during energy harvesting droughts. Also,
on many occasions, the instantaneous harvested power is not enough to directly power
the electronics which again emphasizes the need for an energy storage medium.

The battery model used in this analysis considers charging and discharging effi-
ciencies as well as a constant energy leakage parameter as used in [30]. The following
parameters were considered for this analysis: maximum capacity of 0.4 kWh; con-
stant leakage of 0.66 Joules per minute (2% self-discharge in one month); charging
and discharging efficiencies of 0.9 and 0.7 respectively are assumed. The battery is
considered to be at full charge in the beginning of each simulation. One example of a
commercial battery with 0.4 kWh capacity is the Victron Energy 12V 34 Ah battery
[45].

A charge controller is considered to control battery’s charging and discharging
operation as assumed in the work done by [30]. The charge controller protects the
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battery by disconnecting the load when stored energy reaches a minimum level (com-
plete depletion in our case) and only reconnecting it after the battery is recharged
to threshold percentage of the nominal capacity (assumed as 30% in this work). The
charge controller efficiency is assumed to be 90% as used in [30].

7.1.3 Energy generation, store and consumption model

The simulation model used in this work follows the work presented in [30] by
considering a harvest-store-use energy model and calculating the battery state of
charge after every simulation step. Equations (7.2) to (7.4) summarize the adopted
model.

Ebatout[k] =
Eload
Nbatout

+ Eleak (7.2)

Ebatin[k] = min(Nbatin ∗NCC ∗Eh[k],max(0, Nbatout ∗Bnom−B[k−1]−Ebatout[k]))
(7.3)

B[k] = max(0,min(Nbatout ∗Bnom, B[k − 1] + Ebatin[k]− Ebatout[k])) (7.4)

Where: Ebatout[k] is the resulting energy decrease on the battery’s charge (B[k]) at
the simulation step k by supplying the load (Eload) with discharging efficiency Nbatout
and energy leakage Eleak. Ebatin[k] is the resulting energy increase on the battery’s
charge due to the harvested energy (Eh[k]) with charging efficiency Nbatin and charge
controller efficiency Ncc. These equations also limit the battery’s charge between zero
and the battery’s maximum capacity (Nbatout ∗ Bnom), therefore resulting in energy
lost as overflow when the battery capacity is not large enough to accommodate the
potential incoming charging energy. More details about the adopted model and its
parameters can be found in [30].

7.1.4 Energy harvesting simulations

To perform the energy harvesting simulations, we used the pvlib python library for
simulating solar energy harvesting from historical hourly satellite-derived estimated
weather data described earlier and WaterLily power transfer curve to harvest energy
from gap-filled streamflow velocity explained earlier using two hydro-turbines. Then,
a self-powered discrete-time water monitoring station was simulated adopting the
energy generation, store and consumption model from [30] described in the previous
subsection. Integrating all of these, we were able to determine the state of the self-
powered sensing system components (e.g., instantaneous harvestable power based on
the input energy or the battery charge level) for any given simulation time period for
a certain monitoring system with known parameters (e.g., battery capacity or initial
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charge). Additionally, our simulations provide two main outputs: sample loss and
energy loss. Sample loss is the fraction of samples that could not be measured due to
insufficient energy. This occurs when the sensor station load exceeds the harvestable
energy and available energy from the storage unit. Energy loss is the amount of energy
that could be potentially harvested but cannot be used to either take a measurement
or increase the storage unit (because it is already full). These two parameters help
to understand the two limits of energy for the system: too little energy preventing
sampling on the one end, and too much energy exceeding storage limits on the other
end.

