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Abstract

Eyewitness identifications play a critical role in the investigation of crimes and the

subsequent legal proceedings. However, law enforcement do not have the time and

resources available to conduct the much-needed research for the development and

validation of more reliable practices. Research in the effectiveness of law enforce-

ment practices for eyewitness identification procedures remains incomplete. It is

well known that eyewitnesses make errors, which often result in grievous conse-

quences. Currently, there are a few options for eyewitness identification analysis,

including receiver operating characteristic (ROC) curve analysis, Bayesian prior-

posterior plots, and decision utility. All of these methods lack a fundamental way

to include variability and the complex and interactive relationships of the variables

affecting eyewitness identification accuracy.

We will also discuss new methods for eyewitness identification (EWID) data,

which are borrowed from fields such as diagnostic medicine. The tools and proce-

dures for analyzing the data in meaningful and utilitarian ways from these fields

can provide thoughtful and valid conclusions. Such methodologies require ease of

use and interpretation, flexibility, and efficient implementation. This compilation of

chapters shows the thought process involved in considering what kinds of methods

and approaches to thinking could help lead to better EWID procedures, with the

intention of resulting in fewer errors, both in false convictions and false acquittals.

This research began with an interdisciplinary problem of understanding EWID

data and existing statistical methodologies for the analysis of such data, as well as

the consequences of an incomplete comprehension of the data. It was clear that

there are latent variables to be estimated that are imperative to understand parts

of the data, which resulted in the development of the proposed framework. This
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framework allows researchers to estimate an individual’s probability of accuracy,

which is dependent on their individual probability of choosing a face from a lineup

and the global probability of target presence in the lineup (i.e., base rate). The

true value in the proposed method is how easily it is applied and interpreted, which

could be helpful for law enforcement agents, lawyers, and jurors.

A component of the estimation relies on the algorithm of random forests. Since

EWID data is susceptible to measurement error due to the human component, we

discovered that the impact of measurement error on random forest models needs

further study. This thesis addresses that problem. The literature provides a frame-

work for the asymptotic behavior of random forests. This provides the groundwork

to derive an estimator for the mean difference of two random forest models. In

our case, the random forest models are developed with and without measurement

error to simulate the behaviors of the differences. In the simulations, it was clear

that there is an effect from measurement error. Since measurement error is usually

assumed to be nonexistent or negligible, this is a valuable finding. The next steps

should be to develop a methodology similar to those already in place for classical

statistical models to account for these errors.

Keywords: statistics, eyewitness identification, random forests, confidence and

accuracy, forensic evidence, ROC analysis, sensitivity, specificity, predictive value,

choosing, classification, class probability estimation, measurement error, errors-in-

variables
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Part I

Estimating Eyewitness Accuracy
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Chapter 1

Introduction

1.1 Motivation

“One of the main causes of wrongful convictions is eyewitness misidentifications.

Despite a high rate of error (as many as 1 in 4 stranger eyewitness identifications are

wrong), eyewitness identifications are considered some of the most powerful evidence

against a suspect.”

California Innocence Project

In July 1984, Jennifer Thompson was sexually assaulted by an assailant, who,

later that night, sexually assaulted a second woman. Thompson helped create the

composite sketch that led to the assembly of a live lineup in which she positively

identified Ronald Cotton as the perpetrator. “Yeah. This is the one... I think this

is the guy,” said Thompson at the live lineup (Garrett, 2012). A second lineup

was assembled, with Cotton as the only repeated person. “This looks the most like

him,” Thompson confirms, stating that she was “absolutely sure” Cotton was the

culprit. Cotton was convicted of sexual assault and burglary based on circumstantial

evidence and Thompson’s identification. He was sentenced to life in prison plus 54
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years. In 1995, after 10 years in prison, Cotton was exonerated through DNA testing

with help from the Innocence Project.1 This is a particularly well-known example

of a common problem. Approximately 71% of more than 360 post-conviction DNA

exonerations documented by the Innocence Project since 1989 involved one or more

mistaken eyewitness identifications.2

EWID plays a critical role in criminal cases, from the investigation to the pros-

ecution of the crime. The core element of EWID is memory – remembering the

suspect, the proceedings of the crime, and the emotions associated. Howe and

Knott (2015) note that memory is first encoded, then consolidated with existing

information in the brain, and then retrieved (i.e., reconstructed) at a later time.

Each stage can cause memories to degrade or mutate over time, depending on the

purpose for retrieving the information, to whom, and how it is recalled. In addition

to internal factors, such as the person’s own memory processes, external factors can

distort one’s information retrieval, such as length of time between the event and

need for retrieval of the memory, intermediate events during that time, and identi-

fication procedures. We need experiments that faithfully represent EWID processes

to assess which factors can be varied and set at levels that minimize the probabilities

of grievous EWID errors.

Statistical methods, used to analyze datasets concerning eyewitness choices in

experiments or in the field, give one a better understanding of what factors affect

the likelihood that an eyewitness will choose correctly. Statisticians are working

in conjunction with psychologists to conduct tests with high ecological validity to

identify factors that improve the reliability of EWID evidence. We define “ecolog-

ical validity” to mean that the study (including methods, materials, setting, etc.)

1https://www.innocenceproject.org/cases/ronald-cotton/ accessed March 11, 2020.
2https://www.innocenceproject.org/eyewitness-identification-reform/, accessed March
11, 2020.

https://www.innocenceproject.org/cases/ronald-cotton/
https://www.innocenceproject.org/eyewitness-identification-reform/
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approximates the real-world, the generalize the study findings to real-world settings.

Statistically designed experiments help identify factors that are more likely to lead

to errors as well as those that are less likely to result in mistakes, by encouraging

efficient experimental practices, integration of variability measures, and application

of existing statistical models from other fields to EWID data.

The National Academy of Sciences (NAS) emphasized both needs in its impor-

tant report on the subject issued in 2014: “The committee recommends a broad

exploration of the merits of different statistical tools for use in the evaluation of

eyewitness performance” (see National Research Council, 2014, pg. 108). With the

creation of such experiments, relevant and appropriate methods of analysis need to

identified and developed, which we are working towards.

1.2 Organization of the Dissertation

The motivation for this work stems from the interdisciplinary nature of statistics,

since it lends itself well to supplement and enrich other fields. We motivate the

development of a new framework for the analysis of EWID data, which in turn mo-

tivates a more general understanding of the asymptotic behavior of random forests.

1.2.1 The Main Contributions

(1) We provide an overview of the field of eyewitness identification and existing

statistical methodologies.

(2) What statistical framework can be developed to provide an objective sub-

stantiation to the reliability of eyewitnesses? How flexible is this method in

comparison to previously used methods in the field of psychology?
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(3) Does the proposed framework satisfy the interpretational requirements of the

field of psychology?

(4) Random forests are used as component of the proposed framework for the

estimation process. How robust are the estimates from a random forest model?

If the covariates are measured with error, how different can we expect the

behavior to be? What is the asymptotic behavior of the distribution of the

difference of two models (one built without any measurement error and another

built with measurement error)?

This dissertation endeavors to address the above questions. In Chapter 2, we

provide an overview of the field of eyewitness identification, as well as the details of

data sets to be used throughout this thesis. Chapter 3 provides the current methods

of statistical analysis for eyewitness identification data. In Chapter 4, we propose

a new statistical framework for the estimation of the probability of accuracy of an

eyewitness in a lineup procedure with at most one guilty target. In Chapter 5, we

study the asymptotic behavior of random forest model. In Chapter 6, we derive the

asymptotic behavior of the distribution of the difference of two models, based on

covariates measured with and without error.



6

Chapter 2

The Field of Eyewitness

Identification

2.1 Introduction

The major statistical contributions rely on the description of the motivational prob-

lem, which stems from the field of eyewitness identification. This requires an un-

derstanding of the eyewitness task and existing statistical methods used for the

analysis of such data. This chapter serves to provide information on existing and

viable statistical methods for analyzing EWID experiments. Whatever technique is

used, proper characterization of the uncertainties associated with inferences must

be calculated.

Background information of the eyewitness task and EWID data is provided in

Section 2.2. A brief history of the development of analysis methodologies in the

field of EWID and some issues present in the methodology currently are discussed

in Section 2.3. In Section 2.4, current statistical methods in EWID research are

reviewed. In Section 2.5, we present an example of analysis of variance to compare
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EWID procedures.

Note: sections of this chapter appear as part of the Handbook of Forensic Statis-

tics (see Liu et al., 2020, Chp. 21).

2.2 The Eyewitness Task

The task of the eyewitness is to attempt to identify the perpetrator of a crime that

he or she witnessed. With a single suspect, the identification decision is binary:

either the presented suspect is or is not the person whom he or she saw commit the

crime. The binary choice results in a binary outcome: either the suspect was or was

not the true perpetrator, and either the eyewitness does or does not implicate that

suspect.

In the standard paradigm of EWID, the two correct outcomes are the conviction

of the truly guilty (true positive) and the exoneration of the truly innocent (true

negative). The two incorrect outcomes are the conviction of the truly innocent (false

positive) and the exoneration of the truly guilty (false negative). Table 2.1 shows

these outcomes from the eyewitness, who serves as the “binary classifier” for this

task.

Witness’s Decision
“Guilty” “Innocent”

Suspect’s
True Status

Guilty True positive (TP) False negative (FN)

Innocent False positive (FP) True negative (TN)

Table 2.1: The eyewitness task shown visually as a two-by-two table, assuming the
eyewitness serves as the “binary classifier.”

The NAS report called attention to the consideration of the eyewitness as a
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binary classifier for analysis purposes: “It is important that practitioners in this

field broadly explore the large and rich field of statistical tools for evaluation of

binary classifiers” (see National Research Council, 2014, pg. 91). For many people,

minimizing false positives is the key priority, as the consequences to the wrongfully

convicted are profound. Law enforcement personnel seek to minimize false negatives,

to prevent perpetrators from committing further crimes.

Figure 2.1: Example of a fair, target present simultaneous lineup in an experimental
setting, target suspect (shown as the perpetrator in a video of the “crime”) is in the
top-left. This lineup was provided by Chad Dodson from the University of Virginia.

The perpetrator may not be in the lineup at all. Thus, the target is present

(TIP) or target is absent (TIA) in the lineup. Law enforcement believes that the

target is present in the lineup, but no data exist on the proportion of lineups that

are TIP. Likely it varies substantially by jurisdiction or even from agency to agency.
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Figure 2.1 shows an example of a simultaneous lineup with photos of six possible

suspects that might be shown to an eyewitness; “Not Present” is also offered as

an option. For more examples of simultaneous lineups used in such laboratory

experiments, see Wells et al. (2011).

If the lineup is TIP, the eyewitness can make three possible decisions:

(P1) Make the right decision and choose the guilty suspect;

(P2) Make a wrong decision and choose an innocent foil1;

(P3) Make a wrong decision and state that the guilty suspect (i.e., target) is not

present.

If the lineup is TIA, the eyewitness can make two possible decisions:

(A1) Make the right decision and state that the guilty suspect is not present;

(A2) Make a wrong decision and choose the innocent suspect or a foil.

Thus, five possible decision outcomes can occur, only two of which (P1 and A1) are

correct; see Figure 2.2.

Researchers often include a designated “innocent suspect” to serve as the “tar-

get” in TIA lineups. Based on this set-up, the four categories of classification are:

(1) Correct suspect identification;

(2) Innocent suspect identification;

(3) Foil identification; and

(4) Lineup rejection (suspect not present).

1A “foil” is an innocent person in a police lineup. It is also sometimes referred to as “filler” in the
literature.
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Choose Target
(P1)

Do Not Choose
(A1)

Choose
Foil
(P2)

Do Not
Choose
(P3)

Choose Foil
(A2)

Target Present

Target Absent

Accurate Not Accurate

Figure 2.2: A display of the eyewitness decision outcome space, which takes into
account the underlying status of the lineup.

Table 2.2 shows three different approaches to EWID data structure. The choice

of structure will influence the analysis method. However, in general, the status of

“innocent” suspect is unknown in a real lineup, making this structure highly unlikely.

The concept of the five possible decision outcomes for the eyewitness task has been

well-established in the field of psychology (Wells and Olson, 2002). These outcomes

have been treated in a deterministic manner, with little regard for a generalizable

statistical model that could move beyond a single input data set.

In the field of psychology, the traditional analysis dichotomizes the decision

for a single suspect. Given an identification, memory theory from the paradigm of

signal detection theory (SDT) indicates that the eyewitness applies “a simple rule to

make an identification decision” (Clark et al., 2015). If the association between the

suspect and the eyewitness’s reconstruction (via memory) of the perpetrator exceeds

a “threshold” of memory strength c, then the witness will identify that suspect as

the perpetrator. If it falls below that individual’s threshold, then the eyewitness

will exclude the suspect as a perpetrator. This paradigm assumes that the decision

is based on the individual’s threshold for a single variable, “memory strength”: a

false identification occurs if the suspect is innocent but the individual’s “memory
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Suspect’s True Status
Scenario “Guilty” “Innocent”

E
y
e
w
it
n
e
ss
’s

D
e
c
is
io
n

Errors treated
equally

“Guilty” Suspect TP FP
Not the “Guilty” Suspect FN TN

No designated
innocent suspect

“Guilty” Suspect TP Forced 0
Foil (Known Innocent) Incorrect FP

Not Present FN TN

Designated
innocent suspect

“Guilty” Suspect TP Forced 0
“Innocent” Suspect Forced 0 FP

Foil (Known Innocent) Incorrect Incorrect
Not Present FN TN

Table 2.2: This table provides the three possible structures assumed for EWID data,
from the two previously addressed structures in Table 2.1 and Figure 2.2 to the
inclusion of an innocent suspect. The table provides the possible EWID outcomes
based on the eyewitness’s decision versus the true underlying status of the lineup,
which could affect the analysis approaches used by researchers.

strength” falls above c, and false exclusions occur if the “memory strength” falls

below c for an innocent suspect.

According to Gronlund and Benjamin (2018), SDT provides a cohesion for

decision-making with ambiguous evidence, with a link to metacognition (i.e., aware-

ness, understanding, analysis, and control of one’s own cognitive (learning, thinking,

reasoning, etc. processes). Figure 2.3 displays this memory theory paradigm: the

eyewitness’s decision comes from one of these two distributions, often conveniently

assumed to be normal, and the memory “threshold” is flexible that can vary depend-

ing on factors, such as the cost of making a mistake. For example, in Figure 2.3,

the memory threshold is set at the mean (median) of the “Guilty” distribution. The

larger the separation between these two distributions, and the higher the quantile



12

Figure 2.3: Distribution of “memory strength” for identification of guilty and inno-
cent suspects (Clark et al., 2015). This illustration conforms with memory theory in
assuming a normal distribution for “memory strength” and the individual’s memory
threshold c as the mean of the right-hand curve. Other models for the distribution of
“memory strength” have be proposed, and individual thresholds may fall at different
quantiles of the distribution other than 50%.

of the distribution of “Guilty” for the individual’s threshold c, the lower the error

rates (false negatives, false positives).

2.2.1 System and Estimator Variables

The accuracy of this eyewitness task depends on many factors. Some factors are

under the control of law enforcement (e.g., type of lineup), while others arise by

the circumstances (e.g., lighting). A summary of these factors is shown in Fig-

ure 2.4. Factors that can affect accuracy of eyewitness identification and are under

the control of law enforcement have been called “system variables” in the eyewitness

identification literature (“control” variables in experimental design literature); they

include:
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System Variables (Controllable by Law Enforcement)

• Type of lineup (or photo array, if it is a photos are used): typically “sequen-

tial” (suspects or photos show sequentially, one at at time), or “simultaneous”

(shown together);

• Size of lineup (i.e., number of suspects shown): ideally chosen so that the

probability of identifying an innocent suspect by chance is low (Brigham et al.,

1999);

• Fairness (i.e., subjective similarity of appearance of people) of lineup: in a

truly fair lineup, the probability that any one of the suspects is selected is

equal; increasingly biased lineups are those for which the probabilities are not

equal;

• Delay (i.e., retention interval): time between incident and eyewitness’s iden-

tification task;

• Lineup instructions : degree of detail in guidance to the eyewitness in the

identification procedure (i.e., instructing the eyewitness that the culprit may

or may not be in the lineup); more details provided in Wixted and Wells

(2017);

• Blinding : law enforcement officer (LEO) conducting the lineup either is, or is

not, within view of the eyewitness and the photos (s)he is viewing, “unblinded”

or “”blinded” lineup, respectively. (The concern is that the “unblinded” LEO

may unconsciously deliver subtle cues that affect the eyewitness’s selection of

a suspect.)

Many other “environmental” factors affect eyewitness accuracy; they arise from

the circumstances and are not under the control of LEOs conducting the lineup.
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Factors that can affect accuracy of eyewitness identification and are not under the

control of law enforcement have been called “estimator variables” in the eyewitness

identification literature (“noise” variables in the experimental design literature);

they include:

Estimator Variables (Not Controllable by Law Enforcement)

• Weapon presence: Presence or absence of weapon at time of incident (gun,

knife, etc.);

• Distinctive features : presence or absence of a distinctive feature of the perpe-

trator;

• Lighting : this can affect visibility and recall of the incident;

• Distance: between eyewitness and perpetrator at time of incident;

• Time elapsed : length of exposure (seconds, minutes, etc.) to the suspect

during the incident;

• Stress : for example, could be three levels (low, medium, high)

• Race: same- or cross-race (perpetrator and eyewitness are same or different

races; studies suggest higher accuracy for the former. For references to these

cross-race studies, please refer to Sporer (2001); Meissner and Brigham (2001);

Wilson et al. (2013).

Datasets commonly used in EWID research proceed from designed experiments

from the field of psychology, where some of the aforementioned variables are pur-

posefully manipulated. Much EWID research has focused on comparing sequential

versus simultaneous lineups (Amendola and Wixted, 2014; Lindsay and Wells, 1985;
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Eyewitness
Identification
Accuracy

Estimator
Variables

Environ-
mental

Variables

Culprit
Variables

Victim
Variables

System
Variables

Lineup
Variables

Instruc-
tion

Variables

Figure 2.4: Diagram that shows the structure and relationships of examples of
variables that could affect eyewitness identification accuracy

Carlson et al., 2008; Rotello et al., 2014). Relatively few studies considered the

effects of several variables simultaneously in one experiment. Multi-factor experi-

ments can be very informative in this context: if the effects of weapon presence,

or cross-race, or delay (to identification) hugely dominate the effect of lineup type

(sequential or simultaneous), then LEOs will know to focus their energy on, for ex-

ample, minimizing the delay between incident and lineup, and less attention to the

type of lineup. LEOs can also assess potential accuracy of an eyewitness in view of

the conditions, such as presence or absence of a weapon or lighting that can affect

visibility. Multi-factor experiments allow the estimation of jointly varying effects
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from different sources. Studies that considered additional variables jointly include

(Dodson and Dobolyi, 2016; Wixted et al., 2016b; Mickes et al., 2017; Sauerland

et al., 2018; Clark, 2005; Sauer et al., 2010; Palmer et al., 2013; Humphries and

Flowe, 2015; Carlson et al., 2016a,b; Colloff et al., 2016, 2017; Steblay, 1997). The

National Research Council (2014) recommended the conduct of more multi-factor

experiments, to better characterize the effect of presence (or absence) of weapon,

relative to the choice of lineup (sequential or simultaneous).

Limitations of designed experimental data include lack of ecological validity,

where some aspects of the reality of the EWID may not be reflected in the ex-

perimental situation. To address this issue, some researchers coordinated with law

enforcement agencies to provide field datasets (Wixted et al., 2016a). In fact, mul-

tiple ongoing projects are seeking to collaborate with law enforcement agencies.

However, field data lacks the underlying truth of suspect guilt. While the convic-

tion and/or conclusions from evidence provide an estimated classification of guilt,

using field data to train models to assess accuracy could lead to biased models. In

this situation, the models would address the relationships of a particular law en-

forcement agency in identifying what they believe is a guilty suspect. Trade-offs

exist for either forms of data, and the form used should be justified and consistent

with the goal or research question.

Much literature exists on EWID from many perspectives (experimental, theory

of memory, etc.); we give only a very brief background on that literature. Our main

focus in this chapter and Chapter 3 expounds on the myriad of statistical tools that

may offer powerful ways of identifying factors that affect EWID accuracy.
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2.2.2 The Data

We include descriptions of data sets that can be found in the EWID field as rep-

resentatives of the data available. These example data sets provide a snapshot of

the types of information being collected in designed experiments, the size of such

studies, and variables of particular interest to researchers. Some of these data sets

will be used in later sections for evaluation purposes of the proposed framework in

Chapter 4.

Most EWID experiments are conducted online using various survey platforms

(such as Qualtrics©, Amazon© Mechanical Turk, SurveyMonkey©, etc.), but some

are also conducted in-person. The participant views a video of a crime being com-

mitted, and then is asked to provide demographic information and answer questions

concerning the video. The participant will make a decision in the lineup. Examples

of lineups include six photos, used in an experimental setting by Chad Dodson of

the Department of Psychology at the University of Virginia, as shown in Figure 2.1.

The target suspect in this example photo lineup is in the top left, and represents the

“true” perpetrator as shown in the video. If the researcher designates an innocent

suspect, the innocent suspect will be placed in the same position as the true target,

and is chosen as the filler that most resembles the true perpetrator. More example

lineups can be found in Appendix A.

Dodson performed three different studies, obtained by way of online survey plat-

forms. The three data sets will be referred to as the factor data set, repeated delay

data set, and the delay data set. The factor data set focused on varying many

conditions with a large sample size. The repeated delay and delay data sets focused

on determining the effect of a delay from time of exposure to time of lineup iden-

tification. All three data sets share some common variables, shown in Table B.2.
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Unique variables to each data set are shown in Table B.1. The factor data has 3233

respondents, the repeated delay data has 602 respondents with 12 lineup decisions

per person (overall 7224 observations), and the delay data has 4301 respondents.

Of primary interest are the counts for respondent decision: the target, the innocent

suspect, a foil, or “target not present.” From these counts, comparisons of the many

other factors, such as weapon presence, lineup format, lineup bias, face recognizer

ability, etc. can be created using the proportions of accuracies from various group-

ings of these factors. The accuracy rates of choosers versus non-choosers are also of

specific interest.

The description of these data sets are examples of other such data collected in

the field and in lab settings. Other data sets examined throughout this procedure

include data from Mickes et al. (2017) and Seale-Carlisle et al. (2019). Table B.3

and Table B.4 provides the variable information for each data set from these sources,

respectively.

The Mickes et al. (2017) data set has 5114 participants, after removing all par-

ticipants that failed validation checks. Each participant was randomly assigned to

different instructional environments:

(1) Provide a confidence rating for the decision made with unbiased instructions;

(2) Liberal instruction: instruct the participant to pick a person even if unsure;

(3) Neutral instruction: instruct the participant to pick a person if he or she sees

the suspect from the video in the lineup or pick “not present”;

(4) Unbiased instruction: instructs the participant the suspect may or may not

be in the lineup, and to pick the suspect if he is in the lineup; and



19

(5) Conservative instruction: instruct to the person to pick “not present” if un-

sure.

Six experiments were run in total (experiment or expt. 1, 2, 3a, 3b, 4, and 5) in

Seale-Carlisle et al. (2019). Each manipulated a different lineup condition:

(1) Experiment 1 : manipulated the lineup format (simultaneous versus sequential)

with 1993 participants;

(2) Experiment 2 : manipulated stimulus format (photo or video) with 2271 par-

ticipants;

(3) Experiment 3a: allowed different numbers of views for the lineup (1-lap vs.

2-lap vs. choice in video lineups) with 3096 participants;

(4) Experiment 3b: allowed different numbers of views for the lineup (1-lap vs.

2-lap vs. choice in photo lineups) with 3003 participants;

(5) Experiment 4 : manipulated lineup size (six or nine total photos shown) with

2014 participants; and

(6) Experiment 5 : manipulated the lineup format (simultaneous versus sequential)

using a different set of stimuli from the previous five experiments with 2018

participants.

Unless otherwise specified, all lineups were shown using a simultaneous format. The

data was cleaned of any discrepant or missing observations (i.e., if age was recorded

as 0), which will account for any sample size differences from Seale-Carlisle et al.

(2019).

These data sets will be used in Section 4.3 to assess the performance of the pro-

posed modeling framework for EWID. They serve to represent the general forms of
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experimentally-data obtained in psychology labs while trying to remain as ecologi-

cally valid as possible. A myriad of other EWID data sets may be available in full

or summary form, but these work well as representatives.

2.3 Issues in Eyewitness Identification Research

EWID research began in the field of psychology, but has suffered from problems

inherent to its historical development. The goal is to identify the EWID procedure

that maximizes discriminability (i.e., the ability of eyewitnesses to discriminate be-

tween guilty and innocent suspects) (Gronlund et al., 2014). In effect, researchers

seek to maximize eyewitness accuracy. The literature has conflicting results and

conclusions about discriminability (Wixted and Wells, 2017). Due to these conflict-

ing conclusions over the years of EWID research, the public has come to a consensus

that eyewitness evidence is unreliable, and EWID researchers are seeking to reframe

eyewitness evidence in an improved, more reliable light (Wixted et al., 2017a). They

suggest eyewitness evidence collection procedures should follow certain conditions

to ensure the evidence is not contaminated in a way that would render it unreli-

able, which are detailed in Section 2.2. Some of these issues, in addition to the

questionable reliability of EWID evidence, include the relationship of confidence

and accuracy, procedural decisions for eyewitness lineups, the choice of statistical

methodology for the analysis of EWID experiments, etc.

2.3.1 Development of Eyewitness Identification Procedures

One of the underlying reasons for such discrepancies in the field is how EWID

procedures are implemented, which have been historically applied in the field prior to

being properly validated in a scientific setting (Wixted and Wells, 2017). Procedures
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were primarily developed within the criminal justice system and used under the

incorrect assumption that these were the best practices. For example, in 1999, the

Department of Justice (DOJ) released a guide for law enforcement, developed by a

technical working group, providing advisement on recommended lineup procedures

(Department of Justice, 1999). The proposed guidelines discussed the collection and

preservation of eyewitness evidence, and was expected to increase accuracy. It was

“heralded as a ‘successful application of eyewitness research,’ ‘from the lab to the

police station’” (Gronlund et al., 2015). These reforms were meant to protect the

innocent from wrongful conviction. At best, these reforms resulted in an increase

in eyewitness conservatism (i.e., encouraging people to not choose a suspect if they

are not sure). These researchers recommend that “future reforms are understood

theoretically” so as to ensure “advocacy does not get ahead of the science.”

In response to these missteps, a report from the National Research Council (2014)

was released in 2014 as a more complete treatment of the problems, assessing the

state of EWID research, shortcomings in the field, issues that should be considered

or reconsidered, new methodologies that should or could be applied, etc. The report

concludes that research in the effectiveness of law enforcement practices for imple-

menting EWID procedures and the complex and interactive effects of system and

estimator variables is incomplete. Yates (2017), the Deputy Attorney General at

the time, released a memorandum for the heads of department of law enforcement

and prosecutors promoting “sound professional practices and consistency” within

the DOJ. There has been progress in the communication across different fields, but

there is still progress yet to come. The consensus in the field is that the research

“needs to be conducted in concert with the development and evaluation of theory”

(Gronlund et al., 2015). The development of statistical methods should also work in

conjunction with the development of eyewitness theory from psychology and policy
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implementation from the judicial system.

2.3.2 Confidence-Accuracy Relationship

In addition to the conflict between real application and experimental settings, much

eyewitness analysis is based on the confidence-accuracy (CA) relationship. Ex-

pressed confidence level (ECL) is considered a useful proxy for memory strength,

which is said to be highly correlated with accuracy (Wixted and Mickes, 2010).

Researchers have empirically identified evidence for the strong CA relationship in

identifications made in a field study of police lineups from the Houston Police De-

partment (Wixted et al., 2016a). The U.S. Supreme Court ruled in the case Neil

v. Biggers (1972) that highly confident EWIDs are likely to be accurate, as long

as these identifications meet certain criteria (III et al., 2012). Not all psychologists

agree on this relationship, as their research has found confidence as a poor indicator

of memory strength, and therefore of memory accuracy (Krug, 2007). Several issues

accompany the usage of confidence as the sole predictor for accuracy. Confidence, as

related to probability, depends on the status of the information of the subject who

evaluates it. In 1947, Schrödinger said, “Since the knowledge may be different with

different persons or with the same person at different times, they may anticipate the

same event with more or less confidence, and thus different numerical probabilities

may be attached to the same event.”

