




Abstract

Spiral k-space MRI is a fast imaging technique that uses a spiral acquisition

pattern to cover more k-space area during each repetition time to reduce the

number of excitations required to cover k-space. It is also robust to flow and

motion artifacts because the center of k-space is repeatedly scanned and the gra-

dient moments are not accumulating. Therefore, spiral scanning is a good choice

for many dynamic applications. However, the non-Cartesian sampling pattern

makes it more susceptible to off-resonance effects, k-space trajectory infidelity

and density compensation function (DCF) estimation errors and thus corrections

are required to avoid image degradation.

Balanced steady-state free precession (bSSFP) sequences are widely used in

real-time cardiac MRI, because of their short acquisition time and high contrast

between the blood pool and myocardium. Non-Cartesian bSSFP sequences rep-

resented by radial and spiral play an important role in this application due to

their reduced scan time. However, the refocusing mechanism with TE=TR/2 in

a typical bSSFP sequence is not realized with the traditional spiral-out bSSFP

sequence. Therefore, we sought to develop a new spiral-in/out bSSFP sequence



to move TE to the center of TR. The ultimate goal of this study is to implement

the radial, spiral-out and spiral-in/out bSSFP sequences and compare their per-

formances in real-time cardiac function MRI. The two spiral bSSFP sequences

show reduced aliasing and improved image quality from blind review. In addition,

the refocusing mechanism of the spiral-in/out bSSFP improves the SNR and can

be used for reliable fat-water separation.

Real-time velum imaging during speech is a new dynamic MRI application

which can be used for diagnosis of velopharyngeal insufficiency (VPI) and velum

muscle modeling. A spiral gradient-recalled-echo (GRE) sequence can be used in

this application for faster data acquisition. However, the requirements for spatial

and temporal resolution and SNR are so demanding that spiral parallel imaging

techniques are also required to further reduce the scan time. In addition, the off-

resonance effect due to air-tissue boundary needs to be corrected to deblur the

dynamic image series. Spiral spatial and temporal parallel imaging techniques

and off-resonance correction focusing on this application are explored to real-

ize 1.1 ∗ 1.1 mm2 spatial resolution, 20 fps temporal resolution and simultaneous

two-slice coverage with 6x undersampling. The sequence and the protocol for this

application were developed and tested. The study demonstrates the potential ap-

plicability of these techniques in VPI diagnosis and velum muscle modeling.

Even though spiral scanning is an important alternative method, the Carte-

sian trajectory is still clinically dominant. In Cartesian dynamic MRI, spatial

and temporal parallel imaging can be exploited to reduce scan time. Real-time

reconstruction enables immediate visualization during the scan. Commonly used

view-sharing techniques suffer from limited temporal resolution, and many of the

more advanced reconstruction methods are either retrospective, time-consuming,
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or both. A Kalman filter model capable of real-time reconstruction can be used

to increase the spatial and temporal resolution in dynamic MRI reconstruction.

The original study describing the use of the Kalman filter in dynamic MRI was

limited to non-Cartesian trajectories, because of a limitation intrinsic to the dy-

namic model used in that study. Here the limitation is overcome and the model

is applied to the more commonly used Cartesian trajectory with fast reconstruc-

tion. Furthermore, a combination of the Kalman filter model with Cartesian

parallel imaging is presented to further increase the spatial and temporal reso-

lution and SNR. Simulations and experiments were conducted to demonstrate

that the Kalman filter model can increase the temporal resolution of the image

series compared with view sharing techniques and decrease the spatial aliasing

compared with TGRAPPA. The method requires relatively little computation,

and thus is suitable for real-time reconstruction.
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Chapter 1
Introduction

Magnetic resonance imaging (MRI) is a powerful noninvasive and nonradioac-

tive imaging technique that has experienced rapid growth over the past several

decades. The main advantages of MRI compared to other major imaging modal-

ities such as computed tomography (CT) and ultrasound include excellent soft

tissue contrast and flexibility in generating image contrast and selecting imaging

parameters for control of image content. The main disadvantage, on the other

hand, is the relatively low imaging speed. However, recent development of MRI

hardware and various fast imaging techniques aiming to reduce scan time have

greatly alleviated this disadvantage; therefore, many clinical imaging applications

in which a series of dynamic MR images are rapidly acquired to capture evolv-

ing physiological phenomena have become plausible and also have attracted more

and more research attention. These applications including real-time cardiac func-

tion MRI, dynamic myocardial perfusion imaging, real-time MR speech imaging,

time-resolved magnetic resonance angiography (MRA), and dynamic functional

MRI.
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Among the various fast imaging techniques, spiral k-space MRI [1, 2] is an

important method drawing much attention. It uses a spiral acquisition pattern

to cover more k-space area during each repetition time (TR) and therefore greatly

reduces the number of excitations required to cover the entire k-space. In ad-

dition to the high data acquisition efficiency, spiral scanning is more robust to

flow and motion artifacts because the center of k-space is repeatedly scanned and

the gradient moments are not accumulating. Therefore, spiral scanning is a good

choice for many dynamic applications.

However, the non-Cartesian sampling pattern of the spiral trajectories makes

it more susceptible to many imperfections of the system. For example, B0 field

inhomogeneity and concomitant gradient fields can lead to off-resonance effects,

resulting in severe image blurring and/or distortion, especially when the spiral

readout time is relatively long. In addition, eddy-current effects are more con-

spicuous for spiral trajectories as the gradients and the slew rates are constantly

changing during the acquisition. The anisotropic delay on three gradient axes

and the linear eddy currents can cause the actual k-space trajectory to deviate

from the theoretical trajectory and bring in blurring and distortions in the re-

constructed images [3]. Many methods have been developed to correct for these

effects, including advanced shimming tools to reduce B0 field inhomogeneity [4],

automatic eddy current compensation in the gradient system [5, 6] and various

post processing algorithms during the image reconstruction. In addition to these

correction algorithms in spiral image reconstruction, the density compensation

factor (DCF) also plays an important role as it not only affects the accuracy of

transforming the non-Cartesian k-space data onto Cartesian grids but also can

perform as a raw data filter for a specific purpose [7–9]. Therefore, before we
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explore the dynamic applications using the spiral trajectories, we will introduce

the general correction algorithms including off-resonance and trajectory infidelity

corrections and the DCF calculation method. However, even though these meth-

ods have proved their effectiveness with static spiral image acquisition, special

considerations are still required for different dynamic applications.

1.1 Specific Aims

After introducing these general techniques in spiral reconstruction, we will focus

on three specific aims for this dissertation to describe different techniques and

applications in dynamic MRI.

Real-time cardiac function MRI has proved to be clinically useful for evaluat-

ing cardiac function, visualizing cardiac flow, and localizing scan plans for coro-

nary imaging [11–13]. For this application, balanced steady-state free precession

(bSSFP, also known as True-FISP, FIESTA, or balanced FFE) [14,15] sequences

are widely used because of their short acquisition time and high contrast between

blood pool and myocardium. Non-Cartesian sampling patterns represented by

radial and the aforementioned spiral trajectories are generally more time-efficient

than a Cartesian sampling pattern that fills k-space line by line. Therefore, non-

Cartesian bSSFP sequences [16, 17] play an important role in real-time cardiac

function imaging. Nevertheless, radial bSSFP and spiral bSSFP have different

mechanisms to reduce scan time and perform differently in this application. In

addition, in a typical bSSFP sequence, the echo time (TE) is usually at the cen-

ter of TR to exploit the refocusing effect similar to a spin echo [15], which is not
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true for traditional spiral bSSFP sequences, where the k-space scanning starts

at the center and moves to the edge in a spiral path. Therefore, we want to

develop a spiral-in/out bSSFP sequence to move TE to the center of TR. With

respect to the new spiral-in/out bSSFP sequence, the traditional bSSFP sequence

is renamed as spiral-out bSSFP sequence. For this dissertation, Specific Aim

#1 is to implement all three bSSFP sequences (radial, spiral/out and

spiral-in/out) on the scanner and compare their performance in real-

time cardiac function MRI. For the comparison, in addition to theoretical

analysis of the point spread functions (PSF), we also calculate the apparent SNR

and CNR in the reconstructed images and statistically evaluate the general image

quality with blind review from two cardiologists. In addition, the utilization of

the refocusing mechanism in a spiral-in/out bSSFP sequence to separate fat and

water is demonstrated.

As mentioned above, a spiral trajectory is more time-efficient and therefore

can be combined with different types of sequences, including bSSFP, gradient echo

(GRE) and turbo spin echo (TSE) sequences in different dynamic MRI applica-

tions. Velopharyngeal insufficiency (VPI) is a malfunction of a velopharyngeal

mechanism resulting in a hypernasal voice resonance and nasal emissions while

talking. It is commonly caused by a cleft palate and requires a repair surgery.

Real-time velum imaging during speech can be used for evaluating velopharyngeal

closure to provide the opportunity to improve diagnosis and surgical planning in

patients with VPI. Spiral RF and/or gradient spoiled real-time GRE sequences

can be used here to reduce the scan time. However, as the requirements for

temporal and spatial resolution and SNR are very demanding in this applica-

tion, spatial parallel imaging techniques using multiple receiver coils and tempo-
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ral parallel imaging techniques exploiting the temporal redundancy in an image

series are also applied in combination with the spiral trajectory for a further

reduction of the scan time. In addition, in this particular application, B0 field

inhomogeneity is very severe due to the air-tissue boundary and hence requires

correction. Therefore, Specific Aim #2 is to implement the spiral GRE

sequence on the scanner for real-time velum imaging and reconstruct

the images using spatial and temporal parallel imaging techniques with

off-resonance correction. VPI diagnostic study and velum muscle modeling

based on the dynamic image series can be performed afterwards in collaborations

with other researchers.

Although the spiral trajectory is an important alternative in many dynamic

MRI applications, the Cartesian trajectory is still dominant clinically. How-

ever, the relatively long scan time with the Cartesian trajectory has always been

a challenge for researchers and thus many techniques have been developed to

reduce scan time without degrading the image quality. The effects of spatial

parallel imaging techniques such as SENSE [18] and GRAPPA [19] have been

widely demonstrated in various applications. In addition, various temporal par-

allel imaging techniques have also been developed to exploit the temporal redun-

dancy in the dynamic image series and some of them have been combined with

spatial parallel imaging techniques. However, these temporal parallel imaging

techniques may suffer from temporal blurring, sensitivity to chest movements,

inability to do real-time reconstruction or long reconstruction time and few have

been compared and evaluated in clinical applications. The Kalman filter is a

robust linear filter which is capable of real-time tracking and has been success-

fully adopted in real-time cardiac MRI with a non-Cartesian trajectory and also
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combined with SENSE [20, 21]. However, the direct application to a Cartesian

trajectory is limited by model assumptions and the combination with GRAPPA

has not been realized. Therefore, Specific Aim #3 is to implement a new

Cartesian Kalman filter model in real-time cardiac function MRI in-

cluding combinations with both SENSE and GRAPPA and evaluate

the performance of the model by comparing it with other techniques.

Simulation studies using a numerical phantom and retrospectively undersampled

in-vivo data are performed as well as experiments on healthy volunteers. The

evaluation is realized by blind review from two cardiologists.

1.2 Dissertation Overview

The remainder of this dissertation is organized as follows:

Chapter 2 talks about several technical issues in spiral image reconstruction

including off-resonance correction, trajectory infidelity correction and DCF cal-

culation as the basis for the dynamic spiral applications to be discussed later.

Instead of providing a comprehensive overview of this giant topic, we focus on

several methods currently used in the lab. The limitations of these methods are

also discussed.

Chapter 3 focuses on the comparison of radial, spiral-out and spiral-in/out

bSSFP sequences in real-time cardiac function MRI. First the gradient design for

the two spiral sequences is introduced with the gradient moment analysis. Then

the experiment setup is introduced followed by the theoretical and experimental

image comparison methods. Finally the comparison results and fat-water sepa-

ration are reported.
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Chapter 4 focuses on the spiral parallel imaging techniques and the applica-

tion in real-time velum imaging. First the spiral spatial and temporal parallel

imaging techniques are introduced followed by the off-resonance correction. Then

the spiral sequence implementation and the experimental setup are introduced.

Finally the primary experimental results are reported.

Chapter 5 studies the Cartesian Kalman filter techniques focusing on real-time

cardiac function MRI. The basic Kalman filter model and the combination with

SENSE and GRAPPA are introduced followed by simulation and experimental

methods. The results of the simulation and experiment are then reported. Fi-

nally, the possible extension of this model is discussed.

Chapter 6 gives the conclusions for all three research aims and summarizes

the contributions of the author and the collaborators.



Chapter 2
Spiral Image Reconstruction and

Corrections

2.1 Introduction

Instead of simply performing a fast Fourier Transform (FFT) with a Cartesian

k-space trajectory, image reconstruction with a spiral trajectory is far more com-

plicated due to the offsets of the sampled k-space points from the Cartesian grids

and the non-uniform sampling density. Conjugate phase (CP) reconstruction [22]

is a common approach for non-Cartesian image reconstruction, described by

m(r) =

∫
t

W (t)s(t)ei2πk(t)·rdt (2.1)

in which W (t) is the DCF. The direct calculation of m(r) in the above equation

is very time consuming and thus the gridding method is generally used for simpli-

fication with the following basic steps: 1) compensate the non-uniform sampling

density by multiplying each acquired data with the corresponding DCF; 2) grid-

8
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ding: convolve the acquired data with a Kaiser-Bessel kernel to get the value at

each Cartesian grid (oversampling is usually performed at this step); 3) 2D FFT;

4) cut the edge of the image (depending on oversampling ratio) and deapodize

to eliminate the effect of the Kaiser-Bessel kernel.

However, the above reconstruction method is based on an ideal imaging sys-

tem in which the phase dispersion at each pixel is only from the gradient fields

and the k-space trajectory is exactly what we designed. In reality, off-resonance

effects and trajectory infidelity are inevitable and can bring in severe image ar-

tifacts so that corrections during image reconstruction are required. In addition,

even though the DCF is well studied for a traditional constant density spiral tra-

jectory, for a variable density spiral trajectory in which undersampling is allowed

in the outer k-space [23,24], the calculation of the DCF needs to be re-examined.

The following sections will focus on these technical issues.

2.2 Off-Resonance Correction

Off-resonance effects can come from B0 field inhomogeneity due to main field in-

homogeneity and susceptibility-variation-induced field inhomogeneity, concomi-

tant gradient fields and chemical shift. If the local off-resonance information is

available, it can be incorporated into equation (2.1) as

m(r) =

∫
t

W (t)s(t)ei2πk(t)·rei(∆ω(r)t+φc(∆ωc(r),t))dt (2.2)
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in which ∆ω(r) is the local off-resonance frequency due to B0 field inhomogeneity

and therefore also called a field map and φc(∆ωc(r), t) is the phase due to the

concomitant gradient field. The influence of chemical shift is omitted here for

simplicity, since it is often related to the fat content in the image and therefore

depends on the specific application.

