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Abstract

The dynamics of decision-making have been widely studied over the past several decades through5

the lens of an overarching theory called sequential sampling theory (SST). Within SST, choices are

represented as accumulators, each of which races toward a decision boundary by drawing stochastic

samples of evidence through time. Although progress has been made in understanding how decisions

are made within the SST framework, considerable debate centers on whether the accumulators exhibit

dependency during the evidence accumulation process; namely whether accumulators are independent,10

fully dependent, or partially dependent. To evaluate which type of dependency is the most plausible

representation of human decision-making, we applied a novel twist on two classic perceptual tasks; namely,

in addition to the classic paradigm (i.e., the unequal-evidence conditions), we used stimuli that provided

different magnitudes of equal-evidence (i.e., the equal-evidence conditions). In equal-evidence conditions,

response times systematically decreased with increases in the magnitude of evidence, whereas in unequal-15

evidence conditions, response times systematically increased as the difference in evidence between the two

alternatives decreased. We designed a spectrum of models that ranged from independent accumulation to

fully dependent accumulation, while also examining the effects of within-trial and between-trial variability.

We then fit the set of models to our two experiments and found that models instantiating the principles of

partial dependency provided the best fit to the data. Our results further suggest that mechanisms inducing20

partial dependency, such as lateral inhibition, are beneficial for understanding complex decision-making

dynamics, even when the task is relatively simple.
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Introduction

For decades, decision-making researchers have proposed various concepts detailing how the state

of the evidence evolves throughout the decision-making process, yet a general consensus concerning the35

nature of the decision-making process remains elusive (Carland, Thura, & Cisek, 2015; Jones & Dzhafarov,

2014; Ratcliff, 2006; Ratcliff & Smith, 2004; Teodorescu & Usher, 2013). Because decision models play

such an important role in enhancing our understanding of individual differences in cognitive dynamics,

uncertainty about the general architecture of evidence accumulation has produced a growing tension. We

argue that one explanation for our lack of consensus is the sufficiency criterion in the model development40

process. The field has evolved a set of benchmarks that all models must pass in order to be considered a

reasonable description of the decision-making process. For example, a standard paradigm is to present

stimuli with varying levels of support for one of multiple (e.g., two) alternatives (Erlick, 1961; Lee & Janke,

1964; Ratcliff, 2006; Ratcliff & Rouder, 1998; Swensson, 1972). Another benchmark involves the data that

result from changes in the task instructions, such as emphasizing the speed or accuracy of the decision45

(Ratcliff & McKoon, 2008; Strayer & Kramer, 1994; Vickers, Burt, Smith, & Brown, 1985; Vickers & Smith,

1989; Vuckovic, Kwantes, Humphreys, & Neal, 2014; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008;

Wickelgren, 1977). Somewhat paradoxically, due to our consensus about experimental benchmarks, all
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serious theoretical contenders have been optimized to pass these benchmarks with ease, ultimately creating

a theoretical stalemate until other experimental benchmarks are employed (Brown & Heathcote, 2008;50

Ratcliff, 1978; Ratcliff & Rouder, 1998; Tsetsos, Usher, & McClelland, 2011; Usher & McClelland, 2001).

In this article, we present a simple, yet nonstandard manipulation nested within the standard

benchmarks across two different experiments. Specifically, the tasks include conditions with equal-evidence,

variable total sums of evidence within the stimulus, and varying differences in supporting evidence

between the options. This stimulus design affords a variety of conditions and patterns that must be55

captured simultaneously, and thus provides strong constraints on extant theoretical treatments of how

stimulus evidence maps onto decision variables (i.e., choice and response time).

