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Abstract

Dependent types provide strong guarantees but can be hard to program, admitting

mistakes in the implementation as well as the specification. We present algorithms for

resolving verification failures by both finding bugs in implementations and also com-

pleting annotations in the refinement type framework. We present a fault localization

algorithm for finding likely bug locations when verification failure stems from a bug in

the implementation. We use the type checker as an oracle to search for a set of mini-

mal unsatisfiable type constraints that map to possible bug locations. Conversely, we

present an algorithm based on Craig interpolation to discover predicates that allow

the type checker to verify programs that would otherwise be deemed unsafe due to

inadequate type annotations. We evaluate our algorithms on an indicative benchmark

of Haskell programs with Liquid Haskell type annotations. Our fault localization al-

gorithm localizes more bugs than the vanilla LiquidHaskell type checker while still

returning a small number of false positives. Our predicate discovery algorithm infers

refinements types for large classes of benchmark programs, including all those that

admit bounded constraint unrolling. In addition, the design of our algorithms allows

them to be effectively extended to other typing systems.
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Chapter 1

Introduction

Automatic type inference for strongly statically typed functional programming lan-

guages such as OCaml and Haskell has been a boon for developers, allowing them to

catch large classes of errors at compile time [12, 22]. The success of standard type

systems has led to significant research on more expressive notions of typing, including

type qualifiers [4, 19], and dependent and refinement types [33, 18, 30].

Refinement type systems, which decorate base types with predicates that en-

code correctness properties such as preconditions and postconditions, are especially

promising. While types that depend on expression values are undecidable in general,

restricted constraint languages and recent advances in constraint solving (e.g., [7])

have made such systems useful and feasible in practice [26, 31, 30]. These constraint

languages restrict the inferred types to those drawn from some abstract domain. Re-

finement type systems allow stronger safety guarantees [33, 10, 2] that are potentially

useful for many applications, including security [2], and program synthesis [25]. Unfor-

tunately, the disadvantage of using these expressive type and type inference systems

is that annotated program implementations often fail to type check.
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2 INTRODUCTION

When a program does not type check, there are two possibilities: either the im-

plementation is buggy (i.e. does not match the specification), or the implementation

is actually correct but the type annotations or the prover’s abstract domain must be

extended to verify correctness. In the first case, the developer must localize the bug

and address the issue. Unfortunately, the error locations reported by more compli-

cated type systems are often far from the locations that humans would change to

fix those bugs [5]. Previous approaches have been successful at fault localization for

classical Hindley-Milner style type checking [20, 35, 24]. However, such techniques

do not apply to more sophisticated systems, for which type error localization remains

difficult.

In the second case, the type-checker may fail to verify a correct implementation

because the abstract domain is insufficiently large for it to infer all of the intermediate

types. In this case, the developer must either provide a richer abstract domain or

manually annotate necessary intermediate types. This complication arises because

refinement type inference is undecidable in general, and thus the type checker cannot

usually fill in missing annotations. Providing such annotations has been viewed as

a major burden on developers and is often listed as a significant barrier to entry for

formal verification systems [9].

To address both possibilities, we introduce two algorithms. Our fault localiza-

tion algorithm uses the type checker (i.e. constraint solver) as an oracle in a search

procedure for a minimal unsatisfiable constraint set, whose constraints map to likely

locations of the bug in the implementation. We exploit properties of constraints and

employ the delta debugging algorithm [34], originally designed to find regressions in

codebase changes, to make our approach practical.

Our predicate discovery algorithm uses disjunctive interpolation [27], a general-
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ization of Craig interpolation [6], to automatically expand the abstract domain used

by the constraint solver by inferring predicate templates that serve as the refinement

types of program expressions. Instead of restricting an abstract domain to make type

inference decidable, we approximate infinite recursion using a bounded unrolling algo-

rithm (Section 5.4). In the case that the type constraints admit a k-bounded unrolling

(as described in Chapter 5), our algorithm finds all intermediate types necessary for

program verification.

Our algorithms have several advantages over previous approaches. Since our fault

localization algorithm uses the type checker as an oracle, it does not depend on type

system internals. In addition, our predicate discovery algorithm is general over Horn

constraints over a theory that admits interpolation. Our algorithms thus have wide

applicability for a variety of constraint-based typing systems.

We evaluate our algorithms on programs with type annotations from the Liquid

Haskell framework [26, 30]. Our experiments show that our fault localization algo-

rithm is much more accurate at localizing bugs than the Liquid Haskell type checker.

In addition, our predicate discovery algorithm successfully infers type refinements and

finds predicates which extend the abstract domain, allowing correct implementations

to be verified.

We present the following contributions:

• A novel fault localization algorithm for constraint-based type systems. We

search for a minimal unsatisfiable constraint set using the type checker as guid-

ance. We exploit the structure of Liquid Haskell constraint sets to optimize our

search procedure and find more bug locations.

• A novel predicate discovery algorithm for constraint-based type systems that
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allows the type checker to verify additional correct implementations. The al-

gorithm “unrolls” typing constraints and computes Craig interpolants that are

the predicates of our newly-inferred types. We exploit an orthogonality of ap-

proximations to integrate the our results with Liquid Haskell typechecking.

• An implementation and empirical evaluation of our algorithms. Over a set of

benchmarks we find that our fault localization algorithm outperforms the state-

of-the-art Liquid Haskell type checker, correctly localizing more than twice as

many bugs while returning a modest amount of false positives. Our predicate

discovery algorithm finds correct predicates and type annotations, successfully

verifying a large class of implementations without the empirical input of the

LiquidHaskell type checker

The undecidability of dependent type inference challenges the adoption of program

verification at the type system level. Liquid Types provide an elegant solution to this

problem by restricting types to be inferred to an abstract domain. However, it can be

difficult for programmers to verify Liquid Types implementations and annotations:

our two algorithms lower the barrier to entry and thus help bring the benefits of

constraint-based type systems to a wider audience.

Chapter 2 provides background on the Liquid Haskell programming language, and

the Liquid Types framework. Chapter 3 gives an overview of the work couched in the

language of Liquid Types, and contains short previews of the two algorithms described

in this work. Chapter 4 describes in detail our fault localization algorithm, in the

case of Liquid Haskell, as well as a more general case with weakened assumptions.

Chapter 5 describes our predicate discovery algorithm, the regime in which is it also

a complete type inference algorithm, and its applicability to Liquid Haskell. Chapter
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6 presents and experimental evaluation supporting our claims and evaluating our

effectiveness We discuss related work in Chapter 7 and future work and conclusions

in Chapter 8.



Chapter 2

Background: Liquid Haskell

Liquid Haskell is a framework for annotating Haskell programs with refinement types,

which are types decorated with predicates. The predicates are in the language of a

decidable logic (quantifier-free logic of linear arithmetic and uninterpreted functions),

allowing the use of an SMT solver for decidable type checking. In this work, we will

write Liquid Haskell, in body text for the name of the programming language and

the system, but LiquidHaskell in small capitals for the typechecking algorithm.

Liquid Haskell comes equipped with a default abstract domain, predicate templates

that can be filled in with program variables. This default abstract domain is useful

for verifying common operations in practice — indeed it is determined empirically,

based on its ability to verify a suite of benchmark programs — but is not sufficient

to prove all programs correct.

Liquid Haskell uses the Liquid Types [26] framework to infer refinement types,

which greatly reduces the annotation burden for users. The syntax of Liquid Haskell

refinement type annotations is described in Figure 2.1, while simplified inference rules

for subtyping constraint generation is given in Figure 2.2. Liquid Types subtyping

6



BACKGROUND: LIQUID HASKELL 7

Basic Types b ::= α | x : τ → τ | C τ̄ r̄ | τ τ
Types τ ::= {v : b | r} | Cl τ̄

Abstract Refinements π ::= ∀ 〈p : τ〉 .π | τ
Type Schemata σ ::= ∀α.σ | π

Refinements r ::= (ar, cr)

Abstract Refinements ar ::= [] | p ē, ar
Concrete Refinements cr ::= k[e/x] | pr | cr ∧ cr

Predicates pr ::= true | false |
∧

p̄r |
∨

p̄r | ¬pr
| pr ⇒ pr | pr ⇔ pr | e | e [=|6=|>|<|≥|≤] e

Expressions e ::= c | n | x | c ē | if pr then e else e
| e [+ | − | ∗ | / | %] e

Figure 2.1: Syntax of Liquid Haskell

constraints have the general form

Γ ` {ν : B | e1} <: {ν : B | e2}

where Γ is an environment, and e1, e2 are both expressions — either predicative

type variables or formulae from the refinement logic. An environment is a list of

bindings, which have the general form x : {ν : τ | e}, where τ is a base type, and e is

an expression. Here, τ1 <: τ2 is the subtyping relation, read “τ1 is a subtype of τ2.”