One of the primary reasons for such high belief in the CA relationship is due

to the calibration curve. Calibration is the agreement between objective (i.e., accu-

racy) and subjective variables (i.e., ECL) (Juslin et al., 1996). The calibration curve

is a graph that plots accuracy on the x-axis and confidence on the y-axis. In an

ideal situation, all participants with c% confidence should have c% accuracy, indi-
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cating a well-calibrated respondent. These respondents would fall on a diagonal line

where accuracy is equal to confidence. In Figure 2.5, well-calibrated participants

would fall on a diagonal line where accuracy is equal to confidence (i.e., slope b1 = 1

and intercept b0 = 0). Overconfident participants would fall below this line, and

under-confident participants would fall above this line. The over/under-confidence

statistic ω is a supplementary statistic from the calibration curve, with a ω ∈ [−1, 1].

Well-calibrated participants receive a score of 0 (i.e., perfect calibration). Under-

confidence is indicated with a negative score, and overconfidence is indicated with

a positive score.

These curves only provide information for the average captured CA relationship.

While calibration curves may indicate “fair” and well-calibrated data, they may

not clarify the impact of the various system and estimator variables on eyewitness

choice and accuracy. The majority of calibration research in EWID attests that

participants are usually over-confident in their assessment of their memory accuracy

(Krug, 2007). Some psychologists view the calibration curve as a measure of the CA

relationship, with good calibration as proof of a strong relationship (Gronlund et al.,

2015). The CA relationship is not as strong for non-choosers as the relationship is for

choosers (Clark et al., 2015; Brewer and Wells, 2006; Sporer et al., 1995). We define

“non-choosers” as eyewitnesses who do not identify a suspect in a lineup, which

is a “not present” decision. “Choosers” are defined as eyewitnesses who identify a

suspect.

If an eyewitness decides that the guilty suspect is “not present” in the lineup,

then the confidence statement may not indicate the accuracy of the decision. Fur-

thermore, the strong relationship found by some researchers seems to only hold for

confidence judgments made during the initial identification. Research has shown

memory is malleable and can be distorted by other events (Clark et al., 2015; Lof-
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tus, 2005; Wells and Bradfield, 1998). Initial confidence statements may adhere to

the CA relationship more closely, but it does not necessarily translate for confidence

statements made after the fact.

An eyewitness’s ECL may vary at different times when presented with exactly

the same circumstances, with similar variation demonstrated in other forensic sci-

ences. A study done with fingerprint examiners shown the same evidence, but under

different contextual circumstances, showed the examiners reversing their decisions

(Dror and Charlton, 2006). Variance in and among eyewitness decisions should

also be considered, such as within-eyewitness and between-eyewitnesses variation

(Amendola and Wixted, 2015). Discrepancies may also exist in the laboratory set-

ting versus the more stressful real-life situation. Confidence may be a good predictor

for accuracy, but until these issues are addressed and studied more, it is not cer-

tain any conclusions made from confidence-based statistical methods are completely

valid. We address this issue more in depth later in this section.

Figure 2.5: This plot shows the observed relationship between proportion of correct
decisions and expressed confidence levels (Juslin et al., 1996; Wixted et al., 2015)



25

Additional variables likely work independently and/or interactively to predict for

accuracy. Some researchers have started considering estimator variables in addition

to the ones that are normally used. For example, the Cambridge Face Memory Test

(CFMT), which provides a score for face recognition, could be a potential predictor

for accuracy (Duchaine and Nakayama, 2006; McKone et al., 2012; Zhao et al., 2014;

Andersen et al., 2014; Cho et al., 2015). Grabman et al. (2019) is the first study to

relate CFMT to the predictive value of eyewitness confidence. Other face recognition

tests exist such as the Glasgow Face Matching Test and the Recognition Memory

Test (Burton et al., 2010; Warrington, 1984). The consideration of other variables

such as the CFMT has not been well-studied in the past literature. As such, there

is an obvious role here for generalized linear models (GLM), specifically logistic and

multinomial logistic regressions, for the inclusion of such variables. The CFMT uses

72 sets of images to determine the face recognizer ability of the test-taker, which

includes three sections:

(1) The learning section, where identical images are used;

(2) Novel images, where new images of the same face are used; and

(3) Novel images with noise, where additional noise is introduced.

Example images from the CFMT are shown in Appendix C.

Recently, Wixted et al. (2015) suggest the “combined weight of theory, empirical

evidence, and revelations from DNA exoneration” lead to the conclusion that initial

identifications are more reliable than have been previously thought. Simply because

a coherent story has been generated does not necessarily mean this story is true.

Confidence is the ubiquitous gathering of information and knowledge that supports

some hypothesis, which is sometimes known as confirmation bias. It should be noted

that most psychologist researchers in the field agree upon the CA relationship.
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2.4 Current Statistical Methodologies

Surprisingly few statistical approaches have been used in analyzing data from EWID

experiments. Some psychologists have historically used the diagnosticity ratio and

the discriminability index (d′) as measures of comparison across different eyewitness

procedures (Wixted and Mickes, 2012; Mickes et al., 2014; Georgeson; Mickes et al.,

2017). Other psychologists have been proponents of the point-biserial correlation

coefficient (rpb) and Goodman and Kruskal’s gamma (G), which tend to result in mis-

leading conclusions. Additional methods include: calibration curves (Juslin et al.,

1996; Krug, 2007; Gronlund et al., 2015; Clark et al., 2015; Brewer and Wells, 2006;

Sporer et al., 1995); ROC curve analysis based on the SDT paradigm using ECLs

as the cut-points (Clark et al., 2015; Wixted and Mickes, 2010, 2012; Pepe, 2000;

Wixted and Mickes, 2015b); partial area under the curve (pAUC) as an extension

of ROC analysis (Walter, 2005; Mickes et al., 2014; Wixted et al., 2017b; Lampinen

et al., 2019); estimation of posterior probability of guilt based on Bayes’ Theorem

(Wells and Lindsay, 1980; Wells et al., 2015a,b); expected utility (Lampinen et al.,

2019; Smith et al., 2018); logistic regression (Wetmore et al., 2015; Andersen et al.,

2014); and log-linear models (Luby, 2016, 2017). Overall, psychologists are explor-

ing these methods to further the theory of eyewitness cognition, which consists of

memory judgments (making a selection in a lineup) and accompanying metacogni-

tive context (the associated confidence statement) (Gronlund and Benjamin, 2018).

We describe these approaches in this section.

2.4.1 Diagnosticity Ratio and Discriminability Index

The diagnosticity ratio (DR), equivalently positive likelihood ratio LR+, is the ratio

of the odds of the suspect being guilty relative to the odds of the suspect being in-
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nocent. It measures the probative value, which is how much information is available

in the evidence, of a lineup procedure. The DR provides the posterior odds of guilt

or the likelihood that a guilty suspect is identified in a lineup (Wixted and Mickes,

2012; Mickes et al., 2014).

DR =
Correct ID Rate

False ID Rate
(2.1)

=
HR

FAR

=
P (suspect identified|suspect guilty)

P (suspect identified | suspect innocent)

The discriminability index d′ (also known as the sensitivity index), which orig-

inates from signal detection theory, is a popular estimate signal strength (George-

son). Discriminability is defined as the ability to perceive and respond to differences

among stimuli. The discriminability or d′ is defined as the separation between two

means expressed in a common unit of their equal or unequal variances. A higher

d′ indicates a larger pAUC,2. Equation 2.2 shows the relationship of d′ to area un-

der the curve (AUC). Here, z(·) represents the normal score3 associated with the

function inputs:

d′ = z(Correct ID Rate)− z(False ID Rate) (2.2)

=
√
2 · z(AUC)

Both the DR and d′ are summaries that characterize EWID performance across all

“levels” of system and estimator variables. However, any such measure oversimplifies

2More information on pAUC in Section 2.4.2.
3The normal score for some value x is found by normalizing the value such that z = x−µ

σ/
√
n
,

where µ is the population mean, σ is the population standard deviation, and n is the number of
observations available.



28

performance: a single index cannot capture all the information in a comparison

between tow procedures. In experimental settings, maximizing the DR may lead to

more conservative responding (i.e., more likely to choose a “not present” response)

(Wixted and Mickes, 2012). For example, more extreme instructions designed to

protect the innocent induced a higher DR, but did not necessarily lead to a better

accuracy result. The DR has a tendency to naturally increase even if discriminability

is constant (Mickes et al., 2017). This could result in misleading conclusions, since a

different lineup instruction would not (and should not) change the witness’s memory,

which should be constant across conditions. The DR was a popular performance

metric for comparing procedures (e.g., simultaneous versus sequential), until some

researchers (e.g., Wixted and Mickes (2015a) observed that a third variable, ECL,

can affect this ratio, and that DR could confound changes in accuracy with changes

in “response bias.”

The ROC curve is a plot of the hit rate (HR) versus the false alarm rate (FAR)

for various levels of ECL (e.g., “at least 10% confident,” ..., “at least 40% confident,”

..., “at least 100% confident”); the slope of the ROC curve at one of these points

corresponds to HR
FAR

(i.e., the DR) at that ECL. Hence, a straight line indicates the

same DR for all ECLs (i.e., DR does not depend on ECL in this case). Because ROC

curves incorporate additional information (e.g., ECL, they are viewed as more useful

for comparing methods than the simple DR collapsed over all ECL categories. The

DR allows the researcher to disregard suspect identifications that are categorized

as “untrustworthy” (i.e., identifications made with low confidence) (Wixted and

Mickes, 2015a). Both DR and d′ should be accompanied by measures of variability

(but often are not). The National Research Council (2014) report acknowledged

advantages of ROC over DR in some circumstances, but emphasized that other

statistical analyses of EWID experimental data are more powerful (e.g., logistic
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regression, binary classifiers); see below.

2.4.2 ROC Curves

The ROC curve was originally developed in the 1950s and used with electronic

SDT, with first applications in radar (Hajian-Tilaki, 2013). Since then, researchers

in many other fields, including psychology, diagnostic radiology, medical diagnostics,

and machine learning, use it to compare different techniques, often by its area under

the curve (AUC) or pAUC. An ROC curve plots the HR or Se against the FAR or

(1 - Sp). The curve is based on some decision variable, and the counts of good and

bad results will vary based on the chosen threshold of that decision variable. It is a

descriptive device that demonstrates the range of trade-offs between the true positive

rate (TPR) and the false positive rate (FPR) within a particular test (Pepe, 2000).

An ROC curve with better discriminant capacity will appear as a curve closer to

the upper left-hand corner in the ROC space. A curve lying on a straight diagonal

line with a slope b1 = 1 indicates the test has a performance similar to that of

chance. The slope of the tangent line at each point of the ROC curve is equal to the

likelihood ratio, which is the ratio of the two density functions describing the two

distributions of the decision variable in population one and population two. These

distributions are usually assumed to be normal. Sensitivity (Se) and specificity (Sp)

are defined as

Se =
Number of TP

Number of TP + Number of FN
(2.3)

and

Sp =
Number of TN

Number of TN + Number of FP
. (2.4)
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Use of ROC analysis in EWID research was first proposed by Wixted and Mickes

(2012) because a lineup procedure is characterized by a range of DRs, rather than a

single DR. Wixted and Mickes state that the ROC can show which of two procedures

is diagnostically preferable. Researchers disagree if ROC analysis is the best method

to measure underlying discriminability (Wells et al., 2015a,b).

Figure 2.6: Hypothetical ROC curves for simultaneous (circles) and sequential (tri-
angles) procedures. In this case, the plot concludes that simultaneous procedures
are diagnostically superior (Gronlund et al., 2014).

Expressed Confidence Levels. The points on ROC curves (HR versus FAR)

constructed from data in EWID experiments can be based on many “third” vari-

ables. A common “third” variable is the eyewitness’s ECL at the time of the lineup.

Researchers have stated that only confidence recorded immediately after the iden-

tification should be used (Sauer et al., 2019) In most lab experiments, the “mock

eyewitness” reports an ECL often as numerical response along a scale (0 to 1) to
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the question, “How confident are you in your identification?” with discrete choices

(e.g., “0.0,” “0.1,” “0.2,” ..., “1.0” (11 categories), or, more coarsely, “0.0,” “0.2,”

“0.4,” ..., “1.0” (six categories)). As with any scale, the difference in a respondent’s

reactions of, for example, “0.0” versus “0.2” may be more clear to a respondent

than the difference in the respondent’s reactions of “0.4” to “0.6,” which the re-

spondent may possibly view as less distinguishable. In real life, LEOs recognize

that typical eyewitnesses are not comfortable with numerical scales, so they solicit

their responses as verbal descriptors. The LEO’s translation of those descriptors as

a numeric value may depend on the LEO.

Sauer et al. (2019) state, “The extent of variation in the confidence-accuracy

relation precludes us from making strong, generalized claims about the accuracy

of high confidence identification decisions, even under pristine conditions4, when

evaluating individual identifications.” They note that an individual identification

differs from “aggregate level” confidence-accuracy relationship, which is equivalent

to an ensemble of eyewitnesses. Either way, the ECL is likely subject to uncertainty,

depending on many factors (such as high levels of stress) whose effects on ECL

remain largely unstudied. These effects deserve further study so the uncertainty in

ECL can be incorporated in the analysis of data from EWID experiments.

Confidence-based ROC analysis has some connection to ROC analysis in diag-

nostic medicine, used to compare the diagnostic superiority of different systems (e.g.,

magnetic resonance imaging (MRI) versus mammography). Target present [absent]

lineups may be viewed as “condition present [absent]” (e.g., presence or absence of

tumor) (Wixted and Mickes, 2015a). The analog of the ROC points in EWID (ECL)

are ranges of assessment of condition (e.g., “definitely not malignant” to “definitely

4viz., only one suspect in the lineup, the suspect did not stand out, the witness was cautioned that
the culprit may not be present, double-blind testing was used, and the confidence statement was
obtained at the time of testing
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malignant”); cf. (Park et al., 2004; Mickes et al., 2012). Note that radiologists are

trained professionals, with their training based on medical standards, whereas eye-

witnesses are rarely “trained” in face recognition and likely have no prior practice

nor experience when identifying suspects in a lineup. Kantner and Dobbins (2019)

suggest that a given confidence report is largely (if not completely) determined by

individual differences when testing for memory for words. These differences are

broadly defined as self-efficacy, use of the confidence scale, and/or other factors.

While the study from Kantner and Dobbins (2019) tested memory for words, rather

than memory for faces, there may possible extensions of their conclusions to memory

for faces. Nonetheless, ROC analysis may have value in the analysis of EWID exper-

iments, if sources of uncertainty are properly taken into account. In the subsequent

sections, we discuss statistical methodology alternatives to ROC analysis.

Variability. Researchers realize that the decision criteria (in this case, ECL) may

vary among participants, and use the term criterial variance to represent the vari-

ance in decision criteria (i.e., the differences among eyewitnesses in their criteria for

making identification decisions). This is also known as criterial noise or criterion

variance. Decision criteria refers to the cutoff that is used for making an identi-

fication or responding “not present.” Since people use different criteria for their

individual cutoffs, there is variability across people.

Researchers also assume variance in the underlying distributions for target and

fillers in the SDT model. The variances assumed are the equal variance versus

unequal variance model for the underlying normal distributions for memory strength;

see Figure 2.7. These distributions are estimated for the latent variable of memory

strength. For each ECL c, the DR dc is theoretically calculated based on these
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assumed normal distributions for target and foil decisions; see Equation 2.5.

dc =
µTarget − µFoil

1
2

(
σ2
Target + σ2

Foil

) (2.5)

This variability aims to represent the between-participant, versus the within-participant,

variability. Within-participant variability is a measure of a single participant’s ECL

across many lineups, of many or the same stimuli. The within-participant variability

may be considered as a type of “measurement error.” In this case, the measurer is not

necessarily the experiment conductor or the LEO, but rather the eyewitness. Russ

et al. (2018) examined the phenomenon, and reached the conclusion that a more

realistic “field encounter” does not necessarily engender robust eyewitness identi-

fications due to development of “limited cognitive representations of a target.” A

more controlled setting results in more consistent and correct identifications. They

suggest that the degree of familiarity a participant has with a target could be a po-

tential index for EWID accuracy. Kantner and Dobbins (2019) reiterate the point

that ROC curves should be fitted to individual participants rather than in aggregate

form across a large group. They found large inter-subject differences, and expect

group ROC curves to be variable (i.e., noisy).

Both measures of variability differ from methods that provide intervals for point

estimates. Each DR serves as a point estimate, which should have some measure of

variability to capture the true DR. This point is explored further in Section 3.3.5.

Construction. A confidence-based ROC curve is constructed by plotting the

number of correct identifications versus the number of false identifications, with

each point of this curve within an ordinal category of expressed confidence level

(ECL) from 0% to 100% (Gronlund et al., 2015). The number of categories of confi-
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Figure 2.7: Plot A shows a lineup procedure under the assumption of equal vari-
ance for the culprit and innocent suspect normal distributions and plot B shows a
lineup procedure under the assumption of unequal variance (i.e., assuming criterial
variance). C represents the ECL (Smith et al., 2016).
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dence varies among researchers. The correct identification rate5 at a given ECL c%

is estimated as the proportion of people who correctly chose the perpetrator in the

“target present” condition and expressed a confidence level of at least c%. The false

identification rate6 at a given ECL c% is estimated as the proportion of people who

chose the “innocent” suspect incorrectly within the target absent population and

expressed confidence of at least c%. This is done for each ECL in 0% ≤ c ≤ 100%.

The slope (i.e., tangent at each plotted point) of the ROC curve is equal to the DR

for that ECL.

Area Under the Curve. The AUC is a standard summary of an ROC curves

for purposes of comparing procedures, with preference for the procedure with the

larger AUC. Some authors (Mickes et al., 2014; Wixted et al., 2017b) prefer to

summarize the method’s performance via a pAUC. The AUC represents the average

value of sensitivity over all possible FARs ∈ [0, 1] (Walter, 2005), and is related

to the Mann-Whitney U-statistic, which evaluates the significance of the difference

between the sample distribution of positive and negative decisions (Pepe, 2000).

Some authors (Mickes et al., 2014; Wixted et al., 2017b) prefer to summarize the

method’s performance via a pAUC, particularly in situations where the maximum

value on the x-axis (here, false identification rate or FAR) is guaranteed to be less

than 1. In a target present lineup, five possible false identifications and one correct

identification exist, so the maximum possible false identification rate is n−1
n
, where

n is the number of people or photos in the lineup. The pAUC has limitations also

(see Walter, 2005), and a comparison of procedures based on either AUC or pAUC

may not be straightforward if one curve is not consistently higher than the other

across the entire range of HR and FAR (Streiner and Cairney, 2007).

5HR or TPR
6FAR or FPR
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2.4.3 Logistic Regression

The logistic regression model assumes a binary dependent variable and one or mul-

tiple continuous and/or categorical independent variables. In the EWID paradigm,

the dependent variable is accuracy (correct or false identification, whose definition

depends on the inclusion or exclusion of a designated innocent suspect) and the

independent variables are relevant system and estimator variables (Wetmore et al.,

2015; Andersen et al., 2014). An expansion of logistic regression use in the EWID

paradigm is provided in Section 3.2.

An estimated coefficient in logistic regression provides the change in the odds

ratio for a one unit increase (for a continuous variable) or the change in odds for one

category versus the reference category (for a categorical variable). Variables selected

in the model are deemed the informative variables of discriminability. The predicted

accuracy from the fitted logistic regression model can be viewed in a contingency

table with the observed accuracy, providing model performance. Cross-validation

can be used as well.

As noted earlier, using a binary response variable may not be the most realistic

choice. Researchers are interested in understanding what influences a witness to

choose the true suspect, to choose an “innocent” suspect, to choose a foil, or to not

choose at all. Multinomial logistic regression or some other multiple classification

method may work better in this respect.

2.4.4 Expected Utility

Some researchers adopted the idea of expected utility and decision theory in the

analysis of ROC curves (Lampinen et al., 2019). Since the dominating ROC curve

is not always clear, some researchers have suggested an approach based on decision
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theory and estimation of the base rate (BR) (equivalent to prior probabilities). The

possible EWID task decisions result in some subjective benefit or cost, leading to

the notion of a procedure’s “utility,” defined as the product of the probability of

the outcome, BR, and cost or benefit. Other proposed measures of utility include

terminal point utility (utility calculated at the right-most point on the ROC curve),

high-confidence utility (based on only those participants expressing high utility),

average utility (averaged over all confidence-level utilities), and maximum utility.

Smith et al. (2018) discuss a metric for ROC curve analysis based on expected

utility, which distinguishes diagnostic utility and ECL. This metric, known as the

deviation from perfect performance (DPP), claims to consistently indicate which

of two lineup procedures has higher expected utility. DPP is based on the global

measure of predictive performance r discussed by Shiu and Gatsonis (2008). The

modified measure for ROC curve use is defined as

DPP(c) = [1− Suspect(c)] + [Innocent(c)], (2.6)

where 0 ≤ Suspect(c), Innocent(c) ≤ 1. Suspect(c) is the suspect identification rate

at a given point and Innocent(c) is the “innocent” suspect identification rate at the

same point. Perfect performance is achieved when Suspect(c) = 1 and Innocent(c) =

0 or DPP(c) = 0. The index is computed as the average DPP(c) of the entire ROC

curve, providing a value of how much a lineup procedure deviates from “perfect

performance.” The DPP(c) is not tied to a specific region of the ROC space, which

means it does not force researchers to make comparisons that are confounded by an

eyewitness’s ECL. In both of these expected utility approaches, the assumed cost and

benefit of decisions is subjective and may not accurately portray the information.

Both methods rely on a single value to summarize the entirety of a lineup, similar
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to DR and d′.

2.5 Example

As noted in Section 2.4.1, the DR depends not only on an eyewitness’s tendency

towards “conservative” or “liberal” identification (as measured by “expressed confi-

dence level”), but also on numerous other factors, including:

(A) Type of lineup: for example, two levels (simultaneous versus sequential);

(B) Weapon presence: usually has two levels (presence or absence of some weapon);

more levels could be considered, for example, the presence or absence of mul-

tiple weapons, such as gun, knife, towel, none;

(C) Stress : for example, three levels such as low, medium, high;

(D) Time elapsed : between incident and exam (e.g., three levels: 30 minutes, two

hours, one day, etc.);

(E) Race: for example, two levels (same or different race); or four levels (eyewit-

ness and culprit are: white and white; white and non-white; non-white and

white; non-white and non-white; non-white and white);

(F) Subject : N levels, corresponding to N subjects.

If a study is sufficiently large, one could construct an ROC for each participant

corresponding to each of these conditions (i.e., plot HR versus FAR at different

ECLs for each participant of the N participants). To avoid running such an enor-

mous experiment, one would sensibly consider running a fraction of all possible

combinations.7 One can then summarize the information in the ROC via different
7See, for example, Box et al. (2005) on constructing fractional factorial designs.
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measures, such as the logarithm of the AUC, or log(AUC). Consider the following

approach:

The Model. Let yijk`mnr denote the log(AUC) for the rth trial using participant

n (n = 1, ..., N) for procedure i, weapon level j, stress level k, time condition `, and

cross-race effect m. Then we could write:

yijk`mnr = µ+ αi + βj + γk + δ` + φm + (αβ)ij + ...(interactions)...+ εijk`mnr

where µ represents the overall average log(AUC) across all conditions, the next six

terms reflect the main effects of A (lineup procedure: i = 1 for sequential and

i = 2 for simultaneous); B (weapon: j = 1 for presence and j = 2 for absence of

weapon); C (stress level: k = 1 for low, k = 2 for medium, k = 3 for high); D

(elapsed time between incident and report: ` = 1 for 30 minutes, ` = 2 for two

hours, ` = 3 for one day); E (cross-race effect: m = 1 for same race, m = 2 for

different races); F (participant effect: n = 1, 2, ..., N participants); “(interactions)”

reflects the joint effect of two or more factors together, and the last term, εijk`mnr

represents any random error in the rth trial that is not specified from the previous

terms (e.g., measurement, ECL, multiple trials, etc.). This approach would allow

separation of the effects of the different factors, enable one to assess which factors

have the greatest influence on the outcome (here, logarithm of the area under the

ROC curve: bigger is better), and especially to evaluate the importance of these

factors relative to variation among “eyewitnesses.” It may be that eyewitnesses are

the greatest source of variability, dominating the effects of all other factors. Or it

may be that, in spite of person-to-person variability, one or more factors still stand

out as having strong influence on the outcome. Note that,

(i) Other covariates could be included, such as age and gender of participant; and
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(ii) The ROC curve need not be defined in terms of “expressed confidence level”

thresholds, if a more sensitive measure of “response bias” (tendency towards

“liberal” versus “conservative” identifications) can be developed.

With Data. Carlson and Carlson (2014) use pAUC, as a summary measure of

the information in an ROC curve (bigger is better), for each of 12 different conditions

defined by three factors:

(A) Procedure: three levels (simultaneous [SIM: suspect in position four], sequen-

tial [SEQ2: suspect in position two], sequential [SEQ5: suspect in position

five]);

(B) Weapon focus : two levels (present versus absent);

(C) Distinctive feature: two levels (present versus absent).

The data are provided in their Table 3, along with 95% confidence intervals. Because

the length of a confidence interval is proportional to the standard error, pAUC values

with shorter confidence intervals correspond to having smaller standard errors and

hence should have higher weights. The logarithms of the reported pAUC values and

weights (reciprocals of the lengths of the reported confidence intervals) are given in

Table 2.3.

For this study, the data on all n = 2675 participants (720 undergraduates and

1955 SurveyMonkey© respondents) were combined, and ECLs were solicited on a

seven-point scale. Variations in the 12 log(pAUC) values can be decomposed into

three main effects (one each for procedure, weapon, and feature), and their two-way

interactions. The raw data may permit a more detailed analysis. The data can be

analyzed using a less complex model than that stated above (because we have fewer

terms):
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Condition Procedure Weapon Feature 5 + log (pAUC) Weight

1 Simultaneous Yes Yes 1.31 47.6
2 Simultaneous Yes No 1.73 33.3
3 Simultaneous No Yes 0.93 55.6
4 Simultaneous No No 1.88 45.5
5 Sequential 2 Yes Yes 1.49 47.6
6 Sequential 2 Yes No 1.23 47.6
7 Sequential 2 No Yes 1.09 52.6
8 Sequential 2 No No 1.59 41.7
9 Sequential 5 Yes Yes 1.70 38.5
10 Sequential 5 Yes No 0.98 58.8
11 Sequential 5 No Yes 0.66 66.7
12 Sequential 5 No No 1.49 55.6

Table 2.3: Logarithms of the reported pAUC values and weights (reciprocals of the
lengths of the reported confidence intervals).

yijk = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + εijk

where yijk denotes [5 + log(pAUC)] for procedure i = 1, 2, 3; weapon condition

j = 1, 2; feature k = 1, 2; µ represents the overall average log(pAUC) across all

conditions; αi represents the effect of procedure i; βj represents the effect of weapon

condition j; γk represents the effect of feature condition k; and the next three terms

reflect the three two-factor interactions between the main factors. The analysis of

variance, where log(pAUC) values are weighted according to the values in the last

column of Table 2.4. None of the factors are significant.

We can decompose the two degrees of freedom in the sum of squares for Procedure

(three levels), 8.04, into two single degree of freedom contrasts, SEQ2 versus SEQ5

(4.14) and SIM versus the average of SEQ2 and SEQ5 (3.90), and consider all pair-

wise interaction terms among the four “main effects.” All single-degree-of-freedom

effects remain non-significant, in either this weighted analysis or in an unweighted

analysis.