Various methods have been developed to acquire the local field map ∆ω(r)

and can be categorized into two groups depending on whether or not additional

scans are required. For the first category, a low resolution field map is usually

acquired with two single shot spirals having different echo times to approximate

the actual field map due to the limitation of scan time [25]. For the second

category, the images are reconstructed with all possible off-resonance frequencies

and the actual local off-resonance frequency is determined via minimization of

a pre-defined cost function, which is generally chosen as the imaginary part of

the image, as the on-resonance image phase is assumed to be zero [26]. However,

this method suffers from spurious minima due to the 2π cycle of the phases and

is computationally expensive, as the range of possible off-resonance frequencies

is very large. A recently developed semi-automatic method combines these two

categories by acquiring a low resolution field map and using this map to delimit

the search range of local off-resonance frequencies for the minimization problem

so that a more accurate field map can be acquired with greatly reduced spuri-

ous minima and computation time [27]. The phase term φc(∆ωc(r), t) can be

approximated from the lowest order of the concomitant gradient field given as

φc(∆ωc(r), t) = ∆ωc(r)tc. The detailed calculation of ∆ωc(r) and tc are given

in [28] and are omitted here for simplicity.

Comparing equation (2.2) with equation (2.1), we see that the conventional
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gridding method can no longer be applied due to the spatially variant phase term

∆ω(r)t+ φc(∆ωc(r), t). A fast conjugate phase reconstruction method based on

a Chebyshev approximation has instead been developed [29], expressed as

m(r) =
N−1∑
k=0

ωk(∆ω(r),∆ωc(r), τ)Ik(r)− 1

2
I0(r) (2.3)

where τ is the readout length, Ik(r) are base images, ωk(∆ω(r),∆ωc(r), τ) are

constant coefficients whose values depend on the B0 field inhomogeneity, the

concomitant gradient field and the readout length. The base images Ik(r) are

calculated with

Ik(r) =

∫
t

(
2t

τ
− 1

)l
W (t)s(t)ei2πk(t)·rdt (2.4)

in which the gridding method can be used for rapid computation.

This off-resonance correction method has proved its effectiveness in many spi-

ral applications and the computation time is greatly reduced compared with other

conjugate phase reconstruction methods; however, for some dynamic applications

in which the spiral readout time is very short so that the off-resonance effects are

relatively benign, the adoption of this method is unnecessary as its computation

load is still too high to realize real-time reconstruction with moderate hardware,

which is preferred in such applications. Therefore, a linear approximation of the

low resolution field map given as ∆ω(r) = 2π(f0 + αx + βy) is used instead

and the concomitant phase term is omitted as the image plane can be moved to

the center of the magnet to minimize the concomitant gradient fields. The off-

resonance correction can then be performed by demodulating the data at center

frequency f0 and revising the k-space trajectory to include the α and β terms [25]
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before the conventional gridding is performed. This method adds little additional

computation and thus is suitable for real-time reconstruction.

2.3 Trajectory Infidelity Correction

From Maxwell’s equations, time-varying magnetic fields resulting from gradients

in MRI pulse sequences will induce currents in conducting structures within the

magnet, gradient coils and RF coils. These induced currents are called eddy cur-

rents and create unwanted magnetic fields that are detrimental to image quality.

The z component of the magnetic field created by eddy currents, Bz(
−→x , t) is

the dominant component and has the largest effect on image quality. It can be

expanded using Taylor expansion [30] as

Bz(
−→x , t) = B0(t) +−→x · −→g (t) + · · · (2.5)

The first term is called the B0 eddy current and the second term is called

the linear eddy current. Higher order terms are not usually considered. The

effect of the B0 eddy currents is to generate an additional time-varying magnetic

field on the z axis and change the center resonance frequency. The effect of

the linear eddy currents −→g (t) is to add time-varying gradients to the specified

gradient waveforms on three physical axes and affect the k-space trajectory. It

is demonstrated in [31] that B0 eddy currents are very small and can usually be

ignored, but the linear eddy currents have much more impact on the trajectory

and need to be corrected during image reconstruction.

In addition to the linear eddy currents, the deviation of the actual k-space
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trajectory from the theoretical trajectory also comes from the anisotropic delay

between the actual and the specified gradient waveforms on three physical axes.

In fact, the actual trajectory given an image plane and a set of spiral parameters

can be measured using the modified modified Duyn’s method [32,33] by exciting

two symmetric off-center slices along the physical axis along which the trajectory

is measured. However, this method is impractical during human imaging as the

trajectory measurement takes a very long scan time and the measurement has to

be re-performed whenever the image plane or the spiral parameters are changed.

Therefore, we aim to build a model to estimate the actual trajectory considering

the two sources of trajectory infidelity.

The k-space trajectory due to the linear eddy currents Ke(t) can be expressed

as

Ke(t) =

∫ t

0

s(τ)⊗H(τ)dτ

≈ A

∫ t

0

Gd(τ)dτ +B

∫ t

0

Kd(τ)dτ

= AKd(t) +B

∫ t

0

Kd(τ)dτ

(2.6)

in which s(τ) is the slew rate, H(τ) is the impulse response function characterizing

the linear eddy currents, A and B are the constants corresponding to the 0th and

1st order Taylor expansion of the impulse response function H(τ), and Kd(t) is

the calculated trajectory given a specific gradient delay on one physical axis. The

detailed derivation of this equation is given in [33] and is omitted here. Therefore,

we have the estimated trajectory K(t) on each physical axis to be

K(t) = Kd(t) +Ke(t) = (1 + A)Kd(t) +B

∫ t

0

Kd(τ)dτ (2.7)
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The values of A′ = 1 + A, B and the gradient delay on three physical axes

can be determined using a least square fit with the measured trajectory during

a phantom experiment and are assumed to be invariant for all image planes and

spiral parameters. The estimated trajectory calculated using equation (2.7) can

be used in image reconstruction, instead of a theoretical trajectory that only con-

siders an isotropic gradient delay, which is called a single-delay trajectory.

Figure 2.1 shows the comparison of the calculated single-delay trajectory, the

measured trajectory and the estimated trajectory in a spiral-in/out experiment.

The mean square difference between the estimated trajectory and the measured

trajectory is 0.0962 while the difference between the single-delay trajectory and

the measured trajectory is 0.2152. Figure 2.2 shows the differences between the

images reconstructed using the single-delay trajectory and the measured trajec-

tory (left) and the images reconstructed using the estimated trajectory and the

measured trajectory (right). The mean square value of the difference images

reduces from 0.0177 to 0.0112 with the estimated trajectory.

2.4 Cut-Off Voronoi DCF

Variable density spiral scanning is a more efficient way to acquire k-space data

and can reduce the amplitude of low-frequency aliasing artifacts compared with

constant density spiral scanning. Therefore, it is widely used in many dynamic

MRI applications. However, though the outer k-space contains little energy, high-

frequency aliasing due to undersampling is sometimes still noticeable, especially

when the undersampling ratio becomes very large. To reduce the high-frequency

aliasing without affecting the low-frequency k-space data, we can modify the DCF
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encompassing circle for the entire k-space trajectory.

to suppress the k-space data in the undersampled region [9, 10]. The DCF for

a spiral trajectory is often calculated as the area of the Voronoi region at each

k-space point due to its simplicity and robustness [7] and is therefore referred

to as the Voronoi DCF. With a variable density spiral trajectory, the undersam-

pled regions can be easily identified from the Voronoi DCF, as the Voronoi area

of a critical sampled point is just one with the unnormalized k-space trajectory.

Therefore, we can cut off the original Voronoi DCF at this undersampling thresh-

old and use a flat DCF for the undersampled k-space data as shown in Fig. 2.3.

The theoretical point spread functions (PSF) with a variable density k-

space trajectory using the original Voronoi DCF and the cut-off Voronoi DCF

are calculated and plotted in figure 2.4. It is shown that the sidelobes are greatly

suppressed with the cut-off Voronoi DCF and the main lobe width is only slightly

increased. The reason for the main lobe width increase is because the suppression

of the k-space data in the undersampled region will effectively decrease the spa-
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Figure 2.4: Theoretical PSFs for the original Voronoi DCF (left) and the cut-off Voronoi
DCF (right).

tial resolution. Figure 2.5 shows the reconstructed images with these two DCFs.

A decrease of overall aliasing is observed with the cut-off Voronoi DCF, and the

blurring related to the increase of the main lobe width is very small. Therefore

the cut-off Voronoi DCF is used for the image reconstruction with a variable

density spiral trajectory.

2.5 Discussion

In this chapter we introduced spiral reconstruction methods focusing on three

technical issues: off-resonance correction, trajectory infidelity correction and cut-

off Voronoi DCF calculation. The purpose is to reduce the image artifacts in

spiral scanning, since the spiral trajectory is much more sensitive to these effects

compared with the Cartesian trajectory.
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Figure 2.5: Cardiac spiral-out bSSFP images using variable density spiral with the
original Voronoi DCF (left) and the cut-off Voronoi DCF (right).

For off-resonance correction, we introduced two commonly used methods: fast

conjugate phase reconstruction based on a Chebyshev approximation and linear

correction. The first method is more effective in terms of deblurring as it achieves

a high resolution field map and a phase map due to the concomitant gradient

fields and reconstructs each pixel at the given off-resonance frequency, but the

reconstruction time is relatively long. The second method is usually applied

when the off-resonance effects are not severe and the demand for reconstruction

speed is high. Nevertheless, neither of these two methods takes chemical shift

into consideration due to the complexity of the problem. In fact, the blurring

caused by the fat component of an image can be very severe in some applications

inhibiting the wide adoption of spiral scanning. One possible way to handle this

is to ignore the fat and achieve a fat-suppressed field map to only de-blur the

water component when the fat blurring is outside the region of interest (ROI). A
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detailed description of this issue is beyond the scope of this dissertation.

In the trajectory infidelity correction, there are two major limitations in the

current model. First, one important assumption of this model is that the eddy

currents due to the gradients in a prior repetition will not affect the trajectory of

subsequent repetitions. This is generally true with a long TR; however, for some

rapid sequences such as SSFP and TSE, this assumption may be invalid and the

effects have to be considered. Second, the effect of automatic pre-compensation of

the gradient system is not considered so that the actual eddy currents may differ

from the theoretical ones. As the mechanism of pre-compensation is unknown

for the Siemens scanner, the refinement of the model is very difficult. Therefore,

even though in theory the constants in trajectory estimation only depend on

the specific gradient system, we determined that the constants for the spiral-out

trajectory and the spiral-in/out trajectory achieved from the least square fit with

the measured trajectory are significantly different on the same scanner and hence

each set of constants is used for a given type of trajectory in practice.

The usage of the cut-off Voronoi DCF can suppress the high-frequency aliasing

for a variable density spiral trajectory with a minor sacrifice of spatial resolution.

This is also an SNR optimal way in terms of data processing. However, the

optimality of this method is not validated and further study is required on this

topic.



Chapter 3
Comparison of Radial, Spiral-out,

Spiral-in/out bSSFP Sequences in

Real-Time Cardiac Function MRI

3.1 Introduction

In real-time cardiac function MRI, a series of cardiac images are continuously

acquired without gating under breath-held or free-breathing conditions to avoid

the effects of arrhythmia on the gating signal and data acquisition. However, the

requirements for high temporal and spatial resolution and SNR are challenging.

Non-Cartesian imaging techniques are advantageous in terms of reduced scan

time and thus are important options in this application.

As two major representatives of non-Cartesian imaging, radial bSSFP reduces

scan time through outer k-space undersampling, whereas spiral bSSFP reduces

scan time primarily by scanning more of k-space with a spiral pattern in a given

20
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TR, with undersampling possible using a variable density trajectory. Both radial

and spiral bSSFP sequences are inherently robust to flow and motion artifacts

because they repeatedly sample the center of k-space, and spiral scans do not ac-

cumulate gradient moments. Spiral bSSFP is more sensitive to the off-resonance

effects while radial bSSFP suffers more from the streaking artifacts due to under-

sampling. One goal of this study is to compare radial and spiral bSSFP sequences

in real-time cardiac function MRI.

In addition to the traditional spiral bSSFP sequence, which we will call the

spiral-out bSSFP sequence, we also want to develop a new spiral-in/out bSSFP

sequence to realize the refocusing mechanism by moving TE to the center of TR

as in a typical bSSFP sequence. The advantages of the refocusing mechanism

include increased SNR since all spins will align at the center of the TR and the

phase cycle property, which can be used for fat-water separation. In addition, the

spiral-in/out bSSFP sequence faciliates gradient moment rephaser design com-

pared with the spiral-out bSSFP sequence because it can realize 1st order gradient

moment nulling via symmetry as long as the 0th order gradient moment is nulled,

while the spiral-out bSSFP requires a specifically designed rephaser to null both

the 0th and 1st order gradient moments.

In the remainder of this chapter, we will first introduce the gradient design

methods for the spiral-out and spiral-in/out bSSFP sequences, including gradi-

ent moment analysis. We use the Siemens cardiovascular package to implement

the radial bSSFP sequence. Next we will introduce the experimental setup and

the comparison schemes followed by the comparison results. Finally, fat-water

separation with the spiral-in/out bSSFP sequence is discussed.
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3.2 Gradient Design

In a typical bSSFP gradient design, the gradient-induced dephasing within one

TR should be exactly zero; in other words, the 0th order gradient moment m0 at

the end of TR is zero. Moreover, in real-time cardiac imaging, as well as many

other applications in which in-plane motion and flow effects cannot be omitted,

the 1st order gradient momentm1 at the end of TR should also be zero to suppress

the constant flow induced dephasing [34]. Higher-order gradient moment nulling

could theoretically provide further dephasing suppression; however, this usually

requires additional rewinding gradients, so that the TR would be prolonged,

making the sequences more susceptible to banding artifacts due to inhomogeneity

and complicating the design process. In practice, a gradient design satisfying

m0 = 0 and m1 = 0 is required and higher order gradient moments are not

considered.

3.2.1 Spiral-Out Gradient Design

Spiral-out gradients are comprised of the desired spiral readout gradients and

a following rephaser nullifying the 0th and 1st order gradient moments of the

readout gradients. The algorithm introduced by Meyer et al. [2] is used for spiral

readout gradient design. The desired k-space trajectory is

k(τ) = Aτ expiωτ , (3.1)

where τ is a function of time and ω is a parameter essentially determined from the

Nyquist sampling criterion. In an N -interleaf constant density spiral trajectory
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design, the spacing of spiral arms of one interleaf on one axis should match the

Nyquist sampling frequency, shown as

2πA/ω = 1/FOV/N, (3.2)

in which FOV is the field of view along the corresponding axis. In variable

density spiral trajectory design [23, 24], this spacing is a function of the radius

of the trajectory. There are many ways to design such a function by varying ω,

and the comparison and evaluation of these different methods is still an open

question. Here we simply adopt a linear variable density design, in which ω is

linearly decreased with each gradient sample from ωmax at the center to ωmin at

the edge of the k-space.