There are several simplifying assumptions and limitations that are important to
understand when translating these simulation results to real-world practice. First,
when deploying a hydro-turbine in a river to harvest power for a real-world applica-
tion, since the particular harvester considered has rotating parts, it is prone to stop
functioning when debris becomes lodged in its blade. In this study, we assumed that
the hydro-turbine is not affected by this practical reality because we assume there is
a way to protect the blade from debris using a protective filter or screen that would
not significantly alter the streamflow velocity. Also, the WaterLily hydro-turbine
was used throughout all the hydro harvesting simulations as it was one of the very
few commercially available small-scale hydro-turbines. Depending on the stream hy-
drology and channel morphology, customized hydro-turbines other than WaterLily
hydro-turbine can be considered to better adopt with local stream and channel con-
ditions at a harvesting site. For the solar energy harvesting simulations, the reduction
of solar radiation caused by topography (i.e., hills and valleys.) is not considered in
this study; only solar radiation reductions due to tree canopy is considered in the
published work version[85]. Ignoring the topography should not introduce significant
errors into the solar energy harvesting estimation because the 42 river locations con-
sidered in the study are located in regions with low-relief topography. Lastly, for both
the hydro and solar energy harvesting, we assumed that a cellphone network coverage
is always available at all the locations to transmit and receive information which in
reality might be unavailable in some locations or some periods of time.

7.1.5 Implications of model limitations and estimation errors

As it was described earlier in this section, the water quality sensor station model
is primarily built upon validated results of a wide set of models ranging from environ-
mental parameters to electronics and sensor operation behavior. Although each model
component has its own limitations and estimation errors and the complete system was
not prototyped, the overall goal of this modelling effort was to make reasonable as-
sumptions that enables a practical and coarse assessment of energy harvesting sensor
stations at a scale that would be otherwise prohibitive in terms of time and financial
resources. Furthermore, the current model is expected to be adapted for particular
cases of interest with prototype and measurements of both energy generation under
relevant environments and energy consumption of specific electronics and sensors. As
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an example of such an adaptation, for locations with significant topographic relief
(e.g., for rivers in steep canyons), the negative effect of topography on solar energy
harvesting cannot be ignored. However, the locations studied in this research were all
located in low-relief areas, which justifies ignoring the topography when estimating
solar energy harvesting.

7.1.6 Results and discussion

Figure 7.4 shows the average harvestable hydro and solar energy in five-minute
intervals over the 2010-2014 period at each of the 42 USGS sites. Figure 7.5 presents
the same information in map form to aid better understanding of the spatial patterns
of energy harvesting for the energy harvesting sites. These results provide insight
into how much hydro and solar power can be harvested at each site and how the
sites compare to each other in terms of the potential for hydro and solar energy
harvesting. The average harvestable hydro energy in five minutes ranged from 0 to
778 Joules with a median over the 42 sites of 19.1 and an average of 87.5 Joules. On
the other hand, the average harvestable solar energy in five minutes ranged from 994.3
to 1460.8 Joules with a median of 1285.1 and an average of 1242.6 Joules over the
42 sites. This assumes no reductions in solar energy harvesting due to tree canopy,
an assumption that is explored in [85]. Under this assumption, and not surprisingly,
solar energy harvesting almost always significantly exceeded the potential for hydro
energy harvesting, by an average factor of 14.2x across all stations.

A number of stations had hydro energy harvesting potential comparable with
solar energy harvesting potential. A few of these stations with consistently high
streamflow velocities are at high latitudes and in regions with significant cloud cover.
Less cloud cover is largely responsible for stations in the west recording higher average
harvestable solar energy (between 1279 to 1460 Joules per five minutes) compared to
those in the central and eastern US (between 994 to 1193 Joules per five minutes).
As shown in Figure 7.4 and Figure 7.5, one site located in Michigan (04159130), an
area with significant cloud cover, had the greatest average harvestable hydro energy
(778 Joules per five-minute intervals) and the greatest average harvestable hydro
energy over the average harvestable solar ratio (i.e., 78%) among all the 42 USGS
sites. This site is also at a high latitude receiving less solar radiation compared to
sites in lower latitudes. The location also has consistently high streamflow velocities
throughout the simulation period, always exceeding the minimum streamflow velocity
value required to generate energy (i.e., 0.5 m/s). Another site (04165710) also located
at higher latitudes with rather high streamflow velocities, had comparable hydro
power potential to that of the solar power potential with an average harvestable hydro
energy over average harvestable solar energy ratio of near 30%. However, two other
sites (07374525 and 09527597), which had significant streamflow velocities leading to a
hydro energy harvesting potential about 50% of the solar energy harvesting potential,
were not located at high latitudes.
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Figure 7.4: Estimated harvestable solar and hydro power. Average harvestable
solar (in absence of tree canopy) and hydro energy (Joules) in five-minute intervals
over the 2010-2014 simulation period at each of the 42 USGS sites.