Intuitively, a refinement type like the one above specifies the set of all values within

the base type that satisfy some expression. For example, {ν : Int | ν ≥ 0} represents

nonnegative integers. A predicate variable κ, with optional pending substitutions θ

(usually written with right juxtaposition as in κθ) represents an unknown refinement

type; the pending substitution θ intuitively represents the arguments in a function

application. For example, {ν : Int | κ[y/x− 1]} can denote the refinement type of the
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output of a function given an argument x − 1 for a formal parameter y. Intuitively,

subtyping constraints capture requirements that program expressions must satisfy.

For example, a subtyping constraint of the form

. . . ` {ν : Int | κ} <: {ν : Int | ν 6= 0}

encodes the constraint that a variable with the refinement κ must be nonzero. This

may be used to statically prevent a division-by-zero error, by enforcing this safety

property on the second argument of a call to the div function.

Liquid Types is built atop a Hindley-Milner style typing system: after an Hindley-

Milner oracle determines the “shapes” of the types of program expressions, the Liquid

Types constraint solver attempts to find a solution to the fresh predicate variables (the

κ variables) introduced. A solution maps each variable to a conjunction of predicates.

These predicates come from a set of qualifiers — predicate templates that can be

filled in program variables — drawn from our abstract domain. The Liquid Types

solver finds the strongest — most specific — solution for the predicate variables by

starting with the conjunction of every possible instantiated qualifier (those filled in

with variables) and repeatedly weakening the solution until no constraints fail or no

solution is possible. If this is the case, the LiquidHaskell algorithm returns the

Horn queries (as defined in Chapter 5) that were unable to be satisfied.
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(x, {v : b | e}) ∈ Γ

Γ ` x ↑ {v : b | e ∧ x = v}; ∅
(x, σ ∈ Γ) σ 6= {v : b | e}

Γ ` x ↑ σ; ∅

Γ ` c ↑ {v : ty(c) | v = c}; ∅
Γ ` e1 ↑ τ1;C1 Γ ` e2 ↓ τx;C2

(τ ′1, Cp) = freshPreds(Γ, τ1) x : τx → τ = τ ′1
Γ ` e1 e2 ↑ τ [e2/x]; (C1, C2, Cp)

Γ ` e ↑ σ;C

Γ ` [Λα]e ↑ ∀α.σ;C

Γ ` e ↑ σ;C

Γ ` Tick t e ↑ σ;C

Figure 2.2: Simplified Liquid Types constraint generation



Chapter 3

Overview of Proposed Algorithms

This chapter gives an overview of the work. We then highlight key features of our

algorithms and present motivating examples demonstrating their effectiveness. Sec-

tion 3.1 gives an overview of our fault localization algorithm, along with some intu-

ition as to how and why it works, along with a worked example. Section 3.2 gives an

overview of our predicate discovery algorithm, demonstrating bits of the pipeline on

representative code fragments.

Formal details of these algorithms previewed here are given in Chapter 4 and

Chapter 5, respectively.

3.1 Fault Localization Algorithm Preview

Figure 3.1 diagrams the architecture of our fault localization algorithm. We take

as input an unsatisfiable constraint set generated from a buggy Haskell program

with Liquid Haskell annotations. We then partition the constraint set, and for each

relevant partition we run the delta debugging minimization algorithm, using the type

10



3.1. Fault Localization Algorithm Preview 11

checker as an oracle to check the (un)satisfiability of constraint sets. After computing

minimal unsatisfiable sets from each relevant partition, we map these to locations,

which are then returned for inspection.

The intuition for why the constraints in a minimal unsatisfiable set map to likely

bug locations is as follows:

1. A bug captured at the type checking level can be seen as an inconsistency. For

example, in the process of Hindley-Milner typchecking, we might encounter the

inconsistency that function requiring an Int parameter when its actual argu-

ment is a String. In Liquid Haskell, the inconsistency might be a parameter

requiring an Int with a nonzero value when the actual argument is provably

always 0. The non-zero requirement is encoded in one constraint, and the infor-

mation that the actual argument is always 0 is encoded in another. Together,

these two constraints encode (or witness) the inconsistency in the program.

2. Minimal inconsistent sets explain bugs. The locations reported to the user

should be minimal to prevent implicating spurious program locations as faults.

If some constraint in an unsatisfiable set can be removed and the set is still un-

satisfiable, it is unlikely to be relevant to the explanation of the unsatisfiability

of that set.

3. Minimal explanations implicate relevant locations. A minimal unsatisfiable con-

straint set has no irrelevant constraints: all associated program locations are

necessary to explain the bug.

It is not feasible to enumerate all constraint subsets to find a minimal unsatisfiable

subset. As a result, we exploit properties common to constraint-based type systems to
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Source
1: …
2: …
3: … 

Constraint 
Generation

Constraint 
Partitioning

Report
1: …
2: …
3: … 

Map to 
Locations Delta 

Debugging
Type 

Checker

Figure 3.1: Fault localization algorithm architecture. We use the type checker as an
oracle for a search procedure to find a minimal unsatisfiable constraint set.

adopt the automated delta debugging algorithm, which efficiently finds subsets [34].

We outline the properties needed for delta debugging to work, and how our algorithm

fulfills those requirements, in Chapter 4.

Consider the following program with Liquid Haskell types:

1 div2 :: Int -> { v:Int | 0 < v } -> Int

2 div2 n d = n `div` d

3

4 nonzero d = 0

5

6 example n d = n `div2` (nonzero d)

7 + n `div2` (nonzero d)

Note that the function div2 requires a positive second argument, but the nonzero

function, although evocatively named, does not actually provide a non-zero value (in-

deed, it always returns zero).

A Liquid Haskell constraint set is generated from this program. The Liquid Haskell

type checker returns the locations mapped to the failing constraints, which correspond

only to the application of the function nonzero but not its body. By contrast, the

minimal constraint set found by our algorithm corresponds to the positive argument
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Constraints Body-disjoint 
Constraints Predicates

Unrolling Interpolation

P

Q         R

  S0        S0’

  S1        S1’

Figure 3.2: Predicate discovery architecture diagram. We find an interpolant for
every node the unrolled induced graph.

requirement, function call, and return value. This set maps to both the body of

nonzero and also the call to it. These are the locations we want to bring to the

attention of the developer when localizing this bug. We formalize our algorithm for

finding them in Chapter 4.

3.2 Predicate Discovery Algorithm Preview

Our predicate discovery algorithm takes as input a set of typing constraints gener-

ated from a Haskell program annotated with refinements that correspond to safety

properties that functions must satisfy. Our algorithm converts these constraints into

constrained Horn clauses, from which an bounded query tree is generated. Our al-

gorithm then transforms this tree into a set of interpolation problems, and using an

interpolation oracle we compute interpolants that can be transformed into predicate

templates that constitute an abstract domain over which the program can be verified.

Consider the following Haskell program:

1 sum :: k:Int -> { v:Int | k <= v }

2 sum = go
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3 where

4 go k

5 | k <= 0 = 0

6 | otherwise = let s = go (k-1) in s + k

This program, which computes the sum of the first k natural numbers, is required

to produce output that is not less than its input per the refinement type specification.

LiquidHaskell requires as input qualifiers (i.e. predicate templates) to verify that

safety property. Our discovery algorithm can compute a set of qualifiers {λν.ν ≥

0, λν.λk.ν ≥ k}. The Liquid Types constraint solver can then use this abstract

domain to infer that the output of sum has the refinement type {ν : Int | ν ≥ k∧ν ≥

0}, which indeed conforms to the refinement annotation — the postcondition.

Figure 3.2 diagrams the architecture for our predicate discovery algorithm. We

take as input a system of subtyping constraints that Liquid Haskell cannot solve over

its abstract domain — that is, a program we cannot currently prove correct. Our algo-

rithm extends the abstract domain and produces types for intermediate variables such

that the program can be verified. Broadly, we first unroll the system of constraints

to obtain constraints that do not share dependencies. Second, we use disjunctive

interpolation to produce predicates that makes each constraint node well-typed.

There are two cases governing our algorithm:

• We can solve all possible unrollable constraints. If the system of constraints ad-

mits a solution and also admits finite unrolling to address cycles, our algorithm

produces a special predicate for each type. Decoration with these predicates

forms exactly the needed refinement types, allowing the program to be veri-

fied. This happens at least when our system of constraints admits k-bounded

unrolling, as detailed in Chapter 5.
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• We can usefully expand the abstract domain. In the case that the system is not

unrollable, we still produce a special predicate for each type. We then build

templates out of these predicates that extend our abstract domain. While these

templates alone do not always allow the program to be verified, they are always

a (possibly improper) subset of one that does.

