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Abstract 

Body-worn sensor system design is a promising field of study promoted by emerging interest in long-

term, longitudinal monitoring of health-based metrics in the medical and personal fitness contexts. As 

sensing and reporting modalities diversify, so do the challenges and opportunities faced by traditional 

embedded designers in developing and producing systems incorporating them. This work aims to 

significantly alleviate the time-to-prototype and design for novel platform-oriented research utilizing 

emerging sensing and reporting modalities. The primary contribution is the next generation of the 

TEMPO core sampling and storage platform in a wearable, expandable, and longitudinally-deployable 

form-factor. The TEMPO 4 node is designed to serve as a single-board, six or nine degree-of-freedom 

inertial motion-capture unit as well as an open development platform featuring an easy to interface 16-pin 

hardware extension port. The general contributions include hardware-firmware-application layer co-

design principles and analysis of commercial-off-the-shelf products and protocols for the ultra-low power 

body-worn sensing context. 

This work approaches the issues of hardware-firmware flexibility and robustness using a vertically 

integrated, iterative design-and-test approach. This approach consists of partitioning the full TEMPO 

system’s operation into conveniently organized, functional subsystems then co-developing firmware 

libraries on top of iteratively refined hardware platforms. The result of this organization is that design 

decisions spanning from the application layer to low-level hardware, which may have been traditionally 

ignored in a more carefully delineated hardware-firmware-software approach, are exposed and examined 

in the context of modern body sensor node system design.  
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Chapter 1 

Introduction and Motivation 

Developing deployed sensing platforms in the academic context presents some challenges which are 

generally applicable to system designers and others which are unique to this design space. One of the 

most interesting challenges addressed by this work is that of the outward tapering of applications and 

deployments in the research context, as demonstrated in Figure 1. As a result of this taper, system 

designers need to consider a wide set of possible next-generation deployments while continuing to 

support the legacy needs of some or all of the previous deployments. In the case of the TEMPO platform 

this means maintaining, and possibly improving, the inertial motion capture capabilities of the device, 

while simultaneously extending the hardware into new deployments where inertial motion may not be the 

primary sensing modality. 

 

Figure 1: Academic BSN Development Flow 

The TEMPO 4 platform features multiple interfaces for acquisition, including analog sampling and digital 

communications capabilities. In addition it supports on-board 6 Degree of Freedom (DoF) motion 

sensing, battery management, voltage regulation, and flash-based, microSD data storage for ultra-low 

energy operation. By leveraging pre-built and rigorously tested code libraries for node development and 

control this work seeks to both increase ease of development and improve robustness of operation for 

long-term, remote deployments in energy constrained environments. 

 

Application Diversity 
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The design and deployment of body sensor nodes in real-world patient-physician environments has long 

been one of the unique draws of the INERTIA team at the University of Virginia. By engaging technical 

and professional collaborators, both in the applications and development spaces, the group has created a 

cyclic development model with the intent of finding new opportunities for cross-hierarchical design 

optimization and improvement of the end-user experience for doctors and patients. This work seeks to 

both motivate and demonstrate the next iteration of this process in examining important conclusions 

drawn from the development, production, and deployment of the TEMPO 3.1 and 3.2 platforms and 

describing the development of the next generation of TEMPO devices. 

 

 

The goal of this research approach, when viewed as a design cycle, is to both inform system designers of 

the needs of clinicians and signal processing experts working actively on the platform and also to make 

these collaborators more aware of the low-level capabilities and limitations of both the platforms they are 

currently using, and what may come in the future. By distributing lower level knowledge of the system’s 

operation to technical collaborators this approach seeks to enable improved application-driven platform 

development. 

The content of this works focuses primarily on the system optimization, requirement analysis, and 

platform development portions of the INERTIA body sensor network (BSN) research approach, and is 

organized around the activities that take place in each stage of this hybrid research/design flow. In the 

system optimization phase, information collected from physicians, technical collaborators, and signal 

processing experts is synthesized into a set of targeted deliverables for the next generation of the 

platform. During requirement analysis, the primary challenges proposed by the conclusions made during 

Figure 2: INERTIA Team BSN Research and Design Approach 
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the system optimization phase are analyzed. Based on these challenges subsystems are created and 

specifications are created. Finally, during the platform development stage parts are selected, evaluated, 

and tested based on the previously developed subsystem specifications, before being synthesized into a 

full, working, top-level system. 

1.1 Understanding the Design Space 

The first challenge to address in developing a platform for the ULP body-worn context is the 

determination of critical features and metrics for the design space. This section will introduce some of the 

key challenges and opportunities facing COTS developers working in the body-worn context today. It 

also includes some background information along with a brief introduction to the field of on-body inertial 

motion capture.  

1.1.1 Significant Metrics 

One of the primary considerations for any designer trying to specify constraints for a platform is that of 

significant metrics for consideration. There are myriad traditional metrics considered as standards in the 

field of embedded design; however, the applicability of these standard metrics to the academic research 

design space may vary. For example, some metrics, such as unit-cos-at-volume or the ability to source 

large amounts of components, are not as critical concerns in the academic context, while others, such as 

time-to-design and measurement accuracy, can be even more critical than their industry standard 

counterparts. 

Though arguments can be made for a number of valid figures of merit for evaluation of platforms, this 

work will focus on five targeted metrics determined both from previous experience and general market 

directions. These are as follows: 

 Battery life: Battery capacity and system power considerations 

 Form-factor: Size, weight, and shape in the on and off-body contexts 

 Reliability: Predictable control and robust operation 

 Ease of interfacing: Offering common, commercially compliant interfaces for communication 

 Flexibility: Rapid expansion and prototyping on an academic platform 

There are, of course, trade-offs that also exist within these targeted metrics. A few of these trade-offs will 

be discussed briefly in the remainder of this section. Part of the contribution of this work is the 

demonstration of several general techniques effective for helping to produce separability in some of these 

trade-offs, simplifying decisions for the system designer. In other cases, where such general separability 
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is not possible, the complex trade-offs that occur near or at the hardware-firmware boundary are 

addressed using application-specific knowledge and prior experience in the design space. 

One design trade-off implied by the set of metrics proposed above is that off battery capacity versus form-

factor. Most system designers are aware that they can typically trade off increased size for increased 

capacity in most, if not all, battery chemistries. This work attempts to produce some amount of 

separability in various technologies by using the typically referred to energy-density metric and by 

providing the battery life metric in hours at a rated capacity, allowing for easy linear extrapolation of 

lifetime when using alternative capacity  batteries of similar chemistry. 

A second trade-off is that of flexibility versus reliability from a top-level system perspective. Often, 

reliable system operation in the presence of end-user integrated code requires heavy levels of program 

management and underlying interface code. However, the limited code-size and low clock-speeds of low-

power embedded microcontrollers (MCUs) often results in an inability to produce such complicated 

control structures. A significant contribution of this work is addressing this challenge in regard to multi-

peripheral hardware communication interfacing on a commercially available MCU. 

A final, and possibly less intuitive, trade-off existing among the candidate metrics proposed above is that 

of ease of interfacing versus form-factor. The principle challenge here resides not only in the significant 

amount of board area that some of these physical interfaces can consume, but also in integrating widely 

accepted wireless interfaces, such as Bluetooth or Zigbee, into low form-factor designs. This issue will be 

discussed at length in the chapters to follow, as the radio-frequency (RF) communication challenge may 

be amongst the greatest facing wireless on-body sensor node developers. 

1.1.2 Inertial Motion Capture 

The TEMPO platform, which will be described in greater detail in the following chapters, exists primarily 

for the purpose of the wireless capture of three-axis acceleration and rotation vectors from the wearer’s 

body motion. This type of signal acquisition will hereby be referred to as six degree-of-freedom (DoF) 

motion capture, as it captures 6, correlated, but independently measured axis for determination of motion 

in the global frame. An example of the orthogonal orientation of the 3 accelerometer axes and 3 

gyroscopic planes can be seen in Figure 3. 
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Figure 3: TEMPO 3.1 System w/ 6 Axis Diagram [1] 

The uses of this inertial motion data are diverse. A number of medical studies in the areas of fall detection 

[11][12], gait analysis [13][14][15], and parkinsonian tremor [16][17][18] have all showed significant 

promise, and the field of possible applications is still growing. Meanwhile, a simultaneous interest from 

“quantified selfers” or that portion of the consumer market which is interested in tracking of personal 

metrics for wellness or fitness, has promoted a commercial explosion in the wearables space. This work 

attempts to deal primarily with the challenges faced by embedded developers interested in designing 

inertial sensing platforms for this rapidly expanding context, enabling key academic deployments while 

maintaining a competitive edge when compared to more tightly-integrated commercial products. 

The challenges facing designers in the wireless motion sensing space are diverse. In the field of sensing, 

more recent interest in body-worn activity monitors has begun to drive demand for lower power Inertial 

Measurement Units (IMUs). These IMUs use Micro Electro-Mechanical Systems (MEMS) to produce 

output voltages proportional to the acceleration or rotation seen by a single point in the MEMS element. 

Traditionally IMUs were high-power devices, used in aeronautics and slowly introduced into the 

automotive market, but as demand for low-power IMUs designed for lower-power applications has 

grown, so has the corresponding market share. 

Most traditional IMUs integrated one, or possibly two axes of accelerometer or gyro-based monitoring 

integrated in custom physical foot-prints to accommodate the specialized electrical and mechanical 

consideration of the device. These earliest accelerometers and gyros used spring-mass systems, rather 

than the more modern MEMS-based technology, which had to be precisely tuned and calibrated for 

proper operation. This resulted in relatively high cost and low availability of these devices to most COTS 

developers. As the automotive industry began to more widely adopt accelerometer into vehicles, primarily 

for collision monitoring, the level of integration of the accelerometer grew quickly. As the MEMS field 
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developed rapidly to accommodate this new desire for electrical orientation sensing, gyros also benefited 

from advancements such as reduced feature sizes and increased level of silicon integration, allowing for 

standard packaging and single-chip multiple axis sensing. 

The previous TEMPO platforms have all implemented MCU-side analog-to-digital conversion [1]. This 

was both because state-of-the-art IMUs were all primarily offering analog interfaces at the time, and that 

this scheme allowed for precise control and timing for the MCU-side Analog-to-Digital Converter (ADC). 

As a result of previously mentioned increased level of integration, today, many low-power IMUs take 

advantage of on-chip signal conditioning and integrated ADCs to provide a simpler all-digital interface to 

the user. Along with this simplified interface, also comes the power savings of not buffering and 

processing analog signals on chip. Last, but not least, the recent boom in MEMS miniaturization and low-

pin count of these all-digital interfaces mean smaller package size and low off-chip passive counts for the 

new generation of all-digitally interfaced IMUs. 

Efforts affiliated with the capture of human motion data have arrived at varied Nyquist criteria and 

tolerable phase offset in system sampling [2]. While most prominent work agrees most spectral content of 

interest lies between 0 and 12Hz, sampling rates as high as 1kHz are commonly used to digitize human 

motion data. These higher sampling rates are often exploited by complex, estimation theory-based signal 

approximation techniques, such as Kalman filtering, which can take advantage of the information benefits 

obtained from over-sampling of the mostly sparse spectrum of interest. Based on a number of previous 

high-fidelity human motion capture deployments, along with extensive involvement in the early 

development of signal processing techniques for the body-motion context, the INERTIA team has arrived 

at 16-128Hz as an acceptable range of sampling rates for extracting meaningful information for most 

human motion capture deployments. 

A number of differing conclusions regarding digitization bit-depth along with the use of on-node 

compression or decimation to reduce output data rates have also been discussed in regard to on-node 

sensing. Within the INERTIA team’s open firmware development model, much of this sort of control is 

accessible to the application coordinator prior to deployment. This means that nodes can be quickly 

modified to sample at various rates and perform relatively simple, user-defined data tasks. 

1.2 State of the Art Platforms  

A more in-depth review of state-of-the art platforms for on-body motion capture is conducted in the 

following chapter of this work; however, to demonstrate the motivation for this design and unique 

features of the TEMPO platform, a brief discussion of state-of-the-art IMU systems is provided below. 
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Generally speaking there are two categories of commercially available IMUs on the market today. As a 

result of recent popularity in the health and fitness markets 3 DoF, accelerometer-only, fixed functionality 

platforms have become much more common, predominantly as pedometers. This has lead to significant 

improvements in battery life through high levels of integration and iterative improvemnt. For reference, 

today’s state-of-the-art pedometer-based IMUs can run for up to 6 months on a single, non-rechargeable 

coin cell battery [3]. The previous TEMPO platforms also fell into this category of IMUs and for this 

reason, have in some ways failed to stay competitive in the face widely available, low cost commercial 

alternatives. 

The second class of IMU platforms considered for this work is referred to as “expandable” devices. These 

are primarily fully or semi-open development platforms with hardware and/or software interfaces are 

provided for configuration, programming, or customization.  Typically these devices are produced by 

academics or commercial companies with active interest in engaging with the academic research 

community. As of today, relatively few platforms in the body-worn context have adapted this flexible 

style of development, with a few notable exceptions [4] [5]. However, in the more mainstream 

development community, the flexible development model has become commonly accepted, with a large 

pool of open hardware and firmware developers working on top of platforms such as Arduino, 

RasperryPi, and Maple. 

In order to best suit the needs of on-going developments and future correlative studies implementing 

additional, or entirely new sensing modalities this work focuses on the second category of IMU platforms. 

In addition to fitting the needs of on-going TEMPO deployments, this focus on expandability and user-

interfacing means that the TEMPO 4 platform represents a significant step forward in the form-factor and 

power constraints not only relative to previous TEMPO nodes, but also the state-of-the-art in available 

commercial products. 

1.3 Motivation and Device Specifications 

This work is motivated by the need for a low-power, wearable and expandable IMU with open hardware 

and firmware for the research community. This work addresses challenges similar to those of the leading 

low-power 6 and 9 DoF platforms, but adds an increased focus on availability of standard digital 

interfaces and firmware libraries designed for reliable, low-overhead operation during the rapid 

prototyping and proof-of-concept phases of design. 

Several key pieces of feedback from the medical deployment and signal processing phases of the previous 

BSN design flow seen in Figure 2 are fed forward into this design. Namely, several cases in which the 
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Figure 4: TEMPO 3.2F AFO Pre-molded 

Mock-up 

TEMPO 3 system failed to meet the evolving needs of medical collaborators, and increased demand for 

capabilities for on-node signal processing from technical collaborators have promoted a new 

hardware/firmware iteration of the TEMPO system. The system optimization portion of this work consists 

primarily of the evaluation of the previous TEMPO 3 platform in the context of modern deployment 

demands, shifting COTS market direction, and increasing relevance of hardware-firmware co-design 

concepts. 

1.3.1 Deployment Challenges and the TEMPO 3.2 AFO 

Recent deployments of the TEMPO 3.2 system have demonstrated both the value of robust, reliable 

operation during long untethered deployments and the added value of being able to rapidly prototype a 

new sensing platform using an existing IMU. 

There was relatively little negative feedback from collaborators regarding the operation of the TEMPO 

3.1 and 3.2 Bluetooth-based systems, as typically a technical collaborator was in the room monitoring the 

data collection. There were however, some limited complaints about the quality of calibration and 

inability to synchronize two nodes sampling rates to one another. In addition the relatively short battery 

life of these nodes prohibited more longitudinal deployments. Though capable of performing much longer 

data sessions, and coupled with a rather user-friendly offload interface, the TEMPO 3.2 flash-based node 

received a far greater amount of negative feedback. Due to the 

complex nature of the firmware and operating model, collaborators 

often accidentally left the device on and sampling for hours, draining 

the battery and in some cases producing critical errors that locked the 

node from operation. 

In one case, two TEMPO nodes were paired together for the purpose 

of synchronizing system sampling rates as part of an effort to 

determine the ankle-angle of an ankle-foot orthotic (AFO) device. 

Though the TEMPO 3.2 hardware and firmware were fortunately able 

to be modified to source and sink system clocks through exposed 

pins, this was not intended functionality of the device. However, the 

precise nature of monitoring small changes in ankle-angle via body worn 6 DoF sensing proved 

incredibly difficult. Through careful synchronization of system sampling rates, and a collaborator’s 

development of more complex, non-linear descent method-based software calibration schemes, this 

device was proven able to accurately recover the information of interest. The resulting AFO system 

mock-up is shown in Figure 4. 
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The system shown above functions using two TEMPO 3.2 flash-based nodes, one designated master and 

one slave. The master uses its on-node 32.768 kHz crystal oscillator to source a stable digital clock signal 

to the slave node, which receives a conditioned version of this clock signal for sourcing its own low-

frequency external oscillator inputs. A unified charging and communication port was created by 

connecting the charge inputs of the two nodes, and establishing a keyed connection to maintain polarity of 

two separate RS-485 data connections. The hardware produced, though a bit shaky to begin with, ended 

up performing reasonably well in a custom-molded AFO. 

Unfortunately, the final goal of this project is the molding of custom children’s AFO’s, which are a great 

deal smaller than the adult counter-part shown above. For this reason, the size of the TEMPO 3.2 

platform, with or without its battery, prohibited the use of TEMPO 3.2 in this device as a long-term 

solution. One proposed solution was the use of a smaller daughter-board, designed explicitly to be 

mounted on the bottom of the foot, sourcing its power and clock from the larger master node which could 

remain on the upper thigh. However, the TEMPO 3.2 platform supported no such easy-to-use interface, 

and would require major modification and possibly even a new layout all together, to achieve this form-

factor. 

The result was the demand for a platform capable of providing reliable power to and interfacing a low-

profile daughter board designed to be situated on the bottom of the foot of a children’s AFO. The TEMPO 

3.2 node offered no ability to implement such a daughter board. As a result, it was deemed that this final 

AFO product could not make use of the current TEMPO platform. The hardware design challenge 

presented by this AFO project was a significant part of the motivation for a new TEMPO system at the 

onset of this work. 

1.3.2 On-Node Signal Processing and Interface Considerations 

As the set of applications of the TEMPO 3 platform grow more diverse, so does the signal content of 

interest. Though in the past, many deployments required high-fidelity monitoring and burdensome levels 

of signal processing on the back-end, many newer deployments look increasingly to on-node processing 

efforts to increase battery life and decrease back-end data bloat and processing complexity. One practical 

application demonstrating the value of increased on-node signal processing was that of a data-driven 

power reduction technique proposed by a technical collaborator near the onset of this work.  

Our collaborator noticed that more than 50% of the power being consumed in the TEMPO 3.2F power 

budget is that of the 3 axes of gyro sensing used by the node to precisely capture changes in angle. The 

collaborator then connected this information with the application knowledge that when an individual is 
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sitting still, these high-fidelity gyro signals provide little-to-no information to the signal processing 

expert. This connection allowed him to develop a simple piece of code that calculated the standard 

deviation of the vector magnitude of the 3-axis accelerometer signal, and based on simple thresholding 

with hysteresis, decided whether or not to turn the gyros on or off. This type of sensor-integrated control 

presents significant power reduction opportunities for many high-fidelity motion capture platforms and 

demonstrates the value of developing low-level power control schemes with knowledge of high-level 

application constraints. 

In addition to feedback on providing additional capability for on-node processing, the INERTIA team has 

also heard increased demand for the ability to run more burdensome libraries and Real-Time Operating 

Systems (RTOSs) on the TEMPO hardware. This promotes an interest in increased maximum system 

clock rates and large on-chip instruction memories for those who chose to pay for their development 

tools. 

1.3.3 Open Development Considerations 

The final motivating factor outside of the desire for a more powerful, expandable platform designed to 

compete with the best the market has to offer, is making the TEMPO 4 design an open and available 

resource for the embedded development community. By allowing individuals to work on top of the 

platform, building their own hardware and firmware extensions, this work seeks to maximize the set of 

applications it is capable of being deployed in. While simultaneously, by allowing individuals to modify 

and reproduce the core platform itself, this work hopes to reap the benefit of continued iterative 

improvement throughout its lifetime. 

1.3.4 TEMPO 4 System Specifications 

Rather than fully specify all of the operating characteristics of the final TEMPO 4 platform here, instead 

the specifications for the targeted metrics, introduced at the start of this chapter, will be established and 

some strong top-level system constraints put in place for the remainder of the design process. Below, a 

brief specification of each of the desired metrics is provided. 

Form-Factor 

The TEMPO 4 platform form-factor is one of the strong constraints that will be put in place early in the 

design process. Based on a desire to be reverse compatible with older, custom printed casings it was 

decided that the TEMPO 4 node need be able to be inscribed within the existing footprint of the TEMPO 

3 devices. In addition, rather than using the more difficult to manufacturer circular design implemented to 

mimic a wristwatch in the TEMPO 3 platforms, this device targets a simpler, rectangular geometry for 
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Figure 5: TEMPO 4 Form-factor 

Constraints Based on Device Footprint 

Inscription 

low-cost panelized mass production. This rectangular board shape requirement, together with the 

inscription-constraint introduced earlier, imply that if the 

TEMPO 4 platform is to maximize the usable area within the 

previous node’s footprint, it will need to be a square of 

maximum allowable side-length. 

Thus, as one of the first considerations of this work, it was 

decided that the TEMPO 4 platform would be designed to fit 

within a 1x1 inch footprint. Thus, throughout this work, all 

circuit area computations will be carried out relative to a 1 

square inch board size. It is worth noting at this point that a 

significant amount of effort is not put into characterizing the 

system depth dimension, since the height of the end-user 

platform may vary with choice of power source and add-on modules. 

Lifetime 

It is difficult to come to general conclusions regarding lifetime for flexibly deployed sensor systems. In 

the use-case of 6 DoF inertial motion sensing, the TEMPO 3.2, flash-based platform was able to obtain 

10-12 hours of continuous monitoring, and in the accelerometer-only case it was able to run for up to 30 

hours. At the very least this work seeks to improve upon the lifetime offered up by previous TEMPO 

systems by a factor of 2, enabling one day of continuous 6 DoF data monitoring, though it will be shown 

later in this work that this bound can, with appropriate battery selection, be significantly out-performed. 

Interfacing 

The TEMPO 4 device needs to be able to communicate directly with a host computer or smart phone 

without use of custom hardware for interfacing. This constraint is derived primarily from the added 

design challenge of creating this custom hardware and the barriers to open development such interfaces 

can create. This work considers a number of standard interfaces for development, but as a bare minimum 

it is required at least one commonly available, commercially supported interface is provided on-board. 

Reliability 

While this section will propose no formal considerations for reliability, it is of course required that the 

TEMPO 4 system be able to capture and record 6 DoF human motion data accurately to a user, in real 

time and/or after a deployment has completed. It is worth noting that this metric is titled “reliability” 

rather than “robustness” as it is intended to be considered from a top-level system functionality 
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perspective. Since the node hardware is offered up without packaging or a software back-end an argument 

for platform robustness will not be made. Instead, reliable low-level library operation in the presence of a 

variety of top-level control strategies is evaluated in the context of an interrupt-rich programming 

environment. Further discussion of considerations for reliable and robust system operation is included in 

the coming chapters of this document. 

Flexibility 

In addition to providing on-board 6 DoF motion sensing, the TEMPO 4 node is also be required to 

support a flexible development and/or programming interface. This interface is established to enable 

future developers to easily access a wide variety of sensors, and will be required to be able to implement 

at least one set of regulated output connections, several pins for common digital serial protocols, along 

with analog data capture, digital I/O, and possibly other user-defined functionality. 

With these goals and specifications established it is now possible to more concisely describe the 

contributions of this work in the context of both the previous TEMPO platforms and the state-of-the-art in 

commercial platforms. 

1.4 Contributions 

There are three primary areas of contribution of this work. The first is the development of a low-profile, 

wearable, open hardware platform for expandable, human motion capture referred to as TEMPO 4. The 

second is the development of reliable and rigorously tested firmware libraries for serial communication, 

timing/clock control, MMC and USB interfacing, user I/O, and event-driven system operation to run on-

top of this hardware. The final contribution of this work is the identification of general trends in today’s 

ULP body-worn design space and demonstration the importance of system co-design concepts in 

achieving significant power and area reductions without compromising flexible, robust operating 

principles. 

The hardware contribution of this work is summarized in chapters 4,5, and 6 of this work, along with two 

co-design case studies proposed in chapter 3. It includes the development of a single board, 6 or 9 DoF 

IMU platform with USB interfacing, battery charging and regulation, MicroSD data storage, 2 push 

buttons, and 2 LEDs for user interfacing. Most importantly, this work tackles the challenge of providing 

additional user I/O by means of an open 16-pin development header, designed for rapid platform 

expandability. 
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The firmware libraries created for the TEMPO 4 platform are, with minimal porting, capable of running 

on most, if not all recent MSP430 devices from Texas Instruments. These libraries asynchronously 

manage system communication and sampling and provide useful tools for setting up base-level 

peripherals such as the on-chip frequency lock-loop (FLL) and real-time clock (RTC). Contributions 

related to firmware are also discussed in chapters 4, 5, and 6, with an affiliated co-design case study 

presented in chapter 3. 

The general contribution of this work is identification of trends and challenges affiliated with body-worn 

sensor system design in the modern context.  Conclusions drawn from experience spanning the duration 

of this work and beyond, are provided throughout the document. Chapter 2 introduces the previous 

TEMPO platforms and other commercial state-of-the-art competitors. Chapter 3 defines the concept of 

co-design in the context of general operating principles and introduces two affiliated case studies.As 

previously alluded to, Chapters 4-6 each demonstrate more specific, subsystem related claims. Though 

this work defines these claims as “general” it is of course acknowledged that many of the conclusions 

arrived at throughout this work are feature of the technology of the time. Having said that, this work does 

attempt to demonstrate the value of considering trade-offs that exist at and beyond the hardware-firmware 

boundary. 
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Chapter 2 

Survey of Prior Art 

This chapter is intended to provide somebackground on the previous TEMPO systems, along with 

commercial alternatives. Together with the previous chapter’s section on motivation for this work, it is 

intended to serve as the justification for a need for a new revision of the TEMPO platform, along with the 

special considerations that will be given to digital interfaces and flexible platform development. 

2.1 INERTIA TEMPO 3.1 

The TEMPO 3.1 system represented a major step forward in wearable, single-board platform integration 

for wireless body sensor nodes. The node features 3 axis accelerometer and gyroscopic monitoring, 

hereby referred to as 6 DoF inertial motion sensing, along with on-board regulation, battery management, 

a Bluetooth radio module, and an MSP430 mixed-signal processor from Texas Instruments for control 

and processing. The TEMPO 3.1 node made use of a separate charger platform for providing the 6.3V 

input necessary for charging the lithium polymer battery [1].  

The primary advantage of the 3.1 system, over the previous state-of-the-art, was the integration of gyros 

for high-fidelity motion capture applications. Though this was expected to result in increased power 

consumption, and corresponding decreased lifetime, these losses were tolerated to improve the overall 

information provided by the system. This gyro integration, coupled with an easy to use Bluetooth 3 

interface and relatively simple, tethered device operating model made the 3.1 node an attractive candidate 

for a number of emerging studies, where rapid, in-the-field data collection proved invaluable. 

As a result of its popularity, about 50 of these nodes were produced and deployed as part of a number of 

clinical studies over several years. Applications included fall detection [6], gait analysis [7]-[8], 

classification of Parkinsonian tremor [9], and agitation quantification [10]. The typical deployment 

methodology for these nodes included a technical collaborator, commonly a member of the INERTIA 

team, present in the room collecting data while a medical collaborator provided instruction to the patient 

and possibly relevant medical feedback both to the collaborator and the patient in real-time. 

Expected downsides to the TEMPO 3.1 platform were its relatively high unit cost and difficulty of 

manufacturability. As this was a platform intended for academic use only, these challenges were not 

viewed as critical at design time. In addition and as previously mentioned, power losses to the gyros were 
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anticipated, but tolerated in the name of higher output fidelity. A less expected result was the power-

hungry nature of the Bluetooth radio, consuming near 50% of system power during data collection. 

 

Figure 6: TEMPO 3.1 Node and Power Profile 

With an overall average system power of about 196mW the TEMPO 3.1 system could run for 4-6 hours 

on a single charge of a 300mAh LiPo coin-cell battery. This was deemed to be more than enough for the 

shorter in-clinic deployments the node was intended to suit. It is worth noting that some of the greatest 

challenges in TEMPO 3.1 deployments occurred in the few cases where nodes were passed off to, often 

technical, collaborators who were not intimately familiar with the platform. Though this was not an 

intended consequence of the development cycle, it was also not considered as an important metric for the 

deployment methodology in place at the time. 

The take away points from the TEMPO 3.1 node design and deployment process are the value of a widely 

available interface and small-form factor, single board integration along with the challenges of wireless 

communication power and the energy-fidelity trade-offs proposed by the addition of gyroscopes to the 

IMU platform. Though the Bluetooth radio was in many ways the common-bridge to a number of 

aggregation platforms, it was also the Achilles heel of the system’s power consumption, and provided 

integration challenges when it came to component cost and physical layout. Meanwhile signal processing 

efforts were vastly improved by the integration of rotational measurement into the inertial frame, and 

these hardware contributions were considered invaluable. The TEMPO 3.1 node was primarily heralded 

as a “high-fidelity” motion capture platform in lieu of its increased rotational sensing modalities and 

programmable sampling rate. 

2.2 INERTIA TEMPO 3.2 

The TEMPO 3.2 node represented the next iteration of the TEMPO design process. This node still hosted 

6-DoF sensing capability, along with on-board regulation, battery management, and the MSP430 as a 

central controller/processor. However, this platform added the capability to use either the previously 
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mentioned Bluetooth radio or a standard MicroSD card, interfaced over MMC, for flash storage. 

Resultantly this platform also featured an offload interface implemented over RS-485, a half-duplex, 

differential communications protocol otherwise similar to the RS232 serial standard. 

The TEMPO 3.2 Flash (3.2F) system was favored largely for its ability to be used in un-tethered 

deployments, or those in which nodes remain in the field taking data, possibly without any 

communication to or from technical collaborators, for a longer period of time. As a result of this demand 

for less physical interaction with the nodes, a more elaborate, stand-alone firmware operating system, 

along with support for a custom file system was created for use with these new flash-based nodes. 

About 50 TEMPO 3.2 nodes were produced and power-profiled as the first part of this thesis work. While 

the 3.2 Bluetooth (3.2B) devices performed remarkably similarly to their 3.1 predecessors, the 3.2F node 

yielded significant power savings over the previous platform. By eliminating the nearly 50% of the power 

budget consumed by the Bluetooth module, and replacing it with a much lower-power flash-based storage 

module the 3.2F node produced power savings of up to 63% over previous Bluetooth solutions. 

Since previously the challenges of up-keep and manufacturing of the TEMPO system were viewed as 

non-critical, the 3.2 node suffered from many of the same expected challenges as it predecessor. High 

cost and assembly challenges, along with difficulty sourcing some parts which had reached end-of-life, 

created challenges for large-scale production of the system. In addition the demand for remote 

deployment resulted in demonstration of many of the weak-points in the un-thethered design and proved a 

significant challenge in developing robust firmware, resilient to failures in the field. However, without 

significant thought put into design for testability, developers often faced significant challenges when 

working to program or debug the nodes, with little to no access to the device hardware once it was cased 

and calibrated. 

 

Figure 7: TEMPO 3.2 Node and Power Profile 
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Though TEMPO 3.2 is still in the early phases of deployment, it has demonstrated the ability to collect 10 

or more hours of data with all 6 DoF motion sensors active and up to 30 hours of data using only the 

accelerometers on the same 300mAh batteries used by the 3.1 system. Again, this has proved useful in 

longer-term studies where patients may wear a device home for several days, charging it each night. 

However, along with this demand comes the target for a reliable 12 plus hour battery life, while 

performing continuous 6 DoF sensing. This opens the door into using the platform intelligently to extend 

battery life via MCU or interface (LED) based power reductions, as they now represent more significant 

portions of the power budget. 

The conclusions of the TEMPO 3.2F development and deployment efforts support many of the claims 

introduced in the previous chapter. However, the TEMPO 3.2 system also demonstrates the unique 

challenge to producing a reliable, un-tethered device for body-worn operation, as inexact instructions and 

a more complex hardware-software ecosystem made the node difficult to deploy successfully. 

Nonetheless, those collaborators whose data collections did succeed using the TEMPO 3.2F system were 

happy with the extended battery life, and simpler data interfaces provided by the platform. 

2.3 Commercial Alternatives 

In the two years since development of the TEMPO 3.2 system was completed, a number of more recent 

commercial alternatives to the TEMPO platform have emerged. While some of these platforms target the 

same limited 3 or 6 DoF application space as the previous system, others have began to target rapid 

extension into new, or possibly user-defined, sensing modalities. A brief survey of commercially 

available IMU products is provided in the following sections. This is intended both to familiarize the 

reader with the state-of-the-art in IMU platform design, and validate the assertion that no currently 

available platform achieves the stated goals of the TEMPO 4 system. 

2.3.1 YEI 3-Space IMU 

The YEI 3-space IMU represents the state-of-the-art in fully tethered USB-based motion capture solutions 

[19]. Because the platform operates only in a tethered, continuously reporting mode it is capable of both 

incredibly high fidelity signal capture, with a1.3kHz maximum raw sampling rate, and complex 

processing (on-node Kalman filtering with 385Hz output). In addition it supports full 9 DoF, or 

simultaneous 3 axis accelerometer, gyroscope, and magnetometer motion capture, currently the gold 

standard for extracting information about motion and position in the global frame. 
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The YEI 3-space IMU was selected as part of this market survey for two primary reasons. First, it 

demonstrates the usefulness of tethered IMU solutions in the ultra-high fidelity, and low wearability use-

cases. Second, it sets a commercial bar for small form-factor, low-weight IMUs, as without a battery, it 

measures just 23x23x2.2mm and 1.3g. 

 Value 

Battery Life Unlimited (tethered USB operation only) 

On-board Sensors 3 axis accelerometer, gryo, and magnetometer (9 DoF) 

Interfaces USB 2.0 

Dimensions 23x23x2.2mm 

Mass 1.3g (no battery) 

Expandability Serial interface (UART), custom software backend 

Table 1: YEI 3-Space IMU Device Summary 

2.3.2 LPMS-B 

The LPMS-B is a research-compatible platform that represents a significant step forward in the 

development of powerful, high fidelity wireless motion capture. While also featuring 9 DoF sensing, with 

up to 300Hz sampling rates, the LPMS-B offers up either Quaternion or Euler Angle pre-processed output 

and interfaces a PC over Bluetooth for data recovery and processing using custom code libraries and an 

open-source motion analysis toolkit [20]. 

 

Figure 9: LPMS-B Platform [20] 

 

Figure 8: Dimensioned YEI 3-Space IMU 

(all dimensions in mm) [19] 
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The LPMS-B platform was selected to be a part of this survey as it is a significant market competitor in 

the high-end, research-based, wirelessly aggregated space. In addition, it represents a highly integrated 

and tightly packaged device, in stark contrast with the more bare-bones YEI device presented above. 

 Value 

Battery Life 10 hours (@800 mAh) 

On-board Sensors 9 DoF, atmospheric pressure, and temperature 

Interfaces Bluetooth 2.1, USB for charging 

Dimensions 20x28x12mm 

Mass 34g 

Expandability None 

Table 2: LPMS-B Device Summary 

2.3.3 X-IO x-IMU 

The x-IMU platform is another 9 DoF motion sensing platform offering up to 512Hz system sampling 

rates. The platform is interfaced via USB, Bluetooth, MicroSD or a standard serial interface. In addition it 

provides several LEDs and an expansion port for interfacing with the user. 

 

Figure 10: X-IO x-IMU Platform [4] 

The x-IMU was selected as part of this survey as it represents one of the only commercially available, 

IMU-specific platforms designed with a tightly integrated expandable interface. This interface includes 8 

analog input or digital input/output pins, 4 pulse-width modulation (PWM) outputs, and a single 

Universal Asynchronous Receiver Transmitter (UART) interface capable of operating up to 1Mbaud. 

This makes it a principle market competitor to TEMPO 4 in the expandable IMU product-space. 

Unfortunately, this interface primarily offers up simple analog or digital pins for signal capture or control, 

rather than the slightly more complex serial interfaces implemented as part of this work. 

 Value 

Battery Life 6 hours (@ 300mAh) 

On-board Sensors 9 DoF 

Interfaces Bluetooth 3.0, USB, MicroSD 

Dimensions 33x42x10mm (no casing) 

Mass 49g (w/ battery) or 12g (w/o battery) 

Expandability 3.3V supply, 8 A/D IO, 4 PWM, and 1 UART 

Table 3: x-IMU Device Summary 
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2.3.4 Shimmer 3 

The Shimmer platform has gained a great deal of attention lately for its wide-spread use in a number of 

academic deployments. By enabling research collaborators to quickly develop signal processing efforts on 

top of a core data reporting platform with a diverse set of biosignal-oriented add-on boards, the Shimmer 

2 system found reasonable success in the low-budget preliminary case study market-space. However, the 

burdensome firmware operating model of the previous platform, and higher demand for greater control of 

platform operation has pushed the newer Shimer 3 system toward simpler software interfaces and a more 

bare-bones firmware operating model [5]. 

 

Figure 11: Shimmer 3 Platform [5] 

The Shimmer 3 platform is considered as part of this survey for three primary reasons. First, it 

demonstrates the demand for an open, widely available, wearable device for on-body biosignal 

monitoring. Second, its predecessor platform demonstrates the limited, but increasingly present need for 

open hardware as well as firmware models. Last, but not least, this newly released, research-based, state-

of-the art platform makes use of a very similar internal hardware architecture to the final TEMPO 4 node, 

making it a good point for comparison for base-level functionality. 

 Value 

Battery Life Application dependent (@ 450mAh) 

On-board Sensors 9 DoF, atmospheric pressure 

Interfaces Bluetooth 3.0, MicroSD, Custom Dock 

Dimensions 51x34x14mm 

Mass 20g (w/ battery) 

Expandability Internal and external development headers 

Table 4: Shimmer 3 Device Summary 

2.3.5 Actigraph wGT3X-BT Monitor 

The wGT3X-BT monitor is a state-of-the-art motion monitoring-specific platform intended for use in 

activity and sleep monitoring. In addition to providing basic 3 DoF accelerometer sensing it also includes 

a light sensor to capture additional information about activity during the nighttime hours [21].  
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Figure 13: FitBit Zip Platform [3] 

 

Figure 12: Actigraph wGT3X-BT Platform [21] 

This Actigraph platform differs from some of the fuller-featured research-based platforms presented 

earlier in this section as it sacrifices some of the higher-fidelity measurement produced by these platforms 

in the name of significant increase of battery life and storage capacity. Thus, the wGT3X-BT device is 

included in this survey as it demonstrates a successful exploitation of the trade-off between sensing 

complexity and system lifetime. 

 Value 

Battery Life 25 days (@800 mAh) 

On-board Sensors 3 DoF (accelerometer only) and ambient light 

Interfaces Bluetooth Low-Energy and USB charging 

Dimensions 46x33x15mm 

Mass 19g (w/ battery) 

Expandability None 

Table 5: Actigraph wGT3X-BT Device Summary 

2.3.6 FitBit Products 

One of the most significant players in the quantified-self and personal fitness domains of wearable 

electronics today is FitBit. Currently FitBit offers up three pedometer-based platforms, with varying 

levels of information and interfacing available. Rather than summarize each of these devices individually 

information regarding all three is included below. 

FitBit Zip 

The FitBit Zip represents the smallest form-factor, least 

fidelity, and lowest cost product manufactured by the 

company. Most importantly, with a non-rechargable CR2025 

160mAh battery and an approximate battery life of 4-6 months 

the Zip is included in this survey as it is by far the lowest-

power device included in this survey. 
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Figure 14: FitBit One Platform [22] 

 

Figure 15: FitBit Flex Platform [23]  

 

 Value 

Battery Life 4-6 months (@ 160 mAh) 

On-board Sensors 3 DoF (accelerometer only) 

Interfaces Bluetooth 4.0 and LCD 

imensions 35.5x28x9.7mm 

Mass 8g (w/ battery) 

Expandability Back-end app development 

Table 6: FitBit Zip Device Summary 

FitBit One 

The FitBit One is the company’s most mature product, with several highly reviewed, working revisions 

under their belt. This device takes the form-factor of a typical 

clip-on pedometer and provides an impressive wireless 

recharging along with a nearly transparent wireless-in-range 

offload strategy. This device was included in this survey as it 

represents FitBit’s most successful historical offering.  

 Value 

Battery Life 5-7 days (no capacity provided) 

On-board Sensors 3 DoF (accelerometer only) 

Interfaces Bluetooth 4.0 and LCD 

Dimensions 48x19.3x9.7mm 

Mass 8g (w/ battery) 

Expandability Back-end app development 

Table 7: FitBit One Device Summary 

FitBit Flex 

The FitBit Flex is the most recent addition to the line of products 

and represents FitBit’s answer to the recent wave of wrist-worn 

IMU monitoring devices intended for both user motion capture 

and interfacing when connected to a smartphone. Following the 

trends of many significant market competitors the FitBit Flex 

integrates 3 DoF sensing, a vibrational motor, and a similar 

wireless charging interface to its cousin, the FitBit One, to 

accomplish similar overall system specifications. 

 Value 

Battery Life 5 days (no capacity provided) 

On-board Sensors 3 DoF (accelerometer only) 

Interfaces Bluetooth 4.0, LEDs, and motor 

Dimensions Wristband (N/A) 

Mass ? 

Expandability Back-end app development 

Figure 16: FitBit Flex Device Summary 
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Figure 17: Jawbone Up 

Platform [24] 

2.3.7 Jawbone Up 

Last but not least, this work will introduce one of the significant market 

competitors to the FitBit Flex in order to better understand the state of the 

wrist-worn BSN design space. The Jawbone Up is another commercially 

popular and successful 3 DoF monitoring platform, sporting several 

indicating LEDs and a vibrational motor for user alerts. Its intuitive 

mechanical design, open back-end libraries, and relatively sleek form-

factor make it a strong contender, but some would argue its lower level of 

integration, and non-health specific focus has cost it some success in the 

market. Nonetheless, the Up’s high level of integration and impressive use 

of an incredibly low-capacity battery for long-term operation make it a platform of significant interest for 

this market survey. 

 Value 

Battery Life 7 days (@ 32mAh) 

On-board Sensors 3 DoF (accelerometer only) 

Interfaces Bluetooth 4.0, LEDs, and motor 

Dimensions Wristband (N/A) 

Mass 19g 

Expandability Back-end app development 

Table 8: Jawbone Up Device Summary 

2.4 Product Summary 

This section presents a brief product summary comparing all of the platforms surveyed as part of this 

chapter and demonstrating their strengths and weaknesses in a side-by-side context. The intent of this 

table is to demonstrate the inability of any one platform to meet the demand for a low-power, long 

lifetime, flexible system for on-body IMU and non-IMU based deployments. In addition, rather than 

compare the surveyed devices in reliability, as this can often be difficult to gauge amongst competing 

commercially available devices, the table below considers built-in sensing diversity instead.  

This consideration of on-board sensing modalities is designed both to give a measure of the ability of the 

system to target a wide range of applications based upon the on-node hardware and also to provide some 

idea of what portion of the underlying hardware and firmware design is committed to sensing components 

and code-structure, giving a better sense of both the specificity and flexibility of the platform. 
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The following abbreviations are used in this table to indicate various sensing modalities, interfaces, and 

development strategies: 

9 DoF: 3 axis accelerometer, gyro, and magnetometer human motion monitoring 

6 DoF: 3 axis accelerometer and gyro human motion monitoring  

3 DoF: 3 axis accelerometer human motion monitoring 

Alt: Altimeter sensing, often via barometer 

Temp: Ambient temperature sensing 

Light: Ambient light (lux) sensing 

D/A I/O: Digital or analog input or output 

PWM: Pulse-width modulation output 

UART: Universal asynchronous serial interface 

Vib: Vibration output via motor 

App Dev: Open application (often smart-phone driven) development 

 

Platform Lifetime 

Form-factor 

Interfaces 
Built-in 

Sensing 
Flexibility 

Volume 

(mm
3
) 

Weight 

(g) 

YEI 3-Space IMU 
Infinite 

(Tethered) 
1163.8 

1.3 

(no batt) 
USB 9 DoF 

App Dev, 

UART 

LPMS-B 
10 h 

(800mAh) 
6720 34 Bluetooth 2.1 

9 DoF, 

Alt, Temp 
App Dev 

X-IO x-IMU 
6 h  

(300mAh) 
13860 49 

USB, Bluetooth 

3.0, MicroSD, 

LEDs 

9 DoF 

8 D/A IO,  

4 PWM, 

UART 

Shimmer 3 

Application 

Dependent 

(450mAh) 

24276 20 

Bluetooth 4.0, 

MicroSD, 

LEDs, Dock 

9 DoF, Alt 

JTAG, 2 

expansion 

headers 

Actigraph WGT3X-

BT 
25 d 22770 19 

USB, BLE, 

LEDs 

3 DoF, 

Light 
None 

FitBit Zip 
4-6 mo 

(160mAh) 
9592.1 8 

Bluetooth 4.0, 

LCD 
3 DoF App Dev 

FitBit One 5-7 d 8939 8 
Bluetooth 4.0, 

LCD 
3 DoF App Dev 

FitBit Flex 5 d Wristband ? 
Bluetooth 4.0, 

LEDs, Vib 
3 DoF App Dev 

Jawbone 
7 d 

(32mAh) 
Wristband 19 

Bluetooth 4.0, 

LEDs, Vib 
3 DoF App Dev 

TEMPO 3.1 
4-6 h 

(300mAh) 
Wristband 40 

Bluetooth 3.0, 

LEDs, Dock 

6 DoF, 

Temp 

HW/FW/SW 

Dev 

TEMPO 3.2 
10-30 h 

(300mAh) 
Wristband 40 

Bluetooth 3.0 or 

MicroSD, 

LEDs, Dock 

6 DoF, 

Temp 

HW/FW/SW 

Dev 

Table 9: Surveyed Commercial Alternative Market Comparison 
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Chapter 3  

Co-Design Concepts and Subsystem 

Designation 

This chapter addresses two of the primary challenges to the stated contributions of this work. Namely 

these are designing hardware and firmware in the application-uninformed context and effectively 

partitioning system design methodology into smaller subsystems for iterative development and testing. 

3.1 Co-design Introduction and Case Studies 

The term co-design can often mean many things to many people with varied perspectives on a system 

design space. For this purpose the term will be defined explicitly for use in this work as follows. 

Co-design is the process of using cross-hierarchical (i.e. hardware, firmware, 

and application layer) information in evaluating trade-offs which may have 

otherwise seemed arbitrary, irrelevant, or unintuitive from a non-system level 

designer’s perspective. 

It is understood that the definition above is somewhat vague, and intentionally so, as to capture the full 

scope of co-design in the context of this work. In order to make this definition somewhat more concrete, 

and also provide some examples of non-traditionally considered trade-offs eluded to previously, two case 

studies are presented in the remainder of this sub-section. The first study demonstrates how a selection 

typically made by a “hardware” designer, might deeply impact reliability and robustness of firmware 

operation, and present hurdles to the open development community. The second case study demonstrates 

a more traditional firmware trade-off and why it is approached by various designers in various ways, 

taking the system-level perspective on the challenges and benefits posed by two fundamental control 

strategies. 

3.1.1 Co-design Case Study 1: USB Transceiver Selection 

The topic of USB transceiver selection is typically one of hardware footprint, power delivery, routing 

considerations, and Application Specific Integrated Circuit (ASIC) solutions. Though firmware designers 

may be brought into the process to assure that USB communication will in fact be possible given a 
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Figure 18: TI MSP430 w/ Integrated USB Transceiver [25] 

prescribed software operating model, the common perspective in the development field is that heavy use 

of hardware peripherals and software libraries largely masks away the complexity of coordinating 

complex, high speed interactions, such as those that take place in USB interfaces. 

As a part of the preliminary hardware surveys conducted for the TEMPO 4 system, the topic of USB 

transceiver selection took center-stage. Since the TEMPO 4 platform targets all wired charging and 

interfacing to a single on-board USB port, analysis of reliable COTS products for USB operation was 

considered thoroughly. As a result of this 

survey three primary candidate solutions 

emerged, these are presented below. 

Candidate 1: MCU Driven Solutions 

Several MSP430 5xxx series 

microcontrollers from Texas Instruments 

feature an integrated hardware peripheral 

for USB 2.0 communication. It just so 

happened that this was also the family of 

controllers already being considered for use in this project. In addition a number of other MCU devices 

have had firmware libraries written to perform software-driven USB operation if clocked appropriately. 

As a result the possibility of an all in-MCU USB solution was considered both for its low form-factor and 

high expandability considerations. 

Candidate 2: High-speed ASIC Solutions 

 A number of manufacturers provide ASIC topologies designed to contain one or several memory mapped 

USB end-points for communication. These transceiver circuits feature the necessary on-chip oscillators 

and decoder structures for reading and writing USB 2.0 or 3.0 data in full-speed and high-speed modes. 

Typically these chips feature high-pin count and a number of offload interfaces for streaming data in and 

out in serial or parallel formats. Thus high-speed ASICs were considered both for flexibility and 

robustness. 

Candidate 3: Low-speed ASIC Solutions 

In addition to the larger, more powerful high-speed ASICs, designed for full-speed USB communication, 

a number of popular manufacturers, such as FTDI, produce lower-speed USB 2.0 transceiver ASICs that 

allow the user to interface USB with lower-pin count, and often easier to access, serial solutions. These 

transceiver solutions were considered based on form-factor, ease of interfacing, and robustness. 
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Figure 19: Block Diagram of FT232 Low-speed USB 

Transceiver IC [26] 

 

 

Figure 20: FT121 SPI-driven 

ASIC Evaluation Module [27] 

In discussing the trade-offs between these three 

candidate approaches co-design concepts will 

prove invaluable. At first glance, the hardware-

only solution to this problem seems straight 

forward; the MCU-driven solution saves cost, 

area, and routing complexity by reducing part 

count and improving level of integration. 

 In taking this initial hardware-driven perspective, 

an MSP430 prototype platform, designed to 

implement and test USB functionality integrated 

into the MSP430F5510 MCU, was purchased and 

example libraries were downloaded from TI. The 

code was then compiled and loaded onto the platform in order to evaluate system performance. 

Even before beginning evaluation it became clear that this solution would not be ideal from a firmware 

operational perspective. To begin with, USB transceiver operation requires at least a 12MHz clock, which 

would need to be sourced within the MSP itself. This represented a challenge as typical core clock rates 

for previous TEMPO system have been in the <4MHz range, meaning sourcing a 12MHz oscillator to the 

USB would result in tripling average system power during runtime. In addition it was nearly immediately 

noticed that the compiled size of the USB transceiver code was almost half of the 10kB code limit 

prescribed by the freeware version of Code Composer Studio available to the public. This meant that by 

implementing an on-MCU USB solution the platform would in fact save area, but also pay a significant 

power and performance cost along with way, limiting both the range of configurable system clock rates 

and the amount of user-defined code that could be implemented on the platform. Thus ASIC-driven 

options were considered to reduce code-complexity, and MCU clocking constraints. 

The dilemma of high versus low-speed ASICs is another in which 

consideration of co-design concepts can be ciritical. Again, a more 

traditional perspective might opt in favor of a lower-footprint, higher-

speed ASIC over a slower one with a possibly simpler host-controller 

interface. Again pursuing this hardware-only driven perspective, a low-

footprint, high-speed transceiver ASIC from FTDI, the FT121 was 

considered. Again a development platform with the ASIC on it was 
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purchased and evaluated. 

 Though the FT121 did require much less firmware to configure its end-point control registers, it was 

quite complex to go about configuring and receiving on an end-point packet as a common developer. 

Also, though the chip did offer up a programmable interrupt line, it was deemed too complex for an end-

user to manage in his/her own application-level firmware code. Thus, a special purpose library to handle 

communication with the FT121 ASIC would need to be created. For reasons to be discussed in the 

following chapters, this is not a good fit to the firmware communications operating model adopted by the 

TEMPO 4 system. In addition, the MCU-side storage for device configuration register values and added 

complexity of software-side USB endpoint management means more operational obfuscation, and less 

room for develops to quickly innovate on top of the hardware platform. 

The final decision regarding the USB transceiver solution used in this work may in fact be the least 

intuitive from a firmware-agnostic perspective. A slightly higher pin count (i.e. larger form-factor), higher 

power, and less controllable transceiver circuit, the FT232 from FTDI, was selected. The reasons for this 

selection are varied and stretch from the simplified hardware interfacing model all the way up to the ease-

of-use for high-level application developers.  

One primary motivation for selection of the FT232 USB transceiver was that it is one of the few 

Integrated Circuits (ICs) offering up direct USB to UART translation, making it a standard digital 

interface as seen by the MCU. The ability to read and write this interface using libraries already produced 

for peripheral communication results in reduced firmware bloat and provides an easy-to-conceptualize 

asynchronous digital interface to the application developer. Meanwhile, adoption of the FT232 into the 

custom docking station for the previous TEMPO 3.2 platforms meant that a software backend, written in 

Python, had already been established to communicate with these ICs over USB. 

From the traditional hardware perspective, many electrical considerations, such as power consumption or 

input voltage range are avoidable when considering the FT232, as it has its own on-chip regulators to 

produce the 3.3V supply its internal circuits operate on from the USB 5V input. This puts the device in 

what is referred to as “self” or “bus” powered configuration. Since the transceiver’s operation is only 

important when the USB is actually plugged in this works to reduce the management overhead affiliated 

with power gating the chip, and also provides an additional level of electrical isolation between the USB 

and system power domains. 

In addition to power loss, there is also the question of area overhead introduced by the device. Here, we 

must look across only a hardware-boundary to realize that even in the worst-case FT232 layout only about 



29 

 

 
Figure 21: TEMPO 4 Test Board USB 

Layout w/ Dimensioning of Connector and 

FT232 Circuitry 

 

Figure 22: FT230x 

Development Board [28] 

50% of the total USB area consists of this slightly larger USB 

transceiver IC and affiliated circuitry. In other words, regardless 

of how much the transceiver circuitry is compacted, total area will 

always be bounded below by the size of the connector itself. Thus, 

for the purpose of this work, it was deemed that the 10-40% of 

USB area savings achievable using a lower footprint, more 

customized part, or an MCU-based USB solution would not 

justify the significant increase in firmware overhead, and potential 

for reliability and flexibility issues related to this custom 

management code. 

Before this case-study concludes, it will demonstrate one more, all-important principle in the area of 

simplified, ultra-low profile electronics: the ASIC manufacturer is always adapting to market demand. 

Between the time at which a final bill of materials for the TEMPO 4 platform was settled on and the time 

at which the final production design of the TEMPO 4 platform went out, FTDI introduced a new, lower-

profile version of the FT232, the FT230X. This device has all the functionality of its big brother, but with 

a reduced set of the programmable I/O pads located on the FT232 which are not used in this design. 

Unfortunately, limited availability of development boards for testing, 

and pressure to complete the final design of the TEMPO 4 platform 

resulted in this newer IC not being implemented in TEMPO 4.0. 

However, a TEMPO 4.1 revision should surely consider a prototype 

implementing this smaller form factor device.  

3.1.2 Co-design Case Study 2: Polled versus Interrupt-

driven Operation 

A great deal of work in the system-level coding community focuses on 

the trade-offs and unique opportunities offered up by both polled and interrupt-driven operation. In the 

context of the previous TEMPO platform this section will provide one example of each type of operation 

and demonstrate why it is advantageous from the perspectives of system-level power reduction and 

increased firmware reliability. 

Benefits of Interrupt Driven Timing and Challenges of System Synchronization 

Asynchronous, interrupt-driven operation is typically the mode implied in many low power, low 

throughput applications where the use of wake-from-interrupt style operation offers tremendous reduction 
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of overall system power. By running at high processing frequencies, and correspondingly powers, during 

wake periods  and sleeping for large portions of inactive time, many systems that sample and process data 

infrequently can drive their average powers down to within an order of magnitude of that of sleep. When 

specialized circuit designs are coupled with these ultra-low power sleep states, this can mean significant 

reduction in average system power [29]. 

In the TEMPO 3 systems, all timing routines were interrupt-driven. This meant that sampling timers, 

along with system clock-keeping was all handled asynchronously from the operating code. This presents a 

challenge in-and-of itself, as the synchronous executed code, or that code which runs from the MSP’s 

instruction memory, is not made aware of the execution of these asynchronous routines. To reconcile this 

runtime synchronization issue, an event-queue structure was created by the system designers. This queue 

allowed for passing of messages between the pool of asynchronous interrupts monitoring sampling and 

system time and the synchronous execution of the core, which of course took place whenever an interrupt 

was not in service.  It is worth noting that any interrupt on the MSP430 used in the TEMPO 3 systems 

takes approximately 7 cycles to call and 7 cycles to respond from, so some timing slack is introduced by 

this interrupt-driven operation, but since this call and response time is expected to be constant it can 

typically be corrected for in the runtime code. 

This asynchronously-driven event-queue model allowed the designers to exploit the power benefits of 

having the system asynchronously managed during idle periods, while still achieving significant 

throughput and computational ability during active periods such as on-node compression or Bluetooth 

transmission. In addition to power benefits, the model provides a relatively easy-to-use interface for those 

seeking to develop both additional computational and interrupt-driven libraries for the device. As will be 

mentioned later in this work, this core operating principle is considered robust enough that the TEMPO 4 

system firmware is still based upon an event-driven execution scheme. 

Effective Uses and Drawbacks of Polling for Low Power Operation 

Polling operation is less common to find being used in low power systems. Rather than focus on the 

obvious misuses of polled operation, such as constantly monitoring an interrupt flag via synchronous code 

or simply looping on a null instruction rather than using sleep to create delay, this section will attempt to 

highlight some of the effective areas and challenges for polling-driven operation in a system-level 

context. 