After estimating the average energy generation accross sites with solar and hydro
power, we then considered the complete water quality station operation with a 5-
minute sampling interval. Figure 7.6 (a) shows the percentage of sample loss at each
station due to power outages when using only the two hydro energy harvesters and
sampling every five minutes. When using only the two hydro energy harvesters, the
average sample loss for the 42 sites was 45.3%, while 10 sites had no sample loss for
a fixed sampling interval of five minutes. Figure 7.6 (b) shows the energy loss due to
battery saturation over total harvestable energy for the same sites and over the same
time period using the two hydro energy harvesters. To leverage this extra energy
and reduce the energy loss, sampling can be done more frequently. The median and
average energy loss over total harvestable energy help show the variability of such
extra energy across the stations which were 12.4% and 32.1% respectively across all
stations.

Table 7.2 shows classification of the sites based on the scenarios of sample loss
and/or energy loss when using only the hydro energy harvester. For the 10 of the
sites where no sample loss was expected while energy loss was experienced, these
sites can either have fixed sampling rates smaller than five minutes with no sample
loss, or can have dynamic sampling intervals over the sensors’ deployment period.
For these sites, sampling intervals can be decreased some, but not much based on the
availability of harvestable energy. For 14 other sites, both sample loss and energy loss

93



Figure 7.5: Spatial distribution of estimated harvestable solar and hydro
power. Average harvestable energy (Joules) in five-minute intervals for all the 42
USGS locations over the 2010-2014 simulation period at each of the 42 USGS sites
(a) hydro energy harvesting, (b) solar energy harvesting (in absence of tree canopy).
The results are shown in three different frames based on the locations of the sites for
both (a) and (b) (right frames: US Eastern, top left frames: US Pacific time, and
bottom left frames: US Mountain time zone).
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Figure 7.6: Water Quality station simulations. (a) The percentage of five-minute
interval sample loss due to power outage (b) energy loss due to battery saturation
over total harvestable energy (%) for hydro energy harvesting. The results are shown
in three different frames based on the locations of the sites for both (a) and (b) (right
frames: US Eastern, top left frames: US Pacific time, and bottom left frames: US
Mountain time zone).
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were experienced, indicating that there are long periods where little or no power is
harvested, despite short periods of very high streamflow velocity that exceeded battery
capacity. For 18 of the sites, sample loss ranging from 42.9% to 88.6% occurred with
no energy loss. These sites harvest less power compared to other sites and depend
more heavily on the initial battery charge; the more the initial charge is, the less
sample loss they experience.

Table 7.2: USGS sites classification based on sample/energy loss for five-minute sam-
pling interval and given design for battery (capacity =0.4kwh, initial charge=0.4kwh).

Class number Number of sites Energy Loss happening Sample Loss happening

1 10 YES NO
2 0 NO NO
3 14 YES YES
4 18 NO YES

When using only the solar energy harvester, the results showed no sample loss
while the energy loss over total harvestable solar energy had values ranging from
97.0 to 98.0% for all the 42 locations. Therefore, for the given energy consumption
budget from the water monitoring system, the sampling interval can be significantly
lowered to more finely measure water parameters using solar energy harvesting alone,
assuming cloud cover is the only factor limiting solar energy harvesting at the site.
This again emphasizes the high potential of the solar compared to hydro energy
harvesting under this open sky assumption.

