
Page 1 of 50

Automatic Light Tailoring Apparatus Instructing Radiance (ALTAIR)

A Technical Report submitted to the Department of Electrical and Computer Engineering

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Peter Duchene Morris

Fall, 2021

Technical Project Team Members

Peter Morris

Mason Notz

Steven Peng

Alexander Tomiak

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Harry Powell, Department of Electrical and Computer Engineering

Page 2 of 50

noFUN / ALTAIR

Peter Morris, Mason Notz, Steven Peng, Alexander Tomiak

December 17, 2021

Capstone Design ECE 4440 / ECE4991

Signatures

Peter Morris

Mason Notz

Steven Peng

Alexander Tomiak

Page 3 of 50

Statement of work:

Peter Morris

As the lone electrical engineer in the capstone group, my work primarily focused on

developing the PCB boards. My first task was to determine which components were needed for

the design. After choosing our project, I researched and picked out the light sensor. I reviewed

the datasheets and application notes of the components needed for the project in order to design

the Multisim files. I used the resources to create new components for the database which were

specific to our team’s project. After I completed the Multisim files, I exported the files in

Ultiboard to layout the board. Like in Multisim, I needed to create new components by reviewing

figures and measurements presented in the datasheets. From the Ultiboard files, I created Gerber

files to be checked on FreeDFM, and then submitted the boards for manufacturing. When the

boards were returned, I tested the power supplies on the board after the boards were populated.

Steven Peng

From my extended mechanical experience with Virginia Motorsports Education, a

501(c)(3) non-profit that educates members of all experience levels through experiential

learning, I was tasked with managing all the mechanical designs and manufacturing. My first

task was to design a way to actuate the blinds, so I first measured the torque required to rotate the

inner shaft when the blinds were fully open, which came out to be ~0.69 oz-in. I then chose a

SER0046 Micro Servo from DFRobot which output 1.5 kg-cm of torque, which resulted in a

safety factor of ~30. To attach the servo to the blinds, I designed a custom bracket in Autodesk

Fusion 360 and manufactured it at Lacy Hall with the OMAX 1515 Waterjet and the Pan and

Box brake. Next, I designed an adapter in Autodesk Fusion 360 to convert the splined output of

the servo to the shaft input of the blinds tilting mechanism, and then made it on a manual lathe at

Lacy Hall with the assistance of Mason Notz. Once the servo integration with the blinds was

completed, I populated both of our PCB’s with components to save time and money in

comparison to outsourcing it to a local store.

Page 4 of 50

Figure 1: Servo Mounting and Adapter

Afterwards, housings for both PCBs needed to be designed and created, so I utilized

Autodesk Fusion 360 once more. This time around, however, I used a Creality CR-10 Smart 3D

printer to create the housings as they would contain exposed electrical components. By creating

the housings out of PLA plastic instead of metal, it would mitigate the chance of either of the

boards to short against the housing. Finally, to bring the entire project together I created a testing

rig that would emulate a sealed room with a single window, along with an interior lamp for the

smart light control algorithm and an exterior lamp that could emulate the sun as well. I also

implemented the front-end user control web site hosted on the Raspberry Pi remote node, which

could take in the user’s desired light level and process them through the control algorithm on the

back end, which would then send the appropriate commands to adjust the lights and blinds to

achieve the desired brightness.

Mason Notz

 My work primarily focused on software and firmware. I designed and implemented the

underlying control algorithm on the Raspberry Pi, as well as integrating the front end coded by

Steven into a backend capable of controlling the servo and light system. I helped with the

Raspberry Pi side of the communication to and from the CC3220. On the electrical side, I helped

with specking out components, specifically related to power. Detailing power requirements for

the board and picking appropriate devices to supply that power. On the firmware side, I wrote the

PWM and GPIO drivers for the CC3220. On the mechanical side, I assisted Steven in creating

the servo to shaft coupler at Lacy Hall with the lathe and mill. I also double checked some

mechanical designs made by Steven.

Page 5 of 50

Alex Tomiak

 Because of my prior experience working with embedded systems at internships, and my

continued interest in this field, my primary role was to design our embedded software/firmware

architecture and manage communication between devices. In particular, I was responsible for

developing the wireless communication between the CC3220 and the Raspberry Pi. Once we

decided to go with Wi-Fi, I learned how to use the SimpleLink SDK for Wi-Fi firmware and

software development on the CC3220. This involved figuring out what toolchain to use,

understanding what different parts of the SDK did, and how it might apply to our project. I

developed the TCP socket connection between the two devices, and developed the messaging

schemes and behaviors that our project uses to pass data in a useful manner between the two

devices. I also developed some tests and some wrappers for the ease of use of others who needed

to use the wireless communication. Finally, I developed, tested, and integrated the driver and the

exponential averaging for the VEML7700 light sensor on the CC3220, and I helped integrate

Mason’s PWM and GPIO CC3220 drivers to control the servo.

Page 6 of 50

Table of Contents

Contents

Capstone Design ECE 4440 / ECE4991 ... 2

Signatures .. 2

Statement of work: .. 3

Table of Contents .. 6

Table of Figures .. 7

Abstract ... 9

Background ... 9

Constraints .. 10

Design Constraints .. 10

Economic and Cost Constraints .. 12

Environmental Impact ... 12

Sustainability... 12

Health and Safety .. 13

External Standards .. 13

Tools Employed .. 13

Ethical, Social, and Economic Concerns .. 14

Intellectual Property Issues ... 15

Detailed Technical Description of Project .. 17

Project Time Line ... 33

Test Plan.. 35

Final Results.. 39

Costs .. 41

Future Work .. 42

References ... 44

Appendix ... 48

Page 7 of 50

Table of Figures

Figure 1: Servo Mounting and Adapter .. 4
Figure 2: Blinds Torque Test .. 18
Figure 3: Servo Mount and Adapter ... 19
Figure 4: Window Node Housing CAD Design ... 20
Figure 5: Remote Node Housing CAD Design... 20
Figure 6: System Diagram .. 21
Figure 7: Window Node Schematic .. 21
Figure 8: Voltage Regulator Schematic .. 22
Figure 9: Light Sensor Sub-Schematic ... 23
Figure 10: Servomotor Sub-Schematic ... 24
Figure 11: Window Node Ultiboard Design ... 25
Figure 12: Manufactured Window Node .. 26
Figure 13: Remote Node Schematic ... 26
Figure 14: Remote Node Ultiboard Design .. 27
Figure 15: Manufactured Remote Node ... 28
Figure 16: Data Flow Diagram for Window Node ... 28
Figure 17: Light data struct for exponential averaging ... 30
Figure 18: Data Flow Diagram for Remote Node .. 31
Figure 19: User Interface .. 32
Figure 20: Control Loop ... 33
Figure 21: Gantt Chart created as part of the capstone proposal in September 2021 34
Figure 22: Gantt Chart created in December 2021 that reflects progress made throughout the

semester... 34
Figure 23: 6V Power Supply Verification .. 35
Figure 24: 3.3V Power Supply Verification ... 36
Figure 25: 3.3V Power Supply Verification (Remote) ... 36
Figure 26: Filtered Light Sensor Readings ... 37
Figure 27: Servo and Messaging Test Results .. 38
Figure 28: Model Room for Testing ... 39
Figure 29: Complete Bill of Materials .. 48
Figure 30: 3D Printer .. 49
Figure 31: Manufactured Brackets.. 50

Page 8 of 50

Table of Tables

Table 1: Send buffer.. 29
Table 2: Receive buffer ... 29
Table 3: Proposal expectations ... 39

Page 9 of 50

Abstract

The project is an interior-setting, responsive window shade and light controller. The

purpose of the project is to control the lighting level selected by the user at a desired location

within a room. The light level is maintained by manipulating natural light coming through the

window with a wall shade and interior lights. The window shade will be controlled by a motor

connected to a Texas Instruments (TI) microcontroller. The light level at the desired location will

be determined from a photodiode which is connected wirelessly to the motor/microcontroller.

The interior lights will be connected as Internet of Things (IoT) devices to the

motor/microcontroller which allows the user to specify his/her desired light level. This project

aims to improve user comfort within a room and provide an efficient mechanism for controlling

ambient light.

Background

Lighting is an important feature for a room. According to Zee and Cheung from

Northwestern Medicine, “…exposure to light, especially during the day… is beneficial to your

health via its effects on mood, alertness, and metabolism”[1]. Given the effects light has on each

individual’s life, it is important to provide an opportunity for those individuals to control the

light in any area that they choose.

To ensure maximum individual comfort, the responsive window blind and light controller

was developed. Photodetectors determine the current light level within a room for the project’s

microcontroller unit. In accordance with the user’s preset light level, the microcontroller will

control a motor to affect the amount of light coming through blinds on a window. If the light flux

entering a window is not sufficient to fulfill the user’s wishes, the microcontroller will interact

with smart lights to provide the desired light level. The project is divided into a main hub which

consists of the microcontroller, the motor, and a wireless transmitter/receiver, and a wireless

photodetector which relays the light information for a desired position within a room to the

microcontroller.

There are other attempts at making a responsive window shade. In 2020, a group of

University of Virginia (UVA) students did a capstone project named Window Automated

Natural Daylight Sensor, or WANDA for short[2]. The WANDA project took user input from a

mobile application for a desired light level and transmitted that data to a microcontroller to

control the window blinds. The WANDA system-based motor controls of the blinds on a light

sensor as well as a proximity sensor. The light sensor tried to match the light level to the desired

user settings, and the proximity sensor added a degree of security for the position of automatic

blinds. Within industry, there are several companies that have tried to implement smart blinds.

IKEA has electric blinds that are on a roller (as opposed to cellular blinds)[3]. The IKEA blinds

are controlled by either a remote controller or a mobile app and can be programmed to follow a

schedule for opening or closing. A product by Smarter Home features Bluetooth connectivity to

an app and schedule setting[4]. A unique aspect of the Smarter Home is the shades are solar

powered and can be voiced controlled. Blinds from Lutron and Graber have similar mobile

application or remote-control accessibility, but are battery powered[4], [5].

