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ABSTRACT
The world is seeing an unprecedented growth in data with
the proliferation of user-centered applications. Unfortunately,
this data is also privacy sensitive and often shared across
individual and organizational boundaries. One solution that
respects the privacy of the users while enabling a form of
data sharing is multi-party computation (MPC). More specif-
ically, it enables users to share the result of computations
performed on their aggregated data without exposing the ag-
gregated data. However, the performance of MPC had made
the theoretically sound solution impossible in practice until
recently. This work is the first step in a larger project that
aims to contribute to the ongoing effort of makingMPCmore
practical. The project proposes to apply compression and
compression-aware algorithms to decrease the size of the
input and output of the MPC protocol without incurring the
cost of decompression. This work’s contribution is framing
the design of the algorithms in terms of promise problems,
and proposing a partitioning for the language.

KEYWORDS
Compression, Compression-aware algorithms, Multi-party
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1 INTRODUCTION
As computers continue to play an integral part in our soci-
ety, digital data also continues to grow in size and variety.
A particular example for this relationship is the start and
growth of Big Data. Big Data is large, unstructured, dynamic
data mostly generated over the Internet, especially due to the
proliferation of customer-data driven applications in Web
2.0, such as social media services [10]. The global data is
expected to grow to 40,000 exabytes between 2005 and 2020
by doubling every two years [9]. Moreover, around 44% of
this data is expected to go through cloud providers, and as
much as 33% of the data will have analytic value [9]. As the
data is generated by individuals, a majority of it carries pri-
vate information, thus there is a growing need to not only
efficiently compute on this large and unstructured data but
to do so securely. The technical solution must recognize the

dilemma in the need to aggregate data and the need for pri-
vacy. This dilemma can be resolved for at least a subset of
use cases, such as data sharing between organizations, by
enabling them to privately compute on the aggregated data
without exposing the data of each data contributor, and then
sharing the result of the computation with all parties.
Classical algorithm and system designs fail to meet the

challenge of providing privacy-aware services based on this
massive data. They lack the computational efficiency that
scales to the data size, while providing strong security guar-
antees to protect the users’ privacy. This report introduces
the first steps towards the design of systems that are effi-
ciently scalable to the scale of Big Data (and more) while
offering strong security guarantees that allow arbitrary com-
putation on the private data. It relies on two foundational
priori concepts: compression-aware algorithms and multi-
party computation.

2 OUTLINE
Section 3 provides an overview of data compression and
multi-party computation, which form the basis of this project.
Section 4 introduces the technical contribution of this work
via promise problems. Section 5 introduces the experimental
work this project contributes. The subsections within cover
the experiment design, experiment data, and analysis of the
data. Sections 7 and 6 conclude the report and suggest further
work towards the goals introduced earlier.

3 BACKGROUND
Data Compression
Informally, compression is the process of representing infor-
mation using fewer number of computer bits. The implicit
assumption, which was not formally stated for many years,
is that information typically has redundancy which can be
removed. Morse code offers a great intuition of compres-
sion without the formality and complexity of modern day
compression schemes. Morse code was introduced in 1837
by Samuel Morse as a way to transfer information through
electric pulses, with no clear intention of compressing in-
formation [19]. Morse code works by signalling longer and
shorter electrical currents, where the various combinations
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of long and short pluses map to the English alphabet [19].
For example, the letter e is represented by a single short
pulse while the letter y is represented by a long-short-long-
long pulse. The length of pulses for each letter is associated
with how frequently the letter is used in the English lan-
guage, hence why e, which is the most frequently used letter,
has a shorter pulse representation than y, which is not that
frequently used. For comparison, consider a hypothetical
version of Morse code where every letter has a unique but
equally long signal. Intuitively, one can observe that Morse
code will transfer any sufficiently large English text with
fewer pulses than the hypothetical version, since it repre-
sents letters based on frequency.
Shannon formalized this notion of representing informa-

tion using the concept of entropy [22]. A given message
is said to have high entropy if it holds more information
and inversely said to have low entropy if the information is
not unique. Naturally, this formalizes the idea that not all
information is equally important; for example, redundant
information within a message does not decrease the total
information of the message. Compression is then the act
of maximizing entropy. Mathematically, the entropy H of a
message𝑀 is defined as,

H(𝑚) =
∑
𝑚∈𝑀

𝑝 (𝑚)
𝑙𝑜𝑔(𝑝 (𝑚)) (1)

where 𝑝 (𝑚) is the probability of𝑚 ∈ 𝑀 . It follows then that
the entropy will always be above zero since H is a positive
function. The expression properly captures the intuition that
Morse code is more succinct than a random assignment of
pulse lengths since it takes the probability (or frequency) of
a letter into account, thus it represents the information more
succinctly.