To better understand the hydro power harvesting potential for the 42 sites, we
first explored the smallest sampling interval leading to no sample loss for each site
Figure 7.7. 12 sites were able to sample at every five minutes or smaller sampling
intervals while they experienced no sample loss. These sites have higher potential for
hydro power harvesting compared to rest of the sites and had average harvestable
energy ranging from 58.5 to 778.4 Joules per five minutes. Most interestingly, three
of such sites (04159130, 04165710, and 09527597) were able to sample as frequent as
every one minute without experiencing any sample loss. Another important observa-
tion among such 12 sites with high hydro power potential is that there are five sites
with average harvestable energy from 58.5 to 90 Joules per five minutes supporting
sampling intervals as low as two- or three-minutes with no sample loss while for site
07374525 with an average harvestable energy of 567.8 Joules per five-minutes, the
lowest supported sampling interval with no sample loss is higher (five-minutes) due
to presence of extreme low and high streamflow velocity periods at this site. Seven
sites had more typical hydro power potential supporting minimum sampling interval
with no sample loss in the range of six to 15 minutes. The average harvestable energy
for such sites ranged from 15.9 to 117.3 Joules per five minutes. Eight sites with lower
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hydro power potential could support sampling intervals between 16 and 66 minutes
with average harvestable energy from 3.3-65.3 Joules per five minutes while two other
sites were able to support much less frequent samplings with no sample loss (i.e.,
sampling intervals of 152 and 235 minutes). Finally, for 13 of the sites with extremely
low or no hydro power potential, regardless of how large the sampling interval was
selected, sampling loss was experienced (no value for minimum sampling interval with
no sample loss). This was expected, as we assumed 2% self-discharge in one month,
meaning that after at most 50 months, a battery with full initial charge would be
completely depleted (for a case where no sensing nor communication is performed)
while the entire simulation period for the simulations was 5 years (60 month). This
equates to no samples being taken for the 10 last months of the simulations for such
sites.

Figure 7.7: Average harvestable energy vs minimum sampling interval re-
sulting in no sample loss. Minimum sampling interval leading to no sample loss
against the average harvestable energy for 29 out of the 42 USGS locations over the
2010-2014 simulation period at each of the USGS sites using only hydro harvesting.
For 13 of the sites with extremely low or no hydro harvesting potential irrespective
of how large the sampling interval was chosen, sample loss was always experienced
(no value for minimum sampling interval with no sample loss for such sites exist).
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We further explored the effect of sampling interval on hydro-powered sensing sys-
tem, for three chosen sites with different hydro power potentials. Figure 7.8 shows the
effect of sampling interval on sample loss and harvestable energy loss ratio for three
different harvesting sites. These three sites were selected based on their potential har-
vestable hydro energy representing (a) a low-potential hydro harvesting site (USGS
04092750), (b) a typical-potential hydro harvesting site (USGS 05537980), and (c)
a high-potential hydro harvesting site (USGS 04165710). The low-potential hydro
harvesting site is in class 4 of Table 7.2, meaning no energy loss occurred but sample
loss did occur when the sampling interval was five-minute. The average harvestable
energy in five minutes for this site was 3.3 Joules. For a five-minute sampling interval,
the sample loss was 86.8% while no energy loss was expected. For sampling intervals
greater than or equal to 52 minutes, no sample loss was expected (which made this
site as a site with low hydro power potential). For any sampling interval, from one to
60 minutes, no energy loss was experienced, suggesting the battery may be oversized
for this scenario.