In the TEMPO 3.1 node, all data communication was accomplished in the form of polling from the 

aggregator-side. By exploiting the increased processing power, and available Bluetooth stack on most 
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PCs and smar phones, this allowed the TEMPO 3.1 system to keep its own firmware control of the radio 

rather minimal. In addition, it allowed mid-sized (<8 node) star-topology networks to be established fairly 

easily, as each node was polled by the master using a simple round-robin approach. 

The TEMPO 3 node’s Bluetooth module operates based around an asynchronous UART connection, so 

an interrupt is sourced in the MCU whenever data is being received from the radio. This enables a rather 

simple scheme of communication: the master (PC) pairs with the node (slave) over Bluetooth then, when 

ready, sends a start of session command telling the node to start taking data. Once the node is taking data 

the master then polls each node once a second to retrieve all its captured data. Since the nodes can buffer 

2-3 seconds worth of data at a time, so long as the master requests each slave’s data once per second or 

so, the PC was sure to have received a time-continuous stream of data. Otherwise a circular buffer was 

used to store data on-node assuring the device would report only the most recent 2-3s of sample values 

when eventually polled again. 

This polled data collection technique lent itself well to the event-queue driven operation of the TEMPO 

3.1 system as it allowed developers to add any amount of data they would like to the out-going buffer 

before the node was polled again by the master. By creating this wireless tether between the PC and the 

node, the designers were also able to accomplish significant reduction in firmware complexity, slaving all 

operations to the command of the Bluetooth interface at the expense of a large portion of the hardware 

power-budget being consumed by the affiliated hardware module.  

One potential radio power benefit of this approach is that, without a polling command received from the 

master the node does not attempt to transmit any data. This would, given a more efficient radio 

communication strategy, present the potential for significant power savings from a mostly-listen or 

asynchronous, bursty transmission protocol. Unfortunately, the TEMPO 3.1 system was not able to 

benefit from this added feature of its communication control scheme as Bluetooth is a Time-Domain 

Multiple Access (TDMA) protocol which has nearly symmetric transmit and receive buffer power.  

Had the designers implemented an asynchronous interrupt-driven wireless data communication scheme 

instead, care would need to be taken on both the master side, to assure there was in fact room/time in the 

schedule for a new node, and by the slave, to monitor for when/where the transmission should be made to 

avoid collision. This would likely result in an increase in the overall system power and firmware 

complexity. 
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3.1.3 Co-design Goals and Conclusions 

The co-design concept stressed here is that of ease-of-interfacing. When simplistic interfaces, well suited 

to the underlying operation of the application to which they are paired, are used effectively they can 

produce significant gains at both the hardware and software level simultaneously. The effort affiliated 

with this work’s general contributions is exactly this, to identify opportunities for cross-hierarchical 

optimizations in today’s changing design space. 

3.2 Subsystem Designation 

The following 3 chapters of this document are structured around the development of three principle 

subsystems, that when working together, comprise the entirety of the TEMPO 4 platform functionality. 

This work intentionally partitions itself along the lines of functional subsystems, rather than the 

traditional hardware, firmware, and software divisions in order to exploit the co-design opportunities for 

cross-hierarchical optimization introduced in the previous section of this chapter.  

The basic concept of this organizational view is demonstrated in Figure 23. By taking a traditional design 

challenges, such as implementing an application programmable timer or SPI interface and performing 

tasks from hardware selection all the way through application coding iteratively throughout the design 

process, the implications of application information on possible system-level hardware decisions are 

better clariefied and understood. 

 

Figure 23: Cross-hierarchical Development Model 

For the sake of simplicity this work will establish three principle areas of contribution to the co-design of 

hardware and firmware IMU solutions for the body-worn context. These areas are hereby referred to as 
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subsystems as they designate functional, vertically integrated system sub-components, rather than 

particular hardware, firmware, or software, inside of the TEMPO 4 operating model. 

1. Battery Management and Supply Regulation 

2. Programming, Control, and Interfacing 

3. Sensing, Storage, and Transmission 

The three subsystems introduced above are partitioned the way they are for several key reasons. To begin 

with battery management and supply regulation are of course tightly coupled concepts, but more 

importantly the significant decoupling of control and monitoring between the power delivery network and 

remainder of the system justifies this decision. Overall this is seen as a positive feature of the specified 

design as it means other subsystems will have to source relatively little control to the power delivery 

network, and will only be responsible for monitoring and conditioning of their own delivered power rails 

of interest. 

Programming, control, and interfacing are grouped and separated from sensing, storage, and transmission 

as the former tasks involve the determination of what the system will be able to interface, while the later 

address the challenge of tapering this interface to fit any given deployment. To make this division more 

explicit consider the challenge of developing a sensing system with an unknown sensor requirement. 

Without critical information such as Nyquist rate or signal content, it is difficult to near impossible to 

specify the remainder of system operating parameters. For this reason the programming, control, and 

interfacing portion of this work borrows largely from past experience, current market direction, and 

commonly available standardized interfaces to attempt to provide a reasonably unconstrained 

environment in which to develop for new sensing, storage, and transmission platforms and media. 

The following three chapters of this document will each address the design of one of the three subsystems 

introduced above. Each will attempt to address both the traditional hardware and firmware challenges 

posed by the space then explicitly discuss opportunities for co-design optimizations, and finally the 

solution arrived at for the TEMPO 4 platform. It is important to remember when reading the following 

chapters that this work followed and iterative hardware-firmware design process, wherein a piece of 

hardware was not accepted into the system design until it had been verified to perform with desired 

metrics in subsystem and system-level test benches. 
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Chapter 4 

Battery Management and Supply 

Regulation 

The issue of battery management and supply regulation is a primary one in the wearable design space. 

The targeted metrics of form-factor and lifetime are called directly into question, and in the case of many 

common battery chemistries, can be traded off to demonstrate advantages of some non-traditional design 

decisions for ultra-low power wearable technology. This chapter will address the selection of battery 

chemistries and capacities for on-body deployments, discuss the challenges of battery charging and 

management techniques in the context of low form-factor designs, and finally address the issue of 

selecting a regulator topology for the ultra low-power, body-worn context. It concludes with a 

demonstration of important co-design concepts and a final design summary for the TEMPO 4 battery 

management and supply regulation design. 

4.1 Battery Chemistry and Capacity 

The challenge of specifying a battery chemistry and capacity for a cordlessly-powered system is a 

significant one as it affects nearly every targeted metric if conducted improperly. Form-factor and lifetime 

constraints implied by batteries can appear rather straight forward; however, the internal series resistance, 

voltage level at a battery’s output, and the battery’s ability to source large amounts of current over a short 

period of time, can impact reliability, ease-of-interfacing, and even flexibility in some cases. This section 

briefly discusses selection of a battery chemistry and capacity in a general context, by indicating trends in 

normalized metrics for various battery technologies. 

4.1.1 Form-factor versus Lifetime Constraints 

The obvious trade-off implied by battery selection is that of form-factor versus lifetime. As batteries grow 

larger, typically their capacity increases, not necessarily linearly with size. If an individual chooses to 

design a product implementing a standard-sized battery into the casing, this often means specifying a 

particular lifetime at a given physical size. Since this works attempts to target the widest possible range of 

system deployments it does not consider one particular battery size or package, but rather families of 

batteries, organized by the chemistry through which they produce electrical energy. This type of 



35 

 

organization is useful as a battery’s chemistry is directly correlated to both its ability to be recharged and 

the circuitry required for performing this recharging if possible.  

Battery capacity is typically provided in milli-ampere hours (mAh) which does not take into account the 

differing nominal output voltages for various cell chemistries. In order to normalize out this voltage-level 

variation the energy-capacity of a cell is instead calculated by taking a scaled product of its capacity and 

nominal output voltage. The result is an energy capacity in Joules that can be measured relative to other 

dissimilar battery chemistries and form-factors on a level playing field. The underlying figure of merit to 

this model of battery chemistry analysis is that of energy-density, which explicitly provides the energy 

stored per unit volume in the battery. Energy-density is a common figure of merit in all forms of energy 

storage, but has various interpretations. For the purpose of this work, a purely volumetric energy-density 

was borrowed, using capacity in milli-amp hours, nominal cell voltage, and of course cell volume, to 

produce a simple figure of merit for evaluation. This metric is provided, with appropriate normalization to 

Joule per unit volume, below. 

   
          

      
   

As part of this work, a large variety of commonly available alkaline and lithium-based cells were 

considered for use. Preliminary determinations ruled out a large percentage of the commonly available, 

cylindrically packaged cells due to their large mass and volume. In addition the challenge of whether the 

system would be capable of obtaining a battery life acceptable for a one-time-use battery was also 

considered.  

The first several iterations of the TEMPO 4 design called for use of a non-rechargeable coin-cell battery, 

located on the backside of the PCB, but as the design grew more complex, and power and area at a 

premium, it was determined that an off-board battery solution would be implemented. Both Lithium and 

Alkaline-based cells were considered as part of a market surbey. The results of this survey are 

summarized in the single-log plot of volume versus battery capacity, in Joules, for various chemistries 

and packagings provided in Figure 24 below. 
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Figure 25: Thin Package 

Lithium Ion Battery [30] 

 

Figure 24: Battery Cell Capacity versus Volume for a Number of Chemistries 

There are several important conclusions to be drawn from Figure 24. First, the 

low-volume, low-capacity portion of the design spectrum is dominated nearly 

entirely by lithium coil-cell topologies, both rechargeable and non-

rechargeable. Once energy capacity exceeds the 10kJ mark, the common 

alkaline and larger lithium cells begin to stand out. One interesting conclusion 

to be drawn from this plot is that energy density for alkaline cells falls just 

short of that of their newer lithium counterparts. What this plot does not 

show, are the significant mass benefits offered up by the packaging of some 

lithium ion (LiIon) and polymer (LiPo) batteries. While cylindrical lithium 

packages are similar in mass to their standardized alkaline counter-parts, alternative packaging for LiIon 

and LiPo cells makes this weight reduction possible. For example, while a 2000mAh thin package weighs 

35g [30] its nearest cylindrical lithium competitor weighs 45g [31], or nearly 30% more.  

Thus, in long-term deployments, where non-rechargeable batteries can provide acceptable lifetimes and 

the extra mass of their packaging is not an issue, it is still prudent to make use of standard packaged, 

cylindrical cells. Meanwhile, in similar lower-power scenarios where form-factor is a major issue, coin 

cells can produce acceptable battery life for some applications [3]. However, currently, the optimal trade-

off in energy capacity and a combined volume-mass metric are the thin-packaged lithium-based cells.  
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Figure 26: Standard JST 

Connector [33] 

4.1.2 Application Considerations for Lithium Cells 

The use of lithium cell chemistry does call for some additional consideration of application-driven power 

constraints. It is well known that large instantaneous current draws can significantly shorten the lifetime 

of, and in some cases permanently damage, Lithium cells [32]. Thus, in order to avoid the long-term 

negative effects of such large instantaneous current draws, hardware designers attempt to use effective 

decoupling strategies to source larger instantaneous currents rather than relying on the battery alone. The 

challenge of storing enough energy on-node to prevent significant voltage dip and sag, and protect the cell 

is further discussed in the supply regulation portion of this chapter. 

In regard to operational constraints implied by this poor suitability of Lithium cells to large instantaneous 

current draws, there are several considerations that cross the hardware-firmware boundary in this space. 

First and foremost, this implies Lithium-based energy storage is inherently poorly suited to bursty 

operation, as though the average power of many sleep-wake approaches is similar to their “always-on” 

counter-parts, the larger instantaneous draws from the battery implied by condensed operating time 

window may be damaging. This is one promising argument for lower power, lower frequency continuous 

operation over today’s much more pervasive duty-cycled approaches. 

From an embedded hardware designer’s perspective there is little besides effectively decoupling 

components or providing an additional power source that can help to resolve these issues. However, from 

the firmware designer’s perspective there are a number of considerations that can help alleviate 

unnecessary battery fatigue. First and foremost the use of lower clock speeds and less bursty operation 

can help to reduce large instantaneous current draws. In addition, high power operations such as flash 

writes/erasures or radio transmissions, should be spread out as much as possible as to allow decoupling 

capacitors to regain charge after being partly or fully depleted by the draw of an expensive operation. 

4.1.3 Battery Conclusions 

After much debate on ease of sourcing a battery and the desire to make the 

TEMPO 4 hardware accessible to all system developers, a general solution 

was arrived at. The TEMPO 4 platform supports a standard JST connector 

for battery interfacing, allowing for the use of a wide variety of potential 

battery options for the platform including rechargeable and non-

rechargeable chemistries. In addition to allowing for the use of a wide 
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Figure 27: MAX1555 Battery 

Management IC [34] 

 

Figure 28: MAX1555 Low-

Passive Count Charger Circuit 

variety of battery packs already terminated with JST connectors, this design decision also allows for both 

soldered-lead connections as well as adapters for converting other battery termination styles into the 

widely available JST connector. 

In the following sections of this chapter the challenges of battery management and system regulation 

decisions will be discussed in further detail. For the sake of ease of testing and development, a number of 

batteries using a standard JST connector were used for evaluation with the remainder of the components 

described in this chapter. 

4.2 Battery Charging and Management 

As referenced in the previous section of this chapter, the decision of precise battery chemistry was left, in 

part, to the power management and regulation portions of the subsystem design process. This section will 

better describe the motivation for on-board battery management in the context of rechargeable and non-

rechargeable chemistries. 

4.2.1 Battery Management ASIC 

One key consideration in the design of any system making use of 

rechargeable battery chemistry is the importance of precise control of 

current into and out of the cell over the course of the charging process. 

Often, without customized charging circuitry designed for the specific 

cell topology, battery charge lifetime is significantly reduced within tens 

to hundreds of recharge cycles. Previous TEMPO platforms have all 

made use of a common 300mAh lithium polymer coin cell, and thus this 

work strongly considered the use of rechargeable lithium chemistry. 

Throughout the process of reviewing the previous platform’s hardware, 

it was discovered that the ultra-low footprint MAX1555 LiPo charger 

ASIC used in the previous TEMPO nodes, could also be used to charge 

LiIon cells. Thus, the battery charging and management decision was 

simple. The ultra-small footprint and low passive count of the MAX1555 

allowed for the device to be included in the hardware layout. If a 

rechargeable lithium-based chemistry is being using, this IC manages 

recharging the cell from the included USB connector. It sources a single, 

charge indicator pin to the MCU for the purpose of determining when the device is actively charging. 

When a rechargeable battery chemistry is not to be used, these components simply become Do Not 
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Figure 30: Battery Management Circuit 

Area 

Populates (DNPs) and there is no recharge functionality present on-board which might potentially damage 

a non-rechargeable cell. 

4.2.2 Reverse Voltage Protection 

In addition to charge management another consideration key to protecting the system from significant 

damage due to battery failure or mis-installation is reverse voltage protection. Most commonly, system 

regulators are not protected against reverse voltage, and as a result, when the battery is installed in reverse 

the regulator is the first point of failure. A relatively simple circuit trick, introduced to the group by a 

previous INERTIA team member, is adopted from the previous platform to protect against reverse voltage 

situations. This circuit is provided for reference in Figure 29. Notice that the back-EMF protection diode 

is used forward-biased in this control scheme, pulling up the far side of the PMOS transistor and turning 

the transistor on for full current conduction in the channel. This circuit is useful as it provides a low-

profile reverse voltage protection solution that can be easily shorted out on the board at population time if 

the feature is not desired, for example if a soldered battery connection is being used. 

 

Figure 29: Low-Profile Reverse Voltage Protection Circuit 

4.2.3 Battery Management Layout 

With the MAX1555 circuit, low-profile JST connector, and 

reverse voltage protection PFET, the overall battery management 

area was kept to about 10% of the targeted 1”x1” form factor. 

This was deemed acceptable, considering the incredibly low 

complexity of interfacing the hardware and the near autonomous 

protection of the system against reverse voltage and overcharging 

damage to the cell. 
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In addition to providing the benefit of a minimal hardware overhead, the battery management portion of 

the board is considered completely optional. That is, if non-rechargeable, non-reversible batteries are used 

in a system, all of the components in this section, with the possible exception of the JST connector itself, 

can be simply left out or shorted to maintain the power path, as is the case with the reverse voltage 

protection PFET. 

4.3 Supply Regulation 

One of the most important considerations that eventually drove a majority of the interest in lithium-based 

chemistries for the TEMPO 4 platform was that of supply regulation. As opposed to battery management, 

the regulator is a key part of any embedded electronic system as it provides stable, reliable DC voltage to 

various on or potentially off-board components for operation. 

Low-power applications pose an interesting challenge for power system designers interested in energy-

efficient regulation. The traditional evaluation of regulator topology for low power systems promotes use 

of switching regulators as they, on average provide more efficient regulation and need not have an 

efficiency strongly correlated with the input-to-output voltage differential. However, there are some 

situations in which low input-to-output differentials, small current draws, and stringent area constraints 

significantly reduce the efficacy of switching regulators. This work attempts to propose one such 

application and demonstrate the improved efficiency of LDO linear regulators in this regime. 

4.3.1 Linear Regulators 

A linear regulator is a voltage regulation device that uses an analog feedback loop to lock its output 

voltage to either an internal or external reference voltage regardless of input voltage, provided it exceeds 

the sum of the dropout voltage and the desired output voltage of the device.  

 

 
Figure 31: Linear Regulator Power Flow 
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A linear regulator functions by essentially “shunting” any voltage above the desired output voltage, often 

provided by an internal band gap referenc, to ground. The easiest way to think about the power dissipated 

in a linear regulator is by considering an ohmic model of the device. Since all current delivered to the 

load, in this case our system, is passed through the regulator, and the voltage drop across the regulator can 

be calculated as the difference of the input and output voltages, and we can find the power consumed in 

the regulator and delivered to the load using an Ohmic model as follows. 

                                         

                          

Thus we can express the maximum efficiency, or the best-case ratio of power delivered to the load to 

power drawn by the device, of any linear regulator as follows: 

     

    
 

     

          
 

        

                       
 

    

             
 

    

   
 

For this reason, linear regulators are often used in applications where the output voltage, which must be 

lower than the input voltage, is a significant fraction of said applied input voltage. For example, when 

lithium polymer battery chemistries (~3.6V cells) are regulated down to standard 3.3V system operating 

voltage efficiencies above 80-90% are achievable in linear regulator topologies. 

In addition to the benefit of predictable efficiency regardless of load current, linear regulators require 

relatively few off-chip passives, usually just two capacitors used for input and output decoupling, and 

low-power parts, where less power is dissipated on-die, have reduced their pin-count and package size 

significantly in recent years. As a result of this smaller package size and low off-chip passive count, linear 

regulators have the added bonus of being able to produce multiple, electrically isolated and regulated 

outputs, at various voltages if desired, without consuming significant amounts of board area. 

4.3.2 Switching Regulators 

Switching regulator topologies are more varied, and generally speaking, less restrictive than their linear 

counterparts. The fundamental concept of switched-mode regulation is the use of a switch-control 

feedback circuit, rather than a continuous-control comparator circuit, to converge on the desired output 

voltage. As a result of this switched-mode operation the input-output relationship of a switching regulator 

is much more difficult to model. In “boost” based topologies, it is possible for the DC output voltage to 

exceed the input voltage, and thus these regulators perform poorly when stepping down voltages. Instead, 

“buck” or DC-DC converters are commonly used for step-down applications. Generally speaking, 
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Figure 32: Switching Regulator Topologies 

[35] 

switching regulator efficiency is often a function of specificity of 

design, with far greater diversity in available topologies and 

commercial products than linear alternatives. 

For years, switching regulators have been dominant in energy-

constrained applications as their non-linear characteristics allow 

for battery voltage boosting, low heat-dissipation, and incredibly 

high efficiencies when stepping large pack voltages, in the 12-

24V range, down to commercially complaint levels (i.e. 1.8, 3.3, 

5, and 12V). However, as devices start to support operation at 

lower and lower voltages (1.2-1.6V) to save energy, and Lithium 

and Zinc-based chemistries further reduce pack voltages (~3V), 

the need for large voltage drop across on-board regulators 

decreases, as does the traditional market-share of many of these 

switched-mode topologies. 

The most commonly cited draw-back of switching regulators is the need for additional off-chip passives 

not required by other classes of regulators. Since one of the concepts fundamental to switched-mode 

regulation is the idea of storing energy in an inductor or capacitor during the period where the switching 

circuit is off (input and output voltage electrically isolated) the efficiency of switched-mode regulators is 

often dictated in a large part by the quality factor of inductors, or size of capacitors used to store energy 

and regulate line voltages. Traditionally speaking, these metrics are strongly affiliated with the physical 

size of these components, and thus more efficient operation also means a larger area consumed for supply 

regulation. 

The design and layout of a switched-mode, boost converter was previously performed by a fellow 

INERTIA team member to source 6.3V to the DC charging apparatus in the TEMPO 3.2 charger. In this 

case a non-linear part was required as the system output voltage exceeded that of the input, 5V from the 

charger’s USB connection. In Figure 33 the result of this layout process is included for reference. It can 

be easily seen that of the 1.5x1.5” of the charger board, nearly half of the layout is consumed by the boost 

converter and affiliated passives. 
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Figure 33: TEMPO 3.2 Charger with Boost Regulation, FT232, and RS-485 translation IC 

A less-often cited draw-back of the switched-mode regulator is its efficiency degradation for small 

forward currents. Since many of these regulators operate by rapidly switching their outputs constantly, 

often at high frequencies produced on-chip, as the total load current drops the percentage of the input 

power-budget spent on switching increases, resulting in poorer efficiencies at low forward currents. As a 

result of this phenomenon, most switching regulators have an optimally efficient load current that is 

significantly larger than that targeted by this work, in the range of micro-to-milliamps. 

4.3.3 State of the Art Comparison and Regulator Decision 

As a result of the relatively high efficiencies of Low Drop-Out (LDO) linear regulators with small 

forward voltages, and the relatively low load currents (µ-mA) required for this application an LDO linear 

regulator topology was selected for use in the TEMPO 4 platform. Specifically, the AP7312 dual-output 

LDO linear regulator from Diodes Incorporated was chosen, as it can provides two electrically-isolated, 

controllable, 150mA outputs, one of which is used for on-board voltage regulation, the other for 

providing supply to the 16-pin generic header to be discussed in a later session. 

Once an LDO linear regulator topology was selected, its output voltage was specified. While many 

components used in the TEMPO 4 system work can operate over a wide variety of operating voltage, the 

standard compliant 3.3V level was selected for system operation. This was in part motivated by a desire 

to support higher frequency operation of the MCU and also in part to allow regulation or division down to 

lower standard voltage levels. Once this 3.3V operating point was selected, it automatically implied that 
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Figure 34: Testboard Supply and Regulation 

Layout  

(with 100 mil header at left for reference) 

lithium chemistries would be a good fit for this application, as they produce nominal voltages between 3.6 

and 4V, resulting in efficiencies as high as 92% for a 3.3V output. This also aligned with the battery 

management conclusion to include on-board LiPo/LiIon charging circuitry, finalizing the design decision. 

4.4 Battery Management and Regulation Summary and Conclusions 

The final solution arrived at for battery supply, management, 

and regulation is intended to optimize flexibility for future 

developers with varied system power constraints. By 

providing a standard JST connector, any battery or battery 

pack, provided it produces at least 3.5V nominal output 

voltage, may be used with the system. Battery charging is 

accomplished via the on-board USB connector and a 

MAX1555 Lithium-based battery management IC. If a non-

rechargeable chemistry is to be used with the platform this 

battery management chip is simply not populated in the final design. Last, but not least, the use of a 3.3V 

dual output AP7312 LDO linear regulator from Diodes Inc. implies that while larger pack voltages are 

tolerable for the system, they do imply poorer regulation efficiencies. With a LiPo or LiIon cell connected 

to the TEMPO 4 platform, regulator efficiency near 80% across the typical operating current range is 

expected. A full circuit schematic for system supply and regulation is provided in Figure 35 below along 

with the system test board layout in Figure 34. 

 

Figure 35: TEMPO 4 Battery Supply and Regulation Circuitry 

The co-design concepts introduced in this section focus on the trade offs of form-factor, lifetime, and 

flexibility. In regard to battery chemistry, when exploiting the volume, mass, and energy-density benefits 

of Lithium-based chemistries, it is important for application designers to consider the power constraints 

they imply on system operation, including attempting to better level system power network loading in 
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order to reduce peak input currents as much as possible. During the discussion of battery management, the 

high impact of ASIC products on the design space is discussed, along with the firmware benefits of using 

these tightly-integrated products in hardware design, including autonomous operation and easily 

interpretable charge indicator signaling. Last, but not least, during the supply and regulation section of 

this chapter the importance of consideration of nominal cell voltage and expected increase in the use of 

Lithium battery chemistries is used to motivate selection of a non-traditional linear regulator over a more 

complex switched-mode device, for the purpose of increased efficiency and reduced hardware footprint. 
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Chapter 5 

Control, and Programming and 

Interfaces 

The principle design challenge in determining the limits of end-point flexibility and ease-of-use for the 

TEMPO 4 platform was that of programming and interfacing the node. A number of tentative hardware-

firmware solutions to the generalized problems of controlling node operating and sampling were 

proposed, but ultimately no one-size fits all conclusion could be drawn. For this reason, rather than focus 

on enabling the maximum possible extent of system operation under a singular unified operating model, 

this section focuses on achieving reasonable goals for the programming, control, and interfacing of the 

TEMPO 4 system based on iterative development of a series of rigorously test firmware libraries. 

5.1 System Controller Selection 

Arguably the most important challenge in any embedded system design problem is that of MCU 

selection, and for the purpose of this chapter’s organization it is the challenge that will be addressed first. 

In this section the challenge of controller selection is discussed in three parts, selection of controller 

topology, discussion of commercial-off-the-shelf (COTS) parts that fill into the selected topology, and 

ultimately selection and development on top of an individual part based on co-design trade-off analysis. 

5.1.1 A Brief Survey of Controller Topologies 

To begin the controller section process a brief qualitative market survey including a variety of topologies 

of controller units was conducted, followed by extensive discussion of the MCU selection decision with a 

variety of INERTIA team members and affiliated technical collaborators. Several key categories of 

contenders appeared, each with various advantages and disadvantages. Three primary candidate 

topologies are summarized below. 

Hardware Definable Controller Solutions: FPGAs and CPLDs 

This set of controllers consists of those which implement entirely, or nearly entirely, programmable logic-

based solutions to coordinate system operation. Common realizations of programmable logic solutions are 

those of Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic Devices (CPLDs), 
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both of which make use of a set of widely programmable processing blocks and precisely controllable 

interconnect arrays in order to allow fully user-defined hardware to be implemented in the device. 

The primary advantages of implementing hardware-defined control are those of flexibility and robustness. 

Since multiple control paths can be processed in parallel, with any level of redundancy and isolation from 

the remainder of system control events, robustness is increased. In addition the vast hardware-flexibility 

of these platforms allows for users to create almost any structure, from a simple state machine to a full 

implementation of a commercially available core [36] in the programmable logic fabric. This provides for 

the broadest possible scope of developer-defined system control to be captured by these controller 

topologies. 

Unfortunately, the lowered ease-of-interfacing for developers, higher power consumption during 

operation, and increased form-factor that comes with many of these devices often does not justify their 

use in ULP applications. More recently, some companies such as Xilinx, Altera, and Lattice have all 

sought to change that, bringing programmable logic into the low-power commercial market [37]. 

However, for now higher cost and legacy support for serial-execution processors has limited the success 

of these solutions. 

Hardware Reconfigurable Controller Solutions: Hard-core FPGAs and PSoC 

More recently a number of hardened silicon design firms have ventured into the programmable logic 

design space. Earliest examples of this work include simple PLA and PLD technologies. Today a number 

of tightly integrated reconfigurable hardware solutions are available on the market, from powerful FPGAs 

with hardened processor cores [37] to the Programmable System-on-Chip (PSoC) from Cypress [38]. 

 

Figure 36: Cypress Programmable SoC System Topology [38] 
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The previously mentioned Cypress PSoC series was considered more closely for its ability to enable a 

new-found level of flexible system operation, while providing a comfortable C-based programming 

interface to developers. Two series of the PSoC, one with an 8-bit 8051 core and another with a 32-bit 

ARM M0 were both contenders. Unfortunately though the development software is free and fairly 

intuitive to use, it was found to be quite difficult to implement novel hardware-defined functionality in the 

FPGA fabric without use of pre-developed Cypress libraries. Unfortunately as a result of this the PSoC 

failed to realize a number of the potential power and reliability benefits it’s topology was selected for. 

Though the PSoC chips are promising candidates for use in future iterations of the TEMPO platform, or 

hardware add-ons, their relatively immature, non-standard topology and lack of widespread adoption 

resulted in them not being considered in the final pool of candidate host-controllers. 

Flexible Hardware Controller Solutions: MCUs 

This family is entitled “flexible” hardware solutions to imply that most if not all commercially available, 

fixed hardware implementations of MCUs allow some degree of flexibility. Typically pins can always be 

configured as either digital inputs or outputs, as well as to special functions that may be affiliated with 

each pin, or a given set of pins referred to as a port. In addition it is typical for peripheral modules to 

contain a number of configuration registers, designed to meet the needs of as many end-point applications 

as possible with a single hardware block in silicon. In addition many MCU designers are looking 

increasingly towards widespread use of crossbar switches and port-mapping controller solutions to allow 

for even greater flexibility in output pin assignment. Currently SI Labs leads the way in this effort with 

nearly fully-flexible, mixed-signal crossbar functionality on all their 8 and 32 bit MCUs [39]. 

 

Figure 37: SI Lab Split I/O Crossbar Switch Design [39] 
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Since the power, ease-of-interfacing, and form-factor considerations implied by the previous two sub-

sections demonstrated them to be infeasible immediate solutions for the TEMPO platform host controller, 

this level of hardware flexibility was deemed sufficient for the desired operation. Though this decision to 

pursue flexible hardware solutions restricts the problem of controller selection to that of commercially 

available MCUs, it will be shown that significant effort is still required to determine which devices will 

best suite both system designers’ and developers’ needs. 

5.1.2 Operating Constraints and MCU Selection 

In order to constrain the results of a market survey and ensuing discussion to those that would suit the 

needs of medical and technical collaborators alike, a brief set of operating constraints was synthesized for 

the purpose of limiting the scope of market evaluation.  

Based on feedback from on-node processing efforts in previous TEMPO systems, which had a maximum 

system clock rate of 8MHz, a greater maximum operating frequency, of at least 16MHz, is desired for the 

TEMPO 4 system controller. It was also specified that the MCU did not consume more than 10mA at 

16MHz operation, a rather pessimistic bound for device operation. Working backwards to the industry-

standard metric, this implies an active current of less than 625uA/MHz at 16MHz. 

In addition, the ability of TEMPO to maintain accurate wall-clock timing and produce high accuracy, 

regularly spaced sample windows was also prioritized. For this reason, the TEMPO 4 node also calls for 

an MCU implementing at least 2 system timers along with a real-time clock (RTC) module for 

maintaining wall-clock time during device operation. It was also specified that these timers be sourced 

from an off-chip, high-precision crystal oscillator for the sake of mainting the quality of system and 

sample timing offered up by previous platforms. A second peripheral space consideration for the MCU is 

that of being able to interface a wide array of analog and digital products with easy-to-use hardware-

implemented peripherals. For the purpose of this work at least 2 ADC channels along with peripheral 

support for several common serial standards was considered as the bare-minimum for device interfacing. 

Last but not least the issue of code and data memory size was addressed briefly in the establishment of a 

lower bound for reasonably flexible and full-featured system operation. The previous TEMPO platform 

makes use of an MSP430 device from the F1XXX series with 10kB of SRAM and a rather large flash-

based program memory available to the developer. For the purpose of this work an SRAM size of greater 

than 5kB and program memory of at least 16kB were considered as minimums. All of the considerations 

described above are summarized in Table 10 below. 
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Feature Specification 

Frequency >16MHz 

Max Active Current (@ 16MHz) 625uA/MHz 

On-chip Timing Peripherals 2 Timers, RTC, Crystal-sourced 

Analog Inputs >2 channels 

Supported Serial Interfaces UART, SPI, I2C 

Minimum SRAM (data mem) size 5kB 

Minimum Flash (code space) size 16kB 
Table 10: TEMPO 4 MCU Operating Constraint Summary 

There are a large number of companies currently developing fixed-form MCU solutions for the ULP 

design space that fit the specification above including, but not limited to: the xMEGA from Atmel, PIC 

XLP series from Microchip, EFM32 from SI Labs, and MSP430 and Wolverine from TI. With so many 

options to choose from, it can be difficult to determine a precise candidate platform that is best suited for 

all possible end-point applications. As previously mentioned, instead of using a lengthy research period 

and background study to attempt to solve the problem of what is the“most flexible” fixed-implementation 

MCU, a brief state-of-the-art survey followed by copious review and discussion was used to determine 

various commercial devices’ suitability for use.  

In a round-about way this discussion returned to using an MSP430 platform in the next TEMPO platform 

because it meant developing hardware around familiar microcontroller supply, clocking, and decoupling 

circuitry, and that firmware code created for the previous TEMPO platform could possibly be ported to 

run on the newer TEMPO system. In addition the availability of a free, albeit code-size limited, Eclipse-

based Integrated Development Environment (IDE) [40] and a number of tutorials and operating systems 

for the MSP430 platform make it an ideal candidate for flexible operation in the firmware context. In 

addition, the conclusions discussed in the programming portion of this chapter also support the decision 

to use the MSP430 platform, as it offers up a low pin-count, easy-to-interface, and full-featured 

debugging protocol that can be accessed using a common, low-cost, commercially available platform. 

5.1.3 MSP430 Family and Device Selection and Prototyping 

With the decision to use an MSP430 series microcontroller [40] finalized the question then came to which 

particular device to use. Though this may seem like a straight-forward challenge, when a product search 

for MCUs with the desired metrics was conducted on TI’s website it returned over 30 different devices 

from 11 different part families. For this reason, an undergraduate student assisted with profiling the 

devices across a wide variety of metrics, producing the result that, of the selected set of controllers, the 

lowest footprint and pin count parts were all in the F534x family. A table of results from this preliminary 

MSP430 product survey is included below. 
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Part Number 
Frequency 

(MHz) 

Flash 

(KB) 

SRAM 

(B) 
GPIO 

Timers 

16-bit 

ADC 

Channels 
Package 

F241x Family 

MSP430F2410 16 56 4096 48 2 8 64VQFN, 64LQFP 

MSP430F2416  
16 92 4096 48 2 8 64LQFP, 80LQFP 

MSP430F2417  
16 92 8192 48 2 8 64LQFP, 80LQFP 

MSP430F2418  
16 116 8192 48 2 8 64LQFP, 80LQFP 

MSP430F2619  
16 120 4096 48 2 8 64LQFP, 80LQFP 

F247x Family 

MSP430F247  
16 32 4096 48 2 8 64LQFP, 64VQFN 

F248x Family 

MSP430F248  
16 48 4096 48 2 8 64LQFP, 64VQFN 

F249x Family 

MSP430F249  
16 60 2048 48 2 8 64LQFP, 64VQFN 

F261x Family 

MSP430F2616  
16 92 4096 48 2 8 64LQFP, 80LQFP 

MSP430F2617  
16 92 8192 48 2 8 64LQFP, 80LQFP 

MSP430F2618  
16 116 8192 48 2 8 64LQFP, 80LQFP 

MSP430F2619  
16 120 4096 48 2 8 64LQFP, 80LQFP 

F532x Family 

MSP430F5324  
25 64 6144 48 4 16 64VQFN, 80BGA 

MSP430F5325  
25 64 6144 63 4 16 80LQFP 

MSP430F5326  
25 96 8192 48 4 16 64VQFN, 80BGA 

MSP430F5327  
25 96 8192 63 4 16 80LQFP 

MSP430F5328  
25 128 10240 48 4 16 64VQFN, 80BGA 

MSP430F5329  
25 128 10240 63 4 16 80LQFP 

F534x Family 

MSP430F5340  
25 64 6144 31 4 9 48VQFN 

MSP430F5341  
25 96 8192 31 4 9 48VQFN 

MSP430F5342  
25 128 10240 31 4 9 48VQFN 

F541xA Familiy 

MSP430F5418A  
25 128 16384 67 3 16 80LQFP 

F543xA Family 

MSP430F5435A  
25 192 16384 67 3 16 80LQFP 

MSP430F5437A  
25 256 16384 67 3 16 80LQFP 

F552x Family 

MSP430F5521  
25 32 6144 63 4 16 80LQFP 

MSP430F5522  
25 32 8192 47 4 16 64VQFN, 80BGA 

MSP430F5524  
25 64 4096 47 4 16 64VQFN, 80BGA 

MSP430F5525  
25 64 4096 63 4 16 80LQFP 

MSP430F5526  
25 96 6144 47 4 16 64VQFN, 80BGA 

MSP430F5527  
25 96 6144 63 4 16 80LQFP 

MSP430F5528  
25 128 8192 47 4 16 64VQFN, 80BGA 

MSP430F5529  
25 128 8192 63 4 16 80LQFP 

F663x Family 

MSP430F6638  
20 256 16384 74 4 16 100LQFP, 113BGA 

Table 11: MSP430 Candidate MCU Devices 
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Once the MSP430F534x family of MCUs was selected, individual device selection was only a function of 

available memory size. For the sake of making a large amount of system SRAM available to future 

designers, and maintaining memory-size compatibility with previous TEMPO platforms, the 

MSP430F5342, with 10kB of on-chip SRAM was selected for use in this work. It is worth noting, that if 

less memory and lower affiliated cost is desired, all chips in this family are pin-compatible, implying an 

easy bill of materials swap for future platform producers. 

 

Figure 38: MSP430F5342 System Diagram [41] 

The MSP430F5342 is quite a capable chip for its size, featuring programmable on-chip oscillators and 

Frequency Lock Loop (FLL), a 16-bit MSP430 core, 4 Universal Serial Communication Interfaces 

(USCIs), 2 timers, an RTC with calendar mode, Spy Bi-Wire (SBW) programming, a port mapping 

controller, and a number of other useful peripherals all in a 48-pin VQFN package. More about the use 

ofof these features of this MSP430 device will be discussed throughout the reaminder of this section and 

document. 

Once the MSP430F5342 was selected for evaluation, a number of hardware test benches, with varying 

levels of integration of the core platform, were used to verify the device’s operating specification and 

better examine system performance. Images of several of the selected hardware test-bed platforms are 

included in Figure 39 below. 
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Figure 39: MSP430F5342 Development Platforms  

(Left-to-right: Olimex MSP430-5510STK [42], TI MSP430F534x 48-Pin Target board[43], and custom breakout for 

power measurement) 

Here again, it is important to remember that though this work is described in linear order of subsystem 

design, it was not in fact conducted in this way. The Olimex development board was used for the purpose 

of evaluating on-MCU USB transceiver solutions, and then later adopted as an available platform for 

early creation of code for configuration of common resources such the timer modules, RTC, clock control 

via the FLL, and some portions of the communications library. Unfortunately, the architecture of the 5510 

chip’s serial communication interface differed slightly enough that though this platform did have an on-

board MMC port it was not able to be used for early porting and development of the TEMPO 3.2 MMC 

libraries. 

The socket-based platform from TI was used for the most extensive portion of early system prototyping 

and code development. Though it may be difficult to see in the image above, this platform uses a solder-

less socket to connect directly to the QFN pads of an MSP430 48-pin QFN package. It then implements 

an easy-to-use on-board 14-pin JTAG connector along with simple single-inline pin header breakouts for 

all 48 pins of the device. By wire wrapping or connecting these pin headers to other development boards 

with ribbon cables, a number of early system prototypes were able to be tested on the bench without the 

need for custom PCB development. 

Last, but not least, at the same time as the TEMPO 4 system test board and MPU6000 breakout board, 

referred to later in this work, were created and produced, an additional custom, low-footprint MSP430 

breakout board was also created. This board’s function was two-fold. First, by producing a minimal pin 

count interface with little-to-no extra on-board circuitry this platform created a viable means for the 

precise measurement of system core voltage and current consumption at runtime. Second, the smaller and 

simpler population job of this low component count board resulted in a dramatically reduced turn-around 

time, and an ability to test the MSP430 supply, programming, and control circuitry independent of the 

remainder of the components included in the more complex TEMPO 4 system test board. 
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Figure 40: MSP430F5342 Power vs Frequency Plot w/ FLL Controlled Operation 

Using the custom MSP430 breakout board described above the power versus frequency profile of the 

MSP430 was obtained for each of the 4 core operating voltages the device is capable of operating at, set 

by a programmable on-chip LDO regulator at runtime. The results of this power profiling are seen in 

Figure 40. 

This on-chip core voltage regulator is by default configured to provide the minimum input voltage to the 

core, resulting in the lowest system power and also the smallest range of valid frequencies for system 

operation. However, if desired, application coders can raise the core voltage level, allowing for higher 

processing frequencies, seen in Table 12, at the cost of quadratic increase in system power and energy. In 

addition to being a useful feature for additional power consumption reduction or expansion in suitable 

applications, this on-chip regulator, which is separated from a second integrated regulator used for I/O 

voltages, makes this particular MSP430 platform an interesting candidate for Dynamic Voltage Scaling 

(DVS) based solutions. 

Mode Min. VCC VCore Max. fop 

PMM0 1.8V 1.4V 8MHz 

PMM1 2.0V 1.6V 12MHz 

PMM2 2.2V 1.8V 20MHz 

PMM3 2.4V 1.9V 25MHz 

Table 12: MSP430F5342 Power Management Mode and Core Operating Condition Definitions 

An independent study conducted outside of the scope of this work more carefully examined the feasibility 

of implementing DVS control in the MSP430 using a break-even time model that compares the device’s 

DVS energy consumption to that of an aggressive wake-sleep control configuration. Unfortunately, 

despite the interesting opportunity for investigation, it was deemed that this MSP430 platform’s low sleep 

power, and relatively high active currently implied a break-even runtime near 3 seconds. This means the 
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MCU would need to process continuously for 3 seconds in order to amortize away the extra cost of not 

sleeping for the slack time produced by running at a higher core frequnecy. Since this amount of 

uninterrupted runtime is not considered typical for the targeted set of TEMPO 4 applications and this 

analysis did not consider the added code overheads affiliated with USCI reconfiguration during 

frequency-scaled operation, it was considered unlikely for a DVS solution to yield practical benefit over 

standard sleep-wake, or duty-cycled, operation in the TEMPO 4 use-case. 

5.2 MSP430 Programming 

Although the previous section concludes with the selection of a single MCU-device for use in the 

TEMPO 4 platform it was not conducted agnostically of the programming portion of this subsystem 

design. Instead, each candidate platform in the previous section of this chapter was also evaluated for 

ease-of-programmability and availability of programming interfaces. The top candidates, including the 

Cypress PSoC and MSP430 were then evaluated for their ease of development through the use of 

development hardware and freeware tool chains. 

The conclusion to use the MSP430 from Texas Instruments is supported by a number if intermittent 

conclusions arrived at throughout the course of prototyping and programming firmware for use in many 

of the early test benches created as part of this work. This section will focus on three primary areas of 

consideration for programming and development interfaces. 

1. Physical overheads 

2. Cost, availability and ease-of-interfacing 

3. Backend software support and debugging considerations 

More information about each of these areas is provided in the affiliated sub-sections below. 

5.2.1 Physical Considerations Overheads 

One challenge to be considered explicitly for the TEMPO 4 platform was that of physical overheads 

affiliated with system programming interfaces. While at first glance this may not appear to be a vital 

consideration, it is in fact, a significant challenge for many modern open development platforms. For 

example, the TEMPO 3 systems all made use of a custom-external programming board, as seen in Figure 

41, adapting a standard 14-pin JTAG connector to a high-density, lower-area connection for the sake of 

on-board device programming. This was largely due to the fact that integrating the 14-pin JTAG 

connector directly into the platform would have resulted in significant form-factor increase.  
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Figure 41: TEMPO 3.2 Custom Programming Adapter 

Unfortunately, this small, high-density connector made both the TEMPO and interface boards difficult to 

assemble, and also required relatively little lateral force to damage beyond repair once installed. Thus 

early in the design process it was decided that the TEMPO 4 platform would not make use of any 

specialized high-density connectors. The figure below provides images of the TEMPO 3.1 and 3.2 high-

density programming connectors, as well as an example of the damage that can be caused do the 

connector by physical stress. 

 

Figure 42: TEMPO 3.1 and 3.2 High-density Programming Connectors with Example of Damage to 3.2Connector 

Though a number of standard exist for programming microcontrollers, some of the most common 

programming strategies include either fuller-featured 10-16 pin JTAG connections or smaller, serialized 

programming connectors that may offer up less debug functionality in a lower-pin count, or more 

common interface. Texas Instruments stands out in their efforts to optimize these lower pin-count 

interfaces without reducing full debug functionality. Currently, of the 14-pins present in the JTAG 
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Figure 43: Texas Instruments Spy Bi-Wire Operational Concept [44] 

connector TI only requires the use of four in 

full JTAG interfacing. In addition the 

company has introduced the Spy Bi-Wire 

(SBW) serialized 2-wire programming 

interface for even lower footprint 

programming overhead [44]. 

For the purpose of this work the SBW debug 

interface was selected for interfacing the 

MSP430 controller. This added that 

constraint that the selected MCU must have 

the interface available for use, as only TI’s 

newer MSPs have the SBW interface implemented on them, and that little to no additional programming 

hardware should be required on the board. The integration of this 2-wire interface into the 16-pin 

development header is discussed during the interfaces section of this chapter. 

5.2.2 Cost, Availability, and Ease-of-use 

This section addresses a lesser-considered challenge to using many commercially available MCU devices; 

that of sourcing programming hardware and using the desired programming interface on a day-to-day 

basis. Though this may not seem like a critical constraint in the modern design space, often times 

hardware programming and debug interfaces for more complex platforms can host hundreds or thousands 

of dollars, and require expensive back-end software for the purpose of interfacing and debugging the 

hardware during the programming process. 

Fortunately a clever, low-cost, and high-availability solution for SBW programming of the MSP430 was 

arrived at just prior to the beginning of this design work. The TI Launchpad platform, a $10 development 

board from TI, including a value-line MSP microcontroller, two pushbuttons, two LEDs, and a USB 

programming and communication port, represents a significant step forward in getting beginners and 

hobbyist markets involved in programming the MSP430. 
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Figure 44: MSP430FET USB-based Programmer 

In order to be able to program this device TI needed to implement their proprietary SBW programming 

method in a self-contained way, as traditional MSP USB to JTAG programmers cost between $50 and 

$150 [45]. In order to accomplish this, a chain of TI-based ICs is used to accomplish USB to SBW 

conversion in the top half of the Launchpad platform. Even more impressive, is the ability of this USB 

port to be simultaneously used as both a debug interface and plug-and-play serial communication port 

during on-board testing and evaluation. However, these serial communication capabilities will not be 

required for use in this work. 

5.2.3 Final Device Programming Solution 

By using the emulation to evaluation jumper pool on the LaunchPad and connecting to the TEST and 

RESET signals from the emulation side of the device, without connections to evaluation side made, the 

platform can be used as a USB debugger for any MSP430 system using a SBW interface. In fact, if 

desired, the emulation portion of the board could be cut away entirely, leaving only the SBW connections 

and a ground available for the user. The figure below demonstrates this use of the Launchpad as a widely-

available, stand-alone USB programmer for less than $10. 

 

Figure 45: MSP430 Launchpad Platform as a SBW Programmer with Emulation and Evaluation Portions Labeled [46] 
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Figure 46: Launchpad Debugger Connected to the TEMPO 4 Test Board using SBW debugging interface 

5.3 System Interfaces  

One of the primary challenges addressed by this work is that of interfacing a wide variety of sensing and 

reporting modalities, both through analog and digital signal capture amd communication. If there is one 

strong suite of the TEMPO 4 platform relative to its market competitors it is that of easy-to-use serial 

digital interfaces and the code libraries that supports them. This section discusses both the standard and 

the custom interfaces available to users and developers of the TEMPO 4 platform including the 16-pin 

generic development header that will serve as the motivating feature for the next chapter of this 

document, and the on-board USB interface. The issues of wireless data reporting and MMC storage are 

not addressed in this chapter, as they will be dealt with at length in the coming chapter. 

5.3.1 Serial Digital Interfacing  

The first and primary challenge addressed in the development of the TEMPO 4 platform interfaces is that 

of digital interfacing for a variety of common serial standards. For this reason, many of the most 

significant co-design concepts found in this work rely upon the iterative development of a rigorously 

tested interfacing scheme for a number of serial standards. To begin with a brief qualitative survey of 

available sensor, as well as storage and radio, serial interfaces revealed three primary contenders for 
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commonly implemented protocols: the Universal Asynchronous Transceiver (UART), Serial Peripheral 

Interface (SPI), and Inter-Integrate Circuit (I2C). Each of these three standards will is discussed below in 

the context of implied system-wide constraints, co-design principles and impacts on the desired metrics. 

 UART Interface 

The UART interface has two primary advantages which are most likely related. The UART is, outwardly 

a rather simple interface. Two separate RX and TX lines, along with a common ground return path, 

communicate data in full-duplex with no sharing of the clock, and thus no strongly delineated master or 

slave. Possibly as a result of this outward simplicity and historical significance, the UART interface is 

quite common. The RS-232 standard, used by most personal computers and referred to as the “serial” 

port, is a UART connection that operates with a 10-24V nominal swing that can be easily down-converted 

for use with more common embedded signaling voltages. For this reason a number of sensor and system 

manufacturers provide UART interfaces to their platforms and modules. Though typically UART 

operates at baud rates below 1Mbps, some commercial devices will communicate with UART baud rates 

up to and exceeding 3-10Mbps 

At first glance the UART seem to be a near ideal interface for low-power serial communication. By 

sending data asynchronously, or whenever it is ready, and not transmitting a clock along with this data 

both power and energy savings are reaped. However, taking a deeper look into the operation of a UART 

interface can help answer the question as to why asynchronous data recovery is often a more energy 

hungry system-level operation than it may appear. 

When a UART transmitter prepares to launch a packet of data, typically a single byte in most cases, it 

must first turn on its own baud rate generation. In most modern systems this is rather easily accomplished 

as the UART module has its baud sourced from an internal system oscillator being used to source other 

hardware, such as the core or timers, and thus the clock has already stabilized. Before the transmitter 

places the first bit of data onto the line, it first signals a start bit by pulling the line low to indicate to the 

receiver data is about to be transferred. This start bit may last one or two baud periods depending on what 

the system designer specifies. The start bit is followed by 8 baud periods, during which each bit of data is 

transferred serially. At the end of this window, some devices may choose to also send a stop bit indicating 

the end of transmission. This is commonly used for detection of packet framing errors, as the transfer 

window begins with a ‘0’ and ends with a ‘1’, it makes sense that packet overrun framing errors can be 

detected based on these criteria. 
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Bit 1 2 3 4 5 6 7 8 9 10 

Symbol Start bit  5–8 data bits Stop bit(s) 

Value 0 D0 D1 D2 D3 D4 D5 D6 D7 1 

Table 13: 8-Bit UART Bit Sequencing 

In order for the receiver to capture the data being sent by the master it must respond to the start bit and 

begin locking its input delay to the rising edge of this bit. If the baud is slightly mistimed by the receiver 

this does not mean the bits will necessarily be misread by the module. Only if baud is severely enough 

mistimed that a bit is mis-latched (i.e. wraps around a half /whole baud window, depending on the 

latching edge) does baud timing become an issue. It is important to note that when discussing baud 

mistiming accumulating until it “warps” around a baud window, it is not implied that this occurs within a 

single cycle. Rather, the accumulated baud offset, which is linearly proportional to bits per word, is what 

cannot grow greater than some fraction of a baud period. This is illustrated in Figure 47 below. 

 

Figure 47: Baud Rate Slip in UART Communication 

The maximum toleratble baud timing slip (ΔT) can be expressed as function of the number of bits in a 

word (N) and a fraction (α) of the baud period (T) as shown in the inequality below. 

              
      

 
           

      

 
         

Thus on-chip measurement and locking of the baud rate must occur within 1 baud period, and also lock 

within ΔT of the true rate, where ΔT represents the maximum baud mistiming such that the accumulation 

of this slip over the entire word transmission does not result in a missed bit. The resulting dual statement 

for frequency implies that the frequency of the clock used to time/lock the incoming data for this signal 

must be at least N times as fast as the baud of the incoming message to be successfully latched by the 

receiver. 

For this reason, most 8-bit UART modules require that the baud divisor, baud rate clock sourced from a 

higher rate clock divided down, be no less than 8, the output data length of the module. This reduces the 

maximum throughput of these devices and also increases the receiver power, as the frequency of 
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operation need be, in some cases, much higher than the desired baud rate. In cases of high throughput 

interfaces (>1Mbaud), this can often make UART operation the constraining factor in overall system 

clock rate, and in some cases (>3Mbaud) can begin to prohibit UART operation in the ULP context 

altogether. 

In addition to the issue of clock generation and incoming data reception, UART is also burdened with the 

downside of being a primarily single-endpoint driven bus protocol. The addition of a number of other bus 

signaling pins, formalized in the RS-232 standard, can help to extend UART to multi-endpoint 

applications in necessary scenarios, but at the cost of additional GPIO dedicated to bus control. As a 

result of significant control overheads and form-factor constraints, multi-endpoint UART 

communications were not considered as part of this work. 

Despite some of the draw backs of the UART interface it was targeted as a desired objective in this work 

for two primary reasons. First and foremost, the USB to UART transceiver IC used for communications 

with the PC demanded at least one dedicated UART. Secondly, the microcontroller platform selected for 

the TEMPO 4000 design has 2 on-board UART/SPI modules capable of using either protocol. As a result, 

while one interface is dedicated to the on-board USB connection, the other is free to be configured as 

either a UART or SPI by the user prior to firmware compilation-time. 

The UART portion of the communications library was based in part on a previous, in-group library 

written by two previous students for an older MSP430 platform. It improves upon this previous work by 

offering user-allocated data storage and a more minimalist data-management function API while trying to 

maintain the interrupt-driven code architecture and data storage methodology of the old library. 

SPI Interface 

The SPI is the simplest of the three common serial interfaces implemented as part of this work. SPI 

operates using two simple shift register structures, one device, referred to as the master, sources the clock 

for these two registers and data is swapped from one shift register into the other on each clock edge. By 

allowing the programmer to read/write these registers from either device after or during communication 

this data flow allows for full duplex data exchange. By sharing a single clock, sourced at the full baud rate 

from the master to the slave, both ICs do not need to pay the price of any baud multipliers. As a matter of 

fact, some well designed SPI interfaces allow communication at much higher baud rates in slave mode 

than the internals of the chip are capable of running at. 
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Figure 48: Typical SPI Master-Slave Topology w/ One of Two Data Connections and Clock Signal Shown 

The device(s) which are sourced a clock from the master are referred to as slaves. Often an additional 

dedicated signal is also sourced from the master to each of the slaves. This line commonly referred to as 

chip-select (CS) or slave-select (SS) is used to create a parallel addressing structure for the bus, when 

asserted, the slave listens and communicates on the bus, otherwise it ignores all bus traffic. The result of 

this is a linear proportionality between SPI bus size and number of addressable devices. The core SPI 

communication connection is composed of 3 basic uni-directional pins along with this CS connection, 

outlined in Table 14 below. 

Pin Name Pin Function 

SIMO Slave In/Master Out: TX from master to RX slave 

SOMI Slave Out/Master In: RX to master from TX slave 

SCLK Serial Clock: Clock from master to slave 

CS Chip Select: Optional multi-slave select line 
Table 14: SPI Signal Description 

The low hardware complexity and rudimentary operation of the SPI makes it an ideal candidate for low-

power communications. When sensors produce highly bursty data streams, such as cameras or audio 

modules, single or parallelized SPIs are commonly used to achieve peak data rates instantaneously while 

allowing for low average power consumption. An added benefit of the SPI is its lack of formal voltage 

specification. Though many devices operate SPI interfaces in the standard 1.2-3.3V range, there is little to 

nothing, except for gate delay itself, in the way of further reducing SPI voltage swing in the name of 

increased energy savings for lower throughput communication interfacing. 
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The incredibly simplistic nature of the SPI interface makes it a good replacement for many more common 

serial data standards that have strong mater/slave roles. The use of SPI to communicate through the MMC 

standard with MicroSD cards is a good example of this ability. In addition to interfacing the on-board 

flash memory, a single SPI interface was also intended for communication with a 6 degree-of-freedom 

IMU from Invensense. Unfortunately, this part was non-responsive and ultimately warranted a move to a 

close I2C-based relative. 

SPI is a common standard for ultra-low power reporting modalities. Devices like digital temperature 

sensors, barometers, accelerometers, magnetometers, etc. often employ SPI interfaces due to their flexible 

operating frequency and low-power/complexity for the on-chip components. For this reason, all 4 

communication interfaces on the selected MSP430 MCU support SPI communication. The SPI library 

created as part of this work leaves chip/slave selection to the programmer, as it was found that various 

devices interpret this signal in various ways, making a single, hard-coded solution non-optimal. 

Otherwise, the SPI library delivers simple, interrupt-driven read, write, and swap functionality for single 

and multi-byte transfers. 

I2C Interface 

Of all three serial protocols supported by the TEMPO 4000 platform inter-integrated circuit (I2C) is both 

the most compact, and possibly the most power inefficient. The I2C bus is an outwardly simple 2-wire 

bus that contains only two pins Serial Data (SDA) and Serial Clock (SCL). While the SCL pin is still 

sourced from the master to the slave, the SDA line is bi-directional, allowing for simple half-duplex 

transmission. I2C can achieve such a compact hardware footprint as it uses a more complex signaling 

scheme to initiate and verify communication with the slave(s).  