How well a given message is compressed under some com-
pression scheme, such as Morse code, can then be quantified
as the compression ratio CR,

CR =
𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒
(2)

Modern compression schemes are typically divided into
lossless and lossy. Lossless compression schemes aim to pre-
serve all information in the message while lossy schemes
relax this requirement in order to increase the compression
ratio. The nuance comes from what one considers redundant.
For example, the human eye does not register most of the
information in a digital image thus image compression tech-
niques are often lossy, where they sacrifice as much informa-
tion as possible from the image without losing image quality
noticeable to the human eye. The JPEG image format does
this using discrete cosine transformation, followed by quan-
tization and an application of the baseline lossy compression
algorithm [24]. However, lossy compression is not acceptable

for many applications, such as text files. A commonly used
lossless compression scheme is Lempel-Ziv Compression.

Lempel-Ziv Compression
The Lempel-Ziv compression scheme was first proposed in
1977 by Ziv and Lempel as LZ’77 and refined again in 1978
into LZ’78 [27, 28]. The scheme is built around a simple con-
cept: for each repeated group of sequences, save one instance
of the sequence, and all other occurrences can be replaced by
a pointer to the single saved instance. Since the pointers to
the dictionary items can be represented more compactly than
the sequences itself, the representation achieves compression.
This technique is now used widely, and has produced vari-
ous similar algorithms referenced as the LZ families. Other
works have made various improvements to the LZ-family
related to compaction, parallelization, hardware accelera-
tion, and reliability [13, 15, 21]. This work depends on the
original LZ’78 compression scheme. The compression and
decompression algorithms are presented below.

Algorithm 1: LZ’78 Compression Algorithm
Result: LZ’78 compression dictionary
dictionary = Null;
char = string[0];
prefix = Null;
while char ≠ end of string do

if char ∈ dictionary then
prefix.append(char);

else
dictionary.add(prefix,char);
prefix = Null;

end
char = string[next]

end

Retrieving the dictionary content in the order of insertion
produces the LZ’78 compressed version of the input string.
The compressed string would thus be a set of tuples of the
form (index to prefix, new char).

Note that traversing the dictionary in the insertion order
of the compression enforces the property that the code at
index 𝑗 (i, char) where index 𝑖 is code (m, char) and if
𝑖 < 𝑗 , 𝑗 will point to an already decompressed code (𝑚,𝑐ℎ𝑎𝑟 ).
The compression and decompression algorithms run in time
𝑂 (𝑚) where𝑚 is the size of the message being compressed
and decompressed. The linear bounds follow from basic anal-
ysis of the algorithms, however Ferragina et al. have shown
tighter bit-complexities [7]. Ziv and Lempel have given a
constructive proof, based on finite-state encoders which the-
oretically parallels Shannon’s entropy, that LZ is the lower
bound on the compressibility of a string [28].
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Algorithm 2: LZ’78 Decompression Algorithm
Result: Decompressed string
compressed = LZ’78 compressed string input;
dictionary = compression dictionary generated by
LZ’78;

while compressed ≠ empty do
index, char = compressed.pop();
code = dictionary.get(index).append(char);
dictionary.replace(index, code);

end

Compression-aware Algorithms
Data compression is classically seen as a long-term storage
optimization mechanism [18]. Consequently, many of the
classical designs and implementations are focused on opti-
mizing for long-term storage. However, as the growth of data
continue to increase, the performance bottleneck in the von
Neumann computer architecture becomes the in-memory
space and speed as well. Compression-aware algorithms aim
to introduce the benefits of compression to data residing in
memory and being processed by algorithms.
The classical processing of using compression follows

