
Generative Technology: Multi-Layering Perlin Noise Textures in Terrain

Generation

CS4991 Capstone Report, 2023

John Zoscak

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville Virginia, USA

jmz9sad@virginia.edu

ABSTRACT

 Modern terrain generation algorithms

have limited use in artwork and games

because of their lack of realism and inability

to produce photorealism in a creative way at

the same level a human designer can. A

possible solution in this space involves the

layering of deterministic noise generators in

a way that is more creative, artistic, and gives

users greater levels of control. I used Golang

(for learning and speed reasons) and an

OpenGL bindings library for generating a

GUI. The resulting terrains were more

complex and visually appealing.

Furthermore, the nature of the program

enables layers of customizability. In the

future, the program can be translated to use

C++ with DirectX, and the object structure

can be reorganized to facilitate custom

configurable texture objects that can be

added to structures for aggregation into

terrains in an intuitive way. This change will

increase the user accessibility of the code,

will increase speed by lowering the overhead,

and will adhere to current trends in

programming for the gaming industry.

1. INTRODUCTION

 Automatic terrain generation is a

computer software tool that has its uses

mainly in the generation of scenery and

landscapes in various entertainment

mediums. It has been used to generate

landscapes and backdrops in movies and in

open-world video games. It has also entered

the space of landscape generation for the

purpose of simulated engineering testing.

Furthermore, the field of deterministic noise

generation has been used in some less

apparent fields, such as animation effects and

dynamic flows on application widgets.

 The goal of automatic terrain generation

is to leverage deterministic random noise

tools, as well as other deterministically

modellable phenomena in real-world terrains.

Different methods will ultimately produce

different results in terms of smoothness,

realism, and consistency in the final terrain

produced by the software. When it comes to

different applications, each method of

generation typically has different use cases

because of the characteristics of the

generated results.

 In my work, I explore the solution of

generating terrains by a vector sum of 2-D

textures. By utilizing a simple terrain

generation methodology, I was able to see

that linearly generated progressive terrains

can be processed in parallel during

progressive generation phases of terrain

generating software. By utilizing matrix

algebra, the terrains can be treated as textures

with variable contribution to final terrains.

Furthermore, I was able to demonstrate that

this is a viable solution for giving users

greater control over the final terrain.

mailto:jmz9sad@virginia.edu

2. RELATED WORKS

 Studying Perlin noise generation first

sparked my interest in doing research on

terrain generation. As a reference for

evaluating my hypothesis, I utilized technical

descriptions of the algorithm. These sources

gave algorithmic and programmatic

descriptions of the underlying Perlin noise

algorithms, therefore supporting my

evaluations and conclusions drawn from the

project (Perlin Noise, 2023).

 One of the most relevant advancements

in terrain generation includes the use of

erosion simulation. By leveraging the

behavior of real phenomena in the

algorithms, the results have been shown to

carve realistic terrains surrounding water

features. (Lim, et al., 2022; Génevaux, et al.,

2013) Despite this, there are unimplemented

elements of creativity, control, and entropy

that could make software of this kind more

artistic and interesting in certain cases.

 Regarding the combinational use of

terrain generation algorithms, I referenced

very similar work that approached terrain

generation with multi-layer erosion

simulations. This well-documented project

used a multi-layer approach by having many

underlying erosion simulations and various

erosion processes stacked on top of one

another (McDonald, 2022). My work draws

upon similar ideas but emphasizes the

isolation of layers more than this work.

3. PROJECT DESIGN

 My project design is simple: GUI related

functions exist in separate code spaces as

generating software. The program can

generate simple Perlin noise terrains, and

what I deem "bipartite" Perlin noise terrains.

3.1 Review of System Architecture

 The terrain generation code lies inside of

the generate.go file. This contains the code

that defines the single and multilayer

structures, as well as all the vertex buffer

objects (VBOs) that describe the shape of the

triangles to be rendered. Furthermore, code

for progressively generating terrain

according to requested movements lies in

generate.go. The main. go file handles

unpacking serialized generation parameters,

interpreting the terrain types, then initializing

the essential structures from generate.go and

setting up the user interface (UI). The

serialized terrains are stored as json files.

 During the "initialization" phase, the

terrain is first generated, the UI, and

geometry to be rendered are set up. In the

"progressive generation" phase, the user is

free to explore the terrain by changing the

window of the terrain that is generated and

loaded into the rendered point VBO in real-

time.

3.2 Requirements

 The goal of the project was to visualize

terrains, progressively generate them in real-

time according to requested displacements,

and to experiment with the effects of vector

summation of various textures.

3.3. System Limitations

 Because all arithmetic in graphics is

done with float32, some terrain parameters

should be set to multiples of 2 to avoid

problems with lossy division that may cause

incorrect VBO indexing when preparing the

triangles that are rendered.

3.4 Specifications

 The current implementation can

generate simple terrains and "bipartite"

terrains. Simple terrains include a Perlin

noise texture, whereas bipartite terrains

include two Perlin noise textures that are

vector summed. In bipartite terrains, textures

have coefficients which define their level of

contribution to the final terrain. They also

have gradient widths and heights which are

important for changing the granularity of the

Perlin noise generated. Granularity

specification is not necessary in traditional

Perlin noise generation, but because there is

more than one texture that contributes to the

terrain, the granularity of each texture is

important in relation to the other.