 

Figure 49: Example of I2C Bus Topology w/ Multiple Slave Devices 
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Despite the relatively simple appearance of the I2C hardware it does require some minimal additional 

passives for bus termination. Due to the bi-directional nature of the SDA signal in the bus, and the ability 

to electrically isolate the clock line from the master or the slave during reads, I2C communications 

require one pull-up resistor be placed on each of the two I2C lines, SDA and SCL. This results in the line 

being pulled high whenever a device finishes transmission, signaling to the master that the bus is again 

available. To some extent, these pull-up resistors can be increased in value for linear power/energy 

savings; however, once the lumped parasitic capacitance of the line (PCB trace, pin, pad, ESD, etc.) is 

added to this pull-up, a low-pass filter is formed. The result is that as pull-up resistance is further 

increased, baud rate in the channel will have to be decreased accordingly. Outside of hardware 

complications, the issues involved in addressing a large, half-duplex, multi-slave environment, while 

time-sharing for full-duplex communications between endpoints is largely left to firmware control of the 

hardware unit. 

For this reason, what I2C saves in hardware complexity, it often makes up for in software management. 

Routines required to successfully manage an I2C interface require more complex, structure-oriented APIs 

for higher-level programmers to easily interact with the underlying hardware. I2C data “packets” contain 

headers that indicate the direction of the transaction, read or write, along with address of the desired slave. 

As a result, multiple devices can now be connected to these two signals and share the bus provided only 

addressed devices respond via SDA when clocked. In addition to these packet headers, the I2C bus 

protocol also dictates the strict use and timing of start and stop bits, along with ACKs and NACKs 

designed to further improve reliability and robustness of communication. 

The I2C portion of the communications library also runs in an interrupt-based structure. This interrupt 

automates a small fimrware finite state machine (FSM) designed to complete I2C compliant 

communications. Unfortunately a hardware erratum, found only after the production of the first set of 

nodes, means that the I2C interface only has timing closure up to about 50kHz, well below the maximum 

communication rates of many existing I2C parts. 

Protocol Summary and Communications Library Organization 

A table summarizing the top-level information, but not the individual design challenges, presented in each 

of the sub-sections above is included below. This table is not presented for the purpose of evaluating the 

protocols for use in the TEMPO 4 platform, as it has already been determined they will all be supported in 

the hardware and firmware of the system. Instead, this table is intended to demonstrate the strengths and 

weaknesses of each serial protocol for the sake of various possible future interface decisions. 
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UART SPI I2C 

Max Baud 10’s MHz 100’s MHz 400 kHz 

Power Medium Low High 

Multi master No No Yes 

Multi slave No Yes Yes 

Transfer Size Fixed Variable Semi-fixed 

Pin Count 2 (min) 3+N 2 

Availability High Medium Medium 

Advantage 
Compatibility 

Ease 

Speed 

Power 

Flexibility 

Size 

Table 15: Summary of UART, SPI, and I2C Communication (N = number of endpoint devices) 

Based on Table 15 it can be concluded that for low-power or high throughput designs where there will not 

be a large number of end-point devices the SPI protocol is an intelligent choice. Meanwhile for multi-

slave networks with low overall form-factors, I2C is the correct design decision. Last, but not least UART 

dominates the space of low pin-count, easy to interface, single-end point communication strategies. 

The fundamental concept behind the TEMPO 4 communications library is the simplification of user 

interaction with low-level hardened silicon IP blocks design for various types of serial communication. 

Texas Instruments uses the Universal Serial Communications Interface (USCI) module as a base for all 

hardware serial communications. This USCI comes in two flavors; USCIA modules perform either SPI or 

UART communications while USCIB modules perform either SPI or I2C communications. Each MSP430 

may have multiple USCIA or B modules specific to its series or family. The library addresses this by use 

of a custom defines file for each MSP430 device, along with conditional compilation directives designed 

to prune away unused routines for minimal code bloat. Currently an interface must be dedicated to a 

single protocol at compile time, in order to remove the possibility of off-chip cross-protocol collisions. 

A communication interface is established by calling the registration function within the library. As an 

argument this registration function takes a communications configuration structure. This configuration 

structure indicates the type of module intended for use (UART, SPI, I2C), desired baud, location of a 

write-back pointer, and several additional control fields. However, rather than configure the module 

immediately, this configuration information is stored and indexed, so that the peripheral can be 

configured just prior to use. Since the communications library is intended to allow multiple applications 

to access any one physical interface, some source of program identification must be provided back to the 
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developer. For simplicity, the unique index of this stored configuration information is provided, and 

referred to as the communication ID. 

The communication library’s primary sole reference to any registerd application is the communication ID. 

When a new user application calls the registration function with an endpoint configuration, it is returned a 

communication ID. This ID is analogous to a socket number. It “keeps track” of all the configuration and 

status information required by the library for operation. Whenever an application calls an endpoint 

function, such as spiA0Write(), the function takes, as one of its inputs, the application’s communications 

ID.  Using this ID the library configures the affiliated resource and then passes the message. The code is 

optimized to remove redundant reconfiguration, so that applications which frequently use a single 

interface need not pay the full reconfiguration time on each access of the device. 

By implementing a simple, socket-style of communication scheme designed to minimize developer 

interaction with low-level hardware configuration, while still allowing skilled designers access to a 

majority of the underlying control mechanisms in the MSP430 hardware, this work attempts to produce a 

general model for communication on which to construct all other interfaces discussed as part of this work. 

 

Figure 50: TEMPO 4 Communications Library Operational Hierarchy 

5.3.2 TEMPO 4 Development Header 

The primary feature of the TEMPO 4 platform’s design for open development is that of the 16-pin generic 

header provided to the developer for interfacing the node and enabling hardware add-ons in the form of 

top or bottom mounted expansion boards. At this point in the design summary, this document has 

provided enough information to outline the pin-out of this header and describe its intended functionality. 
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Figure 51: Dimensioned Drawing of Maximum 

Allowable TEMPO 4 Pin Header 

Physical Layout and Pin Count 

The total pin count of the development header was not arrived at arbitrarily. To begin with it was 

established that the TEMPO 4 header should conform to standard 100 mil spacing practices, this set the 

platform apart from Shimmer 3, which uses custom, high-density connectors to interface user-developed 

hardware [5].  Next, the maximum outline of 100 mil-spaced pin headers that would allow for some 

minimal external routing constraints was determined. To this 

end, the dimensioned drawing in Figure 51 was arrived at. 

This header size constraint resulted in 16-pins being fit on the 

board, and thus this is used for the pin-count for the 

remainder of this work. It is worth noting that though these 

pins are spaced by 100 mils vertically, they are not spaced at 

an even multiple of 100 mils horizontally. This is a potential 

negative feature as it means the board cannot be easily 

plugged into a standard breadboard; however, the area gains 

created by spacing these pin headers slightly farther apart were determined to out-weigh this convenience 

constraint. In addition, preliminary testing indicates the loose tolerances on many breadboards does in fact 

allow for the TEMPO 4 node to be inserted into most commercially available breadboards if desired. 

 

Figure 52: Final TEMPO 4 Design Demonstrating Breadboard Interfacing w/ 16-pin development header 

Electrical Considerations and Header Pin Out 

The TEMPO 4 development header includes two “power rails”, or regulated VCC and ground, electrically 

isolated from on-board supply but not from each other, for powering add-on platforms. It is worth noting 

that applications drawing more than 150mA will need separate, electrically isolated supplies. In addition 

to these supply pins, the header also contains the standard TEST and RESET signals that compose Texas 
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Instrument’s SBW programming interface. This allows for quick and easy device reprogramming through 

the header. 

 

Figure 53: TEMPO 4 16-Pin Development Header Pin-out 

In addition to power supply and programming, the header provides mixed-signal I/O capabilities for a 

variety of sensor-based applications. The first general purpose serial I/O (GPSIO1) interface is designed 

to be a dual-use SPI/I2C communication channel, but the use of an on-board I2C inertial motion capture 

unit discussed in a following chapter, if populated, means this interface should only be used for I2C 

communications. As previously mentioned, the microcontroller selected for this project contains an 

erratum that states this I2C module does not have timing closure above 50kBaud. As a result, no baud rate 

above 50kbps is supported on GPSIO1. The GPSIO2 interface is a fully functional general-purpose 

SPI/UART communication interface. UART and SPI baud rates up to ½ of the system clock rate are 

supported, but it is recommended to keep these interfaces below 10MBaud for reliable operation. 

The four general purpose I/O pins (GPIO1-4) support digital input and output functionality as well as 

analog input capture, via an integrated MCU-side 12-bit SAR analog-to-digital converter (ADC).  In 

addition to these four dedicated GPIO inputs, any pin other than the supply and programming pins can be 

reprogrammed as a simple digital input/output, including the GPSIO clock lines when the interfaces are in 

UART or I2C (2-wire) mode. 

The TEMPO 4 development header supports the communications library described as part of the previous 

sub-section of this chapter for easy handling of the two USCI modules included in the pin-out. For the 

purpose of protecting end-point devices, the ability to dynamically reconfigure between protocols, that is 

to switch a module from SPI to I2C operation during runtime, is prevented against using conditional 
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compilation directives. However, for more skilled designers with complex system topologies in mind, 

there is nothing preventing this sort of code modification from being performed. Analog sampling is left 

to the user, with a number of code examples on ADC control and timing available from TI and other 

sources.  

5.3.3 USB Communication 

Though a case study included in a previous section of this work dealt with the issue of USB transceiver 

selection, it is worth noting the full value of this interface to the TEMPO 4 platform. Not only does USB 

serve as the data offload interface for the node it also provides the current and voltage for battery 

recharging. Thus, as mentioned, considerations regarding this USB interface were considered to be of 

paramount importance.  

As previously concluded, the UART protocol lends itself well to the USB transceiver design space as 

messages are passed to and from the user asynchronously. In addition, the constant possibility of USB 

connection and a corresponding demand for the bus meant the USB transceiver would need to be granted 

its own dedicated, single-end point hardware communication interface. In the case of the FT232 

transceiver selected as part of the previously mentioned case study, a UART interface demonstrated the 

highest ease-of-use and firmware transparency, and was thus selected as the appropriate solution. 

This dedicated FT232 UART interface is managed via the previously mentioned communications library 

on USCIA0 of the MSP430 device. Due in part to the simplicity of the UART protocol and in part to the 

ease-of-interfacing of the FT232 device, the entirety of the FTDI firmware library is composed of 

declaration of a buffer for message storage and a set of call-through functions to pass messages in and out 

of the USCIA0 interface synchronously. This firmware library is intended to be used as a reference for 

future designers interested in developing for the USCIA1 module, which is available in the development 

header for future UART deployments. 

Charging Considerations 

The default USB port will supply up to 100mA of current at 5V nominal output to any inserted device. 

Upon device request, the USB standard supports current draws of up to 500mA and thus requires a 

relatively reasonable level of hardware protection, which is often improved upon by commercial system 

designers. For this reason, USB charging and supply was seen as a reasonable direction for this work. 

Only the FT232 USB transceiver IC itself is powered from the bus directly, the remainder of the current 

consumed by the TEMPO 4 platform when plugged into a PC or outlet over USB is used to charge the 
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devices battery via the MAX1555 battery charger IC. For this reason the on-board USB interface is able 

to serve both as the device’s offload and charging interface. 

Offload Time Constraints 

One complaint heard about the TEMPO 3 system, which also made use of an FT232 transceiver ASIC, 

was that of relatively long data offload times. This resulted primarily from a 1ms character delay enforced 

in the out-going PC-side of the offload stream for the purpose of reducing the chance of bit errors caused 

by unreliable node firmware-side operation during UART receive interrupt operation. In response to this 

complaint, the metric of offload-time ratio, or the amount of time for which a node spends collecting data, 

relative to the amount of time in which that data is offloaded was established and examined in the context 

of this work. 

The TEMPO 3.2 system, at its worst, had an offload-time ratio of about 7.5, meaning that if 7 and a half 

hours of data were collected by the node, the user would need to wait one hour for this data to offload. In 

response to the demand of users for more rapid data offload, the TEMPO 4 system provides two possible 

avenues towards a solution. The first, hardware and firmware driven, provides a more robust and reliable 

interface for UART communication. The result of this improved UART communication is the ability to 

reliably communicate data at speeds up to 1MBaud, implying an order-of-magnitude improvement in the 

offload-time ratio. A second, PC-side direct MMC-driven offload is described briefly during the future 

directions portion of this work. 

Final Design and Layout 

The test-board configuration of the bus-powered USB transceiver configuration is provided in the 

schematic capture below. Only one revision of this circuit was produced as part of the TEMPO 4 design 

process as it performed adequately nearly immediately upon implementation. The FT232’s on-chip 3.3V 

linear regulator output is sourced to the USB_VCC connection in order to provide a USB-present 

indicator signal to the MSP430. In addition the connections between the USB connector and IC, UART 

communication lines, and minimal decoupling capacitors can be seen below.  
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Figure 55: TEMPO 2 

Platform with Two User 

Push-buttons 

 

 

Figure 54: Final TEMPO 4 USB Transceiver Schematic and Layout 

In addition to the convenience of having already used a similar part, in an alternate package, as part of a 

previous TEMPO-related device, the software backend to support basic communication with the chip in 

Python had also already been established. For this reason, use of a communication interface similar to that 

of the 3.2 node, but with shorter commands and less communication overheads, resulted in the need for 

only slight modification of the original Python code. It is hoped that with some careful porting, this newly 

created communication class might be able to be imported into the existing BodyDATA offload 

infrastructure created from scratch for the TEMPO 3.2 platform. 

5.3.4 User I/O 

The TEMPO 4 node differs significantly from its predecessors in that it is not necessarily intended for a 

custom-printed enclosure. Instead, for now it relies on the indiviudal developer to determine the form-

factor that best suites the end-point application. For this reason, it was 

considered advantageous for the TEMPO 4 platform to offer up some ability 

for direct user interaction. This is accomplished using two optionally 

populated push-button switches and LEDs for signaling to and from the 

user. 

Generally speaking the concept of push-button and LED based I/O on 

TEMPO platforms is not new. In fact the grandparent generation to the 

TEMPO 4 platform, TEMPO 2, featured 2 push-buttons to allow for input 

along with several LEDs. The TEMPO 3 platform left these same input 

switches out, but maintained the LEDs in order to allow for a water-proof casing, that used translucent 

material to provide blinking and solid colored indicators to the user.  

Since the TEMPO 4 host MCU has programmable, integrated pull-up/down resistors and selectable 

increased output drive-strength on several ports, only current limiting resistors were added to the LEDs to 
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complete the user input design as shown in the schematic capture below. This allows for low area 

overheads, and minimal impact in do-not-populate cases. 

 

Figure 56: User Push-button Input and Output Schematic 

In regard to firmware drivers, simple hardware abstraction-layer (HAL) macros were created to turn each 

LED on, off, or toggle its state. The push button switches can be monitored either directly, via macros that 

test for truth of “pressed” and “released” states during synchronous operation, or asynchronously by 

registering a callback to the pin interrupt by way of a specialized interrupts library. 

5.4 Control, Programming and Interfaces Summary and Conclusions 

After careful consideration of a variety of system controller topologies and commercially available 

products, the decision to use an MSP430F5342 microcontroller from Texas Instruments is justified using 

previous design experience, platform and programmability specifications, and interfacing considerations. 

The MSP430 was first used to develop a robust communications library designed for ease-of-interfacing 

with a wide variety of commercial sensing, storage, and transmission devices over UART, SPI, and I2C. 

This communications code was then leveraged towards both the TEMPO 4 development header and the 

management code for the UART interface dedicated to the on-board USB transceiver IC. 

The co-design contributions of this work fall primarily into the categories of MCU management and serial 

interfacing, as the USB communication portion of this work was already discussed ]explicitly as a case 

study on the subject. System controller selection and programming interface selection are primarily 

motivated not by the co-design they will enable, but rather by their ease-of-interfacing and flexibility to 

operation under a wide set of parameters. Co-design concepts are stressed in the development of an 

effective control and monitoring scheme for multiple asynchronous hardware peripherals, and user I/O. In 

addition the selection of a communication interface well-suited to an end-point application’s underlying 

data representation scheme is demonstrated to yield benefits across the board when it comes to operating 

power and complexity.  
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Chapter 6 

Sensing, Storage, and Transmission 

This chapter addresses the challenge of developing for sensing, storage, and transmission modalities in 

the ULP body-worn context. Though this work will primarily address this issue of inertial sensing in the 

on-node context, some minimal focus is also placed on the ability of the TEMPO 4 platform to be rapidly 

extended to include new sensing and reporting modalities. 

6.1 Inertial Sensing and Sensor Add-Ons 

The introduction section of this work provides some preliminary background on the state-of-the-art in 

inertial motion sensing and the challenges affiliated with human motion capture. This is intended to 

familiarize the reader with the basics of 3 DoF accelerometer, gyroscope, and magnetometer 

measurement. This section discusses the subject of on-board IMU part selection and library creation for 

the TEMPO 4 platform with an emphasis on the impacts on lifetime, form-factor, and flexibility. 

6.1.2 Commercially Available IMUs 

The commercially available IMU market of today is rather diverse, containing a wide array of motion 

sensor chips and modules, intended for the capture of any desired sub-set of the 9 DoF sensing frame. For 

the sake of form-factor, the TEMPO 4 platform sought a more tightly-integrated solution than the 3 

packages required for inertial sensing in the previous TEMPO platform. 

 

Figure 57: TEMPO 3.2 Board Area Devoted to IMU Solution 



75 

 

 

Figure 58: 13x13mm iNEMO 

9DoF IMU Module from ST 

Microelectronics [47] 

 

Figure 59: TEMPO 3.2 System Power Budget 

 

 

As seen above, the portion of the TEMPO 3.2 system devoted to the accelerometer, and two gyroscope 

ICs, along with power supply decoupling, analog signal filtering, and header-based power gating, 

implemented only for the gyro parts, was quite significant. This was justified in nearly all use-cases of the 

TEMPO 3 system, where inertial motion data collection, was the sole and primary objective. However, as 

the TEMPO 4 targets greater breadth of sensor deployments, including possibly non-inertial motion 

capture, the importance of maintaining reasonable form-factor constraints for IMU monitoring in the 

presence of other system area constraints is crucial. 

Area Considerations 

In regard to the state-of-the-art in low form-factor IMUs there are several 

key competitors. IMU modules are typically small PCB-based device 

which commonly make use of several commercial IC, a host-controller 

interface, and a board-compatible footprint to accomplish multi-modality 

motion sensing in a developer-friendly form-factor. However, more 

recently as larger silicon manufacturers have pushed to create their own 

motion-capture platforms, the level of integration is the field has 

skyrocketed. As a result, even the smallest of these modules, such as the 

13x13mm iNEMO platform from ST Microelectronics [47] have been displaced by their smaller 

form-factor all-IC based alternatives. 

The state-of-the-art in today’s multi-modality IMU IC market is rather impressive. Analog Device, 

Invensense, and ST Microelectronics are currently all delivering 6 and 9 DoF motion sensors in a variety 

of packaging. Possibly the most impressive efforts in form-factor integration of an IMU up to this point 

lie between Invensense and ST Micro, who are both packaging full 9 DoF parts in 3x3mm low pin-count 

packages [48]-[49].  

Power Considerations 

As previously referenced in this work, the 

gyroscopes on the TEMPO 3.2 platform 

consume about 55% of system power when 

left on during a flash-based data collection. 

This means that nearly half of the charge 

stored in a TEMPO 3.2 node’s battery is 

dissipated in the gyros during device 
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operation. Working backwards from average system power to current consumption using the system 

operating voltage of 3.3V, it can be found that the gyros on board TEMPO 3.2 required an average 

current of about 12mA to be delivered continuously to the device throughout operation. 

One major motivator and goal of this work is bringing the TEMPO platform up to the state-of-the-art by 

implementing a new, lower-power gyroscope solution designed to enable longer 6 DoF motion capture 

sessions. The method by which this power-gain is accomplished is primarily through the selection of a 

more intelligently managed, digitally interfaced sensor capable of reducing active powers both through 

improve MEMS sensor element design and efficient electrical management of the gyros during inactive 

periods. Fortunately, this happens to be where the Motion Processor Unit (MPU) series multi-DoF IMUs 

from Invensense truly excel. 

Invensense has long had its hand in the development of low-power PCB-mountable gyros for high 

precision signal capture. In fact, both the IDG and ISZ650 dual and single-axis gyroscopes used in the 

TEMPO 3 platforms were designed by Invensense. As a result, while accelerometer and magnetometer 

average currents stagnate in the range of 1-300uA and gyro power continues to be a dominant challenge 

in the design space, Invensense has a significant leg up. As a point of comparison, while the ST Micro 

LSM330 6 DoF motion sensor’s gyros claim to draw about 6.1mA during operation, the MPU9250 from 

Invensense is capable of implementing a 9 DoF sensing solution in the same footprint, and reduce gyro 

power to about 3.2mA for all 3 axes. The result is nearly 50% reduction in the gyro power budget and a 

44% reduction in overall IMU power budget in the 6 DoF use case. 

Flexibility and Interfacing Considerations 

Most of the ultra-small form-factor, commercially available IMUs interface the host-controller through a 

serial digital interface. This digital interface can often be dual-function. On one hand it is intended to 

simplify driver development and host-controller constraints implied by adding the device to an existing 

design, reducing the need for solutions with complex ADC topologies or precisely timed sample 

measurement. On the other hand, it also allows silicon designers to better integrate custom, lower-noise, 

and often lower-power electronics close the MEMS elements in order to precisely control and monitor the 

device for irregular operation. 

As a result of this trend toward digital interfaces in the IMU community it was suggested that the TEMPO 

4 platform make use of its rigorously developed and tested communications libraries for the sake of 

interfacing the on-node IMU as well. Since both the ST Micro and Invensense IC offerings discussed thus 

far in this sub-section can both interface with either SPI or I2C, it was decided that the communication 



77 

 

libraries discussed earlier in this document would form the basis for the on-board IMU management 

interface. 

 

Figure 60: MPU9250 9 DoF Motion Capture Platform with I2C or SPI Interfacing [49] 

Last, but not least, the potential ability of the system to expand or reduce its sensing modalities to better 

fit the fidelity and lifetime constraints required by a particular deployment was considered as a significant 

benefit for device within the candidate sensor IC pool. While nearly all products allowed for selective 

power-gaiting of IMU devices that were not in use, few offered the added benefit of cost-selective 

ordering through the use of multiple degree-of-freedom sensing platforms all integrated into a common, 

pin-compatible footprint 

6.2.2 IMU Product Selection and Device Testing 

Based on the results of surveying the commercially available IMU market space, it was decided that the 

MPU-6XXX series single-IC 6 DoF IMU would be used as the on-board inertial sensing platform for 

TEMPO 4. This decision was based upon the leading-edge form-factor and power constraints of the MPU 

series along with the pin-for-pin compatibility with the slightly more expense and more capable 

MPU9150 platform. 

 

 

Figure 61: Pin-compatible MPU6xxx and  9150 IMUs in 4x4mm QFN Package [50][51] 

Both the MPU6050 and MPU9150 platforms have the advantage of small area overhead implied by the 

chip itself. This small device footprint is enabled by the ICs’ low-pin count I2C interface and minimal 

additional off-chip components.  The result is a single pin-out for all MPU series IMUs with I2C 
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interfaces in a 4x4mm 24-pin QFN package, implying a rather low total area dedicated to sensing on the 

TEMPO 4 final layout. 

 

Figure 62: Area Overhad Affiliated with MPU6/9xxx Motion Sensing 

At the beginning of this design process the MPU 9 series was not available for use so the MPU 6 series 

was selected instead. To begin with, the MPU6000 device from this family was selected for use in this 

design. The primary motivating factor for use of this part over its close relative, the MPU6050, was that 

of its interface. While the 6050 offered an I2C-only interface for the purpose of data interfacing the 

MPU6000 implemented a dual-purpose SPI/I2C interface supposedly capable of using either protocol. 

Thus, since an on-board interface would already need to be devoted to MMC interfacing, which is 

discussed later in this chapter, it was decided that the MPU6000 part would be used in SPI mode for 

preliminary evaluation. 

Though these earlier chips seemed more capable and varied in their interfaces, no commercially available 

breakout modules were available for the MPU6000 IMUs. Thus, for the purpose of further evaluating this 

platform the following minimal breakout board for the 6000 product was designed to mimic a more 

popular, well-used breakout for the device’s 6050 cousin.  

 

Figure 63: Custom MPU6000 Breakout and SparkFun MPU6050 Relative [52] 

The MPU6000 test board was evaluated on the bench using a variety of well-tested MSP430 platforms 

used throughout the early development cycle for operating code and library development. However, 
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regardless of supply conditions and sensor interfacing, all of the populated MPU6000 breakouts were 

unresponsive. After rigorous hardware debugging and even contacting Invensense to order a new round of 

ICs (they had since been removed from the distributors website), no progress was made in successfully 

developing any working interface with the MPU6000. This is a key demonstration of the value of iterative 

co-design concepts application in the product development cycle. Had this piece of hardware made it into 

the final TEMPO 4 test board without isolated firmware testing, a great deal of time may have been spent 

attempting to debug the much more complex power network or serial communications taking place on the 

full-system test platform. 

Instead, midway through the platform development cycle the decision was made to move over to an I2C-

based IMU communication strategy. This was largely based around the implied market direction, as 

Invensense has since announced they will only offer products with an I2C interface, and time-constraints 

implied by the duration of this work. The system-level impact of this decision is that the USB transceiver 

and MMC are given their own dedicated UART and SPI connections respectively, while the MPU6050 is 

attached to USCI B1, which now serves as only an I2C-only interface, with the default address of the 

6050 reserved to avoid bus collision. This does not invalidate the fundamental goal of achieving UART, 

SPI, and I2C communication all in the development header as USCI A1 is still available as a fully 

configurable UART/SPI interface. 

One added benefit of moving to the MPU6050 and I2C-based communication was that it enables the 

previously mentioned pin-for-pin compatibility of the TEMPO 4 platform with a variety of 3, 6, and 9 

DoF motion sensors all packaged in the same 4x4mm QFN.  In addition, once moving to the MPU6050 

platform, the MSP430 was able to communicate with the device almost immediately. Using the I2C 

portion of the serial communication library, a thin driver was developed to allow for simple developer-

manipulation of device sleep and sampling parameters. The result is a fully functional 6 or 9 DoF IMU 

solution with little-to-no added complexity on top of that of the core serial-interface management code. 

6.1.3 Sensor Add-ons 

In addition the on-board inertial storage discussed the remainder of this section a top-board designed for 

electrocardiogram (ECG) signal capture using TI’s ADS series flexible, bio-electrical Analog Front-End 

(AFE) was developed, but not produced to demonstrate ease of interfacing new sensing modalities to the 

existing TEMPO 4 node. The hardware design for this board was based heavily upon the recommended 

operating circuit provided in the data sheet and was completed in about two days. 
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Figure 64: TEMPO 4 ECG Top Board Layout 

This ECG top-board makes use of two differential channels, each terminated with a 2.5mm headphone 

jack, a somewhat widely available lead termination style. Since the AFE is interfaced entirely over SPI 

and has programmable gain, sampling rate, and channel configuration it is worth noting that this board 

could also be used for monitoring a variety of differential bio-signals in the future, including 

electromyogram (EMG) and electroencephalogram (EEG). 

6.2 System Storage 

In response to incredibly positive feedback regarding the extended deployment capabilities of the 

TEMPO 3.2F system, and relatively few complaints about the lack of immediate feedback of data to the 

user as a result of flash storage, it was decided that support for on-board MMC interfacing was non-

negotiable. A great deal of debate eventually formed around the subject of wireless transmission and 

usability versus form-factor and lifetime constraints. For the purpose of this document, this section will 

assume on-board flash memory is to be used in the TEMPO 4 system, with or without additional support 

from wireless communication. The following section contains a more in-depth discussion of the topic of 

wireless communication in regard to form-factor, lifetime, and flexibility. 
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6.2.1 Storage Form-factor and Lifetime Constraints 

As previously implied, the significant reductions in system power achievable through use of 

implementing high-capacity memories on-node can dramatically outweigh the costs of not being able to 

provide users immediate data feedback in some use cases. The TEMPO 3.2F platform successfully 

leveraged several such cases to great avail. In order to evaluate the lifetime constraints implied on a 

system by its on-node storage a typical data rate for the TEMPO 3 system’s sensor front-end is 

determined as follows. 

         
       

 
  

           

      
   

    

          
          

Thus, we can approximate the data lifetime of our system, or the amount of time for which a given 

storage medium can buffer data without need for offload as: 

      
 

     
 

Where C is the capacity of the memory in bits, and Rdata is the rate at which data is produced in the 

system. Based on preliminary determination and rudimentary estimation of system operating parameters it 

was decided the TEMPO system would likely not be able to operate beyond 7 days on a single charge 

given most acceptable battery chemistries and volumes. Thus, technically speaking Tdata need not exceed 

7 days. However, it is common for both commercial and research platforms to significant over specify the 

data lifetime of system relative to battery lifetime. This is assumed to be primarily for the purpose of 

allowing for multiple data sessions to take place between two charge periods without the need for 

intermitted offload. In order to set a reasonable lower-bound for the data capacity of the TEMPO 4 system 

storage a maximum lifetime of twice that of the battery lifetime is determined to provide a minimum total 

storage capacity of around 14 days worth of data. Working backwards through the previously provided 

expressions we find the affiliated storage capacity to be around 2GB worth of data. 

The previously arrived at storage number is a familiar one, as it is the same lower-bound used by the 

TEMPO 3.2 system for its on-board memory. Also similarly to its 3.2 predecessor, the TEMPO 4 

platform will need to make use of a non-volatile memory topology, as the device cannot supply power to 

maintain the state of the memory during long idle periods. However, since the TEMPO 3.2 node had been 

produced several key innovations had been introduced into the memory market place, and thus a survey 

of the state-of-the-art in integrated memory solutions was conducted. Rather than include the full results 

of this survey in this document it will be summarized with three general conclusions below.  
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Figure 65: The MMC/SD Form 

Factors [53] 

1. Small form-factor, serially-interfaced non-volatile and volatile storage ICs are common 

solutions for low-capacity memories. However, as the size of a non-volatile memory grows 

towards 1GB and beyond low foot-print parts become far less common. 

 

2. While the use of experimental non-volatile topologies, particularly ferro-electrical RAM 

(FeRAM) and spin-based solutions, hold significant promise for the future of low-power, 

high-density memories, many of the products of today do not feature large enough capacities 

or significant data robustness. 

 

3. In the arena of widely available, low-cost, low form-factor flash memory storage solutions 

the microSD card is about as tightly integrated as nearly all significant silicon competitors. 

 

The final conclusion summarized above is possibly the most 

significant in the TEMPO 4 system storage decision. With unit 

costs below $5 and net areas just larger than some of the smallest 

Ball-Grid Array (BGA) packages featuring larger, more complex 

memory controllers the microSD form-factor was determined to 

still be on the of most competitive flash-based solution currently on 

the market. 

6.2.2 MicroSD and MMC Interfacing 

The MultiMediaCard (MMC) standard is a NAND-based flash-

memory system commonly used in multimedia applications. 

Though the original card specification requires a 1-wire serial 

interface [56] it is now common for devices to use 2, 4 or 8 bits of 

parallel serialized data for offload [55]. From the year 2000 onward 

the Secure Digital (SD) Association has come to represent a significant portion of the MMC market-

share. Though SD does offer some additional functionality on top of basic MMC storage it will not be 

discussed as a part of this work.   

Generally speaking each SD/MMC device has a 7-9 pin footprint, but we will focus on the 8-pin microSD 

form factor for discussion here. This is both a result of its low form-factor, and high commercial 

availability as it has more recently found wide-use in the consumer electronics market as a primary source 

of storage for digital cameras, cell-phones, handheld gaming devices, and even mp3 players. One reason 
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Figure 66: SD/microSD Operating Modes 

[54] 

 

  

for this rapid adoption into the commercial market is certainly the dual-interface model supported by the 

cards, providing a simple single-wire mode for serial communication and a more full-featured parallel 

transfer mode for applications that demand higher speeds. 

 Both the SD and microSD form factors feature two modes of 

operation: 

 SD Bus in which a single bi-directional command line and 

one/multiple bi-directional data channels are used to 

transfer data 

 

 SPI Bus in which a standard SIMO,SOMI, SCLK, and CS 

structure is used to transfer data and commands to/from 

the card 

It should be noted that the microSD card has two unused 

(unconnected) pins in the SPI configuration (labeled as DAT1 

and DAT2 in Figure 66). These are the parallel data transfer lines which are not considered as a part of 

this SPI implementation, but are used to improve offload efficiency when running in the full MMC 

standard supported by many consumer electronic devices such as personal computers. It is worth noting 

that though the card is written through a 1-wire interface on-node, it can be offloaded via this parallel 

transfer to significantly improve offload times when large amounts of data need be collected without 

intermittent offload.  

Common Sockets and Connectors 

The MicroSD form-factor can be connected to using a variety of styles of connectors (sometimes referred 

to as sockets) available through common distributors such as DigiKey or Mouser. There are 3 classes of 

connectors that are commonly used. These are summarized in Table 16 below. 
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Figure 67: MicroSD Connector Schematic 

Symbol 

 

 

Connector Name Description Example Part Image 

Push-Push 

Push card in until 

it locks to insert, 
push in until it 

pops out to 

remove 

Hirose DM3AT 

 

Push-Pull 
Push card in to 
insert, pull card 

out to remove 

Hirose DM3D 

 

Hinged 

Open hinge and 

slide card in to 
insert, open hinge 

and pull card out 

to remove 

JAE Electronics 
ST1W008S4FR2000 

 

 
Table 16: Summary of Available microSD Connectors 

In addition to the 8-pins provided to/from the MMC card, 

which are sourced to the board through pads on the connector, 

most connectors also provide what is referred to as a Card 

Detect (CD) control. These line(s) are used to represent the 

presence of a microSD card in the connector and are normally 

connected to a small integrated, mechanical switch. 

Figure 67 shows a common microSD connector foot print 

captured from a schematic using a Hirose push-push connector. 

The connections to the CD lines are such that the 

microcontroller, using an internal pull-up resistor and software 

de-bouncing, can easily detect when a card is present in the system. For the TEMPO 400 design a surface-

mount, push-push, microSD connector from Hirose was selected to ease the difficulties encountered when 

adding/removing cards from the previous TEMPO 3.2F design, which used a less cooperative, hinged 

connector mounted inside the case. 

Power Considerations 

The microSD standard is a convenient embedded data logging form factor as it works at both 1.8 and 

3.3V, consumes acceptable power on read/write, when compared with radio TX/RX power, and has 

incredibly low quiescent (non-read/write) currents. However, much like radio transmission it does imply 

some significant constraints on system supply and regulation. 
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Figure 68: MicroSD Write/Read Currents in the TEMPO 3 and 4 Systems 

As seen in Figure 68 the instantaneous current drawn from the system supply by the flash card during 

write or read operations is quite high, as high as 70-100mA in some cases. This means that though 

average card current consumption will likely be in the 10-100s of µA, system supply and regulation will 

need to be able to supply at least 70mA of additional instantaneous current for flash read/write. Since 

most lithium-based chemistries should never have more than 100mA drawn from them at any point this 

means efficient decoupling capacitor placement and selection will be critical to reliable, long-term system 

operation. 

Clocking Considerations 

In addition to the power constraints discussed above, it is also worth briefly discussing some minimal 

clocking considerations for a typical SPI-based MMC setup. Though no dedicated external clock need be 

provided to the card other than typical master-slave SPI clock pin, commonly referred to as serial clock or 

SCLK, there are several constraints on what baud rates can be used for commands/data transfers.  

Card initialization must occur at a lower rate than the remainder of card operation. For the purpose of 

initialization a baud rate of <400 kHz is required. However, once initialized the baud rate can be 
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increased significantly, up to 100’s of MHz in some cases. In these instances hardware layout must 

include careful consideration for signal coupling and switching noise. Fortunately, the MCU selected for 

this design supports SPI baud rate up to ½ of the main clock rate, implying in a maximum SPI baud of 

16MHz, effectively eliminating the need for special consideration of the SPI bus traces.  

6.2.3 MMC Library Hardware Testing 

Once, the MMC interface was fully specified the firmware design portion of the work occurred rather 

quickly, using a previously referenced development platform and old TEMPO 3.2 MMC libraries for 

validation of correct SPI operation. In order to expedite the development and testing of these libraries 

prior to completion of the TEMPO 4 test board hardware a simple development board-based solution was 

adopted. By programming the in-system MCU, inserting a flash-card into the on-board push-push 

connector, and probing the signals between the MCU and microSD directly the code was debugged and 

validated across a variety of supplied microSD cards. 

 

Figure 69: TEMPO 4 MMC Hardware Test Bench with Supply, Programming, and Probe Connections 

6.2.4 Efficient File-Systems for Streaming Data-Storage 

In the plot shown in Figure 68, it may be observed that the system flash-writes are spaced evenly and 

occur relatively infrequently, about three times a second. This flash management strategy is intended, as 

per the battery management discussion included in this document, the bursty use of large instantaneous 

current consumers is not recommended for Lithium-powered systems. 
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Though a significant amount of though and effort was put into defining a custom file-system for the 

TEMPO 4 platform it will only be described briefly here as it primarily represents a small improvement 

over the already established TEMPO 3.2 custom file system. 

The basic idea behind the TEMPO 4 file system is that of ease-of-access, and again, minimization of the 

amount of controller interfacing and management required for use of the file system. For this reason, 

many commonly available commercial standards such as FAT FS or NTFS are not well suited to 

resource-constrained operation. Borrowing from its predecessor, the file system makes use of several 

types of information “sectors”, conveniently delineated by the natural sector length of the card. Unlike the 

TEMPO 3.2 system’s look-up based file system the TEMPO 4 file system uses a linearly navigated 

linked-list to greatly reduce MCU burdens during flash resume and halt operations, and ideally improve 

long-term flash card lifetime through better built-in wear-leveling. The TEMPO 4 files system makes use 

of only three sector types: node information, session information, and data. All sectors are signed with a 

two byte type-code as well as a two-byte firmware-computed CRC to assess validity. Each of these three 

sector types and their contents is summarized below. 

 

Figure 70: TEMPO 4 File System Linked-List Implementation 

There is only one node information sector, in the default TEMPO 4 firmware it falls at the 0 sector 

address of the card, though it could be programmed to sweep from 0-N to implement a wear-leveling 

scheme in the future. This node info sector contains general information about the current state of the 

node, configuration of the sensors, and pointers to the first session info and data sector on the card. 

There can be any number of session info sectors on the card, each denoting a particular data session taken 

on the node. Before any data can be written to the card via the file system’s data write function, a session 

must be started. When a new session is started the previous session’s info sector is modified to have its 

next session info sector value modified to the currently written sector. At this point, a new sector is 

written containing the previous session info sector value along with the current time from the RTC and a 

number of other system metrics regarding the session. In this way a traversable linked-list is established. 
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Data sectors always directly follow a session info sectors and thus the precise location of the data on the 

card need not be explicitly stored. The only information other than the four bytes of identifying and 

verification information contained in any data sector is in fact, data.  Users write their data to the output 

during a collection by simply calling the write data function with a session open and in-progress. The 

write-data function automatically buffers this data until it has enough information to fill a sector then 

passes this sector to memory. In addition to the benefit of unmanaged flash writes for developers 

interested in an easy-to-use interface, the file system offers the ability to use added buffer size to deal 

with particularly bursty streams of data that might produce large amounts of information for storage in a 

relatively infrequency manner. 

6.3 Transmission and Wireless Interfacing 

Arguably the biggest source of disagreement amongst technical and non-technical collaborators alike 

during the TEMPO 4 system design process was that of transmission and wireless interfacing. While 

many saw it necessary to maintain the tradition of offering up a wireless reporting modality by default in 

every TEMPO generation, others cited the power and area benefits of flash and specialized routing and 

population constraints often implied by wireless solutions. Ultimately the design decision made for the 

TEMPO 4 platform was to include no on-board radio, and this section correspondingly details the 

motivations, draw-backs, and co-design concepts that lead to this decision.  

In order to help better structure the discussion of the lack of inclusion of radio in the TEMPO 4 hardware 

platform this work will analyze three primary areas of consideration: radio diversity and system 

specificity, physical overheads and RF design challenges, and ease of developing add-on modules for a 

variety of radio interfaces via the on-board development interface. 

6.3.1 Radio Diversity and System Specificity 

The primary argument at the heart of the radio decision for the TEMPO 4 platform is that of optimizing 

platform flexibility. Unfortunately, no one radio solution covers the entire space of acceptable data rates 

and power consumptions and for any given application or designer, the decision of which protocol 

optimally suites the needs of the deployment may change. 
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Figure 71: Approximate Power Consumtion versus Data Rate of Several Common Radio Protocols 

While designers interested in the more commercially-driven products seek the ease-of-interfacing brought 

by many common radio standards, it is =common for academic audiences to make use of lesser-known, 

more specialized wireless signaling techniques for power reduction and increase of reliability. 

Nonetheless, a wide array of commercially available wireless protocols was investigated to determine 

primary candidates for ease-of-interfacing and lifetime considerations. The maximum throughput, typical 

operating power, and primary advantage of each of some more commonly available wireless 

communication standards is summarized in Table 17 below. 

Technology Throughput Power Advantage 

Bluetooth v3 

 

240kbps  

(SPP) 

Tx: 280mW 

Rx: 180 mW Interoperability 

Bluetooth v4 (BLE) 

 

200 kbps 

Tx: 89 mW 

Rx: 65 mW 

Sleep:  1.3 uW 

Future Integration, 

Low Power 

Zigbee 

 

250 kbps 
Active: 165 mW 

Sleep: 30uW Mesh Networking 

Wifi 

 
1Mbps 

Active: 100mW 

Sleep: 10uW Existing Infrastructure 

Table 17: Summary of Widely Available Wireless Communication Standards 
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Of the four common wireless standards introduced in the table above, each has its own strengths and 

weaknesses and seems to have found its own niche set of applications for which it is the best suited 

candidate for wireless communication. 

Bluetooth-based Solutions 

In the recent past, Bluetooth-based protocols have seen significant growth in the consumer electronics 

space, as cell-phones, personal computers, and even some vehicles begin to support the host-side interface 

natively. The result has been a huge proliferation of Bluetooth-enabled devices over the past few years. 

While Bluetooth does a reasonably good job of maintaining small star-topology networks with a limited 

number of end-point devices, it does not support networks with more than 8 active devices at a time. In 

addition, its Time-Domain Multiple Access (TDMA) controlled protocol mean that devices need to 

coordinate with the network on a regular basis to maintain connectivity, this means regular radio usage 

even during periods where data would otherwise not be communicated, making Bluetooth a bad fit for 

light or bursty traffic loads. 

Zigbee Solutions 

Zigbee represents the standard protocol used for establishing mesh networks in large-scale sensor 

deployments. Due to its ability to dynamically route packets through the network the Zigbee protocol can 

achieve output power savings by relying on intermittent nodes for transmission, whereas in Bluetooth all 

data transmissions are end-point to end-point. Whether or not this meshed style of network transmission 

is suitable to the on-body context is still a subject of some debate, but it has undoubted demonstrated 

value already in the areas of structural and environmental monitoring. 

Wifi Solutions 

Last but not least WiFi represents the last of the commercial radio protocols considered “common” as part 

of this work. Though traditionally the high data rates, and corresponding transmit and receive powers 

affiliated with running a WiFi radio would prove prohibitive for most embedded systems, the high peak 

data-rates and quick duty-cycling abilities of more recent modules mean in some cases battery-powered 

WiFi operation is possible. In these situations more work will have to be done to evaluate peak current 

considerations for long-term battery stability and careful management of system control during transmit 

and receive windows, but for now it is merely noted that these solutions are becoming increasingly 

tenable as the Internet of Things (IoT) mentality becomes increasingly pervasive in the hardware design 

community. 
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Less Standardized Solutions 

In addition to the four commonly available wireless standards discussed above there are a number of 

other, lesser known wireless protocols that are worth mentioning for their own figures of merit. The 

SimpliciTI [57] and DASH-7 [58] protocols use a Bursty, Light, Asynchronous Traffic model, or 

BLAST, to significantly reduce radio power when the system has no data to transmit or receive. 

Meanwhile other standards such as Z-Wave [59] are taking more targeted approaches to efficient RF 

implementation by tapering designs to a specific context, such as that of wireless home automation. 

 

Figure 72: DASH7 Protocol Comparison [60] 

The take-away point from this portion of the work is that there is no one-size-fits-all radio solution 

designed to achieve energy-efficient operation, though many will claim to be. For this reason, in order to 

optimize the flexibility of the TEMPO platform to various underlying data rates and control structures 

avenues that exploited multi-functional radio solutions were explored. 

6.3.2 Physical Overhead and RF Design Challenges 

Often the primary consideration that drives system designers away from custom RF solutions is the 

notorious complexity of signal routing and conditioning in the high-frequency range. In order to avoid the 

significant challenges posed by custom RF layout, many modern system designers, including previous 

TEMPO platform architects, make use of pre-certified radio modules to significantly system routing 

complexity and time-to-design. This can be unfortunate as it prevents many of the flexible radio 

possibilities alluded to at the end of the previous section. In addition, as the programmability of a final 

radio solution begins to increase, it often trades off this flexibility with large firmware overheads 
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Figure 73: RN-41 Bluetooth 3 Radio Module 

Used in TEMPO 3 Systems [61] 

affiliated with configuring the system radios and managing timing and control during communication 

periods. 

The TEMPO 3 platform made use of one such radio 

module for the implementation of its own Class 1 

Bluetooth interface. The RN-41 from Roving Networks 

was used to establish a connection with the aggregator 

over the Bluetooth Serial Port Protocol (SPP). Based on 

this positive previous experience in module-based 

wireless system design it was decided that any solution to 

be integrated into the TEMPO 4 platform would need to 

be made available in a pre-certified board-mounted radio 

module. 

As part of work related to the design of the TEMPO 4 platform, an undergraduate research assistant 

produced a survey of available Bluetooth modules in the context of physical overhead relative to the 

1”x1” form-factor constraint. The survey considered Bluetooth 3 and 4.0 modules from a variety of 

commercial producers and with varying levels of stack-integration. The top 4 area-sufficient platforms 

were then prototyped on a custom-designed PCB to be evaluated side-by-side, but this evaluation was not 

conducted as a part of this thesis. Nonetheless, the area overhead comparison is included below for the 

sake of reference. 

 

Figure 74: Various Bluetooth 4.0 Module Area Comparison Relative to TEMPO 4 1"x1" Form-factor 
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It is worth noting that many of these modules are in fact quite comparable in board area to the flash card 

holder itself, and also slightly larger or just at, one half of the desired width and height for the bottom of 

the board. An added constraint to many of these areas that up to this point has been largely ignored is that 

of RF keep-out. Typically speaking when an electromagnetic signaling mechanism is used to transmit or 

receive data in the on-board context, the mutual coupling and shielding considerations are crucial for 

consideration. In order to simplify the process of designing around an RF module, typically the module’s 

designers will specify area around the device that should not include other signal routes. Unfortunately, 

this is normally specified, not just for one layer of the board but for the entire stack up. The area lost to 

this keep-out in the TEMPO 3 systems is identifiable as the lighter green areas of the circuit board where 

the ground plane has not been routed, and thus more light is diffused through the board. This area is 

labeled in yellow in Figure 75 below. 

 

Figure 75: TEMPO 3 Platform with RF Keep-out Indicated 

This meant that if a radio module and flash card were to be included in the final TEMPO design the 1”x1” 

form-factor would most likely need to be violated. The near identical size of the flash card and RF 

module mean they would likely not be populated on the same layer, and the keep-out generated by the 

antenna would need to produce clearance constraints for all layers during routing and part placement. 

6.3.3 Expandable Development 

The final motivating factor for leaving wireless communication choices to the user is that of the flexibility 

enabled by the 16 pin development header summarized in a previous chapter of this work. Since nearly all 

radios and radio modules of interest implement some form of serial digital interfacing, it is likely that one 

of the standards offered up in the development header collides with an available module with a similar 

host-controller interface. This work seeks to demonstrate this point in two ways. First, it introduces a 
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wide array of commercially available radio modules implementing common serial interfaces and second it 

demonstrates the ease of developing a new hardware radio platform through the case-study of designing, 

but not testing, a BLE radio add-on module for the TEMPO 4 development header. 

 Serially Interfaced Radio Modules 

This section introduces some common, serially-interfaced radio modules and ICs suggested for possible 

use with the TEMPO 4 platform. Suggestions are based upon either successful implementation with 

similar systems in the past, or widely accepted norms for wireless module hardware. 

Bluetooth v3.0 

The RN-41 Bluetooth module introduced earlier in this chapter is an excellent candidate for developing 

on top of the widely commercialized Bluetooth 3.0 standard. Implementing a transparent data transport 

mode, and a standard AT command set, the module interfaces via UART at up to 115.2kBaud, providing 

reasonable data transfers rates during use of the SPP. 

The RN-41 radio module fits comfortable inside the footprint of the TEMPO 4 development header, and 

for this reason it is considered probably that a Bluetooth 3 add-on board could be rapidly developed for 

the TEMPO 4 platform. Based on past experience, by simply connecting the required 3.3V supply lines 

across the provided 3.3V output rails and connecting the minimum of two UART signal correctly 

Bluetooth functionality should be achieved. 

Bluetooth v4.0 (BLE) 

The BR-LE4.0-S2A from BlueRadios [62] is another easily interface-able, compact radio module similar 

in footprint to the RN-41. It also uses a UART connection and slightly modified AT command set to send 

and receive data from the user and can achieve data rates as high as 460.8kBaud. In addition the BR-

LE4.0-S2A is based around the CC2540 BLE System on Chip (SoC), and allows semi-open development 

for the 8051 platform inside. This is an added benefit as it means the module is also capable of system 

control in smaller, less complex operating environments. 

ZigBee 

ZigBee differs from some of the more open-hardware radio standards in that it requires precise control 

over various hardware parameters in order to maintain network timing and synchronization. For this 

reason, relatively few commercialized ZigBee radio modules exist. The one, nearly ubiquitous, popular 

solution is that of the XBee series modules, which implement and easy-to-interface UART module 

featuring communication rates up to 250kBaud.  
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Figure 76: Common XBee 

ZigBee Shield [63] 

While the XBee module interface is slightly more complicated still than its 

Bluetooth competitors, it does have the added advantage of additional 

commands for controlling lower-level network actions that the Bluetooth 

devices do not feature. For these reasons and more, these modules have up 

to now primarily found popularity with hobbyists and academics building 

largely distributed wireless sensing and automation systems where either 

power or form-factor constraints were not seen as critical.  

However, the tight level of control the ZigBee standard maintains over their hardware solutions has began 

to be demonstrated as a weak point of their approach. As a variety of large IC companies all vie to 

produce the next, highest performing, Bluetooth or WiFi specific SoC for use in embedded platforms, 

ZigBee developers are largely stuck with the older, less power-efficient hardware that has now been on 

the market for several years.  

Nonetheless, the TEMPO platforms power supply network would likely be able to source the 45mA 

maximum current these modules require at 3.3V. Though these modules are sized just over the form-

factor constraint of the TEMPO platform, it may be possible to build a slightly over-sized adapter board 

for integrating the standard XBee shield footprint’s supply and UART signaling with the available 

connections.  

WiFi 

The RN-131 802.11 B/G module from Roving Networks [64] is an excellent solution for designers 

looking for a small-footprint WiFi module for easy project interfacing. In a package just larger than that 

of the RN-41 and with nearly identical pin-out and UART interface, with much higher affiliated baud, this 

device could likely also be contained within a custom 1”x1” add-on board for the TEMPO 4 platform. 

Unfortunately the instantaneous current draws of most commercial WiFi modules are beyond the 

specification of the TEMPO system’s supply regulation. With a peak transmit current of 212mA and a 

typical transmit current of 140mA it is well understood why battery-powered wireless devices rarely 

implement WiFi interfaces. Nonetheless, if interest arose, the use of a supplemental, external power 

supply and regulator designed for the WiFi interfacing could enable significant development opportunities 

in this space. 

Alternatives 

Fortunately, a number of commercial RF ASICs also implement common serial protocols. The ChipCon 

series of radios, somewhat recently acquired by Texas Instruments, were common solutions in the 
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900MHz and 2.4GHz band and implemented SPI-based interfaces. In addition more recent RF SoC’s with 

hardware-integrated stacks have begun to revolutionize the wireless design space. 

If, in the future, more expertise in the art of RF layout is gained and the TEMPO 4 board-stack topology 

deemed suitable for noise and cross-talk considerations, then it may be possible to layout a completely 

customized radio solution entirely contained to a TEMPO 4 top-board. This level of integration represents 

the ultimate goal of the open design principles discussed in the motivation to this work. Enabling 

individuals with highly specialized skills and research interest, such as RF system design, to rapidly 

prototype designs and deploy a platform to other technical and non-technical collaborators. 

BLE Add-on Module Design 

In order to demonstrate the straight-forward nature of the development of additional radio platforms, as 

proposed earlier in this section a brief design was drafted for use of the BR-LE4.0-S2A BLE module 

described in the previous sub-section. The schematic and layout are included below for reference. 

 

Figure 77: TEMPO 4 BLE Top-board 

It can be seen that once the radio parts have been created and the TEMPO hardware libraries imported 

into the design tool, the hardware drafting is relatively straight forward. The developer simply connects 

the desired pins together and adds several decoupling capacitors to the radio module to help deliver peak 

currents during radio transmission. 
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6.4 Sensing, Storage, and Transmission Summary and Conclusions 

As previously referenced, the sensing, storage, and transmission subsystem is designated separately from 

that of control, programming, and interfaces as it relies on this previous subsystem for constraints. In 

regard to the constraints implied by the controller selection and interface determination contained in the 

previous chapter, this work stresses the use of three common serial interfaces: UART, SPI, and I2C, to 

interface a wide variety of sensing and reporting modalities.  

The TEMPO 4 system communicates with a microSD card over SPI-based MMC communication and 

interacts with the on-board 6 or 9 DoF IMU via I2C on USCI B1, fixing this interface as an I2C in the 

final realization of the platform. Last, but not least, no singular radio solution is selected for the main 

reason that it was believed any choice of one particular radio would impact the physical, electrical, and 

operational parameters of the design enough that it was left to the developer to make the decision of 

whether or not wireless aggregation will be necessary for their application at design time. 

The co-design concepts stressed in this chapter are those of firmware organization to support rapid 

expansion of new hardware modalities along with the value of efficient, iterative firmware testing 

throughout the development cycle in discovering potentially non-functional hardware components before 

they make it into final designs. In regard to MMC operation, the importance of managing system peak 

currents and the implications of the decision of microSD storage on system timing and signaling are 

discussed. Last, the challenge of specifying a hardware solution for an unknown application space is 

deemed to be too significant a leap to justify devoting significant board and code space to any single radio 

solution. Instead the determination of radio constraints at design-time allows for greater freedom of 

implementation for system designers interested in cross-hierarchical optimization of what is often one of 

the largest power consumers in traditional wireless sensor systems. 
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Figure 78: TEMPO 4 System Test Board 

Layout 

Chapter 7 

System-Level Design Summary and 

Analysis 

The TEMPO 4 system is a wearable, expandable 6 or 9 DoF motion capture system for use in a variety of 

possible data collection scenarios. It was designed in two primary hardware cycles while making use of 

rigorous, iterative firmware co-design and testing to assure vertically 

oriented test benches were performing as expected throughout the 

design process.  

7.1 TEMPO 4 Test Board 

The first major integration effort toward the final TEMPO 4 platform 

was that of the system test board, provided in Figure 78 at right. This 

board uses a 2”x2” form-factor to achieve a 2-layer stack-up while 

allowing for plenty of room for silk-screen documentation, test-points, 

and opportunities for designer intervention in the case of part mis-

selection or failure. 

Following the manufacturing and population of this test platform the 

board was evaluated while running a set of rigorous subsystem oriented tests. To begin with, one small 

problem in the supply regulation portion of the design was found and resultingly, the affiliated supply 

headers, shown to the left of the supply area in Figure 78, were used for power supply instead. In addition 

a minor modification of 16-pin development header and USB connector footprints was performed 

following evaluation of this test platform. 

In addition to being used to evaluate the selected parts and their affiliated operation and footprints, this 

board was also distributed to several undergraduate research assistants hoping to produce the first round 

of INERTIA-sponsored, internally developed add-on boards. Reviews, suggestions, and improvements 

regarding the early structure of the communications library and core control code were all accepted and 

integrated based on their feedback. In some cases, including I2C library development, undergraduates 

directly contributed small amounts of code or code examples to the core body of this work as well. 
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Figure 79: TEMPO 4 Test Board Populated Hardware 

7.2 TEMPO 4 Final Hardware Platform 

Once the TEMPO 4 test board platform had been rigorously vetted and each of its subsystems deemed 

functional, the development of the final TEMPO 4 hardware platform began. The 1x1 inch form-factor 

implied the board would likely need to be 4-layers, so this was selected as the preliminary stack-up for the 

design. The final TEMPO 4 hardware platform design and specification is summarized in the section 

below. 

 

Figure 80: TEMPO 4 Final System Hardware 
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Figure 81: TEMPO 4 Final 

Board and Previous TEMPO 3.2 

System Main-board stacked for 

Area Comparison 

The core TEMPO 4 platform supports on-board interfacing via USB, 

microSD, pushbutton, LEDs, and the 16-pin generic development header 

described earlier in this document. The system is controller via an MSP430 

microcontroller and samples human motion data using an MPU6050 single-

chip IMU.TEMPO 4 can operate using either rechargeable Lithium-based 

battery chemistries or non-rechargeable batteries of the user’s choice that 

interface using a standard 2-pin JST connector. The entire platform fits on a 

1x1 inch 4-layer PCB that can be inscribed within the previous TEMPO 3.2 

system’s area footprint. 