three basic steps: compress the data, store the data in long-
term storage, decompress the data when an algorithm needs
it. However, both the compression and decompression steps
are typically time consuming as they willingly trade-off their
time complexities for the compression quality. Therefore, if
compression is to be used in short-term storage scenarios,
performance cost of compression and decompression must
be negligible. Compression-aware algorithms ofter a path
towards this goal by avoiding the decompression step alto-
gether. A compression-aware algorithm is an algorithm that
is designed with the intention of computing on compressed
data. Typically, the algorithm is designed to work with a
specific compression scheme. Recent works have success-
fully applied this technique to improve performance in DNA
alignment, streaming data, and query processing [4, 5, 12].
Previous work, related to this project, has shown searching
and sorting to be possible on LZ’77 compressed string with
asymptotically better runtime [2].

This project is focused on designing a compression-aware
equivalent of the longest common subsequence algorithm.
LCS is often used to measure the similarity of strings and,
in genomics to extract common sections of genes. It is clas-
sically solved using dynamic programming techniques and
runs in time𝑂 (𝑛2), in the length of the strings. As mentioned
in the previous section, the compression scheme under con-
sideration is LZ’78.
The classic dynamic programming solution produces a

matrix of size𝑚 × 𝑛 where𝑚 and 𝑛 are the sizes of the two

strings. matrix[m-1, n-1] gives the length of the longest
common subsequence. Simple backtracking techniques can
recover the string itself. The challenge is then to perform
the same operations on LZ’78 compressed strings instead of
the uncompressed strings and yield the same table.

Multi-party Computation
Multi-party computation is a process that enables a group of
independent parties to contribute private input to a compu-
tation and collaboratively compute on the aggregated data
without disclosing any of the private individual inputs [6].
MPC is particularly effective in cases where the parties can-
not trust each other nor any third-parties since it fully pro-
tects the private inputs of the parties. The general concept
of MPC was introduced by Andrew Yao in the 1980s [26]. He
later designed the Garbled Circuit protocol as a realization
of the concept, which forms the basis of most MPC protocols
used today [6].
The following example was popularized by Yao: two mil-

lionaires would like to find who is richer but would like to
keep their respective net-worth a secrete. More formally, we
are interested in computing the function F (𝑛1, 𝑛2) = 𝑛1 > 𝑛2
where 𝑛𝑖 is the network of the millionaires without disclos-
ing 𝑛𝑖 to any party. The MPC protocol Π must enable the
computation of the function F (𝑥1...𝑥𝑛) with 𝑛 parties pro-
viding the 𝑛𝑖 inputs. F must be a discrete function, which
the is true in this case. Furthermore, for brevity, lets restrict
the domain of𝑛 for the running example to {100, 1000}. Then
Yao’s Garbled Circuit is a valid protocol Π.

A Garbled Circuit (GC) is an MPC protocol defined as a
quadruple (𝐺𝑏, 𝐸𝑛, 𝐸𝑣, 𝐷𝑒), where:
(1) 𝐺𝑏 (1𝜆, F ) → (𝐹, 𝑒, 𝑑): a garbling algorithm that takes

a security parameter 𝜆, and discrete function F and
produces a garbled circuit 𝐹 , an information encoding
key 𝑒 , and an information decoding key 𝑑

(2) 𝐸𝑛(𝑒1, 𝑒2, 𝑥) → 𝑋 : an encoding algorithm which takes
in keys 𝑒1 and 𝑒2 and information 𝑥 and produces 𝑋 , a
garbled output under the two keys. Typically 𝐸𝑛 is a
double-key encryption algorithm

(3) 𝐸𝑣 (𝐹, 𝑋 ) → 𝑌 : an evaluator which takes a garbled
circuit 𝐹 and a garbled input𝑋 , and produces a garbled
output 𝑌

(4) 𝐷𝑒 (𝑑1, 𝑑2, 𝑌 ) → 𝑦: a decoding algorithm that takes
in decoding keys 𝑑1, 𝑑2 and garbled input 𝑌 and pro-
duces a plaintext 𝑦. Typically a double-key decryption
algorithm related to 𝐸𝑛