For the rephaser design satisfying the 0th and 1st order gradient moments

nulling requirements, we use the algorithm introduced by Nayak et al. [16] to

simultaneously compensate the 0th and 1st gradient moments via several sets of

triangle gradients. In this algorithm, first the spiral readout gradients are rotated

so that the gradients on one axis end with zero amplitude, then two to three sets

of triangle gradients are used with lengths solved from the gradient moment

nulling equations, and finally the gradients are rotated back. Figure 3.1 shows

the resulting gradients and the corresponding trajectory of a single interleaf in a

32-interleaf variable density design.

Now we have generated the gradients for one interleaf in an N -interleaf design;

in order to get the entire gradients, we can just rotate these gradients by 2π/N

each time. In addition, reordering the interleaves in a bit-reversed way to increase

the distance of k-space samples between consecutive interleaves has been shown
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Figure 3.1: Spiral-out bSSFP gradients (left) and the corresponding k-space trajec-
tory(right) of one interleaf in a 32-interleaf variable density design. The density de-
creases from 1.2 in the center to 0.4 in the edge of the k-space. A density of 1.0
corresponds to the Nyquist rate.

to be beneficial for dynamic imaging [35]. Complete bit-reversed order only exists

for a number in form of 2m in which m is an integer, so that for arbitrary interleaf

number N , the complete bit-reversed order cannot be realized. Here we develop

a simple algorithm to get the order for an arbitrary N by using the bit-reversed

order table of the smallest 2m number larger than N and throwing out the order

number that is equal or larger than N . For example, if N = 6, first we have a

bit-reversed order table for 8 to be [0, 4, 2, 6, 1, 5, 3, 7] and then we throw out 6

and 7 in the table to get the order table for N = 6 as [0, 4, 2, 1, 5, 3]. The entire

gradients are then generated after rotation and reordering.
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3.2.2 Spiral-In/Out Gradient Design

To generate the desired spiral-in/out trajectory, four steps are required: 1) gener-

ate the desired spiral-out arm of the spiral-in/out readout gradients; 2) generate

time-optimal transition gradients following the spiral-out arm to move the k-

space trajectory to the origin and simultaneously reduce the gradient magnitude

to zero; 3) time reverse the previous gradients and put the reversed gradients in

front, so that the k-space trajectory is at the origin at the midpoint of the entire

gradient waveform; 4) rotate and reorder to get all of the gradient waveforms.

The spiral-out arm is generated using the same algorithm as in the spiral-out

bSSFP readout gradient design introduced in the previous subsection; variable

density spiral design is preferred as well. However, the calculation of ω is dif-

ferent, since each interleaf of spiral-in/out readout gradients can be viewed as

two spiral-out arms symmetric over the origin if the traversal direction of the

trajectory is not considered; therefore, if the interleaf number is N , we have

2πA/ω = 1/FOV/2N. (3.3)

After the spiral-out arm of spiral-in/out gradients is designed, transition gra-

dients that can move the k-space trajectory back to the origin and reduce the

gradient magnitude to zero are required. Instead of using the straightforward

method of first using winding down gradients to reduce the gradient to zero and

then adding a set of triangle gradients to compensate the 0th order gradient mo-

ment, we develop an algorithm to simultaneously achieve both goals to shorten

the rephaser length. First we calculate the 0th moment of the winding down

gradients and compare this with the negative of the 0th moment of the spiral-out
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arm gradients. If the former is smaller, which means we are under-compensating

the spiral-out arm with such winding down gradients, a set of triangle gradients

are inserted between the spiral-out arm and the winding down gradients to most

efficiently compensate the 0th moment; if the former is larger, which means we

are over-compensating the spiral-out arm, a set of triangle gradients are added

after the winding down gradients. As shown in Fig. 3.2, the transition gradients

of the rephaser start with the last spiral-out readout gradients for both Gx and

Gy. For Gx, the winding down gradients over-compensate the spiral-out arm

so that a set of triangle gradients are added after the gradients are reduced to

zero. For Gy, the winding down gradients under-compensate the spiral-out arm

so that we first increase the gradient amplitude and then add the winding down

gradients to more rapidly move the k-space location to the center. The peak

amplitude of the transition gradients is calculated with the 0th gradient moment

nulling requirements.

The maximum possible slew rate is used on each axis; however, considering

the fact that double-oblique slices are usually used in cardiac imaging, it should

be guaranteed that the maximum combined slew rate S =
√
S2
RO + S2

PE + S2
SS,

in which SRO, SPE and SSS respectively mean the slew rate on readout direction,

phase encoding direction and slice selection direction, is smaller than the specified

slew rate limit Smax. The optimal or near-optimal distribution of SRO, SPE and

SSS can be achieved through an iterative search until a balance is struck between

optimality and computation time.

By just time reversing the previous gradients, we not only null the 0th gradi-

ent moment, but also null the 1st gradient moment. m0 = 0 at the end of TR

is easy to prove since the transition gradients already compensate the spiral-out
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arm of the spiral-in/out readout gradients, and time reversing the gradients does

not change the 0th gradient moment. The 1st gradient moment m1 at the end of

TR can be calculated as:

m1 =

∫ t

0

G(u)udu =

∫ t/2

0

G(u)udu+

∫ t

t/2

G(u)udu

=

∫ t/2

0

G(u)udu+

∫ t/2

0

G(t− u)(t− u)du

=

∫ t/2

0

[G(u)−G(t− u)]udu+ t

∫ t/2

0

G(t− u)du

(3.4)

in which G(t) is the gradient waveform. From the previous design steps, we can

get G(u) = G(t − u) due to symmetry and
∫ t/2

0
G(t − u)du = 0; consequently,

m1 = 0. Figure 3.2 shows the resulting gradients and the corresponding trajectory

of a single interleaf in a 32-interleaf variable density design.

The rotation and reordering step is similar with spiral-out gradient design,

except the rotation angle is π/N for each interleaf since one interleaf would overlap

with itself after a π rotation.

The symmetric property of the gradients can not only facilitate the rephaser

design as just mentioned but also shorten the minimum TR compared with the

spiral-out bSSFP sequence, because the prephaser and the rephaser gradients

here can overlap with the slice-selection rephaser and prephaser gradients. In

the spiral-out bSSFP sequence the overlap can only happen on one side. This

shortening can also be traded for a longer spiral readout, as we will do in our

experiments.
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Figure 3.2: Spiral-in/out bSSFP gradients (left) and the corresponding k-space trajec-
tory of first two interleaves (right) in a 32-interleaf variable density design.

3.2.3 Discussions

In both spiral-out and spiral-in/out bSSFP sequences, we realized the 0th and 1st

order gradient moment nulling at the end of TR and did not consider the higher

order moments. The resulting 2nd order gradient moments for both sequences as

well as the gradient moments during TR are shown in figure 3.3. We see that the

spiral-out trajectory has smaller gradient moments during the readout in general

than the spiral-in/out trajectory, and the 2nd order gradient moment at the end

of TR is very close to zero with the spiral-out trajectory while it is very large with

the spiral-in/out trajectory. The reason is because even though the spiral-in/out

trajectory inherits the advantage of a general spiral trajectory in terms of not

accumulating gradient moments in both spiral-in and spiral-out arms, the sym-

metric property can amplify the remaining lower order gradient moments in both

arms and lead to large high order moments. Therefore, the spiral-out bSSFP
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Figure 3.3: 0th, 1st and 2nd order gradient moments during one TR for both spiral-out
and spiral-in/out bSSFP sequences.

sequence will be more robust to in-plane motion and flow artifacts in theory.

In the above gradient design method for the spiral-out bSSFP sequence, there

is a potential problem in the rephaser design, since the gradient amplitude limit

is not considered in the calculation of the lengths of the triangle gradients. If

the gradient limit is exceeded, this rephaser design will fail, because if we simply

replace the triangle gradients with a set of trapezoid gradients without changing

the total area, the 0th order gradient moment can still be compensated but the

1st order gradient moment will change. Luckily, in our current application of

this sequence, the typical imaging parameters will not result in exceeding the

gradient amplitude limit. However, with a smaller FOV the gradient amplitude

limit is often reached and alternative design methods are required. For example,

instead of using all triangles, the combination of trapezoids and triangles can be

used with more parameters to be solved with the corresponding gradient moment

nulling requirements.
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In addition, in our current spiral-in/out design, the spiral-out arm starts at

zero. In fact, the starting gradient can have arbitrary magnitude as long as the

gradient amplitude limit is not exceeded. Furthermore, starting with a non-zero

gradient can increase the k-space trasversal speed to reduce the time for the en-

tire k-space coverage. However, this will lead to inaccurate k-space measurement

at TE due to the gradient delays and DC artifacts. Therefore, we still choose

the starting gradient to be zero to prolong the actual echo time to sweep a range

around TR/2 so that a more accurate measurement at TE can be achieved with

more averages.

3.3 Methods

3.3.1 Experiments

Comparison studies were performed on a Siemens Avanto 1.5 T scanner equipped

with multiple surface coils. Six healthy volunteers (4 males and 2 females, rang-

ing in age from 20 to 30) with informed consent participated in this study. For

each subject, a mid ventricular short-axis view and a horizontal long-axis view

were scouted in both breath-hold and free-breathing conditions. For each set of

experiments, the radial, spiral-out and spiral-in/out bSSFP sequences were run

consecutively with the same image slice using 8 mm slice thickness and 340 ∗ 340

mm2 FOV. Other sequence parameters and the resulting spatial and temporal

resolutions are given in Table 3.1. The spatial resolution here is calculated from

the full width at half maximum (FWHM) of the theoretical PSFs due to the
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Table 3.1: Sequence parameters and the resulting spatial and temporal resolutions for
the radial, spiral-out and spiral-in/out bSSFP sequences.

TR/TE Flip # Spatial Res. Temporal Res.
(ms) Angle interleaf (mm2) (Hz)

Radial 2.36/1.18 46 ◦ 48 3.24 ∗ 3.24 8.83
Spiral-out 3.76/0.99 50 ◦ 32 3.20 ∗ 3.20 8.31

Spiral-in/out 3.69/1.84 50 ◦ 32 3.15 ∗ 3.15 8.47

non-Cartesian sampling pattern. The temporal resolution is the number of fully

sampled images per second. For a fair comparison, we matched the spatial and

temporal resolutions of the two spiral sequences with the radial sequence of a

typical clinical scan.

In each experiment, the Siemens gradient-echo cardiac shimming [36] was used

to reduce inhomogeneity. The same shim setting was used for all three sequences.

For the two spiral sequences, a fat-suppressed low resolution field map was ac-

quired using spectral-spatial RF excitation pulses [37, 38] before the real-time

data acquisition. We simply assumed that the field map will not change signifi-

cantly during the scan and the linear off-resonance correction method is sufficient

to deblur the entire image series. The concomitant gradient field influence was

greatly reduced by putting the image plane into the center of the magnet. The

estimated trajectory and the cut-off Voronoi DCF calculated with the methods

introduced in chapter 2 were used in the reconstruction.

Online reconstruction was implemented for all three sequences on the scan-

ner. 2x view sharing was used for all three sequences to double the apparent

temporal resolution. The images from each coil were separately reconstructed

and combined via a sum-of-square method.
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3.3.2 Comparison Methods

With the given trajectories of the radial, spiral-out and spiral-in/out bSSFP se-

quences, we calculated the theoretical point spread functions and the aliased

energy contained in the side lobes of the PSFs.

In addition, the apparent SNR of the blood and the CNR between the blood

and myocardium of a given image can be measured with a given magnitude image

by dividing the mean image intensity at the blood region and the mean image

intensity difference between blood and myocardium by the mean image inten-

sity outside the chest and multiplying the results with a constant to account for

the fact that the mean magnitude of the apparent noise is measured instead of

its standard deviation. As the aliasing may affect the validity of the noise level

measurement, it is very difficult to get the pure noise level without an additional

measurement. However, this apparent SNR and CNR including the aliasing effect

can better reflect the visualized image quality and are therefore compared. Other

factors affecting the SNR and CNR including measurement time and theoretical

signal level were also calculated and analyzed. For each dynamic image series, 5

images covering the heart cycle are selected from the dynamic data set for sim-

plicity of the SNR and CNR measurement. The values were then averaged as the

SNR and CNR for this image series. The one way analysis of variance (ANOVA)

was performed to compare the different methods.

The overall image quality was also evaluated by blind rating from two experi-

enced cardiologists on a 0− 5 scale with 5 indicating the best image quality. The

results were analyzed using the paired Wilcoxon signed-rank test.
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3.3.3 Fat-Water Separation

In a general bSSFP sequence, the refocusing mechanism at TE = TR/2 will result

in a phase cycling property with different local off-resonance frequencies. Figure

3.4 shows the simulated bSSFP signal phase at the center of TR of the blood

and myocardium pixels at 1.5 T. The phases of both pixels alternate between 0

and 180 with a period given by 1/TR. In this simulation, TR = 3.69 ms in the

spiral-in/out bSSFP sequence and the corresponding period is 271 Hz. Since the

resonant frequencies of fat and water at 1.5 T differ by about 220 Hz at 1.5 T due

to chemical shift, the fat and water signal will have opposite phases at a large

range of local off-resonance frequences. Furthermore, if the local off-resonance

frequency is small, the phase of the water signal will be 0 while the phase of the

fat signal will be 180. Therefore, a phase detection method [39] can be used to

separate the fat pixels from the water pixels without any further measurement.

In practice, since the phase can be influenced by the surface coil among other

factors, a phase correction method is required before detection. We first manually

select a pixel of water/fat from the coil image and set its phase to be 0/180 and

then use a region-growing method with the selected origin by breaking up the

image into small cells and calculating the average phase of each cell to remove

the slow-varying phase term. This technique leaves a 180-degree ambiguity in

the detected phase and the phase detection can be then performed for fat-water

separation.

This technique can only be applied with the spiral-in/out bSSFP sequence

since the radial sequence has very small TR so that the water and fat pixels are

very likely to be in the same phase band and the spiral-out sequence does not
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Figure 3.4: Simulated bSSFP signal phase at the center of TR of the blood and
myocardium pixel at 1.5 T.

have the refocusing mechanism at the center of k-space.