Although the experiments reported below are clearly valuable as a benchmark for subsequent

theoretical developments, they are ultimately a means to an end. In this article, our goal is to test and

evaluate the relative capabilities of evidence accumulation architectures. We focus our analyses on three60

types of dependency that may exist among choice alternatives: fully dependent, partially dependent, and

independent. To provide a rigorous evaluation, we designed a set of 12 models, each of which instantiate

various forms of dependency among alternatives. The data alone provide strong evidence against fully

dependent and independent architectures, leaving only partially dependent architectures as a reasonable

explanation for our data. Although we also provide full evaluations of within- and between-trial variability,65

ultimately these analyses reveal that such variation cannot compensate for the architectural deficits of fully

dependent and independent accumulator models.

The outline of this article is as follows. First, we review extant theoretical accounts of evidence

accumulation, emphasizing their differences with respect to assumptions about dependency among choice

alternatives. Second, we review various experimental paradigms that provide support for our specific70

experimental design. Third, we discuss previous model comparison efforts, noting the distribution of

models tested as well as the experimental data used to evaluate the models. Fourth, we provide some

“theoretical predictions” from the three classes of model architecture (i.e., fully dependent, independent, and

partially dependent) for the types of manipulations used in our experiments. Although these evaluations
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are inconclusive because they do not explore the full range of possible forms of models within each class, we75

hope this section orients the reader to the notion that the architecture alone mandates specific predictions

for the patterns in behavioral data that can be expected from the experimental designs we use in this article.

Fifth, we describe our two experiments and the pattern of key variables in succession. Sixth, we provide

two detailed analyses. In the first analysis, we compare the full class of models by fitting each of them to

the two experiments. Evidence for each model is evaluated, and a discussion about consensus is provided.80

In the second analysis, we further explore the role of within- and between-trial variability in accounting

for these data, because combinations of these mechanisms have been provided as explanations for similar

patterns of results. The results of our analyses indicate that partially dependent accumulator models, and

in particular the Leaky Competing Accumulator model, are the preferred models for fitting to these kinds

of data. Subsequently, we close with a discussion concerning previous modeling efforts involving the Leaky85

Competing Accumulator model and speculate about other extant models that could potentially fit our data.

Extant Theories about Evidence Accumulation

The process of decision-making has been successfully represented using the overarching theory of

sequential sampling (Busemeyer & Townsend, 1993; Cisek, Puskas, & El-Murr, 2009; Krajbich & Rangel,

2011; Ratcliff, 1978; Usher & McClelland, 2001; Wang, 2002). Models within this framework assume that90

each choice alternative is represented as an accumulator, and these accumulators race toward a decision

threshold by integrating noisy evidence for their corresponding alternatives. The integration of evidence

with respect to time allows evidence for a particular alternative to accumulate, where each response

alternative will accumulate at a different rate based on assumptions about how the physical stimulus maps

onto the psychological perception. Once one of the alternatives reaches a prespecified amount of evidence95

(i.e., a threshold), a decision is made corresponding to the winning accumulator. The latency between

stimulus presentation and an accumulator reaching a threshold is the decision time, but due to elicitation

details such as visual encoding and motor response, a nondecision time parameter is often used to (linearly)

shift the decision time to an explicit prediction about the response time from an experimental task.
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One way to differentiate among many sequential sampling models is by degree of linkage between100

the accumulators in the model. By this approach, there are three different classes of accumulator models:

fully dependent, partially dependent, and independent. Figure 1 illustrates how the evidence accumulation

process transpires for each class of model. In fully dependent models, evidence for one option is also

evidence against the other option. As illustrated in the left panel of Figure 1, full dependency among

alternatives implies perfect anti-correlation in the evidence accumulation process (Ratcliff, 1978, 2006;105

Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Turner, Sederberg, & McClelland, 2016).