Then we say the garbled circuit G is correct if,

𝑃𝑟 [𝐷𝑒 (𝑑, 𝐸𝑣 (𝐹, 𝐸𝑛(𝑒, 𝑥))) = F (𝑥)] = 1 (3)
where 𝐺𝑏 (1𝜆, F ) = (𝐹, 𝑒, 𝑑) for a sufficiently large 𝜆 [25].
The full correctness argument as well as the constructive
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security proof was given by Yao [26]. Continuing the run-
ning example, the function F can be seen as a table 𝑇 of
size |𝐷𝑥 |¤|𝐷𝑦 | where 𝐷 is the domain of the variables. 𝑇 enu-
merates the mapping between inputs 𝑋,𝑌 to outputs. The
function F (𝑥,𝑦) can then be easily evaluated as a lookup
𝑇 [𝑥,𝑦]. Since the function at hand has a small domain and
is discrete, it can be exhaustively enumerated here.

𝑛1 𝑛2 Output
100 1000 0
1000 100 1
100 100 0
1000 1000 0

Note that every party has access to F , thus can easily
construct the table above. Then let the first millionaire be
𝑚1 and the second 𝑚2. Arbitrarily choose one of them to
initiate the protocol; the example continue with𝑚1. Then𝑚1
generates secure keys 𝑘𝑖 , 𝑘 𝑗 corresponding to each unique
𝑥𝑖 , 𝑥 𝑗 in the input domains 𝐷 . It then encrypts or encode
each output in 𝑇 using the corresponding keys for the row,
𝐸𝑛(𝑘𝑖 , 𝑘 𝑗 , 𝑡𝑎𝑏𝑙𝑒 [𝑖, 𝑗]). The result of this encryption procedure
is the garbled circuit 𝐹 ; that is,𝑚1 has executed𝐺𝑏. To avoid
leaking data based on the fixed order elements in 𝑇 ,𝑚1 ran-
domly permutes the rows of 𝑇 .

Output
𝐸𝑛(𝑘1, 𝑘0, 1)
𝐸𝑛(𝑘0, 𝑘1, 0)
𝐸𝑛(𝑘1, 𝑘1, 0)
𝐸𝑛(𝑘0, 𝑘0, 0)

The next step requires𝑚1 and𝑚2 to exchange keys. The
process proceeds with 𝑚1 sending 𝐹 and the key 𝑥 ′ that
corresponds to𝑚′

1𝑠 input– the first millionaire’s net worth.
Note that 𝑥 ′ is a randomly generated key that does not leak
information related to the corresponding value. Given 𝑥 ′ and
𝐹 ,𝑚2 needs to find the correct row that corresponds to their
input. In other words,𝑚2 needs 𝑦 ′ such that,

∃𝑖, 𝑗 ∈𝑇𝐷𝑒 (𝑥 ′, 𝑦 ′, 𝐸𝑛(𝑥 ′, 𝑦 ′,𝑇 [𝑖, 𝑗])) = F (𝑥,𝑦) (4)
holds true. However, since 𝑇 was uniquely generated by
𝑚1, 𝑚2 cannot directly discover the corresponding key to
their input. Similarly, if 𝑚2 was to directly ask 𝑚1 for the
key that corresponds to their input, they would leak their
value. Therefore,𝑚2 must receive the key𝑦 ′ from𝑚1 through
oblivious transfer. Oblivious transfer is a necessary building
block for MPC that allows a party to receive a secret from
another party without learning anything extra and without
the sender learning anything [6]. Formally, for two parties:
sender S and receiver R, where S holds secrets {𝑠1, ..., 𝑠𝑛}

and R holds selector bit 𝑏 ∈ {0, 1}𝑛 ; oblivious transfer en-
ables R to receive 𝑠𝑏 and S to receive nothing. The example
at hand requires a 1-out-of-N oblivious transfer protocol. Im-
plementations and security of oblivious transfers is covered
by Evans et al. [6].
Once 𝑚2 securely receives 𝑦 ′, they can exhaustively at-

tempt to decrypt/decode every row as∀𝑖, 𝑗 ∈𝑇𝐷𝑒 (𝑥 ′, 𝑦 ′,𝑇 [𝑖, 𝑗])
until they successfully decrypt. This requires 𝑚2 to know
when a 𝐷𝑒 operation is successful. Beaver et al. offer the
point and permute technique which enables 𝑚2 to know
which row to decrypt without having to attempt decrypting
each row [1]. Once𝑚2 successfully decrypts the correct row,
it can share the result of the decryption, which is the result
of F with𝑚1.