The push-button switches, LEDs, battery charging circuitry, and even 

possibly the on-board IMU can be considered do-not-populate (DNP) 

devices for those applications which do not demand use of these components, reducing bill of material 

size and cost. As previously mentioned, no custom plastic housing was created for the TEMPO 4 platform 

as it is understood that a variety of possible deployments may field a variety of different casing 

requirements.  

This information, along with more specific details of operation and component location, are provided in 

the table and figure below. 

 

Figure 82: Documented TEMPO Hardware Layout 
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Feature Parameter Value 

Controller 

MCU MSP430F5342 

Max Clock Speed 24MHz 

Active Current <300uA/MHz 

Programming Interface Spy Bi-wire (SBW) 

On-board Sensing 

IMU Platform 

MPU6050/9150  

3 axis accelerometer 

3 axis gyroscope 

(3 axis magnetometer) 

Sampling Rate 1kHz 

Output Sample Resolution 15 bits 

Active Current 

500uA (accelerometers) 

3.5mA (gyroscopes) 

350uA (magnetometer) 

USB Interface 
Delivered Current 100mA 

Max UART Baud 1MBaud 

Flash Storage 

Storage Format microSD 

Max Card Capacity 2GB 

Card Lifetime (@ 2GB) 15 days 

Active Current 100mA 

Sleep Current 10uA 

Development Header 

Digital Interfaces 1 UART/SPI, 1 I2C 

Analog Input 4 Channels, 12-bit SAR 

Other Interfaces 2-pin SBW header 

Power Supply 150mA 3.3V output1 

Power Supply 

Isolated Outputs 2 

Output Voltage 3.3V1 

Max Output Current 150mA (per output) 

Battery Input 

Battery Connector 2-pin JST 

Rechargeable Chemistries LiPo, LiIon 

Suggested Capacity 300-1000mAh 

Battery Lifetime (@300mAh) 30-60 hours 

Form Factor 

Size 25.4x25.4mm 

Mass w/o battery 7g (w/o battery) 

Mass w/ 400mAh battery 16g 

Mass w/ 850mAh battery 24g 
Table 18: TEMPO 4 Hardware Summary 

Ahead of final design profiling, power and functionality classification of all the subsystems described 

above allowed for accurate modeling of expected overall system power during their interaction. A 

combination of device data sheet information and results of in-lab measurements were then used to 

produce a system-level power budget model for the TEMPO 4 platform. This was useful in determining 

approximate system power and affiliated lifetime for a given battery capacity and firmware use case. To 

demonstrate the significance of the impact of application changes on node operation, approximate power 

budgets for the TEMPO 4 system in the 3 and 6 DoF use-cases is provided in the affiliated section of this 

chapter. 
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7.3 TEMPO 4 Firmware Control Structures 

The TEMPO 4 firmware contributions will be summarized in two sections as part of this system-level 

analysis: libraries for future system development and fixed structure implemented for the purpose of 

emulating the previous TEMPO platform’s 6 DoF IMU collection use-case. 

7.3.1 TEMPO 4 Firmware Libraries 

The primary TEMPO 4 firmware contribution is a rigorously tested and iteratively developed set of C 

libraries for the MSP430 with Doxygen-based inline comments for HTML documentation generation. 

The set of base-level system functionality contained in the libraries is varied and diverse. For this reason, 

some of the most crucial contribution of this work is summarized in the sub-section below and in addition 

the firmware itself is provided in Appendix B of this work for more careful review. 

Clocking and Time Management 

Routines for configuration and maintainance of the on-chip Digitally Controlled Oscillator (DCO) make 

use of a runtime, code-independent FLL circuit provided in the clock management module. By 

referencing this FLL from an off-chip oscillator and allowing it, instead of the user, to continuously adapt 

the DCO control bits, a stable average system clock rate can be achieved. Library support for on-chip 

clocking structures includes DCO and FLL initialization routines, along with macro-based system 

clocking definitions to allow for references to the main system clock rate throughout user code. 

In addition to system clock control, the time management code also provides setup and sampling routines 

for the on-chip RTC and a convenient time structure for pointer-based retrieval of system time values. As 

part of work not described in this document a hardware-timing library, used for accurate run-length 

profiling during real-time code execution, was also created for the MSP430’s timer peripheral. 

Communications and Interfacing 

The TEMPO 4 communications library has been described at great length throughout this work as it is 

considered one of the key enabling contributions to system operation. Implementing an easy-to-use one-

time configuration registration function, the communication library makes use of socket-style interfaces 

to implement UART, SPI, or I2C serial data protocols in the on-chip USCI modules of the MSP430. This 

communications code falls at the heart of USB, MMC, and IMU communication for the TEMPO 4 

platform. 

The USB communication library is a thin wrapper for the underlying UART communications code, as 

this lower-level piece of code captures all functionality required for interfacing the simple 2-wire UART 
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on the FT232 transceiver IC. MMC libraries were ported from TEMPO 3.2 to replace the older, 

dedicated, blocking SPI communication functions with the newer, interrupt-driven communications code. 

Last, but not least, the MPU6050 driver containing the device register map and simplified control API 

was created on top of two basic I2C read and write functions provided as the interface to this portion of 

the communications library. 

In addition to this communications code comes a TEMPO-specific HAL file intended to make interfacing 

the on-board user I/O and control signals relatively easy by offering up simple macro-based functionality 

for changing, reading, and configuring digital pin states for use during firmware operation. An interrupt-

masking library is also provided for the registration of callback functions for common asynchronous 

signals of interest, such as the IMU data ready line, or user push-button status. 

Command Interface and File System 

The TEMPO 4 command interface is written on top of the aforementioned FT232 USB driver code 

produced using the communications library. It closely mimics the previous TEMPO 3.2F platform’s 

command interface with improved throughput and offload-time ratios as a result of higher baud rates and 

decreased command lengths and delays. The decision to produce a command interface so similar to that 

of the 3.2 node was largely motivated by its successful use with the previous system and the existence of 

Python 3.3 libraries already capable of interfacing this custom communication standard. 

The TEMPO 4 file system implements a sequentially written, linked-list structure for low-complexity 

data logging. By eliminating the more complex file system structure implemented in the TEMPO 3.2 

node this work seeks to both improve file system reliability and reduce file system overhead, while 

simultaneously providing better wear-leveling in the flash storage. 

7.3.2 Top-level System Operation 

For the sake of comparative power measurements, and demonstration of the added value of this work to 

the TEMPO platform’s battery lifetime and form-factor constraints a top-level firmware operating model 

similar to that of the previous TEMPO 3 system is adopted. As previously referenced, this firmware 

model makes use of first-in-first-out (FIFO), event-queue driven operation to coordinate system operation 

in the presence of both asynchronous interrupts and user-defined, synchronous code routines. In addition 

to the event-queue described previously, the TEMPO 4 platform also uses a simple state-machine to 

control system operation and modify interface behavior based around top-level system state. This 

approach is borrowed from the TEMPO 3.2 core operating firmware, which used a similar state-machine 
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model to interpret system-level events and coordinate device operation without the presence of a 

command-driven Bluetooth interface. 

Essentially, the system has only 3 primary operating modes: command, sleep, and collection. Transitions 

between these three operating modes are based primarily upon two system-level control signals: the 

hardware USB connection indicator and the firmware data-collection enabled (DCE) flag, set by the push-

buttons or command interface. In addition to these three basic states, three additional states are introduced 

to guard specific execution against state-coordinated intervention, these are start and end session, along 

with idle. Start and end session imply the node is performing affiliated sensor configuration and file 

system operations, and exist to prevent sampling or collection runtime routines from interfering with this 

effort. The idle state represents a method by which system operation can be temporarily suspended during 

collection without the low-power reconfiguration of the system hardware for sleep. This state is also used 

to protect any code dedicated to running at the end of an entire session, for example on-node extraction of 

key metrics from a long period of stored session data. 

 

Figure 83: TEMPO 4 Firmware State Machine 

Using the method of operation described in this sub-section a minimal functionality, 6 DoF IMU use case 

was drafted for power measurement on the TEMPO 4 system. Evaluation of the platform-level power 

budget of the TEMPO 4 system using this early-stage firmware operating model is provided in the 

following section. 
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7.4 TEMPO 4 Power Budget Analysis 

This section proposes two evaluations of the TEMPO 4 system for consideration before adoption of the 

platform into any new sensing deployment. The first portion of this section contains information 

regarding TEMPO 4’s performance in the 3 and 6 DoF use-cases, while the second details modeling 

efforts affiliated with producing approximate TEMPO battery lifetime for a wide variety of possible use 

cases.  

 

Figure 84: Approximate Power Budget for TEMPO 4 in the 3 and 6 DoF Use Cases 

As can be seen in Figure 84 above, both the relative and absolute magnitudes of the TEMPO 4 system 

components can vary widely, even over potentially similar use cases. In the 3 DoF, accelerometer only, 

use-case the node does save on IMU costs by power gating the expensive gyros, but also through reduced 

flash card usage due to decreased output sensor data rate. For the sake of this figure it is assumed that the 

LED blinks during collection, staying on for 0.1s two times a second, to indicate continued data 

collection. It can be seen that in the power budget at left, this LED operation comprises a significant 

portion of the overall system power consumption in the 3 DoF use case, at about 1/5 of the total power.  

As previously mentioned, before final integration and platform measurement, the TEMPO 4 system was 

modeled using a weighted-sum approach to produce an accurate approximation of overall system energy 

from measurements of each subsystem during device operation. 
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Since the USB transceiver used as part of this work is in a self-powered configuration, supplied from the 

bus itself, its power overheads are not included in this system analysis. Flash and sensor system are 

modeled based around their average power per-use and scaled through data source or sink rates. LED 

power is modeled using two simple parameters: on and off time in a per/second context.  MCU power is 

determined in a slightly more complex manor, using core voltage, operating frequency, and an activity 

factor indicating the portion of time spent in active mode. Finally regulator overhead is calculated based 

upon the provided system input voltage, and power efficiency implied by the regulator forward voltage 

drop. 

 

Figure 85: Predicted TEMPO 4 System Power Budget at Various Operating Frequencies 

As a result of this easy-to-use device power model, the impact of altering various operating parameters in 

the presence of a number of source and sink conditions is observable directly. In an attempt to 

demonstrate the usefulness of this capability the TEMPO 4 projected system power budget over a variety 

of operating frequencies is shown in Figure 85. The key conclusion from power-budget profiling 

conducted to this end, was that operating in the sub-8MHz region, where the lowest core voltage levels 

are possible, demonstrates the best implications on percentage of system power-budget consumed by the 

MSP430, with little to no additional benefit offered in reduction of overall system power budget available 

below this operating frequency. This is largely a result of the energy equality implied by the trade-off of 

running at higher power/frequency for less time or a lower power/frequency for greater time. 

In addition to modeling various core operating conditions, this model is also capable of attempting to 

predict system power usage during the diverse data collections implied throughout this work. In order to 

enable future modeling efforts, the top-level system model provides parametrized MMC power estimation 

based on access rate, in writes per second, and communication frequency (in MHz). In addition the core 
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and regulator overheads are also determined using parametrized representations to allow for extensions of 

the model to future use cases. If a new sensor or control strategy is to be modeled, the level of depth of 

this model is left to the future designer. For the case of the MPU6050 an always-on operating model was 

assumed to provide an upper-bound on IMU power consumption; however, if a more efficient MPU 

control sheme is implemented in the future, it may yield significant benefits over this simplistic always-

on model. To demonstrate the efficiacy of such solutions it is recommended that future platform modeling 

efforts use a more complex IMU model to precisely determine power savings offered up by this sort of 

sensor duty-cycled operation. 
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Figure 86: Final TEMPO 4 Platform 

 

Chapter 8 

Conclusions and Future Directions 

The design of the TEMPO 4 platform provides an interesting 

case study for the importance of the concepts of co-design and 

subsystem oriented, iterative development and testing in the 

success of any tightly-integrated, ultra-low power sensor system. 

The relevant concepts of power delivery, system control, sensor 

acquisition, and data reporting are all addressed as part of this 

work, giving thorough consideration to the desired metrics of 

form-factor, lifetime, ease-of-interfacing, reliability, and 

flexibility. The solution arrived at succeeds largely at 

accomplishing the established goals of this work, and provides 

an open, low-power, wearable, hardware-firmware platform on which developers can rapidly prototype 

for research applications of their choosing. 

The significant conclusions arrived at throughout the process of the TEMPO 4 design process are those of 

the importance of hardware, firmware, and application layer co-design and iterative, vertically-integrated 

hardware-firmware development. By producing multiple hardware platforms, each designed to test and 

measure the functionality of small hardware subsystems, rather than the entire platform, during operation 

both increased reliability and flexibility of all sub-circuits is assured. As an added benefit, this subsystem 

oriented development process allows for convenient modeling of system-level performance based upon 

mathematical extrapolation of parameters measured on the test bench. Allowing future developers to 

profile the impact of adding new sensing and reporting modalities to the existing node’s piecewise power 

budget. 

8.1 TEMPO 4 Design Conclusions 

In regard to battery chemistry it is concluded that the impact of energy storage mass and volume on form-

factor must be carefully considered on an application-by-application basis before selection of any specific 

chemistry or cell size. Though most commercially available batteries perform with similar energy-density 

characteristics, reduced form-factor constraints, specifically that of mass, along with the popularity of 

rechargeable cells promotes the use of Lithium chemistries in the wearable design space. For this reason, 
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the TEMPO 4 platform supports an optional Lithium Polymer and Ion battery charging circuit and 

standard JST connector with reverse polarity protection. 

Ultra-low power regulation is a challenge as the operating overheads implied by switched-mode 

regulation out-weight the efficiency benefits it produces as forward current decreases. Since the TEMPO 

4 platform uses a system-wide operating voltage of 3.3V and Lithium cells produce a nominal output of 

just 3.6V, LDO linear regulation is considered for use. The result of the selection of this linear regulator 

topology is both higher regulation efficiency and lower area overheads dedicated to system regulation. 

The controller selection process demonstrates that low-power MCUs are predominate controller 

topologies to consider for use in the ULP body-worn context. Through extensive surveys of available 

hardware and affiliated programming and tool chain support it is determined the MSP430 best fits the 

needs and speficifications of the TEMPO 4 platform, based on form-factor and serial interfacing 

constraints. The availability and use of common serial protocols throughout the TEMPO development 

process is of utmost importance. By iteratively developing and testing a set of vertically-integrated 

firmware libraries for coordinating hardware communication modules and low-level peripheral 

management, a reliable base on which to build additional platform drivers is established. 

In order to demonstrate the flexibility and robustness of these underlying libraries USB translation, MMC 

communication, and sensor sampling drivers are all built atop of this basic, lower-level communications 

functionality. In addition to this basic driver code, an example operating system, with event queue-driven 

execution and a small finite state machine, is used to coordinate calls between these driver routines to 

demonstrate system operation. Throughout the process of this demonstration, the impact of 

communication rates, system power consumption, and effective sleep management are acknowledged and 

addressed. 

It is anticipated that using this top-level example configuration, the TEMPO 4 platform will be able to 

collect data for at least 2 days continuously in the flash collection use-case. In addition, the overall size 

and mass improvements relative to the previous TEMPO 3 platform are near 50%. This means the 

TEMPO 4 platform provides nearly identical performance, with 4X benefits in lifetime, 2X benefits in 

form-factor, and vastly increased ease-of-interfacing, reliability, and flexibility. This improvement is 

accounted for in part by more efficient, tightly integrated firmware control and also in part by progression 

in state-of-the-art commercial platforms, primarily IMUs. 
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8.2 TEMPO 4 Future Directions 

Though just completed it is possible that the TEMPO 4 hardware platform could already benefit from a 

minor hardware revision. By implementing an FT230x serial USB to UART translator IC instead of the 

FT232 used in this work, a transceiver IC area reduction of about 30% (5x5mm to 4x4mm) is possible. 

Similarly, by moving the on-board IMU from the MPU6050 or 9150 IC’s 4x4mm footprint to the newer 

MPU9250 3x3mm footprint, this work could save up to 20% in overall IMU area. In addition it is 

recommended a better solution for protecting the battery management IC against reverse voltage polarity 

is implemented, as well as a possible re-design of the user push-buttons to implement a lower-profile, and 

lower cost alternative. Last but not least, it is recommended that a unique casing for the hardware 

platform and a widely available lithium battery is produced, preferably in an easily 3D printable format 

for open source distribution. 

While this work does propose a convenient, event-queue driven operating model for the purpose of 

system measurement and comparable evaluation with the TEMPO 3.2 platform, further firmware 

exploration is definitely suggested for the TEMPO 4 host controller. In regard to system operation, the 

porting of open libraries such as TI’s FAT16 storage management or SimpliciTI radio code for the 

CC11xx to run on top of the TEMPO 4 communications library is an interesting option. Data processing 

libraries implementing more complex on-node feature extraction or filtering could also be ported from 

almost any code previously created for the MSP430 ISA or similar 16-bit architecture. Last, but not least, 

in regard to firmware improvements, the sequentially-written file system implemented as a part of this 

work may hold some promise for use in a radio interface as well with minimal modifications. Since the 

output of this file system management is always a sequentially written, CRC validated stream of bytes, it 

lends itself well to reliable transmission through the noisy wireless channel with built-in data validation 

and fixed-length metadata structures. 

In addition to providing more commonly accepted protocols for user interfacing and rigorously tested 

operating models, a number of embedded operating systems provide features like platform debug 

interfaces and pre-compiled code libraries to preserve and protect the user code space while allowing 

access from the development environment. The increased MCU processing capabilities of the MSP430 

selected for use in this design are intended to allow for flexibility to adapt to the constraints of most 

existing operating systems for the MSP430 platform. While a number of embedded operating systems 

including Contiki, FreeRTOS, TinyOS, and TI’s SYS/BIOS are all available for the MSP430 platform, 

the co-design focus of this work dissuades the use of generalized operating system models in favor of 

lower overhead application-specific top-level firmware organization. Future investigations might propose 
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an ultra-low overhead RTOS for the wearable sensor node design space, configured to function 

effectively using the low clock speeds, and intimate level of peripheral management often required for 

these ULP deployments. 

While it is acknowledged that increased complexity of firmware control and device configurations may 

mean additional system-level modeling challenges, it is also recommended that the TEMPO 4 platform 

power model is updated to support more generic on-node sampling and processing efforts. By providing 

more accurate, parametrized models of on-chip peripherals and IMU operation, a broader, more 

generalized tool for use in developing system power budgets for new deployments could be enabled. 

Though the power modeling conducted for the sake of this work is considered rather complete for the 

purpose of developing top-level 3, 6, and 9 DoF inertial motion collection power budgets, it could also be 

improved to better capture IMU and reguatlor non-idealities and provide a more accurate measurement of 

true system performance as well. 

In regard to software support and offload interfaces, as previously described, the TEMPO 4 node uses the 

same FT232 USB-to-UART translator as its predecessor along with a similar command interface. This 

allows for use of previously created Python libraries for communicating with the device over USB, 

supporting successful command exchanges all the way to 1Mbaud. In regard to future directions, it is first 

and foremost recommended this Python communication interface is wrapped in additional GUI-based 

code for user-side data offload. As demonstrated in the case of the TEMPO 3.2 platform, a good hardware 

and firmware design mean relatively little without an intuitive end-user interface, and for this reason a 

possible integration of the TEMPO 4 communication class into the BodyDATA software framework, 

created as part of another INERTIA student’s master’s thesis work, is considered. 

In addition to BodyDATA oriented support, it is also suggested that a PC-side, rapid offload interface, 

oriented around the Disk Dump (DD) command and full-speed, parallel MMC offload technique is 

implemented to dump the unformatted contents of the TEMPO 4 node’s microSD card to a file on disk. A 

more efficient, natively compiled PC-side program could then parse this dumped data and interpret any 

and all valid sectors in incredibly little time comapared to serialized offload approaches. This high-speed 

offload approach is recommended for forensic investigation of cards prone to sporadic failure.  
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Appedix A 

TEMPO 4 Final Hardware Design 

This section provides a full schematic for the TEMPO 4 platform in 5 subsystems intended to make these 

images more viewable, and allow for better explanation of each sub-circuits contents and function. 

Charging and Regulation 

The MAX1555 Lithium Polymer and Ion battery management solution, along with AP7312 dual-output 

LDO linear regulator and reverse voltage protection circuit are provided in the schematic below. 

 

USB Transceiver 

The FT232 USB-to-UART transceiver is shown below in the bus-powered configuration. 
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IMU 

The MPU6050 IMU with its appropriate clock and data connections, decoupling capacitors, and I2C pull-

ups is provided in the schematic below. 

 

MicroSD 

The on-board microSD connector along with affiliated SPI , card indicator, and supply connections is 

provided in the schematic below. 
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Development Header 

The TEMPO 4 development header schematic view is shown below with appropriate main-board side 

connection made is provided in the schematic below. 
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System Controller and User I/O 

This schematic portion includes the MSP430 microcontroller along with the system programming 

interface, push-buttons, LEDs, crystal oscillator, and supply decoupling. 
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Appendix B 

Firmware Libraries 

This appendix presents the core firmware libraries developed as part of this work. In addition a number of 

other, more specialized code-routines were also developed for the purpose of verification and 

measurement. Not all of this code is included in this section. 

Clocks.h 

This file contains clock rate definitions and macros for blocking delay routines 

/* 
 * clocks.h 
 * 
 *  Created on: Aug 13, 2013 
 *      Author: bb3jd 
 */ 
 
#ifndef CLOCKS_H_ 
#define CLOCKS_H_ 
 
// Timing definitions for baud rate 
#define DCO_FREQ 8000000   ///< DCO frequency (you should call setFLL(DCO_FREQ)) 
#define MCLK_FREQ DCO_FREQ  ///< Main clock frequency (change if using MCLK_DIV > 1) 
#define SMCLK_FREQ DCO_FREQ  ///< Sub-main clock frequency (change if using SMCLK_DIV > 1) 
 
// Delay macros 
#define DCO_MHZ    DCO_FREQ/1000000  ///< DCO Rate in MHz 
#define DCO_KHZ    DCO_FREQ/1000  ///< DCO rate in kHz 
#define delay_us(x)   _delay_cycles(x*DCO_MHZ) ///< Blocking delay macro (in us) 
#define delay_ms(x)   _delay_cycles(x*DCO_KHZ) ///< Blocking delay macro (in ms) 
#define delay_s(x)   _delay_cycles(x*DCO_FREQ)///< Blocking delay macro (in s) 
#endif /* CLOCKS_H_ */ 

Comm.c 

This file contains core communications library management code and interrupt routines for USCI 

peripheral modules in the MSP430 

/****************************************************************//** 
 * \file comm.c 
 * 
 * \author  Ben Boudaoud 
 * \date  January 2013 
 * 
 * \brief  This library provides functions for interfacing MSP430 
 *    USCI modules in a relatively intuitive way. 
 * 
 * When a module is to be used, first the application must register 
 * a communications ID. The #registerComm function is used to pass in 
 * a configuration for the USCI module (see #usciConfig). In return 
 * #registerComm passes back a comm ID which can be used to access the 
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 * USCI. Currently the library supports UART, SPI, and I2C single master 
 * modes. 
 *******************************************************************/ 
#include "comm.h" 
 
usciConfig *dev[MAX_DEVS];  ///< Device config buffer (indexed by comm ID always non-zero) 
unsigned int devIndex = 0;  ///< Device config buffer index 
unsigned int devConf[4] = {0,0,0,0}; ///< Currently applied configs buffer [A0, A1, B0, B1] 
usciStatus usciStat[4] = {OPEN, OPEN, OPEN, OPEN};///< Store status (OPEN, TX, or RX) for [A0, A1, B0, B1] 
 
/**************************************************************************//** 
 * \fn int registerComm(usciConfig *conf) 
 * \brief Registers an application for use of a USCI module. 
 * 
 * Create a USCI "socket" by affiliating a unique comm ID with an 
 * endpoint configuration for TI's eUSCI module. 
 * 
 * \param conf The USCI configuration structure to be used (see comm.h) 
 * \return commID  A positive (> 0) value representing the registered 
 *      app 
 * \retval  -1 The maximum number of apps (MAX_DEVS) has been registered 
 ******************************************************************************/ 
int registerComm(usciConfig *conf) 
{ 
 if(devIndex >= MAX_DEVS) return -1; // Check device list not full 
 dev[++devIndex] = conf;   // Copy config pointer into device list 
 return devIndex; 
} 
 
/**************************************************************** 
 * USCI A0 Variable Declarations 
 ***************************************************************/ 
#ifdef USE_UCA0 
unsigned char *uca0TxPtr;   ///< USCI A0 TX Data Pointer 
unsigned char *uca0RxPtr;   ///< USCI A0 RX Data Pointer 
unsigned int uca0TxSize = 0;   ///< USCI A0 TX Size 
unsigned int uca0RxSize = 0;   ///< USCI A0 RX Size 
// Conditional SPI Receive size 
#ifdef USE_UCA0_SPI 
unsigned int spiA0RxSize = 0;   ///< USCI A0 To-RX Size (used for SPI RX) 
#endif //USE_UCA0_SPI 
 
/************************************************************** 
 * General Purpose USCI A0 Functions 
 *************************************************************/ 
// NOTE: This configuration is safe for use with single end-point UART and SPI config 
/**************************************************************************//** 
 * \brief Configures USCI A0 for operation 
 * 
 * Write control registers and clear system variables for the 
 * USCI A0 module, which can be used as either a UART or SPI. 
 * 
 * NOTE: This config function is already called before any read/write function call 
 * and therefore should (in almost all cases) never be called by the user. 
 * 
 * \param commID The communication ID for the registered app 
 ******************************************************************************/ 
void confUCA0(unsigned int commID) 
{ 
 unsigned int status; 
 
 if(devConf[UCA0_INDEX] == commID) return;  // Check if device is already configured 
 enter_critical(status);     // Perform config in critical section 
 UCA0CTL1 |= UCSWRST;     // Pause operation 
 UCA0_IO_CLEAR();      // Clear I/O for configuration 
 
 // Configure key control words 
 UCA0CTLW0 = dev[commID]->usciCtlW0 | UCSWRST; 
#ifdef UCA0CTLW1 // Check for control word 1 define (eUSCI vs USCI) future patch 
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 UCA0CTLW1 = dev[commID]->usciCtlW1; 
#endif // UCA0CTLW1 
 UCA0BRW = dev[commID]->baudDiv; 
 uca0RxPtr = dev[commID]->rxPtr; 
 
 // Clear buffer sizes 
 uca0RxSize = 0; 
 uca0TxSize = 0; 
#ifdef USE_UCA0_SPI 
 spiA0RxSize = 0; 
#endif //USE_UCA0_SPI 
 
 UCA0_IO_CONF(dev[commID]->rAddr & ADDR_MASK); // Port set up 
 UCA0CTL1 &= ~UCSWRST;    // Resume operation (clear software reset) 
 UCA0IFG = 0;     // Clear any previously existing interrupt flags 
 UCA0IE |= UCRXIE + UCTXIE;   // Enable Interrupts 
 
 devConf[UCA0_INDEX] = commID;   // Store config 
 exit_critical(status);    // End critical section 
} 
/**************************************************************************//** 
 * \brief Resets USCI A0 without writing over control regs 
 * 
 * This function is included to soft-reset the USCI A0 module 
 * management variables without clearing the current config. 
 *  
 * \param commID The comm ID of the registered app 
 * \sideeffect Sets the RX pointer to that registered w/ commID 
 ******************************************************************************/ 
void resetUCA0(unsigned int commID){ 
 uca0RxPtr = dev[commID]->rxPtr; 
 uca0RxSize = 0; 
 uca0TxSize = 0; 
#ifdef USE_UCA0_SPI 
 spiA0RxSize = 0; 
#endif //USE_UCA0_SPI 
 usciStat[UCA0_INDEX] = OPEN; 
 return; 
} 
/**************************************************************************//** 
 * \brief Get method for USCI A0 RX buffer size 
 * 
 * Returns the number of bytes which have been written 
 * to the RX pointer (since the last read performed). 
 * 
 * \return   The number of valid bytes following the rxPtr. 
 ******************************************************************************/ 
unsigned int getUCA0RxSize(void){ 
 return uca0RxSize; 
} 
/**************************************************************************//** 
 * \brief Get method for USCI A0 status 
 * 
 * Returns the status of the USCI module, either OPEN, TX, or RX 
 * 
 * \retval 0 Indicates the OPEN status 
 * \retval  1 Indicates the TX Status 
 * \retval  2 Indicates the RX Status 
 ******************************************************************************/ 
unsigned char getUCA0Stat(void){ 
 return usciStat[UCA0_INDEX]; 
} 
 
/*************************************************************************//** 
 * \brief Set method for USCI A0 Baud Rate Divisor 
 * 
 * Sets the baud rate divisor of the USCI module, this divisor is generally 
 * performed relative to the SMCLK rate of the system. 
 * 
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 * \param  baudDiv The new divisor to apply 
 * \param commID The communications ID number of the application 
 *****************************************************************************/ 
void setUCA0Baud(unsigned int baudDiv, unsigned int commID){ 
 dev[commID]->baudDiv = baudDiv;  // Replace the baud divisor in memory 
 devConf[UCA0_INDEX] = 0;  // Reset the device config storage (config will be performed on 
next read/write) 
 return; 
} 
/*************************************************************** 
* UCA0 UART HANDLERS 
 **************************************************************/ 
#ifdef USE_UCA0_UART 
/**************************************************************************//** 
 * \brief Transmit method for USCI A0 UART operation 
 * 
 * This method initializes the transmission of len bytes from 
 * the base of the *data pointer. The actual transmission itself 
 * is finished a variable length of time from the write (based 
 * upon len's value) in the TX ISR. Thus calling uartA0Write() twice in quick 
 * succession will likely result in partial transmission of the first data. 
 * 
 * \param *data Pointer to data to be written 
 * \param len  Length (in bytes) of data to be written 
 * \param commID Communication ID number of application 
 * 
 * \retval -2  Incorrect resource code 
 * \retval -1  USCI A0 module busy 
 * \retval 1  Transmit successfully started 
 ******************************************************************************/ 
int uartA0Write(unsigned char *data, unsigned int len, unsigned int commID) 
{ 
 if(usciStat[UCA0_INDEX] != OPEN) return -1; // Check that the USCI is available 
 
 confUCA0(commID); 
 
 // Copy over pointer and length 
 uca0TxPtr = data; 
 uca0TxSize = len-1; 
 // Write TXBUF (start of transmit) and set status 
 usciStat[UCA0_INDEX] = TX; 
 UCA0TXBUF = *uca0TxPtr; 
 
 return 1; 
} 
/**************************************************************************//** 
 * \brief Receive method for USCI A0 UART operation 
 * 
 * This method spoofs an asynchronous read by providing the min of the 
 * bytes available and the requested length. It decrements the buffer size 
 * appropriately and returns bytes "read". 
 * 
 * \param  len The number of bytes to be read from the buffer 
 * \param  commID The comm ID of the application 
 * \return  The number of bytes available to read in the buffer. If the buffer 
 *     is empty this value will be 0. 
 * \sideeffect The uca0RxSize variable is decremented by the min of itself and 
 *     the requested amount of bytes (len). 
 * \note  This function does not make a call to #confUCA0 or check it the 
 *     state of the USCI module as it does  not interact with the 
 *     hardware module. 
 ******************************************************************************/ 
int uartA0Read(unsigned int len, unsigned int commID) 
{ 
 // Read length determination = max(requested, available) 
 if(len > uca0RxSize) { 
  len = uca0RxSize; 
 } 
 uca0RxSize -= len; 
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 uca0RxPtr -= len; 
 
 return len; 
} 
#endif // USE_UCA0_UART 
/*********************************************************** 
 * UCA0 SPI HANDLERS 
 ***********************************************************/ 
#ifdef USE_UCA0_SPI 
/**************************************************************************//** 
 * \brief Transmit method for USCI A0 SPI operation 
 * 
 * This method initializes a transmission of len bytes from the base of the 
 * *data pointer. Similarly to uartA0Write(), the transmission uses the USCI A0 
 * TX ISR to complete, so 2 sequential calls may result in partial transmission. 
 * 
 * \param *data Pointer to data to be written 
 * \param len  Length (in bytes) of data to be written 
 * \param  commID Communication ID number of application 
 * 
 * \retval -1  USCI A0 Module busy 
 * \retval 1  Transmit successfully started 
 *******************************************************************************/ 
int spiA0Write(unsigned char *data, unsigned int len, unsigned int commID) 
{ 
 if(usciStat[UCA0_INDEX] != OPEN) return -1; // Check that USCI is available 
 
 confUCA0(commID); 
  
 // Copy over pointer and length 
 uca0TxPtr = data; 
 uca0TxSize = len-1; 
 // Start of TX 
 usciStat[UCA0_INDEX] = TX; 
 UCA0TXBUF = *uca0TxPtr; 
 
 return 1; 
} 
/**************************************************************************//** 
 * \brief Receive method for USCI A0 SPI operation 
 * 
 * This method performs a synchronous read by storing the bytes to be read in 
 * spiA0RxSize and then performing len dummy write to the bus to fetch the data 
 * from a slave device. The RX size is cleared on this function call. 
 * 
 * \param len The number of bytes to be read from the bus 
 * \param commID Communication ID number of the application 
 * 
 * \retval -1 USCI A0 Module Busy 
 * \retval 1 Receive successfully started 
 * 
 * \sideeffect Reset the UCA0 RX size and data pointer 
 ******************************************************************************/ 
int spiA0Read(unsigned int len, unsigned int commID) 
{ 
 if(usciStat[UCA0_INDEX] != OPEN) return -1; // Check that USCI is available 
 
 confUCA0(commID); 
  
 // Clear RX Size/Buff and copy length 
 uca0RxSize = 0;     // Reset the rx size 
 uca0RxPtr = dev[commID]->rxPtr;   // Reset the rx pointer 
 spiA0RxSize = len-1; 
 // Start of RX 
 usciStat[UCA0_INDEX] = RX; 
 UCA0TXBUF = 0xFF;    // Start TX 
 return 1; 
} 
/**************************************************************************//** 
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 * \brief Byte Swap method for USCI A0 SPI operation 
 * 
 * This blocking method allows the user to transmit a byte and receive the 
 * response simultaneously clocked back in. TX and RX buffer sizes/content 
 * are unaffected. 
 * 
 * \param byte The byte to be sent via SPI 
 * \param  commID Communication ID number of the application 
 * 
 * \return The byte shifted in from the SPI 
 *************************************************************************/ 
unsigned char spiA0Swap(unsigned char byte, unsigned int commID) 
{ 
 if(usciStat[UCA0_INDEX] != OPEN) return -1; // Check that USCI is available 
 
 confUCA0(commID); 
  
 usciStat[UCA0_INDEX] = SWAP;  // Set USCI status to swap (prevent other operations) 
 UCA0TXBUF = byte; 
 while(UCA0STAT & UCBUSY);  // Wait for TX complete 
 usciStat[UCA0_INDEX] = OPEN;  // Set USCI status to open (swap complete) 
 return UCA0RXBUF;   // Return RX contents 
} 
#endif //USE_UCA0_SPI 
/**********************************************************************//** 
 * \brief USCI A0 RX/TX Interrupt Service Routine 
 * 
 * This ISR manages all TX/RX proceedures with the exception of transfer 
 * initialization. Once a transfer (read or write) is underway, this method 
 * assures the correct amount of bytes are written to the correct location. 
 *************************************************************************/ 
#pragma vector=USCI_A0_VECTOR 
__interrupt void usciA0Isr(void) 
{ 
 unsigned int dummy = 0xFF; 
 // Transmit Interrupt Flag Set 
 if(UCA0IFG & UCTXIFG){ 
#ifdef USE_UCA0_SPI 
  if(usciStat[UCA0_INDEX] == TX){ 
#endif 
  if(uca0TxSize > 0){ 
   UCA0TXBUF = *(++uca0TxPtr); // Transmit the next outgoing byte 
   uca0TxSize--; 
  } 
  else{ 
   UCA0IFG &= ~UCTXIFG; // Clear TX interrupt flag from vector on end of TX 
   usciStat[UCA0_INDEX] = OPEN;  // Set status open if done with transmit 
  } 
#ifdef USE_UCA0_SPI 
  } 
#endif 
 } 
 
 // Receive Interrupt Flag Set 
 if(UCA0IFG & UCRXIFG){ 
#ifdef USE_UCA0_SPI 
  if(usciStat[UCA0_INDEX] == RX){  // Check we are in RX mode for SPI 
#endif // USE_UCA0_SPI 
  if(UCA0STAT & UCRXERR) dummy = UCA0RXBUF;// RX ERROR: Do a dummy read to clear interrupt 
flag 
  else {     // Otherwise write the value to the RX pointer 
   *(uca0RxPtr++) = UCA0RXBUF; 
   uca0RxSize++;   // RX Size decrement in read function 
#ifdef USE_UCA0_SPI 
   if(uca0RxSize < spiA0RxSize) UCA0TXBUF = dummy; // Perform another dummy write 
   else 
#endif 
   usciStat[UCA0_INDEX] = OPEN; 
  } 
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#ifdef USE_UCA0_SPI 
  } 
#endif 
 } 
 UCA0IFG &= ~UCRXIFG; // Clear RX interrupt flag from vector on end of RX 
} 
#endif // USE_UCA0 
 
 
/**************************************************************** 
 * USCI A1 Variable Declarations 
 ***************************************************************/ 
#ifdef USE_UCA1 
unsigned char *uca1TxPtr;  ///< USCI A1 TX Data Pointer 
unsigned char *uca1RxPtr;  ///< USCI A1 RX Data Pointer 
unsigned int uca1TxSize = 0;  ///< USCI A1 TX Size 
unsigned int uca1RxSize = 0;  ///< USCI A1 RX Size 
// Conditional SPI Receive size 
#ifdef USE_UCA1_SPI 
unsigned int spiA1RxSize = 0;  ///< USCI A1 To-RX Size (used for SPI RX) 
#endif //USE_UCA1_SPI 
 
/************************************************************** 
 * General Purpose USCI A1 Functions 
 *************************************************************/ 
/**************************************************************************//** 
 * \brief Configures USCI A1 for operation 
 * 
 * Write control registers and clear system variables for the 
 * USCI A1 module, which can be used as either a UART or SPI. 
 * 
 * NOTE: This config function is already called before any read/write function call 
 * and therefore should (in almost all cases) never be called by the user. 
 * 
 * \param commID The communication ID for the registered app 
 ******************************************************************************/ 
void confUCA1(unsigned int commID) 
{ 
 unsigned int status; 
 if(devConf[UCA1_INDEX] == commID) return; // Check if device is already configured 
 enter_critical(status);    // Perform config in critical section 
 UCA1CTL1 |= UCSWRST;    // Pause operation 
 UCA1_IO_CLEAR();     // Clear I/O for config 
 
 // Configure key control words 
 UCA1CTLW0 = dev[commID]->usciCtlW0 | UCSWRST; 
#ifdef UCA1CTLW1 // Check for UCA1CTLW1 defined 
 UCA1CTLW1 = dev[commID]->usciCtlW1; 
#endif // UCA1CTLW1 
 UCA1BRW = dev[commID]->baudDiv; 
 uca1RxPtr = dev[commID]->rxPtr; 
 
 // Clear buffer sizes 
 uca1RxSize = 0; 
 uca1TxSize = 0; 
#ifdef USE_UCA1_SPI 
 spiA1RxSize = 0; 
#endif //USE_UCA1_SPI 
 
 UCA1_IO_CONF(dev[commID]->rAddr & ADDR_MASK); // Port set up 
 UCA1CTL1 &= ~UCSWRST;    // Resume operation 
 UCA1IFG = 0;     // Clear any previously existing interrupt flags 
 UCA1IE |= UCRXIE + UCTXIE;   // Enable Interrupts  
 
 devConf[UCA1_INDEX] = commID;   // Store config 
 exit_critical(status);    // End critical section 
} 
 
/**************************************************************************//** 



128 

 

 * \brief Resets USCI A1 without writing over control regs 
 * 
 * This function is included to sof-reset the USCI A1 module 
 * management variables without clearing the current config. 
 * 
 * \param commID The comm ID of the registered app 
 * \sideeffect Sets the RX pointer to that registered w/ commID 
 ******************************************************************************/ 
void resetUCA1(unsigned int commID){ 
 uca1RxPtr = dev[commID]->rxPtr; 
 uca1RxSize = 0; 
 uca1TxSize = 0; 
#ifdef USE_UCA1_SPI 
 spiA1RxSize = 0; 
#endif //USE_UCA1_SPI 
 usciStat[UCA1_INDEX] = OPEN; 
 return; 
} 
/**************************************************************************//** 
 * \brief Get method for USCI A1 RX buffer size 
 * 
 * Returns the number of bytes which have been written 
 * to the RX pointer (since the last read performed). 
 * 
 * \return The number of valid bytes following the rxPtr. 
 ******************************************************************************/ 
unsigned int getUCA1RxSize(void){ 
 return uca1RxSize; 
} 
/**************************************************************************//** 
 * \brief Get method for USCI A1 status 
 * 
 * Returns the status of the USCI module, either OPEN, TX, or RX 
 * 
 * \retval 0 Indicates the OPEN status 
 * \retval  1 Indicates the TX Status 
 * \retval  2 Indicates the RX Status 
 ******************************************************************************/ 
unsigned char getUCA1Stat(void){ 
 return usciStat[UCA1_INDEX]; 
} 
 
/*************************************************************************//** 
 * \brief Set method for USCI A1 Baud Rate Divisor 
 * 
 * Sets the baud rate divisor of the USCI module, this divisor is generally 
 * performed relative to the SMCLK rate of the system. 
 * 
 * \param  baudDiv The new divisor to apply 
 * \param commID The communications ID number of the application 
 *****************************************************************************/ 
void setUCA1Baud(unsigned int baudDiv, unsigned int commID){ 
 dev[commID]->baudDiv = baudDiv; // Replace the baud divisor in memory 
 devConf[UCA1_INDEX] = 0;  // Reset the device config storage (config will be performed on 
next read/write) 
 return; 
} 
/*************************************************************** 
* UCA1 UART HANDLERS 
***************************************************************/ 
#ifdef USE_UCA1_UART 
/**************************************************************************//** 
 * \brief Transmit method for USCI A1 UART operation 
 * 
 * This method initializes the transmission of len bytes from 
 * the base of the *data pointer. The actual transmission itself 
 * is finished a variable length of time from the write (based 
 * upon len's value) in the TX ISR. Thus calling uartA1Write() twice in quick 
 * succession will likely result in partial transmission of the first data. 
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 * 
 * \param *data Pointer to data to be written 
 * \param len  Length (in bytes) of data to be written 
 * \param commID Communication ID number of application 
 * 
 * \retval -2  Incorrect resource code 
 * \retval -1  USCI A1 module busy 
 * \retval 1  Transmit successfully started 
 ******************************************************************************/ 
int uartA1Write(unsigned char *data, unsigned int len, unsigned int commID) 
{ 
 if(usciStat[UCA1_INDEX] != OPEN) return -1; // Check that the USCI is available 
 
 confUCA1(commID); 
 
 // Copy over pointer and length 
 uca1TxPtr = data; 
 uca1TxSize = len-1; 
 // Write TXBUF (start of transmit) and set status 
 usciStat[UCA1_INDEX] = TX; 
 UCA1TXBUF = *uca1TxPtr; 
 
 return 1; 
} 
/**************************************************************************//** 
 * \brief Receive method for USCI A1 UART operation 
 * 
 * This method spoofs an asynchronous read by providing the min of the 
 * bytes available and the requested length. It decrements the buffer size 
 * appropriately and returns bytes "read". 
 * 
 * \param len  The number of bytes to be read from the buffer 
 * \param commID  The comm ID of the application 
 * \return The number of bytes available to read in the buffer. If the buffer 
 *   is empty this value will be 0. 
 * \sideeffect The ucA1RxSize variable is decremented by the min of itself and 
 *   the requested amount of bytes (len). 
 * \sa  This function does not make a call to #confUCA0 or check it the 
 *   state of the USCI module as it does  not interact with the 
 *   hardware module. 
 ******************************************************************************/ 
int uartA1Read(unsigned int len, unsigned int commID) 
{ 
 if(len > uca1RxSize) { 
  len = uca1RxSize; 
 } 
 uca1RxSize -= len; 
 return len; 
} 
#endif // USE_UCA1_UART 
/*********************************************************** 
 * UCA1 SPI HANDLERS 
 ***********************************************************/ 
#ifdef USE_UCA1_SPI 
/**************************************************************************//** 
 * \brief Transmit method for USCI A1 SPI operation 
 * 
 * This method initializes a transmission of len bytes from the base of the 
 * *data pointer. Similarly to uartA1Write(), the transmission uses the USCI A1 
 * TX ISR to complete, so 2 sequential calls may result in partial transmission. 
 * 
 * \param *data Pointer to data to be written 
 * \param len  Length (in bytes) of data to be written 
 * \param  commID Communication ID number of application 
 * 
 * \retval -1  USCI A1 Module busy 
 * \retval 1  Transmit successfully started 
 *******************************************************************************/ 
int spiA1Write(unsigned char *data, unsigned int len, unsigned int commID) 
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{ 
 if(usciStat[UCA1_INDEX] != OPEN) return -1; // Check that the USCI is available 
 
 confUCA1(commID); 
  
 // Copy over pointer and length 
 uca1TxPtr = data; 
 uca1TxSize = len-1; 
 // Start of TX 
 usciStat[UCA1_INDEX] = TX; 
 UCA1TXBUF = *uca1TxPtr; 
 
 return 1; 
} 
/**************************************************************************//** 
 * \brief Receive method for USCI A1 SPI operation 
 * 
 * This method performs a synchronous read by storing the bytes to be read in 
 * spiA1RxSize and then performing len dummy write to the bus to fetch the data 
 * from a slave device. The RX size is cleared on this function call. 
 * 
 * \param len The number of bytes to be read from the bus 
 * \param commID Communication ID number of the application 
 * 
 * \retval -1 USCI A1 Module Busy 
 * \retval 1 Receive successfully started 
 * 
 * \sideeffect  Reset the UCA1 RX size and data pointer 
 ******************************************************************************/ 
int spiA1Read(unsigned int len, unsigned int commID) 
{ 
 if(usciStat[UCA1_INDEX] != OPEN) return -1; // Check that the USCI is available 
  
 confUCA1(commID); 
  
 // Clear RX Size and copy length 
 uca1RxSize = 0;     // Reset RX size 
 uca1RxPtr = dev[commID]->rxPtr;   // Reset RX pointer 
 spiA1RxSize = len-1; 
 // Start of RX 
 usciStat[UCA1_INDEX] = RX; 
 UCA1TXBUF = 0xFF;    // Start TX 
 return 1; 
} 
 
/**************************************************************************//** 
 * \brief Byte Swap method for USCI A1 SPI operation 
 * 
 * This blocking method allows the user to transmit a byte and receive the 
 * response simultaneously clocked back in. TX and RX buffer sizes/content 
 * are unaffected. 
 * 
 * \param byte The byte to be sent via SPI 
 * \param  commID Communication ID number of the application 
 * 
 * \return The byte shifted in from the SPI 
 *************************************************************************/ 
unsigned char spiA1Swap(unsigned char byte, unsigned int commID) 
{ 
 if(usciStat[UCA1_INDEX] != OPEN) return -1; // Check that the USCI is available 
 
 confUCA1(commID); 
  
 usciStat[UCA1_INDEX] = SWAP;  // Set USCI status to swap (prevent other operations) 
 UCA1TXBUF = byte; 
 while(UCA1STAT & UCBUSY);  // Wait for TX complete 
 usciStat[UCA1_INDEX] = OPEN;  // Set USCI status to open (swap complete) 
 return UCA1RXBUF;   // Return RX contents 
} 
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#endif //USE_UCA1_SPI 
 
/**********************************************************************//** 
 * \brief USCI A1 RX/TX Interrupt Service Routine 
 * 
 * This ISR manages all TX/RX proceedures with the exception of transfer 
 * initialization. Once a transfer (read or write) is underway, this method 
 * assures the correct amount of bytes are written to the correct location. 
 *************************************************************************/ 
#pragma vector=USCI_A1_VECTOR 
__interrupt void usciA1Isr(void) 
{ 
 unsigned int dummy = 0xFF; 
 // Transmit Interrupt Flag Set 
 if(UCA1IFG & UCTXIFG){ 
#ifdef USE_UCA1_SPI 
  if(usciStat[UCA1_INDEX] == TX) { 
#endif 
  if(uca1TxSize > 0){ 
   UCA1TXBUF = *(++uca1TxPtr); // Transmit the next outgoing byte 
   uca1TxSize--; 
  } 
  else{ 
   UCA1IFG &= ~UCTXIFG; // Clear TX interrupt flag from vector on end of TX 
   usciStat[UCA1_INDEX] = OPEN;  // Set status open if done with transmit 
   
#ifdef USE_UCA1_SPI 
  } 
#endif 
 } 
 
 // Receive Interrupt Flag Set 
 if(UCA1IFG & UCRXIFG){ 
#ifdef USE_UCA1_SPI 
  if(usciStat[UCA1_INDEX] == RX){  // Check we are in RX mode for SPI 
#endif // USE_UCA1_SPI 
  if(UCA1STAT & UCRXERR) dummy = UCA1RXBUF;// RX ERROR: Do a dummy read to clear interrupt 
flag 
  else {     // Otherwise write the value to the RX pointer 
   *(uca1RxPtr++) = UCA1RXBUF; 
   uca1RxSize++;   // RX Size decrement in read function 
#ifdef USE_UCA1_SPI 
   if(uca1RxSize < spiA1RxSize) UCA1TXBUF = dummy; // Perform another dummy write 
   else 
#endif 
   usciStat[UCA1_INDEX] = OPEN; 
  } 
#ifdef USE_UCA1_SPI 
  } 
#endif 
 } 
 UCA1IFG &= ~UCRXIFG;  // Clear RX interrupt flag from vector on end of RX 
} 
#endif // USE_UCA1 
 
/**************************************************************** 
 * USCI B0 Variable Declarations 
 ***************************************************************/ 
#ifdef USE_UCB0 
unsigned char *ucb0TxPtr;   ///< USCI B0 TX Data Pointer 
unsigned char *ucb0RxPtr;   ///< USCI B0 RX Data Pointer 
unsigned int ucb0TxSize = 0;  ///< USCI B0 TX Size 
unsigned int ucb0RxSize = 0;  ///< USCI B0 RX Size 
unsigned int ucb0ToRxSize = 0;  ///< USCI B0 to-RX Size 
unsigned char i2cb0RegAddr = 0;  ///< Register address storage for I2C operation 
 
/************************************************************** 
 * General Purpose USCI B0 Functions 
 *************************************************************/ 
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/**************************************************************************//** 
 * \brief Configures USCI B0 for operation 
 * 
 * Write control registers and clear system variables for the 
 * USCI B0 module, which can be used as either a UART or SPI. 
 * 
 * NOTE: This config function is already called before any read/write function call 
 * and therefore should (in almost all cases) never be called by the user. 
 * 
 * \param commID The communication ID for the registered app 
 ******************************************************************************/ 
void confUCB0(unsigned int commID) 
{ 
 unsigned int status; 
 if(devConf[UCB0_INDEX] == commID) return;// Check if device is already configured 
 enter_critical(status);   // Perform config in critical section 
 UCB0CTL1 |= UCSWRST;   // Assert USCI software reset 
 UCB0_IO_CLEAR();    // Clear I/O for configuration 
 
 // Configure key control words 
 UCB0CTLW0 = dev[commID]->usciCtlW0 | UCSWRST; 
#ifdef UCB0CTLW1 // Check for UCB0CTLW1 defined 
 UCB0CTLW1 = dev[commID]->usciCtlW1; 
#endif //UCB0CTLW1 
 UCB0BRW = dev[commID]->baudDiv; 
 ucb0RxPtr = dev[commID]->rxPtr; 
 
 // Clear buffer sizes 
 ucb0RxSize = 0; 
 ucb0TxSize = 0; 
 ucb0ToRxSize = 0; 
 
#ifdef USE_UCB0_I2C 
 UCB0I2CSA = (dev[commID]->rAddr) & ADDR_MASK; // Set up the slave address 
#endif //USE_UCB0_I2C 
 
 UCB0_IO_CONF(dev[commID]->rAddr & ADDR_MASK); // Port set up 
 UCB0CTL1 &= ~UCSWRST;    // Resume operation 
 UCB0IFG = 0;     // Clear any previously existing interrupt flags 
 UCB0IE |= UCRXIE + UCTXIE;   // Enable Interrupts  
#ifdef USE_UCB0_I2C 
 UCB0IE |= UCNACKIE;    // Set up slave NACK interrupt 
#endif 
 
 devConf[UCB0_INDEX] = commID;   // Store config 
 exit_critical(status);    // End critical section 
} 
/**************************************************************************//** 
 * \brief Resets USCI B0 without writing over control regs 
 * 
 * This function is included to soft-reset the USCI B0 module 
 * management variables without clearing the current config. 
 * 
 * \param commID The comm ID of the registered app 
 * \sideeffect Sets the RX pointer to that registered w/ commID 
 ******************************************************************************/ 
void resetUCB0(unsigned int commID){ 
 ucb0RxPtr = dev[commID]->rxPtr; 
 ucb0RxSize = 0; 
 ucb0TxSize = 0; 
 ucb0ToRxSize = 0; 
 usciStat[UCB0_INDEX] = OPEN; 
 return; 
} 
/**************************************************************************//** 
 * \brief Get method for USCI B0 RX buffer size 
 * 
 * Returns the number of bytes which have been written 
 * to the RX pointer (since the last read performed). 