The result is surprising, because all three factors in Table 2.4 (lineup type,
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Source of
Variation

Degrees of
Freedom

Sum of
Squares

Mean
Square

F-Statistic p-value

Procedure 2 8.04 4.02 1.129 0.470
Weapon 1 2.94 2.94 0.826 0.460
Feature 1 14.72 14.72 4.138 0.179
Procedure ×Weapon 2 0.59 0.30 0.083 0.923
Procedure × Feature 2 10.41 5.21 1.463 0.406
Weapon × Feature 1 34.80 34.80 9.780 0.089
Residuals 2 7.12 3.56

Table 2.4: Analysis of variance table for log(pAUC)a

aData on pAUC from Table 3 in Carlson and Carlson (2014) (National Research Council, 2014,
see Appendix C, pgs. 150-154).

presence/absence of weapon, and presence/absence of distinctive features) appear

in the literature as having consequential effects on accuracy. The lack of significance

could be due to low power in detecting small effect sizes, the use of ECL in the ROC,

or the insensitivity of pAUC in characterizing a condition. For a discussion of the

advantages and disadvantages of using AUC versus pAUC as a summary measure

see Walter (2005). A complete set of raw data may yield a more powerful analysis

with different results, as might a different summary measure of the ROC curve, such

as the AUC.
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Chapter 3

Statistical Models and Methods

for Adaptation

Based on the amount of new research, the field of EWID is gaining much traction

in terms of obtaining new sources of data, new methods for analysis, etc. We seek

to expand on possible methods to be used with EWID data by incorporating and

looking at existing statistical methodologies used in other fields, such as diagnostic

medicine. We review potential statistical models to quantify the effects of factors

influencing the accuracy of eyewitness identification in controlled experiments and

to explore methods for analyzing the results from these experiments, using statistical

models and intuitive displays of the effects of these factors.

For example, while the ROC curve has been used for decades in statistical qual-

ity control, diagnostic medicine, and many other fields where methods or techniques

are being compared. The ROC curves using data from eyewitness identification

experiments are constructed using the experimental participant’s ECL in the identi-

fication, which is affected by error and variation. We present alternative statistical

approaches, some of which have been used in similar scenarios (e.g., comparing
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medical diagnostic imaging modalities) with the aim of developing more powerful

analyses to better quantify the effects of variables (including or modifying the ECL)

influencing the accuracy of EWID procedures. These statistical tools may offer pow-

erful ways of identifying factors that affect EWID accuracy, beyond the conventional

tools of diagnosticity ratios and ROC. Note that many of the proposed methods de-

pend on treating eyewitnesses as binary classifiers, which, as previously discussed,

is problematic.

We provide a literature review of potential avenues for adaptations of statistical

methodologies from other fields. In Section 3.1, potential methods from the field

of diagnostic medicine are reviewed. Alternative statistical methods to the con-

ventional ROC curve are provided in Section 3.3. Finally, Section 3.4 provides a

discussion of the methods in terms of their adaptability for EWID experiments as

well as to suggest improved models. We recommend potential statistical approaches

in the final section, depending on the data, experimental conditions, and concomi-

tant information available.

Note: sections of this chapter appear as part of the Handbook of Forensic Statis-

tics (see Liu et al., 2020, Chp. 21).

3.1 Statistical Models From Diagnostic Medicine

The tasks in diagnostic medicine, to identify abnormalities in an image, bear re-

semblance to the EWID task, to identify a perpetrator from a lineup. Accordingly,

we discuss approaches that have been developed for comparing detection modalities

and conducting meta-analyses in diagnostic medicine that may be suitable for com-

paring procedures (e.g., lineup format) in EWID. A successful model in diagnostic

medicine is a bivariate random-effects statistical model for sensitivity and specificity
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(HR and [1 – FAR] in EWID, respectively), which leads to models for positive pre-

dictive value (PPV) and negative predictive value (NPV). These methods apply to

meta-analysis for combining data from similar studies.

Meta-analysis is used to provide synthesized statistics across similar studies, in-

cluding multiple tests of diagnostic accuracy. Research synthesis, when done well,

also provides a determination of study validity based on study design and execution

of included studies, and is also used to test effects of patient and test characteristics

and to identify areas for further research (Irwig et al., 1994). Likewise in EWID,

several meta-analyses and other forms of research synthesis have been conducted,

and a database identifying studies related to both single and combinations of vari-

ables (e.g., presence/absence of weapon or retention interval) is under development.

This new database, which will be publicly accessible, is anticipated to identify gaps

in the existing knowledge base and facilitate new research syntheses.1

A bivariate random-effects model (in the form of a hierarchical Bayesian model)

was originally proposed by DuMouchel (1994) as a compromise between those who

used the traditional fixed-effect meta-analytic methods and those who argued against

meta-analysis (i.e., that data from across studies should never be combined) (Ju-

naidi et al., 2012). Other researchers support Bayesian methods in meta-analysis

for the study of fixed and random effects (Sutton and Abrams, 2001; Rutter and

Gatsonis, 2001). Most of these methods compare test results to a “gold” reference

standard, which does not necessarily exist in the EWID paradigm. Certain methods

that overcome the lack of the reference standard could be adapted for the use in

EWID data analysis, perhaps by simply comparing two experimental methods.

The framework of meta-analysis is natural for the EWID paradigm. Meta-

analysis requires the combination of data from various sources (i.e., studies and

1Joanne Yaffe, personal communication.



46

experiments) that may have been performed using the same or similar settings with

a common result, but were performed at different times. In the EWID field, each

individual court case or eyewitness could be viewed as an individual “study.” We

are interested in combining the information obtained across many of these “studies”

(i.e., persons) or court cases or for different experiments from various researchers

in the EWID field. Should these models be adapted to EWID research, diagnostic

test accuracy literature could provide a solid foundation for the work. For example,

the Cochrane Collaboration, a non-profit organization formed to organize medical

research findings, may provide guidelines to application through their Cochrane

Handbook (Macaskill et al., 2010).

The sections below review statistical models for meta-analysis from the field of

diagnostic medicine, which can be adapted to be used with EWID data.

Logitnormal Bivariate Random-Effects Model. A popular approach to as-

sessing the impact of several variables on accuracy in diagnostic medicine, and hence

also EWID experiments, is a bivariate model for the logit transformation2 sensitivity

and specificity proposed by Reitsma et al. (2005), and generalized by Chu and Cole

(2006). For example, in comparing diagnostic technologies in a meta-analysis, the

Reitsma model is a linear mixed effects model and assumes the logit-transformed

sensitivity and specificity marginally follow a normal distribution, then combines

the pair into a bivariate normal distribution.

The proposed bivariate model is a logitnormal bivariate random-effects model

that relies on a two-level structure, which estimates the between-study variation

and the correlation between sensitivity and specificity. The correlation provides

information on the heterogeneity of the studies. Let θA,i be the true logit sensitivity

2The logit transformation is defined logit(p) = log
(

p
1−p

)
.
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of individual study i, with common mean value θA and within-study variance σ2
A.

Similar notation is used for the true logit specificity using θB,i. Let σAB represent

the covariance between logit sensitivity and logit specificity. Then the model is:

θA,i
θB,i

 ∼ N


θA
θB

 ,Σ

 , where Σ =

 σ2
A σAB

σAB σ2
B

 .

The Chu and Cole (2006) extension reduces some Reitsma et al. (2005) model as-

sumptions. First, they assume the number of true negatives n00 and the number of

true positives n11 follow binomial distributions,

n11,i|θA,i ∼ Binomial(NA,i, pA,i) (3.1)

n00,i|θB,i ∼ Binomial(NB,i, pB,i).

Let pA,i and pB,i be the observed proportions for sensitivity and specificity, respec-

tively. The logit-transformation is

logit(pA,i) = Xiα+ θA,i (3.2)

logit(pB,i) = Ziβ + θB,i.

Here, Xi and Zi are vectors of covariates that are related to sensitivity and speci-

ficity, which are possibly overlapping. The Chu and Cole (2006) extension assumes

the following structure

θA,i
θB,i

 ∼ N


0

0

 ,Σ

 , where Σ =

 σ2
A ρσAσB

ρσAσB σ2
B

 .
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This model for sensitivity and specificity was adapted by Leeflang et al. (2012) for

PPV and NPV; it is identical to the model found in Chu and Cole (2006), except

PPV and NPV are used in place of sensitivity and specificity, respectively. PPV

and NPV take account of prevalence, so Leeflang et al. (2012) chose to incorporate

prevalence in their model by allowing it to vary, thereby avoiding its estimation.

Chu et al. (2009) proposed a trivariate model that jointly models PPV, NPV,

and prevalence. Ma et al. (2014) modified the trivariate model to handle a miss-

ing reference test outcome (i.e., missing disease status). The model extends the

Reitsma et al. (2005) model and Chu and Cole (2006) by adding prevalence as an

additional random variable, assuming a trivariate normal distribution. The latent

class bivariate model is another way to evaluate the accuracy of diagnostic tests in

the absence of a “gold standard” reference (Eusebi et al., 2014); this approach mod-

els the between-study heterogeneity by assuming each study in the meta-analysis

belongs to one of K latent classes.

The logitnormal bivariate random-effects model performs well in characteriz-

ing the performance of different diagnostic modalities (EWID procedures), in part

because it models the logits of the probabilities; models for dependent outcomes

restricted to a range such as [0, 1] must incorporate constraints in the parameter

estimation.

The model does involve only one correlation parameter, although extensions to

incorporate additional correlation structures are straightforward. Finally, parameter

estimation via maximum likelihood estimation (MLE) may require computational

methods, such as numerical integration or Markov chain Monte Carlo (MCMC)

techniques.

Due to the occasional non-convergence with the standard likelihood method,

Chen et al. (2017) proposed a composite likelihood (CL) function that uses an
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independent working assumption between sensitivity and specificity. The method

specifies a pseudo-likelihood for sensitivity and specificity based on the marginal

distributions. Equation 3.3 defines the pseudo-likelihood, and logLB(θB) is defined

similarly, shown below

logLp(θA, θB) = logLA(θA) + logLB(θB), (3.3)

where

logLA(θA) =
m∑
i=1

logP (ni,11|ni,1; θA) (3.4)

=
m∑
i=1

{
log

∫
Bin(ni,11|ni,1, Sei) φ(Sei; θA) d Sei

}
.

The authors note that approximation errors decrease in this method as only one-

dimensional integrals are involved in the calculation. This method also relies on the

marginal normality of the logit sensitivity and logit specificity, allowing the estima-

tion to be more robust to the misspecification of the joint distribution assumption.

Nikoloulopoulos (2018) compared CL versus MLE methods, and found that the CL

method is nearly as efficient as the MLE method. Neither estimation method is ro-

bust to marginal distribution misspecification. The CL method proposed by Chen

et al. (2017) will always converge because the proposed pseudolikelihood has a closed

form.

Nonparametric Meta-Analysis for Diagnostic Accuracy Studies. Zapf et al.

(2015) proposed a non-parametric method for meta-analysis. The authors assume

fixed effects only, using a vector of individual test results that is a multivariate
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Bernoulli distribution

(X′
i0,X

′
i1) = (Xi01, . . . , Xi0ni0

, Xi11, . . . , Xi1ni1
). (3.5)

This format is based on the unified, nonparametric approach for sensitivity, speci-

ficity, and ROC curves from Lange and Brunner (2012). Overall sensitivity and

specificity are given as

Ŝe =
1

n1

I∑
i=1

ni1∑
s=1

Xi1s (3.6)

Ŝp =
1

n0

I∑
i=1

ni0∑
s=1

(1−Xi0s),

where 1 indicates “diseased” and 0 indicates “non-diseased.” Then, a multivariate

normal (MVN) distribution is defined from the overall Se and Sp, using asymptotic

theory, as shown below

√
I


Ŝe

Ŝp

−
Se

Sp


 ∼ MVN(0,V), (3.7)

where

V = Cov

√I

Ŝe

Ŝp

−
Se

Sp



 .

The covariance matrix is estimated by the following unbiased estimator

V̂ =
I2

I − 1

I∑
i=1

(Yi − Si) · (Yi − Si)
′, (3.8)
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where

Yi =

(
TPi
n1

,
TNi

n0

)
(3.9)

Si =

(
ni1
n2
1

· TP, ni0
n2
0

· TN
)
.

TP and TN are the total counts across individual tests of TPs and TNs. No assump-

tions are made regarding the distribution of the data or the correlation structure.

But the model assumes homogeneity of sensitivities and specificities across studies,

and the method does not yet have a way to include covariates.

Quadrivariate Logistic Regression Model. Hoyer and Kuss (2016) proposed

the quadrivariate logistic regression model to compare different diagnostic tests via

meta-analysis. For EWID data, researchers seek to compare different lineup proce-

dures to determine the diagnostically superior one. This methodology could work

well in the EWID paradigm. Each study reports two four-fold tables with TPij,

TNij, FPij, and FNij for the i-th study and the j-th diagnostic test, j = 1, 2. The

TPs and TNs are still assumed to binomially distributed,

TPij | Seij ∼ Bin(TPij + FNij, Seij) (3.10)

TNij | Spij ∼ Bin(TNij + FPij, Spij).

The models for the logit transformations of sensitivity and specificity are additive in

two effects: an effect, µj and νj, respectively, for the method j, and a random effect,

φij and ψij, respectively; viz., logit(Seij) = µj + φij and logit(Spij) = νj +ψij. Four

random effects φi1, ψi1, φi2, and ψi2 are assumed to follow a quadrivariate normal
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distribution, such as



φi1

ψi1

φi2

ψi2


∼ N





0

0

0

0


,



σ2
φi1

ρφ1ψ1σφ1σψ1 ρφ1φ2σφ1σφ2 ρφ1ψ2σφ1σψ2

σ2
ψ1

ρψ1φ2σψ1σφ2 ρψ1ψ2σψ1σψ2

σ2
φ2

ρφ2ψ2σφ2σψ2

σ2
ψ2




. (3.11)

The model captures the potential between-study heterogeneity of sensitivities and

specificities, as well as the corresponding correlation among the random effects. The

main parameters of interest are the differences of sensitivities and specificities be-

tween the meta-analyses. The difference in the logistic transformations (i.e., inverse

logit) of sensitivity and specificity between the two studies provide the following

formula for the parameter of interest,

∆Se =
exp(µ̂1)

1 + exp(µ̂1)
− exp(µ̂2)

1 + exp(µ̂2)
(3.12)

∆Sp =
exp(ν̂1)

1 + exp(ν̂1)
− exp(ν̂2)

1 + exp(ν̂2)
.

Similarly, Dimou et al. (2016) proposed a multivariate method for the meta-analytic

comparison of diagnostic tests. It is an extension of the bivariate model for the

comparison of two or more tests.

3.2 Supervised Learning Classification Methods

The classification problem has a long history in the statistical literature; it has

reappeared in the machine learning field as “supervised learning” but the goal is the

same: create “rules” by which to categorize new observations into groups. We pro-

vide a brief overview of some common classification methods as potential models for
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eyewitness identification accuracy. The algorithms result in predicted decisions that

is compared to the underlying truth and the influential predictors for the decisions.

The goal is to minimize all types of errors. The resulting model can be adjusted

by changing the thresholds of errors, depending on which error is considered more

grievous. Once the model has been trained properly under the supervised learning

framework, and validated with representative test data, it can be applied to real

world data.

The difference between the methods mentioned in this section and the methods

mentioned in the previous sections is the lack of a meta-analytic framework. At

this time, the described methods cannot accommodate the meta-analytic frame-

work. Some researchers are exploring methods of integrating machine learning al-

gorithms to aid in study selection and data extraction for systematic reviews and

meta-analysis. Methods have not yet been developed for computational purposes.

In classification methods, point estimates, which can be characterized by finding

variance estimates using simulation and/or repetition, are obtained per data set.

The true value in classification methods is how easily they are applied, which could

be helpful for law enforcement agents, lawyers, and jurors. How well these models

work in practice is yet unknown, but can be determined through simulation or

application to real data sets.

Classification Models

Some common classification methods include linear discriminant analysis (LDA),

quadratic discriminant analysis (QDA), boosted logistic regression (in addition the

standard logistic regression), decision trees, random forests, graphical models via

Bayesian networks, support vector machines (SVM), and neural networks. Brief
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descriptions of these methods, as well as graphical approaches, are provided in the

following sections; see also The Elements of Statistical Machine Learning, 2nd Edi-

tion by Hastie et al. (2013) for in-depth discussions on all methods. Some of these

methods (SVMs, random forests, and neural networks) suffer from “black box”

syndrome, where the the results are not necessarily interpretable due to injected

randomness, etc. Machine learning researchers have developed methodologies to

mitigate this issue, which is beyond the scope of this chapter. These method-

ologies include the partial dependence plots (PDP) from Friedman (1991), local

interpretable model-agnostic explanations (LIME) from Ribeiro et al. (2016), and

Shapley additive explanations (SHAP) from Lundberg and Lee (2017).

Discriminant Analysis. LDA and QDA are conventional classification methods

proposed by Fisher (1936) that use linear and quadratic decision boundaries, re-

spectively, in the space spanned by the covariates that influence the outcome. In

the framework of EWID, the outcome is “accuracy,” using vectors of covariates to

predict eyewitness’s decisions. The choice between LDA and QDA depends heavily

on the structure and amount of data, and the assumption of normally-distributed

covariates; QDA for an underlying linear model results in highly biased predictions.

(Boosted) Logistic Regression. Logistic regression has been considered in EWID

research (see Section 2.4.3), but not to a great extent (Wetmore et al., 2015; An-

dersen et al., 2014). Logistic regression assumes a binary response variable and

one or multiple continuous and/or categorical independent variables x, which lends

itself pretty easily to the EWID paradigm. However, logistic regression does not

show discriminability from the contribution of response bias, since the “correct and

false identifications are analyzed separately” (Gronlund and Neuschatz, 2014). Let
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π(x) = P (Y = 1) for the binary response Y and x = (x1, . . . , xk) of k predictors β.

The logistic regression model is defined as

g(x | β) = log
µ(x | β)

1− µ(x | β)
= βTx (3.13)

π(x) = µ(x | β) = exp(βTx)

1 + exp(βTx)
. (3.14)

The estimated coefficients in a logistic regression provide the effect of xj on

the log odds that Y = 1, adjusting for the other xi. The change in odds would

predict for accuracy and the variables selected in the model are the informative

variables of discriminability. The predicted accuracy from the fitted model is put

into a contingency table with the observed accuracy, providing a measure for model

performance. Beyond the relationship of response and predictor variables, predictive

modeling such as logistic regression would allow researchers to generalize models

to new cases via extrapolation. For EWID analysis, covariates will be added in

to account for differences in probability for a correct or incorrect identification.

Logistic regression requires little to no multicollinearity among the covariates, which

means it requires independent covariates. Given the framework of EWID, it does

not seem possible to perform a one-level logistic regression, but might require a a

more complicated model. As discussed, the nature of EWID data does not lend

itself well to such binarization. Researchers are interested in understanding what

causes a witness to choose the true perpetrator, to choose an innocent suspect, to

choose a filler, or to not choose at all. Multinomial logistic regression or some other

multi-class classification method may work better in this respect.

Multinomial logistic regression models have been well-studied in general, but

have not seen much (if any) use in the EWID field. In general, polytomous classi-

fication models are not frequently used or even considered in the analysis of EWID
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data. This stems as a result of how the data is perceived, which is primarily due to

the extensive use of ROC curve analysis. Multinomial logistic regression models can

be viewed as a set of K−1 independent binary regressions, shown in Equation 3.16.

One outcome is chosen as a baseline, and the other outcomes are separately regressed

on this baseline. Let 1 ≤ J ≤ K − 1 and Yi, xi represent the i-th set of response

and predictor observations. The multinomial logistic regression model is defined as

g(xi | βJ) = log
P (Yi = J)

P (Yi = K)
= βTJ xi (3.15)

P (Yi = J) =
exp(βTJ xi)

1 +
∑J

k=1 exp(β
T
k xi)

. (3.16)

“Boosting,” which was originally proposed by Schapire (1990), makes logistic

regression more powerful. The idea was further adapted to gradient boosting ma-

chines by Friedman et al. (2000). Boosting combines the performance of many

“weak” classifiers to produce a more powerful “committee.” For EWID analysis, co-

variates are added to account for differences in probability for a correct or incorrect

identification. For more on boosting, see Hastie et al. (2013).

Decision Trees and Random Forests. Decision or classification trees provide

the foundation for random forests. The goal of decision trees is to create a model that

predicts a value of a target variable based on several covariates. Nodes on the tree

are the decision points that provide the path for the particular datum considered.

Decision trees are simple to understand and easy to interpret. Classification trees

are the individual units of random forests. Given the data, the covariates will be

used as splitting variables to branch the data into sorted clusters. The splits are

determined based on the homogeneity of observations in the resulting child nodes

from the parent node. The resulting terminal nodes will be the decision determined
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by classification and regression tree (CART) algorithm (Breiman et al., 1984).

Random forests are an ensemble classifier based on decision trees. Votes arise

from groups of decision trees. Tree bagging (bootstrap aggregating) draws repeated

samples from the original data. Each sample is drawn randomly with replacement,

and creates a classification tree. One generates M such trees. When one wants to

classify a new observation, one uses each of theM trees in the “forest” (collection of

de-correlated trees) and uses majority (or plurality) rule to assign the classification.

This decreases the variance in the model. Random forests are also generated using

feature bagging, where random samples of covariates are used for each tree rather

than the entire set of covariates. For each candidate (observation), a random subset

of features is obtained. An observation is classified by majority vote from all the

trees. Explaining the concept of a random forest can be done using visualizations.

Further exploration of random forests is pursued in Chapter 5.

Support Vector Machines. Similar to other supervised learning algorithms,

SVMs take as input the covariates for EWID to build the model based on training

data. SVMs construct a hyperplane that is used to separate the data. A high-

dimensional divider classifies the data into groups based on the interaction of several

covariates. SVMs rely to classifying using hyperplanes (i.e., some sort of separator)

in high dimensions, depending on the number of included covariates. Conveying this

concept of high-dimensionality to laypeople may be difficult, which may affect its

use in EWID and law enforcement settings. While SVMs can be effective and accu-

rate in prediction in some circumstances, both the SVM algorithm and the output

are difficult to interpret, making SVMs possibly problematic for a court setting.
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Neural Networks. Neural networks is a black box method that uses layers or

neurons pj(t), which receive input. These neurons then change their internal state

(activation) aj(t) based on that input, and produces output. Some threshold θj

determines activation, which is an input to some activation function

aj(t+ 1) = f [aj(t), pj(t), θj]. (3.17)

The output function is expressed as

oj(t) = fout[aj(t)]. (3.18)

The network is formed by the connection of several of these neurons. Neural net-

works are flexible and can model a variety of functional forms, making it useful for

complex and/or abstract problems. Like other machine learning algorithms, neural

networks require training and computational resources. The covariates in an EWID

experiment are used to determine the hidden units of the neural network, which

are processed by the output function, resulting in a decision for each person. The

decision from the algorithm for each person is then compared to the person’s actual

outcome.

Graphical Models. Graphical models, used in other forensic analysis, are also

useful for the EWID paradigm (Dawid and Mortera, 2017). Luby (2016) explored

this approach with log-linear analysis. In this model, the data are in the form of

a multi-way table with TIP/TIA (two levels) × eyewitness (EW) Decision (two

levels) × ECL (five or more levels) × Witness instructions (two or more levels);

additional variables can be included without changing the theoretical foundation

for the analysis. The model is fit iteratively to find the expected counts for each cell
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using a training set of data. Based on the experiment and corresponding data, we

generate different graphical models as follows. Let α represent the main effects, β

represent the two-way interactions, subscript wc represent witness choice, subscript t

represent target absence or presence, i represent witness instructions, and c represent

ECL. Equation 3.19 shows an example of a fitted model. The model includes system

and estimator variables, previously discussed in Section 2.2,

logmwc,t,i,c = αwc + αt + αi + αc + αe + βwc,t + βwc,i + βwc,c + βe,i + βc,i. (3.19)

Garbolino (2016) discusses the use of Bayesian networks for evaluating testimony;

Garbolino’s model is actually very general, and applies to testimony of any kind, not

just from an eyewitness. The proposed model assumes that the witness is accurate,

objective, and truthful. Each of these characteristics corresponds to an inference

about the witness’ personality:

(1) Senses give evidence of what is seen;

(2) Belief in the evidence from the senses; and

(3) Belief in what is said.

In the end, Garbolino (2016) proposes an object-oriented Bayesian network class

for the analysis of the reliability of human witnesses. D’Agostini (2016) notes that

Bayesian networks are a technical tool, but their true value is as a very powerful

conceptual tool that can handle complex problems with variables related by both

probabilistic and causal links. Even with subjective probability (i.e., eyewitness

testimony), the intuitive idea of probability is recovered.
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TIA/TIP
Eyewitness
Choice

Instructions

ECLExperiment

Figure 3.1: This is the graphical model corresponding to log-linear model in Equa-
tion 3.19.

3.3 Tools Based on ROC Methods

The popularity of the ECL-based ROC curve to compare lineup procedures, together

with its limitations (see Section 2.4.2), leads us to consider other methods that

augment and improve upon ROC curves for a more complete comparison between

methods.

We discuss the predictive receiver operating characteristic (PROC) curve (which

utilizes PPV and NPV in a similar way that HR and FAR are used in ROC curves),

multivariate ROC curves, and AUC estimation for these curves. We also discuss the

inclusion of variability measures for ROC curves that could also be adapted for the

PROC curve and multivariate ROC curves.

3.3.1 Methodology Development

The National Research Council (2014) report called for a broader “exploration of

the merits of different statistical tools for use in the evaluation of eyewitness per-

formance” as an important area of research.

The analysis of EWID experimental data should consider three aspects:

(1) Sensitivity : the probability that an eyewitness correctly identifies the true
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perpetrator given that the perpetrator is present in the lineup;

(2) Specificity : the probability that an eyewitness correctly chooses “Not Present”

given that the perpetrator is not in the lineup; and

(3) Prevalence: the proportion of individuals who might be the culprit.

PPV and NPV are functions of all three factors, so accurate estimation of all three

quantities is essential (Kafadar, 2015).

PPV is the probability that, when the eyewitness makes an identification, the

identified person is truly the perpetrator. Similarly, NPV is the probability that,

when the eyewitness fails to identify a person as a perpetrator, that person was truly

not the perpetrator. In general, and in real life, we do not know if the eyewitness’s

decision is correct, but we can estimate the probability (PPV, NPV). PPV can be

rewritten in terms of the odds ratio (OR) and positive likelihood ratio (LR+) as

follows. Let Se and Sp denote sensitivity and specificity, respectively, and p the

probability that the suspect is truly the perpetrator. For example, in a lineup with

six photos, p could be equal to 1/6. Define PPV as the conditional probability that

the identification was correct, given that the eyewitness selected a person from the

lineup:

PPV =
# TP

# TP +# FP
(3.20)

=
Se · p

Se · p+ (1− Sp) · (1− p)

=
1

1 + 1
OR·LR+

,

where OR = p
1−p denotes the ratio of probabilities that a suspect P is guilty versus
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is innocent, and LR+ is the likelihood ratio of a positive call:

LR+ =
P{eyewitness selects P | P is perpetrator}
P{eyewitness selects P | P is innocent}

(3.21)

=
Se

1− Sp

=
HR

FAR

= DR.

Since LR+ can be written as Se
1−Sp

= HR
FAR

, it is equivalent to the DR; as discussed in

Section 2.4.1. Note also that the slope of the ECL-based ROC curve at ECL level c

is the DR (LR+) for those persons who expressed confidence of at least c. A higher

LR+ leads to a higher PPV for the same prevalence. Thus, if the probability that

the guilty suspect is in the lineup (i.e., population under consideration), then the

lineup procedure with the higher DR yields a higher PPV. PPV is more affected by

specificity.

NPV is the probability that the excluded person is truly not the perpetrator.

NPV can also be written in terms of OR and the negative likelihood ratio LR−,

or the likelihood ratio of a negative call. Similar to how a higher LR+ results in a

higher PPV, a lower LR− would result in a higher NPV, given the same prevalence.

We define NPV as

NPV =
# TN

# TN+# FN
(3.22)

=
Sp · (1− p)

(1− Se) · p+ Sp · (1− p)

=
1

1 + (OR · LR−)
.

NPV is normally not considered, as most EWID researchers, practitioners, and poli-
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cymakers are less concerned with the probabilities associated with choosing innocent

foils (Amendola and Wixted, 2014). We define LR− as

LR− =
1− Se

Sp
=

1− HR

1− FAR
. (3.23)

Provided the conditions for comparing two lineup procedures are the same (e.g., OR

is the same), then procedure one is preferred over procedure two if PPV1 (PPV for

procedure one) is greater than PPV2 (PPV for procedure two). This is true if and

only if

OR1

DR1

<
OR2

DR2

≡ DR1

OR1

>
DR2

OR2

. (3.24)

Using PPV (i.e., LR+) as the criterion, procedure one is preferred over procedure

two if

DR1 > DR2 ≡ (LR+)1 > (LR+)2. (3.25)

Similarly, for NPV, method one is preferred if

1

(LR−)1
>

1

(LR−)2
. (3.26)

Thus, both LR+ and LR− need to be be considered when choosing “optimal” pro-

cedures. In the EWID paradigm, a vector of match-to-the-witness’s-memory values

(i.e., memory strength) for n − 1 alternatives with a lineup size of n between the

eyewitness’s memory of the perpetrator and the lineup member could be used in

conjunction with the NPV (Clark, 2005). This emulates the framework for ROC

curves in the SDT model. Since the PROC curve is an extension of the ROC curve,

we can use some of the same ideas.