Challenges of Garbled Circuits
Recent works have improved the performance of garbled
circuit protocol for arbitrary functions as well as specific
functions and algorithms [14, 16, 23]. This work is a first
step towards another optimization of garbled circuit proto-
cols’ performance. The main cost of garbled circuit protocols,
especially as they scale to more than two parties, is the net-
work bandwidth required to transmit𝑇 and the computation
required to generate and evaluate𝑇 [6]. Network bandwidth
bottlenecks are common in system design due to the speed
difference between local execution of programs and the la-
tency of networks, which in practical settings typically span
large geographical distances. The theoretical communica-
tion complexity lower bound for MPC has been established
to be sublinear, independent of the circuit size. Specifically,
Couteau shows the communication complexity is,

O
(
𝑛 + 𝑁

(
𝑚 + 𝑠

log log(𝑠)

))
(5)

where 𝑠 is the size of the layer boolean circuit, 𝑁 is the num-
ber of parties, and𝑚,𝑛 are the sizes of the output and input
respectively. Moreover, this requires storage polynomial in
𝑠 ,

O
(

𝑠2

log log(𝑠)

)
(6)

where 𝑠 is the size of the circuit [3]. Note that Yao’s classic
garbling scheme does not achieve the optimal communica-
tion complexity, but other more recent schemes meet this
challenge [6].

Similarly, the generation of𝑇 is directly lower-bounded by
the expensive cryptographic operations, which in turn are
dependent on𝑚 and𝑛– the input and output sizes. Therefore,
we aim to decrease𝑚 and 𝑛 using compression techniques,
and furthermore, design F to be compression-aware such
that the parties do not incur the additional cost of decompres-
sion when evaluating F ′(𝑥 ′, 𝑦 ′), where 𝑥 ′, 𝑦 ′ are the strings
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𝑥,𝑦 compressed under an algorithm-friendly compression
scheme, such as the LZ family.

Formally, the Garbling Circuit scheme becomes a sextuple
G′ = (𝐺𝑏, 𝐸𝑛, 𝐸𝑣, 𝐷𝑒,𝐶𝑜, 𝐷𝑜) where,
(5) 𝐶𝑜 (𝑥) → (𝐶𝑆, 𝐷𝐼 ) : is a compression scheme receives

a plaintext value 𝑥 and returns the compression of 𝑥
and an optional compression dictionary 𝐷𝑖

(6) 𝐷𝑜 (𝐶𝑆, 𝐷𝐼 ) → 𝑥 : is a decompression scheme that
takes a compressed plaintext value 𝐶𝑆 and the com-
pression dictionary 𝐷𝐼 , and returns the decompressed
plaintext 𝑥

Since 𝐶𝑜 is a bijective function mapping 𝐷𝑖 → 𝐷 ′
𝑖 , where

𝐷𝑖 is the domain of party 𝑖’s input and 𝐷 ′
𝑖 is the domain of

the compressed plaintexts, all 𝑋 ∈ 𝐷𝑖 can be replaced by
𝑋 ′ ∈ 𝐷 ′

𝑖 : 𝐶𝑜 (𝑋 ) in the garbling scheme G with no other
change to produce G′.

4 CONTRIBUTION
This project is a part of a larger project that aims to design a
garbling scheme G′ where F ′ is a compression-ware string
algorithm, such as Edit Distance, Longest Common Subse-
quence, and Hamming Distance. The compression scheme is
the LZ family, and more specifically LZ’78. Previous work
from the group has attempted to augment the LCS algorithm
with compression-awareness for LZ’78.