133 

 

 * 
 * \return The number of valid bytes following the rxPtr. 
 ******************************************************************************/ 
unsigned int getUCB0RxSize(void){ 
 return ucb0RxSize; 
} 
/**************************************************************************//** 
 * \brief Get method for USCI B0 status 
 * 
 * Returns the status of the USCI module, either OPEN, TX, or RX 
 * 
 * \retval 0 Indicates the OPEN status 
 * \retval  1 Indicates the TX Status 
 * \retval  2 Indicates the RX Status 
 ******************************************************************************/ 
unsigned char getUCB0Stat(void){ 
 return usciStat[UCB0_INDEX]; 
} 
 
/*************************************************************************//** 
 * \brief Set method for USCI B0 Baud Rate Divisor 
 * 
 * Sets the baud rate divisor of the USCI module, this divisor is generally 
 * performed relative to the SMCLK rate of the system. 
 * 
 * \param  baudDiv The new divisor to apply 
 * \param commID The communications ID number of the application 
 *****************************************************************************/ 
void setUCB0Baud(unsigned int baudDiv, unsigned int commID){ 
 dev[commID]->baudDiv = baudDiv; // Replace the baud divisor in memory 
 devConf[UCB0_INDEX] = 0;  // Reset the device config storage (config will be performed on 
next read/write) 
 return; 
} 
 
/*********************************************************** 
 * UCB0 SPI HANDLERS 
 ***********************************************************/ 
#ifdef USE_UCB0_SPI 
/**************************************************************************//** 
 * \brief Transmit method for USCI B0 SPI operation 
 * 
 * This method initializes a transmission of len bytes from the base of the 
 * *data pointer. The transmission uses the USCI B0 TX ISR, so 2 sequential calls  
 * may result in partial transmission. 
 * 
 * \param *data Pointer to data to be written 
 * \param len  Length (in bytes) of data to be written 
 * \param  commID Communication ID number of application 
 * 
 * \retval -1  USCI B0 Module busy 
 * \retval 1  Transmit successfully started 
 *******************************************************************************/ 
int spiB0Write(unsigned char *data, unsigned int len, unsigned int commID) 
{ 
 if(usciStat[UCB0_INDEX] != OPEN) return -1; // Check that the USCI is available 
 
 confUCB0(commID); 
  
 // Copy over pointer and length 
 ucb0TxPtr = data; 
 ucb0TxSize = len-1; 
 // Start of TX 
 usciStat[UCB0_INDEX] = TX; 
 UCB0TXBUF = *ucb0TxPtr; 
 
 return 1; 
} 
/**************************************************************************//** 
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 * \brief Receive method for USCI B0 SPI operation 
 * 
 * This method performs a synchronous read by storing the bytes to be read in 
 * ucbB0ToRxSize and then performing len dummy write to the bus to fetch the data 
 * from a slave device. The RX size is cleared on this function call. 
 * 
 * \param len The number of bytes to be read from the bus 
 * \param commID Communication ID number of the application 
 * 
 * \retval -1 USCI B0 Module Busy 
 * \retval 1 Receive successfully started 
 * 
 * \sideeffect Reset the UCB0 RX size and data pointer 
 ******************************************************************************/ 
int spiB0Read(unsigned int len, unsigned int commID) 
{ 
 if(usciStat[UCB0_INDEX] != OPEN) return -1; // Check that the USCI is available 
 
 confUCB0(commID); 
 
 // Clear RX Size and copy length 
 ucb0RxSize = 0;     // Reset the rx size 
 ucb0RxPtr = dev[commID]->rxPtr;   // Reset the rx pointer 
 ucb0ToRxSize = len; 
 // Start of RX 
 usciStat[UCB0_INDEX] = RX; 
 UCB0TXBUF = 0xFF;    // Start TX 
  
 return 1; 
} 
 
/**************************************************************************//** 
 * \brief Byte Swap method for USCI B0 SPI operation 
 * 
 * This blocking method allows the user to transmit a byte and receive the 
 * response simultaneously clocked back in. TX and RX buffer sizes/content 
 * are unaffected. 
 * 
 * \param byte The byte to be sent via SPI 
 * \param  commID Communication ID number of the application 
 * 
 * \return The byte shifted in from the SPI 
 *************************************************************************/ 
unsigned char spiB0Swap(unsigned char byte, unsigned int commID) 
{ 
 if(usciStat[UCB0_INDEX] != OPEN) return -1; // Check that the USCI is available 
  
 confUCB0(commID); 
  
 usciStat[UCB0_INDEX] = SWAP;  // Set USCI status to swap (prevent other operations) 
 UCB0TXBUF = byte; 
 while(UCB0STAT & UCBUSY);  // Wait for TX complete 
 usciStat[UCB0_INDEX] = OPEN;  // Set USCI status to open (swap complete) 
 return UCB0RXBUF;   // Return RX contents 
} 
#endif //USE_UCB0_SPI 
/*********************************************************** 
 * UCB0 I2C HANDLERS 
 ***********************************************************/ 
#ifdef USE_UCB0_I2C 
/**************************************************************************//** 
 * \brief Transmit method for USCI B0 I2C operation 
 * 
 * This method initializes a transmission of len bytes from the base of the 
 * *data pointer. Similarly to spiB0Write(), the transmission uses the USCI B0 
 * TX ISR to complete, so 2 sequential calls may result in partial transmission. 
 * 
 * \param *data Pointer to data to be written 
 * \param len Length (in bytes) of data to be written 
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 * \param  commID Communication ID number of application 
 * 
 * \retval -1 USCI B0 Module busy 
 * \retval 1 Transmit successfully started 
 *******************************************************************************/ 
int i2cB0Write(i2cPacket packet) 
{ 
 if(usciStat[UCB0_INDEX] != OPEN) return -1;  // Check that the USCI is available 
 
 confUCB0(packet.commID); 
 
 i2cb0RegAddr = packet.regAddr; 
 ucb0TxPtr = packet.data; 
 ucb0TxSize = packet.len; 
 // Start of TX 
 usciStat[UCB0_INDEX] = TX; 
 UCB0CTL1 |= UCTR + UCTXSTT; // Generate start condition 
 
 return 1; 
} 
/**************************************************************************//** 
 * \brief Receive method for USCI B0 I2C operation 
 * 
 * This method performs a synchronous read by storing the bytes to be read in 
 * ucbB0ToRxSize and then performing len dummy write to the bus to fetch the data 
 * from a slave device. The RX size is cleared on this function call. 
 * 
 * \param len The number of bytes to be read from the bus 
 * \param commID Communication ID number of the application 
 * 
 * \retval -1 USCI B0 Module Busy 
 * \retval 1 Receive successfully started 
 * 
 * \sideeffect Reset the UCB0 RX size and data pointer 
 ******************************************************************************/ 
int i2cB0Read(i2cPacket packet) 
{ 
 unsigned char ier = UCB0IE;   // Save the interrupt enable register value 
 unsigned int timeout = 0;   // Timeout counter 
 
 if(usciStat[UCB0_INDEX] != OPEN) return -1; // Check that the USCI is available 
 
 confUCB0(packet.commID); 
 
 i2cb0RegAddr = packet.regAddr; 
 ucb0RxSize = 0; 
 ucb0ToRxSize = packet.len; 
 // Start of RX 
 usciStat[UCB0_INDEX] = RX; 
 
 UCB0IE = 0x00;     // Clear the interrupt enables 
 UCB0CTL1 |= UCTR + UCTXSTT;   // Generate start condition 
 UCB0TXBUF = packet.regAddr;   // Write the desired start register to the chip 
 //while(UCB0CTL1 & UCTXSTT);   // Wait for stop condition to be lowered 
 for(timeout = 0; UCB0CTL1 & UCTXSTT; timeout++){ 
  if (timeout > MAX_STT_WAIT) { 
   timeout = -1; 
   break; 
  } 
 } 
 UCB0IFG &= ~UCTXIFG;   // Clear the TX interrupt flag 
 UCB0CTL1 &= ~(UCTR + UCTXSTT);  // Clear the transmit and start control bits 
 UCB0IE = ier;    // Restore the interrupt enable register 
 if(timeout == -1) 
  return -1; 
 UCB0CTL1 |= UCTXSTT;   // Set the start command, initializing read 
 return 0; 
} 
/**************************************************************************//** 
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 * \brief Ping (slave present) Method for USCI B0 I2C Operation 
 * 
 * This method tests for the presence of a slave at the address affiliated with 
 * the registered commID. This is accomplished by sending a start, then stop 
 * condition sequenitally on the bus, then reading the UCB0STAT register for 
 * a NACK condition. 
 * 
 * \param commID Communication ID number of the application 
 * 
 * \retval -1 USCI B0 Module Busy 
 * \retval 0 Slave not present 
 * \retval 1 Slave present 
 * 
 * \sideeffect The USCI module will need to be reconfigured for the next 
 *   operation (even if it uses the same slave address or commID) 
 ******************************************************************************/ 
unsigned char i2cB0SlavePresent(unsigned int commID) 
{ 
 unsigned char retval; 
 
 if(usciStat[UCB0_INDEX] != OPEN) return -1; // Check that USCI is available 
 
 UCB0IE = 0;     // Clear NACK, RX, and TX interrupt conditions 
 UCB0I2CSA = dev[commID]->raddr & ADDR_MASK; // Set slave address 
 UCB0CTL1 |= UCTR + UCTXSTT + UCTXSTP;  // TX w/ start and stop condition 
 
 while(UCB0CTL1 & UCTXSTP);   // Wait for stop condition 
 retval = !(UCB0STAT & UCNACKIFG); 
 
 devConf[UCB0_INDEX] = 0;  // Clear device config slot for UCB0 (reconfigure next use) 
 return retval; 
} 
#endif //USE_UCB0_I2C 
/**********************************************************************//** 
 * \brief USCI B0 RX/TX Interrupt Service Routine 
 * 
 * This ISR manages all TX/RX proceedures with the exception of transfer 
 * initialization. Once a transfer (read or write) is underway, this method 
 * assures the correct amount of bytes are written to the correct location. 
 *************************************************************************/ 
#pragma vector=USCI_B0_VECTOR 
__interrupt void usciB0Isr(void) 
{ 
#ifdef USE_UCB0_SPI 
 unsigned int dummy = 0xFF; 
 // Transmit Interrupt Flag Set 
 if(UCB0IFG & UCTXIFG){ 
  if(usciStat[UCB0_INDEX] == TX) { 
   if(ucb0TxSize > 0){ 
    UCB0TXBUF = *(++ucb0TxPtr); // Transmit the next outgoing byte 
    ucb0TxSize--; 
   } 
   else{ 
    usciStat[UCB0_INDEX] = OPEN;  // Set status open if done with transmit 
    UCB0IFG &= ~UCTXIFG;// Clear TX interrupt flag from vector on end of TX 
   } 
  } 
  else UCB0IFG &= ~UCTXIFG; 
 } 
 
 // Receive Interrupt Flag Set 
 if(UCB0IFG & UCRXIFG){ // Check for interrupt flag and RX mode 
  if(usciStat[UCB0_INDEX] == RX){   // Check we are in RX mode for SPI 
   if(UCB0STAT & UCRXERR) dummy = UCB0RXBUF;// RX ERROR: Do a dummy read to clear 
interrupt flag 
   else { // Otherwise write the value to the RX pointer 
    *(ucb0RxPtr++) = UCB0RXBUF; 
    ucb0RxSize++; // RX Size decrement in read function 
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    if(ucb0RxSize < ucb0ToRxSize) UCB0TXBUF = dummy; // Perform another dummy 
write 
    else usciStat[UCB0_INDEX] = OPEN; 
   } 
  } 
  else UCB0IFG &= ~UCRXIFG; // Clear RX interrupt flag from vector on end of RX 
 } 
#endif // USE_UCB0_SPI 
#ifdef USE_UCB0_I2C 
 switch(__even_in_range(UCB0IV, 12)) 
 { 
  case I2CIV_NO_INT: break;   // Vector 0 (no interrupt) 
  case I2CIV_AL_INT: break;   // Arbitration lost IFG 
  case I2CIV_NACK_INT:     // NACK Flag 
   UCB0CTL1 |= UCTXSTP;   // Send stop bit 
   UCB0STAT &= ~UCNACKIFG;    // Clear NACK flag 
   usciStat[UCB0_INDEX] = OPEN;  // Set module to open status 
   break; 
  case I2CIV_STT_INT: break;   // Start flag 
  case I2CIV_STP_INT: break;     // Stop flag 
  case I2CIV_RX_INT:    // RX flag 
   if(usciStat[UCB0_INDEX] == RX){  // Check we are performing an RX 
    *(ucb0RxPtr++) = UCB0RXBUF; // Read character_UCB0_I2C 
    if(ucb0RxSize == ucb0ToRxSize){  // Is this the final RX? 
     UCB0CTL1 |= UCTXSTP;  // Send a stop bit 
     usciStat[UCB0_INDEX] = OPEN;  // Set the resource to open 
    } 
    else { 
     ucb0RxSize++; 
    } 
   } 
   else UCB0IFG &= ~UCRXIFG; 
   break; 
  case I2CIV_TX_INT:    // TX flag 
   if(usciStat[UCB0_INDEX] == TX){ 
    if(i2cb0RegAddr != 0){  // Are we writing the first byte 
(register address)? 
     UCB0TXBUF = i2cb0RegAddr;// Write the register address 
     i2cb0RegAddr = 0; // Zero the register address to indicate 
transferred 
    } 
    else if(ucb0TxSize > 0){  // Normal data transfer 
     UCB0TXBUF = *(++ucb0TxPtr); // Write the next character 
     ucb0TxSize--;   // Decrement the transmit count 
    } 
    else {     // This is the final TX 
     UCB0CTL1 |= UCTXSTP;  // Send stop bit 
     UCB0IFG &= ~UCTXIFG;  // Clear TX flag 
     usciStat[UCB0_INDEX] = OPEN; 
    } 
   } 
   else UCB0IFG &= ~UCTXIFG; 
   break; 
  default: break; 
 } 
#endif // USE_UCB0_I2C 
} 
#endif // USE_UCB0 
 
/**************************************************************** 
 * USCI B1 Variable Declarations 
 ***************************************************************/ 
#ifdef USE_UCB1 
unsigned char *ucb1TxPtr;   ///< USCI B1 TX Data Pointer 
unsigned char *ucb1RxPtr;   ///< USCI B1 RX Data Pointer 
unsigned int ucb1TxSize = 0;  ///< USCI B1 TX Size 
unsigned int ucb1RxSize = 0;  ///< USCI B1 RX Size 
unsigned int ucb1ToRxSize = 0;  ///< USCI B1 to-RX Size 
unsigned int i2cb1RegAddr = 0;  ///< Register address storage for I2C operation 
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/************************************************************** 
 * General Purpose USCI B1 Functions 
 *************************************************************/ 
/**************************************************************************//** 
 * \brief Configures USCI B1 for operation 
 * 
 * Write control registers and clear system variables for the 
 * USCI B0 module, which can be used as either a UART or SPI. 
 * 
 * NOTE: This config function is already called before any read/write function call 
 * and therefore should (in almost all cases) never be called by the user. 
 * 
 * \param commID The communication ID for the registered app 
 ******************************************************************************/ 
void confUCB1(unsigned int commID) 
{ 
 unsigned int status; 
 if(devConf[UCB1_INDEX] == commID) return; // Check if device is already configured 
 enter_critical(status);    // Perform config in critical section 
 UCB1CTL1 |= UCSWRST;    // Assert USCI software reset 
 //UCB1_IO_CLEAR();    // Clear I/O for configuration 
 
 // Configure key control words 
 UCB1CTLW0 = dev[commID]->usciCtlW0 | UCSWRST; 
#ifdef UCB1CTLW1 // Check for UCB1CTLW1 defined 
 UCB1CTLW1 = dev[commID]->usciCtlW1; 
#endif //UCB1CTLW1 
 UCB1BRW = dev[commID]->baudDiv; 
 ucb1RxPtr = dev[commID]->rxPtr; 
 
 // Clear buffer sizes 
 ucb1RxSize = 0; 
 ucb1TxSize = 0; 
 ucb1ToRxSize = 0; 
 
#ifdef USE_UCB1_I2C 
 UCB1I2CSA = (dev[commID]->rAddr) & ADDR_MASK; // Set up the slave address 
#endif //USE_UCB1_I2C 
 
 UCB1_IO_CONF(dev[commID]->rAddr & ADDR_MASK); // Port set up 
 UCB1CTL1 &= ~UCSWRST;    // Resume operation 
 UCB1IFG = 0;     // Clear any previously existing interrupt flags 
 UCB1IE |= UCRXIE + UCTXIE;   // Enable Interrupts 
#ifdef USE_UCB1_I2C 
 UCB1IE |= UCNACKIE;    // Set up slave NACK interrupt 
#endif 
 
 devConf[UCB1_INDEX] = commID;   // Store config 
 exit_critical(status);    // End critical section 
} 
/**************************************************************************//** 
 * \brief Resets USCI B1 without writing over control regs 
 * 
 * This function is included to soft-reset the USCI B1 module 
 * management variables without clearing the current config. 
 * 
 * \param commID The comm ID of the registered app 
 * \sideeffect Sets the RX pointer to that registered w/ commID 
 ******************************************************************************/ 
void resetUCB1(unsigned int commID){ 
 ucb1RxPtr = dev[commID]->rxPtr; 
 ucb1RxSize = 0; 
 ucb1TxSize = 0; 
 ucb1ToRxSize = 0; 
 usciStat[UCB1_INDEX] = OPEN; 
 return; 
} 
/**************************************************************************//** 
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 * \brief Get method for USCI B1 RX buffer size 
 * 
 * Returns the number of bytes which have been written 
 * to the RX pointer (since the last read performed). 
 * 
 * \return   The number of valid bytes following the rxPtr. 
 ******************************************************************************/ 
unsigned int getUCB1RxSize(void){ 
 return ucb1RxSize; 
} 
/**************************************************************************//** 
 * \brief Get method for USCI B1 status 
 * 
 * Returns the status of the USCI module, either OPEN, TX, or RX 
 * 
 * \retval 0 Indicates the OPEN status 
 * \retval  1 Indicates the TX Status 
 * \retval  2 Indicates the RX Status 
 ******************************************************************************/ 
unsigned char getUCB1Stat(void){ 
 return usciStat[UCB1_INDEX]; 
} 
 
/*************************************************************************//** 
 * \brief Set method for USCI B1 Baud Rate Divisor 
 * 
 * Sets the baud rate divisor of the USCI module, this divisor is generally 
 * performed relative to the SMCLK rate of the system. 
 * 
 * \param  baudDiv The new divisor to apply 
 * \param commID The communications ID number of the application 
 *****************************************************************************/ 
void setUCB1Baud(unsigned int baudDiv, unsigned int commID){ 
 dev[commID]->baudDiv = baudDiv; // Replace the baud divisor in memory 
 devConf[UCB1_INDEX] = 0;  // Reset the device config storage (config will be performed on 
next read/write) 
 return; 
} 
 
/*********************************************************** 
 * UCB0 SPI HANDLERS 
 ***********************************************************/ 
#ifdef USE_UCB1_SPI 
/**************************************************************************//** 
 * \brief Transmit method for USCI B1 SPI operation 
 * 
 * This method initializes a transmission of len bytes from the base of the 
 * *data pointer. Similarly to uartB0Write(), the transmission uses the USCI B1 
 * TX ISR to complete, so 2 sequential calls may result in partial transmission. 
 * 
 * \param *data Pointer to data to be written 
 * \param len  Length (in bytes) of data to be written 
 * \param  commID Communication ID number of application 
 * 
 * \retval -1  USCI B1 Module busy 
 * \retval 1  Transmit successfully started 
 *******************************************************************************/ 
int spiB1Write(unsigned char *data, unsigned int len, unsigned int commID) 
{ 
 if(usciStat[UCB1_INDEX] != OPEN) return -1; // Check that the USCI is available 
 
 confUCB1(commID); 
  
 // Copy over pointer and length 
 ucb1TxPtr = data; 
 ucb1TxSize = len-1; 
 // Start of TX 
 usciStat[UCB1_INDEX] = TX; 
 UCB1TXBUF = *ucb1TxPtr; 



140 

 

 
 return 1; 
} 
/**************************************************************************//** 
 * \brief Receive method for USCI B1 SPI operation 
 * 
 * This method performs a synchronous read by storing the bytes to be read in 
 * ucb1ToRxSize and then performing len dummy write to the bus to fetch the data 
 * from a slave device. The RX size is cleared on this function call. 
 * 
 * \param len  The number of bytes to be read from the bus 
 * \param commID Communication ID number of the application 
 * 
 * \retval -1  USCI B1 Module Busy 
 * \retval 1  Receive successfully started 
 * \sideeffect  Reset the UCB0 RX size and data pointer 
 ******************************************************************************/ 
int spiB1Read(unsigned int len, unsigned int commID) 
{ 
 if(usciStat[UCB1_INDEX] != OPEN) return -1; // Check that the USCI is available 
 
 confUCB1(commID); 
 
 // Clear RX Size and copy length 
 ucb1RxPtr = dev[commID]->rxPtr;   // Reset the rx pointer 
 ucb1RxSize = 0;     // Reset the rx size 
 ucb1ToRxSize = len-1; 
 // Start of RX 
 usciStat[UCB1_INDEX] = RX; 
 UCB1TXBUF = 0xFF;    // Start TX 
  
 return 1; 
} 
 
/**************************************************************************//** 
 * \brief Byte Swap method for USCI B1 SPI operation 
 * 
 * This blocking method allows the user to transmit a byte and receive the 
 * response simultaneously clocked back in. TX and RX buffer sizes/content 
 * are unaffected. 
 * 
 * \param byte The byte to be sent via SPI 
 * \param  commID Communication ID number of the application 
 * 
 * \return The byte shifted in from the SPI 
 *************************************************************************/ 
unsigned char spiB1Swap(unsigned char byte, unsigned int commID) 
{ 
 if(usciStat[UCB1_INDEX] != OPEN) return -1; // Check that the USCI is available 
  
 confUCB1(commID); 
  
 usciStat[UCB1_INDEX] = SWAP;  // Set status to swap (prevent other operations) 
 UCB1TXBUF = byte; 
 while(UCB1STAT & UCBUSY);  // Wait for TX complete 
 usciStat[UCB1_INDEX] = OPEN;  // Set status to open (swap complete) 
 return UCB1RXBUF;   // Return RX contents 
} 
#endif //USE_UCB1_SPI 
/*********************************************************** 
 * UCB1 I2C HANDLERS 
 ***********************************************************/ 
#ifdef USE_UCB1_I2C 
/**************************************************************************//** 
 * \brief Transmit method for USCI B1 I2C operation 
 * 
 * This method initializes a transmission of len bytes from the base of the 
 * *data pointer. Similarly to spiB1Write(), the transmission uses the USCI B1 
 * TX ISR to complete, so 2 sequential calls may result in partial transmission. 
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 * 
 * \param *data Pointer to data to be written 
 * \param len Length (in bytes) of data to be written 
 * \param  commID Communication ID number of application 
 * 
 * \retval -1 USCI B1 Module busy 
 * \retval 1 Transmit successfully started 
 *******************************************************************************/ 
int i2cB1Write(i2cPacket* packet) 
{ 
 if(usciStat[UCB1_INDEX] != OPEN) return -1;  // Check that the USCI is available 
 
 confUCB1(packet->commID); 
 
 i2cb1RegAddr = packet->regAddr; 
 ucb1TxPtr = packet->data; 
 ucb1TxSize = packet->len; 
 
 // Start of TX 
 usciStat[UCB1_INDEX] = TX; 
 UCB1CTL1 |= UCTR + UCTXSTT;   // Generate start condition 
 
 return 1; 
} 
/**************************************************************************//** 
 * \brief Receive method for USCI B1 I2C operation 
 * 
 * This method performs a synchronous read by storing the bytes to be read in 
 * ucbB1ToRxSize and then performing len dummy write to the bus to fetch the data 
 * from a slave device. The RX size is cleared on this function call. 
 * 
 * \param len The number of bytes to be read from the bus 
 * \param commID Communication ID number of the application 
 * 
 * \retval -1 USCI B1 Module Busy 
 * \retval 1 Receive successfully started 
 * 
 * \sideeffect Reset the UCB1 RX size and data pointer 
 ******************************************************************************/ 
int i2cB1Read(i2cPacket* packet) 
{ 
 if(usciStat[UCB1_INDEX] != OPEN) return -1; // Check that the USCI is available 
 
 confUCB1(packet->commID); 
 
 i2cb1RegAddr = packet->regAddr; 
 ucb1RxSize = 0; 
 ucb1ToRxSize = packet->len; 
 ucb1RxPtr = packet->data; // THIS IS OPTIONAL (DUNNO IF WE WANT TO REDIRECT THIS WRITEBACK) 
 
 // Start of RX 
 usciStat[UCB1_INDEX] = RX; 
 
 UCB1CTL1 |= UCTR + UCTXSTT;   // Generate start condition 
 devConf[UCB1_INDEX] = 0;    // Clear config 
 
 return 0; 
} 
/**************************************************************************//** 
 * \brief Ping (slave present) Method for USCI B1 I2C Operation 
 * 
 * This method tests for the presence of a slave at the address affiliated with 
 * the registered commID. This is accomplished by sending a start, then stop 
 * condition sequentially on the bus, then reading the UCB1STAT register for 
 * a NACK condition. 
 * 
 * \param commID Communication ID number of the application 
 * 
 * \retval -1 USCI B1 Module Busy 
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 * \retval 0 Slave not present 
 * \retval 1 Slave present 
 * 
 * \sideeffect The USCI module will need to be reconfigured for the next 
 *   operation (even if it uses the same slave address or commID) 
 ******************************************************************************/ 
int i2cB1SlavePresent(unsigned int commID) 
{ 
 unsigned char retval; 
 
 if(usciStat[UCB1_INDEX] != OPEN) return -1; // Check that USCI is available 
 
 UCB1IE = 0;     // Clear NACK, RX, and TX interrupt conditions 
 UCB1I2CSA = dev[commID]->rAddr & ADDR_MASK; // Set slave address 
 UCB1CTL1 |= UCTR + UCTXSTT + UCTXSTP;  // TX w/ start and stop condition 
 
 while(UCB1CTL1 & UCTXSTP);   // Wait for stop condition 
 retval = !(UCB1STAT & UCNACKIFG); 
 
 devConf[UCB1_INDEX] = 0;  // Clear device config slot for UCB0 (reconfigure next use) 
 return retval; 
} 
#endif //USE_UCB0_I2C 
/**********************************************************************//** 
 * \brief USCI B1 RX/TX Interrupt Service Routine 
 * 
 * This ISR manages all TX/RX proceedures with the exception of transfer 
 * initialization. Once a transfer (read or write) is underway, this method 
 * assures the correct amount of bytes are written to the correct location. 
 *************************************************************************/ 
#pragma vector=USCI_B1_VECTOR 
__interrupt void usciB1Isr(void) 
{ 
 unsigned int dummy = 0xFF; 
#ifdef USE_UCB1_SPI 
 // Transmit Interrupt Flag Set 
 if(UCB1IFG & UCTXIFG){ 
  if(usciStat[UCB1_INDEX] == TX) { 
   if(ucb1TxSize > 0){ 
    UCB1TXBUF = *(++ucb1TxPtr); // Transmit the next outgoing byte 
    ucb1TxSize--; 
   } 
   else{ 
    usciStat[UCB1_INDEX] = OPEN;  // Set status open if done with transmit 
    UCB1IFG &= ~UCTXIFG;// Clear TX interrupt flag from vector on end of TX 
   } 
  } 
 } 
 
 // Receive Interrupt Flag Set 
 if(UCB1IFG & UCRXIFG){ // Check for interrupt flag and RX mode 
  if(usciStat[UCB1_INDEX] == RX) {  // Check we are in RX mode for SPI 
   if(UCB1STAT & UCRXERR) dummy = UCB1RXBUF; // RX ERROR: Do a dummy read to 
clear interrupt flag 
   else { // Otherwise write the value to the RX pointer 
   *(ucb1RxPtr++) = UCB1RXBUF; 
   ucb1RxSize++; // RX Size decrement in read function 
   if(ucb1RxSize < ucb1ToRxSize) UCB1TXBUF = dummy; // Perform another dummy write 
   else 
   usciStat[UCB1_INDEX] = OPEN; 
   } 
  } 
 } 
 UCB1IFG &= ~UCRXIFG; // Clear RX interrupt flag from vector on end of RX 
#endif // USE_UCB1_SPI 
#ifdef USE_UCB1_I2C 
 switch(__even_in_range(UCB1IV, 12)) 
 { 
  case I2CIV_NO_INT: break;   // Vector 0 (no interrupt) 
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  case I2CIV_AL_INT: break;   // Arbitration lost IFG 
  case I2CIV_NACK_INT:    // NACK Flag 
   UCB1CTL1 |= UCTXSTP;   // Send stop bit 
   UCB1STAT &= ~UCNACKIFG;    // Clear NACK flag 
   usciStat[UCB1_INDEX] = OPEN; 
   break; 
  case I2CIV_STT_INT: break;   // Start flag 
  case I2CIV_STP_INT: break;   // Stop flag 
  case I2CIV_RX_INT:    // RX flag 
   if(usciStat[UCB1_INDEX] == RX){  // Check we are performing an RX 
    *(ucb1RxPtr++) = UCB1RXBUF; // Read character 
    ucb1RxSize++; 
    if(ucb1RxSize == ucb1ToRxSize){ // Is this the final RX? 
     dummy = UCB1RXBUF; // Perform a dummy read 
     UCB1CTL1 |= UCTXSTP; // Send a stop bit 
     usciStat[UCB1_INDEX] = OPEN;  // Set the resource to open 
    } 
   } 
   else UCB1IFG &= ~UCRXIFG; 
   break; 
  case I2CIV_TX_INT:     // TX flag 
   if(usciStat[UCB1_INDEX] == TX){ 
    if(i2cb1RegAddr != 0){ // Are we writing the first byte (register 
address)? 
     UCB1TXBUF = i2cb1RegAddr; // Write the register address 
     i2cb1RegAddr = 0; // Zero the register address to indicate 
transferred 
    } 
    else if(ucb1TxSize > 0){   // Normal data transfer 
     UCB1TXBUF = *(ucb1TxPtr++); // Write the next character 
     ucb1TxSize--;   // Decrement the transmit count 
    } 
    else {     // This is the final TX 
     UCB1CTL1 |= UCTXSTP;  // Send stop bit 
     UCB1IFG &= ~UCTXIFG;  // Clear TX flag 
     usciStat[UCB1_INDEX] = OPEN; 
    } 
   } 
   else if(usciStat[UCB1_INDEX] == RX){ 
    if(i2cb1RegAddr != 0){ // Are we writing the first byte (register 
address)? 
     UCB1TXBUF = i2cb1RegAddr; // Write the register address 
     i2cb1RegAddr = 0; // Zero the register address to indicate 
transferred 
    } 
    else { 
     UCB1CTL1 &= ~UCTR; // Clear the transmit and start control 
bits 
     UCB1CTL1 |= UCTXSTT; // Set the start command, initializing 
read 
     //UCB1IFG &= ~UCTXIFG; // Clear the TX interrupt flag 
     //UCB1IFG |= UCRXIFG; 
    } 
   } 
   else UCB1IFG &= ~UCTXIFG; 
   break; 
  default: break; 
 } 
#endif // USE_UCB1_I2C 
} 
#endif // USE_UCB1 

Comm.h 

Header file affiliated with communications library 
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/****************************************************************//** 
 * \file comm.h 
 * 
 * \author  Ben Boudaoud 
 * \date  January 2013 
 * 
 * \brief  This library provides functions for interfacing MSP430 
 *    USCI modules in a relatively intuitive way. 
 * 
 * When a module is to be used, first the application must register 
 * a communications ID. The #registerComm function is used to pass in 
 * a configuration for the USCI module (see #usciConfig). In return 
 * #registerComm passes back a comm ID which can be used to access the 
 * USCI. Currently the library supports UART, SPI, and I2C single master 
 * modes. 
 *******************************************************************/ 
#ifndef COMM_H_ 
#define COMM_H_ 
#include "util.h"  // Includes bitwise access structure and macros (used in CS logic) 
#include "comm_hal_5342.h" 
#include "clocks.h" 
 
#define MAX_DEVS 16  ///< Maximum number of devices to be registered 
 
// USCI Library Conditional Compilation Macros 
// NOTE: Only define at most 1 config for each USCI module, otherwise a Multiple Serial Endpoint error 
will be created on compilation 
#define USE_UCA0_UART   ///< USCI A0 UART Mode Conditional Compilation Flag 
//#define USE_UCA0_SPI   ///< USCI A0 SPI Mode Conditional Compilation Flag 
//#define USE_UCA1_UART   ///< USCI A1 UART Mode Conditional Compilation Flag 
//#define USE_UCA1_SPI   ///< USCI A1 SPI Mode Conditional Compilation Flag 
//#define USE_UCB0_SPI   ///< USCI B0 SPI Mode Conditional Compilation Flag 
//#define USE_UCB0_I2C   ///< USCI B0 I2C Mode Conditional Compilation Flag 
//#define USE_UCB1_SPI   ///< USCI B1 SPI Mode Conditional Compilation Flag 
#define USE_UCB1_I2C   ///< USCI B1 I2C Mode Conditional Compilation Flag 
 
typedef struct uconf   /// USCI Configuration Data Structure 
{ 
 unsigned int rAddr;   ///< 16-Bit Resource Code [ USCI # (2 bits) ] [  USCI 
mode (2 bits) ] [ CS or I2C Address (12 bits) ] 
 unsigned int usciCtlW0;  ///< 16-Bit USCI Control Word0 (see TI User Guide) 
 unsigned int usciCtlW1;  ///< 16-Bit USCI Control Word1 (see TI User Guide) 
 unsigned int baudDiv;  ///< Sourced clock rate divisor (can use FREQ_2_BAUDDIV(x) macro 
included below) 
 unsigned char *rxPtr;  ///< Data write back pointer 
} usciConfig; 
 
typedef struct i2cDataPacket  /// Packet for I2C transmit/receive 
{ 
 unsigned int commID;  ///< Communications ID for the transfer 
 unsigned char regAddr;  ///< Internal chip register address for write/read 
 unsigned char len;  ///< Length of the desired transfer (in bytes) 
 unsigned char* data;  ///< Data pointer to write from/read to 
}i2cPacket; 
 
// USCI Status Codes 
typedef enum usciStatusCode  /// Enumerated type for USCI status 
{ 
  OPEN = 0,   ///< Module open and available for transfer 
  TX  = 1,  ///< Module currently completing a transmission 
  RX  = 2,  ///< Module currently completing a receive 
  SWAP = 3   ///< Module currently compelting a byte swap (SPI) 
} usciStatus; 
 
/********************************************************* 
 * Resource address control codes 
 ********************************************************/ 
// Resource Address Masking 
#define USCI_MASK  0xC000 ///< USCI device name (UCXX) mask for resource address code 
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#define MODE_MASK  0x3000 ///< USCI mode (UART/SPI/I2C) name mask for resource address code 
#define UMODE_MASK  0xF000 ///< USCI name/mode mask for resource address code 
#define ADDR_MASK  0x03FF ///< USCI address mask for resource address code (max 10 bits) 
// Resource Codes 
#define UCA0_RCODE  0x0000 ///< USCI A0 resource code 
#define UCA1_RCODE  0x4000 ///< USCI A1 resource code 
#define UCB0_RCODE  0x8000 ///< USCI B0 resource code 
#define UCB1_RCODE  0xC000 ///< USCI B1 resource code 
#define UART_MODE  0x1000 ///< UART mode code 
#define SPI_MODE  0x2000 ///< SPI mode code 
#define I2C_MODE  0x3000 ///< I2C mode code 
// Resource and Mode combo codes 
#define UCA0_UART  UCA0_RCODE + UART_MODE ///< Combined UCA0 UART Mode Resource Code 
#define UCA0_SPI  UCA0_RCODE + SPI_MODE ///< Combined UCA0 SPI Mode Resource Code 
#define UCA1_UART  UCA1_RCODE + UART_MODE ///< Combined UCA1 UART Mode Resource Code 
#define UCA1_SPI  UCA1_RCODE + SPI_MODE ///< Combined UCA1 SPI Mode Resource Code 
#define UCB0_SPI  UCB0_RCODE + SPI_MODE ///< Combined UCB0 SPI Mode Resource Code 
#define UCB0_I2C  UCB0_RCODE + I2C_MODE ///< Combined UCB0 I2C Mode Resource Code 
#define UCB1_SPI  UCB1_RCODE + SPI_MODE ///< Combined UCB1 SPI Mode Resource Code 
#define UCB1_I2C  UCB1_RCODE + I2C_MODE ///< Combined UCB1 I2C Mode Resource Code 
 
/********************************************************** 
 * USCI Register Values 
 **********************************************************/ 
// USCI CTL Word 0 Defaults 
// UART MODE 
#define UART_8N1  UCSSEL__SMCLK         
     ///< UCTLW0: 8 bit UART (no parity, 1 stop bit) w/ baud from 
SMCLK 
#define UART_7N1  (UC7BIT << 8) + UCSSEL__SMCLK       
   ///< UCTLW0: 7 bit UART (no parity, 1 stop bit) w/ baud from SMCLK 
// SPI MODE 
#define SPI_8M0_LE  ((UCSYNC + UCMST) << 8) + UCSSEL__SMCLK     
   ///< UCTLW0: 8 bit Mode 0 SPI Master LSB first w/ baud from SMCLK 
#define SPI_8M0_BE  ((UCSYNC + UCMST + UCMSB) << 8) + UCSSEL__SMCLK    
  ///< UCTLW0: 8 bit Mode 0 SPI Master MSB first w/ baud from SMCLK 
#define SPI_8M1_LE  ((UCSYNC + UCMST + UCCKPH) << 8) + UCSSEL__SMCLK    
 ///< UCTLW0: 8 bit Mode 1 SPI Master LSB first w/ baud from SMCLK 
#define SPI_8M1_BE  ((UCSYNC + UCMST + UCCKPH + UCMSB) << 8) + UCSSEL__SMCLK  
 ///< UCTLW0: 8 bit Mode 1 SPI Master MSB first w/ baud from SMCLK 
#define SPI_8M2_LE  ((UCSYNC + UCMST + UCCKPL) << 8) + UCSSEL__SMCLK    
 ///< UCTLW0: 8 bit Mode 2 SPI Master LSB first w/ baud from SMCLK 
#define SPI_8M2_BE  ((UCSYNC + UCMST + UCCKPL + UCMSB) << 8) + UCSSEL__SMCLK  
 ///< UCTLw0: 8 bit Mode 2 SPI Master MSB first w/ baud from SMCLK 
#define SPI_8M3_LE  ((UCSYNC + UCMST + UCCKPH + UCCKPL) << 8) + UCSSEL__SMCLK  
 ///< UCTLW0: 8 Bit Mode 3 SPI Master LSB first w/ baud from SMCLK 
#define SPI_8M3_BE  ((UCSYNC + UCMST + UCCKPH + UCCKPL + UCMSB) << 8) + UCSSEL__SMCLK ///< 
UCTLW0: 8 bit Mode 3 SPI Master MSB first w/ baud from SMCLK 
#define SPI_S8M0_LE  UCSYNC << 8        
       ///< UCTLW0: 8 bit Mode 0 SPI Slave LSB first 
#define SPI_S8M0_BE  ((UCSYNC + UCMSB) << 8 ) + UCSSEL__SMCLK     
  ///< UCTLW0: 8 bit Mode 0 SPI Slave MSB first 
#define SPI_S8M1_LE  ((UCSYNC + UCCKPH) << 8) + UCSSEL__SMCLK     
  ///< UCTLW0: 8 bit Mode 1 SPI Slave LSB first 
#define SPI_S8M1_BE  ((UCSYNC + UCCKPH + UCMSB) << 8) + UCSSEL__SMCLK    
 ///< UCTLW0: 8 bit Mode 1 SPI Slave MSB first 
#define SPI_S8M2_LE  ((UCSYNC + UCCKPL) << 8) + UCSSEL__SMCLK     
  ///< UCTLW0: 8 bit Mode 2 SPI Slave LSB first 
#define SPI_28M2_BE  ((UCSYNC + UCCKPL + UCMSB) << 8) + UCSSEL__SMCLK    
 ///< UCTLw0: 8 bit Mode 2 SPI Slave MSB first 
#define SPI_S8M3_LE  ((UCSYNC + UCCKPH + UCCKPL) << 8) + UCSSEL__SMCLK    
 ///< UCTLW0: 8 bit Mode 3 SPI Slave LSB first 
#define SPI_S8M3_BE  ((UCSYNC + UCCKPH + UCCKPL + UCMSB) << 8 ) + UCSSEL__SMCLK  
 ///< UCTLW0: 8 bit Mode 3 SPI Slave MSB first 
// I2C MODE 
// THESE MACROS NEED UPDATING/TESTING 
#define I2C_10SM  ((UCA10 + UCSLA10 + UCMST + UCMODE_3 + UCSYNC) << 8) + UCSSEL__SMCLK  
 ///< UCTLW0: 10 bit addressed I2C (master and slave), single master mode, transmitter w/ baud from 
SMCLK 
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#define I2C_7SM   ((UCMST + UCMODE_3 + UCSYNC) << 8) + UCSSEL__SMCLK   
 ///< UCTLW0: 7 bit addressed I2C (master and slave), single master mode, receiver w/ baud from 
SMCLK 
 
// I2C Interrupt Vector Definitions 
#define I2CIV_NO_INT  0   ///< I2C no interrupt source 
#define I2CIV_AL_INT  2   ///< I2C arbitration lost interrupt flag 
#define I2CIV_NACK_INT  4   ///< I2C NACK interrupt flag 
#define I2CIV_STT_INT  6   ///< I2C start condition flag 
#define I2CIV_STP_INT  8   ///< I2C stop condition flag 
#define I2CIV_RX_INT  10   ///< I2C receive interrupt flag 
#define I2CIV_TX_INT  12   ///< I2C transmit interrupt flag 
 
// USCI CTL Work 1 Defaults 
#define DEF_CTLW1  0x0003   ///< CTLW1: 200ns deglitch time 
// USCI Baud Rate Defaults 
#define UCLK_FREQ  SMCLK_FREQ  ///< USCI Clock Rate [use SMCLK to source our 
UART (from timing.h)] 
#define UBR_DIV(x)  UCLK_FREQ/x  ///< Baud rate frequency to divisor macro (uses 
timing.h) 
 
// Resource config buffer index 
#define UCA0_INDEX  0   ///< USCI A0 shared buffer index 
#define UCA1_INDEX   1   ///< USCI A1 shared buffer index 
#define UCB0_INDEX  2   ///< USCI B0 shared buffer index 
#define UCB1_INDEX  3   ///< USCI B1 shared buffer index 
 
// Read/Write Routine Return Codes 
#define USCI_CONF_ERROR  -2   ///< USCI configuration error return code 
#define USCI_BUSY_ERROR  -1   ///< USCI busy error return code 
#define USCI_SUCCESS  1   ///< TX/RX success return code 
 
// Time to start condition (in cycles) macro 
#define MAX_STT_WAIT   10000  ///< Maximum time to start condition wait period 
 
// App. registration function prototype 
int registerComm(usciConfig *conf); 
/************************************************************************* 
 * UCA0 Macro Logic 
 ************************************************************************/ 
// Basic function prototypes 
void confUCA0(unsigned int commID); 
void resetUCA0(unsigned int commID); 
unsigned int getUCA0RxSize(void); 
unsigned char getUCA0Stat(void); 
void setUCA0Baud(unsigned int baudDiv, unsigned int commID); 
/************************* UCA0 UART MODE ********************************/ 
#ifdef USE_UCA0_UART 
// Function prototypes 
int uartA0Write(unsigned char* data, unsigned int len, unsigned int commID); 
int uartA0Read(unsigned int len, unsigned int commID); 
// Other useful macros 
#define USE_UCA0 ///< UCA0 Active Definition 
// Multiple endpoint config detection 
#ifdef USE_UCA0_SPI 
#error Multiple Serial Endpoint Configuration on USCI A0 
#endif // USE_UCA0_UART and USE_UCA0_SPI 
#endif 
/************************* UCA0 SPI MODE ********************************/ 
#ifdef USE_UCA0_SPI 
// Function prototypes 
int spiA0Write(unsigned char* data, unsigned int len, unsigned int commID); 
int spiA0Read(unsigned int len, unsigned int commID); 
unsigned char spiA0Swap(unsigned char byte, unsigned int commID); 
// Multiple Endpoint Config Compiler Error 
#define USE_UCA0 ///< USCI A0 Active Definition 
#ifdef USE_UCA0_UART 
#error Multiple Serial Endpoint Configuration on USCI A0 
#endif // USE_UCA0_UART AND USE_UCA0_SPI 
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#endif // USE_UCA0_SPI 
 
/************************************************************************** 
 * UCA1 Macro Logic 
 *************************************************************************/ 
// Basic function prototypes 
void confUCA1(unsigned int commID); 
void resetUCA1(unsigned int commID); 
unsigned int getUCA1RxSize(void); 
unsigned char getUCA1Stat(void); 
void setUCA1Baud(unsigned int baudDiv, unsigned int commID); 
/************************* UCA1 UART MODE ********************************/ 
#ifdef USE_UCA1_UART 
// Function prototypes 
int uartA1Write(unsigned char* data, unsigned int len, unsigned int commID); 
int uartA1Read(unsigned int len, unsigned int commID); 
// Other useful macros 
#define USE_UCA1 ///< USCI A1 Active Definition 
// Multiple endpoint config detection 
#ifdef USE_UCA1_SPI 
#error Multiple Serial Endpoint Configuration on USCI A1 
#endif // USE_UCA1_UART and USE_UCA1_SPI 
#endif // USE_UCA1_UART 
/*************************** UCA1 SPI MODE *******************************/ 
#ifdef USE_UCA1_SPI 
// Function prototypes 
int spiA1Write(unsigned char* data, unsigned int len, unsigned int commID); 
int spiA1Read(unsigned int len, unsigned int commID); 
unsigned char spiA1Swap(unsigned char byte, unsigned int commID); 
// Other useful macros 
#define USE_UCA1 ///< USCI A1 Active Definition 
// Multiple endpoint config detection 
#ifdef USE_UCA1_UART 
#error Multiple Serial Endpoint Configuration on USCI A1 
#endif // USE_UCA1_UART and USE_UCA1_SPI 
#endif // USE_UCA1_SPI 
 
/************************************************************************** 
 * UCB0 Macro Logic 
 *************************************************************************/ 
// Basic Function Prototypes 
void confUCB0(unsigned int commID); 
void resetUCB0(unsigned int commID); 
unsigned int getUCB0RxSize(void); 
unsigned char getUCB0Stat(void); 
void setUCB0Baud(unsigned int baudDiv, unsigned int commID); 
/************************* UCB0 SPI MODE *********************************/ 
#ifdef USE_UCB0_SPI 
// Function prototypes 
int spiB0Write(unsigned char* data, unsigned int len, unsigned int commID); 
int spiB0Read(unsigned int len, unsigned int commID); 
unsigned char spiB0Swap(unsigned char byte, unsigned int commID); 
// Other useful macros 
#define USE_UCB0 ///< USCI B0 Active Definition 
// Multiple endpoint config detection 
#ifdef USE_UCB0_I2C 
#error Mulitple Serial Endpoint Configuration on USCI B0 
#endif // USE_UCB0_SPI and USE_UCB0_I2C 
#endif // USE_UCB0_SPI 
/************************* UCB0 I2C MODE *********************************/ 
#ifdef USE_UCB0_I2C 
// Function prototypes 
int i2cB0Write(i2cPacket packet); 
int i2cB0Read(i2cPacket packet); 
int i2cB0SlavePresent(unsigned int commID); 
// Other useful macros 
#define USE_UCB0 ///< USCI B0 Active Definition 
/// Muleiple endpoint config detection 
#ifdef USE_UCB0_SPI 
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#error Multiple Serial Endpoint Configuration on USCI B0 
#endif // USE_UCB0_SPI and USE_UCB0_I2C 
#endif // USE_UCB0_I2C 
 
/************************************************************************** 
 * UCB1 Macro Logic 
 *************************************************************************/ 
// Basic Function Prototypes 
void confUCB1(unsigned int commID); 
void resetUCB1(unsigned int commID); 
unsigned int getUCB1RxSize(void); 
unsigned char getUCB1Stat(void); 
void setUCB1Baud(unsigned int baudDiv, unsigned int commID); 
/************************* UCB1 SPI MODE *********************************/ 
#ifdef USE_UCB1_SPI 
// Function prototypes 
int spiB1Write(unsigned char* data, unsigned int len, unsigned int commID); 
int spiB1Read(unsigned int len, unsigned int commID); 
unsigned char spiB1Swap(unsigned char byte, unsigned int commID); 
// Other useful macros 
#define USE_UCB1 ///< USCI B1 Active Definition 
// Multiple endpoint config detection 
#ifdef USE_UCB1_I2C 
#error Mulitple Serial Endpoint Configuration on USCI B1 
#endif // USE_UCB1_SPI and USE_UCB1_I2C 
#endif // USE_UCB1_SPI 
/************************* UCB0 I2C MODE *********************************/ 
#ifdef USE_UCB1_I2C 
// Function prototypes 
int i2cB1Write(i2cPacket* packet); 
int i2cB1Read(i2cPacket* packet); 
int i2cB1SlavePresent(unsigned int commID); 
// Other useful macros 
#define USE_UCB1 ///< USCI B1 Active Definition 
/// Multiple endpoint config detection 
#ifdef USE_UCB1_SPI 
#error Multiple Serial Endpoint Configuration on USCI B1 
#endif // USE_UCB1_SPI and USE_UCB1_I2C 
#endif // USE_UCB1_I2C 
#endif /* COMM_H_ */ 

Comm_hal_5342.h 

MSP430F5342-specific hardware definitions for use with the comm.c/h libraries 

/****************************************************************//** 
 * \file comm_hal_5342.h 
 * 
 * \author  Ben Boudaoud 
 * \date  January 2013 
 * 
 * \brief  This library provides simple HAL level functionality for 
 *    setting up and clearing I/O pins for USCI operation 
 *******************************************************************/ 
 
#ifndef COMM_HAL_5342_H_ 
#define COMM_HAL_5342_H_ 
 
// MSP430F5342 EUSCI Module Pinouts 
//*********** UCA0 **************// 
// UCA0TXD/SIMO = P3.3 (Pin 25) 
// UCA0RXD/SOMI = P3.4 (Pin 26) 
// UCA0SCLK = P2.7 (Pin 21) 
//*********** UCA1 **************// 
// UCA1TXD/SIMO = P4.4 (Pin 33) 
// UCA1RXD/SOMI = P4.5 (Pin 34) 
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// UCA1SCLK = P4.0 (Pin 27) 
//*********** UCB0 **************// 
// UCB0SIMO/SDA = P3.0 (Pin 22) 
// UCB0SOMI/SCL = P3.1 (Pin 23) 
// UCB0SCLK = P3.2 (Pin 24) 
//*********** UCB1 *************// 
// UCB1SIMO/SDA = P4.1 (Pin 28) 
// UCB1SOMI/SCL = P4.2 (Pin 29) 
// UCB1SCLK = P4.3 (Pin 30) 
//******************************// 
 
#include "msp430f5342.h" 
#include "comm.h" 
 
#define USE_UCA0_UART 
//#define USE_UCA0_SPI 
//#define USE_UCA1_UART 
//#define USE_UCA1_SPI 
#define USE_UCB0_SPI 
//#define USE_UCB0_I2C 
//#define USE_UCB1_SPI 
#define USE_UCB1_I2C 
 
#ifdef USE_UCA0_UART // UCA0 UART Mode Defines 
 #define UCA0_IO_CONF(x) P3SEL |= (BIT3 + BIT4) ///< USCI A0 UART I/O Configuration 
 #define UCA0_IO_CLEAR() P3SEL &= ~(BIT3 + BIT4); P3DIR |= (BIT3 + BIT4); P3OUT |= (BIT3 + BIT4)
 ///< USCI A0 UART I/O Clear 
#endif 
#ifdef USE_UCA0_SPI // UCA0 SPI Mode Defines 
 #define UCA0_IO_CONF(x) P3SEL |= (BIT3 + BIT4); P2SEL |= BIT7///< USCI A0 SPI I/O Configuration 
 #define UCA0_IO_CLEAR() P3SEL &= ~(BIT3 + BIT4); P2SEL &= ~BIT7 ///< USCI A0 SPI I/O Clear 
#endif 
#ifdef USE_UCA1_UART // UCA1 UART Mode Defines 
 #define UCA1_IO_CONF(x) P4SEL |= (BIT4 + BIT5) ///< USCI A1 UART I/O Configuration 
 #define UCA1_IO_CLEAR() P4SEL &= ~(BIT4 + BIT5) ///< USCI A1 UART I/O Clear 
#endif 
#ifdef USE_UCA1_SPI // UCA1 SPI Mode Defines 
 #define UCA1_IO_CONF(x) P4SEL |= (BIT0 + BIT4 + BIT5) ///< USCI A1 SPI I/O Configuration 
 #define UCA1_IO_CLEAR() P4SEL &= ~(BIT0 + BIT4 + BIT5) ///< USCI A1 SPI I/O Clear 
#endif 
#ifdef USE_UCB0_SPI // UCB0 SPI Mode Defines 
 #define UCB0_IO_CONF(x) P3SEL |= (BIT0 + BIT1 + BIT2) ///< USCI B0 SPI I/O Configuration 
 #define UCB0_IO_CLEAR() P3SEL &= ~(BIT0 + BIT1 + BIT2) ///< USCI B0 SPI I/O Clear 
#endif 
#ifdef USE_UCB0_I2C // UCB0 I2C Mode Defines 
 #define UCB0_IO_CONF(x) P3SEL |= (BIT0 + BIT1)//; I2C_ADDR(x) ///< USCI B0 I2C I/O 
Configuration 
 #define UCB0_IO_CLEAR() P3SEL &= ~(BIT0 + BIT1 + BIT2)  ///< USCI B0 I2C I/O Clear 
#endif 
#ifdef USE_UCB1_SPI // UCB1 SPI Mode Defines 
 #define UCB1_IO_CONF(x) P4SEL |= (BIT1 + BIT2 + BIT3) ///< USCI B1 SPI I/O Configuration 
 #define UCB1_IO_CLEAR() P4SEL &= ~(BIT1 + BIT2 + BIT3) ///< USCI B1 SPI I/O Clear 
#endif 
#ifdef USE_UCB1_I2C // UCB1 I2C Mode Defines 
 #define UCB1_IO_CONF(x) P4SEL |= (BIT1 + BIT2)//; I2C_ADDR(x) ///< USCI B1 I2C I/O 
Configuration 
 #define UCB1_IO_CLEAR() P4SEL &= ~(BIT1 + BIT2)   ///< USCI B1 I2C I/O Clear 
#endif 
#endif /* COMM_HAL_5342_H_ */ 

Command.c 

System command interface for use on top of the FT232 code created to support UART-to-USB 

communication 
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/* 
 * command.c 
 * 
 *  Created on: Dec 16, 2013 
 *      Author: bb3jd 
 */ 
#include "command.h" 
#include "system.h" 
#include "hal.h" 
#include "ftdi.h" 
#include "rtc.h" 
#include "flash.h" 
#include "mpu.h" 
 
unsigned char handshakeFlag = 0;  ///< Handshake received flag 
unsigned char processingCmd = 0;  ///< Processing command flag 
 
int runCommand(cmdPkt* cmd) 
{ 
 cmdReply reply = {0}; 
 unsigned int payloadChecksum; 
 unsigned char payload[MAX_PAYLOAD_SIZE]; 
 ftdiPacket outPacket; 
 unsigned char startofReply = 'R'; 
 
 reply.echoCmd = cmd->command;  // Copy incoming command into the echo field in reply 
 
 // Validate checksum for command 
 if(fletcherChecksum((unsigned char *)cmd, CMD_CRC_LEN, 0) != cmd->checksum){ 
  reply.response = CMD_CORRUPT_REQUEST; 
  reply.len = 0; 
 } 
 // Check for handshake flag or incoming handshake command 
 else if((handshakeFlag == 0) && (cmd->command != CMD_HANDSHAKE)){ 
  reply.response = CMD_NEED_HANDSHAKE; 
  reply.len = 0; 
 } 
 else{ 
  // Process the command 
  switch(cmd->command){ 
   case CMD_HANDSHAKE: // Handshake for initialization of the command interface 
    handshake(cmd, &reply, payload); 
    break; 
   case CMD_GET_STATUS: // Status polling 
    //getStatus(cmd, &reply, payload); 
    break; 
   case CMD_SET_TIME: // Set system time in RTC request 
    sysSetTime(cmd, &reply, payload); 
    break; 
   case CMD_GET_TIME: // Get system time from RTC request 
    sysGetTime(cmd,  &reply, payload); 
    break; 
   case CMD_GET_VER: // Get the system firmware version 
    sysGetVersion(cmd, &reply, payload); 
    break; 
   case CMD_GET_NID: // Get the system node ID 
    sysGetNodeID(cmd, &reply, payload); 
    break; 
   case CMD_GET_CID: // Get the flash card ID 
    sysGetCardID(cmd, &reply, payload); 
    break; 
   case CMD_GET_SECTOR: // Fetch a sector from the flash card 
    sysGetSector(cmd, &reply, payload); 
    break; 
   case CMD_GET_ACCEL: // Get the current accelerometer value triplet 
    sysGetAccel(cmd, &reply, payload); 
    break; 
   case CMD_GET_GYRO: // Get the current gyro value triplet 
    sysGetGyro(cmd, &reply, payload); 
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    break; 
   case CMD_SET_SR:  // Set the system sampling rate 
    sysSetSamplingRate(cmd, &reply, payload); 
    break; 
   case CMD_SET_DCE: 
    sysSetDCE(cmd, &reply, payload); 
    break; 
   case CMD_LED_ON:  // Dummy command: turn on the LED 
    LED1_CONFIG(); 
    LED1_ON(); 
    reply.response = CMD_SUCCESS; 
    reply.len = 0; 
    break; 
   case CMD_LED_OFF: // Dummy command: turn off the LED 
    LED1_CONFIG(); 
    LED1_OFF(); 
    reply.response = CMD_SUCCESS; 
    reply.len = 0; 
    break; 
   default: 
    reply.response = CMD_INVALID_COMMAND; 
    reply.len = 0; 
    break; 
  } 
 
 } 
 
 if(reply.len > 0){  // If reply payload is populated 
  payloadChecksum = fletcherChecksum(payload, reply.len, 0);// Perform checksum 
  reply.len += sizeof(payloadChecksum);// Pack the checksum length into the reply header 
 } 
 reply.checksum = fletcherChecksum((unsigned char *)&reply, sizeof(reply)-sizeof(reply.checksum), 
0); // Compute reply header chekcsum 
 
 // Send the start of reply 
 outPacket.data = &startofReply; 
 outPacket.len = 1; 
 ftdiWrite(outPacket); 
 
 // Send the reply header 
 outPacket.data = (unsigned char *)&reply; 
 outPacket.len = sizeof(reply); 
 ftdiWrite(outPacket); 
 
 // Send the reply payload (if one exists) 
 if(reply.len > 0){ 
  outPacket.data = payload; 
  outPacket.len = reply.len - sizeof(payloadChecksum); 
  ftdiWrite(outPacket); 
  // Send the reply payload checksum at the end of the payload 
  outPacket.data = (unsigned char *)(&payloadChecksum); 
  outPacket.len = sizeof(payloadChecksum); 
  ftdiWrite(outPacket); 
 } 
 
 processingCmd = 0; // Clear processing command flag (for incoming parser management) 
 return CMD_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief "Handshake" with the node to unlock access to the other commands 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void handshake(cmdPkt* cmd, cmdReply* reply, unsigned char* payload){ 
 handshakeFlag = 1; 
 reply->len = 0; 
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 reply->response = CMD_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Set the system RTC time to a specific value 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetTime(cmdPkt* cmd, cmdReply* reply, unsigned char* payload){ 
 time* t = rtcGetTime(); 
 memcpy((void*)payload, (void*)t, sizeof(time)); 
 reply->len = sizeof(time); 
 reply->response = CMD_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Get the system RTC time and return it in the payload 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysSetTime(cmdPkt* cmd, cmdReply* reply, unsigned char* payload){ 
 time* t = (time *)(cmd->arg); 
 rtcSetTime(t); 
 reply->len = 0; 
 reply->response = CMD_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Get the system firmware version 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetVersion(cmdPkt* cmd, cmdReply* reply, unsigned char* payload) { 
 extern Version v; 
 memcpy(payload, (unsigned char *)&v, sizeof(Version)); 
 reply->len = sizeof(Version); 
 reply->response = CMD_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Get the node identification number 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetNodeID(cmdPkt* cmd, cmdReply* reply, unsigned char* payload) { 
 extern unsigned int nodeID; // From main.c 
 memcpy(payload, (unsigned char *)&nodeID, sizeof(nodeID)); 
 reply->len = sizeof(nodeID); 
 reply->response = CMD_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Get the card identification number 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetCardID(cmdPkt* cmd, cmdReply* reply, unsigned char* payload) { 
 flashReadCardID(payload); 
 reply->len = CARD_ID_LEN; 
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 reply->response = CMD_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Get the most recent accelerometer values 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetAccel(cmdPkt* cmd, cmdReply* reply, unsigned char* payload){ 
 axisData accel = mpuGetAccel(); 
 memcpy(payload, (unsigned char *)&accel, sizeof(axisData)); 
 reply->len = sizeof(axisData); 
 reply->response = CMD_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Get the most recent gyro values 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetGyro(cmdPkt* cmd, cmdReply* reply, unsigned char* payload){ 
 axisData accel = mpuGetGyro(); 
 memcpy(payload, (unsigned char *)&accel, sizeof(axisData)); 
 reply->len = sizeof(axisData); 
 reply->response = CMD_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Fetch the desired sector from the card and return it 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetSector(cmdPkt* cmd, cmdReply* reply, unsigned char* payload){ 
 unsigned long index = (unsigned long)(cmd->arg); 
 unsigned long len = (unsigned long)(&cmd->arg[4]); 
 struct Sector sect; 
 
 if(secureFlashRead(index, &sect) == FLASH_TIMEOUT){ // Attempt a flash read 
  reply->len = 0;     // On timeout set length to 0 
  reply->response = CMD_FAIL_GENERAL;  // and provide general failure 
 } 
 else{           
 // On successful read 
  memcpy(payload, (unsigned char *)&sect, sizeof(struct Sector)); // Copy over the payload 
  reply->len = sizeof(struct Sector);  // Set the response length 
  reply->response = CMD_SUCCESS;   // Set the response code (SUCCESS) 
 } 
} 
 