Page 10 of 50

Our project differentiates from current market options in two ways. The first distinction is

the use of an interior light sensor. The interior light sensor provides feedback information for a

desired location within the room. This would lead to the desired light level at a specific location

like a desk or bed, rather than just being on a set schedule. Additionally, our project will be

connected to smart lights. The goal of our project is to maintain a certain light level at the desired

position through natural light and smart lights.

The scope of the project will draw from many courses required for Electrical and

Computer Engineers (ECE) and Computer Scientists (CS). The ECE Fundamentals Sequences

(ECE 2630/ECE 2660/ECE 3750) will be necessary for designing circuit boards which will

provide power to the microcontroller, sensors, motor, and wireless receiver/transceiver

components. Embedded Computing and Robotics (ECE 3501/ECE 3502) will be necessary for

understanding/coding microcontroller functions as well as reading/understanding datasheets.

Additionally, Real Time Embedded Systems (ECE 4501) was necessary for developing a

program that guaranteed computations within hard deadlines. Cloud Computing (CS 4740) and

Algorithms (CS 4102) will be necessary for writing efficient code on the microcontroller and

connecting the wireless sensor to the microcontroller for data processing and environment

manipulation.

Constraints

Design Constraints

The team consisted of a mix of three computer engineers and an electrical engineer. Due

to the mix of the majors, the Capstone course imposed primary restraints: the groups must use a

microcontroller and design a custom PCB board to incorporate digital and analog signals.

To complete our capstone project, the team decided to have the remote node and the and

the window node communicate wirelessly. That limited the communication to Bluetooth, Wi-Fi,

or RF. As none of the team members had experience with RF communication, it limited the

choices down to Bluetooth and Wi-Fi. After research, the team decided to proceed with Wi-Fi

communication. The capstone team that did the WANDA project used the TI CC-3200

microcontroller and had some issues. Our team chose the TI CC3220SF-LAUNCHXL

Microcontroller; referred to as the CC3220 later[6]. The team used a Raspberry Pi 3A+for the

remote node; referred to as the Pi later[7]. The CC3220 needed to communicate with the Pi and

control the servo. The Pi needed to communicate with a light sensor, store the user interface, and

communicate with the CC3220.

CPU Limitations

 The CC3220 required a 3.3V supply to turn on. The microcontroller consisted of 40 pins

in two sets of 2x10 on both sides of the board in a standard, TI microcontroller set up[8]. The

CC3220 pin functionalities include General Purpose Input/Output (GPIO), Pulse Width

Modulation (PWM), I2C communication, SPI communication, and UART communication. The

CC3220 also included a SimpleLink Wi-Fi on a chip. For the capstone project, the team needed

Page 11 of 50

to use the GPIO pins and PWM pins to control the servo connected to the blinds. I2C

communication was needed to communicate between the light sensor and the CC3220. The Wi-

Fi chip was used to communicate with the Pi. The Pi required a 5V supply to turn on. The Pi

consisted of 40 pins in two rows of 20. The Pi pin functionalities included GPIO, PWM, I2C, and

SPI. The I2C pins communicated with a light sensor.

 In order to test the capstone project, the team needed to design and construct a small-

scale version of a room within the National Instruments (NI) Lab at the University of Virginia.

The model allowed the team to test the different nodes of the project and their impact on the

blinds.

Software Availability

 In order to design the PCB board, NI’s Multisim and Ultiboard were used. Both software

packages were provided through the University of Virginia to electrical and computer

engineering students. Multisim is a circuit design software[9]. Ultiboard is a PCB design

software[10]. The PCB boards were designed in Multisim, exported to Ultiboard for layout, and

then sent out for manufacturing.

Manufacturing Limitations

 Due to the Covid-19 pandemic, there has been a shortage of electrical components[11],

[12]. The supplies of components found on Digikey[13] and Mouser[14] were limited. The team

ensured that all components ordered were not on marketplace sale or backorder.

 Each of the PCB boards from the Ultiboard software had two layers: copper top and

copper bottom. The boards also had silkscreen, solder mask top, and solder mask bottom layers.

The Ultiboard Gerber files were exported and renamed to match the standards for a FreeDFM

board check[15]. Hole sizes, silkscreen letter sizes, and board dimensions were all accurately

reported for a successful report. The PCB board was received by the team about two weeks after

submission.

Most of the system can be built with off-the-shelf components, with only the housing for

the Printed Circuit Boards (PCB), the PCBs themselves, and the adapter between the servo and

the blinds requiring custom fabrication. The system will be entirely controlled through a web

interface hosted on the Raspberry Pi, which can be connected to through the web browser on a

computer, cellular phone, etc. The web interface should be designed as simple as possible, with

an option to fully increase or decrease the brightness of the room, and either buttons or a slider to

gradually change the brightness in either direction as well.

The project components are currently available for mass production. All electronic

components for this project are active products on Digikey. Mass producing custom PCB boards

can be manufactured by a wide variety of manufacturers and in general is a solved problem. For

example, DigPCB can bulk manufacture custom PCBs[16]. Mechanical components will be the

source of some constraints. There is a custom connection from the servo to the blind actuating

shaft. The piece could be redesigned to a plastic injection mold for mass production.

Page 12 of 50

Economic and Cost Constraints

The major expenses for this project are the PCBs, the microcontrollers, and the materials

required to manufacture custom components. The main economic benefit of this device is the

potential saving on the energy bill, as described in the Environmental impact section, and the

ease of use, where the user can spend more time working on productive tasks than having to

manually adjust the blinds and lights to their liking. The benefit of this should be comparable to

the cost. Similar products that only actuate the blinds can be purchased for over $500, so being

able to create a product for less than that would make this technology, and the associated energy

savings, more accessible to all.

Environmental Impact

There are many environmental considerations that need to be made during the

manufacturing of the product, the usage of the product, and the disposal of the product. As we

are creating a custom PCB, there are a lot of carcinogenic materials used during their production,

such as glycol ethers, formaldehydes, and lead, which can cause long-term health issues to

workers and wildlife alike[17]. As we are planning on creating a metal housing for the servo to

reside in, the impact to the environment through the process of mining and processing iron to

make steel is significant, as it requires a large amount of energy, which is made by generating a

substantial amount of CO2 which is then released into the environment[18]. Running the servo

also takes energy, which would slowly but surely increase the user’s carbon footprint as the

motor will be powered through a conventional 120V outlet. The servo itself only requires 0.7

watts at full operating conditions[19]. As most of the device will be made from metal, it can be

recycled easily. However, any plastic components created from 3D printing, for example, can

introduce microplastics into the environment, which is known to be toxic to living organisms

[20]. A benefit of our project will be the energy savings associated with blinds usage. The

Department of Energy notes that most types of window treatments will result in energy

savings[21]. Shades can help retain heat within homes during the winter and block glare in the

summer.

Sustainability

 The housing for the window and remote nodes was 3D printed using PLA filament.

According to the safety specifications under the technical documentation, the PLA filament is

biodegradable[22]. If the material is left within the environment, no toxicity nor bio

accumulation was reported.

 The model of a test room used aluminum from 80/20[23]. Aluminum is extracted from

bauxite ore. As the aluminum ore is not buried deep in the ground, mining mainly occurs in

open-pits[24]. Aluminum mining contributes to the biodiversity loss by clearing trees and

grasses. During the mining of aluminum ore, there is the potential to uncover toxic or naturally

radioactive elements which can pose a risk to the local environment and humans[25].

 The PCBs are generally made of a fiberglass epoxy resin[26]. Fiberglass is not

decomposable and not affect by “weather, saltwater, and most chemicals”. The production of

fiberglass can release air pollutants and is subject to EPA regulations. Finally, fiberglass has the

potential to cause skin irritation is ingested or comes in contact with exposed skin.

Page 13 of 50

Health and Safety

As this product contains moving parts, it can be dangerous if any of those components

were exposed, especially to a child. To prevent any bodily harm, the entire drive unit will be

fully enclosed, with some small slits for ventilation for the motor and the electronics. Since the

unit resides indoors and will not be exposed to outside elements, it does not have to be fully

sealed or weatherproofed and will follow the NEMA Type I rating for enclosures, as described in

the Standards section.

 If the device were to project during operation, there is a very slim chance that the user

could be subjected to extremely low or extremely high sunlight exposure. Extremely low

sunlight exposure would be harmful to the user. Sunlight causes the body to produce Vitamin D

which is beneficial for bone health and immunity [27]. At the other extreme, the user could be

subject to extreme sunlight. Too much sunlight can cause sunburn which has been linked to an

increased risk for cancer[28].

External Standards

Our project will make use of circuit boards and will therefore have to follow IPC

standards for the boards. As our project is a general electronic product, it falls into IPC Class I

which corresponds to IPC-2221 standards[29]. These standards will guide how the boards are

populated, design layout, testing procedures, and integration[30]. The project took advantage of a

trace width calculator online by 7PCB[31]. Since our project will be indoors and not meant for

exposure to the elements, our project should also conform with the NEMA Ratings for

Enclosures: Type I[32]. This level of standards is to provide personal protection against

hazardous parts within the project, and protection of project equipment from falling debris such

as dust, dirt, and light ingress/splashing of water[33]. The wireless communication between the

light sensor and the microcontroller will have to follow IEEE standards 802. Standards 802.11

and its derivations (a-n) are necessary for local area network, Wi-Fi connections. Standards

802.15 give the requirements for Bluetooth connected devices[34], [35]. Finally, the coding on

the microcontroller should follow the standards from C programming by Barr[36]. The standards

by Barr will ensure code readability for the other programmers as well as reduce the chance for

bugs. For the model test environment, the frame used 80/20 T-Slot Aluminum pieces. Each of

the pieces conforms to an industry standard of sizes[37].