However, our initial attempt at solving this problem showed
that the problem is rather difficult, so we now consider a
promise problem formulation instead. A promise problem is
one where the algorithm designer is promised the input to
their algorithm comes from a subset of all strings [11]. More
formally, a promise problem is the partitioning of a language
L ⊆ {0, 1}∗ into three languages,

(1) The language L𝑌𝐸𝑆 representing YES-strings
(2) The language L𝑁𝑂 representing NO-strings
(3) The language L𝐷𝑖𝑠 representing disallowed strings

The promise algorithm is expected to distinguish between
the 𝑌𝐸𝑆 language and 𝑁𝑂 language but is allowed arbitrary
behaviour on the disallowed language, including not halting
[11]. Consequently, we also get the guarantee that L𝑌𝐸𝑆 ∩
L𝑁𝑂 = ∅, and we call L𝑌𝐸𝑆 ∪ L𝑁𝑂 the promise.

Therefore, we are interested in partitioning L into the two
languages then designing an algorithm where the input do-
main is the promise. This partitioning is more of an art than
a science; if promise is too large, e.g. 𝑝𝑟𝑜𝑚𝑖𝑠𝑒 = L, then the
promise problem becomes trivial and equivalent to a decision
problem. Similarly, if promise is too small then the algorithm
will be trivial and will not be practically useful. This project
is the first step towards solving the partitioning problem: we
hypothesize that promise can be pairs of high-compression
strings and L𝐷𝑖𝑠 can be pairs of low-compression strings.

The experiments performed show some support for our hy-
pothesis, and we sketch the beginning of further partitioning
promise into the 𝑌𝐸𝑆 and 𝑁𝑂 languages by describing the
domain’s distribution. This partitioning does not trivialize
the algorithm since the domain of high-compression strings
is fairly large but still provably smaller than L.

5 EXPERIMENTS
Methodology
The experiments are designed to confirm or reject the hy-
pothesis that there is sufficient separation between high-
compression string pairs and low-compression string pairs
with regards to the string metric measures. If there is a
strong separation, then the two domains should be mod-
eled differently, that is we expect a bi-modal distribution.
Let 𝑆1 and 𝑆2 be the two strings under consideration; let
𝐶𝑟 = 𝐶𝑅(𝑆1) +𝐶𝑅(𝑆2) be the total compression ratio of the
two strings per Equation 2. Moreover, a metric refers to one
of the string algorithms: Edit Distance, LCS, Hamming Dis-
tance. Then the hypotheses are formulated as below,
H.1 𝐶𝑟 and each metric are not linearly correlated
H.2 Each metric is not normally distributed
To statistically confirm these hypotheses, we first generate

sufficiently large data sample. We consider string pairs with
compression ratios between 5 and 20 in increments of 0.5.
First we measure the standard deviation between 100 such
samples for each compression ratio target for exploratory
data analysis. Next, we consider the relationship between
𝐶𝑟 and the metrics, and provide a Gaussian Mixture Model
(GMM). Listing 1 shows the code used to generate the data.

Listing 1: Python program used to generate sample
data for experiments
1 def exper iment_on_given_CR ( CRS ) :
2 CR1 , CR2 = CRs
3 i t e r s = 100
4 r e s u l t s = np . z e r o s ( ( i t e r s , len ( m e t r i c s ) ) )
5 c omp r e s s i o n _ r a t i o s = np . z e r o s ( ( i t e r s , 2 ) )
6 for i in range (max ( 2 , i t e r s ) ) :
7 decompressed = tuple (map ( decode ,
8 map ( random_compression , CRs ) ) )
9 a c t u a l _ c r = tuple (map ( c ompr e s s i on_ r a t i o , decompressed ) )
10 c omp r e s s i o n _ r a t i o s [ i ] [ 0 ] , c omp r e s s i o n _ r a t i o s [ i ] [ 1 ] =

a c t u a l _ c r
11 for index , me t r i c in enumerate ( me t r i c s ) :
12 r e s u l t s [ i ] [ index ] = me t r i c s [ me t r i c ] (
13 decompressed [ 0 ] , decompressed [ 1 ] )
14
15 r e s u l t s = np . s t d ( r e s u l t s , a x i s =0 )
16 c omp r e s s i o n _ r a t i o s = np . mean ( c omp r e s s i on_ r a t i o s , a x i s =0 )
17
18 return np . c on c a t en a t e ( ( c omp r e s s i on_ r a t i o s , r e s u l t s ) )