/**************************************************************************//** 
 * \brief Set the system sampling rate to the desired value 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysSetSamplingRate(cmdPkt* cmd, cmdReply* reply, unsigned char* payload) { 
 unsigned int reqSR = (unsigned int)cmd->arg; 
 unsigned int setSR = 0; 
 setSR = mpuSetSampRate(reqSR);  // Call the MPU set sampling rate routine 
 memcpy(payload, (unsigned char *)&setSR, sizeof(unsigned int)); // Copy over set rate 
 reply->len = sizeof(unsigned int); // Set the reply length 
 reply->response = CMD_SUCCESS;  // Set the command code (SUCCESS) 
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} 
 
/**************************************************************************//** 
 * \brief Set the system sampling rate to the desired value 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysSetDCE(cmdPkt* cmd, cmdReply* reply, unsigned char* payload){ 
 extern unsigned char dataCollectionEn; // From system.c 
 
 dataCollectionEn = (unsigned int)cmd->arg; 
 reply->len = 0; 
 reply->response = CMD_SUCCESS; 
} 

Command.h 

Affiliated command interface header file 

/* 
 * command.h 
 * 
 *  Created on: Dec 16, 2013 
 *      Author: bb3jd 
 */ 
 
#ifndef COMMAND_H_ 
#define COMMAND_H_ 
 
#define MAX_PAYLOAD_SIZE 516 
#define CMD_MASK   0xFF00 
 
// TEMPO 4 Command Set 
#define  CMD_HANDSHAKE 'H'   ///< Handshake command for initializing communications 
#define CMD_GET_STATUS '?'   ///< Poll for status 
#define  CMD_GET_TIME 'T'   ///< Poll for node time (RTC-based) 
#define CMD_SET_TIME 'C'   ///< Set the node time (RTC-based) 
#define CMD_GET_VER 'V'   ///< Get firmware version number command 
#define  CMD_GET_NID 'N'   ///< Get the node ID 
#define  CMD_GET_CID '*'   ///< Get the flash card 
#define CMD_SET_DCE '$'   ///< Enable data collection 
#define  CMD_SET_DCD 'W'   ///< Disable data collection 
#define CMD_GET_SECTOR 'S'   ///< Get data sector 
#define  CMD_GET_BLOCK 'B'   ///< Get data block (set of sectors) 
#define CMD_GET_ACCEL 'A'   ///< Get the most recent accelerometer value triplet 
#define  CMD_GET_GYRO 'G'   ///< Get the most recent gyro value triplet 
#define CMD_SET_SR 'R'   ///< Set the node sampling rate 
#define CMD_CARD_INIT 'I'   ///< Flash card initialization command 
#define CMD_CARD_OVWT 'O'   ///< Flash card overwrite command 
#define CMD_LED_ON '1'   ///< Turn the LED on 
#define CMD_LED_OFF '0'   ///< Turn the LED off 
 
// Other Command Related Values 
#define  CMD_ARG_LEN   16   ///< Command argument length 
#define  CMD_LEN    2 + CMD_ARG_LEN + 2  ///< Command header (2B) plus arg (16B) 
plus CRC (2B) 
#define  CMD_CRC_LEN   CMD_ARG_LEN + 2  ///< Command arg (16B) plus CRC (2B) 
#define  CMD_START_OF_SEQ 'S' 
#define  CMD_START_OF_REPLY 'R' 
 
typedef struct commandPacket {    /// TEMPO 4 Incoming Command Structure 
 unsigned int command;    ///< The command to be processed 
 unsigned char arg[CMD_ARG_LEN];   ///< The argument to the command 
 unsigned int checksum;    ///< Checksum for validity purposes 
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} cmdPkt;  
 
// Command Response Codes 
#define CMD_CORRUPT_REQUEST  1  ///< The command received did not pass checksum 
#define CMD_NEED_HANDSHAKE  2  ///< No handshake has been passed to this node 
#define CMD_INVALID_COMMAND  3  ///< No such command exists in the current 
command set 
#define CMD_FAIL_READ_ONLY  4  ///< The device is in read-only mode 
#define CMD_FAIL_GENERAL  5   ///< General failure case (catch all) 
#define CMD_BAD_ARG    6 ///< Invalid argument failure 
#define CMD_SUCCESS    0 ///< Command processed successfully 
 
typedef struct replyHeader {    /// TEMPO 4 Outgoing Response Structure 
 unsigned int echoCmd;    ///< Command echo field 
 unsigned int response;    ///< Command response code field 
 unsigned int len;    ///< Command response length field 
 unsigned int checksum;    ///< Command response checksum field 
} cmdReply; 
 
// Function Prototypes 
int runCommand(cmdPkt *cmd); 
/**************************************************************************//** 
 * \brief "Handshake" with the node to unlock access to the other commands 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void handshake(cmdPkt* cmd, cmdReply* reply, unsigned char* payload); 
/**************************************************************************//** 
 * \brief Set the system RTC time to a specific value 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetTime(cmdPkt* cmd, cmdReply* reply, unsigned char* payload); 
/**************************************************************************//** 
 * \brief Get the system RTC time and return it in the payload 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysSetTime(cmdPkt* cmd, cmdReply* reply, unsigned char* payload); 
/**************************************************************************//** 
 * \brief Get the system firmware version 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetVersion(cmdPkt* cmd, cmdReply* reply, unsigned char* payload); 
/**************************************************************************//** 
 * \brief Get the node identification number 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetNodeID(cmdPkt* cmd, cmdReply* reply, unsigned char* payload); 
/**************************************************************************//** 
 * \brief Get the card identification number 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetCardID(cmdPkt* cmd, cmdReply* reply, unsigned char* payload); 
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/**************************************************************************//** 
 * \brief Get the most recent accelerometer values 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetAccel(cmdPkt* cmd, cmdReply* reply, unsigned char* payload); 
/**************************************************************************//** 
 * \brief Get the most recent gyro values 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetGyro(cmdPkt* cmd, cmdReply* reply, unsigned char* payload); 
/**************************************************************************//** 
 * \brief Fetch the desired sector from the card and return it 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysGetSector(cmdPkt* cmd, cmdReply* reply, unsigned char* payload); 
/**************************************************************************//** 
 * \brief Set the system sampling rate to the desired value 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysSetSamplingRate(cmdPkt* cmd, cmdReply* reply, unsigned char* payload); 
 
/**************************************************************************//** 
 * \brief Set the system sampling rate to the desired value 
 * 
 * \param[in] cmd  Pointer to the command passed into the run function 
 * \param[out] reply Pointer to the reply packet to be sent in response 
 * \param[out]  payload Pointer to the data payload to be sent with the reply 
 ******************************************************************************/ 
void sysSetDCE(cmdPkt* cmd, cmdReply* reply, unsigned char* payload); 
 
#endif /* COMMAND_H_ */ 
 

Filesystem.c 

Implementation of the TEMPO 4 file system 

/**************************************************************************//** 
 * \file  filesystem.c 
 * \author Ben Boudaoud (bb3jd@virginia.edu) 
 * \date Sep 11, 2013 
 * 
 * \brief This file contains the TEMPO 4000 file system management code. 
 * 
 * This library provides a simple interface for all flash operations along with a 
 * minimalist, linked-list style implementation of a basic file system. This 
 * file system is NOT COMPATIBLE with any previous TEMPO platform, including the 
 * TEMPO 3.2F custom file system authored by Jeff Brantly. 
 *****************************************************************************/ 
 
#include "filesystem.h" 
#include "infoflash.h" 
#include "flash.h" 
#include "rtc.h" 
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#include <string.h> 
 
cardInfo cardData;          ///< 
Node information data structure 
sessInfo sessData;          ///< 
Session information data structure 
 
unsigned char dBuff[CARD_BUFFER_SIZE];     ///< Card data buffer 
unsigned int putIndex, getIndex = 0;     ///< Data indexes 
unsigned int bytesToWrite = 0;       ///< Available bytes in 
card data buffer 
 
unsigned long currSessSector = 0;  ///< Holds the index of the current sessions info sector 
unsigned long currSector = 0;   ///< Tracks the current flash card sector 
 
/**************************************************************************//** 
 * \brief Update the card info in flash 
 * 
 * This function writes the current #cardInfo structure to the card info 
 * sector in the flash 
 * 
 * \returns  fsRetCode A file system return code (see #fsRetCode) 
 *****************************************************************************/ 
fsRetCode updateCardInfo(void) 
{ 
 struct Sector sect; 
 
 sect.type = sect_cardInfo;     // Set the sector type 
 memcpy((void *)sect.data, (void *)&cardData, sizeof(cardInfo)); // Copy in the card information 
 if(secureFlashWrite(CARD_INFO_INDEX, &sect) != FLASH_SUCCESS) return FS_FAIL_WF; // Write sector 
 else return FS_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Update the session info in flash 
 * 
 * This function writes the current #sessInfo structure to the designated 
 * sector in flash 
 * 
 * \param  sectorNum The index of the desired write sector 
 * 
 * \returns  fsRetCode A file system return code (see #fsRetCode) 
 *****************************************************************************/ 
fsRetCode writeSessInfo(unsigned long sectorNum) 
{ 
 struct Sector sect; 
 
 sect.type = sect_sessInfo;     // Set the sector type 
 memcpy((void *)sect.data, (void *)&sessData, sizeof(sessInfo)); // Copy in the session 
information 
 if(secureFlashWrite(sectorNum, &sect) != FLASH_SUCCESS) return FS_FAIL_WF; // Write sector 
 else return FS_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Clear the card status field 
 * 
 * This function resets the card status field to whatever should be the default 
 * value/set of values. 
 * 
 * \returns  fsRetCode A file system return code (see #fsRetCode) 
 *****************************************************************************/ 
inline void cardStatusClear(void) 
{ 
 cardData.cStatus.cardFull = 0; 
 cardData.cStatus.cardResume = 0; 
 cardData.cStatus.dataCollectionEn = 0; 
 cardData.cStatus.readOnly = 0; 
 cardData.cStatus.sessInProgress = 0; 
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} 
 
/**************************************************************************//** 
 * \brief Initialize the file system 
 * 
 * This function reinitializes (read re-formats) the file system based upon 
 * the set of inputs provided by the parameter list. This function SHOULD NOT 
 * be used to initialize flash on device load (see #fsResume) 
 * 
 * \param  nodeID The desired node identification number 
 * \param  epoch The desired time epoch number 
 * \param  startSector The sector at which to start recording data 
 * \param   *nodeNotes A pointer to a string which contains any futher 
 *     node information 
 * 
 * \returns  fsRetCode A file system return code (see #fsRetCode) 
 * 
 * \sideeffect Previous data may not be recoverable after running #fsInit 
 *****************************************************************************/ 
fsRetCode fsInit(unsigned int nodeID, unsigned int epoch, unsigned long startSector, unsigned char 
*nodeNotes) 
{ 
 unsigned char cardID[CARD_ID_LEN]; 
 bytesToWrite = 0;    // Clear "to write" count 
 
 // Info flash update 
 if(infoInit() == INFO_VALID){   // Initialize the info flash (check for failures) 
  currSector = startSector;  // Reset the start sector 
  currSessSector = startSector;  // Reset the session sector 
  infoCardInit(cardID, nodeID, startSector, startSector, epoch); // Update info flash 
 } 
 else return FS_FAIL_INFO;   // Info flash failure 
 
 cardStatusClear();    // Clear the card status 
 
 // Clear data buffer management 
 bytesToWrite = 0; 
 putIndex = 0; 
 getIndex = 0; 
 
 switch(flashInit())    // Initialize the flash 
 { 
  case FLASH_NO_CARD: // No card found set flag and return 
   return FS_FAIL_CF; 
  case FLASH_TIMEOUT: // MMC communication timeout set readOnly and return 
   cardData.cStatus.readOnly = 1; 
   return FS_FAIL_RO; 
  case FLASH_SUCCESS: // MMC init successful 
   cardData.cStatus.readOnly = 0; 
   break; 
  default: 
   break; 
 } 
 flashReadCardID(cardID);    // Read the flash card ID 
 
 // Create card info structure 
 cardData.nodeID = nodeID;   // Copy node id 
 cardData.epoch = epoch;    // Copy time epoch 
 cardData.lastData = startSector;   // Set data start sector 
 cardData.lastSess = startSector;   // Set session start sector 
 cardData.startSector = startSector;  // Set start sector 
 cardData.cStatus.cardResume = 1;   // Put the card in resumed mode 
 memcpy((void *)&cardData.initTime, (void *)rtcGetTime(), sizeof(time)); // Get the current time of 
init 
 memcpy(cardData.notes, nodeNotes, CARD_NOTES_SIZE); // Copy the card notes into the header 
 
 if(updateCardInfo() != FS_SUCCESS) return FS_FAIL_WF; // Update the card info sector 
 
 cardData.cStatus.cardResume = 1;    // Set the resume bit 
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 return FS_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Resume the file system 
 * 
 * This function resume the file system after a power-off or flash-card removal 
 * event. This function should be used instead of #fsInit during typical device 
 * boot-up procedure. 
 * 
 * \returns  fsRetCode A file system return code (see #fsRetCode) 
 * 
 * \sideeffect Running this function stores all node metadata in the #cardInfo 
 *     and #sessInfo RAM structures 
 *****************************************************************************/ 
fsRetCode fsResume(void) 
{ 
 unsigned char cardID[CARD_ID_LEN], infoID[CARD_ID_LEN]; 
 struct Sector sect; 
 bytesToWrite = 0;     // Clear the to-write count 
 
 switch(flashInit())     // Initialize the flash 
 { 
  case FLASH_NO_CARD:    // No card found set flag and return 
   return FS_FAIL_CF; 
  case FLASH_TIMEOUT:  // MMC communication timeout set readOnly and return 
   cardData.cStatus.readOnly = 1;  // Set the read only bit 
   return FS_FAIL_RO; 
  case FLASH_SUCCESS:    // MMC init successful 
   cardData.cStatus.readOnly = 0;  // Clear read only condition 
   break; 
  default: 
   break; 
 } 
 
 flashReadCardID(cardID);   // Read the flash card ID 
 
 if(infoInit() == INFO_VALID){  // Check the system info flash for validity 
  infoGetCardID(infoID);  // Get the card ID from the info flash 
  if(memcmp(cardID, infoID, CARD_ID_LEN) != 0){ // Compare the two IDs for card 
verification 
   return FS_FAIL_ID; // Return ID mismatch failure 
  } 
 } 
 else return FS_FAIL_INFO; 
 
 // Read node info sector and parse data 
 if(secureFlashRead(CARD_INFO_INDEX, &sect) != FLASH_SUCCESS){ 
  return FS_FAIL_RF;   // Read failure: cannot read card info sector 
 } 
 memcpy((void *)&cardData, (void *)&sect, sizeof(cardInfo)); // Copy over the card info 
 
 if(cardData.cStatus.cardFull){    // Check for card full status bit 
  return FS_FAIL_CF; 
 } 
 
 // Clear data buffer management 
 bytesToWrite = 0; 
 putIndex = 0; 
 getIndex = 0; 
 
 currSector = cardData.lastData; 
 currSessSector = cardData.lastSess; 
 
 cardData.cStatus.cardResume = 1;    // Set card status to resumed 
 return FS_SUCCESS;     // Return success 
} 
 
/**************************************************************************//** 
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 * \brief Start a new session 
 * 
 * This function begins a new data session in the file system. This function 
 * should only be called when no other session is in progress, and after the 
 * file system has been successfully resumed or initialized. 
 * 
 * \param  SR   The sampling rate of the data stream 
 * \param  axis  The axis bit-field w/ the sampled axes set to '1' 
 * \param  startTime The start time of this data session (to get from 
 *        RTC set Mon field to 0) 
 * 
 * \retval  fsRetCode A file system return code (see #fsRetCode) 
 * 
 * \sideeffect Sets the session in progress (SIP) flag to prevent multiple 
 *     sessions being open at once. 
 *****************************************************************************/ 
fsRetCode fsStartSession(unsigned int SR, axisCtrl axis, time* startTime) 
{ 
 // Condition code checks 
 if(cardData.cStatus.readOnly == 1) return FS_FAIL_RO;  // Check for read only condition 
 else if (cardData.cStatus.sessInProgress == 1) return FS_FAIL_SIP; // Check for another session in 
progress 
 else if (cardData.cStatus.cardResume == 1) return FS_FAIL_NR; // Check for resume condition 
 else if (cardData.cStatus.dataCollectionEn == 0) return FS_FAIL_DCE; // Check for data collection 
enabled 
 else if(currSector >= TOTAL_SECTORS || cardData.cStatus.cardFull) { // Check for card full 
condition 
  cardData.cStatus.cardFull = 1; 
  return FS_FAIL_CF;         
    // Card full return code 
 } 
 
 // Previous session info update (write 1) 
 sessData.nextSessSector = ++currSector;        
 // Set the last sessions 'next' value to this session's 
 if(writeSessInfo(currSessSector) != FS_SUCCESS) return FS_FAIL_WF; // Update the old session 
 
 // Current session info update (write 2) 
 sessData.serial = sessData.serial + 1;        
 // Increment the session serial number 
 sessData.lastSessSector = currSessSector;       
 // Set the last start sector 
 sessData.nextSessSector = (unsigned int)(-1);      
 // Set the next start sector to -1 
 sessData.length = 0;          
   // Set the starting length to 0 
 sessData.samplingRate = SR;         
   // Set the sampling rate to the provided rate 
 sessData.axis = axis;          
   // Set the axis bit field to provided value 
 sessData.status = sess_open;         
  // Set the session status to open 
 if(startTime->mon == 0){          
  // Check for null start time (month cannot be 0) 
  memcpy((void *)&(sessData.startTime), (void *)rtcGetTime(), sizeof(time)); // If needed 
get a valid start time from the RTC 
 } 
 else { 
  memcpy((void *)&(sessData.startTime), (void *)&startTime, sizeof(time)); // Copy over 
start time object 
 } 
 if(writeSessInfo(currSector) != FS_SUCCESS) return FS_FAIL_WF; // Set sector information and write 
sector to card 
 
 // Clear data buffer management 
 bytesToWrite = 0; 
 putIndex = 0; 
 getIndex = 0; 
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 // Increment/refresh sector management 
 currSessSector = currSector; // Update to the most recent session sector 
 ++currSector;   // Increment the current sector (for first data write) 
 cardData.cStatus.sessInProgress = 1; 
 
 return FS_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief End a running session 
 * 
 * This function ends a session currently being stored to on the file system. 
 
 * \param  endTime  The end time of this data session (to get from RTC 
 *        set Mon field to 0) 
 * \param  closeCause The reason for the session ending (see #sessStatus) 
 * \param  cardUpdate Boolean flag indicating whether or not to update 
 *        the card header 
 * \retval  fsRetCode A file system return code (see #fsRetCode) 
 * \sideeffect Clears the session in progress (SIP) when done 
 *****************************************************************************/ 
fsRetCode fsEndSession(time* endTime, sessStatus closeCause, unsigned char cardUpdate) 
{ 
 struct Sector sect; 
 
 // Check card status to assure a session is in progress 
 if(cardData.cStatus.sessInProgress == 0) return FS_FAIL_SIP; // No session in progress to end 
 
 // Buffer emptying 
 if(bytesToWrite > 0) {          
   // Empty data buffer if data is present 
  sect.type = sect_data; 
  memcpy((void *)sect.data, (void *)(&dBuff[getIndex]), bytesToWrite); 
  if(secureFlashWrite(currSector, &sect) == -1) return FS_FAIL_WF;  // Attempt flash 
write 
  else {           
 // If flash write succeeds clear the "to-write" count 
   bytesToWrite = 0; 
  } 
 } 
 
 // Duration and time stamping 
 sessData.length = currSector - currSessSector; // Determine length from current sector 
 if(endTime->mon == 0){    // Check for valid time stamp (month cannot be 0) 
  endTime = rtcGetTime();   // If needed get time from RTC 
 } 
 sessData.status = closeCause;  // Copy over the close cause (session status field) 
 memcpy((void *)(&(sessData.endTime)), (void *)endTime, sizeof(time));// Copy over the session end 
time 
 if(writeSessInfo(++currSector) != FS_SUCCESS) return FS_FAIL_WF; 
 
 // Update the card info 
 cardData.lastData = currSector; 
 cardData.lastSess = currSessSector; 
 cardData.cStatus.sessInProgress = 0; 
 if(cardUpdate != 0){ 
  if(updateCardInfo() != FS_SUCCESS) return FS_FAIL_WF; 
 } 
 return FS_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Write data to the current open data session 
 * 
 * This function write the provided data to the current card data session. 
 
 * \param  *data  Pointer to the data to be written 
 * \param  len   Length of the data to be written 
 * \retval  fsRetCode A file system return code (see #fsRetCode) 
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 *****************************************************************************/ 
fsRetCode fsWriteData(unsigned char *data, unsigned int len) 
{ 
 unsigned int sectCount = 0; 
 unsigned int i; 
 fsRetCode retval = FS_SUCCESS; 
 struct Sector sect; 
 
 if(cardData.cStatus.readOnly == 1) return FS_FAIL_RO; // Read only mode (no data write) 
 else if(cardData.cStatus.sessInProgress == 0) return FS_FAIL_SIP; // No session in progress (no 
data write) 
 else if(currSector > TOTAL_SECTORS || cardData.cStatus.cardFull){ // End of card (no data write) 
  cardData.cStatus.cardFull = 1;        
 // Set card full status bit 
  return FS_FAIL_CF;         
   // Card full return code 
 } 
 
 if(len > (CARD_BUFFER_SIZE - bytesToWrite)){// Check if requested size can be written to buffer 
  len = CARD_BUFFER_SIZE - bytesToWrite; // Choose maximum amount of data that will fit 
into the buffer 
  retval = FS_FAIL_BF;        
 // Set buffer full return code 
 } 
 
 for(i = 0; i < len; i++){ 
  dBuff[putIndex++] = *(data++);   // Copy over a byte of data 
  if(putIndex >= CARD_BUFFER_SIZE) putIndex = 0; // Check for wrap case 
  if(putIndex == getIndex) break;  // Check for reach get index (buffer full) 
 } 
 bytesToWrite += len;         
 // Increment the bytes to write value 
 sectCount = bytesToWrite/SECTOR_DATA_SIZE;  // Update the sector count 
 
 if(sectCount > 0){ // Check if we have enough bytes to write a sector 
  sect.type = sect_data; // Set sector type to "data" 
  memcpy((void *)sect.data, (void *)(&dBuff[getIndex]), SECTOR_DATA_SIZE); // Copy over 
bytes to be written 
  for(i = 0; i < sectCount; i++){  // Write each buffered sector of data to the card 
   if(secureFlashWrite(currSector++, &sect) == -1){ // Check for write failures 
    retval = FS_FAIL_WF; // If secure flash write fails return write failure 
    break;   // Break the loop 
   } 
   else{ 
    getIndex += SECTOR_DATA_SIZE; // Increment the get index 
    getIndex %= CARD_BUFFER_SIZE; // Wrap the get index if necessary 
    bytesToWrite -= SECTOR_DATA_SIZE;// Decrement the data buffer size 
   } 
  } 
  sectCount = 0; // Clear the sector count 
 } 
 return retval; 
} 
 
/**************************************************************************//** 
 * \brief Halt the file system and save the state 
 * 
 * This function allows the user to quickly close any open sessions and save 
 * all metadata to the card. Useful for shutdown and SVS operations. 
 
 * \retval  fsRetCode A file system return code (see #fsRetCode) 
 *****************************************************************************/ 
fsRetCode fsHalt(void) 
{ 
 time t = { 0 }; 
 
 if(cardData.cStatus.readOnly == 1) return FS_FAIL_RO; // Check for read only flag 
 else if(cardData.cStatus.cardResume == 0) return FS_FAIL_NR; // Check for resume state 
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 infoUpdateLastSector(currSector, currSessSector, cardData.epoch); // Update the info B segment 
 
 if(cardData.cStatus.sessInProgress == 1){ 
  return fsEndSession(&t, sess_closed_halt , 1); // Close session and update card info 
 } 
 else { 
  return updateCardInfo();    // Update card info 
 } 
} 

Filesystem.h 

Affiliated file system header file 

/**************************************************************************//** 
 * \file  filesystem.h 
 * \author Ben Boudaoud (bb3jd@virginia.edu) 
 * \date Sep 11, 2013 
 * 
 * \brief This file contains the TEMPO 4000 file system management code. 
 * 
 * This library provides a simple interface for all flash operations along with a 
 * minimalist, linked-list style implementation of a basic file system. This 
 * file system is NOT COMPATIBLE with any previous TEMPO platform, including the 
 * TEMPO 3.2F custom file system authored by Jeff Brantly. 
 *****************************************************************************/ 
#ifndef FILESYSTEM_H_ 
#define FILESYSTEM_H_ 
 
#include "rtc.h" 
#include "system.h" 
 
// Card Data Locations (Indexes) 
#define CARD_INFO_INDEX   0  ///< Location of node info sector for now 
#define SESS_START_SECTOR  100  ///< Session/data info start sector 
#define SESS_NOTES_SIZE   140  ///< Session information notes field size 
#define CARD_NOTES_SIZE   140  ///< Card information notes field size 
 
// Status and return codes 
typedef enum fsReturnCode  /// Enumerated type for file system return codes 
{ 
 FS_SUCCESS = 0,   ///< Operation successful 
 FS_FAIL_RO = 1,   ///< Operation failed: read only 
 FS_FAIL_SIP = 2,   ///< Operation failed: session in progress 
 FS_FAIL_CF = 3,   ///< Operation failed: card full 
 FS_FAIL_BF = 4,   ///< Operation failed: buffer full 
 FS_FAIL_WF = 5,   ///< Operation failed: write fail 
 FS_FAIL_RF = 6,   ///< Operation failed: read fail 
 FS_FAIL_INIT = 7,  ///< Operation failed: need initialization 
 FS_FAIL_NR = 8,   ///< Operation failed: need resume 
 FS_FAIL_INFO = 9,  ///< Operation failed: info flash compromised 
 FS_FAIL_ID = 10,   ///< Operation failed: info card id and actual id mismatch 
 FS_FAIL_DCE = 11   ///< Operation failed: need to set data collection enabled 
} fsRetCode; 
 
typedef struct cardStatusCode  /// Bit field structure for card status 
{ 
 volatile unsigned sessInProgress : 1;  ///< Session in progress status bit 
 volatile unsigned cardResume : 1;  ///< Card present status bit 
 volatile unsigned cardFull : 1;   ///< Card full status bit 
 volatile unsigned readOnly : 1;   ///< Read only status bit 
 volatile unsigned dataCollectionEn : 1;  ///< Data collection enabled status bit 
} cardStatus; 
 
// Information structures 
typedef struct calibInformation    /// Calibration information structure 
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{ 
 unsigned int x_acc_offset;   ///< X Accelerometer DC offset 
 unsigned int y_acc_offset;   ///< Y Accelerometer DC offset 
 unsigned int z_acc_offset;   ///< Z Accelerometer DC offset 
 unsigned int x_acc_sens;    ///< X Accelerometer AC sensitivity 
 unsigned int y_acc_sens;    ///< Y Accelerometer DC sensitivity 
 unsigned int z_acc_sens;    ///< Z Accelerometer DC sensitivity 
 unsigned int x_gyro_offset;   ///< X Gyro DC offset 
 unsigned int y_gyro_offset;   ///< Y Gyro DC offset 
 unsigned int z_gyro_offset;   ///< Z Gyro DC offset 
 unsigned int x_gyro_sens;   ///< X Gyro AC sensitivity 
 unsigned int y_gyro_sens;   ///< Y Gyro AC sensitivity 
 unsigned int z_gyro_sens;   ///< Z Gyro AC sensitivity 
} calibInfo; 
 
/// \warning Do not increase this structure beyond #SECTOR_SIZE bytes! 
typedef struct cardInformation    /// Card information structure 
{ 
 unsigned int nodeID;    ///< Node identification number 
 cardStatus cStatus;    ///< Card status indicator field 
 unsigned int epoch;    ///< Time epoch number 
 unsigned long lastData;    ///< Last session data sector index 
 unsigned long lastSess;    ///< Last session info sector index 
 unsigned long startSector;   ///< Start sector index 
 time initTime;     ///< Card initialization time 
 unsigned char notes[CARD_NOTES_SIZE];  ///< Card information string 
} cardInfo; 
 
/// \warning Do not increase this structure beyond #SECTOR_SIZE bytes! 
typedef struct sessionInformation   /// Session information 
{ 
 unsigned int serial;    ///< Session serial number 
 unsigned int nodeID;    ///< Node identification number 
 unsigned int epoch;    ///< Session epoch number 
 unsigned long lastSessSector;   ///< Sector index of start of last session 
 unsigned long nextSessSector;   ///< Sector index of start of next session 
 unsigned long length;    ///< Length of the session in sectors 
 unsigned int samplingRate;   ///< Sampling rate of session 
 time startTime;     ///< RTC time stamp for start of session 
 time endTime;     ///< RTC time stamp for end of session 
 axisCtrl axis;     ///< Axis control field 
 sessStatus status;    ///< Session status 
 unsigned char notes[SESS_NOTES_SIZE];  ///< Notes field 
} sessInfo; 
 
// Function Prototypes 
/**************************************************************************//** 
 * \brief Update the card info in flash 
 * 
 * This function writes the current #cardInfo structure to the card info 
 * sector in the flash 
 * 
 * \returns  fsRetCode A file system return code (see #fsRetCode) 
 *****************************************************************************/ 
fsRetCode updateCardInfo(void); 
 
/**************************************************************************//** 
 * \brief Update the session info in flash 
 * 
 * This function writes the current #sessInfo structure to the designated 
 * sector in flash 
 * 
 * \param  sectorNum The index of the desired write sector 
 * \returns  fsRetCode A file system return code (see #fsRetCode) 
 *****************************************************************************/ 
fsRetCode writeSessInfo(unsigned long sectorNum); 
 
/**************************************************************************//** 
 * \brief Clear the card status field 
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 * 
 * This function resets the card status field to whatever should be the default 
 * value/set of values. 
 * 
 * \returns  fsRetCode A file system return code (see #fsRetCode) 
 *****************************************************************************/ 
inline void cardStatusClear(void); 
 
/**************************************************************************//** 
 * \brief Initialize the file system 
 * 
 * This function reinitializes (read re-formats) the file system based upon 
 * the set of inputs provided by the parameter list. This function SHOULD NOT 
 * be used to initialize flash on device load (see #fsResume) 
 * 
 * \param  nodeID The desired node identification number 
 * \param  epoch The desired time epoch number 
 * \param  startSector The sector at which to start recording data 
 * \param   *nodeNotes A pointer to a string which contains any futher 
 *     node information 
 * \returns  fsRetCode A file system return code (see #fsRetCode) 
 * \sideeffect Previous data may not be recoverable after running #fsInit 
 *****************************************************************************/ 
fsRetCode fsInit(unsigned int nodeID, unsigned int epoch, unsigned long startSector, unsigned char 
*nodeNotes); 
 
/**************************************************************************//** 
 * \brief Resume the file system 
 * 
 * This function resume the file system after a power-off or flash-card removal 
 * event. This function should be used instead of #fsInit during typical device 
 * boot-up procedure. 
 * 
 * \returns  fsRetCode A file system return code (see #fsRetCode) 
 * \sideeffect Running this function stores all node metadata in the #cardInfo 
 *     and #sessInfo RAM structures 
 *****************************************************************************/ 
fsRetCode fsResume(void); 
 
/**************************************************************************//** 
 * \brief Start a new session 
 * 
 * This function begins a new data session in the file system. This function 
 * should only be called when no other session is in progress, and after the 
 * file system has been successfully resumed or initialized. 
 * 
 * \param  SR  The sampling rate of the data stream 
 * \param  axis  The axis bit-field w/ the sampled axes set to '1' 
 * \param  startTime The start time of this data session (to get from 
 *        RTC set Mon field to 0) 
 * 
 * \retval  fsRetCode A file system return code (see #fsRetCode) 
 * 
 * \sideeffect Sets the session in progress (SIP) flag to prevent multiple 
 *     sessions being open at once. 
 *****************************************************************************/ 
fsRetCode fsStartSession(unsigned int SR, axisCtrl axis, time* startTime); 
 
/**************************************************************************//** 
 * \brief End a running session 
 * 
 * This function ends a session currently being stored to on the file system. 
 
 * \param  endTime  The end time of this data session (to get from RTC 
 *        set Mon field to 0) 
 * \param  closeCause The reason for the session ending (see #sessStatus) 
 * \param  cardUpdate Boolean flag indicating whether or not to update 
 *        the card header 
 * \retval  fsRetCode A file system return code (see #fsRetCode) 



166 

 

 * \sideeffect Clears the session in progress (SIP) when done 
 *****************************************************************************/ 
fsRetCode fsEndSession(time* endTime, sessStatus closeCause, unsigned char cardUpdate); 
 
/**************************************************************************//** 
 * \brief Write data to the current open data session 
 * 
 * This function write the provided data to the current card data session. 
 
 * \param  *data  Pointer to the data to be written 
 * \param  len   Length of the data to be written 
 * \retval  fsRetCode A file system return code (see #fsRetCode) 
 *****************************************************************************/ 
fsRetCode fsWriteData(unsigned char *data, unsigned int len); 
 
/**************************************************************************//** 
 * \brief Halt the file system and save the state 
 * 
 * This function allows the user to quickly close any open sessions and save 
 * all metadata to the card. Useful for shutdown and SVS operations. 
 
 * \retval  fsRetCode A file system return code (see #fsRetCode) 
 *****************************************************************************/ 
fsRetCode fsHalt(void); 
 
#endif /* FILESYSTEM_H_ */ 

Flash.c 

Basic system-level flash communications, built on top of MMC.c/h 

#include "flash.h" 
#include "mmc.h" 
#include "hal.h" 
 
/**************************************************************************//** 
 * \brief Initialize flash card for communication. 
 * 
 * Attempt 
 * 
 * \retval 0 Success 
 * \retval -1 Failure (timeout) 
 * \sideeffect Sets #readOnly if not successful 
 *****************************************************************************/ 
int flashInit() 
{ 
 unsigned int timeout = 0; 
 
 MMC_CD_CONFIG(); 
 if(!MMC_CARD_PRESENT) return FLASH_NO_CARD; 
 
 for(timeout = 0; timeout < INIT_TIMEOUT; timeout++){  // Try initialization up to 50 times 
  if(mmcInit() == MMC_SUCCESS) break; // If it occurs successfully we are done here 
 } 
 
 if(timeout >= INIT_TIMEOUT) return FLASH_TIMEOUT; 
 else return FLASH_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Read a single sector from the flash card 
 * 
 * Attempt to read a full sector (including checksum) 
 * 
 * Provides a clean read wrapper separating the rest of the codebase from 
 * the MMC library. 
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 * 
 * \param  sectorNum The sector number to read in (0 to 4194303 for a 
 *        2GB MMC card with 512B sector sizes). 
 * \param[out] sector  Pointer to a sector structure to fill. Most 
 *        likely you will be casting a more specific sector 
 *        type or a simple array to this interface 
 * \retval  0 success 
 * \retval  -1 failure 
 *****************************************************************************/ 
int flashRead(unsigned long sectorNum, struct Sector *sector){ 
 if(mmcReadSector(sectorNum, (unsigned char *) sector) == MMC_SUCCESS) { 
  return FLASH_SUCCESS; 
 } 
 else { 
  return FLASH_FAIL; 
 } 
} 
 
/**************************************************************************//** 
 * \brief Read a sector and verify the checksum 
 * 
 * Read a sector and, if successful, verify its checksum as well. After 
 * #READ_RETRIES failed read-verify attempts exit 
 * 
 * \param  sectorNum The sector number to read in (0 to 4194303 for a 
 *        2GB MMC card with 512B sector sizes). 
 * \param[out] sector  Pointer to a sector structure to fill. Most 
 *        likely you will be casting a more specific sector 
 *        type or a simple array to this interface 
 * \retval  0 success 
 * \retval  -1 failure 
 *****************************************************************************/ 
int secureFlashRead(unsigned long sectorNum, struct Sector *sector){ 
 int calcChecksum = 0; 
 int i = 0; 
 
 for( i = 0; i < READ_RETRIES; i++)  // Attempt to read the card multiple times 
 { 
  if(flashRead(sectorNum, sector) == 0) { 
   calcChecksum = fletcherChecksum(sector->data, SECTOR_CRC_SIZE, 0); 
   if(sector->checksum == calcChecksum){ 
    return FLASH_SUCCESS; 
   } 
  } 
 } 
 
 if(i >= READ_RETRIES) return FLASH_TIMEOUT; // If checksums do not agree return fail 
 return FLASH_SUCCESS; 
} 
 
/**************************************************************************//** 
 * \brief Write a single sector to the flash card 
 * 
 * Attempt to write a full sector (including computed checksum) 
 * 
 * Provides a clean read wrapper separating the rest of the codebase from 
 * the MMC library. 
 * 
 * \param   sectorNum The sector number to read in (0 to 4194303 
 *         for a 2GB MMC card with 512B sector 
sizes). 
 * \param[in,out] sector  Pointer to sector to write. Will have a newly 
 *         computed checksum written into it. Most 
 *         likely you will be casting a more 
specific 
 *         sector type or a simple array to this 
 *         interface 
 * \retval  0 success 
 * \retval  -1 failure (MMC library returned an error) 
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 * \see   secureFlashWrite() for more thorough write validation 
 *****************************************************************************/ 
int flashWrite(unsigned long sectorNum, struct Sector *sector) 
{ 
 sector->checksum = fletcherChecksum(sector->data, SECTOR_CRC_SIZE, 0); 
 
 if(mmcWriteSector(sectorNum, (unsigned char *) sector) == MMC_SUCCESS) { 
  return FLASH_SUCCESS; 
 } 
 else { 
  return FLASH_FAIL; 
 } 
} 
 
/**************************************************************************//** 
 * \brief Write a sector and read it back to verify correctness 
 * 
 * Write a sector and, if successful, read it back to verify that it passes 
 * a checksum check and has the same checksum as before After #WRITE_RETRIES 
 * failed write-verify attempts exit 
 * 
 * \param   sectorNum The sector number to read in (0 to 4194303 
 *         for a 2GB MMC card with 512B sector 
sizes). 
 * \param[in,out] sector  Pointer to sector to write. Will have a newly 
 *         computed checksum written into it. Most 
 *         likely you will be casting a more 
specific 
 *         sector type or a simple array to this 
 *         interface 
 * \retval  0 success 
 * \retval  -1 failure 
 *****************************************************************************/ 
int secureFlashWrite(unsigned long sectorNum, struct Sector *sector){ 
 int postChecksum = 0; 
 struct Sector tmpSector; 
 int i = 0; 
 
 sector->checksum = fletcherChecksum(sector->data, SECTOR_CRC_SIZE, 0); 
 
 for( i = 0; i < WRITE_RETRIES; i++) 
 { 
  if(mmcWriteSector(sectorNum, (unsigned char *) sector)==MMC_SUCCESS) { 
   mmcReadSector(sectorNum, (unsigned char *) &tmpSector); 
   postChecksum = fletcherChecksum(tmpSector.data, SECTOR_CRC_SIZE, 0); 
 
   if(tmpSector.checksum == postChecksum && // Read-back data passes checksum 
     sector->checksum == postChecksum) {// && Read-back matches 
original 
     return FLASH_SUCCESS; 
   } 
  } 
 } 
 // If checksums do not agree and we have tried multiple times, then.. 
 return FLASH_TIMEOUT;      // Return failure 
 
} 
 
/**************************************************************************//** 
 * \brief Read the card ID directly from the MMC card 
 * 
 * This function reads the flash card ID directly from the MMC register inside 
 * the card. It includes some simple all 0/1 detection for faulty values. 
 * 
 * \param[out] cardID  16-byte buffer to store the card ID into 
 * \retval 0 Card ID read successfully 
 * \retval -1 Card ID could not be read 
 * \retval -2 Card ID read as all 0's 
 * \retval  -3 Card ID read as all 1's 
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 *****************************************************************************/ 
int flashReadCardID(unsigned char *cardID) 
{ 
 unsigned int i; 
 
 if(mmcReadRegister(MMC_SEND_CID, CARD_ID_LEN, cardID) == MMC_SUCCESS) { 
  for(i = 0; i < CARD_ID_LEN; i++) { 
   if(cardID[i] != 0) break; 
  } 
  if(i == CARD_ID_LEN) return -2; 
 
  for(i = 0; i < CARD_ID_LEN; i++) { 
   if(cardID[i] != 0xFF) break; 
  } 
  if(i == CARD_ID_LEN) return -3; 
 
  return 0; 
 } 
 else return -1; 
} 

Flash.h 

Affiliated flash header file 

#ifndef FLASH_H_ 
#define FLASH_H_ 
 
// Read, Write, and Init Retry Counts (for flashInit() and secure read/write) 
#define INIT_TIMEOUT  50         
 ///< Number of retries before flash init timeout 
#define WRITE_RETRIES  3         
 ///< Write retry limit for secureFlashWrite() 
#define READ_RETRIES  3         
 ///< Read retry limit for secureFlashRead() 
 
// Flash Info and Locations 
#define CARD_SIZE   2000000000       
 ///< Card size in bytes (NOTE: 2*10^9 not 2^31) 
#define SECTOR_SIZE   512        
  ///< True sector size 
#define SECTOR_CRC_SIZE  SECTOR_SIZE-sizeof(unsigned int) ///< Size of space in sector to CRC 
#define SECTOR_DATA_SIZE SECTOR_SIZE-(2*sizeof(unsigned int)) ///< Available sector data 
#define CARD_BUFFER_SIZE 2*SECTOR_DATA_SIZE   ///< Declared size of flash write buffer 
#define CARD_ID_LEN   16        
  ///< Card ID length in bytes (always 16 for MMC) 
#define TOTAL_SECTORS  (CARD_SIZE/SECTOR_SIZE)  ///< Last sector on card 
 
/// Flash return codes 
#define FLASH_NO_CARD  -1 ///< Flash card failure: no card present (via CD pin state) 
#define FLASH_TIMEOUT  -2 ///< Flash card failure: communications timeout (via MMC libs) 
#define FLASH_FAIL  -3 ///< Flash card single failure 
#define FLASH_SUCCESS  0 ///< Flash card operation succeeded 
 
/// Generic flash sector data structure 
typedef enum sectorTypeDefine  /// Enumerated type for defining sector parsing 
{ 
 sect_nodeInfo = 1,  ///< Node info sector (contains global info) 
 sect_cardInfo = 2,  ///< Card info sector (contains global info) 
 sect_sessInfo = 3,  ///< Session info sector (contains session info) 
 sect_data = 4   ///< Data sector (contains session data) 
}sectorType; 
 
struct Sector    /// Generic sector structure 
{ 
 sectorType type;    ///< Sector type code 
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 unsigned char data[SECTOR_DATA_SIZE]; ///< Raw contents of the sector 
 unsigned int checksum;   ///< Checksum tacked on the end 
}; 
 
int flashInit(); 
int flashRead(unsigned long sectorNum, struct Sector *sector); 
int secureFlashRead(unsigned long sectorNum, struct Sector *sector); 
int flashWrite(unsigned long sectorNum, struct Sector *sector); 
int secureFlashWrite(unsigned long sectorNum, struct Sector *sector); 
int flashReadCardID(unsigned char *cardID); 
unsigned int fletcherChecksum(unsigned char *Buffer, int numBytes, unsigned int checksum); 
 
#endif /* FLASH_H_ */ 

Ftdi.c 

Support driver for FT232 UART to USB translator written on top of comm.c 

/* 
 * ftdi.c 
 * 
 *  Created on: Aug 8, 2013 
 *      Author: bb3jd 
 */ 
#include "ftdi.h" 
#include "comm.h" 
 
unsigned int ftdiID;   ///< Comm ID for the FTDI chip 
unsigned char ftdiBuff[256];  ///< Storage buffer for UART receive values 
static usciConfig ftdiConf = {UCA0_UART, UART_8N1, DEF_CTLW1, UBR_DIV(BAUD_RATE), ftdiBuff}; 
 
 
/**************************************************************************//** 
 * \brief Initializes the UCA0 UART for use with an FT232 USB to UART bridge 
 * 
 * Creates a USCI "socket" for the FTDI chip and resets the module for use 
 * 
 * \return commID  FTDI communication ID 
 * \retval  -1  Registration has failed 
 ******************************************************************************/ 
int ftdiInit(void) 
{ 
 ftdiID = registerComm(&ftdiConf); 
 resetUCA0(ftdiID);   // Configure port 
 return ftdiID; 
} 
 
/**************************************************************************//** 
 * \brief Reads a specified number of bytes from the FTDI chip 
 * 
 * Spoofed "read" routine for FTDI chip, returns the number of bytes currently 
 * available in the #ftdiBuff up to the amount of bytes requested. 
 * 
 * \param len The number of bytes requested to be read 
 * \return An FTDI receive packet (length and data) 
 ******************************************************************************/ 
ftdiPacket ftdiRead(unsigned int len) 
{ 
 ftdiPacket rxPack = {ftdiBuff,0}; 
 rxPack.len = uartA0Read(len, ftdiID); 
 return rxPack; 
} 
 
/**************************************************************************//** 
 * \brief Reads a single byte from the FTDI chip RX buffer 
 * 
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 * Spoofed "read" routine for FTDI chip, returns the number of bytes currently 
 * available in the #ftdiBuff up to the amount of bytes requested. 
 * 
 * \return The most recent single character from the FTDI buffer 
 ******************************************************************************/ 
unsigned char ftdiGetch(void) 
{ 
 unsigned int i = uartA0Read(1, ftdiID); 
 return ftdiBuff[i]; 
} 
 
/**************************************************************************//** 
 * \brief Writes a specified number of bytes to the FTDI chip 
 * 
 * Write routine for the FTDI chip. This function writes #len bytes following the 
 * #*data pointer to the FTDI chip via UART 
 * 
 * \param  *data A pointer to the start of data to TX 
 * \param len  The number of bytes to transmit beginning at #*data 
 * \return The number of bytes available in the read buffer (#ftdiBuff) 
 ******************************************************************************/ 
void ftdiWrite(ftdiPacket packet) 
{ 
 while(uartA0Write(packet.data, packet.len, ftdiID) != 1); 
} 
 
/**************************************************************************//** 
 * \brief Gets the number of bytes available from the FTDI chip 
 * 
 * Returns the number of bytes which have been written 
 * to the RX pointer (since the last read performed). 
 * 
 * \return   The number of valid bytes in the receive buffer 
 ******************************************************************************/ 
unsigned int ftdiGetBuffSize(void) 
{ 
 return getUCA0RxSize(); 
} 
 
/**************************************************************************//** 
 * \brief Gets the status of the FTDI communications interface 
 * 
 * Returns the current USCI status of the FTDI UART communication interface 
 * 
 * \return   The current USCI status code 
 ******************************************************************************/ 
unsigned char ftdiGetStatus(void){ 
 return getUCA0Stat(); 
} 
 
/**************************************************************************//** 
 * \brief Clears buffer management for the FTDI UART channel 
 ******************************************************************************/ 
void ftdiFlush(void) 
{ 
 resetUCA0(ftdiID);      // Clear buffer management 
 return; 
} 

Ftdi.h 

Affiliated FTDI header file 

/* 
 * ftdi.h 
 * 
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 *  Created on: Aug 8, 2013 
 *      Author: bb3jd 
 */ 
 
#ifndef FTDI_H_ 
#define FTDI_H_ 
 
#define BAUD_RATE 115200  ///< Baud rate to run the UART communications at 
 
typedef struct ftdi_packet_data{ 
 unsigned char *data; 
 unsigned int len; 
} ftdiPacket; 
 
/**************************************************************************//** 
 * \brief Initializes the UCA0 UART for use with an FT232 USB to UART bridge 
 * 
 * Creates a USCI "socket" for the FTDI chip and resets the module for use 
 * 
 * \return commID  FTDI communication ID 
 * \retval  -1  Registration has failed 
 ******************************************************************************/ 
int ftdiInit(void); 
/**************************************************************************//** 
 * \brief Reads a specified number of bytes from the FTDI chip 
 * 
 * Spoofed "read" routine for FTDI chip, returns the number of bytes currently 
 * available in the #ftdiBuff up to the amount of bytes requested. 
 * 
 * \param len The number of bytes requested to be read 
 * \return An FTDI receive packet (length and data) 
 ******************************************************************************/ 
ftdiPacket ftdiRead(unsigned int len); 
/**************************************************************************//** 
 * \brief Writes a specified number of bytes to the FTDI chip 
 * 
 * Write routine for the FTDI chip. This function writes #len bytes following the 
 * #*data pointer to the FTDI chip via UART 
 * 
 * \param  *data A pointer to the start of data to TX 
 * \param len  The number of bytes to transmit beginning at #*data 
 * \return The number of bytes available in the read buffer (#ftdiBuff) 
 ******************************************************************************/ 
void ftdiWrite(ftdiPacket packet); 
/**************************************************************************//** 
 * \brief Reads a single byte from the FTDI chip RX buffer 
 * 
 * Spoofed "read" routine for FTDI chip, returns the number of bytes currently 
 * available in the #ftdiBuff up to the amount of bytes requested. 
 * 
 * \return The most recent single character from the FTDI buffer 
 ******************************************************************************/ 
unsigned char ftdiGetch(void); 
/**************************************************************************//** 
 * \brief Gets the number of bytes available from the FTDI chip 
 * 
 * Returns the number of bytes which have been written 
 * to the RX pointer (since the last read performed). 
 * 
 * \return   The number of valid bytes in the receive buffer 
 ******************************************************************************/ 
unsigned int ftdiGetBuffSize(void); 
/**************************************************************************//** 
 * \brief Gets the status of the FTDI communications interface 
 * 
 * Returns the current USCI status of the FTDI UART communication interface 
 * 
 * \return   The current USCI status code 
 ******************************************************************************/ 
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unsigned char ftdiGetStatus(void); 
/**************************************************************************//** 
 * \brief Clears buffer management for the FTDI UART channel 
 ******************************************************************************/ 
void ftdiFlush(void); 
 
 
#endif /* FTDI_H_ */ 

Hal.h 

System hardware abstraction layer 

/* 
 * tempo4hal.h 
 * 
 *  Created on: Nov 8, 2013 
 *      Author: bb3jd 
 */ 
#ifndef TEMPO4HAL_H_ 
#define TEMPO4HAL_H_ 
#include <msp430.h> 
 
// Bit Access Structure 
typedef struct Bits8 ///< Bitwise access structure for a single byte 
{ 
    volatile unsigned Bitx0 : 1 ; 
    volatile unsigned Bitx1 : 1 ; 
    volatile unsigned Bitx2 : 1 ; 
    volatile unsigned Bitx3 : 1 ; 
    volatile unsigned Bitx4 : 1 ; 
    volatile unsigned Bitx5 : 1 ; 
    volatile unsigned Bitx6 : 1 ; 
    volatile unsigned Bitx7 : 1 ; 
} Bits ; 
 
// Bit Access Defines 
#define B8_0(x) (((Bits *) (x))->Bitx0)  ///< Bit 0 (LSB) Access Macro 
#define B8_1(x) (((Bits *) (x))->Bitx1)  ///< Bit 1 Access Macro 
#define B8_2(x) (((Bits *) (x))->Bitx2)  ///< Bit 2 Access Macro 
#define B8_3(x) (((Bits *) (x))->Bitx3)  ///< Bit 3 Access Macro 
#define B8_4(x) (((Bits *) (x))->Bitx4)  ///< Bit 4 Access Macro 
#define B8_5(x) (((Bits *) (x))->Bitx5)  ///< Bit 5 Access Macro 
#define B8_6(x) (((Bits *) (x))->Bitx6)  ///< Bit 6 Access Macro 
#define B8_7(x) (((Bits *) (x))->Bitx7)  ///< Bit 7 (MSB) Access Macro 
 
// Port 1 Pins 
#define LED1   B8_0(&P1OUT) ///< LED 1 Pin Define 
#define LED2   B8_1(&P1OUT) ///< LED 2 Pin Define 
#define SW1   B8_2(&P1IN) ///< Switch 1 Pin Define 
#define SW2   B8_3(&P1IN) ///< Switch 2 Pin Define 
#define EXT_VCC_EN  B8_4(&P1OUT) ///< External VCC (VCC2) Control Define 
#define CHG   B8_5(&P1IN) ///< MAX1555 Charge Indicator Pin Define 
#define USB_VCC   B8_6(&P1IN) ///< FT232 VCC Pin Define 
#define MPU_INT   B8_7(&P1IN) ///< MPU Interrupt Pin Define 
// Port 2 Pins 
#define MPU_FSYNC  B8_7(&P2OUT) 
// Port 4 Pins 
#define TEST1_IN   B8_6(&P4IN) ///< TEST1 (when used as an input) pin define 
#define TEST1_OUT  B8_6(&P4OUT) ///< TEST1 (when used as an output) pin define 
#define TEST2_IN   B8_7(&P4IN) ///< TEST2 (when used as an input) pin define 
#define TEST2_OUT  B8_7(&P4OUT) ///< TEST2 (when used as an output) pin define 
// Port 5 Pins 
#define MMC_CS   B8_2(&P5OUT) ///< MMC Chip Select (active low) pin define 
#define MMC_CD   B8_3(&P5IN) ///< MMC Card Detect (active low) pin define 
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// LED 1 (Green) Functions 
#define LED1_CONFIG()  P1DS |= BIT0; P1OUT |= BIT0; P1DIR |= BIT0; P1SEL &= ~(BIT0)  
   ///< Set P1.0 to output high (LED off) 
#define LED1_ON()  LED1 = 0  ///< LED 1 on macro 
#define LED1_OFF()  LED1 = 1  ///< LED 1 off macro 
#define LED1_TOGGLE()  LED1 ^= 1 ///< LED 1 toggle macro 
#define LED_GREEN_CONFIG() LED1_CONFIG() ///< Rename macro for green LED configuration 
#define LED_GREEN_ON()  LED1_ON() ///< Rename macro for green LED (LED1) on 
#define LED_GREEN_OFF()  LED1_OFF() ///< Rename macro for green LED (LED1) off 
#define LED_GREEN_TOGGLE() LED1_TOGGLE() ///< Rename macro for green LED (LED1) toggle 
// LED 2 (Red) Functions 
#define LED2_CONFIG()  P1DS |= BIT1; P1OUT |= BIT1; P1DIR |= BIT1; P1SEL &= ~(BIT1)  
 ///< Set P1.1 to output high (LED off) 
#define LED2_ON()  LED2 = 0  ///< LED2 on macro 
#define LED2_OFF()  LED2 = 1  ///< LED2 off macro 
#define LED2_TOGGLE()  LED2 ^= 1 ///< LED2 toggle macro 
#define LED_RED_CONFIG()  LED2_CONFIG() ///< Rename macro for red LED configuration 
#define LED_RED_ON()  LED2_ON() ///< Rename macro for red LED (LED2) on 
#define LED_RED_OFF()  LED2_OFF() ///< Rename macro for red LED (LED2) off 
#define LED_RED_TOGGLE()  LED2_TOGGLE() ///< Rename macro for red LED (LED2) toggle 
// General LED defines 
#define LED_CONFIG()  LED1_CONFIG(); LED2_CONFIG() ///< Group LED configuration 
#define LEDS_OFF()  LED1_OFF(); LED2_OFF()  ///< Group LED off 
#define LEDS_ON()  LED1_ON(); LED2_ON()  ///< Group LED on 
// Switch 1 Functions 
#define SW1_CONFIG()  P1OUT |= BIT2; P1REN |= BIT2; P1DIR &= ~(BIT2);  P1SEL &= ~(BIT2) ///< Set 
P1.2 to input w/ pull-up (switch pulls down) 
#define SW1_PRESSED  SW1 == 0  ///< SW1 depressed (closed) macro 
#define SW1_RELEASED  SW1 == 1  ///< SW1 released (open) macro 
// Switch 2 Functions 
#define SW2_CONFIG()  P1OUT |= BIT3; P1REN |= BIT3; P1DIR &= ~(BIT3);  P1SEL &= ~(BIT3) ///< Set 
P1.3 to input w/ pull-up (switch pulls down) 
#define SW2_PRESSED  SW2 == 0  ///< SW2 depressed (closed) macro 
#define SW2_RELEASED  SW2 == 1  ///< SW2 released (open) macro 
// General Switch Defines 
#define SW_CONFIG()  SW1_CONFIG(); SW2_CONFIG() ///< Group switch config 
#define SW_PRESSED  SW1_PRESSED | SW2_PRESSED ///< Group switch depressed (closed) 
macro 
#define SW_RELEASED  SW1_RELEASED & SW2_RELEASED ///< Group switch released (open) macro 
// Ext. VCC Control Functions 
#define EXT_VCC_CONFIG()  P1OUT &= ~(BIT4); P1DIR |= BIT4; P1SEL &= ~(BIT4)    
 ///< Set P1.4 to output low (VCC2 off) 
#define EXT_VCC_ON()  P1OUT |= 0x10  ///< External VCC on macro 
#define EXT_VCC_OFF()  P1OUT &= ~(0x10)  ///< External VCC off macro 
// MAX1555 Charge Indicator Functions 
#define CHG_CONFIG()  P1REN &= ~(BIT5); P1DIR &= ~(BIT5); P1SEL &= ~(BIT5)   
 ///< Set P1.5 to input (no pull-up/down) 
#define CHARGING   CHG == 0   ///< Charging macro 
// FT232 USB Power Indicator Functions 
#define USB_VCC_CONFIG() P1OUT &= ~(BIT6); P1DIR &= ~(BIT6); P1SEL &= ~(BIT6) //; P1REN |= BIT6 ///< Set 
P1.6 to input (w/o pull-down) 
#define USB_VCC_ON  USB_VCC == 1  ///< USB VCC available macro 
#define USB_VCC_OFF  USB_VCC == 0  ///< USV VCC unavailable macro 
// MPU Pin Indicator Functions 
#define MPU_INT_CONFIG() P1REN &= ~(BIT7); P1SEL &= ~(BIT7); P1DIR &= ~(BIT7)   
 ///< Set P1.7 to input (no pull-up/down) 
#define MPU_FSYNC_CONFIG() P2OUT &= ~(BIT7); P2SEL &= ~(BIT7); P2DIR |= BIT7    
 ///< Set P2.7 to output low 
#define MPU_INT_HIGH  MPU_INT == 1  ///< MPU interrupt line high macro 
#define MPU_INT_LOW  MPU_INT == 0  ///< MPU interrupt line low macro 
#define MPU_FSYNC_ON()  MPU_FSYNC = 1  ///< MPU frame synchronization on (high) macro 
#define MPU_FSYNC_OFF()  MPU_FSYNC = 0  ///< MPU frame synchronization off (low) macro 
#define MPU_IO_CONFIG()  MPU_INT_CONFIG() //; MPU_FSYNC_CONFIG()  ///< MPU IO initialization macro 
// MMC Pin Indicator functions 
#define MMC_IO_CONFIG()  MMC_CS_CONFIG(); MMC_CD_CONFIG() 
#define MMC_CS_CONFIG()  P5DIR |= BIT2; P5SEL &= ~(BIT2); P5OUT |= BIT2    
  ///< Set P5.2 to output high (not selected) 
#define MMC_CD_CONFIG()  P5OUT |= BIT3; P5REN |= BIT3; P5DIR &= ~(BIT3); P5SEL &= ~(BIT3) ///< Set 
P5.3 to input (w/ pull-up) 
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#define MMC_CARD_PRESENT  !(MMC_CD)  ///< MMC Card Present Indicator 
 