Consider the following Haskell listing:

1 inc :: Int -> Int

2 inc x = x + 1

3

4 divTenBy :: Int -> Int

5 divTenBy n = let b = 0<=n in

6 if b then

7 let a = inc n 8 in

8 div 10 a

9 else 1

The divTenBy procedure above is safe — it never divides by zero — but a

novice programmer may not know how to annotate it so that Liquid Haskell can

verify that property. Our predicate discovery algorithm learns two useful pieces of

information about this program: first, a refinement type for the inc function that

encodes its behavior; and second, intermediate types for local variables such as a that

are necessary for verification.

Liquid Haskell generates constraints for this program but cannot verify it over an

empty abstract domain. Intuitively, we cannot prove that div 10 a is safe on line

8 because we do not have a type for a that rules out 0 values. Solving the implicated

failing constraints of a program is undecidable in general, so, inspired by bounded

model-checking, we introduce the unrolling approximation in Chapter 5.
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Γ;x : κx ` {v = x+ 1} <: κ1

Γ;n : κn; b : {Prop v ↔ 0 ≤ n}; b : {v = True} ` κn <: κx

Γ;n : κn; b : {Prop v ↔ 0 ≤ n}; b : {v = True}; a : κ1[x := n] ` Int <: κlet

Γ;n : κn; b : {Prop v ↔ 0 ≤ n}; b : {v = True} ` κlet <: κif

Γ;n : κn; b : {Prop v ↔ 0 ≤ n}; b : {v = False} ` {v : Int | v = 1} <: κif

Γ;n : κn; b : {Prop v ↔ 0 ≤ n} ` κif <: κiflet

Γ;n : κn; b : {Prop v ↔ 0 ≤ n}; b : {v = True}; a : κ1[x := n] ` κn <: Int

Γ;x : κx ` κx <: Int

Γ;x : κx ` {v : Int | v = 1} <: Int

Γ;n : κn; b : {Prop v ↔ 0 ≤ n}; b : {v = True}; a : κ1[x := n] ` κ1[x := n] <: {v : Int | ¬(v = 0)}

Figure 3.3: List of constraints for divTenBy

Γ;n : κn; b : {Prop v ↔ 0 ≤ n}; b : {v = True}; a : κ1[x := n] ` κ1[x := n] <: {v : Int | ¬(v = 0)}
Γ;x : κx ` {v = x+ 1} <: κ1

Γ;n : κn; b : {Prop v ↔ 0 ≤ n}; b : {v = True} ` κn <: κx

Figure 3.4: Constraints in the relevant weakly connected component

This program gives us the Horn clause constraints shown in Figure 3.3. Note

that Γ contains the bindings provided by the standard library for functions such as

div, (+), and (<=). In particular, we want to focus on those separated out for

consideration in Figure 3.4. The first constraint of this set, c, is the one that fails

when classic LH typechecking is performed over an empty abstract domain, and the

remaining constraints of the set are those upon which it depends. (That is, are in the

weakly connected component as c)

These constraints correspond to the intermediate type annotations needed to show
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that we do not perform division by zero.

We unroll the implicated failing constraints and serialize the resulting graph, ob-

taining the following failure derivation:

b1 ↔ 0 ≤ n ∧ b1

∧ (b2 ↔ 0 ≤ n ∧ b2 ∧ a = n+ 1)

∧ (b3 ↔ 0 ≤ n ∧ b3 ∧ v = n+ 1)

∧ v = 0

This predicate is unsatisfiable because there exists no unsafe assignment of values to

variables. Note that b1 . . . b3, refer to the variable b at different program locations,

much like renumbering in conversion to SSA form, and that we use line breaks here

to show where we’ve brought in a dependent constraint. This predicate encodes the

necessary conditions for program correctness, but it is difficult to manually extract

refinement types for program variables from such predicate form [16]. We use Craig

interpolation [6] to automatically extract refinement types:

b1 ↔ 0 ≤ n ∧ b1

∧ (b2 ↔ 0 ≤ n ∧ b2 ∧ a = n+ 1) true

∧ (b3 ↔ 0 ≤ n ∧ b3 ∧ v = n+ 1) true

∧ v = 0 !(v <= 0)

Performing Craig interpolation at each point, we see the information needed at that
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point to prove the rest of the failure derivation. At several point it just gives us the

interpolant true, indicating that points before that one encode only dead constraints,

“dead” in the same sense as “dead code.” It returns the predicate !(v<=0), which

is a valid type for the variable a (which is always strictly greater than zero in the

running program). This allows Liquid Haskell to verify the safety of the program.



Chapter 4

Fault Localization for Constraint-Based

Type Systems

Next, we introduce and describe our procedure minimize for implicating relevant

source locations in programs that are not well-typed with respect to a constraint-

based type system. The intuition behind our minimize algorithm is threefold. First,

constraints capture inconsistencies: we analyze the induced constraints rather than

the text of the program. Second, minimal inconsistent sets explain bugs: we find

a minimal unsatisfiable constraint set using the existing type checker as an oracle.

Third, minimal explanations implicate relevant locations: we map those minimal

constraints back to program locations.

Note that we operate on induced constraints rather than program text or syntax

trees. While it would be possible to treat the latter as primary (e.g., finding a

minimal subsequence of the program text that fails to typecheck and reporting it

as an explanation), such approaches may not capture the semantics of the program

and can thus lead to poor explanations (e.g., "A"+0 may be an ill-typed textual

19
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subsequence of many programs, but is unlikely to explain the original problem).

In the rest of this section, we start with a high-level overview of the delta debugging

algorithm in Section 4.1. Next, we show how delta debugging can be adapted to the

problem of minimizing constraints and finding source locations that pertain to a type

error in Section 4.2. Finally, we describe an optimization motivated by the structure

of the constraints further improves the accuracy of the minimization procedure in

Section 4.3).

4.1 Background: Delta Debugging

A näıve minimization algorithm might enumerate all subsets of the constraints, requir-

ing time exponential in the number of constraints. Since the output of our algorithm

is consumed by human developers, we desire rapid feedback, even if it implicates a few

extra locations (constraints), as otherwise localization will not be used in practice.

Minimal subsets. The Delta Debugging algorithm of Zeller was originally pro-

posed to find the cause of a regression — i.e. a bug introduced to the working

program — after a codebase changes [34]. Delta debugging takes as input a set of

code changes and a black box notion of what it means for a set to be interesting (e.g.

applying those changes results in failed regression tests). Delta debugging efficiently

finds a one-minimal interesting subset of changes: a set of changes that is interesting,

but becomes uninteresting if any single element is removed. Next, we describe the

requirements and algorithm of delta debugging and show how to adapt it to efficiently

minimize the unsatisfiable constraints.

To do so soundly, we detail the delta debugging algorithm and its four key as-

sumptions (presence, consistency, monotonicity, and unambiguity) and then indicate
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how our use of it satisfies each of those assumptions.

We thus make a design decision between placing additional requirements on the

constraints (and finding a minimal set of special items efficiently) or relaxing our

requirements on the output (and finding an almost-minimal set of general items effi-

ciently); for general fault localization we adopt the latter approach.

While assuming additional structure about the constraints (e.g., that they come

equipped with a total ordering related to implication) could allow for a more efficient

determination of minimal subsets (e.g., analogous to binary search’s efficient member-

ship testing given the assumption that the input is sorted), such additional structure

may be not be provided by many constraint-based typing systems.

Tests and Configurations. A configuration ∆ (e.g. diff, patch, commit, etc.)

is a set of changes {δ1, . . . , δn} to a code base. A test function, which formalizes

program correctness or a test suite for that program, takes any subset ∆′ ⊆ ∆ of the

configuration and returns

test(∆′) =


X if ∆′ “passes”

× if ∆′ “fails”

? otherwise

Requirements. Delta debugging requires certain properties of configurations

and tests to make its search efficient:

• Interesting: A configuration ∆ is interesting if it fails the test. Delta debug-
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ging assumes that the input configuration ∆ is interesting:

test(∆) = × (the original input fails/is interesting)

test(∅) = X (removing everything does not fail/is uninteresting)

• Consistent: A configuration ∆ is consistent if

∀∆′ ⊆ ∆.test(∆′) = X ∨ test(∆′) = ×

That is, in a consistent configuration, any subset of code changes either fails or

passes the test.

• Monotonic: A configuration ∆ is monotonic if

∀∆′′ ⊆ ∆′ ⊆ ∆. if test(∆′′) = × then test(∆′) = ×

That is, in a monotonic configuration, any superset of a failing (or interesting)

set is also failing (or interesting).