Listing 1 is the core of the code used to generate the data.
Line 4 and 5 initialize the Numpy arrays with zeros. The outer
loop starting on Line 6 is the repetition loop to strengthen
the statistical significance; we set it to 100 due to time and
computational power restrictions. Line 7 performs two maps:
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(a) LCS (b) Edit Distance (c) Hamming Distance

Figure 1: 3D visualization of the relationship between compression ratio and three metrics

the inner map calls random_compression on the two target
compression ratios which produces two random strings with
compression ratios close to the target compression; the sec-
ondmap decompresses the returned compressed strings. Line
9 maps compression_ratio on the decompressed strings,
which calculates the true compression ratios achieved by
random_compression; Line 10 saves the true compression
ratios to the Numpy array. The inner loop starting on Line 11
runs each string metric on the two decompressed strings and
saves the values. This process is repeated iters=100 number
of times. Line 15 calculates the standard deviation between
the 100 scores of each metric independently. Line 16 averages
the achieved compression ratio across the iters repetition.
These two results form the final returned value. For the
second analysis on the raw scores, Line 15 computes the
average instead of the standard deviation. For both analyses,
experiment_on_given_CR is called on 𝑆 × 𝑆 : 𝑆 = {1...20}.

Figure 2: 2D heatmap of compression ratio and standard de-
viation in metrics scores

Experiment Data and Analysis
The experiments produced a significant amount of data. As
described above, one version of the experiment produced
standard deviations while the other produced average scores.
Listing 2 shows sample data from one of the experiments.

Listing 2: Few enteries of the generated data
Ave CR1 Ave CR2 Hamming D . E d i t D . LCS CR sum
. . . . . . . . . . . . . . . . . . . . . . . .
7 . 6 6 8 . 1 0 1 3 7 2 . 8 9 1 3 0 6 . 1 4 2 9 2 . 6 2 1 5 . 7 7
7 . 9 1 8 . 7 6 1 3 7 2 . 0 8 1 3 1 0 . 7 6 2 9 1 . 9 6 1 6 . 6 7
7 . 8 6 9 . 6 4 1 3 7 3 . 0 2 1 3 2 2 . 2 3 2 8 2 . 1 7 1 7 . 5 1
8 . 2 0 9 . 0 5 1 3 7 3 . 8 0 1 3 2 1 . 5 4 2 8 4 . 3 1 1 7 . 2 5
8 . 1 2 1 0 . 6 8 1 3 7 3 . 7 6 1 3 2 1 . 1 2 2 8 6 . 3 5 1 8 . 8 0
. . . . . . . . . . . . . . . . . . . . . . . .

We reject the null hypothesis of H.1 by performing Spear-
man’s rank correlation test for each of the metrics and the
corresponding compression ratios. A perfect Spearman score
of ±1 implies there is monotonic relationship between the
variables, where the sign signifies the direction of the re-
lationship. A perfect, score of 0 implies no tendency for
variables to change monotonically. The experiments show
scores close to zero as shown in Table 1.

Spearman Shapiro-Wilk
LCS 0.0111 9.54e − 42
Hamming 0.0342 9.54e − 42
Edit 0.0203 9.54e − 42

Table 1: P-values of significance tests performed

Similarly, we reject the null hypothesis of H.2 by perform-
ing the Shapiro-Wilk test. The p-values are interpreted as
usual for 𝛼 = 0.05, and the experiments show p-values close
to 0, per Table 1. The experiments continue based on the
hypothesis that relationship between 𝐶𝑟 and the metrics is
not linear and not normally distributed.
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(a) Edit Distance (b) Hamming Distance (c) LCS

Figure 3: 3D PDF of the Gaussian distributions used in the mixture

As seen in Figure 2, when all the available data is plotted
with the two compression ratios (note this is not𝐶𝑟 ) and met-
rics scores, the heatmap generally increases towards darker
colors as the compression ratios increase. Figure 1 shows
this relationship more clearly in a 3D plot; specifically, note
the distinct separation between high and low metric scores
on the z-axis. This clearly indicates a bimodal distribution.