The typical-potential harvesting site, 05537980, is in class 3 of Table 7.2, meaning
both energy loss and sample loss occurred when the sampling interval is five-minute.
The average harvestable energy in five minutes for this site was 37.4 Joules. For a
five-minute sampling interval, the sample loss was 31.4% while the energy loss ratio
was 47.4%. However, for sampling intervals greater than or equal to 15 minutes, no
sample loss was experienced (which made this site as a site with typical hydro power
potential) but the energy loss ratio became even higher. The high-harvesting site is
in class 1 of Table 7.2, meaning energy loss occurred but no sample loss when the
sampling interval was five-minute. The average harvestable energy in five minutes
for this site was 283.8 Joules. For a five-minute water quality measurement sampling
interval, the sample loss was zero while the energy loss was 89.6%. Even by decreasing
the sampling interval to one-minute, no sample loss was observed (which made this
site as a site with high hydro power potential) while the energy loss ratio was still
considerable. This suggests that for sites that have high potential for hydro energy
harvesting, it is possible to set a fixed sampling interval as low as one-minute to have
a better temporal picture of the water quality dynamics within a system.
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Figure 7.8: Average harvestable energy vs minimum sampling interval re-
sulting in no sample loss. Minimum sampling interval leading to no sample loss
against the average harvestable energy for 29 out of the 42 USGS locations over the
2010-2014 simulation period at each of the USGS sites using only hydro harvesting.
For 13 of the sites with extremely low or no hydro harvesting potential irrespective
of how large the sampling interval was chosen, sample loss was always experienced
(no value for minimum sampling interval with no sample loss for such sites exist).
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7.2 Water Leakage Detection

The goal of this use case is to design a water leakage detection SPIoT sensor pow-
ered by thermal energy. We adopt as our baseline harvester the same mini-harvester
thermal energy generator (Marlow EHA-PA1AN1-R03) used in Chapter 4. By se-
lecting this harvester, we can use the dataset collected on the thermal energy study
to simulate how different hardware and operation choices affect the water leakage
detection application as shown in Section 4.3.2. For this water leakage sensor, we
assume the use of the LTC3108 integrated circuit in our energy harvesting front-end,
with a circuit schematics (Figure 7.10) following the LTC3108 documentation. In this
design we use the highlighted blocks of the SPIoT design and deployment framework
in Figure 7.9.

SPIoT application 
design is complete

Start SPIoT 
application design

SPIoT application 
design is not viable

Energy harvesting 
conditions

SPIoT simulations Design and deployment 
decisions
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Figure 7.9: Flow chart components related with the self-powered water
leakage sensor design. We use the energy traces collected in the thermal energy
harvesting dataset to simulate and select components for the SPIoT device.

To demonstrate the use of integrated SPIoT models in the device design phase,
we assumed our water leakage application requires to communicate using LoRaWAN,
with a keep alive interval of 10 minutes and an alarm interval of 5 minutes when
water is detected. We also assume that the alarm state will be turned off in up to
24 hours. As a reference, Dragino’s LWL02, a commercially available water leakage
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Figure 7.10: LTC3108 reference circuit schematics. System and figure were
derived from the LTC3108 datasheet. We later modify this circuit by adding TEG
devices in parallel and replacing capacitors connected to Vstore and Vout, as to meet
the water leakage application energy consumption demands.

sensor IoT device powered by a primary battery, adopts a 12-hour keep alive interval
as its default configuration to save battery. Therefore the self-powered water leakage
sensor design should be able to provide much more fine-grained observability on the
sensor operation status.

To summarize, the design requirements for this study case are: (1) Use thermal
energy harvesting to support the sensor operation; (2) Use LoRaWAN as its commu-
nication protocol; (3) Transmit keep alive messages every 10 minutes; and (4) When
water is detected, transmit every 5 minutes for at least 24 hours.

To demonstrate this SPIoT device design task, we retrofit a water leakage sensor
LWL02 to use thermal energy harvesting, and we set the device to operate with a
10 minute keep alive interval. As the energy harvesting front end, we use an en-
ergy harvesting demonstration board, the LTC3108EDE. We adopt super capacitors
as the energy storage components, and multiple units of the TEG model Marlow
EHA-PA1AN1-R03 as harvesters. With the load and harvesting circuitry set, the
design decisions are reduced to selecting appropriate number of harvesters and super
capacitor components.