3.4 Results

Figure 3.5 and Fig. 3.6 show five consecutive images from short-axis and long-

axis free-breathing experiments with the radial (top row), spiral-out (medium

row) and spiral-in/out (bottom row) bSSFP sequences. In the radial bSSFP

images, the signal in some parts of the chest and/or back is missing; however, in

spiral-out and spiral-in/out bSSFP images, the signal is intact for the chest wall

and the back. The artifact level in both the spiral-out and spiral-in/out bSSFP

images is much lower than that in the radial bSSFP images.
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Radial

Spiral−Out

Spiral−In/Out

Figure 3.5: Short-axis free-breathing images with the radial (top row), spiral-out
(medium row) and spiral-in/out (bottom row) bSSFP sequences.

3.4.1 Comparison

Figure 3.7 shows the center line of the 2D PSFs for all three sequences. The main

lobes are almost coincident, indicating the same spatial resolution. However, the

side lobes of the two spiral sequences have much lower values than the radial

sequence, meaning the aliasing is greatly reduced. The calculated aliased energy

is reduced by 85% and 82% with the spiral-out and spiral-in/out sequences com-

pared with the radial sequence.

Figure 3.8 shows the mean apparent SNR of the blood and CNR between

blood and myocardium for the radial, spiral-out and spiral-in/out bSSFP se-

quences with short-axis and long-axis views. The results from the breath-held

and free-breathing situations are combined. Asterisks indicate a statistically sig-
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Figure 3.6: Long-axis free-breathing images with the radial (top row), spiral-out
(medium row) and spiral-in/out (bottom row) bSSFP sequences.
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Figure 3.7: Theoretical PSFs at the center line for radial, spiral-out and spiral-in/out
bSSFP sequences with matched spatial and temporal resolutions.
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nificant difference using the ANOVA method (p < 0.05). The SNR and CNR are

significantly higher with the spiral-in/out sequence than with the radial sequence

in both short-axis and long-axis views. The spiral-out bSSFP also has higher

SNR and CNR than the radial bSSFP but this difference is only statistically

significant in the long-axis view.

Figure 3.9 shows the blind image rating result. We combined the results from

the breath-held and free-breathing scans for each view. The image ratings are: a)

short-axis view: 1) radial: 3.23±0.49, 2) spiral-out: 3.60±0.66, 3) spiral-in/out:

4.13±0.45; b) long-axis view: 1) radial: 3.19±0.55, 2) spiral-out: 3.69±0.78, 3)

spiral-in/out: 4.23±0.42. The p-values of paired Wilcoxon signed-rank test under

the null hypothesis that two compared sequences behave the same are a) short-

axis view: 1) radial vs. spiral-out: 0.0003, 2) radial vs. spiral-in/out: 0.00003,

3) spiral-out vs. spiral-in/out: 0.101, b) long-axis view: 1) radial vs. spiral-

out: 0.0024, 2) radial vs. spiral-in/out: 0.00001, 3) spiral-out vs. spiral-in/out:

0.0013. A smaller p-value indicates a more statistically significant difference. We

can conclude that both spiral bSSFP sequences are favored compared with the

radial bSSFP sequence for both views and the spiral-in/out bSSFP sequence per-

forms better than the spiral-out bSSFP sequence for the long-axis view.

3.4.2 Fat-Water Separation

Figure 3.10 shows the separated water and fat images in a short-axis breath-held

experiment using the spiral-in/out bSSFP sequence. The pixels of the chest wall

and the fat around the myocardium are separated from the blood and myocardium
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Figure 3.9: Blind rating results of the radial, spiral-out and spiral-in/out bSSFP se-
quences.

pixels. This demonstrates the effectiveness of this method and a potential ad-

vantage of the spiral-in/out bSSFP sequence with the refocusing mechanism.

3.5 Discussion

In this chapter we implemented the spiral-out bSSFP sequence and developed a

new spiral-in/out bSSFP sequence to realize the bSSFP refocusing mechanism.

The two spiral bSSFP sequences are experimented on the scanner and the perfor-

mance in real-time cardiac function MRI are compared with the clinically adopted

radial bSSFP sequence using the protocols with similar spatial and temporal res-

olution.

The theoretical PSFs of these three sequences were calculated and compared.

The two spiral bSSFP sequences have much lower aliasing level as the magnitude
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Water Only Image Fat Only Image

Figure 3.10: Separated water and fat images in a short-axis breath-held experiment
using the spiral-in/out bSSFP sequence.

of the side lobes is greatly reduced. The reason is because the radial trajectory

reduces the scan time by outer k-space undersampling while the spiral trajectory

relies on more efficient k-space coverage per excitation. The outer k-space under-

sampling percentage is about 50% for the radial trajectory while it is only 20%

for the variable-density spiral trajectory. The apparent SNR and CNR of both

spiral bSSFP sequences are also significantly increased compared with the radial

bSSFP sequence. This increase is mainly due to the reduction of aliasing level as

the aliasing increases the apparent noise. The total data acquisition time with

both spiral sequences is 12% longer than the radial sequence which also accounts

for a slight increase of the SNR and CNR. The overall image quality of both spiral

bSSFP sequences reflected by the blind rating results also show that the spiral

bSSFP sequences perform significantly better than the radial bSSFP sequence.

Comparing the two spiral bSSFP sequences, the symmetry property of the
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spiral-in/out trajectory facilitates the gradient rephaser design and also shortens

the minimum TR. The mean value of the apparent SNR and CNR increases with

the spiral-in/out bSSFP sequence but the difference lacks statistical significance.

The total data acquisition time and the aliasing level are very close for both se-

quences but the refocusing mechanism may account for the increase of the SNR

and CNR, since the signal intensity at TE becomes stronger with the refocused

spins. More experiments are required for the validation of this result. The over-

all image quality of the spiral-in/out bSSFP sequence is significantly improved

compared with the spiral-out bSSFP sequence in long-axis view and also has a

trend of significant improvement in short-axis view.

The refocusing mechanism achieved by the spiral-in/out bSSFP sequence can

be used for fat-water separation without any additional measurements due to

the phase cycling property. The result shows a very distinct separation between

fat and water pixels. However, in the regions with flow and/or severe B0 inho-

mogeneity the phases of fat and water are sometimes swapped during the entire

image series. Further study is required for a more robust separation but this is

beyond the scope of this dissertation.

There are several limitations of this study. Spatial parallel imaging techniques

for both spiral and radial sequences are not applied and compared for a higher

spatial and/or temporal resolution. The radial sequence we used in this study is

not a state-of-the-art radial sequence, because the product package has not been

updated to include the most recent developments of radial sequence design. The

blind rating was also not purely blind for the radial sequence since its streaking

artifacts are very conspicuous and were easily recognized by one of the cardiolo-

gists.
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In conclusion, we developed a new spiral-in/out bSSFP sequence and demon-

strated the superiority of the spiral bSSFP sequences over the radial bSSFP

sequence in real-time cardiac function MRI. We ultimately hope to propel the

clinical adoption of the spiral bSSFP sequences with this study.



Chapter 4
Spiral Parallel Imaging Techniques and

Real-Time Velum Imaging

4.1 Introduction

Velopharyngeal insufficiency (VPI) is the incomplete closure of the port bordered

by the soft palate and the posterior and lateral pharyngeal walls. VPI is most

commonly seen in children who have had a cleft palate repair, a submucous cleft,

or as a complication from an adenoidectomy. There is no gold standard for the in-

strumental diagnosis of VPI. Nasal endoscopy and multi-planar video fluoroscopy

are the most common diagnostic modalities employed in children with suspected

VPI. Drawbacks to nasal endoscopy include poor patient tolerance in very young

children. Fluoroscopy also requires significant patient cooperation and leads to

radiation exposure. The current surgery procedure for the cleft palate repair only

sews the cleft palate without much considerations on the velum function during

speech so that a second surgery aiming to cure the resulting VPI is usually re-

43
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quired. Therefore, velum muscle modeling is important for the guidance of an

improved procedure and is currently under investigation.

Magnetic resonance imaging (MRI) has been studied for evaluating and mod-

eling VPI because it provides the ability to analyze the anatomic detail of the

oropharynx in multiple planes without radiation exposure. The MRI of the velum

before and after surgery has been performed for the evaluation of occult submu-

cous cleft palate with an oblique coronal slice [40]. Velum and nasopharyngeal

wall modeling based on MRI and CT data has also been developed for the under-

standing of oral and nasopharyngeal functions during speech [41]. However, in

these methods static MR images were acquired with a relatively long scan time,

so that little dynamic information could be obtained during speech, and hence

the evaluation and modeling was not comprehensive and might be inaccurate.

Dynamic MRI using various techniques to reduce the scan time has been devel-

oped and applied during speech [42–45]. In [42], the dynamic MR image series

of one sagittal slice with 1.87 mm spatial resolution were acquired during speech

and swallowing at 21 fps using a real-time spiral FLASH sequence. A subsequent

investigation increased the temporal resolution to 100 fps [43] by using a dynamic

model to reduce the degrees of freedom of the tongue movement during speech.

The increase in temporal resolution is dramatic; however, the effectiveness of the

dynamic model in capturing the entire tongue and velum movements in a very

complicated speech is not fully validated. In [44], a golden-ratio spiral view order

was used to retrospectively select temporal resolution in real-time speech MRI.

However, the view sharing reconstruction can bring in temporal blurring. In [45],

real-time MRI of speaking was acquired at a temporal resolution of 33 ms using

undersampled radial FLASH with nonlinear inverse reconstruction. A midsagit-
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tal and coronal plane were acquired separately and quantitative image analysis

was performed to study the deformation of the vocal tract. In our study, we will

focus on velum movements during speech for VPI evaluation and modeling. In

order to acquire sufficient dynamic information of the velum during speech, we

aim to simultaneously acquire two slices of the velum with sagittal and oblique

coronal views.

As spiral trajectories are more time-efficient in data acquisition than Carte-

sian trajectories, we can use a real-time spiral GRE sequence for this application

to improve the spatial and/or temporal resolution and coverage. As the require-

ments for temporal and spatial resolution and SNR are very demanding, spatial

parallel imaging techniques using multiple receiver coils and the temporal paral-

lel imaging techniques exploiting the temporal redundancy in an image series are

also required in combination with the spiral trajectory for a further reduction of

the scan time. In addition, the B0 field inhomogeneity resulting from the air-

tissue boundary around the velum is very severe in this application and image

blurring resulting from this needs to be corrected.

With high resolution dynamic velum image series acquired during a given

pronunciation or movement, a more distinctive visual diagnosis and quantitative

analysis of VPI becomes possible. In addition, a muscle movement model of

the velopharyngeal sphincter can be validated. The diagnostic study and muscle

modeling are mainly performed by our collaborators and thus are beyond the

scope of this dissertation.

In the following sections we will focus on general spiral parallel imaging tech-

niques and their application in real-time velum imaging. In the theory section

spiral parallel imaging techniques and their combination with off-resonance cor-
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rection will be introduced. In the method section the sequence design and im-

plementation and the post-processing will be described. In the result section the

experimental results will be presented. Finally the conclusion and some further

directions will be given.

4.2 Theory

4.2.1 Spatial Parallel Imaging

Due to the non-Cartesian sampling pattern of the spiral trajectory, the direct

application of the Cartesian spatial parallel imaging techniques represented by

SENSE and GRAPPA is impractical. Various methods have been developed

to tackle this problem either by using the coil sensitivity map and applying an

iterative algorithm to achieve an optimized image (iterative SENSE [46]) or by

using auto-calibrated information to fill the undersampled k-space (SPIRiT [47]).

The auto-calibrated parallel imaging techniques are often preferred in dynamic

MRI applications because it is usually very difficult to accurately estimate the

coil sensitivity map, especially when the map can vary with time due to the chest

movements in certain applications. Although in this real-time velum imaging

application the coil sensitivity map estimation is less difficult as the head and

neck coils are fixed, we still choose the newly developed auto-calibrated method

SPIRiT due to its simplicity and robustness to all k-space sampling patterns

without a comprehensive argument about its superiority.

In SPIRiT, for a non-Cartesian sampling pattern, the image reconstruction is
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done with a minimization problem described by

arg min
x
{‖Dx− y‖2

2 + λ‖(G− I)x‖2
2} (4.1)

in which x is the reconstructed image, D is the NUFFT data encoding matrix

to get the Fourier transform of the image at each non-Cartesian sampling posi-

tion [48], G is a series of convolution operators that convolve the entire k-space

with the appropriate calibration kernels, and I is the identity matrix. The sec-

ond term represents the self-consistency of the k-space data from multiple receiver

coils expressed in the image domain.

The calibration is usually performed with the fully-sampled center k-space

data. In a dynamic imaging application using the undersampled spiral trajectory

at each frame, this fully-sampled data can be either acquired by combining the

data from neighboring frames or by using a dual variable density spiral trajectory

in which the center k-space is fully-sampled. However, when the undersampling

ratio becomes very large (4x or 6x), the former suffers from severe data incon-

sistency due to the movements of the subject during several neighboring frames

while the latter requires a very high oversampling ratio in the original trajec-

tory design and thus greatly reduces the data acquisition efficiency and limits

the spatial resolution. Since two single-shot spiral scans are acquired before data

acquisition for the low resolution field map, they can be also used to get the

calibration kernel. Even though the single-shot spiral data is contaminated with

off-resonance effects, we will demonstrate that the off-resonance will not affect the

calibration process and the corresponding self-consistency property if the kernel

is relatively small and the k-space data inside the kernel is temporally adjacent.
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The self-consistency requirement can be expressed as

Sn(kx, ky) =
∑

∆kx,∆ky ,p

gn(∆kx,∆ky, p)Sp(kx + ∆kx, ky + ∆ky) (4.2)

in which S is the k-space data with n and p indicating different coils and g is the

convolution kernel. If we ignore the gridding operation for now and assume S is

the spiral k-space data including the off-resonance effects, we can replace S with

the corresponding signal equations and have

∫
x,y

m(x, y)Cn(x, y)ei∆ω(x,y)tei2π(kxx+kyy)dxdy

=
∑

∆kx,∆ky ,p

gn(∆kx,∆ky, p)

∫
x,y

m(x, y)Cp(x, y)ei∆ω(x,y)t′ei2π((kx+∆kx)x+(ky+∆ky)y)dxdy

(4.3)

in which C(x, y) is the coil sensitivity. t′ in the above equation is a function of

∆kx and ∆ky, since the k-space data inside the range of the kernel centered at

(kx, ky) is acquired at different times. However, if the kernel is small, which is

usually true as we often use 7∗7 kernel size and the k-space data inside the kernel

is temporally adjacent, we can assume t′ = t and therefore the above equation

can be simplified into

Cn(x, y) =
∑

∆kx,∆ky ,p

gn(∆kx,∆ky, p)Cp(x, y)ei2π(∆kxx+∆kyy) (4.4)

which is the basic equation of all the auto-calibrated parallel imaging meth-

ods [49]. Therefore, even with the off-resonance contaminated k-space data, the

self-consistency requirement can still be satisfied and the kernel value does not
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change as long as the phase term due to off-resonance has little variation inside

the kernel compared with the center k-space point of the kernel. In addition,

since the gridding kernel is even smaller, the phase variation inside the kernel is

also small and therefore the gridding will not affect this self-consistency property,

either. Therefore, in the calibration step using the single-shot spiral, although

the k-space data inside the kernel may not be temporally adjacent, the small size

of the kernel can limit the phase variations. For the multi-shot undersampled

spiral data acquisition, the k-space data inside the kernel is always temporally

adjacent when the interleaf number is larger than the kernel size as long as each

interleaf of the spiral trajectory starts at the center of k-space and traverses to

the edge with the same speed.