In partially dependent accumulator models, each option is represented by a separate accumulator,

but, at each timestep, the value of each accumulator is affected by the input into the other accumulators

or the value of the other accumulators (Shadlen & Newsome, 2001; Usher & McClelland, 2001). Typically,

in these models, stronger evidence in support of one option creates greater suppression of the evidence110

supporting the other options. As illustrated in the middle panel of Figure 1, partially dependent models

assume each piece of evidence affects every option to some extent, but the drive to each accumulator is not

perfectly anticorrelated as it is in fully dependent accumulator models. The inhibition within the evidence

accumulation process was inspired by, and is often likened to, global and local inhibitory dynamics in the

brain (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Shadlen & Newsome, 2001; Usher & McClelland,115

2001; van Ravenzwaaij, van der Maas, & Wagenmakers, 2012; Wang, 2002).

Independent accumulator models accumulate information pertaining to the corresponding alternative

with zero consultation of other accumulation occurring in the decision process (Brown & Heathcote, 2008;

LaBerge, 1962; Merkle & Van Zandt, 2006; Pike, 1971; Rouder, Province, Morey, Gomez, & Heathcote, 2015;

Vickers, 1970). Importantly, as illustrated in the right panel of Figure 1, the evidence accumulation process120

of one accumulator does not explicitly depend on the state of the other accumulator.

In general, sequential sampling models have successfully fit a variety of decision-making data, which

includes experiments presenting participants with difficult decisions where the differences in quality

between the competing options are small (potentially the most constraining for the models). Some studies

have used random dot kinematograms where the direction of coherent dot movement switches mid-trial125
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Figure 1: Illustration of the evidence accumulation process for each class of accumulator model. Each subfigure
illustrates how each accumulator inhibits or does not inhibit the other accumulator during the evidence
accumulation process for a two-choice decision for each class of accumulator model. The blue line represents
the accumulator that eventually crosses the threshold while the red line represents the accumulator that
fails to cross the threshold before the blue accumulator. Consistent with the models in subsequent sections,
in this illustration, a lower bound is in place for all models to prevent the accumulator values from dropping
below zero. The upper dotted black line represents the threshold.

(Holmes, Trueblood, & Heathcote, 2016; Winkel, Keuken, van Maanen, Wagenmakers, & Forstmann, 2014).

Other studies have included conditions in their random dot motion (RDM) task where the motion coherence

is equal to 0 (no coherent movement in any direction) (Heekeren, Marrett, Ruff, Bandettini, & Ungerleider,

2006; Palmer, Huk, & Shadlen, 2005).

Studies have also examined perceptual decision tasks with multiple alternatives (Krajbich & Rangel,130

2011; Niwa & Ditterich, 2008; Tsetsos et al., 2011; Usher & McClelland, 2004). Several recent studies have

examined decisions between choices with equal-evidence supporting each choice and multiple levels of

total evidence (Krajbich, Armel, & Rangel, 2010; Pais et al., 2013; Pirrone, Azab, Hayden, Stafford, &

Marshall, 2017; Smith & Krajbich, 2018). In the present study, we fit multiple representatives of each class

of accumulator model to similar decisions as many of those listed above to determine which model is best135

able to capture all of these data patterns simultaneously.

Some previous studies have compared the three classes of accumulator models directly, but with

conflicting results. Ratcliff and Smith (2004) fit candidates from all three classes of accumulator models

to signal detection and lexical decision data. These authors found that the fully dependent candidate fit

both the signal detection and lexical decision data better than the independent model and both the fully140

dependent and independent candidates fit the lexical decision data better than the partially dependent
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model. However, Teodorescu and Usher (2013) found the partially dependent model fit a brightness

discrimination task better than the independent model, and Teodorescu et al. (2015) found the partially

dependent model fit a different brightness discrimination task better than the fully dependent model. As

we outline below, we believe our work resolves some of this conflict concerning which of the extant models145

provides the best account of perceptual decision-making. Although previous studies have examined the

fit of sequential sampling models to many of the patterns observed in our data, there is no study to our

knowledge that has attempted to fit equal-evidence conditions, zero evidence conditions, and unequal-

evidence conditions simultaneously. Thus, we contribute a 2-choice RDM task where we manipulate the