• Unambiguous: A configuration ∆ is unambiguous if

∀∆1,∆2 ⊆ ∆. test(∆1) = × ∧ test(∆2) = × =⇒ test(∆1 ∩∆2) = ×

This condition limits attention to one failure-inducing configuration: for exam-

ple, if ∆1 produces a failure and ∆2 produces a failure, some common element(s)

∆1 ∩∆2 must actually be responsible for that failure. To see that unambiguity

means that there is only one cause, consider two elements a, b ∈ C that are
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separate causes of failure. Now assume a ∈ A and b ∈ B and a, b /∈ A ∩ B for

some A,B ⊆ C. Then test(A) = × and test(B) = × but test(A ∩B) 6= ×.

Delta Debugging. Given a test function and a configuration ∆ that is in-

teresting, consistent, monotonic and unambiguous, the Delta debugging algorithm

returns a one-minimal failing configuration ∆′ such that

test(∆′) 6= X (∆′ is a failing configuration)

∀c ∈ ∆′. test(∆′ \ {c}) 6= × (∆′ is one-minimal)

A one-minimal subset can be computed via polynomial (in the size of ∆) queries to

test [34, Alg. 1].

Algorithm 1 Delta Debugging

procedure DELTADEBUG(∆, r)
(∆1,∆2)← split in half(∆)
if | ∆ |= 1 then . Min-Unsat set is ∆

return ∆
else if test(∆1 ∪ r) = × then . Min-set in ∆1

return DeltaDebug(∆1, r)
else if test(∆2 ∪ r) = × then . Min-set in ∆2

return DeltaDebug(∆2, r)
else . Min-set in ∆1 ∪∆2

return DeltaDebug(∆1, r ∪∆2) ∪ DeltaDebug(∆2, r ∪∆1)
end if

end procedure

4.2 General Constraint Minimization

From Rondon et al. [26], we can assume the existence of an oracle solve and an

abstract domain Q such that, given a set of constraints C, solve returns either SAFE
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if the constraints are (Q-)satisfiable or UNSAFE otherwise.

By suitably defining the notions of configuration and test, we can find minimal

unsatisfiable constraint sets over general constraint-based languages in a sound man-

ner.

Configurations and Tests. The configuration is the constraint set C = {c1, . . . , cn}

generated from the (buggy) program. The test oracle is defined as:

test(C ′) =


X if solve(C ′) = SAFE

× if solve(C ′) = UNSAFE

A minimal unsatisfiable constraint set C is one such that: (1) solve(C) =

UNSAFE, and (2) ∀C ′ ⊂ C.solve(C ′) = SAFE. That is, C is minimally unsatisfi-

able if it is unsatisfiable and any proper subset is satisfiable.

Delta Debugging Requirements. We can instantiate delta debugging with the

above notion of configuration and test, as the typing constraints and solve oracle

obey most of the Delta debugging requirements directly. Constraint configurations

are interesting since we only consider unsafe programs; they are consistent since the

oracle returns either SAFE or UNSAFE. That constraint sets are monotonic is a corollary

of Theorem 2 in Rondon et al. [26]. Intuitively, adding more constraints only weakens

the possible solution, which in turn ensures that a failing constraint will continue to

fail. Although delta debugging can only guarantee that its output is one-minimal, the

monotonicity of Liquid Haskell constraint configurations guarantees that its output

is minimal.

Unfortunately, the LH constraint sets are not always unambiguous. There can

be two independent failure causes within a constraint set. We analyze a concrete
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example in Chapter 6.6).

Algorithm. Our delta-debugging based constraint minimization (and hence,

fault localization) algorithm is shown in Algorithm 2. Given an unsatisfiable con-

straint set, we find a minimal unsatisfiable subset via Delta debugging (Line 2) and

return all associated program locations (Line 3). This algorithm works for general

constraint-based type systems.

Algorithm 2 Constraint Minimization Fault Localization

Require: C is an unsatisfiable constraint set
Require: consLoc returns the program locations associated with a constraint

1: procedure MINIMIZE(C)
2: C ′ ← DeltaDebug(C, ∅)
3: locs ←

⋃
map(consLoc, C ′)

4: return locs
5: end procedure

4.3 Partitioned Constraint Minimization

As discussed above, since Liquid Haskell constraints are not unambiguous, there can

be multiple causes of failure, and Delta debugging can only return one of these (i.e.

as a minimal unsatisfiable set). We heuristically address this problem by developing a

partitioned minimization algorithm minimizeWCC, in which independent constraints

are separated, increasing our chances of localizing the bug.

Formula and Constraint Variables. We say a κ variable appears in a formula

f , written κ ∈ f if f ≡ f1 ∧ κ(ȳ) ∧ f2 for some (sub-) formulas f1 and f2 and logical

variables ȳ. That is, κ ∈ f if an instantiation of κ is a conjunct of f . We say that a

constraint c = f ⇒ f ′ reads a variable κ, written Reads(κ, c), if κ ∈ f . Dually, we

say c writes κ, written Writes(κ, c), if κ ∈ f ′.
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Constraint Dependencies. The structure of these constraints induces a binary

dependency relation between constraints. We say a constraint c′ depends on c, written

c c′ if, there exists a κ such that Writes(κ, c) and Reads(κ, c′). We write c ∗ c′ if c

and c′ are related by the reflexive, symmetric and transitive closure of the depends-on

relationship.

Constraint Partitions. As  ∗ is an equivalence relation, we can partition (or

quotient) constraints C into equivalence classes with respect to it. Let WCC(C) denote

the above partitioning of C. We can compute this efficiently as the weakly connected

components of the undirected graph corresponding to the symmetric closure of the

depends-on relationship.

Partitioned Minimization. Each such partition is independent of the others.

That is, the whole set is satisfiable iff every partition is satisfiable. This also means

that if any constraint c in some partition fails, any other constraint that is relevant

to the failure of c is in that partition. Consequently, to localize faults it suffices

to minimize each relevant partition individually and union the results. Relevant

partitions are those that have originally failing constraints from the input unsatisfiable

constraint set for the buggy program. The procedure to localize bugs within partitions

is formalized as minimizeWCC (Algorithm 3).

Benefits of Partitioning. Without this partitioning, a direct use of Delta

Debugging can only find a single minimal unsatisfiable subset — one cause of failure

— but may be many subsets in practice. In contrast, partitioned minimization can

find multiple such sets (one for each relevant partition), increasing the likelihood of

implicating the correct bug location. An example of this is detailed in Chapter 6.6,

where minimizeWCC localizes a bug that minimize does not.
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Algorithm 3 Partitioned Constraint Minimization

Require: C is an unsatisfiable constraint set
Require: F ⊆ C is the set of failing constraints in C
Require: consLoc returns the program locations associated with a constraint
Require: WCC(C) returns the dependency partitions of C
Require: RelWCC(C) = {p | p ∈ WCC(C) ∧ ∃c ∈ p. c ∈ F}

1: procedure MINIMIZEWCC(C)
2: Cs′ ← {p′ | p ∈ RelWCC(C) ∧ solve(p) = UNSAFE ∧ p′ =
DeltaDebug(p, ∅)}

3: locs ←
⋃⋃

map(consLoc, Cs′)
4: return locs
5: end procedure



Chapter 5

Automatically Synthesizing Qualifiers

Here we introduce an algorithm that allows additional correct programs to be verified

by constraint-based type systems. We do this by inferring correct refinements for

intermediate variables as well as by computing a rich abstract domain.

LiquidHaskell fails to verify some programs because it lacks the correct set of

(user provided) qualifiers that are needed to synthesize appropriate refinement types.

We infer qualifiers by transforming typing constraints into a Horn clauses, on

which we perform a bounded unrolling, yielding logical formulas that are interpolated

to yield suitable qualifiers, and hence refinement types.

The key insight is that two relevant approximations are orthogonal: solving over

the abstract domain and the qualifiers given by interpolation with k-unrolling. That

is, in some cases Liquid Haskell can prove a partially-annotated program correct on

its own. In other cases, including those in which the partially-annotated program’s

constraint graph is k-bounded, the type annotations Ξ provided by interpolation can

prove the program correct. Finally, in all other cases, the set of predicates Q returned

by interpolation produce an improper subset of an abstract domain over which the

28
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program can be proved correct.

Finally, we say a constraint graph is k-bounded if ∀k′ > k the k′-bounded unrolling

of the graph is equal to the k-bounded unrolling. Our overall predicate discovery algo-

rithm correctly infers all types for constraint sets with solvable k-bounded constraint

graphs. Once the constraint graph has been unrolled to a tree we apply tree interpo-

lation to discover predicates and intermediate types.