3.5 Challenges

 Determining the best methods for

optimization proved to be difficult. It is

computationally infeasible to store multiple

textures and have a separate vector

summation. This results in redundancy where

already rendered spaces are recalculated

during progressive generation phases of the

application's lifecycle.

3.6 Solutions

Redundancy is solved by keeping only

the minimum number of VBOs required. This

includes the point VBO which describes the

terrain shape, and the index VBO which

describes how triangles are to be rendered

between the points. The point VBO stores

only the final aggregated terrain. During

progressive generation phases of processing,

this is optimized because it eliminates

recomputing points that already existed in the

rendered window. Similarly, during the

progressive generation phase, when

processing the textures and computing the

aggregated terrain, each layer is computed in-

line and in-place. The solution reduces the

memory space that is used and helps reduce

the redundancy of the program.

4. RESULTS

The final program can render terrains

very quickly. My laptop initialized and

rendered the terrain in less than four seconds.

Additionally, my hypothesis that more

complex and visually appealing terrains

could be produced by a vector sum of

linearly-generated progressive terrains was

correct. Shown below, as Figures 1 and 2, are

two simple Perlin noise terrains. Below them

is a bipartite terrain, Figure 3, generated by

my software, which treats them as textures to

be aggregated into one terrain.

 This demonstrates that well-tuned

parameters for textures can be subsequently

aggregated in a way that produces a more

visually appealing and custom terrain result.

Furthermore, by processing the texture layers

in-line with each other, the final terrain is

initialized and progressively generated with

the same big-oh runtime and theoretical

memory use as the simpler terrains. This

indicates that the solution of generation is

viable and scalable for applications where

performance matters.

5. CONCLUSION

 Terrain generation is relevant in a wide

range of fields for a variety of problem sets.

The solutions that my program puts forth are

designed to emphasize greater control in

work done for those fields. Specifically, my

work is targeted towards the gaming industry

and artwork. However, it does present a

solution that can be extended to use human-

Figure 1: Simple Terrain (macro
granularity)

Figure 3: Bipartite Terrain (Vector sum of macro and micro
terrains as textures)

Figure 2: Simple Terrain (micro
granularity)

made custom textures, which can be used for

simulations and testing in many fields.

 The research effectively demonstrates a

solution for improved terrain complexity,

separation of macro and micro textures, and

presents combinational use of independent

algorithms as viable in final terrain

generation. These solutions can help to

enable better procedural terrains, and can also

be utilized for purposeful customization,

while still emphasizing real-time computer-

generation as a tool.

 Doing research in this field and on this

technology has enhanced my understanding

of computer graphics. With a more technical

understanding of computer graphics, I feel

that I can provide insight into various

modelling software optimizations that I could

not have done before.

6. FUTURE WORK

 The technical solution that I have

provided in my research is not viable for

distribution for a couple of reasons: It does

not provide a framework for adding external

textures, it is written in Golang, (which is not

optimal for exporting it to gaming systems) it

uses OpenGL (whereas DirectX is more

common), and it renders terrains using

geometries instead of more relevant

technologies in terrain generation like

triangle strips. If these upgrades are

implemented, then my code could be more

easily used in external software and could be

directly interacted with more easily.

 The most important future upgrade for

the system would be the framework for

adding external textures. This change would

involve changing the generate.go file to

handle inline calculations by iteratively

calculating texture computations from a data

structure that holds the generation parameters

of each texture added to the terrain. This

functionality would result in the big-oh

runtime of generation to be a function of the

number of textures. Furthermore, there would

need to be changes that enable the selection

of multiple serialized texture parameters.

 The second most important change

would be the use of triangle strips instead of

geometries. This would improve the speed of

the render by only requiring triangles within

a certain distance of the camera source to be

rendered. As an extension of this, the real-

time generation can be further optimized by

increasing its size beyond that seen in the

triangle strip render. Seamless chunk

rendering can be integrated with this feature.

By separating the window rendered from

what is calculated, there is not always a need

to shift the point VBO when there is a change

in the requested window during progressive

generation. This would improve real-time

generation efficiency by reducing the amount

of memory manipulation.

REFERENCES

Perlin noise. (2023). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=P

erlin_noise&oldid=1148235423

Lim, F. Y., Tan, Y. W., & Bhojan, A.

(2022). Visually Improved Erosion

Algorithm for the Procedural Generation of

Tile-based Terrain. Proceedings of the 17th

International Joint Conference on Computer

Vision, Imaging and Computer Graphics

Theory and Applications, 49–59.

https://doi.org/10.5220/0010799700003124

McDonald, Nick. (2022). An Efficient Data

Structure for 3D Multi-Layer Terrain and

Erosion Simulation – Nick’s Blog. (n.d.).

Retrieved April 27, 2023, from

https://nickmcd.me/2022/04/15/soilmachine/

Génevaux, J.-D., Galin, É., Guérin, E.,

Peytavie, A., & Benes, B. (2013). Terrain

generation using procedural models based

on hydrology. ACM Transactions on

Graphics, 32(4), 1–13.

https://doi.org/10.1145/2461912.2461996

https://en.wikipedia.org/w/index.php?title=Perlin_noise&oldid=1148235423
https://en.wikipedia.org/w/index.php?title=Perlin_noise&oldid=1148235423
https://doi.org/10.5220/0010799700003124
https://nickmcd.me/2022/04/15/soilmachine/
https://doi.org/10.1145/2461912.2461996