proportion of coherent motion in the left direction and the proportion of coherent motion in the right150

direction within the same trial. Throughout the article, we will refer to the proportion of coherent dot

motion as simply “coherence”. To ensure that our results were not related to perceptual effects that can

contaminate responses made during RDM tasks (Anstis, 1980; Pilly & Seitz, 2009), we also created a

different perceptual task where participants perform contrast judgments on grating stimuli. Both tasks have

four equal-evidence conditions with varying amounts of total evidence and 12 unequal-evidence conditions155

with differing amounts of disparity in the evidence supporting the choices. We hypothesized that, by

including multiple equal-evidence conditions in our task, the changes in response time at differing levels

of evidence would be challenging for some accumulator models to fit simultaneously with the unequal

conditions. In the following section, we provide theoretical predictions of the models to identify which

patterns in data from our task could potentially be challenging for a given theory of decision-making.160

Theoretical predictions

We illustrate in Figure 2 the general predictions of the three classes of models for the patterns of

response times and accuracies observed in our RDM task. Our task induces a wide array of model

predictions because it includes conditions with equal-evidence supporting each option at various levels

of coherence and is designed such that comparisons can be made between conditions at different total165

levels of evidence. Although all models predict chance accuracy for each equal-coherence condition (not

shown), the models make divergent predictions with regard to response time. As illustrated in Figure 2a, a
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fully dependent accumulator architecture would make the same response time prediction regardless of the

coherence level in the equal-coherence conditions. This is because evidence in each direction is perfectly

anti-correlated, such that evidence supporting one option is perfect evidence against the other option. In170

this case, the evidence does not drive the accumulation process because there is no evidence supporting

either option over the alternative, and the decision boundary is only reached due to noise in the model

architecture (Turner, Gao, Koenig, Palfy, & L. McClelland, 2017). If we assume the noise is fixed across

conditions, the fully dependent architecture will predict the same response times for each equal-coherence

condition. To address this limitation, some researchers have proposed mechanisms that adjust the overall175

level of noise based on the magnitude of the inputs (Ratcliff, Voskuilen, & Teodorescu, 2018; Teodorescu et

al., 2015). In Model Analysis 2, we investigate the utility of this approach with several models that examine

the effect of both between-trial and within-trial variability on the model fits.
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Figure 2: Theoretical predictions of each accumulator architecture. Each subfigure illustrates the theoretical
predictions of each accumulator architecture in a subset of trials in an RDM task where the coherence is
manipulated in both directions in the same trial. a) Log response time predictions of each accumulator
architecture in the equal-coherence conditions. b) Proportion correct predictions of each accumulator
architecture in conditions where the coherence in exactly one direction is equal to 0.3. c) Log response time
predictions of each accumulator architecture in conditions where the coherence in exactly one direction is
equal to 0.3. These response times are associated with a correct response.

As shown in Figure 2a for the equal-coherence conditions, independent and partially dependent

accumulator theories make a prediction in the equal-coherence conditions that is distinct from the fully180

dependent models. Independent accumulator theories and partially dependent accumulator theories would

predict faster response times as the coherence in one direction increases because the evidence becomes

stronger as the coherence increases. In an independent accumulator architecture, the strength of one

accumulator does not directly affect the other accumulator, so the response times will become faster as

the evidence increases. In a partially dependent accumulator architecture, the added drive in the system185
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is reflected in the rate of accumulation that, unlike in the fully dependent accumulator theories, is not

cancelled out because each accumulator only partially inhibits the other accumulators.