We present our algorithm in four stages. First, Liquid type constraints are gener-

ated from the input annotated Liquid Haskell program. Second, we transform those

Liquid type constraints into a system of Horn clauses. Third, because recursive Horn

constraints cannot generally be solved, we approximate the problem via k-bounded

unrolling the cyclic system of constraints into a tree-structured formula. Fourth, we

compute a disjunctive interpolant (conceptually, an explanation of why the refine-

ment type annotations are not violated) for the tree-structured formula. We then

use the interpolant to map κ-vars to formulas that make the original Liquid Types

constraints valid.

If that constraint set happens to admit bounded unrolling, our algorithm always

finds a solution that admits verification. In this case, our algorithm is correct as well

as complete relative to our underlying refinement logic.

5.1 Refinement Types

Refinement types encode invariants by decorating types with predicates that constrain

the values described by that type. We represent input programs as 3-tuples (∆,Σ,Θ),

where ∆ is a set of type variables, Σ : ∆ → 2T + ⊥, assigns to each type variable a

set of predicates from our underlying theory or ⊥, and Θ is a set of Horn constraints.
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The interpretation of ⊥ is that the user has not provided a type annotation for that

program element; by contrast, the empty set of predicates means that the program

element is unconstrained.

A refinement type system, such as Liquid Haskell, can verify the correctness of

programs (∆,Σ,Θ) over an abstract domain Q by first inferring type annotations

and then checking them. We use ι to denote type inference, with ι(∆,Σ,Θ,Q) 7→ Ξ,

where Ξ : ∆ → 2T . We use σ to denote refinement type checking, with σ(∆,Ξ,Θ) :

{SAFE,UNSAFE}. In this formulation, L(∆,Σ,Θ,Q) : {SAFE,UNSAFE}, formed

by the composition of the two, takes a partially-annotated program and an abstract

domain, over which it solves the system of induced constraints, deciding if the program

is safe or unsafe.

Our predicate discovery algorithmD runs before type inference, withD(∆,Σ,Θ) 7→

Ξ. Given unrefined types ∆ and an annotation partial mapping Σ, it returns an as-

signment of predicates to type variables that satisfy our system of constraints Θ. That

is, it takes an unrolled constraint tree and produces Q, a set of predicates that extend

the abstract domain, and Ξ : (∆ → 2T ), a mapping from intermediate variables to

type annotations. If the unrolled constraint tree is k-bounded then σ(∆,Ξ) = SAFE

— the type annotations Ξ allow dependent type checking to verify the program.

Otherwise, Q produces an (improper) subset of an abstract domain over which the

program can be proved safe using a refinement type checker.

5.2 Liquid Haskell to Liquid Type Constraints

The first stage of our algorithm uses the standard LiquidHaskell constraint genera-

tor [26, Fig. 4] to generate Liquid Type constraints from an input partially-annotated
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LiquidHaskell source program. See Chapter 2 for a description of Liquid Type

constraints.

Running Example. We illustrate all stages of our algorithm with the function

sum:

1 sum :: k:Int -> { v:Int | k <= v }

2 sum = go

3 where

4 go k

5 | k <= 0 = 0

6 | otherwise = let s = go (k-1) in s + k

This program, which computes the sum of the first k natural numbers, is required

to produce output that is not less than its input (per the refinement type specifi-

cation). LiquidHaskell requires user-provided qualifiers (predicate templates) to

verify that safety property.

The following relevant Liquid Types constraints are generated from sum1:

k : κk,k ≤ 0 ` {ν = 0} <: κs (5.1)

k : κk,¬(k ≤ 0),s : κs[k/k− 1] ` {ν = s + k} <: κs (5.2)

∅ ` Int <: κk (5.3)

k : κk ` κs <: {ν ≥ k} (5.4)

Intuitively, κk and κs denote the unknown refinements of the input and output

type of go. Constraints 5.1 and 5.2 encode that the two branches of the conditional

expression must both be subtypes of the ultimate output type.

1We abbreviate {ν : τ | e} below as {e}, where τ = Int.
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Constraint 5.3 and 5.4 encode the pre-condition and post-condition on κk and κs

given by the refinement type specification on sum. Note that s is the output of go

with argument k-1; as denoted by the substitution in the constraint 5.2. Also note

that 5.2 is cyclic as κs appears on both sides of the implication.

5.3 Liquid Type Constraints to Horn Clauses

The second stage of our algorithm transforms a Liquid Types subtyping constraint

into a Horn clause with pending substitutions. We make use of the Liquid Types

notion of pending substitutions [26, Sec. 4.1], which correspond to the arguments

passed to a possibly-recursive function. Our transformation is recursively defined on

the structure of the Liquid Type constraints and retains these pending substitutions

so that they can be applied.

Horn Clauses A Horn Clause is of the form B → H with a body B and a head

that belong to the grammar:

Atom A ::= κθ | e

Body B ::= A ∧B | true

Head H ::= A

An atom is either an uninterpreted symbol κ with pending substitutions θ, or an

expression from an underlying (for our purposes, SMT-decidable) theory. A Horn

clause is an implication from a body to a head, where the head is an atom, and the

body is a conjunction of atoms.

Encoding Constraints We now define a function Enc(·) that transforms a Liq-

uid Type constraint into a constrained Horn clause with pending substitutions. Sub-



5.3. Liquid Type Constraints to Horn Clauses 33

typing constraints have the general form Γ ` {ν : B | e1} <: {ν : B | e2}, where Γ

is an environment and e1, e2 are both expressions, which can either be κ-vars or for-

mulae from the refinement logic. An environment is a list of bindings. Bindings have

the general form x : {ν : τ | e}, where e is an expression in our predicate calculus.

We define our Enc(·) function which encodes constraints as follows:

Enc(Γ ` T1 <: T2) = Enc(Γ) ∧ Enc(T1)→ Enc(T2)

Enc(Γ) =
∧
b∈Γ

Enc(b)

Enc(x : {ν : τ | e}) = EncExpr(e, x)

Enc({ν : τ | e}) = EncExpr(e, ν)

EncExpr(e, x) =


κ(x)θ e = κθ

e[ν/x] otherwise

Note that the environment is encoded as a conjunction of recursively-encoded

bindings and guard predicates. Bindings are encoded as expressions. If the expression

is an uninterpreted symbol variable known as a κ-variable then we encode it as a call to

a new undefined predicate. Otherwise the expression is augmented with a substitution

that captures the constrained value of the variable.

Example. The Liquid Type constraints for sum are transformed into the following

set of Horn clauses2:

2Note that we assume κk = true, which means that sum can take any integer as an argument;
we elide this part of the transformation below for brevity.
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κk(k) ∧ k ≤ 0 ∧ ν = 0→ κs(ν) (5.1)

κk(k) ∧ k > 0 ∧ κs(s)[k/k− 1] ∧ ν = s + k→ κs(ν) (5.2)

true → κk(ν) (5.3)

κs(ν)→ ν ≥ k (5.4)

Note the one-to-one mapping between constraints and Horn clauses as well as the

pending substitution in (2), now applied to Horn clause logical formulae rather than

Liquid Type constraints. Finally, note that in each case we transform κ-variables into

predicate symbols (we retain the same names for clarity).

Horn Queries A Horn clause B → H is a query if H is not a κ-var. In this

domain, a query enforces the safety property given in a refinement type annotation.

Note that the safety specification ensures that encoding always produces a query: for

example (5.4), enforces a lower bound the result of sum.

5.4 Unrolling Cyclic Horn Clauses

The transformation above converts Liquid subtyping constraints into constrained

Horn clauses (CHC) with pending substitutions. Solving for a set of CHCs amounts

to finding an interpretation (i.e. predicates) for the predicate symbols that make all

of the clauses in the set valid. In this domain, the predicate symbols are κ-vars, and

a solution to a κ-var corresponds to the inferred refinement type of a program expres-

sion. In the sum example, the solution to κs corresponds to the inferred refinement

type of sum that satisfies the postcondition given in the refinement type annotation.

There is an extensive literature on interpolation-based methods to solve a set

of CHCs. However, we cannot directly use such methods to find solutions for κ-vars
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because of the presence of recursive constraints. To make such methods applicable, we

introduce a bounded query function that constructs a labelled tree-structured formula

that corresponds to a disjunctive interpolation problem (see §5.5). This formula is

a failure derivation for a Horn query: its satisfiability corresponds to the violation

of the safety property encoded by the query. Because Liquid Types constraints can

be possibly recursive, and the corresponding problem of solving for recursive CHCs

is undecidable in general [27], we create a recursion-free approximation by finitely

“unrolling” a set of CHCs with pending substitutions.

Some preliminaries are needed before we can define the bounded query function.

Dependencies Let HC be a set of Horn clauses. The clauses defining κ, written

HCκ are the set of clauses in HC whose heads are of the form κθ. We write Dep(·)

for the set of κ-variables on which an atom, head, or body depends as defined as:

Dep(κ(x)θ) = {κ} ∪
⋃

B→κθ∈HC

Dep(B)

Dep(e) = ∅

Dep(A ∧B) = Dep(A) ∪ Dep(B)

Recursive Dependencies A variable κ is recursive if it depends upon itself, i.e.