To understand the energy consumption requirements, we perform experiments
with off-the shelf super capacitors to verify what devices can support the high current
consumption of the LoRaWAN radio without dropping their voltage significantly. We
decide that 1F is an adequate storage capacity to support the LWL02 device for a few
communication cycles. We use the LWL02 manufacturer documentation to derive the
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device’s power consumption over a range of keep alive interval configurations as we
show in Figure 7.11. We perform an energy consumption experiment by attaching a
1F super capacitor to the LWL02, and verifying the super capacitor voltage drop with
each communication event, confirming the energy consumption information from the
manufacturer (Figure 7.12).
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Figure 7.11: Water leakage LWL02 energy consumption vs keep alive inter-
val configurations. Estimated average current is 27.9 µA for a 10-min keep alive
interval and 45.9 µA for a 5-min interval.

With the expected sensor’s energy consumption, we create an SPIoT model as used
in Chapter 4, modeling the LTC3108 charging and discharging behavior as described
in the manufacturer documentation. As shown in the experiment of Figure 7.12, an
1F super capacitor can provide up to 8 hours of sensor operation when full, and the
device’s operation remains stable along these 8 hours, meaning that voltage drop
due to the device’s peak current consumption does not cause disruptions(for instance
device’s reset). We then select 1F as a good compromise energy storage component
to be attached to the Vout node of the circuit. We select a smaller 220 mF capacitor
for the Vstore node, as a compromise between capacity and leakage characteristics.

We run SPIoT simulations using the recorded thermal energy harvesting profiles
for location TP001 of Chapter 4, and we sweep the choice for number of TEG com-
ponents to be used in series as a scaling factor for energy harvesting as done with
the energy harvesting score in Chapter 5. In Figure 7.13 we show the energy harvest-
ing conditions simulated, and in Figure 7.14 we show the voltage level of the super
capacitors used in the water leakage sensor design.
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Figure 7.12: Water leakage retrofit super cap discharge experiment. The
purple line represents the battery voltage readings from the LWL02 device. The pink
line is the leak status output for reference. Discharge rate matches the manufacturer’s
information with an average current consumption of 27.9 µA.
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Figure 7.13: Open circuit voltage of a single TEG in deployment TP001.
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(a) Simulation of the water leakage sensor
with one TEG.
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(b) Simulation of the water leakage sensor
with two TEGs.
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(c) Simulation of the water leakage sensor
with three TEGs.
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(d) Simulation of the water leakage sensor
with four TEGs.

Figure 7.14: Water leakage sensor simulations. The device turns off when the
Vout drops bellow 2.1V. Simulations with one and two TEGs show intermittent op-
eration. Simulations with three and four TEG components results in continuous
operation of the water leakage sensor.
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From the SPIoT simulations, we find that with 3 TEG modules, the energy har-
vesting front end is capable of supporting LWL02 normal operation indefinitely and
the alarm operation for more than 24 hours. We then build and deploy a prototype
to evaluate its operation behavior as we show in Figure 7.15.

Figure 7.15: Water leakage LWL02 retrofit operation on deployment site.
The device keep operating through a water leakage event, as intended in the design
phase.

7.3 Contributions and Outcomes

From the best of our knowledge, the water quality station design was the first work
to use a large streamflow velocity dataset to analyze the viability of using mini hydro
turbines to power an IoT device. We found that by using large available datasets
with the selected mini turbine and solar panel harvester models, we could estimate
harvesting conditions without the effort of doing field collection on all theses sites.
We combined the harvesting conditions with SPIoT device models to simulate how
a SPIoT application would perform in a wide range of deployment locations and
we evaluated the feasibility of a water quality application with different harvesting
modalities. While Buchli et al. [31] used their own astronomical radiation model and
solar panel conversion model to estimate harvested energy, we used satellite-derived
solar radiation parameters from SolarAnywhere [36] and pvlib [63], a community
managed python module to simulate solar panels with more complex models.