Figure 2b shows the predicted proportion correct for each of the three classes of accumulator theories

for conditions where one coherence is equal to 0.3 and the other coherence is equal to some value less

than 0.3. As the difference in coherence between each direction becomes smaller, fully dependent and190

partially dependent theories predict less accurate responses due to stronger inhibition by the accumulator

representing the incorrect response on the accumulator representing the correct response. Independent

accumulator theories also predict less accurate responses as the difference in coherence becomes smaller,

however the severity of this predicted decrease in accuracy will be smaller than that predicted by both

classes of dependent accumulator theories. Because the accumulators in these theories are independent,195

there is no inhibition preventing the accumulator representing the correct response from crossing the

threshold the majority of the time. In these theories, the slight decrease in proportion correct can be

attributed to the accumulator representing the incorrect response crossing the threshold slightly more often

at higher levels of evidence.

In Figure 2c, predicted response times for correct responses are illustrated for conditions where one200

coherence is equal to 0.3 and the other coherence is equal to some value less than 0.3. Both partially and

fully dependent accumulator theories predict slower response times as the disparity between the coherence

in the two directions decreases (i.e., as the decision becomes more difficult). For example, if the coherence

in the left direction is 0.0 and is 0.3 in the right direction, there is less inhibition on the correct choice

(0.3) than there is when the coherence in the left direction is 0.2. Less inhibition allows the accumulator205

representing the correct response to cross the decision threshold faster than that accumulator could if it

faced more inhibition.

Independent accumulator theories predict equal or slightly faster response times as the disparity

between the coherence in the two directions decreases. For independent accumulator theories, the predicted

response time distribution for a specific choice involves a calculation of the probability of making that210

choice, times the probability that one has not made the alternative choice at each time point t. To see how
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these predictions play out in our example, suppose we are trying to compute the probability of choosing

the rightward response when the coherence for right is 0.3. Now suppose that the coherence for the left is

0.1. In this situation, it will be highly likely that the 0.3 choice will be made relative to the 0.1 condition,

and so the probability of a choice being made at any time t will largely depend on the representation for215

the rightward accumulator. Essentially, because there is little chance that the leftward accumulator will win,

it becomes inconsequential in predicting the response time distributions regardless of choice. However, if

the evidence for the leftward response increases to say 0.2, the probability of making a leftward choice has

substantially increased. Now when making predictions for the probability of any response at time t, we

must seriously consider the probability that a leftward choice will be made. For small t, the probability of220

making a response at that time increases, and this increase for small t decreases the probability of making

a response at larger t because it becomes generally more likely that, if a response is made, the response is

made at an earlier time point. The result is that although a comparison between say 0.3 and 0.1 is more

accurate, it may actually be slower than a comparison between 0.3 and 0.2. It is important to note that,

although we are predicting the direction of effect, we are making no claim with regard to whether that225

effect will be significant, which depends on other factors, such as the number of trials and participants.

We test these theoretical predictions in our analyses of the data from our two experiments. Our first

analysis examines the accuracy and response time patterns observed in our experiments. The second

analysis examines the fits of models representing each of our three classes of accumulator dependency

(independent, partially dependent, and fully dependent) to our two data sets. The representative models230

we selected are: the partially dependent Feed-Forward Inhibition model (FFI; Shadlen & Newsome, 2001),

the partially dependent Leaky Competing Accumulator model (LCA; Usher & McClelland, 2001), and

the independent Linear Ballistic Accumulator model (LBA; Brown & Heathcote, 2008) as well as two

independent accumulator variants of the LCA model and one additional fully dependent implementation

of the FFI model. The fully dependent implementation of the FFI model has a similar accumulation process235

to the popular Diffusion Decision Model (DDM; Ratcliff, 1978, 2006; Ratcliff & McKoon, 2008; Ratcliff &

Rouder, 1998; Turner et al., 2016). In our third analysis, we examine the impact of additional sources of

variability on the model fits to both the RDM and the grating data.
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Experiment 1

Our first experiment used an RDM task to examine the effects of unequal-coherence and equal-240

coherence stimuli on decision-making variables. To the best of our knowledge, performance in an RDM task

involving both types of coherence conditions has never been examined. Although various combinations of

each type of coherence have been investigated, as we will show below, together they provide a unique and

powerful test of extant theories of evidence accumulation.