Some EWID researchers state that as responding becomes more conservative,
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both LR+ and LR− increase, suggesting these values depict the tradeoff related to

liberal versus conservative responding, not discriminability (Mickes et al., 2017).

LR+ and LR− are functions of only sensitivity and specificity. The targeted values

in EWID accuracy experiments are PPV and NPV; hence they need to be jointly

considered also in the analysis of identification accuracy.

3.3.2 Predictive ROC Curve

Shiu and Gatsonis (2008) proposed a way of displaying PPV and NPV jointly via

a PROC curve. The PROC curve is defined as
{
1 − NPV(c), PPV(c)

}
for c ∈ R,

where R is the set of all possible thresholds for test positivity. This curve is affected

by prevalence p. Specifically speaking, PPV increases and NPV decreases when

prevalence increases. Thus, with increasing prevalence, a point on the PROC curve

will move towards the upper-right direction.

Figure 3.2: This plot shows the predictive curves with a = 0.8: (a) b = 0.7, (b)
b = 1, (c) b = 1.5. The solid line represents high prevalence (p = 0.7) and the
dot-dashed line represents low prevalence (p = 0.3) (Shiu and Gatsonis, 2008).

The PROC curve lacks monotonicity, which occurs if a one-to-one correspon-

dence between PPV and NPV exists. The criteria for monotonicity is established

using hazard rate order, reverse hazard rate order, and likelihood ratio order. The
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likelihood ratio order says the ratio f(c)
g(c)

is a monotonic function of c; this is a

sufficient condition for monotonicity of the PROC curve. But the monotonicity

properties are complex in certain cases. It seems that in the binormal case, if the

scaling parameter b = 1 for the binormal model, then there is an obvious trade-off

between PPV and NPV, and the PROC curve is monotone. For b 6= 1, monotonicity

is guaranteed for only certain segments along the curve.

Figure 3.2 demonstrates this complicated pattern of monotonicity. The middle

plot shows the clear monotonicity – an increase in PPV has a corresponding decrease

in NPV. For the other two plots, overlap is visible depending on the location along

the curve. Figure 3.3 shows this phenomenon, where monotonicity is defined on

(−∞, c∗PPV) , [c∗PPV, c∗NPV] , and (c∗NPV, ∞). The visually vertical and horizontal

lines in this figure result from either PPV or NPV converging faster than the other.

Figure 3.3: Predictive curves with (a) a = 1, b = 0.5, p = 0.5; (b) a = 2, b = 2,
p = 0.3. Circles denote points corresponding to operating thresholds at -1 and a+b,
triangles denote points corresponding to operating thresholds at -2 and a+ 2b, and
crosses denote c∗PPV and c∗NPV (Shiu and Gatsonis, 2008)
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3.3.3 Multivariate ROC Curves

The standard ROC curve cannot account for more than two covariates. In 2009,

Jin and Lu (2009) proposed the ROC region, which plots the TPR over the FPR

for all possible choices of the decision thresholds for two continuous covariates. The

thresholds arise from a tree-based nonlinear combination of multiple predictors.

Wang and Li (2012) proposed a bivariate ROC and a bivariate weighted receiver

operating characteristic (WROC) for biomarker measurements. The authors defined

a bivariate ROC as a conditional expectation of TP as a function of the two contin-

uous biomarkers given the FP as a function of the two biomarkers. Let 0 ≤ q ≤ 1,

(U0, V0) be a pair of bivariate markers from a non-diseased group,

ROC(q) = E
[
TP(U0, V0) | FP(U0, V0) = q

]
. (3.27)

The authors further defined WROC as the unconditional expectation of TP as a

function of the two continuous biomarkers given the FP as a function of the two

biomarkers. This idea was extended in 2013 to multivariate biomarkers (Wang and

Li, 2013). In the multivariate markers extension, the decision thresholds for the

continuous biomarkers were decided by classification tree-based methods. Another

similar method, proposed by Pundir and Amala (2015), is the bivariate lognormal

ROC curve for detecting the accuracy of two biomarkers. The WROC is a plot of

the TPRs and FPRs as functions of the two thresholds from the biomarkers. We can

possibly adapt these multivariate ROC methods to both continuous and categorical

predictors, and apply them to EWID contexts.

Hong (2012) proposed a bivariate ROC model, which assumes a sliced bivariate

normal distribution function for two predictors, X1 and X2. In the method, X2 =

h(X1) by using some linear function that passes through the mean vector of the
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X2 pseudo-random variable. The points for the ROC come from the cumulative

distribution function defined for the ROC curve. Hong and Jeong (2012) proposed

an optimal classification function for this bivariate ROC curve.3

3.3.4 AUC Estimation

The AUC for any one of the bivariate ROC curves can be modeled as a function of

eyewitness, and lineup procedure, and any other variables at play, using a hierar-

chical model, similar to the model proposed by Wang and Gatsonis (2008). In that

article, the authors propose a hierarchical model for multi-reader, multi-modality4

studies in diagnostic medicine. Heterogeneity is introduced at the first level of the

hierarchy. Effects for some covariates, such as reader variability, are treated as ran-

dom (not fixed), and MCMC can be used to estimate model parameters. In the

model, three levels (i.e., types) of correlation exist:

(1) Within-reader variability;

(2) Between-reader variability; and

(3) Variation of hyperparameters.

The within-reader variability represents the correlation due to readers between

AUC estimates for a reader in two modalities. Let Zj represent the reader level co-

variates and β represent the reader random effects. The authors assume correlation

r1j is common across all readers. Letting γ be a vector of regression coefficients, fol-

lowing independent normal prior distributions with mean zero and large variances,

3Both of these papers, Hong (2012) and Hong and Jeong (2012), are in Korean; their abstracts are
in English.

4A modality is a particular diagnostic procedure.
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the authors model the within-reader variability as

y1,j
y2,j

∣∣∣∣∣ βj ∼ N


µ1,j

µ2,j

 ,Σj

 , (3.28)

where

Σj =

 f(µ1j) r1j
√
f(µ1j)f(µ2j)

r1j
√
f(µ1j)f(µ2j) f(µ2j)

 (3.29)

and

µj =

µ1j

µ2j

 = g
(
ZT
j γ + βj

)
. (3.30)

The between-reader variability represents the correlation from two different readers

in the same modality. This model assumes that the random effects follow normal

distributions, where β1j | σ2
1 ∼ N(0, σ2

1), β2j | σ2
2 ∼ N(0, σ2

2), and βj = (β1j, β2j)
T .

The variation of hyperparameters represents the correlation due to cases between

any two AUC estimates since the estimates arise from the same set of subjects. We

also assume proper prior distributions on the hyperparameters, such that σ2
1 has

an inverse gamma distribution with parameters a1 and b1 and, similarly, σ2
2 has an

inverse gamma distribution with parameters a2 and b2. Additionally, r1j has a beta

distribution with parameters cj and dj.

We can easily extend the model to include additional covariates. The approach

may be a more efficient alternative to stratified analyses, and it also is sufficiently

flexible to accommodate complex correlation structures. Finally, the model fitting

can be done on publicly available software.
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Lange and Brunner (2012) proposed a unified, nonparametric approach to multi-

reader diagnostic trials based on ranks, which allows them to estimate the AUC as

a vector for different modalities. The authors suggest the approach is equivalent to

a factorial chi-squared test on repeated measures. In the factorial design, the reader

(i.e., eyewitness) and modality (i.e., lineup procedure) are the two factors. They use

a nonparametric approach to show that sensitivity and specificity are areas under

particular ROC curves. Additional nonparametric estimations for AUC could also

be considered.

3.3.5 Confidence Intervals for ROC

Based on the considerations of previous work done with ROC curves in the EWID

paradigm, variability is an increasingly important consideration for more robust con-

clusions. We continue the discussion of variability in EWID data and for confidence-

based ROC curves. These methods acknowledge that the calculated DR values for

ROC curves are point estimates at the center of an interval that captures the true

population DR value. The methods presented below are possible ways to incorporate

measures of variability.

Point-wise confidence intervals for ROC curves are the intervals of sensitivity

at a given value of specificity. We can construct confidence bands for a range of

specificity or for the entire ROC curve (Yin, 2014). Some EWID researchers have

used bootstrap resampling to estimate standard errors for their ROC curves (Mickes

et al., 2017). Luby (2017) used confidence boxes for the HR and FAR. Confidence

bands are routinely calculated for medical applications, and should be used for

EWID applications also.5

Macskassy and Provost (2008) provide an empirical study of methods for the

5See examples in Appendix D of the National Research Council (2014) report.
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estimation of confidence bands. These methods include vertical averaging (VA),

threshold averaging (THA), simultaneous joint confidence regions (SJR), Working-

Hotelling based bands (WHB), and fixed-width confidence bands (FWB). These rely

on sweep methodology, which samples the observed ROC point and the confidence

boundary around it to generate upper and lower confidence bands.

Method Description

VA
This is a sweep method that looks at successive FP rates and
averages TPs for multiple bootstrapped ROC curves at a specific
FP rate.

THA

This is a sweep method that freezes the threshold of the test
rather than the FP rate, by identifying the set of ROC points that
would be generated using a particular threshold on each of
multiple ROC curves.

SJR

This method utilizes the Kolmogorov-Smirnov (KS) one-sample
test statistic to find the global confidence interval (i.e.,
simultaneous confidence rectangles) for TP and FP, which are
generated by freezing FP to identify the respective TP,

WHB

This method fits a a regression line y = a− b · x, of the form
`(x,±k) = a− b · x± k · σ(x) for k ≥ 0 and
σ(x) =

√
σ2
a − 2ρσaσb · x+ σ2

b · x2. The line is estimated using
MLE. Other estimation methods include coaxial ellipses based on
an envelop of a system of ellipses.

FWB

This method identifies a slope b = −
√
m/n < 0, where m and n

are sample sizes, along which to displace the original ROC curve
to generate confidence bands, and sweeps along the FP axis to
identify the TP value at that FP.

Table 3.1: This table provides a summary of ROC curve confidence interval/band
estimation methods.

The VA, THA, and point-wise WHB did not translate well to confidence bands,

and failed to perform robustly for varied parameters used for the generation of ROC
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curves. The authors attribute the failure of VA and THA to the naive method-

ology. Both the SJR and FWB worked well, and quite robustly, given the data.

The SJR does not require any samples to generate the confidence bands, but has a

higher variance. The FWB uses the bootstrap to empirically determine the proper

displacement for the confidence band generation, but was found to be stable and

consistent. Demidenko (2012) introduced parametric confidence bands for the binor-

mal ROC curve, and the ellipse-envelope (EE) confidence band construction based

on the Working-Hotelling approach, with variation calculated via the delta method.

The EE confidence band has a shorter width than the WHB, under the assumption

of a binormal curve. More details of these methods are described in Table 3.1.

3.4 Discussion

Long-standing conventional statistical methodologies, including logistic regression

and, more generally, generalized linear models, particularly for bivariate outcomes

(sensitivity and specificity), remain valuable and appropriate tools for analyzing

EWID experiments, especially when the experiment includes concomitant informa-

tion, such as environmental variables of the experiment and demographic character-

istics of the “eyewitness.” In the absence of such information, ROC curves remain a

useful comparison of two methods in diagnostic medicine, statistical process control,

and eyewitness experiments. Newer approaches from statistical machine learning

may be useful with very large experiments, though the impact of specific variables

on the outcome may not always be as interpretable as with conventional linear

models. Whichever technique is used, proper characterization of the uncertainties

associated with the inferences must be calculated.

As recommended by the National Research Council (NRC) report, a broader
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“exploration of the merits of different statistical tools for use in the evaluation

of eyewitness performance” is an important area of research (National Research

Council, 2014). The goal is to encourage the use of more discerning statistical

models and analytical methods for assessing EWID procedures used to increase the

accuracy of identifications, decrease the number of false convictions, and ensure

guilty perpetrators are properly convicted.

The methodologies that we discussed in this chapter provide a foundation for fu-

ture work, and raise several issue that remain for future research. We have indicated

statistical approaches to evaluating current methods that LEOs use in the field (e.g.,

sequential versus simultaneous lineups, presence or absence of an officer during the

eyewitness’s deliberations, etc.). We note that procedures from other fields, such as

diagnostic medicine, can apply to EWID experimental data, with some modifications

as needed. adapted from other fields, such as diagnostic medicine.

Due to the popularity of the ECL-based ROC curve to compare accuracies of

EWID procedures, we offered several alternatives related to the quantities used in

ROC curves, namely sensitivity and specificity, with a focus on the real targets of

interest, PPV and NPV. This exploration led to the following questions:

First, what kind of curve can we use to describe PPV and NPV in an intuitive

manner that will also hold up theoretically? Are there multivariate ROC curves

that will display comparisons among several procedures simultaneously? How in-

formative is a plot of LR+ versus LR− as “proxies” for PPV and NPV. For the

classification methods, the determination of effectiveness and accuracy depend on

useable and good data that replicate real world scenarios so that our proper as-

sessment of the method’s efficacy is valid. Confidence intervals or confidence bands

should also always be included with any point estimates.

Second, what role can supervised learning classification methods play in pre-
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dicting the accuracy of an eyewitness’s decision? In a meta-analytic framework,

how can we adapt the established bivariate and/or hierarchical modeling methods

to the EWID framework? The answers to these questions require simulations and

experimental data with the underlying truth known.

Alternative ways of examining the data could also lead to new modeling proce-

dures or algorithms that would be useful in practice. We proposed a method for

estimating the probability of accuracy for eyewitnesses that takes proper account of

individuals’ probabilities of choosing or not choosing a suspect from a lineup. This

method is a potential tool that could provide an in-field assessment of eyewitness

reliability, which can be explained to and understood by juries, judges, lawyers,

law enforcement officers, and any other non-statisticians working in EWID. Further

methods depend on the available types of EWID data, which could include record-

ings of eyewitness proceedings by working in conjunction with police departments.

Larger, more “ecologically valid” studies, may more properly reflect real-world

scenarios by encompassing the realism of the stress, timelines, etc., than lab-based

experiments where subjects know they are part of studies. Some ideas include

staging a minor crime such as a robbery in a convenience store, and then asking

participants if they recall the target. Another idea might be to have participants

walk around with a camera on their heads, and ask them to recall targets or faces

they may have seen. The camera would provide an objective source of comparison

to eyewitness reports.

Researchers who conduct more varied and complex types of experiments will

produce sets of observational data (National Research Council, 2014), leading to

the development of novel modeling procedures and statistical methods.

We include this chapter as a window for new research for new methodologies and

new applications of existing methodologies. Chapter 4 will approach the analysis
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of EWID in a completely novel direction by looking at the eyewitness as a multiple

classifier.
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Chapter 4

Probability of Accuracy:

Rethinking the Framework

We propose a new approach to examining EWID data in this chapter. This new

approach reconsiders the perceived structure of EWID data, and results in a tool

that could potentially be used as an in-field assessment of eyewitness reliability.

The tool also proves to be generalizable to other types of data following a similar

underlying structure.

4.1 Modeling Eyewitness Accuracy

The eyewitness will see a set number of faces, with a designated target who the

police believe is guilty. The eyewitness will be asked to choose the person who they

believe is guilty. This probability of choosing has been previously treated as fixed

(e.g., 50% probability of choosing versus not choosing). In general, the psychologists

who treat this probability of choosing as how conservative or liberal a person is in

their response (i.e., response bias). That is, the eyewitness can be influenced to
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be more likely or less likely to choose depending on the construction of the lineup

(i.e., creating a biased lineup encourages more liberal responses). The choosing

rate is more likely also affected by an individual’s cost/benefit analysis of making

a misidentification. In fact, possibly a more realistic model is that each person

has his or her own probability of choosing that may fluctuate depending on the

circumstances, regardless of the artificially induced response bias. A probabilistic

approach to estimating an individual’s predilection to choose has never been used

before in EWID research.

We seek to determine the probability of a participant’s accuracy given that they

choose. The probability of being accurate is a random variable unique to each

eyewitness, since each participant has a potentially different rate of accuracy based

on various factors, which follows some frequency distribution. The probability of

choosing may depend on various covariates (e.g., age or gender of the eyewitness,

etc.). We also recognize the possibility that the non-chooser is accurate (i.e., the

police failed to include the true perpetrator in the lineup); hence, “no choice” was the

correct response. In many current analyses of EWID data, non-chooser responses are

ignored. The proposed model uses all of the data, in that it considers the “accuracy”

of both choosers and non-choosers. The end goal is to better model EWID accuracy.

To estimate the probability of accuracy, we need to return to the foundation

of eyewitness identification – the structure of the data. Thus far, the statistical

methodologies have focused on a strictly binary approach to an eyewitness’s deci-

sion in a lineup. As highlighted in Section 2.2, the data structure consists of five

possible decision outcomes that are divided into a group of two and a group of three

based on the unknown status of target presence or absence. Recall, there are five

possible decision outcomes that occur, only two of which (P1 and A1) are correct;

see Figure 2.2. The entire probability space for eyewitness decision outcomes clearly
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sums to one. The conditional probabilities on target presence or absence for the cor-

responding eyewitness decision outcomes also sum to one. It is possible to look at

any of the possible conditional and/or marginal probability combinations in any

order to achieve a probability of one.

This view of the data affords a new understanding and new possible framework

for analysis. The data structure clearly lends itself to multiple classification, where

the possible decision outcomes serve as the response variable for classification.

Very few multiple classification models have been seen in EWID literature. One

popular model is the log-linear (Poisson regression) model, which are GLMs that

use a log link in place of a logit link (Luby, 2016). In this model, the data is

formatted as a contingency table Luby (2017). For example, the table could be

TIP/TIA (two levels) × EW Decision (two levels) × ECL (five or more levels) ×

Witness instructions (two or more levels). The model can be fit iteratively to find

the expected counts for each cell using a training set of data. The log-linear model

allows insight into the data that logistic or multinomial regression does not. Log-

linear models allow estimation of interactions among variables. Multinomial logistic

regression models are more flexible in terms of addition of covariates, continuous and

discrete, and are easier to use. Both models are closely related. Other polytomous

classification methods can be considered, such as SVMs and random forests. In fact,

psychologists working in the field of EWID have begun embracing the integration

of machine learning into their analyses. Price et al. (2020) utilized SVMs to predict

suspect guilt with predictors based on eye-tracking. The framework being proposed

in this chapter extend beyond the possible uses of these methods.

The true value in classification methods is how easily they are applied and in-

terpreted, which could be helpful for law enforcement agents, lawyers, and jurors.

How well these models work in practice has not been seen much in publication, but
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can be determined through simulation or application to real data sets. We present

the proposed framework in a way that enables a non-statistician to follow the logic

and understand the model proposed in this thesis.

4.2 Probability of Accuracy

The goal is to determine the probability that a participant responds accurately

given that (s)he makes a choice (i.e., is a “chooser”). We treat the probability of

being accurate as a random variable, because each participant has a potentially

different rate of accuracy based on individual-level factors; a common distribution

for this random variable is a beta distribution (restricted to [0, 1] as a probability is),

whose mean will depend on the levels of the factors. We have also the probability

of choosing, which also is random, because each participant will have a different

rate of choosing whose mean also is based on factor levels, which can vary due

to random circumstances (e.g., how the person feels that day). For example, the

rate that a statistician may choose might be fairly low, around 50%, since the

statistician may be less sure of absolution due to statistics knowledge. The rate

that a politician who is used to making highly confident statements and choosing

with absolution may have a much higher choosing rate of, perhaps, 90%. Then,

the combination of accuracy and choosing form a bivariate random variable (X,Y ),

with some probability distribution.

The probability of choosing can be thought of as a latent random variable, since

it is likely unique to each eyewitness. The key is charting a path to the estimation of

such value. To do this, we need to decompose the probability of eyewitness accuracy

(i.e., the possible eyewitness decision outcomes) into quantifiable components. The

probability of eyewitness accuracy will depend on the unknown probability of target
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presence or absence, which can be thought of as a global latent variable that is

the same for all eyewitnesses under the “same” conditions (e.g., at the same police

station).

For the decomposition of this probability, we need to revisit the eyewitness task

decision outcome space shown in Figure 2.2. We refer to it as we develop the model

for the EWID task. We use the system and estimator variables to estimate an

individual’s probability of choosing dependent upon target presence, which form the

components for estimating the probability of eyewitness accuracy.

Suppose Yi ∈ {0, 1} is the random variable of inaccurate or accurate, respec-

tively, and T ∈ {0, 1} is the random variable of TIP or TIA, respectively. We can

decompose the probability of accuracy P (Accurate) into two components, which

will depend upon the rate of target presence and the probability of making certain

decisions. Let

P1 = P (Choose Target | TIP ) (4.1)

P2 = P (Choose Foil | TIP)

P3 = P (Don’t Choose | TIP),

where P1 + P2 + P3 = 1. Further, let

A1 = P (Don’t Choose | TIA) (4.2)

A2 = P (Choose Foil | TIA),

where A1 + A2 = 1. Also, let

θ = P (TIP) = P (T = 1) (4.3)
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1− θ = P (TIA) = P (T = 0).

Then, for the i-th participant, the decompositions are given below,

P (Accurate) = P (Yi = 1) (4.4)

= P (Yi = 1 ∩ T = 1) + P (Yi = 1 ∩ T = 0)

= P (Choose Target ∩ T = 1) + P (Don’t Choose ∩ T = 0)

= P (Choose Target | T = 1) · P (T = 1)

+ P (Don’t Choose | T = 0) · P (T = 0)

= P1i · θ + A1i · (1− θ).

From a visual standpoint, we can think of this decomposition as a portion of our

entire eyewitness decision outcome space, as shown in Figure 4.1.

Choose Target
(P1)

Do Not Choose
(A1)

Choose
Foil
(P2)

Do Not
Choose
(P3)

Choose Foil
(A2)

Target Present

Target Absent

Accurate Not Accurate

Figure 4.1: A display of the eyewitness decision outcome space, which takes into ac-
count the underlying status of the lineup, where we are looking at the decomposition
of P (Accurate).

Similarly, we can decompose for P (Not Accurate) using the law of total proba-

bility,

P (Not Accurate) = P (Yi = 0) (4.5)
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= P (Yi = 0 ∩ T = 1) + P (Yi = 0 ∩ T = 0)

= P (Choose Foil ∩ T = 1) + P (Don’t Choose ∩ T = 1)

+ P (Choose Foil ∩ T = 0)

= P (Choose Foil |T = 1) · P (T = 1)

+ P (Don’t Choose | T = 1) · P (T = 1)

+ P (Choose Foil | T = 0) · P (T = 0)

= P2i · θ + P3i · θ + A2i · (1− θ).

From these equations, we can see that P (Yi = 1) depends on P1, A1, and θ. We

can estimate P1 and A1 by fitting any kind of multiple classification model to the

subsets of target present and target absent data, respectively, from an ecologically

valid, designed experiment. Given that the target is present, we have a multiple

classification problem: (1) choose target; (2) choose foil; and (3) don’t choose.

Given that the target is absent, we have a binary classification problem: (1) choose

foil; and (2) don’t choose.

4.2.1 Random Forests

We propose to use random forests as the classification model of choice. We chose

this model for many reasons, though we would like to note that it is certainly not

the only classification model that can be used here.

Comprehensibility. We have found that, in practice, the concept of obtaining

predictions in a random forest is easy for laypeople (i.e., people who are not familiar

with the random forests or have little to no exposure to random forests) to under-

stand. For example, it easy to output one of the trees fit with the random forest
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model, and explain that the splits along the tree to the corresponding nodes are

achieved by maximizing class homogeneity in the child nodes. Decision trees place

observations to the most commonly occurring class of training observations in the

region to which it belongs based on input variables. Random forests create votes in

many decision trees, creating an ensemble model. New observations are obtained by

following these rules established using data with known answers. An example tree

is shown in Figure 4.2.

Figure 4.2: Example of a single tree in a random forest based on EWID data.

Classification. Additionally, random forests have good classification performance

in general. Depending on the performance criteria (e.g., classification accuracy,

mean squared error (MSE), etc.), random forests work as well or better than other

classification methods. We can see the relative performance of random forest in

terms of classification in comparison to logistic regression and support vector ma-

chines in Table 4.1. Random forests outperform the other two methods. Neural
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Method P (Choose Target | TIP) P (Don’t Choose | TIA)

Logistic regression
61.72% 70.89%
(4.07%) (4.17%)

Random forests
96.18% 96.58%
(0.9%) (1.47%)

Support vector
machines

65.61% 58.42%
(3.48%) (13.59%)

Table 4.1: Relative accuracy performance using study 1 data from Dodson (un-
published) from logistic regression, random forests, and support vector machines.
The mean accuracy is given as the percentage on top and the standard deviation
is given as the percentage in parentheses. These values were obtained using 10-fold
cross-validation, where 80% of the data was reserved for training and 20% was used
for testing. The reported accuracy values are from the testing sets.

networks are not considered, since the complexity of the data did not require the

flexibility of a deep learning model and since the logistic regression itself could al-

ready be considered a “shallow neural network.”

Good classification performance does not necessarily translate to good proba-

bility estimates for the relative classes. Class probability estimation requires every

quantile to be estimated well, which contrasts with classification in which only the

median quantile needs to be estimated well. Random forests are used to obtain prob-

abilities in the literature (Li, 2013). Some researchers use the majority votes across

all decision trees in the random forest as the probabilities, while other researchers

grow the tree to some node size k > 1 to obtain the proportion of observations with

class i, which is averaged across all trees via probability machines (Kruppa et al.,

2013, 2014; Malley et al., 2012). Researchers are also seeking alternative ways of un-

derstanding the class probability estimation process by linking the process to kernel

regression methods (Scornet, 2016b; Olson, 2018; Olson and Wyner, 2018). Some

of these methods include proximity weighting, by using the concept of a nearest
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neighbors to find a weighted average of nodes depending on the distance from some

target node.

In this case, we do not seek to necessarily understand the class probability es-

timation process, but rather would like to use random forests as a means of class

probability estimation. In fact, from Section 3.7 in Li (2013), the performance in

terms of mean squared loss of the majority vote method versus the other methods

of proximity weighting, kernel methods, and probability machines show similar or

better performance. Given the occasional marginal increase in performance of other

methods, we choose the simplest approach of a majority vote. However, probability

estimates obtained using majority vote are not necessarily consistent. Thus, it may

be of interest to implement other methods of random forest probability estimation.

The performance of the random forests using majority vote seems to work well for

the EWID data presented in this chapter, and we expect similar performance for

EWID data from experiments of similar construct and size.

Variable Importance. Random forests have also have a built-in method to iden-

tify important covariates using the variable importance values such as mean de-

creased accuracy (MDA) or the Gini score for homogeneity. The larger the value

of the metric, the more important the covariate is when looking at either MDA or

Gini score. These metrics could identify covariates that more strongly affect or are

more influential on the eyewitness outcomes. An example of a variable importance

plot showing both MDA and Gini score is provided in Figure 4.3.

In general, we found that covariates such as decision time and lineup bias were

routinely the most important covariates of the several that were included for the fac-

tor dataset in the target present models across the 50 subsamples. Other covariates

that occasionally appeared included ECL. For target absent models, decision time
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Figure 4.3: Example of a variable importance plot from a target present model using
a subset of the factor data set. The more influential covariates are at the top of the
plot, with decreasing influence as the plot progresses from top to bottom. Note here
that “P.Race” refers to participant race.

was the most important factor, almost universally. The lineup instructions were

the most influential in the Mickes et al. (2017) dataset in both the target present

and target absent models. On occasion, age and ethnicity appeared as important

factors, depending on the subsample. The datasets from Seale-Carlisle et al. (2019)

showed similar behavior.