κ ∈ Dep(κ). A body B is recursive if it contains a recursive κ. Let NHCκ be the

subset of bodies in HCκ that are not recursive.

Bounded Dependencies The D-bounded dependencies of κ are defined as

BDep(κ, i,D) =


HCκ if i < D

NHCκ otherwise
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Labeled Tree dd a comment to this line We represent the bounded query as a

labeled and-or tree. Given a set of labels L,

AndOr ::= And(Expr, {AndOr})

| Or({AndOr})L

where Expr is an expression. We will ensure that each label L appears at most once

in each labeled tree.

Bounded Queries The function BQ(B → H,D) constructs a bounded query

tree for a query constraint. It makes recursive calls to the function BQ(B,m,D)

(resp. BQ(A,m,D)), which takes as input a body B (resp. atom A) a depth D and

an auxiliary map m that tracks, for each κ-variable, the depth that it has already

been unfolded to, and returns as output a labeled formula corresponding to the body

(resp. atom). This function is defined in Figure 5.4

We then rename instances of x in p to avoid capture, indexing each x by the

unrolling depth. This entire process is analogous to loop unrolling with translation

to SSA form as in bounded model checking: x(n) captures the value of the x after n

recursive calls. In what follows, we represent this by the sequence x, x′, x′′, . . .

Example. If we let K = 2, the query for constraint (3) in sum is given in Figure

5.2. The branches correspond to disjunctions. Notice that we had to rename s to s’

in some nodes to avoid to avoid capture.
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BQ(B → H,D) = And(¬H ∧ head, children)

BQ(B,m,D) = And(head, children)

where head = ∧b∈BE(B)BQ(b,m,D)

children = ∪b∈BH(B){BQ(b,m,D)}
BQ(κ(x)θ,m,D) = Or(∪B∈BsBQ(Bθ[ν/x],m′, D))L

where m′ = m[κ 7→ m(κ) + 1]

Bs = BDep(κ,m(κ), D)

L = A fresh label

BQ(e,m,D) = e

BE(B1 ∧ . . . ∧Bn) ={Bi | Bi is not a κ-var}
BH(B1 ∧ . . . ∧Bn) ={Bi | Bi is a κ-var}

Figure 5.1: Bounded Queries

ν < k
L1

k ≤ 0 ∧ ν = 0 k > 0 ∧ ν = s + k
L2

k− 1 ≤ 0
∧ s = 0

k− 1 > 0
∧ s = s’ + (k− 1)

L3

(k− 1)− 1 ≤ 0 ∧ s’ = 0

Figure 5.2: The unrolled failure derivation for constraint (3) of sum with unrolling
depth D = 2. Each branch corresponds to a disjunction. The labels for subformulas
are shown overlined at the top of each node.
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5.5 Interpolation and Solutions to κ-vars

A bounded query tree represents multiple failure derivations for a query constraint,

with each failure derivation representing a distinct tree interpolation problem, which

is a generalization of Craig interpolation 3. Tree interpolants can be used to com-

pute solutions to Horn clauses, as in the Duality algorithm of [21]. We use tree

interpolants here in a similar manner.

The bounded query formulas correspond to a disjunctive interpolation problems [27].

Sub-formulas at a Label Recall that each label L appears at most once in a

formula e. Let e ↓ L be the (unique) subformula of e that appears under label L i.e.

e ↓ L = e′ where (e′)L occurs in e

The children of a label L (in a formula e) are the labels L′ that appear in e ↓ L. Let

e[L/g] correspond to substituting the subformula of e under L with formula g. For

example, in the formula e corresponding to Figure 5.2, e ↓ L1 = k ≤ 0 ∧ ν = 0.

Disjunctive Interpolants Formally, given a formula f with location labels that

only occur under disjunction and conjunction, a disjunctive interpolant I is a mapping

from locations to formulas such that

• For each label L with children L1, . . . , Ln,

f [L1/I(L1), . . . , Ln/I(Ln)] ↓ L |= I(L)

3The bounded query tree itself corresponds to a disjunctive interpolation problem [27], which is
a generalization of a tree interpolation problem in that labels can occur under both conjunction and
disjunction.
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• For each label L,

V(I(L)) ⊆ V(f ↓ L) ∩ V(f [L/true])

where V(e) are the free variables in e (cf. [27, Def. 2]).

• If all the labels in f are L1, . . . , Ln, then

f [L1/I(L1), . . . , Ln/I(Ln)] |= false

An and-or tree can be trivially transformed into a tree interpolation problem:

toQuery(And(h,C)L) = h
∧
ci∈C

toQuery(ci)

toQuery(Or(C)L) =

(∨
ci∈C

toQuery(ci)

)
L

We use the disjunctive interpolation algorithm as described in [27] to reduce dis-

junctive interpolation queries to tree interpolation, and the use a standard tree inter-

polation engine to compute the disjunctive interpolants.

Given a disjunctive interpolant I, we can compute a set of qualifiers that can be

used as a solution to a κ-variable by applying a substitution to an interpolant location

that corresponds to the “inverse” of the substitution applied to the location during

unrolling. Formally, we define a mapping Sol(I, κ):
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Sol(I, κ) =
⋃

L∈KL(κ)

I(L)θ−1[x/ν]

where θ = SL(L)

x = VL(L)

where θ−1 is the “inverse” of θ (e.g. if θ = [k/k − 1], then θ−1 = [k − 1/k]).

SL(·) and VL(·) are both arguments passed to BQ during unrolling. That is, given

BQ(κ(x)θ,m,D) = And(. . . , . . .)L, SL(L) = θ and VL(L) = x.

These formulas returned by sol are exactly the solutions to inferred types Ξ, but we

further transform formulas returned by sol before we convert them to qualifiers. First,

we split apart conjuncted predicates into their conjuncts. We do this because qualifiers

should be “atomic”, and since the Liquid Types constraint solver conjuncts predicates

computed from qualifiers this presents no loss — in fact, as the example below shows

with λk.k ≤ 0, this technique can be used to filter out irrelevant conjuncts.

To produce qualifiers from these formulas, we simply bind the free variables of the

formulas with lambda abstractions. We can then union all of the qualifiers for each

κ-var, which gives us an abstract domain Q that the Liquid Types constraint solver

can use to find a solution to the original constraint set.

Example. The and-or tree in figure 5.2 yields the interpolant:
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I (L1) = ν ≥ k ∧ k ≤ 0

I (L2) = s ≥ k− 1

I (L3) = s′ = 0

From these interpolants we can compute a set of qualifiers

{λk.k ≤ 0, λν.λk.ν ≥ k, λν.ν ≥ 0,

λν.λk.k ≤ 0 ∨ ν ≥ k ∨ ν ≥ 0}

Using this set, the Liquid Types constraint solver can compute that κs = ν ≥

k ∧ ν ≥ 0 is a valid solution to the original constraint set. This solution corresponds

to a valid refinement type of sum, and in fact it can replace the refinement annotation

as an even stronger postcondition.

However, because our unrolling algorithm is only an approximation for solving

recursive constraints, Sol(I, κ) will not always be a solution for κ. Moreover, the

Liquid Types constraint solver might fail to find a solution given the qualifiers in

sol, since finding the solution to the constraints might require a higher unrolling

depth. In that case, we return our expanded abstract domain and prompt the user

to provide either additional type annotations or qualifiers, as they would were they

using LiquidHaskell. This ensures that our algorithm is sound — that is, it will

only return SAFE only when it computes a set of qualifiers that can be mapped to a

valid refinement type annotation.

By construction, if the failure derivation constructed from the bounded query is
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satisfiable, however, the refinement type annotation corresponding to the constraint

set is invalid. In this case an interpolant does not exist, and our algorithm returns

UNSAFE. Furthermore, we can query the interpolation oracle for a counterexample

that corresponds to argument values that provide witness to the invalidity of the

annotation. For example, if sum instead had the refinement annotation

1 sum :: k:Int -> { v:Int | v < k }

The algorithm determines that the corresponding failure derivation is satisfiable,

and can provide a counterexample: k = 0, since sum 0 = 0 and thus ¬(sum 0 < 0).
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Algorithm 4 Unroll

Require: C is a set of Liquid subtyping constraints
Require: V := set of κ-vars in C
Require: D is a (finite) unrolling depth
Require: Interpolate is a tree interpolation oracle
Require: Solve is a Liquid Types constraint solver

1: procedure unroll(C,D)
2: QS := λκ.∅
3: i := 0
4: while i ≤ D do
5: for all queries B → H ∈ Enc(C) do
6: q = BQ(B → H, i)
7: QS := QS ∪ extractSol(q)
8: end for
9: Q :=

⋃
κ∈V QS(κ)

10: if Solve(C,Q) = SAFE then
11: return SAFE
12: else
13: i := i+ 1
14: end if
15: end while
16: return UNKNOWN
17: end procedure
18: procedure extractSol(q)
19: ts = T(q)
20: QS := λκ.∅
21: for t ∈ ts do
22: I = Interpolate(q)
23: if I does not exist then
24: return UNSAFE
25: end if
26: for κ ∈ V do
27: QS := QS[κ 7→ QS(κ) ∪ Sol(I, κ)]
28: end for
29: end for
30: return QS
31: end procedure



Chapter 6

Evaluation

We implemented our proposed algorithms and evaluated their performance by test-

ing them on Haskell programs with Liquid Haskell type annotations. We ran our

experiments on a Lenovo Z70-80 with a Core i7 at 2.40GHz.