Tools Employed

A variety of both hardware and software tools were utilized to design, create, and test the

hardware and software of ALTAIR. Tools used in each category are described below.

Hardware

To design the Window and Remote Node PCB, National Instrument’s Multisim[9] and

Ultiboard[10] were utilized. Multisim was used to design the window node and remote node

circuitry. Several of the components needed to design the circuit were not in the standard library

of parts. In order to build the circuit, the nonstandard parts were individually created. Following

the Multisim design, the circuits were exported to Ultiboard. Ultiboard was used to create a

layout for the PCBs. Similar to Multisim, several components were not in the generic libraries.

Page 14 of 50

To create the parts in Ultiboard, datasheets and reference sheets were consulted to determine the

correct dimensions for the parts. As for designing the various hardware components such as the

housings for both nodes, servo mounting and attachment to the blinds, and parts for the test rig,

Autodesk Fusion 360[38] was used. Steven was proficient enough to get preliminary versions of

each part designed in Fusion 360, but he had to learn new features within the software to create a

polished final product. To manufacture the designed housings for both nodes, the Creality CR-10

Smart 3D Printer [39, p. 10] and the Ultimaker Cura [40] slicer was used. For the servo

mounting, an OMAX Maxiem 1515 Waterjet [41] was utilized to turn a 0.090” sheet of

aluminum into a bolt-on bracket to the blinds. As Steven was new to 3D printing, he had a quick

learning curve of how to use it along with what some of the settings did to make a part that

would be suffice in quality. As for using the Waterjet, Steven has over 3 years of experience

using it and did the job in a quick and timely manner.

Firmware

To create the firmware for the CC3220SF, TI’s Code Composure Studios (CCS) [42] was

used. Alex and Mason had previous experience with CCS, and thus were able to work efficiently

with it, although they both had to learn new features of CCS when it came time to switch output

pins around. Along with CCS, the TI SimpleLink™ Wi-Fi® CC32xx software development kit

(SDK) [43] was heavily utilized for the Wi-Fi connectivity between the CC3220SF and the

Raspberry Pi. While this was a very useful tool, there was a learning curve as Alex and Mason

had never worked with any Wi-Fi module before. Finally, a NI VirtualBench [44] was also used

to assist in debugging the custom drivers. As Alex and Mason also had previous experiences

with the VirtualBox through the Fundamental of Electrical Engineering series, they had no issues

using the tool to troubleshoot.

Software

To implement the user interface, the micro web framework Flask [45] was used in conjunction

with Python[46], as the connected Philips Hue Hub had an easy-to-access API that could easily

be accessed with Python, along with power efficiency reasons. To share the code between us,

GitHub [47] was also set up so we all could view the code at any time, along with having access

to previous versions of the code as well.

Ethical, Social, and Economic Concerns

 In its general form, this project wouldn’t have any more ethical concerns that traditional

curtain/blinds. The purpose of our project was to maintain a constant light level within a room by

wirelessly actuating the blinds and controlling lights. The same task could have been

accomplished a person manually controlling the blinds and lights. Blinds can act as a form of

security for the user’s houses, and therefore add some benefit to io functionality.

 When looking at the substance of the project, that is where ethical questions arise. In the

traditional setting, the blinds and the lights could only be affected by an individual inside the

house. Therefore, residents would know the last positions of the blinds and if they had been

Page 15 of 50

moved/disturbed by an intruder. In the current state of the project, the connection between the

user, blinds, and lights have been transferred to a local network. Therefore, in order to connect

with the blinds and change them, the user must have access to the user interface from a

computer. This provides the opportunity for malicious actors to hack into the local network and

disturb the resident. The blinds could be opened at unusual time, such as the middle of the night,

without the consent of the user. The CC3220SF comes with some basic security protocols to

protect against such actors, but the risk is never extinguished. The project is not connected to the

network which provides a layer of protection; another layer is added by setting a password to the

local network so that not everyone could join on will. However, if someone did manage to get

into the network, the data is not encrypted and the malicious actor would have access to all the

data. One thing to note is that the malicious actor would need to be in close proximity with the

local network, such as in the house, in order to have the opportunity to get onto the local

network.

 At a low level of production, such as the current state of the project, the economic cost

would be high to implement for all people. If all components worked and there was no need for

extras, the cost would be around $250. The cost would be comparable to the price of what is

considered high quality, motorized blinds. As such, the product would mainly be bought by the

middle and upper classes. For low class citizens, this product would be a nonessential good as

traditional blinds could fulfill the same job. However, if the price can be reduced by increasing

the scale of production as noted in the Costs section, compacting the PCBs, and decreasing the

computational power necessary from the microcontroller unit, the project could be on par with a

good pair of traditional blinds, around $150.

Intellectual Property Issues

The “Thermochromic Window Structure”[48] is added onto windows that let’s light pass through

or blocks light from entering. The patent claims at least one pane of a window with a sunlight

responsive, thermochromic layer. Based on the position of the sun rays’ incident on the window

will cause the structure to warm at varying rates due to convection currents within the window

structure. As the window heats, the thermochromic windowpane will darken and therefore let

less light pass through as the window structure warms. When the sun is not out at a high angle

such that the light rays are not directly incident on the window, light will pass through. When the

sun is at a low angle and therefore almost directly incident on the window, the thermochromic

layer will darken, and less light will pass through. This patent provides a relatively simple

solution to stop natural light from entering an area.

 The “Method and Device for Lighting Control in Space Inside of Room”[49] determines

how to control the light within a room. The device within the patent can take in several different

parameters that affect the amount of daylight coming into a room, such as, but not limited to:

geographic location, local weather, cloud coverage, and climate. The device uses the local

information to synthesize a light profile for a room. The device is designed to illuminate a room

located on the interior of a building with no access to natural lighting, and to replicate the

lighting condition an occupant would receive if near a window.

Page 16 of 50

 The “Solar Radiation Adjusting Device for Lighting Louver”[50] is a full window

attachment designed to block sunlight. The device is attached to the outside of the window. The

main components are the louver and a sunshade. The louver is designed to be raised and lowered

and allow for different amounts of natural light to be let into a room. The slats on the louver can

also be rotated. All louver motion is controlled by a motor. The sunshade is connected to the

bottom edge of the louver device in a separate case. The sunshade serves to block the heat from

entering the interior. The height of the sunshade is also controlled by a motor.

 The “Motorizable Tilt Shade System and Method”[51] is a manual and mechanical

method for controlling the height and tilt of slats within blinds. The patent assesses the risks and

limitations of solely a manual or mechanical system such as ease of operation, danger of hanging

cords, limit space around a window, and the technical skills required to personally convert a

purely manual system into purely mechanical system. This patent attempts to address these

issues. The system consists of a header, driveshaft, suspension chord, tilt chord, motor driver,

battery holder, and power delivery subsystems. With the limit space and for aesthetic appeal, the

battery holder, motor, motor encoder, controller, and driveshaft are located within the header.

The slats have a tilt freedom of 180°. Either the chords or the motor system may be used to

adjust the height and/or tilt of the slats.

 The “System to Control Daylight and Electric Light in a Space”[52] is an illumination

maintenance system in a desired area. The patent attempts to maintain an illumination profile

within the area through exterior and interior lighting. The patent sets up one or more zones

within a room which each have a light sensor and a dimmable lamp. Each of the zones are preset

to maintain a constant light level throughout the day through the combination of exterior light

and interior dimmable light. The system is also built to implement window treatments, such as

shades, as another means of controlling the illumination. The patent does note that occupants

within the room may affect the light sensor readings, thereby disrupting the feedback control

loop. Techniques such as averaging multiple light sensors are presented in order to remedy this

drawback.

 The first, fourth, and fifth patents/paragraphs within the Intellectual Property Issues

sections are US patents. The second and third patents/paragraphs are foreign patents that provide

more context into the current state of the art. The first patent and the ALTAIR system both

provide methods for reducing the amount of light entering an area. The first patent provides a

single step solution for reducing light but has no way of maintaining the light within an area. The

second patent provides a method for building a light profile within a room. That patent is

concerned with building the local light profile to mirror exterior conditions all day, as opposed to

maintaining constant conditions. The third patent provides a mechanical solution to reduce the

amount of light entering a window. This patent is intended to be in an outside environment and is

not intended to maintain a constant light level within an area. The fourth patent is another

mechanical solution to reducing light entering through a window. The patent is intended to be

placed on the interior of a building and has the benefit of being a manual or a mechanical system.

Like the first and third patents, the fourth patent doesn’t maintain a light level. The final patent is

almost exactly the system from the ALTAIR project. Both systems use a zone model with light

Page 17 of 50

sensors. The light sensors are used to gauge the illumination levels, and control either dimmable

lights or a window treatment to maintain a preset level. Based on the current state of the art, it

would be difficult to receive a patent. The first four patents listed would pose no interference.

The final patent’s system is very similar to ours. It is unlikely that implementing an IoT interface

introduces enough novelty into the design to warrant receiving a new patent.

Detailed Technical Description of Project
The goal of the project was to develop a system for controlling the amount of light within

a designated area. The project was based between two nodes: a window node and a remote node.

The window node was centered around a TI CC3220SF-LAUNCHXL microcontroller,

servomotor, and light sensor. The remote node was responsible for actuating the servomotor to

control the blinds. The remote node was centered around a Raspberry Pi 3A+ and a light sensor.

The remote node is responsible for hosting the user interface collecting the ambient light data for

the region of interest within the room and communicating with the window node and smart

lights. The nodes communicated wirelessly via Wi-Fi to avoid extraneous wires within the room.

The overall communication structure is shown in Figure 4: System Diagram.