In the gridding operation for a general fully-sampled spiral reconstruction,

oversampling is often used to compensate for gridding error due to the finite ker-

nel size. In addition, if there is remaining signal outside the selected FOV, this

oversampling can reduce aliasing by supporting a larger FOV. In the SPIRiT re-

con, we believe that the oversampling is even more important in terms of reducing

the aliasing and gridding error, because small errors can accumulate during each

iterative step. Figure 4.1 shows reconstructed images without and with oversam-

pling for the same data set. In the left image, the signal from the neck outside

the FOV causes severe aliasing artifacts that appear as stripes in the lower part

of the image. These are mostly eliminated in the right image with 1.5x oversam-

pling along the vertical direction. Oversampling along the horizontal direction is

not performed for a faster computation since the horizontal FOV is large enough

for the entire head. To perform oversampling during the SPIRiT recon, we just

need to enlarge the image matrix and the k-space trajectory by the oversampling
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Without Oversampling 1.5x Oversampling

Figure 4.1: SPIRiT reconstructed images without and with 1.5x oversampling along
the vertical direction. The horizontal stripes in the left image are mostly eliminated in
the right image with oversampling.

ratio.

4.2.2 Temporal Parallel Imaging

In an image series for most dynamic applications, temporal redundancy exists be-

cause the neighboring images are highly correlated. Therefore, undersampling is

often used to reduce the data acquisition time for each frame and thus to increase

the temporal and/or spatial resolution. A very simple but efficient way to exploit

this redundancy is to directly use the k-space data acquired from neighboring

frames to fill the corresponding missing k-space data of the current frame, which

is known as view sharing. View sharing methods include the sliding window (SW)

method, which directly uses the previously acquired k-space data, and the SLAM

method [50], which uses linear interpolation of the closest neighboring frames to
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estimate the missing k-space data. This type of method is robust in terms of

reducing spatial aliasing when the undersampling ratio is small and the dynamic

process is not very fast; however, it suffers from severe temporal blurring and

motion-induced ghost artifacts with very rapid movement of the imaged subject.

The emergence of compressed sensing theory [51, 52] brings in the concept

of sparsity to characterize redundancy. With an appropriate "sparsifying" trans-

form, which can result in many near zero components in the transformed domain,

the reconstruction of undersampled data can be achieved via the minimization

problem

arg min
x
{‖Dx− y‖2

2 + λ‖Ψx‖1} (4.5)

where D is the data encoding matrix and Ψ is the sparsifying transform. Ac-

cording to compressed sensing theory, an incoherent encoding matrix is required

and the l1 norm of the transformed domain is minimized rather than the l2 norm

to get the sparsest result. While there are many controversial opinions on the

coherency of different sampling patterns [53, 54], we ignore those arguments and

assume the undersampled spiral sampling pattern is a suitable choice here, since

the variable density spiral trajectory has a very uniformly distributed aliasing

pattern to reduce the coherence level. The sparsity transforms for a dynamic im-

age series include the image differences between neighboring frames, the temporal

frequency, the Karhunen-Loève (KL) transform of the temporal frequency [55,56]

and the wavelet transform along the time axis. Again it is highly debatable which

transform is preferable; probably the idea of having a best sparsifying transform

to exploit temporal redundancy in all dynamic applications is untenable due to

the complexity and variability of each dynamic phenomenon.
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In real-time velum imaging, since the tongue and velum movements are non-

periodic, the Fourier transform along the time axis cannot result in a significant

improvement in sparsity level and thus using this constraint in Eq. (4.5) can lead

to the loss of some important frequency information. However, since most parts

of the head are static and the tongue and velum movements are continuous in

time during speech, the image differences between neighboring frames are often

very sparse. Therefore, we can use the temporal difference as the sparsifying

transform. In addition, since the dynamic level in the image series is spatially

variant as some areas inside the FOV are almost static while other areas may

experience very rapid change [57, 62], it is less efficient to minimize the image

differences with a spatially invariant constraint coefficient λ. Assuming we can

estimate the local dynamic level, we can spatially vary the constraint coefficient

by using a larger coefficient for the less dynamic areas and a smaller coefficient

for the more dynamic areas to punish temporal variation in less dynamic areas

more.

The spatial variation of λ is given as

λ(r) =
λ

V ar(r)/min(V ar(r))
(4.6)

in which V ar(r) is the estimated local variance achieved from a SLAM recon-

struction or a spatially invariant temporal difference constrained reconstruction.

In practice, if the undersampling ratio is larger than 4, the SLAM reconstruction

will have very severe ghost artifacts leading to erroneous local variance estimation

and therefore the spatially invariant temporal constraint reconstruction is used

at the cost of increased computation time.
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Spatially Invariant Coefficients Spatially Variant Coefficients

Figure 4.2: Images reconstructed with temporal difference constraint using spatially
invariant and variant constraint coefficients.

Figure 4.2 shows reconstructed images with spatially invariant and variant

constraint coefficients. The λ used in the spatially invariant constraint coeffi-

cient weighted reconstruction is 10 times that of the λ in the spatially variant

constraint coefficient weighted reconstruction to balance the overall temporal con-

straint level. We can see that the temporal blurring is reduced with the spatially

variant constraint coefficient as it relies more on the acquired k-space data to get

the image in the more dynamic area and relies more on the temporal constraint

to get the image in the less dynamic area.

4.2.3 Combined Spatial and Temporal Parallel Imaging

Based on compressed sensing theory, the total variation along each direction of

one frame is also sparse for most medical images; therefore, it can be put into the

minimization problem for a higher SNR. However, the corresponding constraint
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coefficient needs to be selected carefully to avoid over-smoothing of the image,

since total variation tends to smear the boundaries between different image re-

gions. The selection is usually performed by using a range of coefficients to do the

reconstruction and visually selecting an appropriate coefficient. Combining the

spatial and temporal parallel imaging techniques, we arrive at the minimization

problem given as

arg min
x
{‖Dx(r, t)− y‖2

2 + β‖(G− I)x(r, t)‖2
2 + λ(r)‖∇tx(r, t)‖1 + γ‖∇rx(r, t)‖1}

(4.7)

in which β, λ(r) and γ represent the constraint coefficients for spatial parallelism,

temporal differences and total variation. By exploiting these constraints in com-

bination, the undersampling ratio can be as high as 6x without severe aliasing.

The minimization of this problem is generally solved using a non-linear con-

jugate gradient method [52]. The SLAM reconstructed image series is used as

the starting point for this problem since this image series has minimal spatial

aliasing, so that the number of required iterations can be decreased.

4.2.4 Off-Resonance Correction

During speech, since the air-tissue boundary is continually changing with tongue

and velum movements, the field map also changes with time. Therefore, we need

to update the field map for each frame to deblur the entire image series. In fact, as

off-resonance does not affect the self-consistency property of the k-space data and

the temporal differences if the field map variation is small between neighboring

frames, we can do the deblurring after unaliasing with Eq. (4.7), assuming the

resulting x(r, t) is the blurred image series.
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Since we will acquire the low-resolution field map before the data acquisition,

we can use it to delimit the search range of a high-resolution field map using the

semi-automatic method introduced in Chapter 2 for every frame, assuming the

temporal variation of the field map is within the search range. Fast conjugate

phase reconstruction based on a Chebyshev approximation can be performed

afterwards for each frame with the time-invariant concomitant gradient field.

Alternatively, we also developed a method to do deblurring during unaliasing

by directly modifying the data encoding matrix D in Eq. (4.7) to incorporate the

off-resonance information, which is given as

D(k(t′), t)x =

∫
r

x(r, t)ei∆ω(r)t′eiφc(∆ωc(r),t′)e−i2πk(t′)·rdr (4.8)

in which k(t′) is the k-space location. The field map ω(r) can be determined using

the aforementioned semi-automatic method. However, as the unaliased image is

unavailable for each frame, we have to use the temporally blurred image series

reconstructed using SLAM to get this map assuming the field map changes at a

slower rate than the dynamic image series. With the off-resonance information, it

is actually very impractical to calculate the phase for each k-space point in equa-

tion (4.8) with different acquisition time t′; therefore, a time segmented method

is used to approximate the field map phase by assuming the data is acquired at

the same time in each segment. In addition, the concomitant gradient induced

phase is omitted since it is relatively small and also impractical to calculate.

Figure 4.3 shows reconstructed images without deblurring, with deblurring

during unaliasing and with deblurring after unaliasing. In this experiment the

undersampling ratio is 2x so that only the spatial parallel imaging technique is
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No Deblurring Deblurring while Unaliasing Deblurring after Unaliasing

Figure 4.3: Reconstructed images using the spatial parallel technique without deblur-
ring, with deblurring during unaliasing and with debluring after unaliasing.

applied for simplification due to the very high computational load of the seg-

mentation process. It is demonstrated that the deblurring is required to get a

cleaner airway and the velum and skull boundaries as indicated by the arrows.

Comparing the two deblurring methods, we see that deblurring after unaliasing

is more effective, since the field map is updated for every frame and the con-

comitant gradient field is also considered. In addition, the deblurring step after

unaliasing only adds a limited amount of computation, while the deblurring dur-

ing unaliasing requires approximately segment-number-multiplied computation

load. Therefore, deblurring after the unaliasing is preferred in our reconstruc-

tion. The effectiveness of this deblurring is further demonstrated in Fig. 4.4,

in which the undersampling ratio is 6x and Eq. (4.7) is performed. The velum

boundary is sharpened as indicated by the arrow.
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No Deblurring Deblurring after Unaliasing

Figure 4.4: Reconstructed images using combined spatial and temporal parallel tech-
niques without (left) and with (right) deblurring after unaliasing.

4.3 Method

4.3.1 Sequence Design

To reduce scan time, a fast gradient-echo type of sequence is used. For this

application we choose a spiral steady state free precession (FISP, GRASS, or

FFE) sequence, because it can provide higher SNR for the T1 and T2 values

of the velum compared with a spoiled gradient echo sequence and it is more

robust to severe off-resonance effects, especially in air-tissue boundary, compared

with the balanced SSFP sequence. A flip angle of 20 ◦ is used to approximately

maximize the SNR for the velum. A low resolution field map is acquired before

data acquisition for semi-automatic high resolution map estimation.

For the spiral trajectory, we use a linear variable density readout design. The

fully sampled trajectory has 18 interleaves with 3.6 ms readout per interleaf.



58

Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6

Figure 4.5: The spiral trajectories for the real-time velum imaging of 6 frames with 6x
undersampling ratio.

The resulting minimum TR is 6.96 ms and TE is 0.78 ms. 6x undersampling

is used so that the spiral k-space data of 3 interleaves is used to reconstruct

each frame. We use an odd number of interleaves per frame to avoid information

redundancy with conjugate k-space data and the 3 interleaves are 120 ◦ apart from

each other for uniform coverage of the k-space. Between neighboring frames, the

3 interleaves are rotated with an angle calculated using the bit-reversed table of

the undersampling ratio. Repetitive trajectories are used for the entire image

series with a period of the undersampling ratio, so that the SLAM recon can be

performed for the starting image series in Eq. (4.7). Figure 4.5 shows the spiral

interleaves for every 6 frames. The rotation angles relative to the first frame are

respectively 0, 80 ◦, 40 ◦, 20 ◦, 100 ◦ and 60 ◦.
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4.3.2 Experiment Setup

For a comprehensive evaluation of the velum movements, dynamic image series

of two 2D slices were simultaneously acquired, with one mid-sagittal slice and

one oblique slice along the velum movement direction and perpendicular to the

sagittal slice as indicated in Fig. 4.6. Spatial saturation pulses were applied

for a reduced FOV as also shown in Fig. 4.6 to achieve higher spatial resolution.

However, instead of applying the spatial saturation pulses for every TR and every

slice, we apply these pulses for every frame and share the saturated bands between

the two slices to reduce the scan time and increase the temporal resolution. The

sequence diagram is shown in Fig. 4.7. In the actual experiment, the first several

frames are often omitted to avoid the signal inconsistency before the steady state

is reached.

The experiments were performed on a Siemens Avanto 1.5 T scanner equipped

with multiple channel head and neck coils. Healthy volunteers with informed

consent were scanned while being asked by the language pathologist to repeat

a specific sound or action corresponding to a specific velum movement. In the

current protocol, we use 1.2x1.2 mm2 resolution with 150 mm FOV and 8 mm

slice thickness and can achieve 20 frames-per-second (fps) temporal resolution.

The dynamic image series are then reconstructed offline with Matlab using the

algorithm introduced before.

4.3.3 Dark Band Correction

Since we interleave the spiral acquisitions of these two non-parallel slices, the area

of intersection will have a lower signal intensity due to the shortened effective
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2 Slice Orientations

Figure 4.6: This figure shows the two slice orientations in this study. The white band
indicates the orientation of the second slice, which is perpendicular to the mid-sagittal
slice shown.

Sequence Diagram
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Figure 4.7: The sequence diagram for the real-time velum imaging.
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TR and behave as a dark band. In theory, if we can get the local T1 and T2

information, the decay ratio of the dark band signal can be calculated with a

given set of sequence parameters. However, this would require additional scans

to acquire the T1 and T2 maps. In practice, we develop a simple correction

algorithm to compensate for the dark band after image reconstruction assuming

the signal decay ratio within the dark band does not change very rapidly at

different locations.

To correct for the signal decay, first the location and width of the dark band

are calculated with the orientation and thickness of the two slices. Then the dark

band is segmented into several small blocks, assuming each block has a unique

signal decay ratio which can be estimated by dividing the mean image intensity

of the neighboring blocks outside the dark band by the mean image intensity of

this block within the dark band. In addition, to account for the fact that the slice

profile is not a strict rectangle function with the truncated-sinc RF pulses, we

estimate a different signal decay ratio within the edge regions of the dark band

using the same method.

4.4 Results

4.4.1 Dark Band Correction

Figure 4.8 shows images before and after the dark band correction. The signal

decay within the band is mostly compensated and the boundaries of the dark

band are much less obvious after the correction.

Figure 4.9 shows 6 consecutive images of the two slices indicating the velum
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before dark band correction after dark bank correction

Figure 4.8: 6 Images before and after dark band correction.
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Figure 4.9: 6 consecutive images of two slices indicating the velum movements during
speech in a healthy volunteer study.

movements during speech. The velum moves towards the tongue to enlarge the

nasal airway during this sound. The nasal and oral pathway areas can be roughly

calculated from the second slice images. This demonstrates the feasibility of using

MR real-time velum imaging as a new diagnostic tool for VPI and for facilitating

dynamic velum muscle modeling to explore the mechanism of VPI.