Participants245

16 undergraduate students attending the Ohio State University participated in the study as a re-

quirement for an introductory psychology course. 10 of the participants were male, and the participants

averaged 18.88 years of age (SD=1.218). The study protocol was approved by the Institutional Review Board

for Human Subjects at the Ohio State University.

Stimuli and apparatus250

The experiment was written and displayed using the State Machine Interface Library for Experiments

(https://github.com/compmem/smile). The stimuli were generated on Debian Linux operating systems

with Nvidia graphics cards. The stimulus was composed of 100 dots contained in a circle with a 200

pixel-length radius. The dots were 3 pixels by 3 pixels. The lifespan for each dot was randomly chosen

from between 0.25 and 1.25 seconds. Each dot would appear at a random location within the stimulus255

window and moved in its predetermined direction until its lifespan expired or it left the radius of the circle,

at which point a new dot would be generated.

Procedure

Participants were instructed to quickly and accurately choose the direction (left or right) with the most

coherent dot movement. Both the proportion of coherent dot movement to the left and to the right were260
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manipulated in the same stimulus, while the remaining dots moved in random directions. The proportion

of dot coherence in either direction could be either 0.0, 0.1, 0.2, or 0.3. Thus, as shown in Figure 3b,

there were 16 different experimental conditions the participants could encounter, including four different

conditions where the proportion of dot coherence in the left and right directions was equivalent.

Before stimulus presentation, a fixation cross was presented on screen for a random duration between265

0.75 and 1.25 seconds. In each trial, the stimulus remained on the screen until the participant indicated

which direction had more coherent dot movement by pressing either the ‘D’ key for the left direction or the

‘K’ key for the right direction. Immediately following the response, feedback was presented in the center

of the computer screen. The feedback was presented for 1 second and consisted of a green check mark

symbol for a correct response, a red ‘X’ symbol for an incorrect response, or the expression ‘Too Fast!’ if270

the participant answered before 100 milliseconds had elapsed after stimulus onset. In the equal-coherence

trials, the green checkmark and the red ‘X’ symbols were presented randomly, such that ‘D’ was the correct

response in exactly half of these trials. Each participant completed 8 blocks with 60 trials each for a total of

480 trials.

Figure 3: Illustration of the experiment and table of the experimental conditions. a) Depiction of one trial of the
experiment with the length of presentation below each image. b) Number of trials for each experimental
condition. The main diagonal shows the number of trials for each of the equal-coherence conditions.
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Behavioral Results275

Responses faster than 0.2 seconds and slower than 5 seconds were excluded from data analysis (<3.2%

of all data). In all figures, error bars represent Loftus and Masson corrected 95% confidence intervals

(Loftus & Masson, 1994). Figure 4a shows how the coherence manipulation affects accuracy. We tested this

finding with a mixed effects linear regression model that predicted accuracy from coherence difference

with a random intercept for each participant. As the difference in coherence between the left and right280

directions increased, participants responded with greater accuracy, B=1.296, 95% CI [1.132, 1.458], p<0.001.

Participant accuracy was at chance overall when all of the equal-coherence data were combined.
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Figure 4: Proportion correct as a function of coherence difference and response times in each equal-coherence condition.
a) All of the participant data were organized by difference in coherence between the left and right directions.
First, proportion correct was calculated within participant, and then the mean was calculated between
participants. b) From only the four equal-coherence conditions, response times across all participants were
log transformed, then the mean was calculated between participants. In both subfigures, the error bars
represent Loftus and Masson (1994) corrected 95% confidence intervals.