Our project is an IoT device that automatically adjusts the window blinds and interior

lights to achieve a desired brightness within a room. It works by first obtaining a desired light

level from the user with a web application, then it determines the current light level of the room

using the remote light sensor. If the current light level sensed by the remote light sensor is below

the desired level, then the room will open the blinds using a servo connected to the shaft of the

blinds. If the light coming through the window is not enough to satisfy the requested light level,

then smart lights around the room will turn on and increase in brightness until the desired level is

reached.

Mechanical

The mechanical aspect of our project is actuating the blinds with electronics. While the

team tossed around a few ideas of what type of motor to use that would be the most optimal for

the project, a micro servo was the dominant choice. There were a few factors that led to this

decision: affordability, simplicity, size, and power. To determine how much power was required

for the motor to produce, the amount of torque required to rotate shaft that tilts the slits of the

blinds when the blinds are fully extended was measured by using a custom test rig, along with

the torque equation = 𝑟𝐹𝑠𝑖𝑛𝑞.

Page 18 of 50

Figure 2: Blinds Torque Test

By using the rig in Figure 2: Blinds Torque Test with coins of a set weight, it was

possible to calculate the worst-case torque required to turn the blinds, which was ~0.69 oz-in.

With the torque requirement now determined, the packaging of the servo was the next issue to

work out. The blinds stock housing was measured and found to have ~33mm of height to spare

and ~22mm width to spare. After some research on Digikey, it was found that DFRobot offered a

micro servo (SER0046) that produced 1.5 kg-m (20.83 oz-in) of torque and was 33.4mm tall and

12.2 mm wide. While the height was a little over than what was ideal, it was still workable and

the most affordable at $6.90 each, which includes all the accessory horns as well which would

later be utilized.

Once the servo was decided upon, a mounting solution had to be designed so that the

servo would not shift around when rotating the shaft. First, a CAD of the general size of the

blinds along with the servo was created. Afterwards, a few ideas for attaching the servo to the

blinds were brainstormed, some of which included a direct drive splined adapter to the shaft, a

male to female splined adapter that went from the servo straight to the cylinder the shaft was

rotating, and a horn-adapter that would bolt to one of the existing horns of the servo and would

slide over the shaft. The third option was the one that the team decided to use, primarily for the

ease of manufacturing as well as the sturdiness of being made from aluminum instead of plastic,

as the other two options required a spline connector to connect to the servo, which is extremely

difficult to do using the subtractive manufacturing machines available at Lacy Hall. Fortunately,

the third option was able to be made on a manual lathe as it was concentric. Using scraps of

aluminum tubing lying around, a prototype of the adapter was able to be manufactured and was

successfully validated.

Page 19 of 50

Figure 3: Servo Mount and Adapter

 Next, the physical housings for both the window node and remote node were designed

and created. The primary goal of the housings was to protect the PCB from physical damage, as

well as hiding any exposed connectors internally and limiting the non-essential connections as

well. The nodes were designed in Autodesk Fusion 360 after the PCBs came in, so that the actual

sizes were accurately accounted for. The remote node has a single hole to allow for micro-USB

type B power input, while the window node had two holes: one hole on one side for the power

adapter, and one larger hole on the other side for both the debugging micro-USB input as well as

the servo connector. Once designed, slits were added to the lid and the body of the window node

to aid in ventilation, as well as allowing more light onto the light sensor integrated on the custom

PCB. A similar approach was taken for the remote node in which ventilation holes on the lid

were implemented to allow more light at different angles to hit the light sensor, rather than

letting the system rely on light hitting the sensors head on. Figure 4 shows the CAD design for

the window node housing and Figure 5 shows the CAD design for the remote node housing[53].

The 3D printer used can be found in Figure 30 in the appendix.

Page 20 of 50

Figure 4: Window Node Housing CAD Design

Figure 5: Remote Node Housing CAD Design

Page 21 of 50

Figure 6: System Diagram

 Window Node

The window node was designed to be placed at the top of a window to control the blinds. The

window node consisted of the TI CC3220SF-LAUNCHXL Microcontroller, Window Node PCB,

DFRobot DC Servomotor, and wall power supply. The overall design of the window node is

centered around the PCB, and the PCB design from Multisim is shown in Figure 7.

Figure 7: Window Node Schematic

The PCB was segmented into five parts: input electrical power from the wall, the voltage

regulator, the VEML7700 light sensor, the servomotor, and the CC3220SF. The first thing we

the team looked at was the supply power to the system. Looking at the other components, the

SER0046 servomotor required 6V, the CC3220 required 3.3V, and the VEML7700 light sensor

required 3.3V. To determine the power necessary, the team looked at the maximum current

Page 22 of 50

draws for the same three devices. The SER0046 has a peak current draw of 1.1A, the CC3220

has a peak current draw of 0.286A, and the VEML7700 has a peak current draw of 45μA. The

combined current draw is calculated to be around 1.4A. The team chose a 6V, 12W wall power

supply[54]. The current supplied would be about 2A, which provides about a 0.6A buffer. To

connect the wall power supply to the PCB board, the team used a PCB barrel jack[55].

From the 6V power supply, the voltage needed to be taken down to 3.3V in order to supply

power to the VEML7700 and the CC3220. The voltage regulator subsection was designed and is

shown in Figure 8. The specific voltage regulator used was the TI LM1086CT-3.3NOPB[56].

From the datasheet, the minimum voltage required to maintain a 3.3V output was 5V; the 6V

input from the wall power supply should be sufficient. Capacitors were added on the input and

output sides of the regulator to account for any transients that may occur.

Figure 8: Voltage Regulator Schematic

At the window node, the light levels are measured by the VEML7700 light sensor [57];

the schematic to power and send the data is shown in Figure 9.[57]; the schematic to power and

send the data is shown in Figure 9. From the datasheet, the supply voltage to the sensor must be

between 2.5V and 3.6V. As the CC3220 can also be run 3.3V, which is in the range of the

VEML7700, the team chose to run the light sensor at that 3.3V. The VEML7700 light sensor

itself was chosen from a several potential sensors. A primary reason for choosing the

VEML7700 was its spectral response to light. The team wanted a sensor that had a spectral

response that was similar to that of the human eye in order to achieve the most accurate light

level. From the datasheet, there is significant overlap between the spectral response curves of the

sensor and the human eye. The human eye is slightly more sensitive to light with wavelengths

between 550nm and 650nm, but the difference doesn’t pose significant concern. The VEML7700

is a digital sensor. The sensor has an analog to digital conversion process which outputs a 16-bit

integer. This is beneficial over an analog sensor which would require the team to use the ADC on

the CC3220. Therefore, the sensor can communicate directly with the CC3220 via I2C protocol.

Page 23 of 50

The light sensor sub-schematic was based off a common application note within the datasheet.

The pullup resistors, noted as R1 and R2 within Figure 9, were given a range of 2.2kΩ to 4.2kΩ.

The team had access to several resistors from the ECE Fundamentals sequence lab kit and

decided to use 3.3kΩ resistors. The SDA and SCL lines are connected to corresponding lines on

the CC3220.

Figure 9: Light Sensor Sub-Schematic

The window shade position is controlled by the DFRobot SER0046 servomotor, which

receives commands from the CC3220. The servomotor circuit makes use of the 2N3904 NPN

transistor[58], LP0701 PMOS[59], and 1N5817-TP diode[60]. The 2N3904 is connected to the

CC3220 microcontroller. When a signal is sent from the CC3220 to the transistor, the PMOS is

activated such that the servomotor is powered by the 6V. This feature was added so that the

servomotor is not constantly connected to a power supply. The diode is connected between the

6V power supply and the ground terminals. Inductive energy stored within the servomotor will

be dissipated as it flows through circuit. The servomotor has four terminals: power supply,

ground, signal, and feedback. The power terminal, as discussed above, needs 6V. The signal

control and feedback terminals are connected to the CC3220. A pulse width modulation (PWM)

signal is sent from the CC3220 to the servomotor on the signal control line. This line provides

commands to the servomotor to adjust the position of the blinds. The feedback line sends a 0V to

3.3V signal from the servomotor to the CC3220. The feedback line relates the voltage to the head

position of the servomotor. The analog signal from the feedback line will be deciphered by the

CC3220 using the analog to digital convertor.

Page 24 of 50

Figure 10: Servomotor Sub-Schematic

The CC3220SF-LAUNCHXL microcontroller has two sets of 20 pins connected to

various functions as shown in Figure 7. The CC3220 user guide[6], datasheet[61, p. 32], and

quick start guide[62] were all referenced in order to determine the functions of each pin. The

power pin, ground pins, and I2C communication pins were all determined from a limited number

of pins. The servo power control, servo feedback, and servo signal pins all had multiple options

from many general-purpose input/output pins.

Page 25 of 50

Figure 11: Window Node Ultiboard Design

After completing the Multisim schematic for the window node, the circuit was transferred

into Ultiboard for the PCB layout. Due to the limited database, custom components were made

for the power barrel jack, light sensor, PMOS, CC3220 microcontroller, and servomotor

connector. Traces that trended in the north-south direction on the board were generally routed on

the copper top layer. Traces that trended east-west were generally routed on the copper bottom

layer. It was decided that the servomotor connecting should be placed on the north side of the

board in order to have access to the header of the blinds. To measure the light and the window

node, the light sensor was placed at the southern end of the PCB in order to reduce shadowing

effects, and thus get the best representation of light at the window node. The microcontroller was

laid over top of the other components in between the servomotor connector and light sensor.

After the board was manufactured, the team noted a couple items for future iterations.

Visual inspection noted that the distance between components was generally too much. Future

iterations should have the components packed closer together. The width was limited by the

width of the CC3220 which would be placed on top of the PCB, but the height of the board could

be easily reduced. If the boards were fabricated on a per area basis, cost could be saved by a

more compact design. Similarly, a more compact design would be beneficial when mounting on

the window. During testing of the PCB board, it was determined that the pin originally used for

Page 26 of 50

the servomotor PWM control would not be available. Therefore, output originally on pin 17 was

moved to pin 64. Despite these hiccups in the board design, the team opted to not send out the

board for remanufacturing in order to conserve the budget. The final product after manufacturing

is shown in Figure 12: Manufactured Window Node.