4.5 Discussion

In this chapter we introduced spiral spatial and temporal parallel imaging tech-

niques for undersampled data reconstruction and their application to real-time

velum imaging during speech for VPI evaluation and modeling.

We used the SPIRiT method to exploit the spatial redundancy from multi-

ple receiver coils with oversampling to reduce the gridding error and support a

larger FOV. We also demonstrated that off-resonance effects do not affect the

self-consistency property of the k-space data, so that the center k-space data

acquired for low resolution field map can be also used for the SPIRiT kernel
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training. To exploit the temporal redundancy of a dynamic image series we mini-

mized the temporal differences between neighboring frames with spatially variant

constraint coefficients. In addition, the total variation of each frame was added as

an addition constraint based on compressed sensing theory. Wavelet analysis of

each frame can also be minimized for further reduction of aliasing; however, the

computational load will be greatly increased and the reconstruction time is too

long to be practical. In fact, even with the current algorithm, the reconstruction

is very slow as parallel computation and GPU-based algorithms are not realized

in the current reconstruction. Online reconstruction is not implemented, either.

Therefore, a future direction will be the acceleration of the reconstruction and

the online implementation.

We developed an imaging protocol for real-time velum imaging during speech

to simultaneously acquire two slices to capture the dynamic information of the

velum. We used a spiral SSFP/GRASS sequence for higher SNR and fewer off-

resonance artifacts. Spatial saturation pulses are used for a reduced FOV and

are shared by the two slices. In fact, the steady state can be perturbed by the

slightly lengthened effective TR for certain spiral interleaves due to the satura-

tion pulses, but the contrast between the air and tissue is large enough so that

the contrast mechanism due to different signal pathways is not a major concern

in this application, since we only want to depict the velum movements.

With high resolution dynamic image series of the velum, we can do the visual

and quantitative analysis of velum movement during a specific speech pattern.

The velum muscle model can be also validated with the image series.



Chapter 5
Cartesian Kalman Filter Techniques and

their Application to Real-Time Cardiac

Function MRI

5.1 Introduction

As introduced before, dynamic MRI is becoming more popular with the recent

development of both MRI hardware and software. Short scan time is typically

needed to reduce motion artifacts. Even though the spiral trajectory is inherently

a faster k-space sampling scheme, the Cartesian trajectory is still dominant in

clinical adoption due to its simplicity and robustness. Similar to spiral spatial and

temporal parallel imaging techniques, redundancy in the acquired Cartesian k-

space data and/or the dynamic image series can be exploited so that less k-space

data is required for the given spatial and temporal resolution. Spatial parallel

imaging techniques including SENSE and GRAPPA for the Cartesian trajectory

65



66

have been widely used on scanners to effectively reduce scan time without de-

grading image quality. To exploit temporal redundancy, view sharing methods

including SW and SLAM can be also used for the Cartesian trajectory as in the

spiral trajectory mentioned before. However, they can also bring in temporal

blurring and more distinct motion induced ghost artifacts when the movements

are very rapid.

Instead of exploiting the redundancy in the time domain, other techniques ap-

ply a 1D Fourier transform along the time direction to exploit the redundancy in

the frequency domain and then use advanced reconstruction methods to recover

the image series. These techniques include UNFOLD [57], kt-BLAST [58] and

kt-FOCUSS [59], and they show advantages over view sharing techniques in re-

ducing aliasing and temporal blurring. Another category includes many reduced

FOV (rFOV) methods [60–62], which take advantage of the fact that some parts

in the FOV are relatively static in a dynamic image series so that the number of

required k-space lines to update an individual image can be reduced. One repre-

sentative method called Noquist [62] can effectively reconstruct the image series

without residual artifacts from undersampled k-space data by decomposing the

image and the corresponding Fourier transform matrix into dynamic and static

parts and solving the resulting inverse problem with greatly reduced degrees of

freedom, because the static part of the image series stays the same throughout the

image series and requires much less data to reconstruct. However, these two types

of methods often use retrospective reconstruction, which inhibits their adoption

in many clinical applications in which real-time reconstruction is required, such

as real-time catheter tracking and cardiac stress function studies. Furthermore,

these techniques are not always robust; for example, in real-time cardiac imaging,
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the effectiveness of these methods can be impaired by respiratory motion during

free breathing [63].

Recent techniques based on compressed sensing, including the aforementioned

kt-FOCUSS and temporally constrained reconstruction methods [64], which ex-

ploit sparsity in the time and/or frequency domain, have gained attention. How-

ever, a major disadvantage of these methods is the long reconstruction time due

to the iterative reconstruction, so that physicians cannot get the reconstructed

images for rapid feedback during the scan. Furthermore, the nonlinear charac-

teristics of these techniques make it difficult to predict and evaluate the noise in

the images compared with linear methods.

The Kalman filter, a widely used method in many engineering fields including

real-time object tracking, can also exploit the temporal redundancy in a time

series by describing the dynamic problem with a time-evolving state model and

rapidly estimating the current state using a real-time linear filtering process.

Therefore, it is plausible to use this method in dynamic MRI for real-time imag-

ing and real-time reconstruction. The original adoption of the Kalman filter in

dynamic MRI was proposed by Sümbül et al. [20,21]. However, this method was

confined to non-Cartesian k-space trajectories because of a limitation intrinsic to

the model used in that study. In this dissertation we adapt the Kalman filter

model to make it available for the more widely used Cartesian trajectory.

Spatial and temporal redundancy can be exploited in combination to more ef-

fectively reduce the scan time. Previous spatiotemporal acceleration approaches

include TSENSE [65] and TGRAPPA [66], which mainly rely on spatial paral-

lelism but improve the results with the temporal information; kt-SENSE [58],

which is an expansion of kt-BLAST that incorporates coil sensitivity into the
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model; and PINOT [67], which combines the SPACE-RIP parallel imaging method

[68] and the Noquist method. In this dissertation we also combine the Kalman fil-

ter model with spatial parallel imaging techniques. If reliable coil sensitivity maps

can be acquired, they can simply be incorporated into the model as in kt-SENSE

and the non-Cartesian Kalman filter combined with SENSE [20]; however, since

accurate coil sensitivity maps in many dynamic problems are difficult to achieve,

we also developed a method that combines the Kalman filter with TGRAPPA to

bypass the coil sensitivity estimation step.

In the following sections, we will first introduce the implementation of the

Kalman filter in Cartesian dynamic MRI, including the combination with paral-

lel imaging techniques. Next, we focus on non-gated real-time cardiac imaging

to study the performance of the Kalman filter model by both simulation and

experiment. Finally, we will discuss our results and possible extensions.

5.2 Theory

In general, a Kalman filter model is composed of a system model that describes

the relationships among the time-evolving states and a measurement model that

describes the measurement of the state at a given time. Usually the current mea-

surement at a given time alone is not sufficient to obtain an accurate estimate of

the current state. The key to the Kalman filter is to use all previous measure-

ments and the relationship between states as described by the system model to

estimate the current state. Furthermore, the estimation process is recursive, so

there is no need to store past measurements for the purpose of computing present

estimates. Thus, the process can be very fast and memory efficient. The general
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model of a Kalman filter is given as follows [69]

xk = Φk−1xk−1 + ωk−1, ωk∼N(0,Qk)

zk = Hkxk + νk, νk∼N(0,Rk)

(5.1)

where xk is the system state in a vector form, Φk is the state transition matrix,

ωk is the system noise vector assumed to have a zero-mean Gaussian distribution

with covariance matrix Qk, Hk and zk are the measurement matrix and the

corresponding measurement data, and νk is the measurement noise also assumed

to have a zero-mean Gaussian distribution with covariance matrix Rk. Given the

appropriate initial conditions and assuming ωk and νj are independent, we can

get the state estimate x̂k by a prediction-correction process described as

x̂−k = Φk−1x̂
+
k−1

x̂+
k = x̂−k + Kk[zk −Hkx̂

−
k ]

(5.2)

where the − and + refer to the predicted and corrected state estimates and Kk

is the Kalman gain matrix calculated from Hk, Qk, Rk and Φk [69]. The general

equations to calculate Kk are omitted here for brevity, as they will be discussed

below in the model implementation section.

If we want to directly apply the Kalman filter model to a dynamic MRI appli-

cation acquiring a 2D image series, the state to be estimated at each time point k

is one individual image from the image series and the corresponding measurement

is the acquired k-space data, where the measurement matrix is the 2D Fourier

transform in matrix form. One major obstacle here is the size of the vectors and

matrices. For an individual N by N image, the dimension of the state vector
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is N2 ∗ 1 and the corresponding matrix is N2 ∗ N2, which is generally too large

to handle for a typical value of N . In Sümbül’s paper [20], a diagonalization as-

sumption is made for Qk, Rk and HT
kHk so that the prediction-correction process

can be performed on a pixel-by-pixel basis to bypass the matrix multiplication

and inversion steps in calculating Kk. The diagonalization of Qk and Rk can still

be applied for Cartesian trajectories, because Qk reflects statistical properties of

the dynamic image series that are independent from the data acquisition, and

the diagonalization of Rk is intrinsic due to the whiteness of the measurement

noise.

However, the diagonal simplification for HT
kHk is only possible for a non-

Cartesian k-space trajectory such as a spiral trajectory. Assuming Hk is the

undersampled 2D Fourier transform matrix connecting the image domain and

the k-space domain with a matrix-vector multiplication, the off-diagonal terms

of HT
kHk are determined by the aliasing pattern as displayed in the point spread

function. For a spiral trajectory, the aliasing is diffuse and the side lobes of

the point spread function are more evenly distributed; therefore, each single off-

diagonal term is very small compared to the diagonal term and can be ignored

without nullifying the model. However, for a Cartesian k-space trajectory, the

aliasing pattern is generally very conspicuous as shown by separate peaks in

the point spread function; therefore, the off-diagonal term of HT
kHk cannot be

ignored. Without the diagonalization of HT
kHk, the direct implementation of

the Kalman filter is impractical since the matrix calculation process can be ex-

tremely complicated and will greatly increase the reconstruction time. However,

in an undersampled 2D Cartesian k-space measurement, undersampling usually

only happens in the phase encoding direction and k-space is often fully sampled
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or even over sampled in the readout direction. Therefore, we can first apply a

direct 1D Fourier transform along the readout direction and then use the Kalman

filter for the reconstruction along the phase encoding direction for each readout

pixel. By doing that, for the same N by N image, we now have N Kalman filter

models which can be calculated in parallel, and for each model, the dimension

of the state vector becomes N and the matrix size becomes reasonable. Further-

more, since we have already transformed into the image domain along the readout

direction before the Kalman filter model implementation, in many cases we need

fewer than N Kalman filter models to cover the ROI along the readout direction,

because portions of the object may not experience rapid motion. In this case,

view-sharing techniques can be used for the remaining regions to further reduce

the reconstruction time, as discussed below.

In the following paragraphs we will focus on a particular application: non-

gated real-time imaging of cardiac function. We will describe a specific Kalman

filter model and use this model to perform image reconstruction from undersam-

pled data. Cardiac imaging has demanding requirements for a dynamic imaging

method, because of the fast and complex motion of the heart combined with

chest motion from breathing. First, we will introduce the implementation of the

Kalman filter model and describe how to obtain the signal estimates. Then we

will discuss several potential algorithms to simplify the model to reduce the re-

construction time. Finally we will discuss the combination of the Kalman filter

with parallel imaging techniques.
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5.2.1 Model Implementation

In a dynamic cardiac image series, the differences between two consecutive im-

ages are generally very small except for certain areas experiencing rapid changes;

therefore, for simplicity, we can assume the state transition matrix is an identity

matrix and the difference can be modeled as system noise having a zero-mean

Gaussian distribution [20]. In fact, the variance of this system noise can represent

the degree of variation at each corresponding pixel as the absolute value of the

image differences are generally larger in more dynamic areas and smaller in less

dynamic areas.

Therefore, together with the 1D simplification, the Kalman filter model for

real-time cardiac function imaging can be written as

xk = xk−1 + ωk−1, ωk∼N(0,Qk)

zk = Fkxk + νk, νk∼N(0,Rk)

(5.3)

where xk is simplified to be the image column vector assuming the row vector

is along the readout direction for the 2D image, ωk is the system noise vector

with covariance matrix Qk, Fk is the 1D Fourier transform matrix, zk is the

corresponding k-space data column vector after the 1D Fourier transform along

the readout direction, and νk is the measurement noise with covariance matrix

Rk. Given the initial estimate x̂0 and the initial estimation error covariance



73

matrix P0, the subsequent estimation of x̂k is given as

x̂−k = x̂+
k−1

x̂+
k = x̂−k + Kk[zk − Fkx̂

−
k ]

P−k = P+
k−1 + Qk−1

Kk = P−k FT
k [FkP

−
k FT

k + Rk]
−1

P+
k = [I−KkFk]P

−
k

(5.4)

where Pk is the estimation error covariance matrix at each time step k and is a

vital intermediate parameter to calculate the Kalman gain matrix Kk.

5.2.2 Parameter Estimation

From Eq. (5.4) we can see that the parameters that need to be estimated include

the system noise covariance matrix Qk, the measurement noise covariance ma-

trix Rk, the initial state estimate x̂0, and the initial estimation error covariance

matrix P0.

First, we make an assumption that the distributions of the system noise vector

ωk and the measurement noise vector νk do not change during the scan, because

the dynamic process (e.g., periodic cardiac motion) is stable from a statistical

point of view. With this assumption, we have Qk = Q and Rk = R. The esti-

mation of Q and R are discussed below.

In Sümbül’s paper [20], as discussed before, Q was assumed to be a diagonal

matrix to simplify the computation process. This assumption was also validated

in the paper by determining that the cross-correlation terms of Q were very small,

as shown in Fig. 1 of [20]. The diagonal Q was then roughly estimated from a
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low spatial resolution training scan covering only the center of k-space or more

precisely estimated from multiple training scans covering different portions of k-

space in each scan.

In our model, the diagonal assumption of Q is not necessary from a computa-

tional point of view due to the 1D simplification; therefore, in theory it is possible

to use a general covariance matrix Q in which the off-diagonal term can reflect

the relationships among neighboring pixels to provide a better estimation of the

image column vector xk. However, in practice, it is difficult to estimate Q, since

no prior information about the distribution of ωk is given and thus we must rely

solely on the sample observations of ωk. From statistics, for an N -dimensional

vector ωk, the number of observations should be much greater than N to provide

a reliable estimate of its covariance matrix Q. For MRI, N is usually very large

and hence the amount of training data needed would be even larger, which would

result in an extremely long training scan. Furthermore, the error in the esti-

mation of a general covariance matrix Q can sometimes cause divergence of the

Kalman filter model. On the other hand, if we assume Q is a diagonal matrix and

ignore the cross-correlation terms, the estimation of Q becomes a pixel-by-pixel

problem; only the variance of ωk at each pixel needs to be estimated and the

required sample observations can be greatly reduced. As compared with a poten-

tially inaccurate general covariance matrix Q, a diagonal but more accurate Q is

used in our model, and the accuracy of this simplification will be demonstrated

in the simulation study described below.