We consider the following research questions:

• Section 6.2 — Does our fault localization algorithm provide better accuracy

than vanilla LH typechecking?

• Section 6.3 — How does the speed of our fault localization algorithm compare

to that of vanilla LH typechecking?

• Section 6.4 — Does our predicate discovery algorithm infer all off the needed

intermediate types for k-bounded systems of constraints?

• Section 6.5 — How does our predicate discovery algorithm fare for constraint

systems that don’t have this property?

44
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6.1 Benchmark Selection

Because programs with Liquid Haskell type annotations are not yet common, we

constructed a set of microbenchmarks to evaluate both of our algorithms. For fault

localization, we modified 28 programs with Liquid Haskell type annotations. These

programs were drawn from Liquid Haskell’s test suite, found on Github. For these

programs, we modified either the constraint set generated or the source code itself.

For predicate discovery, we considered two sets of tests: one in which programs have

k-bounded constraint graphs, and one in which they do not. Some are from the Liq-

uid Haskell test suite while others were written for this evaluation.1 The programs

range in size from a few lines to over 200 lines. The programs implemented tradi-

tional data structures or algorithms (e.g., red-black tree, AVL trees, quick sort, merge

sort, arithmetic kernels). The Liquid Haskell annotations for each program encode

the total functional correctness of each data structure or algorithm. A conforming

implementation that passes the constraint-based type checking thus comes with sig-

nificant correctness guarantees. However, many programs can pass Haskell’s standard

Hindley-Milner type checking without satisfying the Liquid Haskell constraints and

thus have latent bugs.

Fault Localization. To evaluate fault localization with respect to latent bugs,

we seeded one defect in each program. Each seeded bug was introduced via a syntactic

change. The bugs were seeded using local mutation operators common in mutation

analysis (cf. [23]), such as replacing one arithmetic operation with another. Such

mutations have been previously shown to be indicative of developer mistakes [14] and

potentially as difficult to locate as natural human bugs [17].

1Our benchmarks and results are available at url removed for double-blind submission, contact
PC chair
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To measure the correctness of fault localization, we require a ground truth notion

of which lines should be considered when debugging the fault. One set of ground

truth bug locations is induced by fault seeding: for any file, the location of the bug is

just the location that was mutated. In addition, an expert annotated a second set of

ground truth locations based on manual inspection, without information about the

fault seeding process. The two ground truths widely agree with each other, except

that the expert is more lenient, sometimes giving several possible bug locations. This

is because the human-judged “cause” of a bug is often ambiguous. The expert also

annotated the difficulty of each benchmark. The labels “easy”, “med”, and “hard”

subjectively indicate the distance between the locations mapped to the constraints

that fail during type checking and the actual defect cause.

Given a ground truth annotation (i.e., locations T = {t1, t2, . . . } that implicate

and explain the bug) and the output of an algorithm, (i.e., locations A = {a1, a2, . . . }

should be inspected) we measure accuracy using standard notions from statistics and

information retrieval. Every location reported by the algorithm that is in the ground

truth set (i.e., ai ∈ T ) is a true positive. Every location reported by the algorithm

that is not is a false positive. Every location in the ground truth but not reported by

the algorithm (i.e. ti 6∈ A) is a false negative.

Finally, we observe that users tolerate some amount of imprecision in the output

of a fault localization algorithm. For example, given that an algorithm outputs two

locations, one of which is the bug location and the other is spurious, a user may still

count the output of the algorithm as useful [15, 1]. This is especially true when the

effort required to rule out a false positive is generally low, as is the case for many

lines implicated by our algorithm. To capture this in our evaluation, we measure

false positives relative to some tolerance level n: if an algorithm returns fewer than n
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spurious bug locations for a file, then the algorithm is not counted as having a false

positive for that file.

Predicate Discovery. To evaluate predicate discovery, we constructed a set of

benchmarks by considering Liquid Haskell programs that had been manually anno-

tated and removing critical annotation components. The particular sort of informa-

tion removed varies with the research question considered as well as the specific test

case. Our predicate discovery algorithm is successful when Liquid Haskell can verify

the result.

6.2 Fault Localization Accuracy

We measured the accuracy of our fault localization algorithm (in terms of true pos-

itives and false positives) with respect to two ground truth sets. We consider three

algorithms: minimizeWCC, specialized to Horn Clause-based constraint type sys-

tems such as Liquid Haskell; minimize, applicable to any constraint-based type

system; and the vanilla error reporting by Liquid Haskell,2 a baseline representing

the state-of-the-art.

The results are summarized in Table 6.1. Our fault localization algorithms find

many more bug locations relative to both ground truths compared to vanilla reporting.

Whereas vanilla reporting finds about a third of the bug locations, minimizeWCC

and minimize both localize almost two-thirds of the defects each for both ground

truths.

Vanilla reporting does return fewer false positives than either of the proposed

2Vanilla reporting returns the locations mapped to failing constraints for an unsatisfiable con-
straint set.
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False False False
True Positives Positives Positives

Ground Truth Positives (t=0) (t=1) (t=2)

minimizeWCC seeded 18 25 14 9
minimize seeded 17 25 10 6

Vanilla seeded 8 20 7 1

minimizeWCC expert 21 24 13 9
minimize expert 20 22 10 6

Vanilla expert 10 19 6 1

Table 6.1: Fault localization accuracy. “False Positives (t=n)” counts files with false
positives (out of 28) for tolerance level n. “True Positives” counts files with true
positives (out of 28) at a given tolerance t. The “Ground Truth” column indicates
which of the two ground truth sets is used.

algorithms at all tolerance levels. This is to be expected, since our algorithms return

locations that are in some sense inconsistent with each other (since they are mapped

to minimal unsatisfiable sets), not just locations from failing constraints. This allows

our algorithms to find failure causes more often, but it also increases the number

of false positives. However, while the number of false positives for both proposed

algorithms is higher than vanilla reporting, the false positives themselves are quite

reasonable in practice. For example, 11 of the 25 false positives from minimizeWCC

were single spurious locations (as indicated by the difference between the t = 1 and

t = 0 columns in Table 6.1, since a tolerance t = 1 “forgives” only a single false

location), which do not represent a significant developer burden.

Table Table 6.2 breaks down algorithm success per benchmark. We also break

down benchmarks by defect category. Our proposed algorithms also never found fewer

bug locations than vanilla reporting for any defect category, and in some categories

our algorithms found many more bug locations than vanilla reporting. For arithmetic
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True Positive?
Defect Seeded Expert

File Difficulty Category v m mW v m mW

AVLRJ hard guard – – – – – –
Eval easy var – – – – – –
Evens med arith – X X – X X
FilterAbs med bool X X X X X X
GCD easy arith – X X – X X
InsertSort easy var – X X – X X
KmpIO hard arith – X X – X X
KmpVec hard var – X X – X X
ListLen easy bool X X X X X X
Maybe easy var – X X – X X
Mergesort med guard – – – – – –
MutualRec easy arith X X X X X X
NullTerm hard arith – X X – X X
Permutation hard list – – – – – –
PointDist easy arith X – X X – X
Poly0 easy var – X X – X X
QuickSort hard bool – X X – X X
RBTree easy constr – – – – – –
RecQSort easy var X X X X X X
Record0 easy arith X – – X – –
RelativeComplete med arith – X X – X X
Repeat easy arith X X X X X X
Shuffle hard badspec – – – – X X
Stacks hard arith – – – – – –
Top hard arith – X X – X X
TreeSum easy badspec – – – X X X
Vectors easy badspec – – – X X X
WBL easy arith X X X X X X

Table 6.2: Per-benchmark fault localization success. The “Difficulty” column marks
the difficulty of that benchmark as marked by the expert. The “True Positives?”
columns indicate whether vanilla, minimize, or minimizeWCC succeeded for that
benchmark with respect to the automatically generated ground truth from seeded
bugs (“Seeded”) and to the ground truth marked by the expert (“Expert”). The
“Defect Category” column lists an abbreviated classification of the bug for that bench-
mark:

arith wrong arithmetic expression badspec wrong refinement type annotation
bool wrong boolean expression constr wrong constructor

guard wrong predicate in guard list wrong expression involving a list
var wrong variable in expression
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Algorithm Min Time Max Time Avg Time

minimizeWCC 0.004 43.64 3.73
minimize 0.120 27.88 3.35

Table 6.3: Time statistics for our proposed algorithms, given in seconds. “Min Time”
and “Max Time” respectively record the minimum and maximum time that the al-
gorithm took to process a single benchmark. “Avg Time” is the average time that
an algorithm took to process a single benchmark.

expression bugs, minimize and minimizeWCC found 9 and 10 bugs respectively,

while vanilla reporting only found 5. For wrong variable defects, minimize and

minimize found 5 bugs each while vanilla reporting only found 1.