Figure 12: Manufactured Window Node

Remote Node

The remote node was designed to be compacted so that it could be placed within a room.

The window node consisted of a Raspberry PI 3A+, VEML7700 light sensor, and power supply.

Figure 13: Remote Node Schematic

For the remote node, power is supplied directly to the PI through a dedicated USB cable. Power

to the VEML7700 light sensor is provided from the 3.3V output pin on the PI. The PCB board is

placed on top of the header of the PI. The light sensor sub-schematic shown in Figure 9: Light

Sensor Sub-Schematic, is the same sub-schematic from the window node, shown in Figure 9:

Page 27 of 50

Light Sensor Sub-Schematic. The only difference is the power supplied to the light sensor is

from a PI pin rather than the voltage regulator.

After the circuit design was completed in Multisim, the schematic was transferred into Ultiboard,

and the final design is shown in Figure 14: Remote Node Ultiboard Design. The remote node

PCB size is dominated by the length of the header of the PI. Compared to the window node, the

remote node features fewer components.

After the board was manufactured, the team noted a couple of items for future iterations. A

visual inspection noted that the horizontal distance between pins was too much. Unlike the

window node which could have been shrunk in 2 dimensions, the size of the remote node could

have only been reduced in the east-west direction. As the PCB is placed on top of the PI, there

would be no part interference, and a smaller board would not have impacted the design. As noted

in the window node section, a smaller board would save materials and cost for large scall

production. However, the size change to the board didn’t warrant remanufacturing the board.

Figure 14: Remote Node Ultiboard Design

 The manufacturing Remote Node is shown in Figure 15: Manufactured Remote Node.

Page 28 of 50

Figure 15: Manufactured Remote Node

Firmware

 The firmware refers to the device drivers and abstractions and the wireless

communication drivers and abstractions on the microcontroller and the Raspberry Pi. The

Raspberry Pi drivers are covered in the software section below. Thus, this section will cover the

servo driver, the ambient light driver, the digital filter for the light data, and the wireless

communication driver on the microcontroller—all shown in Figure 16: Data Flow Diagram for

Window Node. This section will also cover the multithreading running on the microcontroller.

Figure 16: Data Flow Diagram for Window Node

 The wireless communication utilized the SimpleLink SDK[43] in order to connect to a

Wi-Fi network and a TCP socket as a client. Our messaging scheme was composed of a receive

Page 29 of 50

buffer that was populated by data sent from the remote node and a send buffer that was

populated by function calls and whose data was sent to the remote node. The buffer scheme was

as follows:

Table 1: Send buffer

ACK Light Sensor

(high byte)

Light Sensor

(low byte)

Server on Server

feedback

END

Table 2: Receive buffer

ACK Want server

on

Servo

position

END

A driver utilizing one of the Pulse Width Modulation (PWM) modules and a GPIO pin

was developed to control the SER0046 Servo[19]. This servo took a range of valid duty cycle

values from 500 to 2500. A design tradeoff made was to only use 8 bits to store the position of

the servo—meaning that only one byte in the receive buffer was needed to store the servo

position. This was good for messaging, but limited the number of possible servo positions.

However, this was a tradeoff found worth taking, as using only 200 servo unique positions was

found to be more than adequate to give a smooth spread of possible servo positions to be used in

the control algorithm. Thus, the values passed from the control algorithm were limited to be from

0 to 199, and were mapped to the valid duty cycles by the function f(x) = 10x + 500. The servo

driver also used a GPIO pin to supply power to the device. This was to conserve energy

consumption when the servo was not being actuated much throughout today.

The light sensor driver relied on using the I2C bus to interface with the VEML7700 light

sensor[57]. Because the system should have a smooth approximation of what the human eye

sees, the data was fed into a digital filter; specifically, an exponential average. The formula for

getting a new data value in an exponential average is ((current value)*(15/16) + (read

value)*(1/16)). This makes sure that big but short changes in ambient light do not wreak havoc

on the system’s control algorithm and output. In order to do exponential averaging, the system

needed to shift right 4 times (divide by 16). However, the microcontroller did not support

floating point, but because there was addition and multiplication alongside the division the

system could not disregard the decimals without very poorly approximating the exponential

averaging. Thus, the management of this filtering is done by using a custom floating-point

notation called light_t, shown in Figure 17. When an integer light value is filtered, its 4 low bits

shifted out of the integer (when it is divided by 16) are put into the fractional component. Later,

when the additional and multiplication are applied to the integer portion, they are also applied to

the fractional portion. Any overflow from the fractional portion is added to the integer portion

for the final result of the filter operation. This preserves the decimal values to be used in

arithmetic without actually storing them as decimals.

Page 30 of 50

Figure 17: Light data struct for exponential averaging

The filtered light sensor value is stored in a 16 bit unsigned integer—so it takes up two bytes in

the send buffer.

 There are three threads running on the window node: one main thread, an I2C thread, and

a messaging thread. The main thread initially configures the board, peripherals, Wi-Fi, and TCP

socket connection, and then manages the UART terminal (useful for system debugging). The

messaging thread manages the TCP socket connection with the remote node and drives the servo.

Specifically, it waits to receive a message from the remote node. When it does, it parses the data,

drives the servo (if necessary), grabs the current filtered ambient light value, populates the send

buffer, and sends a response back to the remote node. The I2C thread periodically polls the I2C

device to update the currently stored filtered ambient light value.

Software

 The software is entirely on the Raspberry Pi. The diagram in Figure 17Error! Reference s

ource not found. shows an overview of this software on the Raspberry Pi. The Raspberry Pi

hosts a website with flask to serve a user interface to the end user. The Raspberry Pi is connected

to the router and user can connect to it through the LAN. The code is broken up into four main

sections. A communication section to handle the interface to the CC3220 over a TCP socket. A

state section to handle the state of the whole system including tracking state variables and

Page 31 of 50

updating the state of the system. A control thread to make decision on updating the state. And

finally, a user interface to allow the user to change the device.

Figure 18: Data Flow Diagram for Remote Node

Wi-Fi Messaging

 Wi-Fi messaging is accomplished using a TCP socket. The CC3220 tries to connect to an

open socket on the Raspberry Pi. Once this connection is successful the Raspberry Pi can send

messages to the CC3220. The Raspberry Pi sends a 4 byte messages to the CC3220 consisting of

an ack byte, whether the servo should be turned on or off, a servo position, and an end of packet

byte. The CC3220 will then respond with a packet containing the measured position of the servo

and the current light value measured at the window.

Hue Smart Light

 The IoT smart light is a Phillips Hue lightbulb. This lightbulb is controlled by a Philips

Hue Bridge with connects directly to the router via ethernet. The Phillips Hue Bridge

communicates with the actual lightbulb over Zigbee. From a software perspective, we

communication with the bridge with a restful API. To control a lightbulb, we send a push request

to the Hue Bridge containing a json object specifying the ID of the light bulb and the requested

state of the lightbulb.

User Interface

Page 32 of 50

 The user interface is hosted on a micro web framework Flask server. We used Flask since

it is very light weight and energy efficient. On top of that, we are using the React.js[63]

framework to deliver a responsive webpage, along with the Bootstrap Framework[64] for quick

and easy styling. Figure 19: User Interface shows a screen shot of the user interface. Each button

corresponds to a Python function runs code to execute the function. To begin a connection with

the window blind, a user must first select “Setup Port,” which will cause the Raspberry Pi to host

a TCP connection that the CC3220 can connect to. In addition, the Raspberry Pi will spin up the

controller thread that decides the blind and IoT light state for achieving the desired light level.

After that a user can turn the lights on and off and control the set point of the system with the left

slider.

Figure 19: User Interface

Control Thread

 The control thread decides what light and blind state to do to achieve the desired light

intensity. It begins by running the control loop in Error! Reference source not found. This

control loop starts by comparing the current light intensity to the desired light intensity. If the

controller needs to increase the value, it will begin by increasing the blinds if they are not maxed

out and then waiting a 400 ms for the value to settle down. If the blinds are already opened to the

maximum extent, the device will instead increase the light intensity. Similarly, if the controller

needs to decrease the light intensity it will first do so for the lightbulb and then decrease the

natural light coming from the blinds. In this way, the system will always prioritize natural light.

Page 33 of 50

Figure 20: Control Loop

Project Time Line
There were stark differences between our original planned timeline, shown in Figure 21:

Gantt Chart created as part of the capstone proposal in September 2021, and the actual

development of the project, shown in Figure 22: Gantt Chart created in December 2021 that

reflects progress made throughout the semester. There were three main factors that influenced

these differences. The first was parts ordering and supply chain issues due to Covid-19. The

pandemic crippled the supply chain for many electronic devices. This not only limited part

selection, but also meant severely increased shipping times for many parts. Our firmware

development was most impacted by this, as for several devices we were unable to make

significant progress without having the hardware to interface with. Our mechanical development

was also impeded by supply chain issues and was further hindered by the time it took to print 3D

parts. The second main factor was that our project is designed to control light in a room;

however, we did not have easy access to an empty room with a single window, and the amount

of sunlight is not a reasonably controlled factor for us to use in rigorous testing. Thus, we needed

to create an intensive testing rig that required substantially more mechanical development than

we originally anticipated. The final main factor was that no member of the group had experience

with communication over Wi-Fi before working on this project. While the SimpleLink SDK[61]

used was extremely useful, we found that using it in a meaningful way as applied to our project

came with a significant learning curve. Interfacing the Raspberry Pi[7] with the CC3220SF-

LAUNCHXL[6, p. 32] took more than a month—but the majority of that time was mostly spent

learning how to use the toolchain and provided drivers. Our failure to anticipate this learning

curve severely impacted the discrepancies between our projections and the reality of firmware

development.