4.2.2 Rate of Target Presence

The rate of target presence θ is then estimated using a decomposition of a subset of

the decision outcome space. In this case, we need to decompose something that will

always be observed, which is the probability of choosing P (Choose). Let probability
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of choosing Xi ∼ Bern
[
pi(θ)

]
for each person i = 1, . . . , n where pi(θ) is the

probability of “success” (i.e., choosing). Let

ai = (1− A1i) (4.6)

and

bi = P11i + P2i + A1i − 1. (4.7)

Then, we expand the probability of choosing using the law of total probability to

write it in terms of ai and bi,

P (Choose) = P (Xi = 1) (4.8)

= P (Xi = 1 | T = 1) · P (T = 1)

+ P (Xi = 1 | T = 0) · P (T = 0)

= P (Xi = 1 ∩ Yi = 1 | T = 1) · P (T = 1)

+ P (Xi = 1 ∩ Yi = 0 | T = 1) · P (T = 1)

+ P (Xi = 1 ∩ Yi = 1 | T = 0) · P (T = 0)

+ P (Xi = 1 ∩ Yi = 1 | T = 0) · P (T = 0)

= P1i · θ + P2i · θ + 0 · (1− θ) + A2i · (1− θ)

= (1− A1i) + (P1i + P2i + A1i − 1) · θ

= ai + bi · θ

= pi(θ).

This decomposition simply reframes the eyewitness decision outcome space by look-

ing at a different set of conditional probabilities, as illustrated in Figure 4.4.

We can find a point estimate for θ using MLE, such that θ ∈ [0, 1]. The joint
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likelihood L
[
pi(θ)

]
of Xi for n observations is,

L
[
pi(θ)

]
=

n∏
i=1

[
pi(θ)

]xi · [1− pi(θ)]1−xi (4.9)

=
n∏
i=1

(ai + bi · θ)xi · (1− ai − bi · θ)1−xi ,

which is used to find the joint log-likelihood `
[
pi(θ)

]
,

`
[
pi(θ)

]
=

n∑
i=1

[
xi log(ai + bi · θ) + (1− xi) log(1− ai − bi · θ)

]
. (4.10)

Now, take the first partial derivative of the joint log-likelihood with respect to θ and

set equal to zero to solve for the local maximum, since we are assuming 0 < θ < 1,

∂ `
[
pi(θ)

]
∂θ

=
n∑
i=1

[
xi · bi

ai + bi · θ
− (1− xi) · bi

1− ai − bi · θ

]
, 0. (4.11)

We solve Equation 4.11 numerically for θ̂MLE, using (for example) uniroot() (Team,

2019), constrained to [0, 1]. Once the probability of target presence θ̂MLE is esti-

mated, we have all of the requisite components to estimate the underlying proba-

Choose Target
(P1)

Do Not Choose
(A1)

Choose
Foil
(P2)

Do Not
Choose
(P3)

Choose Foil
(A2)

Target Present

Target Absent

Accurate Not Accurate

Figure 4.4: A display of the eyewitness decision outcome space, which takes into
account the underlying status of the lineup, where considering P(Choose).
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bility of accuracy ρ̂i for each participant,

P (i-th participant accurate)
∧

= P (Yi = 1)
∧

(4.12)

= P̂1i · θ̂MLE + Â1i · (1− θ̂MLE)

= ρ̂i.

Theoretically, the point estimate should follow the asymptotic properties of any

other MLE. It should be consistent, efficient, and functionally invariant. That is the

estimator will converge to some value, which means that the variance and bias of

the estimator will converge to zero as sample size n tends to infinity. The estimator

will also be asymptotically efficient (i.e., it achieves the Cramér-Rao lower bound,

or lowest MSE, as n tends to infinity) The distribution assumptions made here are

based more on convenience and hope, rather than any demonstrable evidence for its

validity.

To ensure the existence of estimators using MLE with the constraint θ̂MLE, as the

parameter space may not necessarily be convex and the likelihood function may not

necessarily be concave, we recommend running multiple subsamples to train multiple

models. Then, to average the estimates across the models. In our application, we

ran m = 50 models with subsamples s = 0.7n, where n is the total number of

observations. That is, we randomly selected subsamples without replacement that

were 70% of the original sample size. Of course, we reserved the remaining 30% of

the samples as testing samples.

Other Methods of Estimating P(TP)

Other researchers have looked into estimating the probability of target presence.

The primary method is based on the idea of minimization of some loss function, and
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utilizes the assumptions of the SDT model (Wixted et al., 2016a, 2018).1 Semmler

et al. (2018) provides the code to estimate this value, which is referred to as max-

imum likelihood estimation for signal detection theory. This method assumes two

normal distributions: one for the memory strength corresponding to the suspect

N
(
µtarget, σ

2
target

)
and one for memory strength corresponding to the lure (i.e., inno-

cent suspect) N (µlure, σ
2
lure). These distributions could be parsed into finer intervals

based on some confidence levels c1, c2, and c3. Thus, there could be up to five

parameters (the means, variances, and confidence levels) to estimate based on these

assumptions. Only up to five parameters could be estimated, as only six degrees of

freedom exist. Often times the model is assumed to follow an equal variance model,

where σ2
target = σ2

lure.

The data is a table of counts, separated into suspect identification (guilty or

innocent suspect), foil identification, and not present decisions. The estimation

procedure depends on the number of foil identification and suspect identification,

which are used in the derived formulas for estimation. In some applications, the

estimation is performed using iterative proportional fitting for a two-dimensional

table, by iteratively generating estimates until the difference of the known truth and

the estimate are below some threshold. The estimates are iteratively generated with

the goal of minimizing the observed frequencies or cell counts for the data and the

cell frequencies for the model. Semmler et al. (2018) uses the likelihood ratio statistic

G2, for observed counts oi and expected counts ei, whereas Wixted et al. (2018) use

the chi-squared goodness-of-fit statistics of the actual and estimated tables. Wixted

et al. (2018) showcase the performance of their procedure by simulating various rates

of target presence for a chosen data set in Figure 4.5. Both the G2 statistic and

1Andrew Cohen, Jeffrey Starns, Caren Rotello, and Andrea Cataldo from University of Mas-
sachusetts at Amherst are working on extending this method; at the time of this writing, they
have not published their work. Knowledge of their work comes from personal communication.
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the chi-squared statistics approximately follow chi-squared distributions, with the

G2 approximating the distribution more closely for small sample sizes.

Figure 4.5: Estimated probability of target presence (named base rate in this plot)
from different underlying rates of actual target presence in the data. This plot was
taken from Wixted et al. (2018) to show the performance of their model fitting
procedure. The underlying true base rate is on the x-axis and the estimated (i.e.,
recovered) base rate is on the y-axis.

An advantage to this estimation procedure is the simplicity of the data structure

required. The estimation procedure needs only summary counts, whereas for our

proposed framework, we require the entire data set. However, this method relies

solely on minimizing the loss function, which results in very similar behavior across

different data sets. Both procedures are generalizable to other data sets, but our

proposed framework enables the estimation of an additional (primary) variable of

individual probability of choosing.

We will use the code from Semmler et al. (2018) for a rough comparison of

performance. It seems with the MLE SDT method, the behavior will be similar

for similar groups of people or similar experimental types. While the results from
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Cohen’s group show a mixture of behaviors, we found that the MLE SDT code from

Semmler et al. (2018) exhibits similar behavior for estimation for similar types of

data. Using the experimental data from Mickes et al. (2017), we fit the proposed

framework and the MLE SDT estimation method for each of the experiments.

4.3 Application

Empirically, it seems that this framework performs best given an optimal combina-

tion of sample size and covariate information. While the factor data set was not the

largest data set fit, it did include the most number of covariates from demographic

information and characterizing the lineup. The performance on the delay data set

was almost, but not quite, as good, primarily due to the availability of covariates

and the relatively large number of observations.

4.3.1 Factor Data Set

Now that the procedure has been established, we seek to show proof-of-concept of

performance and usability. We return to one of the data sets described in Sec-

tion 2.2.2 obtained by Dodson and his lab at the University of Virginia. This is

the data, denoted as the factor data set. The data set has 3160 observations with

16 variables. Recall the data set arises from a 24 full-factorial designed study. Fig-

ure 4.6 shows only the first six rows of this data set; each row corresponds to a

different participant, recruited via Qualtrics©, SurveyGizmo©, or Amazon© Me-

chanical Turk. Additional covariate information and counts for the factor data set

can be found in Table B.1 and Table B.2.

We ran the estimation procedure on the factor data set to visualize the em-

pirical density of the probabilities of accuracy for the factor data set as shown in
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Figure 4.6: First six observations of the factor data set with all 16 variables

Figure 4.7. The following covariates are included in the random forests: weapon

presence, lineup race, lineup format, lineup bias, CFMT score, participant race,

confidence in response, logarithm of decision time, and age.

The first measure of performance is to gauge the ability of the method to “re-

cover” (i.e., estimate) the rate of target presence. The factor data set has a fixed

rate of 50% target present observations, so data with other rates need to be simu-

lated. Since it is known that MLE may suffer at the edges of the response surface,

we chose to simulate rates ranging from 5% to 95%. This is realistic, since it is

highly unlikely that a law enforcement agency would have near perfect nor near

imperfect accuracy. The rates are simulated at each percentage point between 5%

and 95%. For each simulated rate, 50 random subsamples without replacement were

taken from the entire data set by downsampling within each subset of target present

and target absent observations such that the requisite proportions of observations
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Figure 4.7: Empirical density of estimate probabilities of accuracy from the factor
data set

are met. Each training set subsample consists of approximately 60% to 70% of the

original, full data set. The remaining 30% to 40% of the data were denoted the

testing set. Among the 50 models fit, we found the mean and median estimated

values of the rate of target presence. The results are shown in Figure 4.8, and have

extraordinarily good results, with very little bias for the majority of rates and min-

imal and constant variance across the span of all rates. Overall, the method seems

to be biased for more extreme values of true P (TIP), by slightly over-predicting for

low true P (TIP) and under-predicting for high true P (TIP).

The second measure of performance is a bit of fine-tuning in terms of node size

and number of trees for the random forests. The default node size is 1. We also allow
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Figure 4.8: Factor data set: estimated probabilities of target presence (base rate)
versus underlying truth for rates from 5% to 95% at increments of 1% with 50 sub-
samples without replacement for each rate. The green points are the mean estimated
values and the blue points are the median estimated values. The underlying truth
is on the x-axis, while the estimated rates are on the y-axis. The shaded red area
represents the full range of estimates (minimum to maximum estimates).

the node size to be 1% to 10% of the training sample size, with increments of 1%.

The number of trees range from 100 trees to 1000 trees, with increments of 100. We

evaluate the performance of the random forest by looking at all combinations of the

node size and number of trees with 50 iterations (i.e., 50 subsamples of n = 1000

taken without replacement); i.e., node sizes [1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100].

From the 50 iterations, we look at the range of the values (maximum minus min-

imum) for each iteration, and find the median value, as shown in Figure 4.9, to

assess the variability of the estimates based on different subsamples. The median is

established based on testing values run through the model, across the 50 iterations

for all combinations. Based on Figure 4.9, variability of the estimates decreases as

the node size increases, but only up to a certain node size. The largest decrease of

variability is from node size of 1 to node size of 10 (1% of the sample size). Vari-
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ability decreases at smaller steps for node sizes of 20 and larger. This suggests an

optimal node size is potentially 1% of the sample size. Of course there seems to be

less variability for node size of 40 (4% of the sample size). Additionally, 500 trees

appears to be the point where the variability flattens.

Figure 4.9: Factor data set: estimated probabilities of accuracy showing the effect
of node size and number of trees. The x-axis shows the number of trees, ranging
from 100 to 1000 at increments of 100. The y-axis represents the median range
of estimated probabilities across all samples. The colored lines represent the node
sizes, where “0” is the a node size of 1 and the node sizes labeled “1” to “10” are
the relative proportions of the sample size.

To further assess the performance of various combinations of node sizes and num-

bers of trees, we look at the bias of the estimate of the rate of target presence. We

would look at the bias of the estimated probabilities of accuracy, but no obtainable

true values exist for comparison. Figure 4.10 shows the increase of bias node size

increases. The bias increases minimally between node size of 1 and 10, but more

significantly increases for larger node sizes. Thus, the suggestion of optimal node
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size of 1% of sample size is justified in this case and, potentially, for other data sets.

Number of trees minimally affects the bias.

Figure 4.10: Factor data set: estimated probabilities of target presence showing
the effect of node size and number of trees. The x-axis shows the number of trees,
ranging from 100 to 1000 at increments of 100. The y-axis represents the median
estimated rate of target presence across all samples. The colored lines represent the
node sizes, where “0” is the a node size of 1 and the node sizes labeled “1” to “10”
are the relative proportions of the sample size. The black dotted line represents the
underlying truth.

The final measure of performance is the comparison of interpretability of the esti-

mated probabilities of accuracy to existing methods. Specifically, we are interested

to see if universally accepted or agreed-upon conclusions of lineup characteristics

remain true for the estimated probabilities in the case of the factor data set. From

the literature, researchers universally agree that fair lineups are superior to biased

lineups, as biased lineups cause more high confidence misidentifications than do fair

lineups.2 Researchers also strongly agree that for choosers:

2Chad Dodson, personal communication
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(1) Fair lineups have better accuracy than biased lineups;

(2) Same-race lineups have better accuracy than cross-race lineups;

(3) Crimes without weapons result in lineups that have better accuracy than

crimes with weapons;

(4) Simultaneous lineups are superior to sequential lineups; and

(5) Lineups of size one (i.e., a showup) is inferior to a lineup size of six.

Note that these statements are not necessarily terminal nor absolutely conclusive,

but serve as a snapshot of the current beliefs in the literature.

We can assess four of the five items from above by looking at the estimated

probabilities of accuracy. We subset the probabilities by the appropriate factor,

which are lineup fairness, cross-race effect, weapon presence, and type of lineup in

this case. We assess this via notched box plots in Figure 4.11 to view the distribution

of estimated probabilities by the levels of the factors. The box plots suggest that fair

lineups have higher accuracy than biased lineups by a subjectively marginal amount,

but have a larger variability. Simultaneous lineups have much better performance

in terms of accuracy and lower variability. The cross-race and weapon effects are

less obvious, with cross-race and weapon presence lineups showing a slightly higher

accuracy. These boxplots also collapse across choosers and non-choosers.

From an applied standpoint, it may be important to separate chooser and non-

choosers responders, as there are different consequences when an eyewitness has

responded “not present” versus selecting a face from a lineup. Thus, we can examine

the boxplots for the subsetted data (choosers separate from non-choosers), as shown

in Figure 4.12 and Figure 4.13, respectively.
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Figure 4.11: Factor data set, comparison of estimated probabilities of accuracy
by four factors: (1) lineup fairness (top left); (2) cross-race effect (top right); (3)
weapon presence (bottom left); and (4) type of lineup (bottom right). The estimated
probabilities are on the y-axis, while the two levels for the four factors are on the
appropriate x-axes.

For choosers, fair lineups do appear to be more accurate than biased lineups.

However, it seems that there is little difference from the collapsed data regarding

the accuracy of same- versus cross-race lineups and weapon presence. The cross-race

result may be a result of an extremely memorable actor for the white perpetrator.

There is a switch in the sequential versus simultaneous lineup conclusion, where

there is less accuracy. However, simultaneous lineups do seem to have much less

variability.

For non-choosers, biased lineups appear to be more accurate than fair lineups.



99

Figure 4.12: Factor data set, comparison of estimated probabilities of accuracy by
four factors for choosers: (1) lineup fairness (top left); (2) cross-race effect (top
right); (3) weapon presence (bottom left); and (4) type of lineup (bottom right).

However, again there seems to be little difference in the results for the same- versus

cross-race and weapon presence conclusions. Simultaneous lineups are more accurate

than sequential lineups.

These conclusions are ambiguous, as the notches do appear to overlap for the

majority of the cases, regardless of the collapse or separation of choosers versus

non-choosers. Additionally, these box plots are only based on a singular experiment,

which may or may not be 100% ecologically valid. We would like to explore more

data sets similar to this one in terms of complexity level and number of observations

for further analysis.
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Figure 4.13: Factor data set, comparison of estimated probabilities of accuracy by
four factors for non-choosers: (1) lineup fairness (top left); (2) cross-race effect
(top right); (3) weapon presence (bottom left); and (4) type of lineup (bottom right).

In fact, this framework may not be the most appropriate method for the separate

analysis of choosers versus non-choosers, as we are looking at the probability of

accuracy, which averages a single eyewitness’s. It may be possible to consider the

components separately as P (Choose Target | T = 1) · P (T = 1) for choosers and

P (Don’t Choose | T = 0) · P (T = 0) for non-choosers.

Another option for the completely separate analysis of choosers versus non-

choosers is to consider a slightly different framework than the one proposed here.

It may be possible to decompose accuracy in terms of the probability of choosing

P (Accurate | Choose) and the probability of not choosing P (Accurate |Do Not Choose).
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The details of this framework may more complicated, as there is overlap in the es-

timates of these two probabilities.

4.3.2 Other Data Sets

Similar results were found for other data sets, such as the delay and repeated delay

data sets described in Section 2.2.2. The performance of the estimator for TIP

observations declined with less complicated data sets with fewer potential covariates.

This is due to the limited information to capture the true behavior of the global

variable of target presence. Clearly, we need an ecologically valid data set, with as

many variables measured as possible, to better generalize the fitted model to new

data sets. Nonetheless, the performance of the estimation procedure appears to be

more informative than the procedure from Wixted et al. (2018) and the Cohen’s

team at UMass Amherst.3

The MLE SDT method from Semmler et al. (2018) was fit to a table where the

ratio of target present and target absent lineups was known, giving it an advantage

in terms of estimation performance. It was done this way for two reasons. First,

this enables an “unfair” comparison, giving a “best case scenario” result for the

MLE SDT method and a “realistic” scenario for our methodology. A comparison of

metrics (squared bias, variance, and MSE) is provided in Table 4.2 for multiple data

sets, including the factor data set, delay data set, Mickes et al. (2017) data set, and

all data from all experiments in Seale-Carlisle et al. (2019). Figure 4.14 shows the

performance from four data sets: the factor data set, the delay data set, the Mickes

et al. (2017) data set, and experiment 1 from Seale-Carlisle et al. (2019).

Covariates included in the delay data set random forest models are delay, weapon

3Unfortunately, there was difficulty obtaining the full data sets to run a full performance compar-
ison.
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Figure 4.14: Estimated probabilities of target presence (base rate) versus underlying
truth for rates from 5% to 95% at increments of 1% with 50 subsamples without
replacement for each rate. The green points are the mean estimated values from the
MLE SDT estimation method from Semmler et al. (2018) and the blue points are the
mean estimated values from our framework. The underlying truth is on the x-axis,
while the estimated rates are on the y-axis. The shaded areas with their respective
colors represent the full range of estimates (minimum to maximum estimates).

presence, confidence rating, logarithm of reaction time to making a confidence rating,

CFMT score, sex, age, and logarithm of decision time. Covariates included in the

Mickes et al. (2017) data set random forest models are age, ethnicity, education

level, sex, and instructional biasing. We did not include confidence, since only 1/6

of the participants were asked to report a confidence rating, which means that 5/6

of the data set would have a missing value for that covariate. Covariates included
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in the experiment 1 from Seale-Carlisle et al. (2019) include experimental condition

(simultaneous versus sequential), confidence, age, ethnicity, and sex.

We evaluated the methods via squared bias, variance, and MSE (the sum of

squared bias and variance), where Bias2 and Var are defined in Equation 4.13.

Suppose there are T known truths for probability of target presence.

Bias2 =
1

T

T∑
t=1

[(
1

M

M∑
m=1

θ̂mt

)
− θt

]2
(4.13)

Var =
1

T

T∑
t=1

 1

M − 1

M∑
m=1

(
θ̂mt −

1

M

M∑
m=1

θ̂mt

)2


Overall, the MLE SDT method appears more robust based on the metrics in

Table 4.2, but the visual comparison provides a different story. In Figure 4.14,

the MLE SDT performance is nearly identical across the four data sets due to

the maximization of the goodness-of-fit criteria for the table counts. The method

overestimates for the majority of the true rates. However, our framework provides

unique fits for the available information in the data.

It seems that the more information available that can characterize more of the

variability in the response, the better the estimation is, as shown by the factor data

set. The extreme deterioration in performance from the experiment 1 data is due to

the potential lack of information in the manipulated experimental conditions. The

experiment 1 data from Seale-Carlisle et al. (2019) has arguably the least amount

of information available, which explains the poor performance. Some information

exists in the demographic covariates, which enables a slightly increasing estimate

as the true value of P (TIP) increases. It is clear that the information is not nearly

sufficient. We also like to note the performance from Seale-Carlisle et al. (2019)

experiment 1 is the worst across all data sets fit using our framework, including the
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other experiments 2 through 5 from Seale-Carlisle et al. (2019).

Additionally, the small variability in estimates using the MLE SDT method

suggests that if (and when) an incorrect estimate is made, it is unlikely to lie close

to the truth. This issue could potentially be corrected with a bias correction, which

has not been addressed in the literature.

Data Set Method Bias2 Variance MSE

Factor data set
SDT 0.013 1.62E-04 0.013

Framework 0.004 0.002 0.006

Delay data set
SDT 0.017 1.78E-04 0.017

Framework 0.022 0.009 0.031

Mickes et al.
(2014) data set

SDT 0.012 1.10E-04 0.012
Framework 0.012 9.44E-09 0.013

Expt. 1
SDT 0.015 1.67E-04 0.015

Framework 0.073 0.006 0.079

Expt. 2
SDT 0.018 1.73E-04 0.018

Framework 0.068 0.006 0.074

Expt. 3a
SDT 0.014 1.21E-04 0.014

Framework 0.056 0.006 0.062

Expt. 3b
SDT 0.015 1.03E-04 0.015

Framework 0.060 0.007 0.067

Expt. 4
SDT 0.017 1.55E-04 0.017

Framework 0.051 0.007 0.058

Expt. 5
SDT 0.013 1.89E-04 0.014

Framework 0.040 0.007 0.047

Table 4.2: Comparison of squared bias, variance, and MSE from the Dodson data
sets (factor and delay data sets), Mickes et al. (2014) data set, and Seale-Carlisle
et al. (2019) data sets. Here, “SDT” is the MLE SDT method and “Framework” is
our proposed modeling framework.
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Figure 4.15: Comparison of estimated base rates to true base rates for our framework
(on the left) and the MLE SDTmethod implemented by Cohen’s group (on the right)

The method implemented from Semmler et al. (2018) is not the exact method

implemented by Wixted et al. (2018), but rely on the same underlying concepts. The

described methodology from Wixted et al. (2018) was unable to be replicated, and

the upcoming contributions from Cohen’s group at UMass Amherst has not yet been

published. In the future, once their proposed R package sdtlu is available, a more

in-depth and thorough comparison could be performed. Cohen’s group did run their

estimation method on the data from Mickes et al. (2017), to which we had access.4

Cohen’s group seemed to use a subsample size of approximately 1000 observations,

whereas, we used approximately 600 observations. The performance of Cohen’s

group’s method appears visually different from the Semmler et al. (2018) method,

but this is due to the difference in step sizes between simulated base rates. The MLE

4Travis Seale-Carlisle, personal communication.
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SDT method overestimates the actual base rate with obvious regularity, whereas our

framework simultaneously overestimates for lower base rates and underestimates for

higher base rates, with exact estimates for the middle range of base rates.

4.4 Framework

We have provided the details and construction of the framework. Overall, the frame-

work provides an estimation procedure for a specific data structure that contains

two types of latent variables: (1) a per unit latent variable and (2) a global latent

variable. In the case of EWID data, the per unit latent variable is the probability

of choosing for each person, which is dependent upon the global latent variable of

rate of target presence. Neither variable is known a priori, and, in fact, neither is

usually ever known. The general algorithm detailed in this chapter is provided in

Algorithm 1.

We could extend this framework to other types of data that follow the same

inherent idea of a per unit latent variable and a global latent variable. The two

latent variables need to be related in some way by some possible outcome. In the

case of EWID data, the outcomes are the eyewitness decisions within a lineup.

Figure 4.16 shows the general data structure required, where “Var. 1” represents

the per unit latent variable and “Var. 2” represents the global latent variable. The

outcomes connecting the two latent variables are listed as cross-items within the

table. There can be as many categories within each latent variable as necessary

for the data, with as many outcomes as necessary for the combinations of latent

variable categories, as denoted by the triple dots.

For example, suppose a geophysicist is choosing locations to obtain samples to

measure the presence of two compounds. The geophysicist would be interested in the
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Algorithm 1: Estimation procedure framework for estimating a per unit
latent variable and global latent variable for EWID data

Input: Data set with n samples, pre-determined number of models to fit m
Output: Predicted probability of choosing for each participant ρi and

estimated probability of target presence θ
for j = 1, . . . ,m do

Randomly select subsample without replacement such that total number
of training samples is equal to 0.7n.
Subset subsampled data into target present and target absent
participants.
Fit a random forest to each subset of data using the eyewitness decisions
as the response variable.
for i = 1, . . . , n do

Determine the probability estimates P1, P2, P3, A1, and A2 for each
participant.
Calculate ai and bi.
Solve numerically for θMLE using the provided formula in
Equation 4.11.
Plug in estimated values to find ρi.

end for

end for

probability of finding useful samples in a given location. Suppose a unit is a sample

in this case. The per sample (i.e., column) variable is the indicator function of

useful sample (yes or no). The global (i.e., row) variable are the possible locations

(location one, location two, etc.). The outcomes (i.e., within the boxes) are the

status: zero, one, or two compounds.

Another example is determining the probability of payment for a credit card

company, given a general propensity for charge-off. A charge-off occurs when a

credit card user fails to pay the full balance on a card within some specified period

of time, which requires the credit card company to assume full responsibility of

the revenue loss. Of course, it is in the best interest of the credit card company

to minimize this loss to maximize profit. In this case, the per user variable is the

probability of payment. The global variable is the probability of charge-off, perhaps
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Outcome 1

Outcome 2

...

Outcome 3

Outcome 4

...

...

...

...

Var. 2a

Var. 2b

...

Var. 1a Var. 1b ...

Figure 4.16: General data structure required for utilizing the proposed estimation
framework

averaged over types of credit cards or credit score brackets (i.e., subprime, near

prime, prime, and super prime). The outcomes are identifying when the user last

made a payment (i.e., on-time payment in the last cycle, two cycles, three cycles,

etc.)

Now suppose an agricultural science company runs an experiment to determine

the performance of fungicides. They are looking at the probability of resistance of

fruit to some fungus. The per fruit (e.g., apples, oranges, lemons, etc.) variable is

the probability of resisting the fungus, inherent to the fruit. The global variable

is the average effectiveness (as measured in some appropriate metric) of fungicide

A, fungicide B, etc. The outcomes are the types of harvest, whether it is a usable

harvest, unusable harvest, or no harvest at all.

4.4.1 Limitations

This method has some limitations. First, the method requires the entire data set,

rather than a set of summary counts. It may be more difficult to obtain full data
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sets rather than those summary counts. A more immediate problem is the lack

of available, replicated full data sets. In fact, it was not feasible to fit models to

existing “training” data and then fit new “testing” data even at this stage. The

available data sets did not replicate each other in terms of manipulated and/or

recorded covariates.

Second, the data needs to be ecologically valid for use in the field. The end goal

is to fit a model that could be used at a law enforcement agency for day-to-day use,

which will not be possible unless the training data set is representative of the future

test points. From what is available in the literature, the current data sets are quite

limited in terms of ecological validity, primarily due to resource constraints. Groups

are working to fix these deficits.

Finally, the current use of random forests for probability estimation could be

problematic in terms of asymptotic behavior, as noted in Section 4.2.1. Other

probability estimation methods could be employed, but from the performance we

have seen, the current majority vote method seems sufficient.

4.4.2 Discussion

Overall, our method provides a substantial contribution to the EWID field, because

it enables the estimation of two latent variables: (1) the probability of accuracy for

each eyewitness and (2) the probability of target presence or base rate for a given

data set. It is not only applicable to EWID data, but to data from other fields that

follow a similar structure. In comparison to an existing method of estimating base

rate, it performs much more variably, but with increasing accuracy as the complexity

of the data set increases.

A key component to the success of implementation is to obtain as much infor-
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mation as possible in terms of both the system and estimator variables relevant

to eyewitness lineups. Additionally, in order for implementation to take place for

real use, ecologically valid data sets need to be collected to train a suitable model.