Strikingly, for the benchmarks that the expert marked as “hard”, vanilla reporting

only found 1 out of 9 bug locations (relative to the expert’s ground truth) whereas

both minimizeWCC and minimize found two-thirds (6 out of 9) of bug locations.

6.3 Fault Localization Efficiency

Fault localization for constraint-based type systems operates at compile time. It is

important for our algorithms to be efficient (i.e., have reasonable runtimes) because

they are meant to be compile-time tools to help developers either find bugs in their

program or to prove its correctness. For Liquid Haskell, when a program passes the

standard Haskell Hindley-Milner type checking but fails the Liquid Haskell constraint-

based type checking, fault localization is invoked to report implicated lines to the

developer. As a result, localization must run rapidly at compile-time.

Table 6.3 summarizes the running times of our unoptimized prototype. The mean

running time for both fault localization algorithms is quite reasonable: 3.73 seconds

for minimizeWCC, and 3.35 for minimize. Runtimes range from 0.004 seconds
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to 43.64 seconds for minimizeWCC, and from 0.12 seconds to 27.88 seconds for

minimize. Note that runtimes do not necessarily correlate with program sizes: both

algorithms processed the largest benchmark, red black trees, at around 6 seconds each.

These numbers indicate reasonable scaling for larger programs: the time taken relates

to the relevant partitions of the constraint graph, not the program overall.

6.4 Predicate Discovery Type Inference

We evaluated our algorithm’s ability to discover types for intermediate variables en-

abling the verification of programs. We considered 21 microbenchmarks — programs

that had previously been annotated with Liquid Haskell qualifiers sufficient to verify

various correctness properties. We erased all of the qualifiers and applied our algo-

rithm, noting the fraction of unannotated programs that could be proved correct. In

all 21 cases our algorithm discovered types for intermediate variables that allowed

verification — note that this included instances where Liquid Haskell alone would

not have been able to verify the program. This is as expected, since our algorithm is

correct by construction on such k-bounded instances. Our algorithm took a median

of 0.1 seconds and a maximum of 7.1 seconds.

6.5 Predicate Discovery for Abstract Domains

We evaluated our algorithm’s ability to expand abstract domains, yielding an im-

proper subset a domain sufficient to prove correctness. We considered 23 microbench-

marks. These included programs that were not k-bounded for any k. In addition, we

also evaluated on programs that were k-bounded, but for which we only permitted
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our algorithm i < k unrolling. We ran our algorithm on each benchmark, noting the

resulting domain expansion. In each case we determined if the domain expansion was

sufficient to prove correctness (by running Liquid Haskell with the new Q). In 22 of 23

cases our algorithm produces a sufficiently-rich abstract domain. The one failing case

involved an recursive (i.e. not k-bounded for any k) constraint in an implementation

of merge sort; in this case the domain expansion was missing only one qualifier (out

of circa 100). Our algorithm took a median of 0.1 seconds and a maximum of 7.2

seconds.

6.6 Analysis

As expected, the set of bug locations that our minimizeWCC algorithm found is a

strict superset of the set found by our general minimize algorithm. In particular,

minimizeWCC found the bug location in every common file, plus the bug location in

pointDist. The originally failing constraints (call them A and B) in pointDist

are respectively the only vertices in their connected components and are both single-

ton minimal unsatisfiable sets. Constraint B is mapped to the bug location, while

algorithm minimize returns A and thus does not report the bug location. By con-

trast, minimizeWCC returns both and thus implicates the correct location.

On the other hand, vanilla reporting found one bug location in Record0 that the

other algorithms did not. Let the failing constraints be A and B with the bug location

mapped to A. minimize algorithm returns {B,C} as a minimal unsatisfiable set,

which does not implicate the correct location. However, since A and B are in the same

weakly connected component, minimizeWCC returns the same locations and thus

also fails to implicate the bug. (In this case even though A and B both fail, they do
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not constitute a minimal unsatisfiable set.) This example shows that minimizeWCC

resolves some, but not all, cases of ambiguous constraint sets.

Our predicate discovery algorithm performed very well in practice. Its complete-

ness is guaranteed in the k-bounded case, and in each of our 21 such benchmarks it

found a set of intermediate types sufficient for verification. However, in the non-k-

bounded cases we investigated it was very effective as well, learning abstract domain

expansions that admitted the automatic verification of 22 out of 23 such benchmarks

(even finding all but one necessary qualifier in the last case). While in theory our

discovery algorithm need not apply to non-k-bounded cases, in practice it often does,

especially in cases where some initial annotations are available. We view these results

are very promising.
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Related Work

There is a large literature on fault localization for languages with constraint-based

(Hindley-Milner) type systems [8, 11, 28, 32]. We discuss two especially relevant prior

approaches.

The SEMINAL tool by Lerner et al. [20] uses the OCaml type checker as an oracle

in a search procedure to find well-typed programs that are syntactically similar to an

input program that fails to type check, which are then used to construct helpful error

messages. Our fault localization algorithm likewise uses the type checker as an oracle,

but works on the set of constraints generated from the input program instead. Since

the space of constraints is much smaller than the space of possible edits for a program,

our algorithm can be more efficient than the SEMINAL tool without sacrificing the

ability to find bugs.

Pavlinovic et al. [24] reduce fault localization into an instance of the MaxSAT

problem by generating a set of assertions from the input program that are weighted

by a ranking measure provided by the compiler. An SMT solver is used to find a

minimum set of error clauses that can be mapped back to possible bug locations.
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While the approach is successful in finding bugs in OCaml programs, it is unclear

how successfully it could be applied to more sophisticated type systems such as Liq-

uid Haskell. Our algorithm avoids this problem by using the existing constraint set

generated for type checking the input program.

Zhang and Myers [35] induce a labeled directed graph from a set of Hindley-Milner

typing constraints and use Bayesian inference methods to analyze the graph and find

likely bug locations. Our algorithm similarly constructs a graph from a set of Liquid

Haskell typing constraints. While the approach is are effective for Hindley-Milner

type systems, it is not clear how to extend it to more expressive type systems.

There is also a significant literature related to predicate discovery [13].

Bjørner et al. [3] review techniques for reducing program verification to Horn

clause constraints, and review the state of the art in solving systems of Horn clauses.

Unno and Kobayashi [29] describe a procedure for inferring dependent intersec-

tion types using interpolants. Rümmer et al. [27] describes the theory of disjunctive

interpolation in great detail. We show how to extend disjunctive interpolation to

account for potentially recursive refinement typing constraints in order to automat-

ically synthesize refinements for recursive, polymorphic and higher-order programs

manipulating sophisticated data structures.
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Conclusions

Refinement type systems hold out the promise of greater safety and correctness guar-

antees at compile-time. Unfortunately, using such rich type systems can be difficult,

both because of bugs in program implementations and also because of bugs in program

specifications.

We present a fault localization algorithm for the Liquid Haskell type system. Our

algorithm uses the type checker as an oracle to find a minimal unsatisfiable constraint

set, which is then mapped to a set of possible bug locations. We also present a

predicate discovery algorithm that uses k-bounded unrolling and Craig interpolation

to learn intermediate types as well as abstract domain expansions. These annotations

allow implementations to be proved correct.

We evaluated our algorithms on benchmarks of Haskell programs with and without

type annotations. Our fault localization algorithm produces minimal false positives

(almost half of which are a single spurious location) and is efficient enough to be

used at compile-time. It is much more effective at fault localization than the Liquid

Haskell type checker, localizing twice as many bugs overall and finding six times more
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“hard” bugs than the type checker. Our predicate discovery algorithm is correct

by construction on k-bounded instances, finding annotations that admit program

verification. Together, our two algorithms significantly reduce the barrier to entry for

using refinement types systems.
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