To estimate the diagonal terms of Q, we use a low-resolution training scan

that only acquires the center k-space lines. The fraction of the k-space lines

acquired for the training is determined by the undersampling ratio in data acqui-
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sition so that the temporal resolution of the training images is the same as that

of the actual images. Although the accuracy of the variance estimation can be

impaired at sharp edges in the image with a low-resolution training scan due to

blurring, we have found the error in pixel variance estimation to be acceptable,

because the Kalman filter uses all previous measurements to arrive at the current

estimate and thus exploits the overall redundancy of the k-space data.

An alternative way to estimate Q is to use multiple training scans to cover

different parts of k-space, similar to the use of different spiral rings as introduced

in [20]. However, this requires multiple training scans and thus greatly increases

the scan time. Furthermore, the effect of this more precise Q is not obvious in

terms of the accuracy of the state vector estimate, which is our ultimate goal.

Therefore, we prefer to use the low-resolution training scan to get Q. The accu-

racy of this approach will also be demonstrated in the simulation study described

below.

In our estimation process, we use the differences between magnitude images

rather than complex images to estimate the variance at each pixel. When using

complex differences, differences in phase that result from off-resonance, motion or

noise between consecutive training images can significantly increase the variance

and thus make the estimate unreliable. This is especially true in regions where

the image magnitude is small. The measurement noise can also affect the esti-

mation of Q, but this can be corrected as described in the following paragraph.

To estimate Rk, we also use the diagonal and time-invariant assumptions,

since the measurement noise can be regarded as independent white noise and

does not change with time. Therefore, we have Rk = R = σ2I, where I is the

identity matrix. It is necessary to mention that this noise is not the original
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2D k-space measurement noise but the noise after a 1D Fourier transform along

the readout direction; however, since the Fourier transform is an orthonormal

transform, the whiteness of the noise is maintained. As discussed before, the

estimation of Q is contaminated with measurement noise because the training

data measurement is not noise-free and the noise is brought into the training

images via the Fourier transform. Assuming the raw estimation of Q is given as

Qraw, we can derive that Q = Qraw − 2cσ2I, where c is a constant determined

by the normalization factor of the Fourier transform. To jointly correct for the

contamination of measurement noise to get Q and estimate the noise level σ, we

simply make the assumption that the minimum diagonal term of Q is close to

zero, because there exists at least one pixel that stays almost the same during

the dynamic process and consequently, the minimum diagonal term in Qraw is

due to the measurement noise. So we can get the estimate of σ and the corrected

Q.

Finally, we need to initialize the model with the initial conditions of x̂0 and its

estimation error covariance matrix P0. It is impossible to provide an accurate and

alias-free initial image due to limited temporal and spatial resolution. The options

are either the spatially-blurred image from the low-resolution training scan or the

temporally-blurred image reconstructed using view sharing techniques. However,

since the Kalman filter is a robust filter that can correct for the inaccuracy in the

initial estimates with more and more measurements, the influence of the inaccu-

racy of the initial image will fade away; therefore, we choose an initial image with

faster convergence. The performance of these two options are compared with the

simulation study described in the following sections. Similarly, the inaccuracy

in P0 will also be corrected by the Kalman filter; therefore, we just empirically
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choose it to be Q multiplied by the undersampling ratio, because the estimation

error of x̂0 at one pixel is roughly proportional to the variance of that pixel and

the undersampling ratio.

5.2.3 Simplifications of the Kalman Filter Model

From Eq. (5.4) we can see that the most time-consuming step is the calculation

of the Kalman gain matrix Kk and the intermediate parameter Pk. However,

as discussed before, the system noise covariance matrix Q and the measurement

noise covariance matrix R are assumed to be time-invariant; therefore, the only

matrix that changes from step to step involved in calculation of Kk and Pk is

the measurement matrix Fk. If the k-space sampling pattern is periodic over the

entire image series, the corresponding matrix Kk is also periodic. Because P0 is

a manually chosen parameter, the Kalman gain matrix Kk, as well as Pk, will

gradually converge to a periodic steady state after several steps. After that, the

update of Kk using Eq. (5.4) can be replaced by using the pre-calculated periodic

Kk. The reconstruction time can thus be greatly reduced. The convergence of

Kk is demonstrated with the simulation study in the following sections.

In addition, as discussed before, we do not have to use the Kalman filter

model for every phase encoding line. Each phase encoding line corresponds to

one readout location after the 1D Fourier transform along the readout direction.

If this phase encoding line is within a static or slowly-varying area, simple view

sharing methods are sufficient to reconstruct this line without aliasing, and thus

the reconstruction time can be reduced. Instead of retrospectively selecting these

areas, Q can provide this information, because in static or slowly varying areas
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the corresponding variance is very small compared to that in more dynamic areas.

Specifically, we examine the variance vector Ql that corresponds to each readout

location and determine whether max(Ql) < Qmean/2, where Qmean is the mean

variance across the entire 2D image. If this is true, then we use a linearly inter-

polated view sharing method (SLAM) instead of the Kalman filter model. The

effect of this simplification is examined in the simulation study below.

5.2.4 Kalman Smoother

If a strict real-time reconstruction is not required, the Kalman smoother can be

used to improve the estimation result of the Kalman filter. In fact, the fixed-lag

Kalman smoother, which estimates the current state xk with all measurements

before zk+∆, can realize an approximate real-time reconstruction as long as the

fixed lag ∆ is not very large. The detailed calculation of the Kalman smoother

estimate xk|k+∆ based on the Kalman filter estimate xk and the estimation error

covariance matrix Pk is given in [69] and is omitted here for simplicity.

In practice, the lag is chosen to be the undersampling ratio so that an ad-

ditional fully sampled k-space data set is acquired before the estimation of the

current frame. The effect of the Kalman smoother is examined in the simulation

study below.

5.2.5 Multiple Coils

If multiple receiver coils are used, we can extend the Kalman filter model to

incorporate the measurements from different coils by combining the Kalman filter

with SENSE. If the coil sensitivity map is available, we can include the data from



79

different coils, which results in the following model [20]

xk = xk−1 + ωk−1, ωk∼N(0,Qk)

zk1

zk2

...

zkn


=



FkSk1

FkSk2

...

FkSkn


xk +



νk1

νk2

...

νkn


,νki∼N(0,Rki)

(5.5)

where n is the number of receiver coils and Skn is the coil sensitivity map. For

generality, the coil sensitivity map is assumed to be time-variant, because in

imaging during free breathing, the chest motion can cause the coil elements to

move. To dynamically estimate the coil sensitivity map, we use the coil im-

ages reconstructed with view sharing techniques. Correct normalization of the

coil sensitivity map is important to avoid divergence of the Kalman filter solu-

tion. The disadvantages of using this SENSE-based method include difficulty in

accurately estimating the coil sensitivity map in dynamic imaging and greatly

increased computation. The computation increases because the dimension of the

measurement model is increased by n and the periodic property of the Kalman

gain matrix Kk is lost, because the measurement matrix is no longer periodic due

to non-periodic Skn. Therefore, we also developed a method of combining the

Kalman filter with GRAPPA to more effectively use the multi-coil measurements.

Compared with traditional GRAPPA, TGRAPPA is advantageous in dynamic

cardiac imaging since no separate training step is required and the GRAPPA ker-

nel is updated for every frame in the image series [66]. In our model, first we

use the updated GRAPPA kernel to fill all the missing k-space lines for each
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individual coil. We know that the filled k-space data is not accurate enough

to generate an alias-free and high SNR image when the undersampling ratio is

very high if we just do a Fourier transform and combine the coil images, as in

TGRAPPA. However, we can still input this approximate k-space data into the

modified Kalman filter model as follows

xk = xk−1 + ωk−1, ωk∼N(0,Qk) zk

zk_TG

 = Fxk +

 νk

νk_TG

 ,
 νk

νk_TG

∼N(0,

Rk 0

0 Rk_TG

)
(5.6)

where zk is the measured k-space data and zk_TG is the unacquired k-space data

estimated from zk and the corresponding GRAPPA kernel; F, which replaces

Fk in the original model, is now the fully sampled 1D Fourier transform matrix,

since zk and zk_TG together cover all of k-space. It is worth mentioning that

the measurement noise covariance matrix Rk_TG corresponding to zk_TG is no

longer determined by the actual k-space measurement noise, since zk_TG is not

the measured k-space data. On the contrary, Rk_TG reflects the reliability of

the filled k-space data using the GRAPPA kernel by considering the deviation

of the filled k-space data from the "true" k-space data as noise. Similarly with

Rk, for simplicity, Rk_TG is also assumed as white and time-invariant, given as

Rk_TG = RTG = p2σ2I, in which p describes the reliability of the filled data

relative to the measurement noise. In fact, the off-diagonal terms of Rk_TG are

not exactly zero as the missing k-space data points in one frame are generated

using the same TGRAPPA kernel; the results might be more accurate with an

approximate model to handle the noise related to TGRAPPA, but this is beyond
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the scope of this dissertation. Empirically, we have observed that p = 6r2/n, in

which r is the undersampling ratio and n is the number of the coils. It is assumed

that with a larger undersampling ratio, the standard deviation of the filled k-space

data increases much faster and can be modeled with a square relationship. By

this modified model, we can efficiently combine the spatial parallel information

with the temporal model to give a better estimate of the dynamic image series.

Also, with each coil, from Eq. (5.4), the Kalman gain matrix Kk can still converge

to save reconstruction time, since Qk, Rk and Rk_TG are time-invariant and F

is a constant.

5.3 Methods

5.3.1 Simulations

To verify the basic concept of the Kalman filter model in dynamic MRI, we first

did a numerical phantom study by constructing a dynamic image series contain-

ing three pairs of concentric circles with fixed radius, slowly oscillating radius and

rapidly oscillating radius, respectively. To simulate the data acquisition process

using a Cartesian trajectory, we calculated the instant image at a given time

point and its Fourier transform and selected the corresponding k-space data of

one phase encoding line assuming the actual measurement was done at that time

point. The training data used for the Kalman filter model was simulated using

the same method before the data acquisition. Then we reconstructed the simu-

lated data set using sliding window, SLAM and the Kalman filter model with an

acceleration factor of 2.
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To study the effect of the Kalman filter model in reconstruction of under-

sampled data, we then conducted a series of more realistic simulations, where

we reconstructed the image series after retrospectively throwing out a portion

of the k-space data and then compared the reconstructed image series with the

fully sampled data. The baseline image series were acquired using a balanced

SSFP sequence in a real-time ungated cardiac MRI (CMR) study under both

breath-hold and free-breathing situations. 2x TGRAPPA was used to increase

the temporal resolution. A total of 80 frames covering approximately 9 heart

cycles were generated. Then we did a Fourier transform for the baseline image

series to get the fully sampled k-space data and manually undersampled that us-

ing a given sampling pattern with undersampling ratio 2 and/or 4. The training

data for parameter estimation was also obtained from the fully-sampled k-space

data of the first 40 frames by selecting the center 1/2 or 1/4 of the k-space data.

To study the effect of Q in the Kalman filter model, in addition to the di-

agonalized Q estimated from the low-resolution training data, we also obtained

a diagonalized Q and a non-diagonalized Q with fully-sampled training data in

which no manual undersampling was performed. The performance of the Kalman

filter model using these three Qs were compared by calculating the root mean

square differences between the reconstructed image series and the baseline image

series. Similarly, to study the effect of the initial image in the Kalman filter

model, we used the spatially-blurred initial image and the temporally-blurred

initial image and compared the root mean square differences.

In addition, to test the simplifications of the Kalman filter model, we imple-

mented the original Kalman filter model without any simplifications, the Kalman

filter model with the convergent simplification and the Kalman filter model with
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the convergent simplification and combined with SLAM. We compared their per-

formances based on the root mean square differences.

For these simulations, a periodic sampling pattern is required when evaluating

the convergence of the Kalman filter. Therefore, we used four types of sampling

patterns satisfying the periodic requirement and compared their performance.

For types I-III, we first fixed the phase encoding line order for a fully-sampled

data set and then selected a subset of phase encodings corresponding to one frame

based on the undersampling factor. The subsets selected for Type I were inter-

leaved, those for type II were bit-reversed, and those for type III were random.

For type IV, we generated a collection of random k-space lines based on the un-

dersampling factor and repeated this collection for every frame.

Finally, to compare the Kalman filter method and the fixed-lag Kalman

smoother method with other available real-time reconstruction methods rep-

resented by view sharing techniques, we also implemented the sliding window

method and SLAM. Furthermore, we used kt-FOCUSS as a representative of iter-

ative reconstruction methods based on compressed sensing and compared it with

the Kalman filter method with the same undersampling factor but a Gaussian

random undersampling pattern. In addition to the root mean square differences

between the reconstructed image series and the baseline image series, we also

calculated the structural similarity index, which measures the similarity between

two images based on human eye perception to better estimate the performance

of each reconstruction method.
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5.3.2 Experiments

Ungated real-time cardiac imaging experiments were performed on a Siemens

Avanto 1.5 T scanner (Erlangen, Germany) equipped with a 12-channel body coil

array and a 32-channel body coil array. We used both coils in our experiments. A

2D Cartesian bSSFP sequence was used with sequence parameters as follows: TR

= 2.14 ms, TE = 1.07 ms, FOV = 380∼400 mm, slice thickness = 8 mm, flip angle

= 46 ◦, number of PE lines = 128, number of RO samples = 128, image matrix

size = 128 ∗ 128. A training scan of about 2.5 s was performed before the data

acquisition to collect the center k-space lines. The total scan time was about 10 s.

Both short axis and long axis views of the heart were imaged under breath held

and free breathing conditions with acceleration factor 4. Array compression [70]

was used for the primary coil data to simplify the calculation process for the

large coil arrays. The data was then reconstructed using sliding window, SLAM,

TGRAPPA, KF-SENSE and KF-TGRAPPA.