Figure 4: GMM classification of testing data into the two pro-
posed partitions

We formalize this separation as a classification problem.
That is, given𝐶𝑟 and themetric score, the classifier decides to
put the observation in the higher or lower cluster. Moreover,
the distribution in each cluster seems normally distributed
so we propose a Gaussian Mixture Model (GMM) as the
classifier. A Multivariate GMM is formally,

𝑝 (𝑥 |𝜃𝑘 ) =
(

1√
(2𝜋)𝑑 |Σ𝑘 |

)− 1
2 (𝑥−𝜇𝑥 )

𝑇
∑−1

𝑘
(𝑥−𝜇𝑘 )

(7)

where 𝜃𝑘 = {𝜇𝑘 , Σ𝑘 }, Σ is the 𝑑 ×𝑑 , where 𝑑 is the dimension
ofmodel, covariancematrix, and 𝜇 is the vector of means. The
covariance matrix needs to be symmetric definite since we
need the inverse [20]. GMM is considered an unsupervised
learning technique, and the parameters are learned auto-
matically. Expectation maximization is used to estimate the
parameters in this case as it is generally effective for GMMs
with finite normal components [17]. The components are

restricted to two based on the previous analysis and hypothe-
ses. Figure 3 shows the 3Dmodels of the learned distributions
for the two components per metric. Similarly, Figure 5 shows
the distributions as 2D contour plots.

Figure 5: 2D contour plots of the PDF for the Gaussian dis-
tributions

Only the estimated 𝜇 and Σ for Edit Distance are shown
below for brevity. The complete code and results are provided
on GitHub [8].

Σ1 =

(
2.066 0.196
0.196 47.132

)
Σ2 =

(
5.206 −2.106
−2.106 19.559

)
(8)

𝜇1 = (20.95, 240.257)
𝜇2 = (22.916, 280.477)

Davies–Bouldin Silhouette
LCS 0.20 0.84
Hamming 0.01 0.99
Edit 0.16 0.85
Table 2: GMM performance measure summary

The bi-modality of the data can then be confirmed by ana-
lyzing the fitness of the GMM models. The Davies-Bouldin
and Silhouette clustering tests are performed to accomplish
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this. The first measures the distance of objects within the
cluster compared to distance between clusters; a lower score
means a better cluster. The latter measures the similarity
of each object to other objects within the cluster; a perfect
+1 indicates the sample is far from neighboring clusters, a 0
indicates being close to the cluster boundaries, and a perfect
-1 indicates the object is in the wrong category. As Table 2
shows, both tests indicate the GMM models are very good
fits.

6 FUTUREWORK
This project is the first step in a much larger project, thus
much of the work remains in the future. However, more
specifically to this project, future work should explore more
robust multivariate analysis. The analysis in Section 5 col-
lapses the two compression ratios into 𝐶𝑟 , which results in
significant loss in data resolution. For example, the analy-
sis does not differentiate between a high 𝐶𝑟 caused by both
compression ratios being high and a high 𝐶𝑟 caused by one
extremely high compression ratio. This is noticeable in the
models since the relationship is not clearly bi-modal on the
compression axis (see Figure 4) although the modality is
apparent on the compression axes when the compression
ratios are separated (see Figure 2). Future work can explore
better partitioning based on these models; perhaps by using
these models as a priori probability estimators of similarity.
This line of work can show a much stronger relationship
between the compression ratios and the scores, such that
one can classify samples’ scores based on the compression
ratios.

7 CONCLUSION
This work makes progress in two ways: first, it formalizes
the problem as a promise problem, and second it provides
a meaningful partitioning of the promise. The experiments
show some support for the compressibility based partition-
ing, however we make reserved claims in how good these
partitions are (which might be sufficient for the project to
move forward). Additionally, the GMMs provided can be a
useful tool in better understanding the partitioning in the
future. The extensive background should also be useful to fu-
ture work as it properly positions the project both in relation
to compression and MPC. The larger project of improving
the performance of MPC protocols using compression is a
promising approach, and this work establishes the value of
compression when the bottleneck of performance is the size
of the inputs and outputs.
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