Fortunately, despite these setbacks, we were able to still meet benchmarks (notably the

Midterm Design Review and the Final Demonstration). The Final Demonstration is in two days,

and we are on track to have the system functionality we originally proposed at the beginning of

the semester.

Page 34 of 50

Figure 21: Gantt Chart created as part of the capstone proposal in September 2021

Figure 22: Gantt Chart created in December 2021 that reflects progress made throughout the semester

 Despite the timeline setbacks outlined above, the high parallelization of tasks meant that

we were still able to make progress and meet deadlines even when bottlenecked at certain points.

Some specific examples of this include the development of the power supply and electric

Page 35 of 50

connections alongside the firmware and first mechanical tasks. Later in the semester, after the

electrical testing was finished, the group was simultaneously working on mechanical, firmware,

and software problems. The specific division of tasks is summarized as follows:

Peter primarily worked on the Printed Circuit Board design and layout, and secondarily

worked on testing the power supply.

Mason primarily worked on the control algorithm, and secondarily worked on some

device drivers and the remote node backend codebase.

Steven primarily worked on mechanical design and front end of the website, and

secondarily worked with electrical connection testing.

Alex primarily worked on device drivers and the Wi-Fi connection between two nodes,

and secondarily helped with software testing.

Test Plan
From the Midterm Review, our test plan was split into hardware and software testing.

The hardware testing was split between the window and remote nodes. The software testing was

split between light sensor readings, servo actuation, communication, and user interface.

Hardware

The first step in the hardware test plan was to ensure that power was being received by all

the components. For the window node, the team needed to ensure that the 6V supply from the

wall was being received by the servomotor and at the input to the voltage regulator. From the

voltage regulator, the output needed to be 3.3V which would be used to power the light sensor

and microcontroller. The team used probes on a virtual bench in the NI lab to take the

measurements. Figure 23: 6V Power Supply Verification shows the measurement for the 6V

node. The measurement is slightly above the nominal output, but the percent error is 1.4%.

Figure 24: 3.3V Power Supply Verification shows the measurement for the 3.3V node. The

measurement is slightly below the nominal value, but the percent error is less than a single

percentage point.

Figure 23: 6V Power Supply Verification

Page 36 of 50

Figure 24: 3.3V Power Supply Verification

For the remote node, a similar procedure was followed. Power was supplied directly to

the PI, so the only node that needed to be tested was the 3.3V output pin which supplied power

to the light sensor. The results from the measurement are shown in Figure 25: 3.3V Power

Supply Verification (Remote)Error! Reference source not found.. The output is slightly above

the nominal 3.3V, but the percent error is again less than a single percentage point.

Figure 25: 3.3V Power Supply Verification (Remote)

Communication

 Our communication testing lasted a significant amount of time. It began with getting each

of the remote node (Raspberry Pi[7]) and the window node (CC3220SF-LAUNCHXL[6, p. 3])

configured to connect to a Wi-Fi network. After that, we began to test the TCP socket connection

between the two devices. These tests simply involved using print statements to get visual

confirmation that the two devices were connected. Once we had established that the TCP socket

connection was valid, we tested messaging by sending dummy data back and forth between the

devices. We do not include screenshots of these data captures because in tests below, we

successfully send real data from devices back and forth, which validates both those device

drivers but also the wireless communication between the nodes.

Device Drivers

Page 37 of 50

 In order to test our light sensor driver and filter, we took screen captures (Figure 26:

Filtered Light Sensor Readings) of light sensor data and ensured that the values read matched our

expectations under set conditions.

Figure 26: Filtered Light Sensor Readings

The leftmost capture in Figure 26: Filtered Light Sensor Readings shows the light sensor capture

immediately after it is uncovered and exposed to the ambient light in the room. The middle

capture shows a capture closer to the end of the light sensor filter stabilization, and the rightmost

capture shows the filtered light sensor data stabilizing. We described in the previous section our

method of filtering this data: we want to show that the stored value is equal to (current

value)*(15/16) + (newly read value)*(1/16). From the rightmost capture, we know that in this

environment the new light value being read was around 13370, since this is what the filtered

value began to stabilize around. On the leftmost capture, we will disregard the first data read

since the light sensor had just been uncovered and we do not have a good estimate of what light

value it read in as an input. Thus, we can look at the jump of the light value to 667 to 1458.

Notice that (15/16)*667 is 625, and that 13370/16 = 835. The sum of these (625+835) is equal to

1460, which is extremely close to the next stored light value. In the middle capture, we can see

that the jumps between stored data are much smaller than they are on the left, since they are

closer to the value being read in so the transitions are less sharp. If we look at the jump from

12989 to 13019, we see (12989*(15/16) + (13370/16)) = 12177 + 835 = 13012; a response that

again is very close to what we expect. This test both validates that we are properly reading the

light sensor and that our digital filtering method is working correctly.

 To test our servo driver and to demonstrate the system’s wireless messaging capabilities,

we set the servo position from the remote node and then sent the updated position and the current

filtered light value back to the pi. This sequence is shown in Figure 27: Servo and Messaging

Test Results. On the top left, the user interface is shown to have set the desired value of the servo

to 168. The bottom of the figure (the remote node terminal) says that a message has been sent to

the window node. The window node terminal (top right) shows that it received a message, and

specifically received the new servo position of 168 as sent by the user interface. The servo was

then rotated to that position by the microcontroller’s pulse width modulation module, and then

Page 38 of 50

the window node put together the 6-byte packet shown in its terminal. That packet was sent to

the remote node, whose terminal shows that packet being received, its bytes, and the light sensor

value it parsed from that packet. Notice that the light sensor value is 1736, which is the last light

sensor value printed to the window node terminal. Thus, this sequence of events captured in the

screen snip shows that the user interface correctly delivered a desired value to the servo driver,

that the 16 bit light value is properly packetized into the buffer, that the window node sends a

packet that is received by the remote node, and that the remote node successfully parses the

packet to get the correct light value. Events not captured by a screen snip demonstrated that the

servo driver works correctly (namely, that the servo responded correctly to the value of 168

passed to it by the user interface over Wi-Fi).

Figure 27: Servo and Messaging Test Results

Software

 No data was collected for software testing, only visual responses from the light

controlling system that matched behavior we expected. The software was tested on a room model

that can be seen in Figure 28. The frame was built using 80/20 aluminum T-slots and personally

manufactured brackets which are shown in the appendix in Figure 31.

Page 39 of 50

Figure 28: Model Room for Testing

Final Results
Table 33: Proposal expectations

Points Window Node Remote Node User Interface

3 Can receive light sensor

data from the Raspberry

Pi AND control the

blinds AND smart lights

to achieve the desired

light level

Can properly read the

light sensor AND

transmit the data to the

microcontroller over

wirelessly

User can easily navigate the

interface AND successfully

control the desired light level

AND have that data

transmitted to the

microcontroller

2 Can receive light sensor

data from the Raspberry

Pi AND control the

blinds OR adjust the

lights to be close to the

desired light level

Can properly read the

light sensor BUT

CANNOT transmit the

data to the Raspberry Pi

wirelessly

User CANNOT easily navigate

the interface BUT CAN

successfully control the desired

light level AND have that data

transmitted to the

microcontroller

1 Cannot receive light

sensor data from the

Raspberry Pi BUT CAN

adjust either the blinds

OR lights

Cannot properly read the

light sensor output BUT

CAN transmit data to

the Raspberry Pi

wirelessly

User can easily navigate the

interface BUT CANNOT

control the desired light level

AND no data is transmitted to

the microcontroller

Page 40 of 50

0 Cannot receive

information from the

Raspberry Pi AND

CANNOT control the

blinds NOR the lights

Cannot properly read the

light sensor AND

CANNOT transmit data

to the Raspberry Pi

wirelessly

User CANNOT easily navigate

the interface AND CANNOT

control the desired light level

AND no data is transmitted to

the microcontroller

Above in Table 33 are shown the expectations put forth for this project for our proposal. We

have successfully completed each of the level 3 rubric items. Thus, our project meets all our

expectations. Currently, the control algorithm is simplistic, but we expect to make modifications

to improve performance over the next two days before our final demonstration.To test our servo

driver and to demonstrate the system’s wireless messaging capabilities, we set the servo position

from the remote node and then sent the updated position and the current filtered light value back

to the pi. This sequence is shown in Figure 27: Servo and Messaging Test Results. On the top

left, the user interface is shown to have set the desired value of the servo to 168. The bottom of

the figure (the remote node terminal) says that a message has been sent to the window node. The

window node terminal (top right) shows that it received a message, and specifically received the

new servo position of 168 as sent by the user interface. The servo was then rotated to that

position by the microcontroller’s pulse width modulation module, and then the window node put

together the 6-byte packet shown in its terminal. That packet was sent to the remote node, whose

terminal shows that packet being received, its bytes, and the light sensor value it parsed from that

packet. Notice that the light sensor value is 1736, which is the last light sensor value printed to

the window node terminal. Thus, this sequence of events captured in the screen snip shows that

the user interface correctly delivered a desired value to the servo driver, that the 16 bit light value

is properly packetized into the buffer, that the window node sends a packet that is received by the

remote node, and that the remote node successfully parses the packet to get the correct light

value. Events not captured by a screen snip demonstrated that the servo driver works correctly

(namely, that the servo responded correctly to the value of 168 passed to it by the user interface

over Wi-Fi).

Figure 27: Servo and Messaging Test Results

Software

 No data was collected for software testing, only visual responses from the light

controlling system that matched behavior we expected. The software was tested on a room model

that can be seen in Figure 28. The frame was built using 80/20 aluminum T-slots and personally

manufactured brackets which are shown in the appendix in Figure 31.