This is a tremendous step to advancing the analysis of EWID data that needs to be

supplemented by the psychology experts in the field, which is core to the original

interdisciplinary motivation.
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Part II

Errors-In-Variables and Random

Forests
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Chapter 5

Asymptotic Theory for Random

Forests

5.1 Introduction

Random forests are generally thought of as “black box” methods, in which the

predictions from such models are validated empirically through some hold-out val-

idation data set. Users consider these models as black box since the model is built

based on randomized inner components that are chosen without guidance from the

user, resulting in an “opaque” implementation. Such empirical validation can cause

issues when attempting to utilize more classical inference procedures such as hy-

pothesis tests and confidence intervals on the predicted responses. The key to to

evaluating results from random forest models in such a manner is by establishing

an asymptotic framework. The investigation of the asymptotic behavior of random

forests is a relatively new field and offers useful insights. Biau and Scornet (2015)

provide a “guided tour” of the recent literature in random forests, covering topics

such as the connection of random forests to nearest neighbors and kernels; resam-
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pling mechanisms commonly found in random forests including CART; consistency;

asymptotic normality; and variable importance measures. We review some of these

topics below to set the foundation for the novel contributions to be discussed, by

giving an abbreviated version of the tour from Biau and Scornet (2015). We further

review the framework for asymptotic normality as established by Wager and Athey

(2018), which will provide the foundation for the novel contributions in Chapter 6.

5.2 Random Forests

Random forests were originally developed by Breiman (2001) based on the CART

algorithm (see Breiman et al., 1984). Although for some users, “random forests”

simply means some aggregation of random decision trees, regardless of the algorithm,

we will take the view that random forests refer to the original algorithm proposed

by Breiman (2001).

5.2.1 Principles

Regression

The random forest follows the framework of nonparametric regression (i.e., regres-

sion tree) estimation with an observed input random vector X ∈ X ⊂ Rp. That

is, we observe p variables X that are a subset of real numbers in a p-dimensional

vector space. The goal is to predict the square integrable random response Y ∈ R.

Assume we have some training sample Zn =
[
(X1, Y1), . . . , (Xn, Yn)

]
of independent

random variables. Let Zi = (Xi, Yi). The model uses Zn to create an estimate

µn(x) : X → R (5.1)
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of the function µ(x) for some test point x. We are estimating the true conditional

mean response function

µ(x) = E (Y | X = x) (5.2)

The random forest predictor consists of a collection of M randomized regression

trees. For the j-th tree in the collection, the prediction at test point x is denoted as

T (x; θj;Zn) where θj ∼ Θ for j = 1, . . . ,M is a variable to encompass randomness

from resampling and the splitting procedure. This randomness is known as auxiliary

randomness Wager and Athey (2018). Here, T is the regression tree used to estimate

the conditional mean response function at x. Mathematically speaking, the j-th tree

estimate is of the form

T (x; θj;Zn) =
∑

i∈Z∗
n(θj)

1Xi∈An(x;θj ,Zn)
Yi

Nn(x; θj,Zn)
(5.3)

where Z∗
n(θj) represents the set of data points selected before the construction of

the tree, An(x; θj,Zn) is the node containing x, and Nn(x; θj,Zn) is the number of

points that fall into An(x; θj,Zn). This estimator is counting the number of times

the observed value and the fitted value fall within the same node among all points

that fall within that node. Some authors may also refer to the “node” of a tree as

a “cell.”

The M regression trees are combined to give the finite forest estimate

µM,n(x; θj,Zn) =
1

M

M∑
j=1

T (x; θj,Zn). (5.4)

The R package randomForest (Liaw and Wiener, 2002) sets the default value for

M at ntree = 500. In practice,M is only limited by computing resources. Allowing
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M to tend to infinity gives the infinite forest estimate

µ∞,n(x;Zn) = E Θ

[
µn(x; θ;Zn)

]
. (5.5)

Here, EΘ denotes the expectation with respect to θ given ZN . We marginalize

over the auxiliary randomness. Scornet (2016a) showed that, in general, M →∞ is

justified via the law of large numbers. Conditional on Zn, the following converges

almost surely

lim
M→∞

µM,n(x; θj,Zn) = µ∞,n(x;Zn). (5.6)

Classification

The framework for regression random forests extends to supervised classification

problems as well. For simplicity, let us assume the binary classification problem.

The framework can inherently model multi-class problems as well. In the binary

classification problem, the random response is Y ∈ 0, 1 and, given X, the model

classifies the responses Y . The classifier T is a Borel-measurable function of X and

Zn that labels Y and Zn. T is consistent if the conditional probability of error

satisfies

L(T ) = P
[
T (X) 6= Y

]
→
n→∞

L∗, (5.7)

where L∗ is the error of the unknown, optimal Bayes classifier

T ∗(x) =


1 if P (Y = 1 | X = x) > P (Y = 0 | X = x)

0 otherwise

. (5.8)

The random forest classifier is then obtained through a majority vote among the
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M classification trees,

µM,n(x; θ1, . . . , θM ,Zn) =


1 if 1

M

∑M
j=1 T (x; θj,Zn) >

1
2

0 otherwise

. (5.9)

Suppose a node represents region A, then the randomized tree classifier becomes

T (x; θj,Zn) =


1 if

∑
i∈Z∗

n(θ)
1Xi∈A,Yi=1 >

∑
i∈ZI

n(θ)
1Xi∈A,Yi=0,x ∈ A,

0 otherwise

(5.10)

where Z∗
n(θ) contains all of the data points chosen in the resampling step. In each

node, a majority vote is taken over all points Zi = (Xi, Yi) for which Xi is in the

same region A. By convention, any ties are broken in favor of class 0. Algorithm 2

easily adapts to classification by utilizing a slightly different CART-split criterion.

5.2.2 Algorithm

The random forest algorithm grows M different, randomized trees. The trees are

grown from sn observations drawn at random with[out] replacement from the full,

original data set. If the samples are drawn with replacement, then there may be

repeated observations. These sn observations are used to construct each tree, and

are redrawn for each tree. At each cell or node of the each tree, the sample is split

by maximizing the CART-split criterion (described below) over mtry directions that

are chosen uniformly from the full set of p covariates. LetMtry denote the resulting

subset of chosen coordinates. Each tree completes its building process once each

node contains fewer than k = nodesize points. For any test point x ∈ X , each

regression tree predicts the average of the Yi that were in the drawn sn points for
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which the corresponding Xi falls into the node of x. This process is summarized in

Algorithm 2, which is adapted from Biau and Scornet (2015). In this algorithm, P

is the list of chosen partitions to determine the resulting nodes. A similar algorithm

can be constructed for supervised classification.

The three key parameters in the algorithm are:

1. sn ∈ 1, . . . , n: the number of sampled data points per tree;

2. m = mtry ∈ 1, . . . , p: the number of possible directions (i.e., covariates) to

split the sample at each node of each tree;

3. k = nodesize ∈ 1, . . . , sn: the number of observations in each node that below

which node the splitting is terminated (i.e., the terminal node).

The terminology is given in terms of the randomForest R package (Liaw and

Wiener, 2002). The default size for mtry is dp/3e, sn is set to n or the full size of

the original data set, and nodesize is set to five for regression trees and one for

classification trees. Here, d·e is the ceiling function.

The CART-split criterion maximizes the homogeneity in each child node from the

parent node at each split-point. Let A be a generic node and Nn(A) as the number

of the data points that fall in A. A pair (c, d) is a cut in A, where c ∈ 1, . . . , p

and d is the position of the cut along the c-th coordinate within the bounds of A.

Define CA be the set of all possible cuts in A. Let Xi =
(
X

(1)
i , . . . ,X

(p)
i

)
for any

(c, d) ∈ CA, the CART-split criterion is

Lreg,n(c, d) =
1

Nn(A)

n∑
i=1

(
Yi − ȲA

)2
1Xi∈A

− 1

Nn(A)

n∑
i=1

(
Yi − ȲAleft

1
X

(c)
i <d

− ȲAright
1
X

(j)
i ≥d

)2
1Xi∈A (5.11)
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Algorithm 2: Breiman’s random forest, predicted value at x

Input: Training set Zn; number of trees M > 0; sn ∈ 1, . . . , n; mtry

∈ 1, . . . , p; nodesize ∈ 1, . . . , sn; and x ∈ X
Output: Prediction of the random forest model at x

for j = 1, . . . ,M do
Pick sn points with or without replacement, uniformly in Zn. Use only

sn for the following steps.

Set P = (X ) as the list containing the node associated with the root of

the tree.

Set Pfinal = ∅, an empty list.

while P 6= ∅ do

Let A be the first element in P .
if A contains fewer elements than nodesize points or if all Xi ∈ A
are equal

then

Remove the node A from the list P
Pfinal ← Concatenate(Pfinal, A)

else
Select uniformly, without replacement, a subset of

Mtry ⊂ 1, . . . , p of cardinality m = mtry.

Select the best split in A by optimizing the CART-split criterion

(described in the text) along the coordinates inMtry.

Cut the parent node A according to the best split.

Call Aleft and Aright the two resulting child nodes.

Remove node A from the list P .
P ← Concatenate(P , Aleft, Aright).

end if

end while

Compute the predicted value T (x; θj,Zn) at x equal to the average of

the Yi falling in the node of x in partition Pfinal.
end for

Compute the random forest estimate µM,n(x; θ1, . . . , θM ,Zn) at the test

point x according to Equation 5.4.

where Aleft = x ∈ A : x(j) < d for the left child node, Aright = x ∈ A : x(j) ≥ d for

the right child node, and ȲA is the average of the Yi belonging to A. Let ȲA = 0 if
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no point Xi belongs to A.

Lreg,n(c, d) determines the total number of data points within a given node and

averages the deviations between the observed value Yi and the fitted value from

the average of the node ȲA for three different nodes: the parent node and the two

child (left and right) nodes. This is the normalized difference in empirical variance

between the parent nodes and the children nodes before and after a cut is made.

The chosen cut is made uniformly across the possible directions inMtry, returning

the best one. The best cut (c∗n, d
∗
n) is chosen by maximizing Lreg,n(c, d) over Mtry

and CA,

(c∗n, d
∗
n) ∈ argmax

j ∈ Mtry

(c,d) ∈ CA

Lreg,n(c, d). (5.12)

The criterion for classification follows a similar framework. Define p0,n(A) and

p1,n(A) as the empirical probability of a data point in node A having label 0 and

1, respectively. Then, for any (c, d) ∈ CA, the classification CART-split criterion

(Breiman et al., 1984) is

Lclass,n(c, d) = p0,n(A) · p1,n(A)−
Nn(AL)

Nn(A)
· p0,n(AL) · p1,n(AL) (5.13)

− Nn(AR)

Nn(A)
· p0,n(AR) · p1,n(AR). (5.14)

This criterion Lclass,n is based on the Gini impurity measure 2 · p0,n(A) · p1,n(A). In

randomForest (Liaw and Wiener, 2002), the default values are nodesize = 1 and

mtry =
√
p.
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5.3 Asymptotic Normality

Two separate groups showed that random forests are asymptotically normal, first

by Mentch and Hooker (2016); then by Wager and Athey (2018). The underly-

ing approach of the two follow similar structures, both based on Hájek projections

(Hájek, 1968), but use different assumptions resulting in different rates of conver-

gence. Both rely on a simplified version of Breiman’s random forest procedure

(Breiman, 2001). Instead of assuming bootstrap resampling for each tree, these

authors assume proper subsampling for each tree, where each observation may not

be chosen more than once. From this point forward, the random forests will be

assumed to be by training trees T on subsamples of size s out of n possible obser-

vations, drawn without replacement. Note that this is implemented practically in R

by setting the option replace = FALSE in randomForest (Liaw and Wiener, 2002).

The bootstrap resampling scheme is often replaced by a subsampling one due

to the resistant nature of the bootstrap to classical statistical methods. While

the bootstrap is simplistic in its practical implementation, the asymptotic behavior

of the bootstrap is often unpredictable. For example, Friedman and Hall (2007)

derived some properties by decomposing bagged predictors. However, in application,

given a linear model, the behavior of the variance was incongruous with what was

expected from the theoretical derivations. In particular, the distribution of the

bootstrap sample B∗
n is different from the original distribution Bn (Biau and Scornet,

2015). For example, suppose there exists some random variableX with some density

f . Whenever observations are sampled with replacement with some probability

p > 0, at least one observation will be chosen more than once. Thus, with positive

probability, there will be two identical data points in B∗
n and the distribution of B∗

n

cannot be absolutely continuous. Many of the asymptotic properties for random



121

forests rely on Lipschitz-continuity, which is not guaranteed for bootstrap samples.

Wager and Athey (2018) assume a random forest that averages trees trained

over all possible size-s subsamples of the training data Zn, marginalizing over the

the noise (i.e., auxiliary randomness) θ. The forest is computed by Monte Carlo

averaging,

µM,n(x;Zn) ≈
1

M

M∑
j=1

T (x; θ∗j , Z
∗
j1, . . . , Z

∗
js) (5.15)

where Z∗
j1, . . . , Z

∗
js is drawn without replacement from Z1, . . . , Zs and θ

∗
j is a random

draw from Θ. The usual application of random forests use the auxiliary randomness

θ is used to randomly regulate the number of covariates on which the trees can split

at any of the training steps. For each step, m features are randomly chosen from

the full set of p possible covariates, and the tree predictor splits on one of these m

features. If m = p, then the tree will always be able to split on any feature, and

the random forest converts to a bagged tree. If m = 1, then the tree is completely

restricted to one covariate on which to split.

Recall that Mentch and Hooker (2016) also establish asymptotic normality, which

assumes stronger conditions than that of Wager and Athey (2018). Mentch and

Hooker (2016) require the subsample size to grow slower than
√
n (i.e., sn√

n
→ 0).

Wager and Athey (2018) note that the random forests are not generally asymptot-

ically biased. Assuming the number of covariates p = 2 and µ(x) = ‖x‖1, evaluate

this forest at x = 0. It can be shown that the bias of the forest decays as 1√
sn
,

while the variance decays as sn
n
. If sn√

n
→ 0, the squared bias decays slower than

the variance. Thus, any confidence interval built using the asymptotic normality

framework of Mentch and Hooker (2016) will not provide coverage for µ(x).

We follow the framework from Wager and Athey (2018) for establishing asymp-

totic normality.
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5.3.1 Assumptions and Definitions

We begin by providing a formal definition for a random forest. The random forest

defined in Definition 5.3.1 is a random kernel U-statistic (Mentch and Hooker, 2016;

Wager and Athey, 2018).

Definition 5.3.1. The random forest with tree T and subsample size s is

µ(x;Zn) =
(
n

s

)−1 ∑
1≤i1<...<is≤n

Eθ∼Θ

[
T (x; θj, Zi1 , . . . , Zis)

]
(5.16)

The trees T in the forest must be honest, random-split, α-regular, and symmetric,

as defined in Definition 5.3.2 to Definition 5.3.5, respectively.

Definition 5.3.2. A tree grown using training sample Zi = (Xi, Yi) for i = 1, . . . , s

is honest if the tree, conditionally onXi, does not use the responses Yi when deciding

where to place its splits.

The concept of honesty stems from the similarity between random forests and

adaptive nearest neighbors (ANN), as detailed by Lin and Jeon (2006). An honest

tree does not reuse the training response values Yi for both choosing split-points of

the tree and for prediction. In other words, the tree is grown using one subsample,

while the predictions at the nodes of the tree are estimated using a different sub-

sample. If the condition is not required, then arbitrarily biased trees can be easily

constructed. This ensures that the split criterion used to identify the selection vari-

able Si is independent of Yi conditional on Xi. Wager (2016) notes that an easy

way to enforce honesty is to divide the training points into a set of structure points

S that are only used to pick the split-points and a set of prediction points P that

are only used to make predictions once the splits are chosen.
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Empirically, honest trees are unbiased regardless of the number of observations

n. Note, that CART trees are not honest by Definition 5.3.2, and result in biased

output. The bias seems to increase with n, since CART trees are assertively sepa-

rating outliers from the other data, thereby pushing outliers into far corners of the

feature space and increasing bias. In general, it seems that the bias of CART trees

is not necessarily that intrusive in the performance of random forests. As long as

the minimum nodesize grows with n, the phenomenon of growing bias is avoided.

Thus, even with the bias, Wager (2016) notes that the asymptotic results still pro-

vide valuable insight into understanding the behavior of CART random forests. The

results still work well in practice. We move forward with the framework.

Definition 5.3.3. A tree is random-split if at every step of the tree-growing process,

marginalizing over θ, the probability that the next split occurs along the j-th feature

is bounded from below by π
p
for some 0 < π ≤ 1 for all j = 1, . . . , p.

The random-split conditions guarantees consistency, by ensuring that the nodes

of the trees becomes small across all dimensions of the covariate space as the number

of observations n→∞. The condition forces each variable to be chosen with some

randomness during the tree building process. The condition is also mentioned by

Meinshausen (2006) in his development of quantile regression trees.

Definition 5.3.4. A tree grown via recursive partitioning is α-regular for some α >

0 if each split apportions at least a fraction α of the available training observations

on either side of the split (i.e., for each child node). Trees are fully grown to depth

k for k ∈ N. Thus, each terminal node of the grown tree has between k and 2k − 1

observations.

The concept of α-regularity provides control over the shape of the nodes in T ,
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which ensures that predictions from random forests are local as the depth of the

tree increases.

Definition 5.3.5. A tree is symmetric if the (possibly randomized) output of the

predictor does not depend on the order in which the training examples are indexed

for i = 1, 2, . . . , n.

Symmetry of trees allows the establishment of asymptotic normality for random

forests.

5.3.2 Central Limit Theorem

The seminal result from Wager and Athey (2018) is Theorem 5.3.1 establishing

asymptotic normality for random forests (see Wager and Athey, 2018, theorem 1).

Theorem 5.3.1. Suppose there are n independent and identically distributed train-

ing observations Zi = (Xi, Yi) ∈ [0, 1]p × R. Moreover, suppose that the covariates

are independent and uniformly distributed Xi ∼ Uniform ([0, 1]p). Suppose also that

µ(x) = E (Y | X = x) and µ2(x) = E (Y 2 | X = x) are Lipschitz-continuous, that

Var (Y | X = x) > 0, (5.17)

and that

E
[∣∣Y − E (Y | X = x)]

∣∣2+δ∣∣∣ X = x
]
≤ Q (5.18)

for some constants δ, Q > 0 uniformly over all x ∈ [0, 1]p. Given this process for

generating data, let T be an honest, α-regular, and symmetric random-split tree as

defined in Definition 5.3.2 to Definition 5.3.5 with α ≤ 0.2. Let µ̂(x) be the estimate

for µ(x) given by a random forest with trees T and a subsample size sn.
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Finally, suppose that the subsample size sn scales as

sn � nβ for some βmin := 1−
(
1 +

p

π
· log(α−1)

log[(1− α)−1]

)
(5.19)

Then, random forest predictions are asymptotically normal,

µ̂(x)− µ(x)
σn(x)

→ N(0, 1) for a sequence σn(x)→ 0 (5.20)

Here, N(0, 1) represents the standard normal distribution. Moreover, the asymptotic

variance σn can be consistently estimated using the infinitesimal jackknife (IFJ),

V̂IFJ(x)

σ2
n(x)

p→ 1 (5.21)

where

V̂IFJ(x) =
n− 1

n

(
n

n− s

)2 n∑
i=1

Cov ∗
[
µ̂∗
m(x), Y

∗
im

]2
. (5.22)

The covariance is taken with respect to the set of all the trees m = 1, . . . ,M . In

this case, Y ∗
im represents the number of times the i-th training observation appears

in the m resamples (i.e., m trees).

By assuming independent and identical distributions, the observations are as-

sumed to be random, independent draws from some underlying distribution. In-

dependent and uniformly distributed covariates allows for the bias of the terminal

nodes to be bounded. Lipschitz-continuity ensures that the differentiable expec-

tations have a bounded derivative, and thus, are differentiable. The IFJ estimate

V̂IFJ is based on the idea of the nonparametric delta-method estimate of standard

deviation derived by Efron (2014).

The authors remark that Theorem 5.3.1 holds for binary classification random
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forests with nodesize = 1. In this case, the output µ(x) of the random forest is

the estimate for the probability P (Y = 1 | X = x). Theorem 5.3.1 allows for

the construction of confidence intervals about this probability. If nodesize > 1,

then Theorem 5.3.1 holds if the trees are built by averaging observations within

a node, but not if the predictions are made via majority vote, as is the case for

randomForest (Liaw and Wiener, 2002). They note that future work could focus

on establishing a central limit theorem (CLT) for classification random forests by

majority vote.

We follow, at a high-level, the proof of the results in Theorem 5.3.1, as shown

by Wager and Athey (2018). Technical details are fully provided in their work.

Bounding the Bias

Wager and Athey (2018) begin by bounding the bias of regression trees

RFbias = E
[
µ̂n(x)− µ(x)

]
(5.23)

by showing that as the subsample size s becomes large, the node sizes become

small. They utilize the diameter of the node, which acts as the pathway for a

particular observation down a tree. The diameter with respect to the j-th axis is

the pathway for nodes containing the j-th covariate, to derive an upper bound for

the bias of a single tree. The diameter diam[L(x)] of a node L(x) is the length

of the longest segment within L(x). Similarly, diamj[L(x)] is the length of the

longest such segment that is parallel to the j-th axis. The derivation for this bound

employs the α-regularity condition from Definition 5.3.4 and Chernoff’s inequality.
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They establish that, for α ≤ 0.2, the bias of the random forest is bounded by

∣∣∣E [µ̂(x)]− µ(x)
∣∣∣ = O(s 1

2
· log[(1−α)−1]

log(α−1)
·π
p

)
(5.24)

Bounding the bias ensures the predictions will converge at the rate established in

Equation 5.24, which is necessary to establish the consistency of the estimator µ̂(x).

U-Statistics and Hájek Projections

Wager and Athey (2018) continue to lay the foundation for asymptotic normality of

random forests by building upon the idea of asymptotically normal U-statistics from

Hoeffding (1948). Mentch and Hooker (2016) provides a connection of U-statistics

to random forests, which is also utilized by Wager and Athey (2018). The authors

reference Lee (2019) for a more complete treatment of U-statistics. See Appendix D

for a brief introduction to U-statistics.

Specifically, Wager and Athey (2018) and Mentch and Hooker (2016), use the

Hájek projection of a random variable, which is the projection of the random variable

onto the set of sums
∑n

i=1 gi(Xi) of measurable functions satisfying E [gi(Xi)]
2 <∞.

The Hájek projection guarantees asymptotic normality if the ratio of the projection

T̊ and the original predictor T tends to 1 since T̊ is the sum of independent random

variables. The Hájek projection is used as a theoretical tool to establish normality

of some statistic Tn by comparing it with another statistic T̊n that is known to be

asymptotically normal by showing that

E
(
Tn − T̊n

)2
→ 0. (5.25)

Suppose there exists a predictor T and a set of independent training observations
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Z1 . . . , Zn. The Hájek projection of T onto T̊ is defined as

T̊ =
n∑
i=1

[
E (T |Zi)

]
− (n− 1)E (T ) (5.26)

= E (T ) +
n∑
i=1

[
E (T |Zi)− E (T )

]
,

given that T has a finite second moment. Classically, Var (T̊ ) ≤ Var (T ) and,

lim
n→∞

Var (T̊ )

Var (T )
= 1 (5.27)

implies that

lim
n→∞

E
(
‖T̊ − T‖22

)
Var (T )

= 0. (5.28)

The condition from Equation 5.26 and Equation 5.27 do not apply directly to re-

gression trees, and must be modified. Wager and Athey (2018) argue that if the

tree T is 1-incremental, as defined in Definition 5.3.6, then the condition in Equa-

tion 5.26 and Equation 5.27 can be used. The idea of 1-incremental is a specific

case of ν-incremental where ν = 1, and is a weaker version of Equation 5.27. Es-

tablishing ν-incrementality shows that the Hájek projection T̊ of T retains some of

the variation of T .

Definition 5.3.6. The predictor T is ν(s)-incremental at x if

lim inf
s→∞

Var
[
T̊ (x;Z1, . . . , Zs)

] /
Var

[
T (x;Z1, . . . , Zs)

]
ν(s)

≥ 1. (5.29)

They establish the condition of ν-incrementality under the framework of predic-

tive nearest neighbors (PNN), following the lead of Lin and Jeon (2006) and Biau

and Devroye (2010). A predictor T is a k-PNN predictor over training observations
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Z if T outputs the average of the responses Yi over a k-PNN set of x. This states

that any decision tree T that makes axis-aligned splits (i.e., the previously described

splitting criterion) and has nodes of size between k and 2k− 1 (i.e., α-regular trees)

is a k-PNN predictor. The original CART trees from Breiman et al. (1984) are

k-PNN predictors. All k-PNN predictors can be written as

T (x; θ;Z1, . . . , Zs) =
s∑
i=1

SiYi (5.30)

where the selection variable Si is

Si =


1∣∣{i:Xi∈L(x)}

∣∣ i ∈ L(x)

0 otherwise

. (5.31)

For honest trees T , Si is independent of Yi, conditional on Xi for each i. Wager and

Athey (2018) establish a lower bound for s ·Var [E (S1 | Z1)], which gives an idea on

if Si is non-zero even if only Zi is observed. The bound is given as

lim inf
s→∞

s · Var [E (S1 | Z1)]
1
k
· Cf,p

log(s)p

≥ 1 (5.32)

where f is a density bounded away from infinity and p is the covariates in the

p-dimensional space. When f is uniform over [0, 1]p, then the bound holds with

Cf,d = (d−1)!
2d+1 . This expression provides a lower bound on how much information

about S1 is contained in Z1. A tree T is ν-incremental at x with

ν(s) =
Cf,p

log(s)p
(5.33)

where T is an honest, α-regular, symmetric tree with Lipschitz-continuous µ(x) and
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µ2(x) and Var (Y | X = x) > 0.

Following the analysis of variance (ANOVA) decomposition from Efron and Stein

(1981), Wager and Athey (2018) provide a bound for the variance of tree T given

the Hájek projection,

E

[(
µ̂(x)− ˚̂µ(x)

)2]
≤
( s
n

)2
· Var

[
T (x; θ, Z1, . . . , Zs)

]
(5.34)

Thus, as long as the subsample size sn satisfies

lim
n→∞

sn =∞ (5.35)

and

lim
n→∞

sn ·
log(n)p

n
= 0 (5.36)

and

E
[
|Y − E (Y |X = x)|2+δ

∣∣∣ X = x
]
≤ Q (5.37)

for some constants δ,Q > 0, uniformly over all x ∈ [0, 1]p. Then, there exists some

sequence σn(x)→ 0 such that

µ̂n(x)− E [µ̂n(x)]

σn(x)

d→ N (0, 1) (5.38)

and

V̂IFJ(x;Z1, . . . , Zn)

σ2
n(x)

p→ 1. (5.39)

Thus, this result confirms Theorem 5.3.1. Wager and Athey (2018) check Lyapunov-

style1 conditions for the CLT established above. The Lyapunov-style conditions

1Also spelled Liapounov.
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assume for a set of random variables Xi for i = 1, . . . , n with means E(Xi) = ξi,

variances σ2
i , and finite third moments that

Yn =
X̄ − E(X̄)√

Var (X̄)

d→ N (0, 1) (5.40)

provided [
E

(
n∑
i=1

|Xi − ξi|3
)]2

= o

( n∑
i=1

σ2
i

)3
 . (5.41)

Bias Correction

A bias correction (i.e., finite sample correction) for a finite number of trees is given

as n−1
n

(
n
n−2

)2
. This is motivated by looking the case of trivial trees that do not

make any splits T (x; θ;Zi1 , . . . , Zis) = 1
s

∑s
j=1 Yij . The full random forest in this

case is simply

µ̂ =
1

n

n∑
i=1

Yi (5.42)

with variance estimator

V̂trivial =
1

n(n− 1)

n∑
i=1

(Yi − Ȳ )2, (5.43)

where Ȳ = 1
n

∑n
i=1 Yi. V̂trivial is established to be unbiased for Var (µ̂). In the

case of trivial trees, we can show E
(
V̂IFJ

)
= Var (µ̂) (see Wager and Athey, 2018,

Proposition 10).