From the best of our knowledge, the water leakage sensor design use case is one
of the first studies to show how to use an energy harvesting dataset to inform SPIoT
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design. We found that with our collected thermal dataset, an energy harvesting front-
end model and energy consumption data from a commercially available water leak
sensor, we are able to simulate different SPIoT design options and choose harvesters
and capacitor components as to reach 100% availability under recorded energy har-
vesting conditions. The work from Buchli et al.[31] also demonstrates the use of an
energy harvesting trace to design an SPIoT device, but instead of using profiled traces,
they use a model to generate a synthetic energy harvesting trace to support the SPIoT
design, and then a solar radiation dataset to calibrate and validate their system. Our
study case is also one of the first studies to demonstrate a practical SPIoT design
using thermal energy harvesting modality as opposed to the most common case using
outdoor solar[70, 31].
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Chapter 8: Closing Remarks

We demonstrated in this thesis the use of integrated SPIoT models to profile en-
ergy harvesting data, and we create a scoring metric that reflects how much useful
energy is available to be harvested by SPIoT devices in a given location. We show a
SPIoT design methodology using application requirements, SPIoT models and energy
harvesting profiled traces. We show how to use SPIoT models to evaluate harvesting
modalities from datasets containing physical quantities related to energy generation.
Finally we complement the device-level design with cyber infrastructure needed to
achieve end-to-end applications, by designing a cloud-based data storage and visual-
ization system.

8.1 Open Problems

We select a few important open problems for each contribution stated in Sec-
tion 1.2: (1) How should we choose which environments are more important to char-
acterize? When do we decide that we have captured enough information about the
energy harvesting conditions? How significant are local variations on energy harvest-
ing deployments?; (2) How do we perform quantitative evaluations for the energy
harvesting score? How to derive SPIoT device ratings from real-world devices? How
to estimate energy harvesting scores for an even larger number of spaces? How do
we drive the energy harvesting score adoption by the general public?; (3) How to de-
sign more robust and cost effective IoT backend systems that fits user requirements?
How do we lower the barrier-to-entry of end-to-end IoT applications?; (4) How to use
other existing datasets to support SPIoT design with new modalities? How do we
plan data collection for future applications?; and (5) How can we extract more infor-
mation from collected energy harvesting profiles to support SPIoT design? How to
quantify the impact of selected SPIoT components on the robustness of the solution
or on its energy harvesting score rating?
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8.2 Publications

My individual work and collaborations during my time at the University of Vir-
ginia resulted in nine published papers. My first-author published works[85, 77, 121]
covered in this thesis are presented respectively in Chapter 7, Chapter 6, and Chap-
ter 4. The contents of Chapter 5 were submitted to SenSys 24’ conference, and are
currently under review.

8.2.1 Completed Works

1. Exploring the complementary relationship between solar and hydro energy har-
vesting for self-powered water monitoring in low-light conditions [85]

2. Thermal Energy Harvesting Profiles in Residential Settings [121]

3. A cloud-based data storage and visualization tool for smart city IoT: flood
warning as an example application [77]

4. RetroIoT: retrofitting internet of things deployments by hiding data in battery
readings [108]

5. Low power but high energy: The looming costs of billions of smart devices [136]

6. NexusEdge: Leveraging IoT Gateways for a Decentralized Edge Computing
Platform [97]

7. SolarWalk: smart home occupant identification using unobtrusive indoor pho-
tovoltaic harvesters [27]

8. SolarWalk Dataset: Occupant Identification Using Indoor Photovoltaic Har-
vester Output Voltage [109]

9. Hydrologic Modeling and System Optimization for IoT Flood Management [71]

8.2.2 Submitted and Planned Works

1. Enabling Successful IoT Deployments with the Energy Harvesting Score (sub-
mitted to SenSys ’24)

2. fReeLoaders: A Reinforcement Learning based Task Scheduler for IoT Ecosys-
tems (planned, initial draft completed)
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3. Software Defined Solar Sensors (planned, initial draft completed)

4. Sensor-free Weather Monitoring using LoRa RSSI (planned, initial draft com-
pleted)

5. Estimating Energy Harvesting Conditions from Building Datasets (planned,
conception stage)

6. A Cloud-based Platform to Support Stormwater Infrastructure Management,
and Decision Making with Simulated, Crowd-sourced and Real-Time IoT data
(planned, conception stage)
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[135] Gabriela Walczyk and Andrzej Ożadowicz. Building Information Modeling and
Digital Twins for Functional and Technical Design of Smart Buildings with
Distributed IoT Networks—Review and New Challenges Discussion. Future
Internet, 16(7):225, July 2024. Number: 7 Publisher: Multidisciplinary Digital
Publishing Institute.