Page 41 of 50

Figure 28: Model Room for Testing

Final Results
Table 33

Costs
The costs for the team’s project can be separated into four categories: PCB fabrication,

microcontrollers, components, and mechanical/miscellaneous items. The price for PCB

fabrication was $33 per board. A single board was made for the window node and the remote

node. The total spent on PCB fabrication was $66. The team decided it would be beneficial to

buy two TI CC3220s for the project even though only one CC3220 would end up on the window

node. Each microcontroller was $59.99 for a total of $119.98. For the remote node, a Raspberry

Pi 3A+ was used which costed $25.00. The cost for all the components to populate the boards

with was $76.46. The team budgeted to get replacements for each component in the case of

issues. The cost of the miscellaneous items was $141.49. A detailed spreadsheet with the cost for

all individual items can be found in Figure 29: Complete Bill of Materials in the appendix.

Crude calculations were performed to estimate the cost of producing 10,000 units. Based

on the original cost of components, the total cost for 10,000 units would be $229,800. All the

components were then looked up on Digikey to see the cost for buying in bulk. The new cost for

producing 10,000 units would be $144,947.80; a savings of $84,852.20. In addition to the

components, costs could be saved on the microcontroller. The CC3220 meets the design

requirements of the project, but many of the peripheral functions are unused, and are therefore an

unnecessary cost for the project. If 10,000 units were to be produced, a different microcontroller

unit with fewer features could be implemented to save costs. As noted in the technical

Page 42 of 50

documentation section, the size of the PCB boards designed was too big. While the cost for

single manufacturing was set at a fixed price of $33, it is more likely that the cost for the PCB

boards at large scale would be based upon the size. Therefore, making the PCB design more

compact would be beneficial. From the FreeDFM report, the cost of making 150 boards for the

window node would drop the cost down to $5.29. For 10,000 boards, the savings would be

$277,100 compared to buying the same board at $33/board. The cost for making 150 boards for

the remote node would drop the cost down to $3.63. For 10,000 boards, the savings would be

$293,700. The PCB boards designed are not very complex. The most difficult part to solder onto

the board would be the light sensors. However, at high production rates, automation would likely

benefit the team’s product and reduce costs.

Future Work
 From the current state of the project, the team believes there are several expansions

which build on and improve the project.

Energy Efficiency Algorithm

 An improvement to the current project would create an algorithm to optimize the blinds

position for natural light and energy efficiency. According to the Department of Energy, between

25 and 30% of residential energy usage is due to heat gain or loss through windows[21]. This

extension would add a temperature sensor and a clock synchronized to the local time. The

temperature sensor would provide feedback on how to operate the system. If the temperature

recorded was below a desired temperature set by the user, the windows would open to allow

sunlight to naturally heat the room. If the temperature was above a desired temperature, the

windows would close in order to block sunlight and avoid warming. The clock would be used to

during the day and night cycles. In the winters, shades are an insulating barrier. During the day,

it would be beneficial to have the shades wide open to allow for natural heating. As day turns to

night, the shades should close in order to trap warm air inside and keep cold air out. As night

turns into day, the windows should reopen. In the summer, the shades should close during the

day to avoid excessive heating and open during the night to release trapped air.

Manual Controls

 In the current system, the blinds can only be controlled through the servomotor. It would

be beneficial to include a method for the user to operate the blinds manually. Additionally, the

user would be able to manually control the smart lights through the user interface.

Retrofittable System

 The current design of the project is only applicable to the venetian blinds with slats. The

slats can only be rotated in order to block or let in sunlight. The first improvement to the system

would be to add a functionality such that the slats could be twisted, but also the raised and

lowered. Secondly, the project could be improved by making the nodes applicable to all types of

blinds. Roller blinds are an example of another blind that would work in the current system. The

servomotor would need to be replaced with a stepper motor that has more degrees of rotational

freedom. This would ensure the blinds could be raised and lowered to let in enough light.

Page 43 of 50

 Outside of the blinds, it would be convenient if the user could add any brand of smart

lights be controlled through Wi-Fi. The current lights were chosen because they came with

documentation on how to connect the lights in our Wi-Fi system. The general coding could be

abstracted away to include all IoT lights.

Alternative Power Sources

 An improve on the current design would be to add other power sources. As both the

window node and the remote node are powered by a wall supply, there is only a limited range in

which the nodes can be placed. Two supply options are available. The first solution would be to

use batteries. For the window node, and assuming the size of the PCB board reduced, the

batteries and the entire system could be held in the header of the blinds. For the remote node, a

small battery pack to run the light sensor and transceiver would allow a degree of freedom.

 A second solution would have a solar powered system. Solar panels would be added to

both the window and the remote node. Due to the efficiency of solar panels, it is likely that the

system would have to be optimized for the most natural light possible throughout the day. To run

at night, the solar powered system would need to have a secondary power source, most likely a

battery pack.

Remote Access

 The final improvement would be to allow access of the system beyond the local network.

The at-home system would connect through to the internet to the user interface to allow for

extended range, which can allow users to manually set “vacation times” and turn on some lights

at night when they are away, or to close the blinds in case they forget to after leaving the house.

Page 44 of 50

References
[1] M. Paul, “Natural Light in the Office Boosts Health,” Aug. 08, 2014.

https://news.northwestern.edu/stories/2014/08/natural-light-in-the-office-boosts-health

[2] K. Tenkorang, E. Agyeman, and B. Chan, “Window Automated Natural Daylight Assistant

(WANDA),” Mesgana, University of Virginia, Charlottesville, 2020. [Online]. Available:

file:///C:/Users/student/Downloads/Tenkorang_Kwadwo_Technical_Report%20(2).pdf

[3] IKEA, “Motorized shades,” 2021. https://www.ikea.com/us/en/cat/electric-blinds-44531/

[4] Lutron, “Smart Shade Products,” 2021. https://www.serenashades.com/products/#smart-

wood-blinds

[5] Graber, “Z-Wave Smart Shades,” 2021. https://www.graberblinds.com/why-graber/z-wave-

motor/

[6] “CC3220SF-LAUNCHXL Development kit | TI.com.” https://www.ti.com/tool/CC3220SF-

LAUNCHXL?keyMatch=&tisearch=search-everything&usecase=hardware (accessed Dec.

12, 2021).

[7] R. P. Ltd, “Buy a Raspberry Pi 3 Model A+,” Raspberry Pi.

https://www.raspberrypi.com/products/raspberry-pi-3-model-a-plus/ (accessed Dec. 12,

2021).

[8] “slaa542.pdf.” Accessed: Dec. 12, 2021. [Online]. Available:

https://www.ti.com/lit/an/slaa542/slaa542.pdf?ts=1639360216108&ref_url=https%253A%25

2F%252Fwww.ecosia.org%252F

[9] “Multisim Download.” https://www.ni.com/en-us/support/downloads/software-

products/download.multisim.html (accessed Dec. 12, 2021).

[10] “Ultiboard.” https://www.ni.com/en-us/shop/software/products/ultiboard.html (accessed

Dec. 12, 2021).

[11] M. Group, “Electronic Component Shortages Update -- 2022 and Beyond.”

https://blog.matric.com/electronic-component-shortages-update (accessed Dec. 13, 2021).

[12] C. Correll, “Price Hikes and Shortages: Production Uncertainty for Electronic Parts in

2021,” Jun. 16, 2021. https://www.z2data.com/insights/electronic-component-shortage-price-

hike-2021 (accessed Sep. 19, 2021).

[13] “DigiKey Electronics - Electronic Components Distributor.” https://www.digikey.com/

(accessed Dec. 13, 2021).

[14] “Electronic Components Distributor - Mouser Electronics.” https://www.mouser.com/

(accessed Dec. 13, 2021).

[15] “FreeDFM - A Service of Advanced Circuits.”

https://www.my4pcb.com/net35/FreeDFMNet/FreeDFMHome.aspx (accessed Dec. 13,

2021).

[16] “China PCB Prototype and Mass-fabrication Quote Online.” http://www.digpcb.com/

(accessed Dec. 14, 2021).

[17] J. LaDou, “Printed circuit board industry,” Int. J. Hyg. Environ. Health, vol. 209, no. 3,

pp. 211–219, May 2006, doi: 10.1016/j.ijheh.2006.02.001.

[18] A. D. Schino, “Environmental Impact of Steel Industry,” in Handbook of Environmental

Materials Management, C. M. Hussain, Ed. Cham: Springer International Publishing, 2018,

pp. 1–21. doi: 10.1007/978-3-319-58538-3_101-1.

[19] “SER0046 DFRobot | Motors, Solenoids, Driver Boards/Modules | DigiKey.”

https://www.digikey.ie/en/products/detail/dfrobot/SER0046/11613083 (accessed Dec. 13,

2021).

Page 45 of 50

[20] “What are the drivers of microplastic toxicity? Comparing the toxicity of plastic

chemicals and particles to Daphnia magna | Elsevier Enhanced Reader.”

https://reader.elsevier.com/reader/sd/pii/S0269749120360802?token=214551C81C1D304D7

EEFC7E6748B82DCFB6DF22B6F83D1D92D35D7FA529A5ED3E5C0D650D3510FDEF4

C117BF517717C7&originRegion=us-east-1&originCreation=20211213212232 (accessed

Dec. 13, 2021).

[21] “Update or Replace Windows,” Energy.gov.

https://www.energy.gov/energysaver/update-or-replace-windows (accessed Dec. 14, 2021).

[22] “Ultimaker White PLA Filament - 2.85mm (0.75kg),” MatterHackers.

https://www.matterhackers.com/store/l/ultimaker-pla-3d-printing-filament-285mm-

075kg/sk/MX6CY6J2 (accessed Dec. 14, 2021).

[23] “80/20 T-slot Aluminum Building System.” https://8020.net/ (accessed Dec. 14, 2021).

[24] “The Environmental Impact of Aluminum (And Why it’s Still Better Than Plastic),” The

Student Conservation Association, Sep. 21, 2017.

https://www.thesca.org/connect/blog/environmental-impact-aluminum (accessed Dec. 14,

2021).