5.3.3 Infinitesimal Jackknife

The IFJ is a modification of the standard Quenouille-Tukey jackknife introduced by

Jaeckel (1972). In the standard jackknife procedure, the sample follows a leave-one-
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out (LOO) procedure, where the i-th observation is removed and the procedure is

run on the remaining n − 1 observations. All n observations are subjected to the

same treatment, resulting in n estimates, which provides a sampling distribution

for a specified statistic. The removed observation has no weight. The IFJ gives the

removed observation slightly less weight than the kept observations rather than no

weight at all. The removed observation is given a weight of n−1
n

instead of the usual

weight of 0.

Define a functional statistic η̂ = η(F̂ ) with empirical distribution F̂ . Let p∗ =

(p∗1, . . . , p
∗
M) be a resampling vector, which can be any probability vector. Each p∗

has some re-weighted empirical probability distribution F̂ ∗, which is the mass p∗i on

some observations Z. Then, p∗ is any vector on an M -dimensional simplex,

Ln =

{
p∗ : p∗i ≥ 0,

n∑
i=1

p∗i = 1

}
. (5.44)

A simplex is the generalization of a tetrahedral region of space to M dimensions. It

is also known as a hypertetrahedron.

Let z = (z1, . . . , zM). Under F̂ , z can take on n distinct values zi, each with

probability 1
M
. For each i ∈ {1, . . . ,M}, define a random variable p∗i

Y ∗
i =

1

n
{number of times zi occurs in the sample} (5.45)

as a random sample of size n from F̂ . The vector (nY ∗
1 , . . . , nY

∗
M) has a multinomial

distribution and
∑M

i=1 Y
∗
i = 1. Thus, in general, the resampling vectors are selected

using a rescaled multinomial distribution,

Y ∗ ∼ Multinomialn(M,p◦)

n
, (5.46)
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with n independent draws onM categories that each has probability 1
M
. Here, p◦ =(

1
M
, . . . , 1

M

)
, such that η̂∗ = η

[
F̂ (p◦)

]
= η̂(p◦). That is, F̂ (p) is the distribution as

specified in Equation 5.46 evaluated at probability vector p◦.

We can verify that

E (Y ∗
i ) =

1

M
, (5.47)

Var (Y ∗
i ) =

1

nM

(
1− 1

M

)
, and

Cov (Y ∗
i , Y

∗
j ) = −

1

nM2
.

Then, as n→∞, the vector

√
n(Ŷ ∗ − Y ∗) =

[√
n

(
Y ∗
1 −

1

n

)
, . . . ,

√
n

(
Y ∗
n −

1

n

)]
(5.48)

has a multivariate normal limiting distribution, for which all means are zero, all

variances are 1
M

(
1− 1

M

)
, and all covariances are − 1

M2 . Assume η is defined for

discrete distributions, which assign arbitrary non-negative weights B∗
i to the zi. We

can write the estimate as

η̂ = η
[
F̂ (p∗)

]
= η(z, Ŷ ∗) (5.49)

and

η = η
[
F (p◦)

]
= η(z,Y ∗). (5.50)

Since the zi are fixed, η̂(z, Ŷ
∗) is a function of theM variables Ŷ ∗

i . In Equation 5.49,

we assume that η̂ is differentiable with respect to Ŷ ∗
i , so that

Di =
∂η̂

∂Y ∗
i

∣∣∣∣
Y ∗=Ŷ ∗

(5.51)
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and

Dij =
∂2η̂

∂Y ∗
i ∂Y ∗

j

∣∣∣∣
Y ∗=Ŷ ∗

. (5.52)

Also, define

D̂i =
∂η̂

∂Y ∗
i

∣∣∣∣
Y =Ŷ ∗

. (5.53)

Now, by Jaeckel (1972), the IFJ variance is

V =
1

M

M∑
j=1

D2
j , (5.54)

which, by Theorem 1 in Jaeckel (1972), can be estimated by V̂

nV̂ =
1

n

n∑
i=1

D̂2
i (5.55)

since nV̂
p→ V , providing a consistent estimator for V .

Efron (2014) provides a theorem to estimate Equation 5.55 by deriving a non-

parametric delta-method estimate of standard deviation for the ideal smoothed boot-

strap statistic s(z) =
∑R

i=1
η̂
R
for R bootstrap replicates. He shows that there exists

a relationship between the bootstrap and the IFJ. We approximate η̂ with the hy-

perplane tangent η̂tan to the surface η̂ at the point Y ∗ = Y ◦ instead of using η̂lin,

η̂ lin(F̂ ) = η̂(·) +
(
F̂ − F

)
U , (5.56)

where

Ui = (n− 1)
(
η̂(·) − η̂(i)

)
, (5.57)
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for i = 1, . . . , n. The estimate for the standard deviation is

ŜD = Var (F̂ ) · η̂tan(F̂ ) (5.58)

where η̂tan(·) is

η̂tan(F̂ ) = η̂(F ) + (F̂ − F )U (5.59)

and

U̇i = lim
ε→0

η̂
[
F + ε

(
δi − F

)]
− η̂ (F )

ε
(5.60)

=
d

dε
η̂
[
F + ε

(
δi − F

)] ∣∣∣
ε=0

=
∂

∂ε
η̂
[
F̂i(ε)

]
.

The defined U̇i is equivalent to the partial derivatives D̂i from Equation 5.53 as

defined by Jaeckel (1972).

Here, δi is the i-th coordinate vector of the probability mass on the i-th coordi-

nate. The Ui are directional derivatives, and are also known as influence function

(IF). The IF measures the rate at which the functional η̂ changes when F is con-

taminated with a small probability of picking up an observation i. This provides a

measure of the influence of the contamination. It measures the influence of a small

proportion of observations at i that are not a “part of” F , which Lehmann (2004)

calls “gross errors.” Thus, the IFJ resamples η̂ at F̂ values infinitesimally close to

F , rather than the O
(
1
n

)
that the ordinary jackknife uses.

The next step is to connect the results from Jaeckel (1972) to the estimation

procedure from Wager et al. (2014), which was based on an estimation procedure
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Figure 5.1: Illustrative representation of η̂(B∗) as a function on the simplex Ln,
where B∗ are resamples. In this specific case, B∗ are bootstrap resamples, but
Efron (2014) shows that bootstrap resamples are directly related to IFJ resamples.
The curved surface η̂(·) is approximated by the linear function η̂ lin(·). Visualization
is taken from Efron (2014).

from Efron (2014). Efron (1982) derives the IFJ estimate of standard deviation as

ŜDIFJ(η̂) =
1

M

√√√√ M∑
i=1

U̇2
i , (5.61)

which is equivalent to the derivation Equation 5.54 from Jaeckel (1972). Efron

(2014) estimates Equation 5.61 as

V̂ =
M∑
i=1

Cov ∗
[
Y ∗
i , η̂
]2

(5.62)

where Cov ∗
[
Y ∗
i , η̂
]
is the covariance between the estimate η̂ and the number of
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times Y ∗
i the i-th training observation appears in a resample. We need to show

Equation 5.61 is equal to Cov ∗
[
Y ∗
i , η̂
]
to show Equation 5.62. Define wi(p) as the

ratio of probabilities under Y ∗
i under Equation 5.46, for probability vectors p∗ and

p◦,

wi(p) =
M∏
k=1

(npk)
Y ∗
k , (5.63)

so that

E(η̂) =
R∑
i=1

wi(p) · η̂
R

. (5.64)

We include the factor 1
R

to express that under p◦, all of the Y ∗
i random variables

have probability 1
R
= 1

Mn . Following Equation 5.60, we have F (ε) = F + ε(δi − F ),

then

wi(p) =
[
1 + (n− 1)ε

]Y ∗
i · (1− ε)

∑
i6=k Y

∗
ik . (5.65)

Let ε→ 0, then

wi(p) =̇ 1 + nε(Y ∗
i − 1), (5.66)

since
∑M

i=1 Y
∗
i = 1.2 Combining Equation 5.64 and Equation 5.66 yields

E(η̂) =̇
R∑
i=1

[
1 + ε(Y ∗

i − 1)
]
· η̂

R
(5.67)

= E
{
η + n · ε · Cov ∗

[
Y ∗
i , η̂
]}
. (5.68)

From the definition of the directional derivative from Equation 5.60, we have

U̇i = n · Cov ∗
[
Y ∗
i , η̂
]
, (5.69)

2 The equal sign with a dot above =̇ means that the series converges in mean to some function
f(·).
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which establishes Equation 5.62. Wager et al. (2014) provides the connection be-

tween the IJK variance estimator and the Hájek projections.

Practically, we can transform samples from the empirical distribution F̂ into

samples from F̂i(ε) in the following way:

1. Let z∗1 , . . . , z
∗
n be a sample from F̂ ;

2. Progressing through the entire sample and, independently for each j, take z∗j ;

3. With probability ε, replace it with zi. The sample can now be considered a

sample from F̂i(ε).

When ε tends to zero, the probability of replacing two of the z∗i with this procedure

becomes trivial. We can equivalently transform our sample into a sample from F̂i(ε)

by transforming a single random element from {z∗j } into zi with probability n · ε.

Without loss of generality, assuming this element is the first one, we can rewrite

Equation 5.60 as

lim
ε→0

1

ε

[
E F̂i(ε)

[
η̂
]
− E F̂

[
η̂
]]

(5.70)

= n
[
E F̂

[
η̂ | z∗1 = zi

]
− E F̂

[
η̂
]]
.

Accordingly,

1

n
η̂
[
F̂i(ε)

]
= E F̂ (η̂ | z

∗
1 = zi)− E F̂ (η̂), (5.71)

and so, using the Hájek projection of η̂,

V̂ =
n∑
i=1

[
E F̂ (η̂ | z

∗
1 = zi)− E F̂ (η̂)

]2
(5.72)

≈
n∑
i=1

[
E F (η | z∗1 = zi)− E F (η)

]2
,
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where we replace the empirical approximation F̂ with its true value F . At this

point, we have established the connection among the IFJ, Hájek projections, and

the asymptotic variance estimate for the predictions of random forests.

We will extend the asymptotic theory established here to the difference in pre-

dictions of two random forest models to evaluate the behavior of the inclusion of

measurement error for covariates in random forests.



140

Chapter 6

Random Forest Models and

Measurement Error

6.1 Introduction

The EWID paradigm invites error in measurements, from the recording of data to

the performance on some benchmark test such as the CFMT to the measurement

error inherent to machines. This motivates the question: how different could the pre-

dictions be in terms of bias and variance if we assume the presence of measurement

error? This chapter seeks to explore the behavior of the presence of measurement

error in random forest models.

6.1.1 Introduction to Error

All data is subject to error, both in the sense of traditional measurement error from

instruments to recording errors from humans. In a sense, humans can be thought

as the “instrument” or “machine” measuring some value. In general, no data is safe

from the general sense of [measurement] error.
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Generally speaking, machine learning models are fit without measurement error,

because it is assumed that the data provided is representative of the population and

modeling goals. Machine learning models tend to be fit without regard for causal

inferences nor for attribution (i.e., significance). The primary goals of machine learn-

ing models are prediction and, on occasion, estimation, since these models are used

for their high prediction accuracy. With increased use of machine learning models,

many modelers seek to go beyond just prediction, into estimation and attribution.

One such consequence is understanding the limitations and key assumptions of the

data.

Almost all data is assumed to be measured without error, or that the error is

small enough to be contained in the assumed standard normal noise variable. For

example, if we ask for a person’s height, weight, blood pressure, etc., we assume

the measurement received is exactly the same as whatever we are trying to mea-

sure. In some cases, this assumption is perfectly reasonable and feasible (e.g., age,

biological sex, if a person owns a cat, etc.). In other cases, the measurement may

be “close enough” or “good enough” to ignore any measurement error. However,

these cases tend to more often be exceptions rather than the standard. Making such

a strong assumption that measurements are taken without error may have serious

statistical consequences, and could lead to spurious conclusions. Failing to account

for measurement error could potentially invalidate findings.

The idea of modeling measurement error is not new or novel, and has large

presence in modeling observational data from economics and nutritional studies.

In fact, it is well-studied in those fields, where the measurement error is widely

prevalent in the types of data collected. Wallace (2020) addresses many of these

issues in the February 2020 issue of Significance magazine to raise awareness of the

dire consequences of ignoring measurement error, possible sources of measurement
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error, and methods to address these issues.

For example, patients often notice elevated blood pressure readings while at the

doctor’s office due to “white coat hypertension” from a higher-stress situation. Er-

rors are assumed to follow various structures. Classical measurement error assumes

the value recorded is the truth plus some “random” noise structure. Berkson mea-

surement error assumes each unit is exposed to some condition, and the observed

exposure varies from unit to unit, with added noise. Carroll et al. (2006) provides

more detailed information on measurement error and methodologies developed in

classical statistics to account for such errors.

This chapter serves to explore the behavior of measurement error in random

forest models to see if we need to account for measurement error or if the random

forest model can account for the error by itself. Can measurement error in these cases

be ignored because its impact is “not that bad?” We first establish the asymptotic

framework to provide an estimator for the mean difference and variance of the

two distributions, one of which is measured with error and the second is measured

without error.

6.2 Measurement Error and Random Forests

Assume we have some covariates W that are measured exactly with no error. Now,

further assume that we have some other covariates U that are measured with error.

In fact, let U = W + ε, where ε represents the measurement error. Finally, let us

assume we have response variable Y . From Wager and Athey (2018), we know that

for test point x

µ̂n(x)− E
[
µ̂n(x)

]
σn(x)

d→ N(0, 1). (6.1)
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For any random forest, the results Wager and Athey (2018) show that the forest

is asymptotically normal, which means that a random forest built on either W or

U will be asymptotically normal with a different mean and a different variance. We

know that U is in fact W with additional variability due to the presence of the

measurement error term ε. How different can we expect that predictions of the two

asymptotically normal distributions to be?

6.2.1 Asymptotic Behavior

We follow the derivation process from Wager and Athey (2018) as detailed in Sec-

tion 5.3. Suppose we have two random forests µ (x;Z1,n) and µ (x;Z2,n) as defined

in Definition 5.3.1, where

Z1,n = (Zu,1, . . . , Zu,n) =
[
(U1, Y1) , . . . , (Un, Yn)

]
(6.2)

Z2,n = (Zw,1, . . . , Zw,n) =
[
(W1, Y1) , . . . , (Wn, Yn)

]
.

From Equation 5.15, we can show that the asymptotic means are

µ̂u,n(x) =
1

M

M∑
m=1

T
(
x;Z∗

u,m1
, . . . , Z∗

u,ms

)
(6.3)

µ̂w,n(x) =
1

M

M∑
m=1

T
(
x;Z∗

w,m1
, . . . , Z∗

w,ms

)
,

respectively, for M trees, subsample size s, and test point x. Here, Z∗
u and Z∗

w are

drawn without replacement from their respective sets U and W . We can also show

that the asymptotic variances are

σ̂2
u,n(x) =

n− 1

n

(
n

n− s

)2 n∑
i=1

Cov ∗
[
µ̂u,m(x), Y

∗
u,im

]2
(6.4)
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σ̂2
w,n(x) =

n− 1

n

(
n

n− s

)2 n∑
i=1

Cov ∗
[
µ̂w,m(x), Y

∗
w,im

]2
respectively, from Equation 5.22. Here, µ̂u,n(x) and µ̂w,n(x) are the the estimates for

µu(x) and µw(x) from a single regression treem, respectively, and Y ∗
u,im and Y ∗

w,im are

the number of times Zu,i and Zw,i appears in the subsamples used by T , respectively.

The covariances are taken with respect to the set of all trees m = 1, . . . ,M . Asymp-

totically, the respective distributions for µ̂u(x) and µ̂w(x) are normal with means

E
[
µ̂u(x)

]
and E

[
µ̂w(x)

]
and variances σ̂2

u(x) and σ̂
2
w(x) according to Equation 6.1.

6.2.2 Framework for a Difference

Mentch and Hooker (2016) provide a general framework for a test of significance for

the predictive influence of covariates. In particular, they consider a “full” model with

p features {X1, . . . , Xp} versus a “reduced” model with X(R) ⊂ {X1, . . . , Xp}. Their

goal was to determine if µ(x) = µ(R)(x), which provides information on whether or

not a covariate not included in the reduced model makes a significant contribution to

the prediction of the test point x. Let xtest = {x1, . . . , xj}. Formally, the proposed

hypothesis test

H0 : µ(xi) = µ(R)(xi) ∀ xi ∈ xtest (6.5)

HA : µ(xi) 6= µ(R)(xi) for some xi ∈ xtest.

They define a difference function

D̂(x) = µ̂(x)− µ̂(R)(x) (6.6)

=
1

M

M∑
m=1

T

(
x;Z∗

m1
, . . . , Z∗

ms
)− 1

M

M∑
m=1

T (R)(x;Z∗
m1
, . . . , Z∗

ms

)
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=
1

M

M∑
m=1

[
T
(
x;Z∗

m1
, . . . , Z∗

ms
)− T (R)(x;Z∗

m1
, . . . Z∗

ms

) ]

as the difference between the full and reduced models (i.e., the fitted random forest

models based on the relevant sets of covariates). The difference function is a U-

statistic, which means it can be subjected to the same treatment as any other

random forest. D̂ is asymptotically normal given one test point x.

For multiple j test points {x1, . . . , xj}, define D̂ as the vector of observed differ-

ences in the predictions D̂ =
[
D̂(x1), . . . , D̂(xj)

]
, which has an MVN distribution

with mean vector

M =
[
µ(x1)− µ(R)(x1), . . . , µ(xj)− µ(R)(xj)

]T
(6.7)

and covariance matrix Σ, provided that a joint distributions exists with respect

to Lebesgue measure. For a single test point, the predictions will have a normal

distribution. We will assume a single test point for the derivations below.

We can adapt this framework to study the difference in predictions between

two random forests built from covariates measured with and without error, U and

W , respectively. The key difference is the exclusion of the actual hypothesis test,

since we are not interested in determining the significance of importance for the

measurement error nor is it possible in practice to determine this difference.

Define a difference function D for a single test point x, similar to the one defined

in Equation 6.6,

D = µ̂u(x)− µ̂w(x) (6.8)

=
1

M

M∑
m=1

T (x;Z∗
u,m1

, . . . , Z∗
u,ms

)− 1

M

M∑
m=1

T (x;Z∗
w,m1

, . . . , Z∗
w,ms

)
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=
1

M

M∑
m=1

[
T (x;Z∗

u,m1
, . . . , Z∗

u,ms
)− T (x;Z∗

w,m1
, . . . , Z∗

w,ms
)
]
.

The above is still a U-statistic, which means that D ∼ N(µdiff, σ
2
diff), where

µdiff = µu(x)− µw(x) (6.9)

and σ2
diff is similar to σ̂2

u and σ̂2
w from Equation 6.4. The estimation procedure in

this case would require the construction of both random forests.

As stated earlier in Equation 6.3 and Equation 6.4, we know asymptotically that

µu(x) ∼ N
[
µ̂u(x), σ̂

2
u(x)

]
and µw(x) ∼ N

[
µ̂w(x), σ̂

2
w(x)

]
. Thus, we treat µu(x)

and µw(x) as we would any other random variable to determine the asymptotic

distribution of D, as defined in Equation 6.8. To estimate µdiff and σ2
diff, we will

rely on the results from Wager and Athey (2018). We already know that D is

asymptotically normal, with a theoretical mean of µdiff and σ2
diff. For µdiff, we can

show

E (D) = E [µu(x)− µw(x)] (6.10)

= E
[
µu,n(x)

]
− E

[
µw,n(x)

]
p→ µ̂u,n(x)− µ̂w,n(x)

due to linearity of expectation. Thus, the estimation process for µdiff depends wholly

on the construction of the two random forests based on U and W , and taking the

difference of the predictions. In terms of the variance, we can show

Var (D) = Var
[
µu(x)− µw(x)

]
(6.11)

= Var [µu,n(x)] + Var [µw,n(x)]− 2 · Cov [µu,n(x), µw,n(x)]
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p→ σ̂2
u,n(x) + σ̂2

w,n(x)− 2
n∑
i=1

Cov ∗
[
µ̂u,m(x), Y

∗
u,im

]
· Cov ∗

[
µ̂w,m(x), Y

∗
w,im

]
for m trees. We can derive the expression for Cov

[
µu,n(x), µw,n(x)

]
in Equation 6.11

by using a combination of the original IFJ results from Jaeckel (1972) and the

relationship of of the IFJ and Hájek projection from Wager et al. (2014).

6.2.3 Variance Estimate

We can show that the IFJ estimation procedure still holds for difference distribu-

tion defined in Equation 6.8. Jaeckel (1972) provides a bivariate extension for two

statistics Q and R, evaluated at some empirical distribution F̂ , such that

Q(F̂ ) = Q(F ) +
∑
i

(
Ŵi −

1

M

)
DQ
i + . . . (6.12)

and

R(F̂ ) = U(F ) +
∑
j

(
Ŵj −

1

M

)
DR
j + . . .

are the Taylor series expansion of Q and R. Jaeckel (1972) then derives the expres-

sion for the covariance of Q and R,

Cov
[
Q(F̂ ), R(F̂ )

]
= E

{[
Q(F̂ )−Q(F )

][
R(F̂ )−R(F )

]}
(6.13)

≈ E

[∑
i

(
Ŵi −

1

M

)
DQ
i ·
∑
j

(
Ŵj −

1

M

)
DR
j

]

= E
[∑

j

(
Ŵj −

1

M

)2

DQ
j D

R
j

+
∑∑

i 6=j

(
Ŵi −

1

M

)(
Ŵj −

1

M

)
DQ
i D

R
j

]
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=
1

nM

∑
j

DQ
j D

R
j ,

where Dj is defined in a similar manner as in Equation 5.51. The above quantity

can be estimated by

V̂Cov =
1

n2

n∑
i=1

D̂Q
i D̂

R
i (6.14)

if Q and R are well-behaved, which means they both have finite variances and

differentiable expectations with respect to the parameter being estimated. The

random variables are assumed to have a distribution that exists with respect to

Lebesgue measure.

We can easily extend these results to covariance V̂Cov of Q and R from Equa-

tion 6.14, such that

V̂Cov =
n∑
i=1

CovQ∗
[
Y ∗
i , η̂
]
· Cov R∗

[
Y ∗
i , η̂
]

(6.15)

as shown previously from Equation 5.62. We previously established that the di-

rectional derivatives (denoted as Ui from Efron (1982) or Dj from Jaeckel (1972))

are equivalent to the covariance of the prediction from the functional statistic and

the random variable designating the number of times the i-th observation is in the

resample. This then returns us to the variance derivation of Var (D) from Equa-

tion 6.4, which allows us to estimate Var (D) using the point estimate shown in

Equation 6.11.

Bias Correction

We also derive the finite bias correction for the estimate of covariance. It was

established in Section 5.3.2 that the bias correction for the variance estimate is
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(
n−1
n

) (
n
n−s

)2
. Now, assume we have two sets of trivial trees that do not make any

splits

T1 (x; θ, Z1i1 , . . . , Z1is) =
1

s

s∑
j=1

Yij (6.16)

T2 (x; θ, Z2i1 , . . . , Z2is) =
1

s

s∑
j=1

Xij

Then, the full random forests for these sets of trees are µ̂1 = 1
n

∑n
i=1 Yi and µ̂2 =

1
n

∑n
i=1Xi, respectively, with standard variance estimators of

V̂1,trivial =
1

n(n− 1)

n∑
i=1

(Yi − Ȳ )2 (6.17)

V̂2,trivial =
1

n(n− 1)

n∑
i=1

(Xi − X̄)2.

Further, we can show

Ĉov trivial =
1

n(n− 1)

n∑
i=1

(Yi − Ȳ )(Xi − X̄) (6.18)

The idea here is similar to that of sample variance, where it is the average of the

“squared” deviations. Let Y ∗
i denote if the i-th observation was in the subsample,

which has a multinomial distribution with s observations and probability 1
n
for each

observation to be chosen. For any i = 1, . . . , n, we know E ∗(µ̂
∗) and E(Y ∗

i ) =
s
n
· Ȳ .

Further,

E ∗(µ̂
∗
1 · Y ∗

i ) =
s

n

[
Yi
s
+

(
s− 1

s

)(
nȲ − Yi
n− 1

)]
(6.19)

=

(
1

n

)(
n− s
n− 1

)
· Yi +

(
s− 1

n− 1

)
· Ȳ
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and

Cov ∗(µ̂
∗
1, Y

∗
i ) =

(
1

n

)(
n− s
n− 1

)
· Yi +

(
s− 1

n− 1
− s

n

)
· Ȳ (6.20)

=

(
1

n− 1

)(
n− s
n

)
(Yi − Ȳ ).

This can be similarly shown for the second set of trivial trees T2(·), where

E ∗(µ̂
∗
2 · Y ∗

i ) =

(
1

n

)(
n− s
n− 1

)
·Xi +

(
s− 1

n− 1

)
· X̄ (6.21)

and

Cov ∗(µ̂
∗
2, Y

∗
i ) =

(
1

n− 1

)(
n− s
n

)
(Xi − X̄). (6.22)

Thus,

Ĉov IFJ =
n− 1

n

(
n

n− s

)2 n∑
i=1

Cov ∗(µ̂
∗
1, Y

∗
i ) · Cov ∗(µ̂

∗
2, Y

∗
i ) (6.23)

=
1

n(n− 1)

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

= Ĉov trivial.

6.2.4 Consistency

We can show that the derived variance estimator from Equation 6.11 is consistent

with the population σ2
diff. We already know that σ̂2

u,n(x) and σ̂
2
w,n(x) are consistent

estimators for σ2
u and σ

2
w, as shown by Wager and Athey (2018). Following a similar

proof, we can also show that V̂Cov is consistent for Cov [µu,n(x), µx,n(x)]. Let F be

the distribution from which Z1, . . . , Zn are drawn, then the variance σ2
diff,n of the
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Hájek projection of µ̂u,n(x)− µ̂w,n(x) is

σ2
diff,n =

n∑
i=1

(
E
[
µ̂u(x)|Zi

]
− E

[
µ̂u(x)

]) (
E
[
µ̂w(x)|Zi

]
− E

[
µ̂w(x)

])
(6.24)

=
s2

n2

n∑
i=1

[E (Tu|Zi)− E (Tu)] [E (Tw|Zi)− E (Tw)] (6.25)

and the IFJ estimated defined in Equation 6.15 is equal to

V̂Cov =
n− 1

n

(
n

n− 2

)2 n∑
i=1

[E (Tu|Z∗
1 = Zi)] [E (Tw|Z∗

1 = Zi)] (6.26)

for Z∗ drawn from empirical distribution F̂ on {Z1, . . . , Zn}. Recall that Z∗ is drawn

without replacement from F̂ . We can rewrite V̂Cov using the Hájek projection T̊ of

T ,

V̂Cov =
n− 1

n

(
n

n− 2

)2 n∑
i=1

(Ai,u +Ri,u)(Ai,w +Ri,w) (6.27)

where

Ai,u = E(T̊u|Z∗
1 = Zi)− E(T̊u), (6.28)

Ai,w = E(T̊w|Z∗
1 = Zi)− E(T̊w),

Ri,u = E(Tu − T̊u|Z∗
1 = Zi)− E(Tu − T̊u), and

Ri,w = E(Tu − T̊w|Z∗
1 = Zi)− E(Tu − T̊w).

Here, Ai are the main effects and Ri are the secondary effects. Wager and Athey

(2018) showed in their Lemma 12 that the main effects Ai will give the covariance

Cov
[
µu,n(x), µw,n(x)

]
such that

(
1

Cov
[
µu,n(x), µw,n(x)

])( s2
n2

) n∑
i=1

Ai,uAi,w
p→ 1. (6.29)
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In their Lemma 13, they show that

(
1

Cov
[
µu,n(x), µw,n(x)

])( s2
n2

n∑
i=1

Ri,uRi,w

)
p→ 0 (6.30)

The Cauchy-Schwarz inequality can be used to bound the cross terms and that

lim
n→∞

n(n− 1)

(n− s)2
= 1. (6.31)

Thus, V̂Cov /Cov
[
µu,n(x), µw,n(x)

]
converges in probability to 1. Since we know that

σ̂2
u, σ̂

2
w, and V̂Cov converge in probability to constants, then the sum of these will

converge also converge in probability to a constant Var (D).

6.3 Simulations

Now that we have derived estimators for expectation and variance for the difference

of two random forest models, we can simulate what could be expected in prac-

tice. Since asymptotic theory was established from two different parties, and to

investigate the behavior under a variety of conditions, we will borrow the synthetic

distributions from Wager and Athey (2018) and Mentch and Hooker (2016). Ad-

ditionally, we will consider a more realistic model that more resembles the original

motivation of this problem.