[136] Wenpeng Wang, Victor A. Leal Sobral, Md Fazlay Rabbi Masum Billah, Nurani
Saoda, Nabeel Nasir, and Bradford Campbell. Low power but high energy: The
looming costs of billions of smart devices. SIGENERGY Energy Inform. Rev.,
3(3):10–14, oct 2023.

[137] Global Water. Water instrumentation for environmental monitoring. https:

//www.ysi.com/products/global-water. Accessed: 2022-02-22.

[138] Chengjie Zhang, Affan Syed, Young Cho, and John Heidemann. Steam-powered
sensing. In Proceedings of the 9th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’11, page 204–217, New York, NY, USA, 2011. Associ-
ation for Computing Machinery.

[139] Long Zhao, Igor Brandao Machado Matsuo, Yuhao Zhou, and Wei-Jen Lee.
Design of an Industrial IoT-Based Monitoring System for Power Substations.
IEEE Transactions on Industry Applications, 55(6):5666–5674, November 2019.
Conference Name: IEEE Transactions on Industry Applications.

123

https://github.com/uva-hydroinformatics/iot-cloud-platform
https://github.com/uva-hydroinformatics/iot-cloud-platform
https://www.ysi.com/products/global-water
https://www.ysi.com/products/global-water

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Contributions

	Related work
	Self-Powered IoT Models
	Energy Harvesting Profiling
	End-to-End IoT Applications

	Motivating Applications of IoT Deployment Tools and SPIoT Modeling
	Water Leakage Detection
	Water Quality Monitoring
	Informing deployment of indoor solar SPIoT for smart buildings
	Deploying IoT cyber infrastructure for smart stormwater applications

	Energy Harvesting Profiling
	Energy harvesting profiling approaches
	Energy harvesting profiling platform
	Thermal Energy Source Profiles in Residential Settings
	The dataset
	Dataset usecase examples

	Contributions and Outcomes

	Energy Harvesting Score
	Energy Harvesting and IoT Modeling Complexity
	Energy Harvesting Challenges
	IoT Device Challenges
	Energy Harvesting-Consumption Coupling Challenges

	Vision and Use Cases
	Energy Harvesting Score
	Example Use Cases for Users
	Example Use Cases for Manufacturers

	Design
	Energy Harvesting Score
	EH IoT Device Rating
	Calculating the EH Score in Practice

	Modeling and Simulations
	Simulation design
	EH IoT model
	Reference device
	EH score calculation

	Evaluation
	Calculating scores for the EH dataset
	Calculating scores for a smart building using lux data
	EH IoT controlled experiments
	EH IoT deployments

	Limitations
	Conclusion
	Contributions and Outcomes

	IoT Cyber Infrastructure for Smart Cities
	Example Application Motivation and Objectives
	Methodology
	System Architecture Overview
	Design Requirements
	System Components

	Results and Discussion
	Discussion of Alternative System Components and Potential System Enhancements
	Discussion of the System Performance
	Broader Impacts of this Study

	Conclusion
	Contributions and Outcomes

	Case Studies
	Water Quality Monitoring
	Datasets
	Sensor stations specifications
	Energy generation, store and consumption model
	Energy harvesting simulations
	Implications of model limitations and estimation errors
	Results and discussion

	Water Leakage Detection
	Contributions and Outcomes

	Closing Remarks
	Open Problems
	Publications
	Completed Works
	Submitted and Planned Works


	Bibliography