In order to independently assess the extent of spatial aliasing and to assess

the image quality of rapid moving structures, two cardiologists (M.S. and C.M.K)

graded the images for the severity of spatial aliasing and temporal blurring each

on a 5-point scale. The ratings were then statistically analyzed with a two-tailed

Wilcoxon test. For the spatial aliasing assessment a score of 1 corresponded

to very severe aliasing precluding evaluation of myocardial function; 2 to severe

aliasing but adequate to evaluate function; 3 to mild-moderate aliasing but not

affecting region of interest; 4 to mild aliasing; and 5 to no aliasing. The perceived

temporal blurring was graded as a score of 1 for virtually no temporal information;

2 for severe temporal blurring limiting ability to assess function; 3 for temporal
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blurring evident, but not affecting assessment of LV function; 4 for mild temporal

blurring evident; and 5 for no temporal blurring. The image reviewers are both

level III trained in CMR and have 6 and 20 years experience interpreting clinical

CMR images.

5.4 Results

5.4.1 Simulations

Figure 5.1 gives the results for the numerical phantom simulation in which the

reconstructed images at one time point (top row) and the image intensities along

one vertical line versus time (bottom row) using sliding window, SLAM and the

Kalman filter model are shown. The three pairs of concentric circles, from left

to right, are with fixed radius, slowly oscillating radius and rapidly oscillating

radius, and the red lines indicate the image cross-section displayed in the bottom

row. The ghost artifacts due to the change in radius are very obvious with the

sliding window and SLAM methods, but are greatly reduced with the Kalman

filter model. In addition, the temporal resolution with the Kalman filter is much

higher than with the two view sharing methods, as can be seen in the images

in the bottom row. Temporal blurring can be seen both by the smoothing of

the peaks as a function of time and by spatial blurring vertically between the

white center region (simulated left ventricle) and the gray outer region (simu-

lated myocardium). This improved temporal resolution comes from the fact that

the Kalman filter model can distinguish the more dynamic areas from the less

dynamic areas and hence more effectively use the undersampled data to catch
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Figure 5.1: Numerical phantom simulation with SW, SLAM and the Kalman filter
method.

the movement in the more dynamic areas.

Figure 5.2 plots the root mean square differences between the reconstructed

image series and the baseline image series using a diagonalized Q estimated from

the low-resolution training data and from the fully-sampled training data (left)

and using the spatially-blurred initial image and the temporally-blurred initial

image (right). The reconstructed image series using a general Q estimated from

the fully-sampled training data diverges, indicating the Kalman filter model fails

with such an inaccurately estimated Q. The left side of Fig. 5.2 indicates that the

result using the low-resolution training data is very similar to the fully-sampled

training data or even performs better (lower root mean square differences) for
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Figure 5.2: Root mean square differences of the Kalman filter model using different Q
(left) and initial images (right).

certain frames. Therefore, this data indicates that it is unnecessary to use multi-

ple scans for a more precise Q. The right side of Fig. 5.2 shows that the choice of

initial image is not critical, because both initial images give the same results after

approximately 10 frames. However, even though the root mean square differences

are larger with the spatially blurred initial image in the beginning, they converge

faster as the values drop faster than with the temporally blurred initial image.

Therefore, we chose the spatially blurred initial image in our experiments.

The left side of Fig. 5.3 shows the root mean square differences of the re-

constructed image series and the baseline image series using the original Kalman

filter model, the convergent Kalman filter model and the convergent Kalman fil-

ter model combined with SLAM. It indicates that the results using the original

algorithm and the two simplified algorithms are almost identical, meaning the

simplifications of the Kalman filter model do not harm the effectiveness of the

model. The right side of Fig. 5.3 plots the value of Kk at a fixed location with

the original Kalman filter model. The result conforms to our expectation as Kk
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Figure 5.3: Left: Root mean square differences of the Kalman filter model using the
original algorithm and the simplified algorithms. Right: Simulation demonstrating that
Kk approaches a periodic steady state.

approaches a periodic steady state with period 4, which is the undersampling ra-

tio used in this simulation. Therefore, in practice we use the convergent Kalman

filter model combined with SLAM to maximally reduce the reconstruction time.

Figure 5.4 plots the 4 types of sampling patterns (left) and the resulting root

mean square differences using these sampling patterns. There are no apparent

differences among the first three types of the sampling patterns in terms of root

mean square differences and they all perform better than the fourth type of the

sampling pattern. This shows that a sampling pattern that covers the entire

k-space in several frames is preferred. This is because the Kalman filter relies on

all previous measurements to give an optimal estimate of the current state, so

acquiring all of k-space provides comprehensive information to better estimate

the current image, even though the k-space acquisition is completed over several

frames.

Figure 5.5 shows example images reconstructed using the sliding window,

SLAM, kt-FOCUSS, Kalman filter and Kalman smoother with undersampling ra-
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Figure 5.4: Root mean square differences of the Kalman filter model using different
sampling patterns.

tio of 2 (top row), the corresponding difference images with the raw image (middle

row) and the image intensities of one phase encoding line as indicated in the top

left image across the entire image series (bottom row) in a single-coil simulation

study with a free breathing short axis image series. The ghost artifacts due to

motion are obvious in the sliding window and SLAM methods and are greatly

alleviated with Kalman filter and smoother methods. The aliasing pattern with

kt-FOCUSS is different from the other methods due to the non-linearity of the

reconstruction. In addition, some blurring occurs in free-breathing situations as

illustrated by the arrows in Fig. 5.5. The images along the bottom row show

that the Kalman filter and the Kalman smoother provide the highest temporal

resolution as the changes of the left ventricle radius are the sharpest. Figure 5.6

shows a plot of the root mean square error (RMSE) and the structural similarity

index (SSIM) between the reconstructed image series and the raw image series

in the same simulation study. The Kalman filter and smoother provide a lower

RMSE and a higher SSIM compared with sliding window (SW) and SLAM in



90

most of our simulation studies with undersampling ratios of 2 and 4, including

the study shown in Fig. 5.5. As shown in Fig. 5.6, the decrease of RMSE and

increase of SSIM are more obvious in frames when the cardiac motion is very fast,

such as the end-systolic phase of the cardiac cycle. Comparing the Kalman filter

with kt-FOCUSS, kt-FOCUSS yielded the lowest RMSE in most breath-held sim-

ulations; however, with free-breathing simulations, kt-FOCUSS sometimes had

higher RMSE than the Kalman filter method. The Kalman smoother can fur-

ther reduce the RMSE and increase the SSIM compared with the Kalman filter

since more information is incorporated for the estimation with a minor sacrifice

of increased latency.

5.4.2 Experiments

Figure 5.7 shows the results of the blind review for a total of 8 experiments in-

cluding 4 short axis and 4 long axis experiments with acceleration factor 4. The

visually assessed temporal resolution is improved with TGRAPPA, KF-SENSE

and KF-TGRAPPA (KF-TG) compared with sliding window and SLAM and the

improvement was statistically significant from the two-tailed Wilcoxon signed

rank test (p < 0.05 for SW vs. KF-SENSE, SW vs. KF-TG, SLAM vs. KF-

SENSE, SLAM vs. KF-TG). For the degree of spatial aliasing, the ratings of

KF-SENSE and KF-TGRAPPA were not statistically different from sliding win-

dow and SLAM, although KF-SENSE and SLAM were slightly better than SW

and KF-TG. Comparing KF-TGRAPPA with TGRAPPA, there was significant

reduction in spatial aliasing (p < 0.05) and slightly better temporal resolution.
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Figure 5.5: Images reconstructed using sliding window, SLAM, kt-FOCUSS, Kalman
filter and Kalman smoother methods with undersampling factor of 2 (top row), the cor-
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Figure 5.6: RMSE(left) and SSIM(right) between the reconstructed image series and
the raw image series.
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Figure 5.7: Temporal resolution and spatial unaliasing ratings by two blinded expert
readers.

5.5 DISCUSSION

We have developed a Kalman-filter-based image reconstruction method for real-

time reconstruction of Cartesian dynamic image series and implemented it in a

real-time CMR study. We combined the model with SENSE and TGRAPPA. The

major advantages of this method include the capability for non-iterative real-time

reconstruction and significantly improved temporal resolution. The capability for

non-iterative real-time reconstruction lies in the fact that as long as the model

is established, the Kalman filter can generate an optimal estimate of the current

state given all previous measurements with a single prediction-correction process

without iteration. The reconstruction in this study was performed offline using

Matlab and has not yet been implemented on the scanner’s reconstruction com-

puter. However, the computational load is relatively small and can be realized
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with moderate computing hardware. The offline reconstruction time for an entire

image series (80 frames, 128 ∗ 128) is about 4 seconds in Matlab using a laptop

with a 2.2 Ghz CPU and without parallel computing. This corresponds to a

computation time of 50 ms per temporal frame. Furthermore, as discussed pre-

viously, if the sampling pattern is periodic, the major computation, which is the

calculation of the Kalman gain matrix Kk, can be performed before the data ac-

quisition and thus the subsequent reconstruction requires only two matrix-vector

multiplications and one vector-vector addition per readout pixel. In addition,

the algorithm is easily parallelizable, because each readout pixel can be treated

independently; thus, parallel computing can be easily implemented to reduce the

reconstruction time.

The improvement in temporal resolution with this method is because the

Kalman filter can capture rapid changes with limited measurements. For ex-

ample, if the k-space measurements are under-sampled, the information is not

enough to get an accurate current estimate from just that data; however, the re-

lationship between the current and the past states represented by the state model

can be exploited to benefit the current estimate. In this study, the pixels with

lower variance rely more on past states by the prediction step; the pixels with

larger variance rely more on the measurements by the correction step. Therefore,

since the number of pixels with large variance is much smaller than the total

number of pixels, the information contained in the k-space measurements is suf-

ficient to provide an accurate current estimate.

A fixed-lag Kalman smoother was also realized with a relatively short lag to

improve the estimation when strict real-time reconstruction is unnecessary.

Although in this dissertation we focused on a real-time cardiac study, the
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model is not limited to this application. In this application, we make a simple

assumption to just copy the previous state to get the current state. For other

applications, the model might need some modifications if we can get some infor-

mation about the evolution of the states. However, the framework of simplifying

the 2D problem to a 1D problem makes it easier to modify and implement a more

complicated model such as an autoregressive-moving-average (ARMA) model to

more accurately describe the relationships among the states.

The combination of the Kalman filter with parallel imaging techniques can

further reduce scan time and improve image quality, as demonstrated by KF-

SENSE and KF-TGRAPPA. Both are suitable for real-time reconstruction, al-

though KF-SENSE is more computationally demanding, resulting in longer image

reconstruction times. The coil sensitivity estimation in KF-SENSE can be fur-

ther explored to improve image quality. For KF-TGRAPPA, the error covariance

of the filled k-space data in this chapter is not an optimal choice but simply

an empirical one. Therefore, further research is necessary to reduce the spatial

aliasing by tuning this parameter.

Upon visual analysis, the improvement in temporal resolution is obvious with

the Kalman filter; however, the cardiologists who scored the images were not

bothered by some aliasing artifacts that were apparent in difference images in

the simulation study, because they mainly focused on the cardiac region and the

aliasing was relatively small in that region. There are some flickering artifacts

with the Kalman filter model that lead to a lower rating in spatial unalising.

Further study is needed to provide a more comprehensive understanding of the

advantages and disadvantages of the Kalman filter model.

The combination of the fixed-lag Kalman smoother with TGRAPPA was
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also realized and provides improved spatial unaliasing. However, the rating was

performed before this development and thus does not include this KS(Kalman

smoother)-TGRAPPA. Further validation is required to evaluate this improve-

ment.

In conclusion, the Kalman filter method is a novel real-time reconstruction

method in dynamic MRI that can improve temporal resolution. The potential for

real-time reconstruction may be valuable compared with retrospective and/or it-

erative reconstruction methods. The versatility of the model is also an advantage

and is a promising topic for future study.



Chapter 6
Conclusion

Dynamic MRI is becoming a more and more active research area as researchers

seek to expand the application of MRI in medicine. Various techniques have been

developed to reduce scan time and many new applications have been explored to

take advantage of these techniques. In this dissertation, we aimed to explore dy-

namic MRI techniques and applications in three different projects. Before delving

into them, we discussed several general techniques in spiral scanning, since it is

a very fast k-space sampling method but the image quality can be impaired by

off-resonance effects, trajectory infidelity and DCF calculation.

The first project we explored was the comparison of radial, spiral-out and

spiral-in/out bSSFP sequences in real-time cardiac function MRI. We imple-

mented a spiral-out bSSFP sequence and developed a new spiral-in/out bSSFP

sequence to explore the refocusing mechanism and its potential utilization for fat-

water separation. The comparison results demonstrated that both spiral bSSFP

sequences are advantageous compared with a radial bSSFP sequence in this ap-

plication, mainly due to the different acceleration scheme of the radial and spiral
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trajectory. The refocusing mechanism of spiral-in/out bSSFP sequence can pro-

vide enhanced SNR and reliable fat-water separation.

The second project we explored includes spiral parallel imaging techniques

and their application in real-time velum imaging. To further reduce the scan

time, spiral scanning can be combined with spatial and temporal parallel imag-

ing techniques by exploiting the redundancy in the k-space data from multiple

receiver coils and the temporal correlation of dynamic image series. We also

explored a new dynamic MRI application – real-time velum imaging – by de-

veloping a dynamic spiral sequence and experimenting the appropriate protocol.

Spiral parallel imaging techniques were applied in this application to satisfy the

demanding requirements for spatial and temporal resolution and SNR. The pri-

mary result of the dynamic velum image series showed the potential for using

MRI as a new VPI diagnostic tool and to help velum muscle modeling.

The third project we explored involved Cartesian Kalman filter techniques

and their application to real-time cardiac function MRI. These techniques pro-

vide a real-time imaging and reconstruction framework for reducing scan time

with a Cartesian trajectory. The Kalman filter model describes the temporal

relationships of a dynamic application, which can be used to estimate the cur-

rent frame with undersampled k-space data. The combination with both SENSE

and GRAPPA was also explored for a higher reduction factor. The application

to real-time cardiac function MRI has been proved to reduce temporal blurring

compared with view sharing methods and reduce spatial aliasing compared with

spatial parallel imaging techniques.
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6.1 Collaborations and Contributions

This dissertation includes many efforts from different collaborators inside and

outside Dr. Craig Meyer’s lab and it would not have been possible to finish it

without all their work and help. The author will make the best effort to include

all relevant collaborators but will apologize for those missed.

The general spiral reconstruction techniques are especially the result of team-

work in Dr. Craig Meyer’s lab. The fast conjugate phase method based on a

Chebyshev approximation was originally developed by Dr. Weitian Chen and

Dr. Christopher Sica. The k-space trajectory estimation method was originally

developed by Dr. Hao Tan and was further investigated by the author and Samuel

Fielden for variations of the model and applications in other sequences. The cut-

off Voronoi DCF was originally developed by the author but a similar idea had

been investigated by Dr. Michael Salerno.

The three projects were mainly the work of the author. However, the real-time

velum imaging using MRI was the idea of Dr. Silvia Blemker. Finally, needless

to say, all the work in this dissertation is attributed to the guidance of Dr. Craig
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