[25] “Aluminium production & environmental impact.” http://www.greenspec.co.uk/building-

design/aluminium-production-environmental-impact/ (accessed Dec. 14, 2021).

[26] Megan, “Is Fiberglass Biodegradable? (Eco & Health Facts You Should Know),” Citizen

Sustainable, Jul. 01, 2020. https://citizensustainable.com/fiberglass/ (accessed Dec. 14,

2021).

[27] M. Wacker and M. F. Holick, “Sunlight and Vitamin D,” Dermatoendocrinol., vol. 5, no.

1, pp. 51–108, Jan. 2013, doi: 10.4161/derm.24494.

[28] “Sunburns and Damage to Your Body,” Healthline, Jun. 28, 2018.

https://www.healthline.com/health-news/heres-how-much-damage-a-really-bad-sunburn-

can-do (accessed Dec. 14, 2021).

[29] IPC, “IPC Checklist for Producing Rigid Printed Board Assemblies,” Jun. 2019. [Online].

Available: https://www.ipc.org/media/3418/download

[30] IPC, “IPC 2221: Generic Standard on Printed Board Design,” IL, 1998. [Online].

Available: http://us.jetpcb.com/Cht/Document/ipc-2221all.pdf

[31] 7PCB, “PCB Trace Width Calculator,” 7PCB. https://www.7pcb.com/trace-width-

calculator.php (accessed Dec. 13, 2021).

[32] NEMA, “NEMA Ratings for Enclosures.” https://www.nemaenclosures.com/enclosure-

ratings/nema-rated-enclosures.html (accessed Sep. 10, 2021).

[33] NEMA, “NEMA Enclosure Types,” Virginia, 2005. [Online]. Available:

https://www.nema.org/docs/default-source/products-document-library/nema-enclosure-

types.pdf

[34] DHS, “A Guide to Securing Networks for Wi-Fi (IEEE 802.11 Family),” 1, Mar. 2017.

[Online]. Available: https://us-

cert.cisa.gov/sites/default/files/publications/A_Guide_to_Securing_Networks_for_Wi-Fi.pdf

[35] A. Gillis, “IEEE 802 Wireless Standards,” TechTarget, Oct. 2020.

https://www.techtarget.com/searchnetworking/reference/IEEE-802-Wireless-Standards-Fast-

Reference (accessed Sep. 10, 2021).

[36] M. Barr, Embedded C Programming Standards. Germantown, MD: Barr Group, 2018.

[Online]. Available:

https://barrgroup.com/sites/default/files/barr_c_coding_standard_2018.pdf

Page 46 of 50

[37] M. Media, “Metric T Slot Aluminum Profiles,” Framing Technology Inc.

https://www.framingtech.com/products/metric-aluminum-profiles/ (accessed Dec. 14, 2021).

[38] “Fusion 360 | 3D CAD, CAM, CAE & PCB Cloud-Based Software | Autodesk.”

https://www.autodesk.com/products/fusion-360/overview (accessed Dec. 14, 2021).

[39] “CR-10 Smart 3D Printer.” https://www.creality3dofficial.com/products/cr-10-smart-3d-

printer (accessed Dec. 14, 2021).

[40] “Ultimaker Cura: Powerful, easy-to-use 3D printing software,” ultimaker.com.

https://ultimaker.com/software/ultimaker-cura (accessed Dec. 14, 2021).

[41] “MAXIEM 1515 | Abrasive Water Jet Cutter Machine,” OMAX Waterjet Cutting

Machine Manufacturer, Feb. 19, 2016. https://www.omax.com/maxiem-waterjet/1515

(accessed Dec. 14, 2021).

[42] “CCSTUDIO IDE, configuration, compiler or debugger | TI.com.”

https://www.ti.com/tool/CCSTUDIO (accessed Dec. 13, 2021).

[43] “SIMPLELINK-CC32XX-SDK Software development kit (SDK) | TI.com.”

https://www.ti.com/tool/SIMPLELINK-CC32XX-SDK (accessed Dec. 14, 2021).

[44] “VirtualBench.” https://www.ni.com/en-us/shop/hardware/products/virtualbench-all-in-

one-instrument.html (accessed Dec. 13, 2021).

[45] “Welcome to Flask — Flask Documentation (2.0.x).”

https://flask.palletsprojects.com/en/2.0.x/ (accessed Dec. 14, 2021).

[46] “Welcome to Python.org,” Python.org. https://www.python.org/ (accessed Dec. 14,

2021).

[47] “Build software better, together,” GitHub. https://github.com (accessed Dec. 14, 2021).

[48] F. A. Millett, M. D. B. Jr, H. J. Byker, and P. H. O. Jr, “Thermochromic window

structures,” US8154788B2, Apr. 10, 2012 Accessed: Nov. 23, 2021. [Online]. Available:

https://patents.google.com/patent/US8154788B2/en?q=responsive+window+blinds&oq=resp

onsive+window+blinds

[49] Т. А. ЛАШИНА, Д. С. Б. М. ВАН, К. Д. ВАГЕНАР, Б. В. МЕРБЕК, Д. М. Д. ВАН,

and Г. Х. А. Й. БРУКСТЕГ, “Способ и устройство для управления освещением в

пространстве внутри помещения,” RU2642502C2, Jan. 25, 2018 Accessed: Dec. 12, 2021.

[Online]. Available:

https://patents.google.com/patent/RU2642502C2/en?q=light+controlled+blinds&oq=light+c

ontrolled+blinds

[50] 성욱주, 안병립, 이주윤, and 팽상호, “채광루버형 일사조절장치,” KR102129388B1,

Jul. 09, 2020 Accessed: Nov. 30, 2021. [Online]. Available:

https://patents.google.com/patent/KR102129388B1/en?q=responsive+window+blinds&oq=r

esponsive+window+blinds

[51] W. J. Mullet, Y. Rodriguez, D. W. Brunk, R. S. Hand, and L. H. Oakley, “Motorizable

tilt shade system and method,” US9091115B2, Jul. 28, 2015 Accessed: Dec. 12, 2021.

[Online]. Available:

https://patents.google.com/patent/US9091115B2/en?q=automatic+window+blinds&oq=auto

matic+window+blinds

[52] D. Veskovic, “System to control daylight and electric light in a space,” US7566137B2,

Jul. 28, 2009 Accessed: Dec. 12, 2021. [Online]. Available:

https://patents.google.com/patent/US7566137B2/en?q=light+controlled+blinds&oq=light+co

ntrolled+blinds&page=1

Page 47 of 50

[53] “RASPBERRY PI 3 A+ SNAP FIT CASE,” Fusion360 Gallery.

https://gallery.autodesk.com/fusion360/projects/136671/raspberry-pi-3-aplus-snap-fit-case

(accessed Dec. 17, 2021).

[54] “PSAC12R-060 Phihong USA | Power Supplies - External/Internal (Off-Board) |

DigiKey.” https://www.digikey.com/en/products/detail/phihong-usa/PSAC12R-060/5418512

(accessed Dec. 13, 2021).

[55] “PJ-037AH CUI Devices | Connectors, Interconnects | DigiKey.”

https://www.digikey.com/en/products/detail/cui-devices/PJ-037AH/1644547 (accessed Dec.

13, 2021).

[56] “lm1086.pdf.” Accessed: Dec. 13, 2021. [Online]. Available:

https://www.ti.com/lit/ds/symlink/lm1086.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-

wwe&ts=1639445854162

[57] “VEML7700-TR Vishay Semiconductor Opto Division | Sensors, Transducers |

DigiKey.” https://www.digikey.com/en/products/detail/vishay-semiconductor-opto-

division/VEML7700-TR/5820243 (accessed Dec. 13, 2021).

[58] “ONSMS24978-1.pdf.” https://rocelec.widen.net/view/pdf/0kyoyfnmcq/ONSMS24978-

1.pdf?t.download=true&u=5oefqw (accessed Dec. 13, 2021).

[59] “LP0701-P-Channel-Enhancement-Mode-Lateral-MOSFET-Data-Sheet-

20005447A.pdf.” Accessed: Dec. 13, 2021. [Online]. Available:

https://ww1.microchip.com/downloads/en/DeviceDoc/LP0701-P-Channel-Enhancement-

Mode-Lateral-MOSFET-Data-Sheet-20005447A.pdf

[60] “1N5817-1N5819(DO-41).pdf.” Accessed: Dec. 13, 2021. [Online]. Available:

https://www.mccsemi.com/pdf/Products/1N5817-1N5819(DO-41).pdf

[61] TI, “CC3220R, CC3220S, and CC3220SF SimpleLinkTM Wi-Fi® Single-Chip Wireless

MCU Solutions,” TI, Online, Technical Documentation, May 2021. Accessed: Sep. 19,

2021. [Online]. Available:

https://www.ti.com/lit/ds/symlink/cc3220sf.pdf?ts=1632026616156&ref_url=https%253A%

252F%252Fdev.ti.com%252F

[62] “swau124.pdf.” Accessed: Dec. 13, 2021. [Online]. Available:

https://www.ti.com/lit/ug/swau124/swau124.pdf?ts=1639414329807&ref_url=https%253A

%252F%252Fwww.ti.com%252Ftool%252FCC3220SF-

LAUNCHXL%253FkeyMatch%253D%2526tisearch%253Dsearch-

everything%2526usecase%253Dhardware

[63] “React – A JavaScript library for building user interfaces.” https://reactjs.org/ (accessed

Dec. 14, 2021).

[64] M. O. contributors Jacob Thornton, and Bootstrap, “Bootstrap.” https://getbootstrap.com/

(accessed Dec. 17, 2021).

Page 48 of 50

Appendix

Figure 29: Complete Bill of Materials

Page 49 of 50

Figure 30: 3D Printer

Page 50 of 50

Figure 31: Manufactured Brackets