// MCLK Out on TEST1 
#define MCLK_CONFIG()  P4SEL |= BIT6; P4DIR |= BIT6;\ 
   PMAPKEYID = PMAPKEY; P4MAP6 = PM_MCLK; PMAPKEYID = 0 
#define MCLK_OFF()  P4SEL &= ~BIT6; P4DIR &= ~BIT6 
#endif /* TEMPO4HAL_H_ */ 

Infoflash.c 

System information flash management, ported from TEMPO 3.2 for use on the MSP430F5342 

/**************************************************************************//** 
 * \file  infoflash.c 
 * \author Ben Boudaoud (bb3jd@virginia.edu) 
 * \date Dec 20, 2013 
 * 
 * \brief This file contains the TEMPO 4000 info flash management code 
 * 
 * This library provides a simple interface for reading and writing the MSP430 
 * info flash on 5xxx series devices. The A and B segments are used for storage 
 * of critical non-volatile data including system state and critical flags. 
 *****************************************************************************/ 
 
#include <msp430.h> 
#include <string.h> 
#include "infoflash.h" 
#include "hal.h" 
#include "util.h" 
 
 
unsigned char infoRO = 0;  ///< Info flash read only flag 
 
/**************************************************************************//** 
 * \brief Initialize RAM copies of Info flash values 
 * 
 * Copy values from info flash into RAM-cached copies and run a validity 
 * check on the protected information (CID, calib, serials, ...) 
 * 
 * \retval 0 success 
 * \retval -1 validity check failure 
 * 
 * \sideeffect Sets #infoRO if validity check fails 
 *****************************************************************************/ 
int infoInit(void) 
{ 
 unsigned int checksum; 
 
 memcpy((void *)&_tempoInfoA, (void *)INFO_A_ADDR, sizeof(_tempoInfoA)); 
 memcpy(&_tempoInfoB, (void *)INFO_B_ADDR, sizeof(_tempoInfoB)); 
 
 if(_tempoInfoA.validityCode != INFO_VALID_CODE){ 
  infoRO = 1; 
  return INFO_A_INVALID; 
 } 
 
 // Test validity of the stored info 
 checksum = fletcherChecksum((unsigned char *)&_tempoInfoB, 
   sizeof(_tempoInfoB) - sizeof(_tempoInfoB.checksum), 0); 
 
 if(_tempoInfoB.validityCode != INFO_VALID_CODE || checksum != _tempoInfoB.checksum) { 
  infoRO = 1; 
  return INFO_B_INVALID; 
 } 
 
 return INFO_VALID; 
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} 
 
/**************************************************************************//** 
 * \brief Write RAM copy of critical flags back to info flash 
 *****************************************************************************/ 
static void _writeTempoInfoA() 
{ 
 unsigned int status; 
 
 _tempoInfoA.validityCode = INFO_VALID_CODE; 
 
 // MSP430 User guide stipulates that this entire process be protected 
 enter_critical(status); 
  if(FCTL3 | LOCKA) FCTL3 = (FWKEY + LOCKA); 
  else FCTL3 = FWKEY;   // Clear Lock bit 
  FCTL1 = (FWKEY + ERASE);   // Set Erase bit 
  *(unsigned char *)INFO_A_ADDR = 0; // Dummy write to erase flash segment 
 
  FCTL1 = (FWKEY + WRT);   // Set WRT bit for write operation 
  memcpy((void *)INFO_A_ADDR, (const void *)&_tempoInfoA, sizeof(_tempoInfoA)); 
 
  FCTL1 = FWKEY;    // Clear WRT bit 
  FCTL3 = FWKEY + LOCK;   // Set LOCK bit 
 exit_critical(status); 
} 
 
/**************************************************************************//** 
 * \brief Write RAM copy of info B structure back to info flash 
 *****************************************************************************/ 
static int _writeTempoInfoB() 
{ 
 unsigned int status; 
 
 _tempoInfoB.validityCode = INFO_VALID_CODE; 
 _tempoInfoB.checksum = fletcherChecksum((unsigned char *)&_tempoInfoB,(sizeof(_tempoInfoB) - 
sizeof(_tempoInfoB.checksum)), 0); 
 
 
 // MSP430 User guide stipulates that this entire process be protected 
 enter_critical(status); 
  FCTL3 = FWKEY;    // Clear Lock bit 
  FCTL1 = FWKEY + ERASE;   // Set Erase bit 
  *(unsigned char *)INFO_B_ADDR = 0; // Dummy write to erase flash segment 
 
  FCTL1 = (FWKEY + WRT);   // Set WRT bit for write operation 
  memcpy((void *)INFO_B_ADDR, &_tempoInfoB, sizeof(_tempoInfoB)); 
  FCTL1 = FWKEY;    // Clear WRT bit 
  FCTL3 = FWKEY + LOCK;   // Set LOCK bit 
 exit_critical(status); 
 
 if(memcmp(&_tempoInfoB, (void *)INFO_B_ADDR, sizeof(_tempoInfoB)) != 0) { 
  infoRO = 1; 
  infoSetInfoBFail(); 
  return -1; 
 } 
 
 return 0; 
} 
 
/**************************************************************************//** 
 * \brief Check whether any critical condition flags are set in info flash 
 * 
 * \retval 0  Info valid 
 * \retval -1 Info A fails validity check (see #INFO_A_INVALID) 
 * \retval -3 Info A contians critical flags (see #INFO_CRITICAL) 
 *****************************************************************************/ 
int infoCheckCritical(void) 
{ 
 // Check info flash for critical previous system error flags 
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 if(_tempoInfoA.validityCode == INFO_VALID_CODE) { 
  if(_tempoInfoA.evtQueueOvf == 1 || _tempoInfoA.highTemp == 1 
   || _tempoInfoA.infoBFail == 1) { 
    return INFO_CRITICAL; 
  } 
 } 
 else return INFO_A_INVALID; 
 
 return INFO_VALID; 
} 
 
/**************************************************************************//** 
 * \brief Write the low voltage critical flag to info flash 
 *****************************************************************************/ 
void infoSetLowVoltage(void) 
{ 
 _tempoInfoA.lowVoltage = 1; 
 _writeTempoInfoA(); 
} 
 
/**************************************************************************//** 
 * \brief Write the high temperature critical flag to info flash 
 *****************************************************************************/ 
void infoSetHighTemp(void) 
{ 
 _tempoInfoA.highTemp = 1; 
 _writeTempoInfoA(); 
} 
 
/**************************************************************************//** 
 * \brief Write the event queue overflow critical flag to info flash 
 *****************************************************************************/ 
void infoSetEvtQueueOvf(void) 
{ 
 _tempoInfoA.evtQueueOvf = 1; 
 _writeTempoInfoA(); 
} 
 
/**************************************************************************//** 
 * \brief Write the info flash SegmentB failure critical flag to info flash 
 *****************************************************************************/ 
void infoSetInfoBFail(void) 
{ 
 _tempoInfoA.infoBFail = 1; 
 _writeTempoInfoA(); 
} 
 
/**************************************************************************//** 
 * \brief Clear all critical flags from the info flash 
 *****************************************************************************/ 
void infoClearCriticalFlags(void) 
{ 
 _tempoInfoA.lowVoltage = 0; 
 _tempoInfoA.highTemp = 0; 
 _tempoInfoA.evtQueueOvf = 0; 
 _tempoInfoA.infoBFail = 0; 
 _writeTempoInfoA(); 
} 
 
 
/**************************************************************************//** 
 * \brief Update last session serial and time epoch to info flash 
 * 
 * \retval 0 success 
 * \retval -1 #infoRO and/or verification check failed 
 * 
 * \sideeffect Sets #infoRO if validity check fails 
 *****************************************************************************/ 
int infoUpdateLastSector(unsigned int lastSector, unsigned int lastSessSector, unsigned int epoch) 
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{ 
 _tempoInfoB.lastSector = lastSector; 
 _tempoInfoB.lastSessSector = lastSessSector; 
 _tempoInfoB.currEpoch = epoch; 
 return _writeTempoInfoB(); 
} 
 
/**************************************************************************//** 
 * \brief Retrieve last sector index from infoflash 
 *****************************************************************************/ 
unsigned int infoGetLastSector(void) 
{ 
 return _tempoInfoB.lastSector; 
} 
 
/**************************************************************************//** 
 * \brief Retrieve last session info sector index from infoflash 
 *****************************************************************************/ 
unsigned int infoGetLastSessSector(void) 
{ 
 return _tempoInfoB.lastSessSector; 
} 
 
/**************************************************************************//** 
 * \brief Retrieve last session serial from infoflash 
 *****************************************************************************/ 
unsigned int infoGetLastEpoch(void) 
{ 
 return _tempoInfoB.currEpoch; 
} 
 
/**************************************************************************//** 
 * \brief Retrieve card ID from infoflash 
 * 
 * \param[out] cid  Card ID string (of length #CARD_ID_LEN) 
 *****************************************************************************/ 
void infoGetCardID(unsigned char * cid) 
{ 
 memcpy(cid, _tempoInfoB.cid, CARD_ID_LEN); 
} 
 
/**************************************************************************//** 
 * \brief Retrieve node ID from infoflash 
 *****************************************************************************/ 
unsigned int infoGetNodeID(void) 
{ 
 return _tempoInfoB.nodeID; 
} 
 
/**************************************************************************//** 
 * \brief Set card ID and re-init serials 
 * 
 * \note Intended for use when doing a card re-init or using new card 
 * 
 * \retval 0 success 
 * \retval -1 Verification check failed 
 * 
 * \sideeffect The calibration values will be cleared 
 * \sideeffect Sets #infoRO if validity check fails 
 *****************************************************************************/ 
int infoCardInit(unsigned char* cid, unsigned int nodeID, unsigned int lastSector, unsigned int 
lastSessSector, unsigned int timeEpoch) 
{ 
 memcpy(_tempoInfoB.cid, cid, CARD_ID_LEN); 
 _tempoInfoB.nodeID = nodeID; 
 _tempoInfoB.lastSector = lastSector; 
 _tempoInfoB.lastSessSector = lastSessSector; 
 _tempoInfoB.currEpoch = timeEpoch; 
 _tempoInfoB.validityCode = INFO_VALID_CODE; 
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 return _writeTempoInfoB(); 
} 

Infoflash.h 

Affiliated information flash header file, ported from TEMPO 3.2 header file 

/**************************************************************************//** 
 * \file  infoflash.h 
 * \author Ben Boudaoud (bb3jd@virginia.edu) 
 * \date Dec 20, 2013 
 * 
 * \brief This file contains the TEMPO 4000 info flash management code 
 * 
 * This library provides a simple interface for reading and writing the MSP430 
 * info flash on 5xxx series devices. The A and B segments are used for storage 
 * of critical non-volatile data including system state and critical flags. 
 *****************************************************************************/ 
#ifndef INFOFLASH_H_ 
#define INFOFLASH_H_ 
#include "flash.h" 
 
/// \warning Do not increase this structure beyond 128 bytes! 
static volatile struct {    /// TEMPO 4000 info A structure 
 unsigned int lowVoltage;   ///< Critical flag: low voltage 
 unsigned int highTemp;    ///< Critical flag: high temperature 
 unsigned int evtQueueOvf;   ///< Critical flag: event queue overflow 
 unsigned int infoBFail;    ///< Critical flag: info B fail 
 unsigned int validityCode;   ///< Sector valid code (always read as 0xAAAA) 
} _tempoInfoA; 
 
/// \warning Do not increase this structure beyond 128 bytes! 
static struct {       /// TEMPO 4000 info B structure 
 unsigned int nodeID;    ///< TEMPO 4000 Node ID 
 unsigned char cid[CARD_ID_LEN];  ///< MMC card ID 
 unsigned long lastSector;   ///< Last sector written in file system 
 unsigned long lastSessSector;  ///< Last session info sector written in file system 
 unsigned int currEpoch;    ///< Current card epoch number 
 unsigned int lastTime;    ///< Last valid RTC time stamp 
 unsigned int validityCode;   ///< Valid code (always read 0xAAAA) 
 unsigned int checksum;    ///< Sector checksum 
} _tempoInfoB; 
 
// Addresses of info flash segments 
#define  INFO_A_ADDR  (0x1980) ///< Address of info flash segment A 
#define  INFO_B_ADDR  (0x1900) ///< Address of info flash segment B 
#define  INFO_C_ADDR  (0x1880) ///< Address of info flash segment C 
#define  INFO_D_ADDR  (0x1800)  ///< Address of info flash segment D 
 
#define INFO_VALID_CODE  0xAAAA  ///< Critical flag validity code 
 
#define INFO_VALID  0    ///< Info flash segments all valid 
return code 
#define INFO_A_INVALID -1    ///< Info flash segment A invalid return code 
#define INFO_B_INVALID -2    ///< Info flash segment B invalid return code 
#define INFO_CRITICAL -3    ///< Info flash segment A contains critical code 
 
// Prototypes 
/**************************************************************************//** 
 * \brief Initialize RAM copies of Info flash values 
 * 
 * Copy values from info flash into RAM-cached copies and run a validity 
 * check on the protected information (CID, calib, serials, ...) 
 * 
 * \retval 0 success 
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 * \retval -1 validity check failure 
 * 
 * \sideeffect Sets #infoRO if validity check fails 
 *****************************************************************************/ 
int infoInit(void); 
 
/**************************************************************************//** 
 * \brief Write RAM copy of critical flags back to info flash 
 *****************************************************************************/ 
static void _writeTempoInfoA(); 
 
/**************************************************************************//** 
 * \brief Write RAM copy of info B structure back to info flash 
 *****************************************************************************/ 
static int _writeTempoInfoB(); 
 
/**************************************************************************//** 
 * \brief Check whether any critical condition flags are set in info flash 
 * 
 * \retval 0 no critical flags 
 * \retval 1 critical flag found 
 *****************************************************************************/ 
int infoCheckCritical(void); 
 
/**************************************************************************//** 
 * \brief Write the low voltage critical flag to info flash 
 *****************************************************************************/ 
void infoSetLowVoltage(void); 
 
/**************************************************************************//** 
 * \brief Write the high temperature critical flag to info flash 
 *****************************************************************************/ 
void infoSetHighTemp(void); 
 
/**************************************************************************//** 
 * \brief Write the event queue overflow critical flag to info flash 
 *****************************************************************************/ 
void infoSetEvtQueueOvf(void); 
 
/**************************************************************************//** 
 * \brief Write the info flash SegmentB failure critical flag to info flash 
 *****************************************************************************/ 
void infoSetInfoBFail(void); 
 
/**************************************************************************//** 
 * \brief Clear all critical flags from the info flash 
 *****************************************************************************/ 
void infoClearCriticalFlags(void); 
 
/**************************************************************************//** 
 * \brief Update last session serial and time epoch to info flash 
 * 
 * \retval 0 success 
 * \retval -1 #infoRO and/or verification check failed 
 * 
 * \sideeffect Sets #infoRO if validity check fails 
 *****************************************************************************/ 
int infoUpdateLastSector(unsigned int lastSector, unsigned int lastSessSector, unsigned int epoch); 
 
/**************************************************************************//** 
 * \brief Retrieve last sector index from infoflash 
 *****************************************************************************/ 
unsigned int infoGetLastSector(void); 
 
/**************************************************************************//** 
 * \brief Retrieve last session info sector index from infoflash 
 *****************************************************************************/ 
unsigned int infoGetLastSessSector(void); 
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/**************************************************************************//** 
 * \brief Retrieve last session serial from infoflash 
 *****************************************************************************/ 
unsigned int infoGetLastEpoch(void); 
 
/**************************************************************************//** 
 * \brief Retrieve card ID from infoflash 
 * 
 * \param[out] cid  Card ID string (of length #CARD_ID_LEN) 
 *****************************************************************************/ 
void infoGetCardID(unsigned char * cid); 
 
/**************************************************************************//** 
 * \brief Retrieve node ID from infoflash 
 *****************************************************************************/ 
unsigned int infoGetNodeID(void); 
 
/**************************************************************************//** 
 * \brief Set card ID and re-init serials 
 * 
 * \note Intended for use when doing a card re-init or using new card 
 * 
 * \retval 0 success 
 * \retval -1 Verification check failed 
 * 
 * \sideeffect The calibration values will be cleared 
 * \sideeffect Sets #infoRO if validity check fails 
 *****************************************************************************/ 
int infoCardInit(unsigned char* cid, unsigned int nodeID, unsigned int lastSector, unsigned int 
lastSessSector, unsigned int timeEpoch); 
 
#endif /* INFOFLASH_H_ */ 

Interrupts.c 

System interrupt masking and registration library, can be expanded to include any amount of 

user/developer registered interrupts 

/* 
 * interrupts.c 
 * 
 *  Created on: Apr 8, 2014 
 *      Author: bb3jd 
 */ 
#include <msp430.h> 
#include "mpu.h" 
#include "hal.h" 
 
// Callback function pointers for interrupts 
void (*mpuPtr)(void); 
void (*sw1Ptr)(void); 
void (*sw2Ptr)(void); 
 
void dummyCallback(void){ 
 _NOP(); 
 return; 
} 
 
void chargingIntCfg(bool en) 
{ 
 unsigned int stat; 
 enter_critical(stat); 
 
 CHG_CONFIG(); 
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 if(en){ 
  P1IE |= BIT5;  // Enable interrupts on pin 1.5 
  P1IES |= BIT5;  // Set interrupt on high->low transition 
 } 
 else{ 
  P1IE &= ~BIT5;  // Disable interrupts on pin 1.5 
 } 
 
 exit_critical(stat); 
} 
 
void mpuIntPinCfg(bool en) 
{ 
 unsigned int stat; 
 enter_critical(stat); 
 
 MPU_INT_CONFIG();  // Set up pin for MPU interrupt as input 
 
 if(en){ 
  P1IE |= BIT7;  // Enable interrupts on pin 1.7 
  P1IES &= ~BIT7;  // Set interrupt on low->high transition 
 } 
 else{ 
  P1IE &= ~BIT7;  // Disable interrupts on pin 1.7 
 } 
 exit_critical(stat); 
} 
 
void registerMPUCallback(void *f) 
{ 
 mpuPtr = f; 
} 
 
void clearMPUCallback(void) 
{ 
 mpuPtr = dummyCallback; 
} 
 
void sw1IntCfg(bool en) 
{ 
 unsigned int stat; 
 enter_critical(stat); 
 
 SW1_CONFIG();   // Set up pin for switch input 
 
 if(en){ 
  P1IE |= BIT2;  // Enable interrupts on pin 1.2 
  P1IES |= BIT2;  // Set interrupt on high->low transition 
 } 
 else{ 
  P1IE &= ~BIT2;  // Disable interrupts on pin 1.2 
 } 
 exit_critical(stat); 
} 
 
void registerSW1Callback(void *f(void)) 
{ 
 sw1Ptr = f; 
} 
 
void clearSW1Callback(void) 
{ 
 sw1Ptr = dummyCallback; 
} 
 
void sw2IntCfg(bool en) 
{ 
 unsigned int stat; 
 enter_critical(stat); 
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 SW2_CONFIG();   // Set up pin for switch input 
 
 if(en){ 
  P1IE |= BIT3;  // Enable interrupts on pin 1.3 
  P1IES |= BIT3;  // Set interrupt on high->low transition 
 } 
 else{ 
  P1IE &= ~BIT3;  // Disable interrupts on pin 1.3 
 } 
 exit_critical(stat); 
} 
 
void registerSW2Callback(void *f(void)) 
{ 
 sw2Ptr = f; 
} 
 
void clearSW2Callback(void) 
{ 
 sw2Ptr = dummyCallback; 
} 
 
// PORT 1 ISR and affiliate callback structure 
#pragma vector=PORT1_VECTOR 
__interrupt void port1isr(void) 
{ 
 if(P1IFG & BIT2){ // SW1 Interrupt 
  P1IFG &= ~BIT2; 
  sw1Ptr(); 
 } 
 if(P1IFG & BIT3){ // SW2 Interrupt 
  P1IFG &= ~BIT3; 
  sw2Ptr(); 
 } 
 if(P1IFG & BIT7){ // MPU Interrupt 
  P1IFG &= ~BIT7; 
  mpuPtr(); 
 } 
} 

MMC.c 

System MMC communication driver, ported from TEMPO 3.2 for use with communications library 

#ifndef _MMCLIB_C 
#define _MMCLIB_C 
 
#include "mmc.h" 
#include "comm.h" 
#include "hal.h" 
#include <msp430.h> 
 
// Function Prototypes 
char mmcGetResponse(void); 
char mmcGetXXResponse(const char resp); 
char mmcCheckBusy(void); 
char mmcGoIdle(); 
 
// Variables 
int mmcID;            
       ///< MMC Comm Registration Number 
unsigned char mmcRxBuff[MMC_RX_BUFF_SIZE];        
   ///< Rx Buffer for communications 
usciConfig mmcConf = {UCB0_SPI, SPI_8M2_BE, 0, MMC_INIT_BAUD, mmcRxBuff};   ///< MMC USCI 
Config Structure 
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// Replacement macros for original SPI management in hal_SPI.c 
#define spiSendByte(x)  spiB0Swap(x, mmcID) 
void spiSendFrame(unsigned char *data, unsigned int len){ 
 while(spiB0Write(data, len, mmcID) == -1);  // Initialize transfer 
 while(getUCB0Stat() != OPEN);     // Block until transfer complete 
} 
void spiReadFrame(unsigned char *data, unsigned int len){ 
 while(spiB0Read(len, mmcID) == -1); 
 memcpy(data, mmcRxBuff, 512); 
} 
 
// Initialize MMC card 
char mmcInit(void){ 
  //raise CS and MOSI for 80 clock cycles 
  //SendByte(0xff) 10 times with CS high 
  //RAISE CS 
  int i; 
 
  mmcID = registerComm(&mmcConf); 
  resetUCB0(mmcID); 
  MMC_CS_CONFIG(); 
   
  //initialization sequence on PowerUp 
  MMC_CS_HIGH(); 
  for(i=0;i<=10;i++) 
   spiSendByte(DUMMY_CHAR); 
 
  return (mmcGoIdle()); 
} 
 
 
// set MMC in Idle mode 
char mmcGoIdle() { 
  int i; 
  char response = 0x01; 
 
  //Send Command 0 to put MMC in SPI mode 
  MMC_CS_LOW(); 
  mmcSendCmd(MMC_GO_IDLE_STATE,0,0x95); 
 
  //Now wait for READY RESPONSE 
  if(mmcGetResponse()!=0x01){ 
 MMC_CS_HIGH(); 
    return MMC_INIT_ERROR; 
  } 
  // This timeout has been extended (transcend cards have i = 250-350 on init) 
  for(i = 0; response == 0x01 && i<=1000; i++) 
  { 
    MMC_CS_HIGH(); 
    spiSendByte(DUMMY_CHAR); 
    MMC_CS_LOW(); 
    mmcSendCmd(MMC_SEND_OP_COND,0x00,0xff); 
    response = mmcGetResponse(); 
  } 
  MMC_CS_HIGH(); 
 
  spiSendByte(DUMMY_CHAR); 
  setUCB0Baud(MMC_DEF_BAUD, mmcID); 
 
  switch(response){ 
    case 0: 
   return MMC_SUCCESS; 
    case 1: 
   return MMC_TIMEOUT_ERROR; 
    default: 
   return MMC_OTHER_ERROR; 
  } 
} 
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// MMC Get Response 
char mmcGetResponse(void) { 
  //Response comes 1-8bytes after command 
  //the first bit will be a 0 
  //followed by an error code 
  //data will be 0xff until response 
  int i; 
  char response; 
 
  for(i = 0; i<=64; i++) { 
    response=spiSendByte(DUMMY_CHAR); 
    if(response==0x00) break; 
    if(response==0x01) break; 
  } 
  return response; 
} 
 
char mmcGetXXResponse(const char resp) { 
  //Response comes 1-8bytes after command 
  //the first bit will be a 0 
  //followed by an error code 
  //data will be 0xff until response 
  int i; 
  char response; 
 
  for(i=0; i<=1000; i++) { 
    response=spiSendByte(DUMMY_CHAR); 
    if(response==resp)break; 
  } 
  return response; 
} 
 
unsigned int mmcGetR2Response(void) { 
  //Response comes 1-8bytes after command 
  //the first bit will be a 0 
  //followed by an error code 
  //data will be 0xff until response 
  int i; 
  unsigned char responseHi, responseLo; 
 
  for(i=0; i<=64; i++) { 
    responseHi=spiSendByte(DUMMY_CHAR); 
    if(responseHi!=0xFF) 
     break; 
  } 
  responseLo=spiSendByte(DUMMY_CHAR); 
  return ((unsigned int)(responseHi << 8) | responseLo); 
} 
 
// Check if MMC card is still busy 
char mmcCheckBusy(void) { 
  //Response comes 1-8bytes after command 
  //the first bit will be a 0 
  //followed by an error code 
  //data will be 0xff until response 
  int i; 
  char response, rvalue; 
 
  for(i=0; i<=64; i++) { 
    response=spiSendByte(DUMMY_CHAR); 
    response &= 0x1f; 
    switch(response) { 
      case 0x05: 
       rvalue=MMC_SUCCESS; 
       break; 
      case 0x0b: 
       return(MMC_CRC_ERROR); 
      case 0x0d: 
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       return(MMC_WRITE_ERROR); 
      default: 
       rvalue = MMC_OTHER_ERROR; 
       break; 
    } 
    if(rvalue==MMC_SUCCESS) 
     break; 
  } 
 
  i=0; 
  do 
  { // ADDRESS THIS ISSUE, WE GET HUNG HERE AND WATCHDOG AS A RESULT!!!!!!!!!!!!!!!!! 
    response = spiSendByte(DUMMY_CHAR); 
    i++; 
  }while(response==0 && i<=10000); // I HAVE NO IDEA WHAT TO MAKE THIS TIMEOUT ACTUALLY BE!!! 
   
  if(response==0) { 
   rvalue = MMC_TIMEOUT_ERROR; 
  } 
   
  return rvalue; 
} 
// The card will respond with a standard response token followed by a data 
// block suffixed with a 16 bit CRC. 
 
// read a size Byte big block beginning at the address. 
char mmcReadBlock(const unsigned long address, const unsigned long count, unsigned char *pBuffer) { 
  char rvalue = MMC_RESPONSE_ERROR; 
 
  // Set the block length to read 
  if (mmcSetBlockLength (count) == MMC_SUCCESS) {   // Attempt to set block length 
    MMC_CS_LOW (); 
    // send read command MMC_READ_SINGLE_BLOCK=CMD17 
    mmcSendCmd (MMC_READ_SINGLE_BLOCK,address, 0xFF); 
    // Send 8 Clock pulses of delay, check if the MMC acknowledged the read block command 
    // it will do this by sending an affirmative response 
    // in the R1 format (0x00 is no errors) 
    if (mmcGetResponse() == 0x00) { 
      // Look for the data token to signify the start of data 
      if (mmcGetXXResponse(MMC_START_DATA_BLOCK_TOKEN) == MMC_START_DATA_BLOCK_TOKEN) { 
        // Clock the actual data transfer and receive the bytes; spi_read automatically finds the Data 
Block 
        spiReadFrame(pBuffer, count); 
        // Get CRC bytes (not really needed by us, but required by MMC) 
        spiSendByte(DUMMY_CHAR); 
        spiSendByte(DUMMY_CHAR); 
        rvalue = MMC_SUCCESS; 
      } 
      else { // The data token was never received 
        rvalue = MMC_DATA_TOKEN_ERROR;      // 3 
      } 
    } 
    else {   // The MMC never acknowledge the read command 
      rvalue = MMC_RESPONSE_ERROR;          // 2 
    } 
  } 
  else { // The block length was not set correctly 
    rvalue = MMC_BLOCK_SET_ERROR;           // 1 
  } 
  MMC_CS_HIGH (); 
  spiSendByte(DUMMY_CHAR); 
  return rvalue; 
}// mmc_read_block 
 
 
 
//char mmcWriteBlock (const unsigned long address) 
char mmcWriteBlock (const unsigned long address, const unsigned long count, unsigned char *pBuffer) 
{ 
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  char rvalue = MMC_RESPONSE_ERROR;         // MMC_SUCCESS; 
 
  if (mmcSetBlockLength (count) == MMC_SUCCESS) {   // Set the block length to read 
    MMC_CS_LOW (); 
    mmcSendCmd (MMC_WRITE_BLOCK,address, 0xFF); // Send write command 
    // Check if the MMC acknowledged the write block command 
    // it will do this by sending an affirmative response 
    // in the R1 format (0x00 is no errors) 
    if (mmcGetXXResponse(MMC_R1_RESPONSE) == MMC_R1_RESPONSE) { 
      spiSendByte(DUMMY_CHAR); 
      spiSendByte(0xfe); // Send the data token to signify the start of the data 
      spiSendFrame(pBuffer, count); // Clock the actual data transfer and transmit the bytes 
 
      // Put CRC bytes (not really needed by us, but required by MMC) 
      spiSendByte(DUMMY_CHAR); 
      spiSendByte(DUMMY_CHAR); 
 
      // Read the data response xxx0<status>1 
         // Status = 010: Data accepted 
         // Status 101: Data rejected due to a CRC error 
         // Status 110: Data rejected due to a write error. 
      rvalue = mmcCheckBusy(); 
      if(rvalue==MMC_SUCCESS) { 
        // check status after write for any possible errors during write (see sandisk.pdf, p.63) 
        MMC_CS_HIGH(); 
        spiSendByte(DUMMY_CHAR); 
        MMC_CS_LOW(); 
        mmcSendCmd(MMC_SEND_STATUS, 0, 0xFF); 
        if (mmcGetR2Response() != 0x0000) { 
          rvalue = MMC_WRITE_ERROR; 
        } 
      } 
    } 
    else { // The MMC never acknowledge the write command 
      rvalue = MMC_RESPONSE_ERROR;   // 2 
    } 
  } 
  else { 
    rvalue = MMC_BLOCK_SET_ERROR;   // 1 
  } 
 
  MMC_CS_HIGH(); 
  spiSendByte(DUMMY_CHAR); // Send 8 Clock pulses of delay. 
  return rvalue; 
} // mmc_write_block 
 
 
// send command to MMC 
void mmcSendCmd (const char cmd, unsigned long data, const char crc) 
{ 
  unsigned char frame[6]; 
  char temp; 
  int i; 
  frame[0]=(cmd|0x40); 
  for(i=3;i>=0;i--){ 
    temp=(char)(data>>(8*i)); 
    frame[4-i]=(temp); 
  } 
  frame[5]=(crc); 
  spiSendFrame(frame,6); 
} 
 
 
// set blocklength 2^n 
char mmcSetBlockLength (const unsigned long blocklength) 
{ 
  char response; 
 
  MMC_CS_LOW (); 
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  mmcSendCmd(MMC_SET_BLOCKLEN, blocklength, 0xFF);   // Set the block length to read 
  response=mmcGetResponse(); // Test response =  0x00 (R1 OK format) 
  MMC_CS_HIGH (); 
  spiSendByte(DUMMY_CHAR);  // Send 8 Clock pulses of delay. 
  return response; 
} // Set block_length 
 
 
// Reading the contents of the CSD and CID registers in SPI mode is a simple 
// read-block transaction. 
char mmcReadRegister (const char cmd_register, const unsigned char length, unsigned char *pBuffer) 
{ 
  char uc; 
  char rvalue = MMC_TIMEOUT_ERROR; 
 
  if (mmcSetBlockLength (length) == MMC_SUCCESS) 
  { 
    MMC_CS_LOW (); 
    mmcSendCmd(cmd_register, 0x000000, 0xff); // CRC not used: 0xff as last byte 
    if (mmcGetResponse() == 0x00) { // Wait for R1 response (0x00 = OK) 
      if (mmcGetXXResponse(0xfe)== 0xfe) 
        for (uc = 0; uc < length; uc++) 
          pBuffer[uc] = spiSendByte(DUMMY_CHAR); 
      // get CRC bytes (not really needed by us, but required by MMC) 
      spiSendByte(DUMMY_CHAR); 
      spiSendByte(DUMMY_CHAR); 
      rvalue = MMC_SUCCESS; 
    } 
    else 
      rvalue = MMC_RESPONSE_ERROR; 
    MMC_CS_HIGH (); 
 
    spiSendByte(DUMMY_CHAR);  // Send 8 Clock pulses of delay. 
  } 
  MMC_CS_HIGH (); 
  return rvalue; 
} // mmc_read_register 
 
 
#include "math.h" 
unsigned long mmcReadCardSize(void) 
{ 
  // Read contents of Card Specific Data (CSD) 
  int timeout = 0; 
  unsigned long MMC_CardSize; 
  unsigned short i,      // index 
                 j,      // index 
                 b,      // temporary variable 
                 response,   // MMC response to command 
                 mmc_C_SIZE; 
 
  unsigned char mmc_READ_BL_LEN,  // Read block length 
                mmc_C_SIZE_MULT; 
 
  MMC_CS_LOW (); 
 
  spiSendByte(MMC_READ_CSD);   // CMD 9 
  for(i=4; i>0; i--) spiSendByte(0);  // Send four dummy byte 
  spiSendByte(DUMMY_CHAR);   // Send CRC byte (why not just add one more byte above????) 
 
  response = mmcGetResponse(); 
  b = spiSendByte(DUMMY_CHAR);   // data transmission always starts with 0xFE 
  if(!response) { // Response != 0xFF 
    while (b != 0xFE ){ 
      b = spiSendByte(DUMMY_CHAR); 
      if (timeout++ >= 150) 
       return 0; 
    } 
    // bits 127:87 
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    for(j=5; j>0; j--)          // Host must keep the clock running for at ????? 
      b = spiSendByte(DUMMY_CHAR); 
 
    // 4 bits of READ_BL_LEN 
    // bits 84:80 
    b =spiSendByte(DUMMY_CHAR);  // lower 4 bits of CCC and 
    mmc_READ_BL_LEN = b & 0x0F; 
    b = spiSendByte(DUMMY_CHAR); 
    // bits 73:62  C_Size 
    // xxCC CCCC CCCC CC 
    mmc_C_SIZE = (b & 0x03) << 10; 
    b = spiSendByte(DUMMY_CHAR); 
    mmc_C_SIZE += b << 2; 
    b = spiSendByte(DUMMY_CHAR); 
    mmc_C_SIZE += b >> 6; 
    // bits 55:53 
    b = spiSendByte(DUMMY_CHAR); 
    // bits 49:47 
    mmc_C_SIZE_MULT = (b & 0x03) << 1; 
    b = spiSendByte(DUMMY_CHAR); 
    mmc_C_SIZE_MULT += b >> 7; 
    // bits 41:37 
    b = spiSendByte(DUMMY_CHAR); 
    b = spiSendByte(DUMMY_CHAR); 
    b = spiSendByte(DUMMY_CHAR); 
    b = spiSendByte(DUMMY_CHAR); 
    b = spiSendByte(DUMMY_CHAR); 
  } 
 
  for(j=4; j>0; j--)          // Host must keep the clock running for at 
    b = spiSendByte(DUMMY_CHAR);  // least Ncr (max = 4 bytes) cycles after 
                               // the card response is received 
  b = spiSendByte(DUMMY_CHAR); 
  MMC_CS_LOW (); 
 
  MMC_CardSize = (mmc_C_SIZE + 1); 
  // power function with base 2 is better with a loop 
  // i = (pow(2,mmc_C_SIZE_MULT+2)+0.5); 
  for(i = 2,j=mmc_C_SIZE_MULT+2; j>1; j--) 
    i <<= 1; 
  MMC_CardSize *= i; 
  // power function with base 2 is better with a loop 
  //i = (pow(2,mmc_READ_BL_LEN)+0.5); 
  for(i = 2,j=mmc_READ_BL_LEN; j>1; j--) 
    i <<= 1; 
  MMC_CardSize *= i; 
 
  return (MMC_CardSize); 
} 
 
/* This function does not communicate with MMC, simply tests card detect pin which is unused 
char mmcPing(void) 
{ 
  if (!(MMC_CD_PxIN & MMC_CD)) 
    return (MMC_SUCCESS); 
  else 
    return (MMC_INIT_ERROR); 
}*/ 
 
//--------------------------------------------------------------------- 
#endif /* _MMCLIB_C */ 

MMC.h 

Affiliated MMC communication header file, also ported from TEMPO 3.2 
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#ifndef _MMCLIB_H 
#define _MMCLIB_H 
#include "hal.h" 
 
#define MMC_INIT_BAUD  UBR_DIV(230000)  ///< Init the MMC card at 230kBaud 
#define MMC_DEF_BAUD  UBR_DIV(2000000) ///< Reset the baud rate to 2Mbaud 
#define MMC_CS_HIGH()  MMC_CS = 1   ///< Raise Chip Select (de-select the 
MMC) 
#define MMC_CS_LOW()  MMC_CS = 0   ///< Lower Chip Select (select the MMC) 
#define DUMMY_CHAR   0xFF    ///< Dummy character for SPI 
shifts 
#define MMC_RX_BUFF_SIZE 512 
 
// macro defines 
#define HIGH(a) ((a>>8)&0xFF)               // high byte from word 
#define LOW(a)  (a&0xFF)                    // low byte from word 
 
// Tokens (necessary  because at NPO/IDLE (and CS active) only 0xff is on the data/command line) 
#define MMC_START_DATA_BLOCK_TOKEN          0xfe   // Data token start byte, Start Single Block Read 
#define MMC_START_DATA_MULTIPLE_BLOCK_READ  0xfe   // Data token start byte, Start Multiple Block Read 
#define MMC_START_DATA_BLOCK_WRITE          0xfe   // Data token start byte, Start Single Block Write 
#define MMC_START_DATA_MULTIPLE_BLOCK_WRITE 0xfc   // Data token start byte, Start Multiple Block Write 
#define MMC_STOP_DATA_MULTIPLE_BLOCK_WRITE  0xfd   // Data toke stop byte, Stop Multiple Block Write 
 
 
// an affirmative R1 response (no errors) 
#define MMC_R1_RESPONSE       0x00 
 
 
// this variable will be used to track the current block length 
// this allows the block length to be set only when needed 
// unsigned long _BlockLength = 0; 
 
// error/success codes 
#define MMC_SUCCESS           0x00 
#define MMC_BLOCK_SET_ERROR   0x01 
#define MMC_RESPONSE_ERROR    0x02 
#define MMC_DATA_TOKEN_ERROR  0x03 
#define MMC_INIT_ERROR        0x04 
#define MMC_CRC_ERROR         0x10 
#define MMC_WRITE_ERROR       0x11 
#define MMC_OTHER_ERROR       0x12 
#define MMC_TIMEOUT_ERROR     0xFF 
 
 
// commands: first bit 0 (start bit), second 1 (transmission bit); CMD-number + 0ffsett 0x40 
#define MMC_GO_IDLE_STATE          0x40     //CMD0 
#define MMC_SEND_OP_COND           0x41     //CMD1 
#define MMC_READ_CSD               0x49     //CMD9 
#define MMC_SEND_CID               0x4a     //CMD10 
#define MMC_STOP_TRANSMISSION      0x4c     //CMD12 
#define MMC_SEND_STATUS            0x4d     //CMD13 
#define MMC_SET_BLOCKLEN           0x50     //CMD16 Set block length for next read/write 
#define MMC_READ_SINGLE_BLOCK      0x51     //CMD17 Read block from memory 
#define MMC_READ_MULTIPLE_BLOCK    0x52     //CMD18 
#define MMC_CMD_WRITEBLOCK         0x54     //CMD20 Write block to memory 
#define MMC_WRITE_BLOCK            0x58     //CMD24 
#define MMC_WRITE_MULTIPLE_BLOCK   0x59     //CMD25 
#define MMC_WRITE_CSD              0x5b     //CMD27 PROGRAM_CSD 
#define MMC_SET_WRITE_PROT         0x5c     //CMD28 
#define MMC_CLR_WRITE_PROT         0x5d     //CMD29 
#define MMC_SEND_WRITE_PROT        0x5e     //CMD30 
#define MMC_TAG_SECTOR_START       0x60     //CMD32 
#define MMC_TAG_SECTOR_END         0x61     //CMD33 
#define MMC_UNTAG_SECTOR           0x62     //CMD34 
#define MMC_TAG_EREASE_GROUP_START 0x63     //CMD35 
#define MMC_TAG_EREASE_GROUP_END   0x64     //CMD36 
#define MMC_UNTAG_EREASE_GROUP     0x65     //CMD37 
#define MMC_EREASE                 0x66     //CMD38 
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#define MMC_READ_OCR               0x67     //CMD39 
#define MMC_CRC_ON_OFF             0x68     //CMD40 
 
 
// mmc init 
char mmcInit(void); 
 
// check if MMC card is present 
char mmcPing(void); 
 
// send command to MMC 
void mmcSendCmd (const char cmd, unsigned long data, const char crc); 
 
// set MMC in Idle mode 
char mmcGoIdle(); 
 
// set MMC block length of count=2^n Byte 
char mmcSetBlockLength (const unsigned long); 
 
// read a size Byte big block beginning at the address. 
char mmcReadBlock(const unsigned long address, const unsigned long count, unsigned char *pBuffer); 
#define mmcReadSector(sector, pBuffer) mmcReadBlock(sector*512ul, 512, pBuffer) 
 
// write a 512 Byte big block beginning at the (aligned) address 
char mmcWriteBlock (const unsigned long address, const unsigned long count, unsigned char *pBuffer); 
#define mmcWriteSector(sector, pBuffer) mmcWriteBlock(sector*512ul, 512, pBuffer) 
 
// Read Register arg1 with Length arg2 (into the buffer) 
char mmcReadRegister(const char, const unsigned char, unsigned char *pBuffer); 
 
// Read the Card Size from the CSD Register 
unsigned long mmcReadCardSize(void); 
 
// Simple SPI Read Byte/Frame commands 
inline unsigned char SPI_READ_BYTE(void); 
inline unsigned char* SPI_READ_FRAME(unsigned int n); 
 
#endif /* _MMCLIB_H */ 

MPU.c 

Simple MPU6xxx series driver, written on top of communications library I2C interface 

/****************************************************************//** 
 * \file MPU6000.c 
 * 
 * \author  Bill Devine, Ben Boudaoud 
 * \date  August 2013 
 * 
 * \brief  This library provides base-level functionality for the 
 *    MPU6050 series IMU from Invensense 
 * 
 * \note  This I2C-based driver runs on top of the TEMPO 4000 
 *    communications library and makes all its hardware calls 
 *    to the USCI module through this interface. 
 *******************************************************************/ 
 
#include <msp430f5342.h> 
#include "mpu.h" 
#include "comm.h" 
#include "hal.h" 
#include "clocks.h" 
 
static unsigned int mpuID = 0;    // Storage for mpu comm ID 
static unsigned char rxdat[512] = {0};  // Buffer for MPU recieves 
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static usciConfig mpuConf = {(UCB1_I2C + MPU_CHIP_ADDR), I2C_7SM, DEF_CTLW1, UBR_DIV(MPU_BAUD), rxdat}; 
const mpuInfo mpuDefault = { 0 }; 
static mpuInfo mpuData = { 
  0x07,   // Sampling rate divisor  (1024/(7+1) = 128Hz) 
  0x01,   // Config DLPF     (BW = 180Hz) 
  FSR_2000dps, // Gyro config     (1kHz, 2000deg/s) 
  FSR_8G,   // Accel config    (1kHz, 8G) 
  0x00,   // Motion threshold   (0 - not used) 
  0x00,   // FIFO enable     (0 - not used) 
  0x00,   // I2C Master Control  (0 - not used) 
  0x30,   // Int Pin Config   (Int active high, push-
pull, latched) 
  DATA_RDY_INT, // Int Enable    (Data ready interrupts) 
  delay_4ms,  // Motion detection   (0 - not used) 
  0x00,   // User control    (Reset signal 
conditioning) 
  0x00,   // Power control 1   (Device awake) 
  0x00   // Power control 2    (All sensors awake) 
}; 
 
/**************************************************************************//** 
 * \fn   int mpuRegWrite(unsigned char regAddr, unsigned char toWrite) 
 * \brief This function writes a single byte to a register in the MPU6050 
 * 
 * This function attempts to write a single byte into a provided register 
 * address on the MPU6050 over I2C. Once the transmission has been started it 
 * waits until the USCI module is listed as #OPEN before returning, so multiple 
 * calls can be safely written in line in user code 
 * 
 * \param regAddr  The internal register address of the desired register 
 *       (see #MPU6000.h for register map defines) 
 * \param toWrite  The 8-bit character to write to the register 
 * 
 * \retval 1    Success 
 * \retval -1    USCI module busy 
 *****************************************************************************/ 
int mpuRegWrite(unsigned char regAddr, unsigned char toWrite) 
{ 
 i2cPacket packet;     // Packet for i2c transmission 
 int ret = 0;      // Return value 
 
 packet.commID = mpuID;    // Set up the commID for the packet transfer 
 packet.regAddr = regAddr;   // Set up the internal chip register address 
 packet.len = 1;      // Set the packet length to a single 
byte 
 packet.data = &toWrite;    // Pack the single byte to write into the packet 
 
 ret = i2cB1Write(&packet);   // Write the packet to USCI B1 
 while(getUCB1Stat() != OPEN);  // Wait for the resource to open before return 
 
 return ret; 
} 
 
/**************************************************************************//** 
 * \fn   unsigned char mpuRegRead(unsigned char regAddr) 
 * \brief This function reads a single byte from a register in the MPU6050 
 * 
 * This function attempts to read a single byte from the MPU6050 over I2C. Once 
 * the transmission has been started it waits until the USCI module is listed as 
 * #OPEN before returning, so multiple calls can be safely written in line in user 
 * code 
 * 
 * \param regAddr  The internal register address of the desired register 
 *       (see #MPU6000.h for register map defines) 
 * 
 * \returns The character read from the address requested 
 * \retval 0xFF  If the module is busy 
 *****************************************************************************/ 
unsigned char mpuRegRead(unsigned char regAddr) 
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{ 
 i2cPacket packet;     // Packet for i2c reception 
 unsigned char ret = 0; 
 
 packet.commID = mpuID;    // Set up the commID for the packet transfer 
 packet.regAddr = regAddr;   // Set up the internal chip register address 
 packet.len = 1;      // Set the packet length to a single 
byte 
 packet.data = &ret;     // Aim the read pointer at the rx buffer 
 
 if(i2cB1Read(&packet) == -1)   // Attempt to read the packet from USCI B1 
  return 0xFF; 
 while(getUCB1Stat() != OPEN);  // Wait for the resource to open before return 
 
 return ret;       // Get the received character 
from RX buffer and return it 
} 
 
/**************************************************************************//** 
 * \fn   int mpuInit(void) 
 * \brief This function registers the I2C port for communication and sets up 
 *    the MPU6050 
 * 
 * This function attempts to register the communication with the MPU6050 as an 
 * I2C on USCI B1. It sets up the I/O, resets the device, disables sleep then 
 * polls the MPU6050 for its WHOAMI value. If the register address matches the 
 * expected value, it continues to initialize the registers in the MPU to their 
 * default RAM copy values. 
 * 
 * \retval -1  WHOAMI check failed (the MPU is not fully initialized) 
 * \retval 1  MPU successfully initialized 
 *****************************************************************************/ 
int mpuInit(void) 
{ 
 mpuID = registerComm(&mpuConf);  // Set up comm handler for the MPU6050 on I2C B1 
 MPU_IO_CONFIG();      // Set up the digital I/O for MPU6050 
 
 mpuReset();       // Reset the device 
 mpuSleepEn(False);     // Disable the sleep state 
 
 if(mpuWhoAmI() != WHOAMI_VAL)   // Assure device has correct address 
   return 0; 
 
 return mpuSetup(&mpuData);   // Run the i2c setup routine 
} 
 
/**************************************************************************//** 
 * \fn   int mpuSetup(mpuInfo* info) 
 * \brief This function writes a RAM copy of MPU settings into the MPU6050 
 * 
 * This function writes almost all registers of interest on the MPU6050 to a 
 * set of values provided by the user in an #mpuInfo structure. Once a value 
 * has been successfully written into the device its RAM buffer copy is updated. 
 * 
 * \param mpuInfo* info Pointer to a RAM copy of the MPU configuration 
 * 
 * \retval -1  Sample Rate Divisor Config Fail 
 * \retval -2  DLPF Config Fail 
 * \retval -3  Gyro Config Fail 
 * \retval -4  Accel Config Fail 
 * \retval -5  Motion Threshold Config Fail 
 * \retval -6  FIFO Config Fail 
 * \retval -7  Master I2C Config Fail 
 * \retval -8  Interrupt Pin Config Fail 
 * \retval -9  Interrupt Enable Config Fail 
 * \retval -10  Motion Control Config Fail 
 * \retval -11  User Control Config Fail 
 * \retval -12  Power Management 1 Config Fail 
 * \retval -13  Power Management 2 Config Fail 
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 *****************************************************************************/ 
int mpuSetup(mpuInfo* info) 
{ 
 if(mpuRegWrite(PWR_MGMT_1, info->pwr_mgmt_1) == 1){   // Configure power 
management 1 
  mpuData.pwr_mgmt_1 = info->pwr_mgmt_1; 
 } 
 else return PWR_MGMT_1; 
 
 if(mpuRegWrite(PWR_MGMT_2, info->pwr_mgmt_2) == 1){   // Configure power 
management 2 
  mpuData.pwr_mgmt_2 = info->pwr_mgmt_2; 
 } 
 else return PWR_MGMT_2; 
 
 
 if(mpuRegWrite(USER_CTRL, info->user_ctrl) == 1){   // Configure user control 
  mpuData.user_ctrl = info->user_ctrl; 
 } 
 else return USER_CTRL; 
 
 if(mpuRegWrite(SMPLRT_DIV, info->smplrt_div) == 1){   // Configure the 
sampling rate divisor [ SR = gyro rate/(1+smplrt_div) ] 
  mpuData.smplrt_div = info->smplrt_div; 
 } 
 else return SMPLRT_DIV; 
 
 if(mpuRegWrite(CONFIG, info->config) == 1){     // Configure 
digital low-pass filter and ext sync settings 
  mpuData.config = info->config; 
 } 
 else return CONFIG; 
 
 if(mpuRegWrite(GYRO_CONFIG, info->gyro_config) == 1){  // Configure gyro self test and 
range select 
  mpuData.gyro_config = info->gyro_config; 
 } 
 else return GYRO_CONFIG; 
 
 if(mpuRegWrite(ACCEL_CONFIG, info->accel_config) == 1){  // Configure accel self test and 
range select 
  mpuData.accel_config = info->accel_config; 
 } 
 else return ACCEL_CONFIG; 
 
 if(mpuRegWrite(MOT_THR, info->mot_thr) == 1){    // Set the motion 
threshold for interrupt  (should this be elsewhere?) 
  mpuData.mot_thr = info->mot_thr; 
 } 
 else return MOT_THR; 
 
 if(mpuRegWrite(FIFO_EN_REG, info->fifo_en) == 1){   // Configure the FIFO 
  mpuData.fifo_en = info->fifo_en; 
 } 
 else return FIFO_EN_REG; 
 
 if(mpuRegWrite(I2C_MST_CTRL, info->i2c_mst_ctrl) == 1){  // Configure the on-chip master 
I2C interface 
  mpuData.i2c_mst_ctrl = info->i2c_mst_ctrl; 
 } 
 else return I2C_MST_CTRL; 
 
 if(mpuRegWrite(INT_PIN_CFG, info->int_pin_cfg) == 1){  // Configure the interrupt pin 
  mpuData.int_pin_cfg = info->int_pin_cfg; 
 } 
 else return INT_PIN_CFG; 
 
 if(mpuRegWrite(INT_ENABLE, info->int_enable) == 1){   // Configure interrupt 
enable 
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  mpuData.int_enable = info->int_enable; 
 } 
 else return INT_ENABLE; 
 
 if(mpuRegWrite(MOT_DETECT_CTRL, info->mot_detect_ctrl) == 1){// Configure motion detection control 
  mpuData.mot_detect_ctrl = info->mot_detect_ctrl; 
 } 
 else return MOT_DETECT_CTRL; 
 
 return 1; 
} 
 
/**************************************************************************//** 
 * \fn   inline void mpuReset(void) 
 * \brief This function resets the MPU6050 
 * 
 * This function attempts to reset the MPU6050 by writing the reset bit in the 
 * power management 1 register. This should clear all registers to their default state. 
 * 
 *****************************************************************************/ 
inline void mpuReset(void) 
{ 
 mpuRegWrite(PWR_MGMT_1, DEVICE_RESET);   // Write a reset to the device 
 mpuData.pwr_mgmt_1 &= ~DEVICE_RESET;   // Assure device reset bit isn't set in 
local copy 
 delay_ms(MPU_RESET_DELAY_MS);     // Wait for reset 
} 
 
/**************************************************************************//** 
 * \fn   unsigned char mpuSleepEn(unsigned char en) 
 * \brief This function sets or clears the MPU6050 sleep mode 
 * 
 * This function attempts to set or clear the sleep enable bit inside the MPU6050 
 * power mangement 1 register. 
 * 
 * \param unsigned char en The desired state of sleep (en=True => in sleep mode) 
 * 
 * \returns The current value of the power management 1 register 
 *****************************************************************************/ 
unsigned char mpuSleepEn(bool en) 
{ 
 unsigned char temp = mpuData.pwr_mgmt_1; 
 
 if(en) 
  temp |= SLEEP;        // Set the sleep 
bit 
 else 
  temp &= ~SLEEP;        // Clear the 
sleep bit 
 
 if(temp != mpuData.pwr_mgmt_1){     // Check for changes to RAM copy 
  if(mpuRegWrite(PWR_MGMT_1, temp) == 1){  // Write the control register 
   mpuData.pwr_mgmt_1 = temp; 
  } 
 } 
 
 return mpuData.pwr_mgmt_1; 
} 
 
/**************************************************************************//** 
 * \fn   unsigned int mpuSetSampRate(unsigned int SR) 
 * \brief This function sets the sampling rate of MPU6050 
 * 
 * This function takes a sampling rate (integer < 1 or 8kHz depending on DLPF) and 
 * attempts to set the MPU6050 sampling divisor to produce a sampling rate as close 
 * as possible to this rate. 
 * 
 * \param unsigned int SR  The desired sampling rate 
 * 
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 * \returns The actual sampling rate set in the device 
 *****************************************************************************/ 
unsigned int mpuSetSampRate(unsigned int SR) 
{ 
 unsigned char srDiv; 
 
 if(SR > GYRO_OUT_RATE){       // Check for out of 
bounds 
  srDiv = 1;         // If so 
choose maximum sampling rate 
 } 
 else { 
  srDiv = (unsigned char)(GYRO_OUT_RATE/SR); // Find divisor 
  if((GYRO_OUT_RATE % SR) < SR/2) srDiv--; // Round divisor down if necessary 
 } 
 
 if(mpuRegWrite(SMPLRT_DIV, srDiv) == 1){  // Write the divisor to the register 
    mpuData.smplrt_div = srDiv;   // Update RAM copy 
   } 
 
 return (GYRO_OUT_RATE/mpuData.smplrt_div);  // Return actual value that sample rate 
is set to 
} 
 