6.3.1 Synthetic Distributions

First, we will establish the models we will be using for the simulations. These

distributions were used to test the performance of the IFJ estimate for variance,

as well as establish some behavioral observations for the difference in distributions
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for data measured with and without error. The measurement errors assume the

classical measurement error structure, where the observed value is equal to the true

value plus some random error structure.

From Wager and Athey (2018), we will use one model. For p variables, let

X ∼ Unif([0, 1]p). Further, assume noise εcos ∼ N(0, 1). Define the cosine model as

Y = 3 · cos[π · (X1 +X2)] + εcos. (6.32)

In this case, only two of the p covariates are ever used to generate Y , but the

remaining p− 2 covariates are included as predictors in the random forest models.

Moving on to the two models used by Mentch and Hooker (2016). Define the

simple linear regression (SLR) model as

Y = 2X1 + εSLR, (6.33)

where X1 ∼ Uniform(0, 20).

Define the multivariate adaptive regression splines (MARS) model used by Fried-

man (1991) as

Y = 10 sin(π ·X1X2) + 20(X3 − 0.05)2 + 10X4 + 5X5 + εMARS (6.34)

where X = [X1, . . . , X5] ∼ Uniform
(
[0, 1]5

)
.

In simulations, εMARS and εSLR could follow one of two distributions: N(0, 10)

or N(0, 1).

For the above cases, two distributions are created using the described frame-

work: one with measurement error and the other without measurement error. For

distributions generated with measurement error, an additional error term εerror ∼
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N (µerror, σ
2
error) was added to each simulated Xi.

Finally, define the beta model to simulate a model where the CFMT is the co-

variate. This model is a “proof of concept.” By construction, the CFMT has a range

of 0 to 72, which makes either the beta or gamma distribution excellent candidates.

For the sake of this simulation, we will use the beta distribution with parameters α

and β. From the factor data set, we estimated that CFMT ∼ Beta(3, 1.05). Assume

a measurement error variable ε3 and noise variable εCFMT that follow a N(0, 0.1)

distribution. If we assume a scaled standard deviation of 0.1, this provides a “real”

standard deviation of ±7 CFMT score. For more realism, we estimated the param-

eters of the beta distribution of the normalized decision times from the factor data

set, which was estimated as Beta(0.319, 15.626). Define the CFMT 1 model as

Y CFMT 1
no error =

1

1 + exp(CFMT+Decision Time + εCFMT)
. (6.35)

We will also assume a secondary error structure of εCFMT ∼ Unif(−0.1,+0.1), which

will be the CFMT 2 model.

We would like to note that this is likely the “worst case scenario.” In a realistic

situation, measurement errors like those found in the CFMT score or confidence

rating would be likely diluted by other covariates not subject to measurement error.

We use the sigmoid function1 to map the response values to the range [0, 1].

The response value Y will be the same for the pairs of error and error-free

generated distributions. That is, the error distributions will consist of the response

Y generated by the error free distributions, but with covariates that include the

error terms.

1The sigmoid function is f(x) = 1
1+exp[h(x)] , where h(x) is the function to create the responses

from the simulated covariates.
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6.3.2 Results

Since we use onlyM = O(n) replicates, V̂IFJ can experience substantial Monte Carlo

bias. To mitigate this issue, Wager (2016) proposed a Monte Carlo bias correction,

which we have adapted for our purposes. For subsample size s and M replicates,

the bias correction is,

V̂ M
IFJ =

n∑
i=1

C2
i −

s(n− s)
n

(
v̂

M

)
, where (6.36)

Ci =
1

M

M∑
m=1

(
Y ∗
mi −

s

n

) (
T ∗
m − T̄ ∗) and (6.37)

v̂ =
1

M

M∑
m=1

(T ∗
m − T̄ ∗)2. (6.38)

First, we can assess the performance of the derive estimators based on their bias,

variance, and mean squared error. For evaluation purposes, we consider the MSE, as

a combination of the squared bias and variance. We first draw K = 100 random test

points {x(k)}Kk=1 from the data-generating distributions describe previously. Then,

for each test point, we construct R = 100 random training sets {Z(r)}Rr=1. Evaluate

both the prediction RFs(x(k);Z(r)) for subsample size s and the variance estimate

V̂IFJ(x(k);Z(r)). The numbers shown in Table 6.1 are averaged over k test points:

Bias2 =
1

k

K∑
k=1

(
1

R

R∑
r=1

V̂ B
IFJ(x(k);Z(r))− Var r

[
RFs(x(k);Z(r))

])2

, (6.39)

Var =
1

k

K∑
k=1

1

R− 1

R∑
r=1

[
V̂ B
IFJ(x(k);Z(r))−

1

R

R∑
r=1

V̂IFJ
(
x(k);Z(r)

)]2
. (6.40)

We take the variance of the predictions from the forest across the R training sets

and compare that variance to the IFJ estimate of the variance to find the squared

bias. We will take the average of the K squared bias values. To find variance, we
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Distribution p n IFJ Estimate Bias2
Absolute

MSE
Variance

SLRa 1
200 4.550 27.804 7.606 35.409
1000 2.807 9.533 1.721 11.254

SLRb 1
200 14.782 256.982 43.420 300.402
1000 11.716 149.061 12.801 161.86

MARSa 4
200 1.509 2.320 0.225 2.545
1000 0.685 0.479 0.025 0.504

MARSb 4
200 5.276 27.481 1.563 29.044
1000 2.928 8.629 0.277 8.906

Cosine

2
200 0.278 0.086 0.012 0.098
1000 0.132 0.018 0.001 0.020

10
200 0.138 0.019 0.001 0.020
1000 0.062 0.004 1.95E-04 0.004

CFMT 1 2
200 8.47E-05 8.86E-09 1.87E-10 1.07E-09
1000 2.04E-05 4.98E-10 9.45E-11 5.93E-10

CFMT 2 2
200 6.87E-05 5.90E-09 1.32E-10 7.21E-09
1000 1.39E-05 2.25E-10 3.73E-11 2.63E-10

Table 6.1: Performance of the IFJ for random forests for a set of synthetic distribu-
tions. The “absolute” metrics describe the accuracy of V̂IFJ. All metrics are obtained
using a training sample size of n with p features, subsample size of s = bn0.7c, and
use M = 5n trees grown for each forest.

a Assuming a noise structure of N(0, 1).
b Assuming a noise structure of N(0, 10).
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take the variance of the IFJ estimates, which is simply the sample variance formula.

We previously used a similar evaluation method when comparing methods for the

estimation of probability of target presence in Section 4.3.2.

The “absolute” metrics describe the accuracy of V̂IFJ. All metrics are obtained

using a training sample size of n with p features, subsample size of s = bn0.7c, and

use M = 5n trees grown for each forest. All synthetic distributions were run with

n = 200, 1000 observations each, with the subsample sizes and number of trees per

forest modified accordingly.

Table 6.1 serves to show the behavior of the estimator derived in Equation 6.11,

which should follow similar behavior in terms of metrics to the behavior seen from

the results in Wager and Athey (2018). In Table 6.1, we can see that as the simulated

sample size increases, the estimate becomes less variable and less biased, resulting

in a smaller MSE. This behavior is indeed consistent with what was previously seen

from the simpler case of one distribution. A more variable noise structure results

results in a much larger IFJ estimate, which is logical from a noise variance of ten

versus one. The bias, absolute variance, and MSE are much larger. The range for

MSE is quite variable for different data-generating procedures; however, the values

are relative to the possible outputs from the procedures. The calculated metrics are

consistent with what was originally seen in Wager and Athey (2018) and consistent

with the generated data.

We do seem to observe some interesting behavior with the comparison of simpler

models (i.e., the SLR model) versus more complex models (i.e., the MARS model),

in which the noise structure very heavily impacts the IFJ estimate. Given the

estimated MSE for these models, larger samples may be required for certain types

models for more accurate estimates. The requisite sample size depends on the model

used, even with the derived finite bias correction.
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Distribution p n Mean Difference IFJ Estimate

SLRa 1
200 -0.912 4.550
1000 -0.077 2.807

SLRb 1
200 3.615 14.782
1000 1.134 11.716

MARSa 4
200 -0.400 1.509
1000 -0.148 0.685

MARSb 4
200 0.738 5.276
1000 0.123 2.928

Cosine

2
200 0.105 0.278
1000 0.107 0.132

10
200 0.241 0.138
1000 0.217 0.062

CFMT 1 2
200 2.51E-04 8.47E-05
1000 -3.89E-04 2.036E-05

CFMT 2 2
200 -8.65E-04 6.87E-05
1000 -1.33E-04 1.40E-05

Table 6.2: Distributions of the differences of sets of random forests for a set of
synthetic distributions, generated with and without measurement error. The “abso-
lute” metrics describe the accuracy of V̂IFJ. All metrics are obtained using a training
sample size of n with p features, subsample size of s = bn0.7c, and use M = 5n trees
grown for each forest.

a Assuming a noise structure of N(0, 1).
b Assuming a noise structure of N(0, 10).
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In Table 6.2, we record the point estimates for mean difference and variance of

the distribution of differences for the previously defined data generation structures.

The mean difference and IFJ estimates are proportional to the relative ranges of

possible outputs from the data-generating distributions.

It seems that the measurement error structure needs to be quite egregious to

make an impact on the predictions of the random forest, which is consistent with

the idea of the “robustness” and flexibility of random forests. Error structures

consisting of higher variance simply flattens the density curve, while error structures

with non-zero means shift the peaks of the curves to the relative directions.

6.3.3 Different Measurement Error Structures

In Section 6.3.1, the goal was to assess the behavior of predictions during the pres-

ence of measurement error. Here, we assume the same models as before, but vary

the measurement error distributions. The measurement error structures are assumed

with some minor structure to vary the biases and variances. The measurement error

distributions are all assumed to be normal: N(−2, 2), N(−1, 2), N(0, 1), N(0, 5),

N(1, 2), and N(2, 2). We aim to show the relative impacts of the measurement

errors on the predictions, primarily to see if the model could indeed capture the

measurement error structure. Figure 6.1 shows the behavior of the estimated means

and variances of the measurement error structure for the MARS model, with noise

structure N(0, 1) and N(0, 10).

For n = 200, we randomly generated 100 distributions following the MARS

data-generating procedure for 100 different models. The average estimates for mean

difference and variance to find a point estimate to generate theoretical normal den-

sities. These densities are plotted in Figure 6.1. We found similar behavior with
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models fit using n = 1000, but for efficiency, we chose to use n = 200. The other

data-generating models produced similar behavior, but it is most evident in the

MARS model.

6.3.4 Summary

It is clear that measurement error does affect the predictions from the underlying

truth. While this chapter does not seek to provide a solution to measurement

error, it does illustrate the impact of measurement error by deriving an asymptotic

estimator to quantify that impact. Moving forward, it is important to characterize

the size and structure of this measurement error when fitting future models. The

different assumed measurement error structures in Section 6.3.3 noticeably impact

the predictions when the structures assume zero versus non-zero mean and the

relative sizes of the variance.

What is typically done in classical statistical models (such as GLMs) in fields

that encounter much measurement error (such as medicine, nutrition, economics,

etc.) is to generate more data to better understand the measurement error. This

can be done by taking repeated measurements (i.e., obtaining replicates) on a single

unit. Large discrepancies in the measurements from a single unit may indicate

large measurement error. Another method is to obtain validation data, where some

measurements are known to be perfect. A less preferred method is to use external

data, outside of a designed study, to understand the measurement data.

In terms of EWID data, it is unclear what may be the best course of action

to understand the measurement error structure. Due to the nature of the data, it

is quite difficult to obtain replication data, since there may be a learning curve of

identifying suspects in lineups. Additionally, it may be quite expensive and resource-
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Figure 6.1: Captured behavior of different measurement error structures. Plot on
the top shows a model fit with a noise distribution of N(0, 1). Plot on the bottom
shows a model fit with a noise distribution of N(0, 10). The measurement error
distributions added to each generated covariate are N(−2, 2), N(−1, 2), N(0, 1),
N(0, 5), N(1, 2), and N(2, 2).
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intensive to generate an adequate number of different lineups with different suspect

and foils. Validation data may also be difficult to obtain, since no “gold standard”

or method of obtaining “perfect” data without measurement error exists. If the data

were affected or manipulated in any way to engineer “perfect” data, the data would

no longer be ecologically valid. Finally, external data has many of the same issues

as discussed with replication and validation data, with the additional uncertainty

of how accurately the information in the external data can translate to the relevant

setting.
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Part III

Summary and Future Work
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Throughout this dissertation, we provided an overview of the motivation for this

body of work: eyewitness identification. We reviewed existing statistical methodolo-

gies, and introduced a new statistical framework to estimate an individual eyewit-

ness’ probability of accuracy. Since EWID data could fluctuate based on individual

factor levels, we sought to understand the impact of measurement error in variables

in random forest models.

Long-standing conventional statistical methodologies, including logistic regres-

sion and, more generally, generalized linear models, particularly for bivariate out-

comes (sensitivity and specificity), remain valuable and appropriate tools for an-

alyzing EWID experiments, especially when the experiment includes concomitant

information, such as environmental variables of the experiment and demographic

characteristics of the “eyewitness.” In the absence of such information, ROC curves

remain a useful comparison of two methods in diagnostic medicine, statistical pro-

cess control, and eyewitness experiments. Newer approaches from statistical ma-

chine learning may be useful with very large experiments, though the impact of

specific variables on the outcome may not always be as interpretable as with con-

ventional linear models. Whichever technique is used, proper characterization of the

uncertainties associated with the inferences must be calculated.

Alternative ways of examining the data could also lead to new modeling proce-

dures or algorithms that would be useful in practice. We proposed a method for

estimating the probability of accuracy for eyewitnesses that takes proper account of

individuals’ probabilities of choosing or not choosing a suspect from a lineup. This

new framework estimates eyewitness identification accuracy by estimating, as inter-

mediate steps, an individual’s probability of choosing and the global probabilities

of target presence using random forests.

This method is a potential tool that could provide an in-field assessment of
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eyewitness reliability, which can be explained to and understood by juries, judges,

lawyers, LEOs, and any other non-statisticians working in EWID. Further methods

depend on the available types of EWID data, which could include recordings of eye-

witness proceedings by working in conjunction with police departments. Researchers

who conduct more varied and complex types of experiments will produce sets of ob-

servational data (National Research Council, 2014), leading to the development of

novel modeling procedures and statistical methods.

Overall, our method provides a substantial contribution to the EWID field, be-

cause it enables the estimation of two latent variables: (1) the probability of ac-

curacy for each eyewitness and (2) the probability of target presence or base rate

for a given data set. It is not only applicable to EWID data, but to data from

other fields that follow a similar structure. In comparison to an existing method of

estimating base rate, it performs much more variably, but with increasing accuracy

as the complexity of the data set increases. The problem of eyewitness accuracy is

treated probabilistically in our framework, and provides a way to assess accuracy

even if the underlying truth has not (and cannot) be observed directly.

A key component to the success of implementation is to obtain as much infor-

mation as possible in terms of both the system and estimator variables relevant to

eyewitness lineups. The framework inherently incorporates the interactive effects of

the system and estimator variables present in the data sets. Additionally, in order

for implementation to take place for real use, ecologically valid data sets need to

be collected to train a suitable model. This is a tremendous step to advancing the

analysis of EWID data that needs to be supplemented by the psychology experts in

the field, which is core to the original interdisciplinary motivation.

The framework established in Chapter 4 also lends itself well to fields with sim-

ilarly structured data sets. Some of these fields were identified, such as geophysics,
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financial services, and agricultural sciences.

Since we use random forests for estimation purposes, we were interested in as-

sessing the behavior of random forests in the presence of variables that are very

highly likely to have measurement error. Thus, we derived asymptotic estimators

for the difference of two random forests models in order to illustrate and quantify the

impact of the presence of measurement error. The asymptotic theory reviewed and

established in Chapter 5 and Chapter 6 only applies to regression and binary clas-

sification, since the “majority votes” are essentially averages. The “majority vote”

framework for multiple classification would require a different asymptotic framework

that has not yet been pursued. Thus, the asymptotic theory could be expanded for

multiple classification.

It is clear that measurement error does affect the predictions from the underlying

truth. While this chapter does not seek to provide a solution to measurement

error, it does illustrate the impact of measurement error by deriving an asymptotic

estimator to quantify that impact. Moving forward, it is important to characterize

the size and structure of this measurement error when fitting future models. The

different assumed measurement error structures in Section 6.3.3 noticeably impact

the predictions when the structures assume zero versus non-zero mean and the

relative sizes of the variance.

What is typically done in classical statistical models (such as GLMs) in fields

that encounter much measurement error (such as medicine, nutrition, economics,

etc.) is to generate more data to better understand the measurement error. This

can be done by taking repeated measurements (i.e., obtaining replicates) on a single

unit. Large discrepancies in the measurements from a single unit may indicate

large measurement error. Another method is to obtain validation data, where some

measurements are known to be perfect. A less preferred method is to use external



167

data, outside of a designed study, to understand the measurement data.

In terms of EWID data, it is unclear what may be the best course of action

to understand the measurement error structure. Due to the nature of the data, it

is quite difficult to obtain replication data, since there may be a learning curve of

identifying suspects in lineups. Additionally, it may be quite expensive and resource-

intensive to generate an adequate number of different lineups with different suspect

and foils. Validation data may also be difficult to obtain, since no “gold standard”

or method of obtaining “perfect” data without measurement error exists. If the data

were affected or manipulated in any way to engineer “perfect” data, the data would

no longer be ecologically valid. Finally, external data has many of the same issues

as discussed with replication and validation data, with the additional uncertainty

of how accurately the information in the external data can translate to the relevant

setting.

This thesis seeks to expand the methodologies available for EWID data analysis,

and emphasize the necessary cooperation of statisticians and psychologists to work

to the ideal of ecologically valid data. We have introduced a framework for the

estimation of eyewitness identification accuracy, but have discovered a new issue

with the necessity to quantify measurement error in EWID system and/or estima-

tor variables. While we do not provide a solution for measurement error, we do

emphasize the importance to work towards characterizing the size and structure of

measurement error in future EWID models.
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Part IV

Appendices
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Appendix A

Example Lineups

The four lineups used in the factor data set from Chad Dodson at the University of

Virginia.

(Top right) Fair lineup, with the target present;

(Top left) Biased lineup, with the target present;

(Bottom left) Fair lineup, with the target absent, innocent suspect in place of

true target; and

(Bottom right) Biased lineup, with the target absent, innocent suspect in place

of true target.
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Appendix B

Data Sets

The tables included here describe the data sets introduced in Section 2.2.2.

Data Set Variable Possible Values Description

Factor data
Lineup bias Yes, no Was the lineup biased?

Repeated
delay data

Categorization Category of Basis for respondent’s
choicerecognitiona

Delay 5 minutes, 1 day Assigned delay condition

Lineup race White, black What was the race in
lineup?

Delay data

Actor Actor A, actor B Actor for each race

Delay Immediate, 2 day, 4 day, 8
day

Assigned delay condition

Video Black or white man
Race/sex of actor in video

Table B.1: Unique variables to the factor data set, delay data set, and repeated
delay data set

aUnobserved features, observed features, familiarity, recognition
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Variable Possible Values Description

Accuracy 0, 1 Was the eyewitness correct in his or
her choice?

Age >18 years old Age of the eyewitness

CFMT score 0 to 72 What was the eyewitness’s CFMT
score?

Chooser Yes, no
Did the eyewitness choose a person?

Confidence 0, 0.2, 0.4, 0.6, 0.8, 1.0 How confident was the eyewitness in
their decision?

Cross-race Yes, no Was the lineup cross-race?

Decision Target, innocent suspecta, foil,
not present

What was the eyewitness’s
decision?

Decision time >0 seconds How long did the eyewitness’s
decision take?

Lineup format Simultaneous, sequential
What was the format of the lineup?

Participant race White, Black Race of eyewitness

Sex Male, female Sex of eyewitness

Target present Present, absent
Was the target present or absent?

Weapon Yes, no Was a weapon present?

Table B.2: Common variables to the factor data set, delay data set, and repeated
delay data set

aInnocent suspect choice was only available for the factor data set, as no innocent suspect was
designated in either of the other two data sets.
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Variable Possible Values Description

Age >18 years old Age of the participant

Ethnicity Asian, Black, Hispanic, Native
American, White, Other, Did Not
State

Ethnicity of the
participant

Education Less than high school, high
school/GED, currently attending
college, 2-year college degree, 4-year
college degree, graduate degree, did
not state

Education level of the
participant

Sex Male, female Sex of the participant

Biasing
Confidence rating, liberal, neutral,
unbiased, or conservative

Assigned instruction
condition

Table B.3: Variables included in the Mickes et al. (2017) data set
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Variable Possible Values Description

Expt. 1 Simultaneous, sequential
Expt. 1 manipulated conditions

Expt. 2 Photo stimulus (lineup), video
stimulus

Expt. 2 manipulated conditions

Expt. 3a 1-lap, 2-lap, choice in video
lineups

Expt. 3a manipulated
conditions

Expt. 3b 1-lap, 2-lap, choice in photo
lineups

Expt. 3b manipulated
conditions

Expt. 4 Six or nine photos Expt. 4 manipulated
conditions

Expt. 5 Simultaneous, sequential
Expt. 5 manipulated conditions

Age >18 years old Age of the participant

rating 0 to 1.0, intervals of 0.1 Confidence rating from
participant’s decision

Ethnicity White, Asian, Black, Hispanic,
Native American, Other, Did
Not State

Ethnicity of the participant

Sex Male, female Sex of the participant

Table B.4: Variables included in the Seale-Carlisle et al. (2019) data sets
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Appendix C

CFMT

Below are example images from the CFMT (Duchaine and Nakayama, 2006). There

are six total faces that the test taker needs to remember. This set represents a

portion of one of the six faces. Each face has three sets of images in the the learning

phase, five sets of images in the novel images phase, and four sets of images in the

novel images with noise phase. First, we have the set of learning images. The top

set of images belong are the facades of target to be remembered, and the bottom

set of images is the “question” asked by the test.
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Next, we have the novel images (top) and novel images with noise (bottom):
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Appendix D

U-Statistics

Overview. A U-statistic is a special case of statistical functionals. Any such

population quantity is a function of some distribution F of the independent and

identically distributed Xi, and can be written as g(F ), where g is some real-valued

function that is defined over the collection F of distributions F (for more informa-

tion, see Lehmann, 2004, Chapter 6).

Definition. Let X1, . . . , Xn
i.i.d.∼ FX,η, where η is the parameter to be estimated.

Further, suppose there exists an unbiased estimator g of η as a function of k ≤ n

arguments. Define

η = E [g(X1, . . . , Xk)], (D.1)

The function g is of k arguments and is known as η’s expectation functionals. With-

out loss of generality, we can assume that g is permutation symmetric in its argu-

ments, since any given g can be replaced by another permutation symmetric version.

That is, the arguments in any given g can be substituted by an equivalent permu-

tation symmetric version. Permutation symmetry is a concept where some object is

invariant under the action of some operator. It remains unchanged when operated
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upon, even by elements that can be “exchanged” (see French and Rickles, 2003). In

other words, g(Xi1 , . . . , Xik) satisfies η for any permutation (i1, . . . , ik) of (1, . . . , k).

So, therefore does the symmetric function

g∗(X1, . . . , Xk) =
1

k!

∑
· · ·
∑

(i1,...,ik)

g(Xi1 , . . . , Xik), (D.2)

where the sum extends over all k! such permutations.

The minimum variance unbiased estimator (MVUE) Un for η is given by taking

the sum over all possible
(
n
k

)
subsamples of size k. Un is known as a U-statistic with

kernel g of rank k,

Un =

(
n

k

)−1 ∑
(i1, ..., ik)

g(Xi1 , . . . , Xik), (D.3)

Thus, a U-statistic Un is the average of the kernel g(Xi1 , . . . , Xik) over all possible

k-tuples of observations in the sample. It is al an unbiased estimator of η, where

the sum extends over all k-tuples such that 1 ≤ i1 < · · · < ik ≤ n.

Hoeffding (1948) shows for n − 1 ≥ k, the smallest possible sample size, U-

statistics satisfy

n− 1

n
Var n−1 ≥ Var n (D.4)

and

E F (V̂ar ) =
n− 1

n
E F (

∼
Var ) ≥ n− 1

n
Var n−1 ≥ Var n. (D.5)

Asymptotic Theory Hoeffding (1948) also shows that Un is asymptotically nor-

mal with limiting variance s2

n
· ξ1,s when both the kernel and rank are fixed. Here,

ξ1,k = Cov [g(X1, . . . , Xs), g(Z1, Z
′
2, . . . , Z

′
s)] , (D.6)
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where

Z ′
2, . . . , Z

′
s
i.i.d.∼ FX,η. (D.7)

In this example, the “1” represents the number of common observations between

the two subsamples. In general, ξk,s represents the covariance of the same form for

k observations in common.

Hájek Projection. Hájek (1968) established the Hájek projection principle,

which states that the Hájek projection of Un ∈ L2(P ) is

Ûn =
n∑
i=1

E (Un − θ|Xi)− (n− 1)E (Un). (D.8)

Then, if E[g(X1k , . . . , Xik)]
2 <∞ and Var (g(X1k) > 0, then

√
n(Un − θ − Ûn)

p→ 0. (D.9)

The proof shows that the Hájek projection Ûn is of the claimed form, assuming that

the Xi’s are independent and g is permutation symmetric. We check that Un − Ûn

is orthogonal to each gi(Xi). Then, we verify that

Var (Ûn)

Var (Un)
→ 1. (D.10)

This is done by deriving the variances for Un and Ûn. The CLT and finiteness of

Var (Ûn) implies that
√
n · Ûn

d→ N(0, ζ1), (D.11)

where ζ1 is the derived variance. The derived variance for Un is also found to be ζ1,
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thus showing that the ratio converges to 1. Then,

Un − θ√
Var (Un)

− Ûn√
Var (Ûn)

p→ 0, (D.12)

which implies
√
n(Un − θ − Ûn)

p→ 0. (D.13)

Therefore,
√
n(Un − θ)

d→ N(0, ζ1). (D.14)
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List of Abbreviations

ANN adaptive nearest neighbors.

ANOVA analysis of variance.

AUC area under the curve.

Bern Bernoulli.

Bin Binomial.

BR base rate.

CA confidence-accuracy.

CART classification and regression tree.

CFMT Cambridge Face Memory Test.

CL composite likelihood.

CLT central limit theorem.

CSAFE Center for Statistics and Applications in Forensic Evidence.

DFSC Defense Forensic Science Center.

DOJ Department of Justice.
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DPP deviation from perfect performance.

DR diagnosticity ratio.

ECL expressed confidence level.

EDA exploratory data analysis.

EE ellipse-envelope.

EW eyewitness.

EWID eyewitness identification.

FAR false alarm rate.

FN false negative.

FP false positive.

FPR false positive rate.

FWB fixed-width confidence bands.

GLM generalized linear models.

HR hit rate.

ID identification.

IF influence function.

IFJ infinitesimal jackknife.

KS Kolmogorov-Smirnov.

LDA linear discriminant analysis.
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LEO law enforcement officer.

LIME local interpretable model-agnostic explanations.

LOO leave-one-out.

LR likelihood ratio.

MARS multivariate adaptive regression splines.

MCMC Markov chain Monte Carlo.

MDA mean decreased accuracy.

ML maximum likelihood.

MLE maximum likelihood estimation.

MRI magnetic resonance imaging.

MSE mean squared error.

MVN multivariate normal.

MVUE minimum variance unbiased estimator.

NAS National Academy of Sciences.

NPV negative predictive value.

NRC National Research Council.

OR odds ratio.

pAUC partial area under the curve.

PDP partial dependence plots.
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PNN predictive nearest neighbors.

PPV positive predictive value.

PROC predictive receiver operating characteristic.

QDA quadratic discriminant analysis.

RF random forest.

ROC receiver operating characteristic.

SDT signal detection theory.

Se sensitivity.

SEQ sequential.

SHAP Shapley additive explanations.

SIM simultaneous.

SJR simultaneous joint confidence regions.

SLR simple linear regression.

Sp specificity.

SVM support vector machines.

THA threshold averaging.

TIA target is absent.

TIP target is present.

TN true negative.
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TP true positive.

TPR true positive rate.

VA vertical averaging.

WHB Working-Hotelling based bands.

WROC weighted receiver operating characteristic.
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