/**************************************************************************//** 
 * \fn   unsigned char mpuAccelRangeConfig(accelFSR range) 
 * \brief This function sets the full scale range of the accelerometer 
 * 
 * This function takes an enumerated type containing the various accel full-scale 
 * range values. Valid options are 2, 4, 8, and 16 g's. 
 * 
 * \param accelFSR range The desired full scale range 
 * 
 * \returns The current state of the accel config register 
 *****************************************************************************/ 
unsigned char mpuAccelRangeConfig(accelFSR range) 
{ 
 unsigned char temp = mpuData.accel_config; 
 
 temp &= ~(AFS_SEL0 + AFS_SEL1);     // Clear range bits 
 temp |= (unsigned char)range;     // Set new range bits 
 
 if(temp != mpuData.accel_config){    // Check for change 
  if(mpuRegWrite(ACCEL_CONFIG, temp) == 1){ 
   mpuData.accel_config = temp; 
  } 
 } 
 return mpuData.accel_config; 
} 
 
/**************************************************************************//** 
 * \fn   axisData mpuGetAccel(void) 
 * \brief This function gets the current accelerometer value from the MPU6050 
 * 
 * This function returns the current X, Y, Z accelerometer values as an #axisData 
 * structure. 
 * 
 * \returns The X, Y, Z triple output from the accelerometer 
 *****************************************************************************/ 
axisData mpuGetAccel(void) 
{ 
 axisData data; 
 i2cPacket accelReq; 
 unsigned char* temp = (unsigned char*)&data; 
 
 accelReq.commID = mpuID; 
 accelReq.regAddr = ACCEL_XOUT_H; 
 accelReq.len =  6; 
 accelReq.data = temp; 
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 while(i2cB1Read(&accelReq) == -1); 
 while(getUCB1Stat() != OPEN); 
 
 data.x = temp[1] | (temp[0] << 8); 
 data.y = temp[3] | (temp[2] << 8); 
 data.z = temp[5] | (temp[4] << 8); 
 
 return data; 
} 
 
/**************************************************************************//** 
 * \fn   unsigned char mpuGyroRangeConfig(gyroFSR range) 
 * \brief This function sets the full scale range of the gyro 
 * 
 * This function takes an enumerated type containing the various gyro full-scale 
 * range values. Valid options are 250, 500, 1000, and 2000 degrees per second. 
 * 
 * \param gyroFSR range The desired full-scale range 
 * 
 * \returns The current state of the gyro config register 
 *****************************************************************************/ 
unsigned char mpuGyroRangeConfig(gyroFSR range) 
{ 
 unsigned char temp = mpuData.gyro_config; 
 
 temp &= ~(FS_SEL0 + FS_SEL1); 
 temp |= (unsigned char)range; 
 
 if(temp != mpuData.gyro_config){ 
  if(mpuRegWrite(GYRO_CONFIG, temp) == 1){ 
   mpuData.gyro_config = temp; 
  } 
 } 
 
 return mpuData.gyro_config; 
} 
 
/**************************************************************************//** 
 * \fn   axisData mpuGetGyro(void) 
 * \brief This function gets the current gyro value from the MPU6050 
 * 
 * This function returns the current X, Y, Z gyro values as an #axisData 
 * structure. 
 * 
 * \returns The X, Y, Z triple output from the gyro 
 *****************************************************************************/ 
axisData mpuGetGyro(void) 
{ 
 axisData data = { 0 }; 
 i2cPacket gyroReq; 
 unsigned char* temp = (unsigned char*)&data; 
 
 gyroReq.commID = mpuID; 
 gyroReq.regAddr = GYRO_XOUT_H; 
 gyroReq.len = 6; 
 gyroReq.data = temp; 
 
 while(i2cB1Read(&gyroReq) == -1); 
 while(getUCB1Stat() != OPEN); 
 
 data.x = temp[1] | (temp[0] << 8); 
 data.y = temp[3] | (temp[2] << 8); 
 data.z = temp[5] | (temp[4] << 8); 
 
 return data; 
} 
 
/**************************************************************************//** 
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 * \fn   int mpuGetTemp(void) 
 * \brief This function gets the current temperature value from the MPU6050 
 * 
 * This function returns the current temperature value as a signed integer 
 * 
 * \returns The current MPU6050 temperature 
 *****************************************************************************/ 
int mpuGetTemp(void) 
{ 
 i2cPacket tempReq; 
 unsigned char temp[2]; 
 
 tempReq.commID = mpuID; 
 tempReq.regAddr = TEMP_OUT_H; 
 tempReq.len = 2; 
 tempReq.data = temp; 
 
 while(i2cB1Read(&tempReq) == -1); 
 while(getUCB1Stat() != OPEN); 
 
 return (unsigned int)(temp[1]) + ((unsigned int)(temp[0]) << 8); 
} 
 
 
/**************************************************************************//** 
 * \fn   unsigned int mpuMotionConfig(unsigned char thresh, bool intEn, accelDelay onDelay) 
 * \brief This function sets up the MPU6050 parameters related to motion detection 
 * 
 * This function takes a motion threshold, interrupt enable, and turn-on delay 
 * and configures the MPU6050 appropriately. All changes made to the MPU6050 are 
 * updated in the RAM copy. 
 * 
 * \param unsigned char thresh The motion threshold for the MPU6050 
 * \param bool intEn   The state of the interrupt enable for motion 
 * \param accelDelay onDelay  The on delay for the accelerometer 
 * 
 * \retval 0  Success 
 * \retval -1  Set motion threshold fail 
 * \retval -2  Set motion interrupt enable fail 
 * \retval -3  Set on delay fail 
 *****************************************************************************/ 
unsigned int mpuMotionConfig(unsigned char thresh, bool intEn, accelDelay onDelay) 
{ 
 unsigned char temp = mpuData.int_enable; 
 unsigned int retval = 0; 
 
 if(thresh != mpuData.mot_thr){ 
  if(mpuRegWrite(MOT_THR, thresh) == 1){ 
   mpuData.mot_thr = thresh; 
  } 
  else retval = -1; 
 } 
 
 if((temp & MOT_INT) && !intEn){    // Motion interrupt needs to be cleared 
  temp &= ~MOT_INT; 
  if(mpuRegWrite(INT_ENABLE, temp) == 1){ 
   mpuData.int_enable = temp; 
  } 
  else retval = -2; 
 } 
 else if(!(temp & MOT_INT) && intEn){   // Motion interrupt needs to be set 
  temp |= MOT_INT; 
  if(mpuRegWrite(INT_ENABLE, temp) == 1){ 
   mpuData.int_enable = temp; 
  } 
  else retval = -2; 
 } 
 
 if(onDelay != (mpuData.mot_detect_ctrl & AOD_MASK)){ 
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  if(mpuRegWrite(MOT_DETECT_CTRL, onDelay) == 1){ 
   mpuData.mot_detect_ctrl = onDelay & AOD_MASK; 
  } 
  else retval = -3; 
 } 
 
 return retval; 
} 
 
/**************************************************************************//** 
 * \fn   int mpuIntConfig(unsigned char intEnable, unsigned char intPinCfg 
 * \brief This function sets up the MPU6050 interrupt enable and 
 *    interrupt pin configuration registers 
 * 
 * This function takes the desired values of the interrupt enable and interrupt 
 * pin configuration registers, checks them against the RAM copy and writes if 
 * the status has changed. 
 * 
 * \param unsigned char intEn   The state of the interrupt enable for motion 
 * \param unsigned char  intPinCfg  The desired fuctionality of the interrupt pin 
 * 
 * \retval 0  Success 
 * \retval -1  Interrupt enable fail 
 * \retval -2  Interrupt pin configuration fail 
 *****************************************************************************/ 
int mpuIntConfig(unsigned char intEnable, unsigned char intPinCfg) 
{ 
 if(intEnable ^ mpuData.int_enable){ 
  if(mpuRegWrite(INT_ENABLE, intEnable) == 1){ 
   mpuData.int_enable = intEnable; 
  } 
  else return -1; 
 } 
 
 if(intPinCfg ^ mpuData.int_pin_cfg){ 
  if(mpuRegWrite(INT_PIN_CFG, intPinCfg) == 1){ 
   mpuData.int_pin_cfg = intPinCfg; 
  } 
  else return -2; 
 } 
 
 return 1; 
} 
 
/**************************************************************************//** 
 * \fn   inline void mpuClearBuff(void) 
 * \brief This function clears the MPU data buffer 
 * 
 * Clears all data fetched from the MPU6050 stored in RAM 
 *****************************************************************************/ 
void mpuClearBuff(void) 
{ 
 resetUCB1(mpuID); 
} 
 
/**************************************************************************//** 
 * \fn   inline unsigned char mpuGetIntStatus(void) 
 * \brief This function returns the status of the MPU interrupt enable 
 * 
 * Gets the MPU6050 interrupt status register and returns it to the user 
 * 
 * \returns The current state of the interrupt status register 
 * \retval -1 The USCI module is currently busy 
 *****************************************************************************/ 
inline unsigned char mpuGetIntStatus(void) 
{ 
 return mpuRegRead(INT_STATUS); 
} 
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/**************************************************************************//** 
 * \fn   inline unsigned char mpuWhoAmI(void) 
 * \brief This function returns the value from the MPU WHOAMI register 
 * 
 * Gets the MPU6050 WHOAMI register value (should always be 0x68) 
 * and returns it to the user 
 * 
 * \returns The WHOAMI value 
 * \retval -1 The USCI module is currently busy 
 *****************************************************************************/ 
inline unsigned char mpuWhoAmI(void) 
{ 
 unsigned char retval = 0; 
 retval = mpuRegRead(WHOAMI); 
 return (retval & WHOAMI_MASK); 
} 

MPU.h 

Affiliated MPU header file, with full register map for MPU series motion capture ICs 

/****************************************************************//** 
 * \file MPU6000.h 
 * 
 * \author  Bill Devine, Ben Boudaoud 
 * \date  August 2013 
 * 
 * \brief  This library provides base-level functionality for the 
 *    MPU6050 series IMU from Invensense 
 * 
 * \note  This I2C-based driver runs on top of the TEMPO 4000 
 *    communications library and makes all its hardware calls 
 *    to the USCI module through this interface. 
 *******************************************************************/ 
 
#ifndef MPU_H_ 
#define MPU_H_ 
#include "util.h" 
 
/*********************************************************************** 
 *  NOTE: All vales in this register description file can be found in 
 *  the Invensense Register Map Document located at: 
 * [http://invensense.com/mems/gyro/documents/RM-MPU-6000A.pdf] 
 **********************************************************************/ 
#define AD0     0     ///< Value of 
the AD0 pin on MPU-6050 (can only be 0 or 1) 
#define MPU_CHIP_ADDR  0x68+(AD0 & 0x01) ///< I2C Chip Address of MPU-6050 (AD0, LSB of 
address is selectable) 
#define MPU_RESET_DELAY_MS 10     ///< Delay for next command 
after device reset 
#define GYRO_OUT_RATE  1000    ///< Gyro output rate in Hz (8k w/o 
DLPF, 1k w/ DLPF) 
#define MPU_BAUD   40000    ///< Baud rate for communications w/ the 
MPU6050 via I2C 
 
// Command Formatting 
#define MPU_ADDR_MASK  0x7F    ///< 7-bit Chip Address Mask for MPU6050 
//#define READ_CMD(x)  (x)|0x80   ///< Read command (set bit 8) 
//#define WRITE_CMD(x)  (x)&0x7F   ///< Write command (clear bit 8) 
 
/******************************************************************************************* 
 * Register Map 
 ******************************************************************************************/ 
//#define MPUREG_AUX_VDDIO  0x01 
#define SELF_TEST_X   0x0D ///< X Axis Test Value Register 
// { XA Test (bits 4-2) [7-5] } { XG Test [4-0] } 
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#define SELF_TEST_Y   0x0E ///< Y Axis Test Value Register 
//{ YA Test (bits 4-2) [7-5] } { YG Test [4-0] } 
#define SELF_TEST_Z   0x0F ///< Z Axis Test Value Register 
//{ ZA Test (bits 4-2) [7-5] } { ZG Test [4-0] } 
#define SELF_TEST_A   0x10 ///< 3 Axis Accel. Test Values 
//{ Reserved [7-6] } { XA Test (bits 1-0) [5-4] } { YA Test (bits 1-0) [3-2] } { ZA Test (bits 1-0) [1-0] 
} 
#define SMPLRT_DIV   0x19 ///< Sample rate divisor: 
//{ Sample Rate Div [7-0] } NOTE: this divides the gyro output rate (either 1 or 8 kHz depending on 
DLPF_CFG) 
#define CONFIG    0x1A ///< Configuration Register 
//{ Not used [7-6] } { EXT_SYNC_SET [5-3] } { DLPF_CFG [2-0]} 
#define GYRO_CONFIG   0x1B ///< Gyro Configuration Register 
//{ XG Self Test [7] } { YG Self Test [6] } { ZG Self Test [5] } { FS_SEL [4-3] }  {Not used [2-0] } NOTE: 
FS_SEL selects sensitivity 
#define ACCEL_CONFIG  0x1C ///< Accel. Configuration Register 
//{ XA Self Test [7] } { YA Self Test [6] } { ZA Self Test [5] } { AFS_SEL [4-3] } 
#define MOT_THR    0x1F ///< Motion Threshold Register 
//{ Motion Threshold [7-0] } 
#define FIFO_EN_REG   0x23 ///< FIFO Enable Register 
//{ Temperature En. [7] } { X Gyro En. [6] } { Y Gyro En. [5] } { Z Gyro En. [4] } { Accel En. [3] } { I2C 
SLV2 En. [2] } { I2C SLV1 En. [1] } { I2C SLV0 En. [0] } 
#define I2C_MST_CTRL  0x24 ///< I2C Master Control Register 
//{ Multi-master En. [7] } { Wait for ext. sensor [6] } { I2C SLV3 FIFO En. [5] } { I2C Master NSR [4] } { 
I2C Master Clock Control [3-0] } 
#define I2C_SLV0_ADDR  0x25 ///< I2C Slave 0 Address Register 
//{ I2C SLV0 Read/Write [7] } { I2C SLV0 Addr. [6-0] } 
#define I2C_SLV0_REG  0x26 ///< I2C Slave 0 Data Register 
//{ I2C SLV0 Data [7-0] } 
#define I2C_SLV0_CTRL  0x27 ///< I2C SLave 0 Control Register 
//{ I2C SLV0 En. [7] } { I2C SLV0 Byte Swapping [6] } { I2C SLV0 DIS [5] } { I2C SLV0 Word Grouping [4] } 
{ I2C SLV0 TX/RX Length [3-0] } 
#define I2C_SLV1_ADDR  0x28 ///< I2C Slave 1 Address Register 
//{ I2C SLV1 Read/Write [7] } { I2C SLV1 Addr. [6-0] } 
#define I2C_SLV1_REG  0x29 ///< I2C Slave 1 Data Register 
//{ I2C SLV1 Data [7-0] } 
#define I2C_SLV1_CTRL  0x2A ///< I2C Slave 1 Control Register 
//{ I2C SLV1 En. [7] } { I2C SLV1 Byte Swapping [6] } { I2C SLV1 DIS [5] } { I2C SLV1 Word Grouping [4] } 
{ I2C SLV1 TX/RX Length [3-0] } 
#define I2C_SLV2_ADDR  0x2B ///< I2C Slave 2 Address Register 
//{ I2C SLV2 Read/Write [7] } { I2C SLV2 Addr. [6-0] } 
#define I2C_SLV2_REG  0x2C ///< I2C Slave 2 Data Register 
//{ I2C SLV2 Data [7-0] } 
#define I2C_SLV2_CTRL  0x2D ///< I2C Slave 2 Control Register 
//{ I2C SLV2 En. [7] } { I2C SLV2 Byte Swapping [6] } { I2C SLV2 DIS [5] } { I2C SLV2 Word Grouping [4] } 
{ I2C SLV2 TX/RX Length [3-0] } 
#define I2C_SLV3_ADDR  0x2E ///< I2C Slave 3 Address Register 
//{ I2C SLV3 Read/Write [7] } { I2C SLV3 Addr. [6-0] } 
#define I2C_SLV3_REG  0x2F ///< I2C Slave 3 Data Register 
//{ I2C SLV3 Data [7-0] } 
#define I2C_SLV3_CTRL  0x30 ///< I2C Slave 3 Control Register 
//{ I2C SLV3 En. [7] } { I2C SLV3 Byte Swapping [6] } { I2C SLV3 DIS [5] } { I2C SLV3 Word Grouping [4] } 
{ I2C SLV3 TX/RX Length [3-0] } 
#define I2C_SLV4_ADDR  0x31 ///< I2C Slave 4 Address Register 
//{ I2C SLV4 Read/Write [7] } { I2C SLV4 Addr [6-0] } 
#define I2C_SLV4_REG  0x32 ///< I2C Slave 4 Data Pointer 
//{ I2C SLV4 Data Transfer Address [7-0] } 
#define I2C_SLV4_DO   0x33 ///< I2C Slave 4 Data Out Register 
//{ I2C SLV4 Data to Write to Slave 4 [7-0] } 
#define I2C_SLV4_CTRL  0x34 ///< I2C Slave 4 Control Register 
//{ I2C SLV4 En. [7] } { I2C SLV4 Byte Swapping [6] } { I2C SLV4 DIS [5] } { I2C SLV4 Word Grouping [4] } 
{ I2C SLV4 TX/RX Length [3-0] } 
#define I2C_SLV4_DI   0x35 ///< I2C Slave 4 Data In Register 
//{ I2C SLV4 Data Read from SLV4 [7-0] } 
#define I2C_MST_STATUS  0x36 ///< I2C Master Status Register 
//{ Pass Through [7] } { SLV4 Done [6] } { Lost Arbitration [5] } { SLV4 NACK [4] } { SLV3 NACK [3] } { 
SLV2 NACK [2] } { SLV1 NACK [1] } { SLV0 NACK [0] } 
#define INT_PIN_CFG   0x37 ///< Interrupt Pin Config Register 
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//{ Int. Level [7] } { Int. Open [6] } { Latch Int. En. [5] } { Int. Read Clear [4] } { FSYNC Int. Level 
[3] } { FSYNC Int. En. [2] } { I2C Bypass En. [1] } { Not Used [0] } 
#define INT_ENABLE   0x38 ///< Interrupt Enable Register 
//{ Not Used [7] } { Motion En. [6] } { Not Used [5] } { FIFO OVFL [4] } { I2C MST INT [3] } { Not Used 
[2-1] } { Data Ready [0] } 
#define INT_STATUS   0x3A ///< Interrupt Status Register 
//{ Not Used [7] } { Motion Int. [6] } { Not Used [5] } { FIFO Int. [4] } { I2C MST INT [3] } { Not Used 
[2-1] } { Data Ready [0] } 
#define ACCEL_XOUT_H  0x3B ///< X Accel. High Byte Register 
//{ X Accel. Value High Byte [7-0] } 
#define ACCEL_XOUT_L  0x3C ///< X Accel. Low Byte Register 
//{ X Accel. Value Low Byte [7-0] } 
#define ACCEL_YOUT_H  0x3D ///< Y Accel. High Byte Register 
//{ Y Accel. Value High Byte [7-0] } 
#define ACCEL_YOUT_L  0x3E ///< Y Accel. Low Byte Register 
//{ Y Accel. Value Low Byte [7-0] } 
#define ACCEL_ZOUT_H  0x3F ///< Z Accel. High Byte Register 
//{ Z Accel. Value High Byte [7-0] } 
#define ACCEL_ZOUT_L  0x40 ///< Z Accel. Low Byte Register 
//{ Z Accel. Value Low Byte [7-0] } 
#define TEMP_OUT_H   0x41 ///< Temperature High Byte Register 
//{ Temperature Value High Byte [7-0] } 
#define TEMP_OUT_L   0x42 ///< Temperature Low Byte Register 
//{ Temperature Value Low Byte [7-0] } 
#define GYRO_XOUT_H   0x43 ///< X Gyro High Byte Register 
//{ X Gyro Value High Byte [7-0] } 
#define GYRO_XOUT_L   0x44 ///< X Gyro Low Byte Register 
//{ X Gyro Value Low Byte [7-0] } 
#define GYRO_YOUT_H   0x45 ///< Y Gyro High Byte Register 
//{ Y Gyro Value High Byte [7-0] } 
#define GYRO_YOUT_L   0x46 ///< Y Gyro Low Byte Register 
//{ Y Gyro Value Low Vyte [7-0] } 
#define GYRO_ZOUT_H   0x47 ///< Z Gyro High Byte Register 
//{ Z Gyro Value High Byte [7-0] } 
#define GYRO_ZOUT_L   0x48 ///< Z Gyro Low Byte Register 
//{ Z Gyro Value Low Byte [7-0] } 
#define EXT_SENS_DATA_00 0x49 ///< External Sensor Data Register 0 
//{ Value [7-0] } 
#define EXT_SENS_DATA_01 0x4A ///< External Sensor Data Register 1 
//{ Value [7-0] } 
#define EXT_SENS_DATA_02 0x4B ///< External Sensor Data Register 2 
//{ Value [7-0] } 
#define EXT_SENS_DATA_03 0x4C ///< External Sensor Data Register 3 
//{ Value [7-0] } 
#define EXT_SENS_DATA_04 0x4D ///< External Sensor Data Register 4 
//{ Value [7-0] } 
#define EXT_SENS_DATA_05 0x4E ///< External Sensor Data Register 5 
//{ Value [7-0] } 
#define EXT_SENS_DATA_06 0x4F ///< External Sensor Data Register 6 
//{ Value [7-0] } 
#define EXT_SENS_DATA_07 0x50 ///< External Sensor Data Register 7 
//{ Value [7-0] } 
#define EXT_SENS_DATA_08 0x51 ///< External Sensor Data Register 8 
//{ Value [7-0] } 
#define EXT_SENS_DATA_09 0x52 ///< External Sensor Data Register 9 
//{ Value [7-0] } 
#define EXT_SENS_DATA_10 0x53 ///< External Sensor Data Register 10 
//{ Value [7-0] } 
#define EXT_SENS_DATA_11 0x54 ///< External Sensor Data Register 11 
//{ Value [7-0] } 
#define EXT_SENS_DATA_12 0x55 ///< External Sensor Data Register 12 
//{ Value [7-0] } 
#define EXT_SENS_DATA_13 0x56 ///< External Sensor Data Register 13 
//{ Value [7-0] } 
#define EXT_SENS_DATA_14 0x57 ///< External Sensor Data Register 14 
//{ Value [7-0] } 
#define EXT_SENS_DATA_15 0x58 ///< External Sensor Data Register 15 
//{ Value [7-0] } 
#define EXT_SENS_DATA_16 0x59 ///< External Sensor Data Register 16 
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//{ Value [7-0] } 
#define EXT_SENS_DATA_17 0x5A ///< External Sensor Data Register 17 
//{ Value [7-0] } 
#define EXT_SENS_DATA_18 0x5B ///< External Sensor Data Register 18 
//{ Value [7-0] } 
#define EXT_SENS_DATA_19 0x5C ///< External Sensor Data Register 19 
//{ Value [7-0] } 
#define EXT_SENS_DATA_20 0x5D ///< External Sensor Data Register 20 
//{ Value [7-0] } 
#define EXT_SENS_DATA_21 0x5E ///< External Sensor Data Register 21 
//{ Value [7-0] } 
#define EXT_SENS_DATA_22 0x5F ///< External Sensor Data Register 22 
//{ Value [7-0] } 
#define EXT_SENS_DATA_23 0x60 ///< External Sensor Data Register 23 
//{ Value [7-0] } 
#define I2C_SLV0_DO   0x63 ///< I2C Slave 0 Data Out 
//{ I2C SLV0 Data Out [7-0] } 
#define I2C_SLV1_DO   0x64 ///< I2C Slave 1 Data Out 
//{ I2C SLV1 Data Out [7-0] } 
#define I2C_SLV2_DO   0x65 ///< I2C Slave 2 Data Out 
//{ I2C SLV2 Data Out [7-0] } 
#define I2C_SLV3_DO   0x66 ///< I2C Slave 3 Data Out 
//{ I2C SLV3 Data Out [7-0] } 
#define I2C_MST_DELAY_CTRL 0x67 ///< I2C Master Delay Control Reg 
//{ Delay Shadow En. [7] } { Not Used [6-5] } { I2C SLV4 Delay [4] } { I2C SLV3 Delay [3] } { I2C SLV2 
Delay [2] } { I2C SLV1 Delay [1] } { I2C SLV0 Delay [0] } 
#define SIGNAL_PATH_RESET 0x68 ///< Signal Path Reset Register 
//{ Not Used [7-3] } { Gyro Reset [2] } { Accel. Reset [1] } { Temp Reset [0] } 
#define MOT_DETECT_CTRL  0x69 ///< Motion Detection Control Reg 
//{ Not Used [7-6] } { Accel. Power-on Delay [5-4] } { Not Used [3-0] } 
#define USER_CTRL   0x6A ///< User Control Register 
//{ Not Used [7] } { FIFO En. [6] } { I2C Master En. [5] } { I2C IF DIS [4] } { Not Used [3] } { FIFO 
Reset [2] } { I2C Master Reset [1] } { Signal Cond. Reset [0] } 
#define PWR_MGMT_1   0x6B ///< Power Management Register 1 
//{ Device Reset [7] } { Sleep [6] } { Cycle [5] } { Not Used [4] } { Temp. Disable [3] } { Clock Select 
[2-0] } 
#define PWR_MGMT_2   0x6C ///< Power Management Register 2 
//{ Low-power wake control [7-6] } { Standby X Accel [5] } { Standby Y Accel [4] } { Standby Z Accel. [3] 
} { Standby X Gyro [2] } { Standby Y Gyro [1] } { Standby Z Gyro [0] } 
#define FIFO_COUNTH   0x72 ///< FIFO Size High Byte Register 
//{ FIFO Size Value High Byte [7-0] } 
#define FIFO_COUNTL   0x73 ///< FIFO Size Low Byte Register 
//{ FIFO Size Value Low Byte [7-0] } 
#define FIFO_R_W   0x74 ///< FIFO Data Read/Write Register 
//{ FIFO Value [7-0] } 
#define WHOAMI    0x75 ///< I2C Address Register 
//{ Not Used [7] } { Upper 5 bits of I2C Address [6-1] } { Not Used [0] } 
// NOTE: the least-significant bit of the device I2C address is provided by the status of the AD0 pin if 
the MPU6050 is used (this is not reflected in WHOAMI) 
 
 
/***************************************************************************************** 
 * Register Values 
 ****************************************************************************************/ 
//CONFIG 
#define EXT_SYNC_SET0          0x00  ///< FSYNC Disabled 
#define EXT_SYNC_SET1          0x08  ///< FSYNC on low bit of TEMP_OUT_L 
#define EXT_SYNC_SET2          0x10  ///< FSYNC on low bit of GYRO_XOUT_L 
#define EXT_SYNC_SET3          0x18  ///< FSYNC on low bit of GYRO_YOUT_L 
#define EXT_SYNC_SET4          0x20  ///< FSYNC on low bit of GYRO_ZOUT_L 
#define EXT_SYNC_SET5          0x28  ///< FSYNC on low bit of ACCEL_XOUT_L 
#define EXT_SYNC_SET6          0x30  ///< FSYNC on low bit of ACCEL_YOUT_L 
#define EXT_SYNC_SET7          0x38  ///< FSYNC on low bit of ACCEL_ZOUT_L 
#define DLPF_CFG0              0x00  ///< DLPF on setting 0. Check Register Description document for 
notes. 
#define DLPF_CFG1              0x01  ///< DLPF on setting 0. Check Register Description document for 
notes. 
#define DLPF_CFG2              0x02  ///< DLPF on setting 0. Check Register Description document for 
notes. 
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#define DLPF_CFG3              0x03  ///< DLPF on setting 0. Check Register Description document for 
notes. 
#define DLPF_CFG4              0x04  ///< DLPF on setting 0. Check Register Description document for 
notes. 
#define DLPF_CFG5              0x05  ///< DLPF on setting 0. Check Register Description document for 
notes. 
#define DLPF_CFG6              0x06  ///< DLPF on setting 0. Check Register Description document for 
notes. 
 
 
// GYRO CONFIG 
#define XG_ST    0x80  ///< Start X gyro test bit 
#define YG_ST    0x40  ///< Start Y gyro test bit 
#define ZG_ST    0x20  ///< Start Z gyro test bit 
#define FS_SEL1    0x10  ///< FS_SEL bit 1 
#define FS_SEL0    0x08  ///< FS_SEL bit 0 
 
typedef enum gyroRange     /// Enumerated gyro range control type 
{ 
 FSR_250dps = 0,      ///< Full-scale range of 250 degrees per 
second 
 FSR_500dps = FS_SEL0,    ///< Full-scale range of 500 degrees per second 
 FSR_1000dps = FS_SEL1,    ///< Full-scale range of 1000 degrees per second 
 FSR_2000dps = FS_SEL0 + FS_SEL1  ///< Full-scale range of 2000 degrees per second 
}gyroFSR; 
 
// ACCEL_CONFIG 
#define XA_ST    0x80  ///< Start X accel test bit 
#define YA_ST    0x40  ///< Start Y accel test bit 
#define ZA_ST    0x20  ///< Start Z accel test bit 
#define AFS_SEL1   0x10  ///< AFS_SEL bit 1 
#define AFS_SEL0   0x08  ///< AFS_SEL bit 0 
 
typedef enum accelerometerRange   /// Enumerated accel range control type 
{ 
 FSR_2G = 0,       ///< Full-scale range of 2g 
 FSR_4G = AFS_SEL0,     ///< Full-scale range of 4g 
 FSR_8G = AFS_SEL1,     ///< Full-scale range of 8g 
 FSR_16G = AFS_SEL0 + AFS_SEL1  ///< Full-scale range of 16g 
}accelFSR; 
 
// FIFO EN 
#define TEMP_FIFO_EN  0x80  ///< Temperature to FIFO 
#define XG_FIFO_EN   0x40  ///< X Gyro to FIFO 
#define YG_FIFO_EN   0x20  ///< Y Gyro to FIFO 
#define ZG_FIFO_EN   0x10  ///< Z Hyro to FIFO 
#define ACCEL_FIFO_EN  0x08  ///< Accel X,Y,Z to FIFO 
#define SLV2_FIFO_EN  0x04  ///< I2C Slave 2 to FIFO 
#define SLV1_FIFO_EN  0x02  ///< I2C Slave 1 to FIFO 
#define SLV0_FIFO_EN  0x01  ///< I2C Slave 0 to FIFO 
 
// I2C MASTER CONTROL 
#define MULT_MST_EN   0x80  ///< Enable multi-master capability 
#define WAIT_FOR_ES   0x04  ///< Delay data ready interrupt until 
EXT_SENS_DATA loaded 
#define SLV3_FIFO_EN  0x02  ///< Enables EXT_SENS_DATA for SLV3 to be written to FIFO 
#define I2C_MST_P_NSR  0x01  ///< 0: reset occurs between slave reads, 1: stop and 
start marking between reads 
#define I2C_MST_CLK_MASK 0x0F  ///< I2C Clk Rate divisor mask (SEE REGISTER MAP PAGE 19 FOR 
FREQUENCIES) 
 
// I2C ADDR 
#define I2C_RW    0x80  ///< I2C Read/Write Control (1: Read, 0: Write) 
#define I2C_ADDR_MASK  0x7F  ///< 7 Bit slave address field 
 
// I2C CTRL 
#define I2C_SLV_EN   0x80  ///< Enable slave device for data transfers 
#define I2C_SLV_BYTE_SW  0x40  ///< Enable byte swapping (high and low byte order) 
#define I2C_SLV_REG_DIS  0x20  ///< 1: Read/write only, 0: write before read 
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#define I2C_SLV_GRP   0x10  ///< Byte pairing for word order (0: 0 and 1 form 
a word, 1: 1 and 2 form a word) 
#define I2C_SLV_LEN_MASK 0x0F  ///< Number of bytes transferred to/from slave device 
 
// I2C MASTER STATUS 
#define PASS_THROUGHT  0x80  ///< Status of FSYNC interrupt from an external device 
(interrupt triggered if FSYNC_INT_EN asserted in INT_PIN_CFG) 
#define I2C_SLV4_DONE  0x40  ///< Set to 1 when Slave 4 completes transmit (interrupt 
triggered if SLV4_DONE_INT asserted in I2C_SLV4_CTRL) 
#define I2C_LOST_ARB  0x20  ///< Set to 1 when I2C master loses arbitration of the 
bus (interrupt triggered if I2C_MST_INT_EN asserted in INT_ENABLE) 
#define I2C_SLV4_NACK  0x10  ///< Set when I2C master receives a NACK from slave 4 
(interrupt triggered if I2C_MST_INT_EN asserted in INT_ENABLE) 
#define I2C_SLV3_NACK  0x08  ///< Same for slave 3 
#define I2C_SLV2_NACK  0x04  ///< Same for slave 2 
#define I2C_SLV1_NACK  0x02  ///< Same for slave 1 
#define I2C_SLV0_NACK  0x01  ///< Same for slave 0 
 
// INTERRUPT PIN CONFIG 
#define INT_LEVEL   0x80  ///< Current status of the INT pin 
#define INT_OPEN   0x40  ///< 0: INT pin configured as push-pull, 1: INT pin 
configured as open-drain 
#define LATCH_INT_EN  0x20  ///< 0: INT pin emits a 50us long pulse, 1: INT pin is 
held high until cleared 
#define INT_RD_CLEAR  0x10  ///< 0: Interrupt status bits are cleared only by reading 
INT_STATUS, 1: Interrupt bits cleared on any read 
#define FSYNC_INT_LEVEL  0x08  ///< 0: FSYNC is active high, 1: FSYNC is active low 
#define FSYNC_INT_EN  0x04  ///< 0: Disable FSYNC interrupts, 1: Enable FSYNC 
interrupts 
#define I2C_BYPASS_EN  0x02  ///< 0: Host cannot directly access I2C bus, 1: If 
I2C_MST_EN is 0 the host processor can directly access the auxiliary I2C bus 
 
// INTERRUPT ENABLE/STATUS (write to INT_ENABLE, read from INT_STATUS) 
#define MOT_INT    0x40  ///< Enable motion detection interrupt bit 
#define FIFO_OFLOW_INT  0x10  ///< Enable FIFO overflow interrupt generation 
#define I2C_MST_INT_INT  0x08  ///< Enable I2C interrupt sources 
#define DATA_RDY_INT  0x01  ///< Enable sensor register write interrupt 
 
// I2C MASTER DELAY CONTROL 
#define DELAY_ES_SHADOW  0x80  ///< When set delays shadowing of external sensor data 
until all data has been RX'd 
#define I2C_SLV4_DLY_EN  0x10  ///< Slave 4 only accessed at a decreased rate 
#define I2C_SLV3_DLY_EN  0x08  ///< Same as #I2C_SLV4_DLY_EN for slave 3 
#define I2C_SLV2_DLY_EN  0x04  ///< Same as #I2C_SLV4_DLY_EN for slave 2 
#define I2C_SLV1_DLY_EN  0x02  ///< Same as #I2C_SLV4_DLY_EN for slave 1 
#define I2C_SLV0_DLY_EN  0x01  ///< Same as #I2C_SLV4_DLY_EN for slave 0 
 
// SIGNAL PATH RESET 
#define GYRO_RESET   0x04  ///< Reset analog and digital gyro signal paths 
#define ACCEL_RESET   0x02  ///< Reset analog and digital accel signal paths 
#define TEMP_RESET   0x01  ///< Reset analog and digital temp signal paths 
 
// MOTION DETECTION CONTROL 
// NOTE: accelerometer has a default start-up delay of 4ms, these bits can be used to extend it up to 7ms 
#define ACCEL_ON_DELAY1  0x20  ///< Accel. power on additional delay bit 1 
#define ACCEL_ON_DELAY0  0x10  ///< Accel. power on additional delay bit 0 
#define AOD_MASK   ACCEL_ON_DELAY0 + ACCEL_ON_DELAY1 ///< Mask for acceleromter on 
delay bits 
 
typedef enum accelOnDelay       /// Accel on delay 
enumerated type 
{ 
 delay_4ms = 0,         ///< On delay of 
4ms total (+0 extra ms) 
 delay_5ms = ACCEL_ON_DELAY0,     ///< On delay of 5ms total (+1 
extra ms) 
 delay_6ms = ACCEL_ON_DELAY1,     ///< On delay of 6ms total (+2 
extra ms) 
 delay_7ms = ACCEL_ON_DELAY0 + ACCEL_ON_DELAY1 ///< On delay of 7ms total (+3 extra ms) 
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} accelDelay; 
 
// USER CONTROL 
// NOTE: for MPU6000 the primary SPI interface will be enabled in place of primary I2C when I2C_IF_DIS is 
1 
#define FIFO_EN    0x04  ///< Enable FIFO operation 
#define I2C_MST_EN   0x02  ///< Enable I2C Master mode 
#define I2C_IF_DIS   0x01  ///< MPU6000: Disable I2C and enable SPI 
          ///< MPU6050: Always 
write as 0 
#define FIFO_RESET   0x04  ///< Reset FIFO buffer when FIFO_EN = 0 (auto-
clears to 0 on reset complete) 
#define I2C_MST_RESET  0x02  ///< Reset I2C Master when I2C_MST_EN = 0 (auto-clears to 
0 on reset complete) 
#define SIG_COND_RESET  0x01  ///< Resets the signal path for all sensor (auto-clear to 
0 on reset complete) 
 
// POWER MANAGEMENT 1 
#define DEVICE_RESET  0x80  ///< Reset all internal registers to defaults (auto-
clears to 0 on reset complete) 
#define SLEEP    0x40  ///< Enter sleep mode 
#define CYCLE    0x20  ///< When set and SLEEP cleared, the device will 
wake to take a single sample from each sensor 
          ///< NOTE: the rate of 
this wake is determined by the value of LP_WAKE_CTRL 
#define TEMP_DIS   0x08  ///< Disables the temperature sensor 
#define CLKSEL2    0x04  ///< Clock source selection bit 2 
#define CLKSEL1    0x02  ///< Clock source selection bit 1 
#define CLKSEL0    0x01  ///< Clock source selection bit 0 
// Operating clock freq enumeration 
#define CLK_SEL_8MHZ  0x00  ///< Select the internal 8MHz oscillator for operation 
#define CLK_SEL_XG_PLL  0x01  ///< Use the internal PLL with X gyro reference 
#define CLK_SEL_YG_PLL  0x02  ///< Use the internal PLL with Y gyro reference 
#define CLK_SEL_ZG_PLL  0x03  ///< Use the internal PLL with Z gyro reference 
#define CLK_SEL_EXT32_PLL 0x04  ///< Use the internal PLL with external 32.768kHz crystal 
reference 
#define CLK_SEL_EXT19_PLL 0x05  ///< Use the internal PLL with external 19.2MHz crystal 
reference 
#define CLK_SEL_STOP  0x07  ///< Stop the clock and keep the timing generator in 
reset 
 
// POWER MANAGEMENT 2 
#define LP_WAKE_CTRL1  0x80  ///< Low-power wake up control bit 1 
#define LP_WAKE_CTRL0  0x40  ///< Low-power wake up control bit 0 
#define STBY_XA    0x20  ///< X accel. standby mode control bit 
#define STBY_YA    0x10  ///< Y accel. standby mode control bit 
#define STBY_ZA    0x08  ///< Z accel. standby mode control bit 
#define STBY_XG    0x04  ///< X gyro standby mode control bit 
#define STBY_YG    0x02  ///< Y gyro standby mode control bit 
#define STBY_ZG    0x01  ///< Z gyro standby mode control bit 
// wake up freqs (must enable CYCLE bit in POWER MANAGEMENT 1 to use these codes) 
#define LP_WAKE_1.25HZ  0x00  ///< Low-power wake up at 1.25Hz 
#define LP_WAKE_5HZ   0x01  ///< Low-power wake up at 5Hz 
#define LP_WAKE_20HZ  0x02  ///< Low-power wake up at 20Hz 
#define LP_WAKE_40HZ  0x03  ///< Low-power wake up at 40Hz 
 
// WHO AM I 
#define WHOAMI_MASK   0x7E  ///< Mask for 6 bit I2C address of MPU-60X0 
#define WHOAMI_VAL   0x68  ///< WWHOAMI value from register 
 
typedef struct mpuInformation   /// Typedef structure for MPU6050 state control 
{ 
 unsigned char smplrt_div;   ///< Sample rate divisor 
 unsigned char config;    ///< Chip configuration 
 unsigned char gyro_config;   ///< Gyro configuration 
 unsigned char accel_config;   ///< Accel configuration 
 unsigned char mot_thr;    ///< Motion threshold 
 unsigned char fifo_en;    ///< Fifo enable 
 unsigned char i2c_mst_ctrl;   ///< MPU6050 I2C master control 
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 unsigned char int_pin_cfg;   ///< Interrupt pin configuration 
 unsigned char int_enable;   ///< Interrupt enable 
 unsigned char mot_detect_ctrl;  ///< Motion detection control 
 unsigned char user_ctrl;   ///< User control 
 unsigned char pwr_mgmt_1;   ///< Power management 1 
 unsigned char pwr_mgmt_2;   ///< Power management 2 
}mpuInfo; 
#define MPU_INFO_SIZE 13 
 
typedef struct axisDat     /// 3 Dimensional Axis Data Type 
{ 
 int x;        ///< X-axis value 
 int y;        ///< Y-axis value 
 int z;        ///< Z-axis value 
}axisData; 
 
typedef struct axisCtrl     /// 6 axis control bit field 
{ 
 volatile unsigned Zgyro : 1;  ///< Z gyro control 
 volatile unsigned Ygyro : 1;  ///< Y gyro control 
 volatile unsigned Xgyro : 1;  ///< X gyro control 
 volatile unsigned Zaccel : 1;  ///< Z accel control 
 volatile unsigned Yaccel : 1;  ///< Y accel control 
 volatile unsigned Xaccel : 1;  ///< X accel control 
 volatile unsigned Temp : 1;   ///< Temperature control 
}axisField; 
 
typedef enum boolean     /// Boolean typedef 
{ 
 True = 0xFF,      ///< True (!= 0) value 
 False = 0x00      ///< False (== 0) value 
}bool; 
 
// Function prototypes 
unsigned char mpuRegRead(unsigned char regAddr); 
int mpuRegWrite(unsigned char regAddr, unsigned char toWrite); 
int mpuInit(void); 
int mpuSetup(mpuInfo* info); 
inline void mpuReset(void); 
unsigned char mpuSleepEn(bool en); 
unsigned int mpuSetSampRate(unsigned int SR); 
unsigned char mpuAccelRangeConfig(accelFSR range); 
axisData mpuGetAccel(void); 
unsigned char mpuGyroRangeConfig(gyroFSR range); 
axisData mpuGetGyro(void); 
int mpuGetTemp(void); 
unsigned int mpuMotionConfig(unsigned char thresh, bool intEn, accelDelay onDelay); 
unsigned int mpuFifoConfig(); 
inline unsigned char mpuGetIntStatus(void); 
inline unsigned char mpuWhoAmI(void); 
 
#endif 

RTC.c 

Real-time clock module management library 

/* 
 * rtc.c 
 * 
 *  Created on: Aug 12, 2013 
 *      Author: bb3jd 
 */ 
#include "timing.h" 
#include "rtc.h" 
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static time localTime; 
 
time* rtcGetTime(void) 
{ 
 while(1){ 
  if(RTCCTL01 & RTCRDY) { 
   localTime.sec = RTCSEC; 
   localTime.min = RTCMIN; 
   localTime.hour = RTCHOUR; 
   localTime.day = RTCDAY; 
   localTime.mon = RTCMON; 
   localTime.year = RTCYEAR; 
   break; 
  } 
 } 
 return &localTime; 
} 
 
void rtcSetTime(time* t) 
{ 
 RTCSEC = (unsigned char)(t->sec); 
 RTCMIN = (unsigned char)(t->min); 
 RTCHOUR = (unsigned char)(t->hour); 
 RTCDAY = (unsigned char)(t->day); 
 RTCMON = (unsigned char)(t->mon); 
 RTCYEAR = t->year; 
 rtcGetTime();   // Update the software buffer 
} 
 
void rtcInit(time* currTime) 
{ 
 const aclkConf rtcConf = {LFXT,DIV1}; // Set up ACLK @ 32768Hz for RTC 
 setACLK(rtcConf); 
 RTCCTL01 = RTCMODE; 
 rtcSetTime(currTime); 
} 
 
#pragma vector = RTC_VECTOR 
__interrupt void RTC_ISR(void) 
{ 
 rtcGetTime(); 
} 

RTC.h 

Affiliated real-time clock header file 

/* 
 * rtc.h 
 * 
 *  Created on: Aug 12, 2013 
 *      Author: bb3jd 
 */ 
#ifndef RTC_H_ 
#define RTC_H_ 
 
typedef enum month_type{ 
 JAN = 1, 
 FEB = 2, 
 MAR = 3, 
 APR = 4, 
 MAY = 5, 
 JUN = 6, 
 JUL = 7, 
 AUG = 8, 
 SEP = 9, 
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 OCT = 10, 
 NOV = 11, 
 DEC = 12 
} month; 
 
 
typedef struct timestamp 
{ 
 unsigned int year; 
 unsigned int mon; 
 unsigned int day; 
 unsigned int hour; 
 unsigned int min; 
 unsigned int sec; 
} time; 
 
time* rtcGetTime(void); 
void rtcSetTime(time* t); 
void rtcInit(time* currTime); 
 
#endif /* RTC_H_ */ 

Timing.c 

System timing and clock management library 

/* 
 * timing.c 
 * 
 *  Created on: Feb 4, 2013 
 *      Author: bb3jd 
 */ 
#include "util.h" 
#include "timing.h" 
/**********************************************************************//** 
 * \brief Auxiliary Clock Initialization Routine 
 * 
 * This function sets up ACLK (the auxilary clock) based on the 
 * provided config structure 
 * 
 * \param aclkConf conf A configuration structure for ACLK control 
 *************************************************************************/ 
void setACLK(aclkConf conf) 
{ 
 unsigned int temp = 0; 
 unsigned int state; 
 
 enter_critical(state); 
 
 if(conf.src == LFXT) {     // Check for LFXT selected 
  UCSCTL6 &= ~(XTS);     // If so assure XTS is cleared 
(LF-mode selected) 
 } 
 
 temp = UCSCTL4 & ~ACLK_SRC_MASK;  // Read in ACLK source control and clear relevant bits 
 temp |= conf.src & ACLK_SRC_MASK;  // Write new source bits into temp 
 UCSCTL4 = temp;       // Write back temp 
 
 temp = UCSCTL5 & ~ACLK_DIV_MASK;  // Read in ACLK divisor control and clear relevant bits 
 temp |= conf.div & ACLK_DIV_MASK;  // Write new divisor bits into temp 
 UCSCTL5 = temp;       // Write back temp 
 
 exit_critical(state); 
} 
 
/**********************************************************************//** 
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 * \brief FLL Initialization Routine 
 * 
 * This function sets up FLLN (the FLL frequency multiplier) based on the 
 * provided target frequency and the on-board LF reference oscillator (REFO) 
 * 
 * \retval -1 The FLL multiplier computed was out-of-bounds 
 * \returns The resulting target frequency for the FLL feedback control 
 *************************************************************************/ 
long setFLL(unsigned long TargetFreq) 
{ 
 unsigned int fllMult = (unsigned int)(TargetFreq >> 15); // fllMult = TargetDCO/32768 
 
 // Basic Universal Clock System (UCS) Init 
 UCSCTL3 = SELREF_2;      // Set FLL Reference to REF0 
(internal reference oscillator) 
 UCSCTL4 = SELA_2 + SELS_4 + SELM_4;  // Set ACLK = REF0, SMCLK = MCLK = DCOCLKDIV 
 
 if(fllMult > 1024)    // If FLL multiplier cannot be represented in 10 bits 
  return -1;    // Return failure 
 
 __bis_SR_register(SCG0); // Disable the FLL control loop 
 UCSCTL0 = 0;    // Set lowest possible DCOx and MODx bits 
 
 // DCO Resistor Selection (RSEL) 
 if(fllMult <= 30)   // TargetFreq < 1MHz 
  UCSCTL1 = DCORSEL_0; 
 else if(fllMult <= 62)   // 1MHz < TargetFreq < 2MHz 
  UCSCTL1 = DCORSEL_1; 
 else if(fllMult <= 123)  // 2MHz < TargetFreq < 4MHz 
  UCSCTL1 = DCORSEL_2; 
 else if(fllMult <= 245)  // 4MHz < TargetFreq < 8 MHz 
  UCSCTL1 = DCORSEL_3; 
 else if(fllMult <= 490)  // 8MHz < TargetFreq < 16MHz 
  UCSCTL1 = DCORSEL_4; 
 else if(fllMult <= 611)  // 16MHz < TargetFreq < 20MHz 
  UCSCTL1 = DCORSEL_5; 
 else      // 20MHz < TargetFreq < 33MHz 
  UCSCTL1 = DCORSEL_6; 
 
 UCSCTL2 = fllMult & FLLN_MASK; // Set FLLN (FLL Multiplier) 
 
 __bic_SR_register(SCG0); // Enable the FLL control loop 
 __delay_cycles(CLOCK_STAB_PERIOD); // Delay and let clock stabilize 
 
   // Loop until XT1,XT2 & DCO fault flag is cleared 
 do { 
  UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + DCOFFG); // Clear XT2,XT1,DCO fault flags 
  SFRIFG1 &= ~OFIFG;                       // Clear fault flags 
 } while (SFRIFG1&OFIFG);      // Test oscillator fault flag 
 
 return (fllMult << 15);  // Return DCO frequency 
} 
 
/**********************************************************************//** 
 * \brief MCLK, SMCLK, and ACLK Init Routine 
 * 
 * This function uses REFO (the internal reference oscillator) to initialize 
 * the DCO to the value targetFreq 
 * 
 * \retval -1 The clock initialization failed 
 * \retval 0 The clock initialization was successful 
 * 
 *************************************************************************/ 
int clkInit(void) 
{ 
 unsigned int state; 
 long retval; 
 
 enter_critical(state); 
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  retval = setFLL(DCO_FREQ); 
 exit_critical(state); 
 
 if(retval != -1) retval = 0; 
 return (int)retval; 
} 

Timing.h 

Affiliated system timing library header file 

/* 
 * timing.h 
 * 
 *  Created on: Aug 12, 2013 
 *      Author: bb3jd 
 */ 
 
#ifndef TIMING_H_ 
#define TIMING_H_ 
 
#include <msp430.h> 
#include "clocks.h" 
 
// Clock control macros 
#define CLOCK_STAB_PERIOD 4*DCO_FREQ ///< Clock stabilization period 
#define FLLN_MASK   0x03FF  ///< FLLN Mask for UCSCTL2 Register 
#define ACLK_SRC_MASK  0x0700  ///< Bit mask for ACLK source control 
#define ACLK_DIV_MASK  0x0700  ///< Bit mask for ACLK divisor control 
 
typedef enum auxClkSrc {    /// Typedef for auxiliary clock source control 
 LFXT = SELA_0,      ///< Low-frequency external oscillator 
(32.768kHz) 
 VLO =  SELA_1,      ///< On-chip very low-power oscillator 
(~10-14kHz) 
 REFO = SELA_2,      ///< On-chip reference oscillator 
(32.768kHz) 
 DCO =  SELA_3,      ///< On-chip digitally controlled 
oscillator 
 DCODIV = SELA_4      ///< Fixed divisor of on-chip DCO 
} aClkSrc; 
 
typedef enum auxClkDiv {    /// Typedef for auxiliary clock source divider 
 DIV1 = 0,       ///< Divide by 1 
 DIV2 = DIVA_1,      ///< Divide by 2 
 DIV4 = DIVA_2,      ///< Divide by 4 
 DIV8 = DIVA_3,      ///< Divide by 8 
 DIV16 = DIVA_4,      ///< Divide by 16 
 DIV32 = DIVA_5      ///< Divide by 32 
} aClkDiv; 
 
typedef struct auxClockConfig   /// Typedef for auxiliary clock configuration 
{ 
 aClkSrc src;      ///< Source for ACLK 
 aClkDiv div;      ///< Divisor for ACLK 
} aclkConf; 
 
// Prototypes 
void setACLK(aclkConf conf); 
int clkInit(void); 
 
#endif /* TIMING_H_ */ 
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Util.c 

Utilities for operation and useful functions 

/* 
 * util.c 
 * 
 *  Created on: Apr 17, 2014 
 *      Author: bb3jd 
 */ 
#include "util.h" 
 
/**************************************************************************//** 
 * \brief Blink LED rep times using spin loops for timing 
 * 
 * Record a new timestamp pair into the timing log of the flash card, using 
 * the current timing epoch in effect. 
 * 
 * \param rep  Number of times to blink the LED 
 *****************************************************************************/ 
void blink(int rep, int led) 
{ 
 
 if((led != 1) && (led != 2)) return; 
 for (; rep > 0; rep--) { 
  if(led == 1) LED1_ON(); 
  else if (led == 2) LED2_ON(); 
 
  __delay_cycles(TOGGLE_CYC); 
 
  if(led == 1) LED1_OFF(); 
  else if (led == 2) LED2_OFF(); 
 
  __delay_cycles(TOGGLE_CYC); 
 } 
 
 __delay_cycles(PAUSE_CYC); 
} 
 
/**************************************************************************//** 
 * \brief Perform a 16-bit fletcher checksum on a buffer 
 * 
 * \param  Buffer  A uchar buffer to be checksummed 
 * \param  numBytes Number of bytes to check (up to Buffer's length) 
 * \return  16-bit checksum concatenated with sum1 (checkA) as the low 
 *     byte, and sum2 (checkB) as the high byte. 
 * \warning  This checksum is insensitive to 0x00 and 0xFF words, and a 
 *     cleared buffer of 0x00s will checksum to 0x00, which may lead 
 *     to situations where the check passes but does not mean there 
 *     is meaningful information in the buffer. 
 * \see   http://en.wikipedia.org/wiki/Fletcher's_checksum#Optimizations 
 *****************************************************************************/ 
unsigned int fletcherChecksum(unsigned char *Buffer, int numBytes, unsigned int checksum) 
{ 
 
 int len = numBytes; 
 unsigned char *data = 0; 
 unsigned int sum1, sum2; 
 
 if (checksum == 0) { // Check for non-initialized checksum (0 impossible result) 
  sum1 = 0xff; 
  sum2 = 0xff; 
 } else { // Parse the previous two component sums out of the old checksum 
  sum2 = checksum >> 8; 
  sum1 = checksum & 0xff; 
 } 
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 data = Buffer; 
 
 while (len) { 
  int tlen = len > 20 ? 20 : len; // Require tlen < 20 to avoid second order accumulation 
overflow 
  len -= tlen; 
  do { 
   sum1 += *data++; 
   sum2 += sum1; 
  } while (--tlen); 
 
  // The reduction step below is equivalent to a partial modulo 255 (may have a 1 in the 
upper byte) 
  // This works by taking sum1 % 256 then adding a 1 for each 256 in sum1 (sum1/256 = sum1 
>> 8) 
 
  sum1 = (sum1 & 0xff) + (sum1 >> 8); 
  sum2 = (sum2 & 0xff) + (sum2 >> 8); 
 } 
 
 // Second reduction step to assure reduction to 8 bits (no overlap in combination for final 
checksum value) 
 
 sum1 = (sum1 & 0xff) + (sum1 >> 8); 
 sum2 = (sum2 & 0xff) + (sum2 >> 8); 
 
 checksum = (sum2 << 8) | sum1; 
 return checksum; 
} 

Util.h 

Affiliated useful routine header file 

/* 
 * TempoUtil.c 
 * 
 *  Created on: Dec 16, 2013 
 *      Author: bb3jd 
 */ 
#ifndef TEMPO_UTIL_H_ 
#define TEMPO_UTIL_H_ 
#include "hal.h" 
 
// Simple defines for toggle and pause cycles for #blink function 
#define TOGGLE_CYC 600000  ///< Clock cycles to wait between toggle of LED (for #blink) 
#define PAUSE_CYC 1000000  ///< Clock cycles to wait between LED pulse sets (for #blink) 
 
// Critical Section Code 
#define enter_critical(SR_state)           do { \ 
  (SR_state) = (_get_SR_register() & 0x08); \ 
  _disable_interrupts(); \ 
} while (0) ///< Critical section entrance macro 
 
#define exit_critical(SR_state)         _bis_SR_register(SR_state) ///< Critical section exit macro 
 
// System reset code 
#define systemReset()           do { \ 
 WDTCTL = 0 ; \ 
    _DINT() ; \ 
    _c_int00(); \ 
} while (0) ///< Software-based (WDT Violation) System Reset Macro 
 
// Prototypes 
/**************************************************************************//** 
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 * \brief Blink LED rep times using spin loops for timing 
 * 
 * Record a new timestamp pair into the timing log of the flash card, using 
 * the current timing epoch in effect. 
 * 
 * \param rep  Number of times to blink the LED 
 *****************************************************************************/ 
void blink(int rep, int led); 
 
/**************************************************************************//** 
 * \brief Perform a 16-bit fletcher checksum on a buffer 
 * 
 * \param  Buffer  A uchar buffer to be checksummed 
 * \param  numBytes Number of bytes to check (up to Buffer's length) 
 * \return  16-bit checksum concatenated with sum1 (checkA) as the low 
 *     byte, and sum2 (checkB) as the high byte. 
 * \warning  This checksum is insensitive to 0x00 and 0xFF words, and a 
 *     cleared buffer of 0x00s will checksum to 0x00, which may lead 
 *     to situations where the check passes but does not mean there 
 *     is meaningful information in the buffer. 
 * \see   http://en.wikipedia.org/wiki/Fletcher's_checksum#Optimizations 
 *****************************************************************************/ 
unsigned int fletcherChecksum(unsigned char *Buffer, int numBytes, unsigned int checksum); 
 
#endif //TEMPO_UTIL_H_ 
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