Figure 4b shows average log response time as a function of equal-coherence condition. As the

coherence in both directions increased, the average log response time decreased. We tested this finding with

a mixed effects linear regression model that predicted log response time from equal-coherence condition285

with a random intercept for each participant. We found response time decreased as the coherence in

both directions increased, B=-0.763, 95% CI [-0.955, -0.571], p<0.001. To rephrase this result, participants

responded more quickly on average when they had more evidence to inform their decision, even though

the evidence supporting each direction was equivalent. This pattern of results supports the predictions

of independent and partially dependent architectures, but contradicts the predictions of fully dependent290
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architectures.

Figure 5 shows proportion correct and response time across all participants as a function of incorrect

coherence condition. Here, proportion correct and response time are shown for only the conditions where

exactly one direction had a coherence of 0.3. We chose to highlight these three unequal-coherence conditions

to illustrate how proportion correct and response times change as the difference in evidence supporting295

each option becomes smaller. Figure 5a shows proportion correct across all participants as a function

of incorrect coherence condition. There is a clear decrease in participant accuracy as the difference in

coherence between the two directions becomes smaller. We confirmed this result with a mixed effects linear

regression model that predicted accuracy from coherence condition where exactly one coherence was 0.3.

The model indicated that accuracy decreased as the difference between the incorrect coherence and the300

coherence of 0.3 decreased, B=-1.078, 95% CI [-1.330, -0.826], p<0.001. The relatively pronounced difference

in proportion correct between the 0.0 and 0.2 conditions provides support for the fully dependent and

partially dependent accumulator theories more than it supports the independent accumulator theories.
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Figure 5: Response times and proportion correct in conditions where exactly one coherence equals 0.3. a) From
only the conditions where exactly one direction had a coherence of 0.3, proportion correct was calculated
between participants. b) From only the conditions where exactly one direction had a coherence of 0.3,
response times associated with the correct response across all participants were log transformed. Then the
mean was calculated between participants. In both subfigures, the error bars represent Loftus and Masson
(1994) corrected 95% confidence intervals.

Figure 5b shows average log response time for the correct response across all participants as a function

of incorrect coherence condition. As the difference between the incorrect coherence and the coherence of305

0.3 decreased, average log response time increased. We confirmed the validity of this result with a mixed
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effects linear regression model that predicted log response time from coherence condition where exactly

one coherence was 0.3. The model indicated that response time increased as the difference between the

incorrect coherence and the coherence of 0.3 decreased, B=0.613, 95% CI [0.352, 0.874], p<0.001. This pattern

of results supports the predictions of both partially dependent and fully dependent accumulator theories,310

but opposes the predictions of independent accumulator theories.

Discussion

We have shown how a simple perceptual decision-making task can potentially distinguish between

different theories of decision-making. In equal-coherence conditions, participants responded more quickly

as the total level of evidence increased, a finding that contradicts the predictions of fully dependent315

accumulator theories. Fully dependent theories predict equivalent response times regardless of the

total level of evidence. Independent and partially dependent theories correctly predict the pattern of

response times observed in the equal-coherence conditions. However, independent theories predict

slightly faster response times in unequal-coherence conditions as the difference between the two options is

reduced, whereas we observed significantly slower response times in our results. Only partially-dependent320

accumulator theories correctly predict all the behavioral patterns. To ensure that the results in our RDM

task were not caused by perceptual effects that can affect responses in these kinds of tasks (Anstis, 1980;

Pilly & Seitz, 2009), we also collected data in a similar task that used grating stimuli instead of RDM

stimuli.

Experiment 2325

In this study, we set out to replicate our findings Experiment 1 using similar conditions, but with a

different perceptual decision-making task. We decided this replication was necessary because results from

some RDM tasks are affected by perceptual contaminants outside of the processes of interest (Anstis, 1980;

Pilly & Seitz, 2009). These studies discuss how motion in an RDM task can be incorrectly classified by
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our visual systems, resulting in evidence supporting an option that actually should have no support. In330

this study, we presented our participants with two grating stimuli on each screen. Each grating stimulus

had either the same or a different contrast than its counterpart which allowed us to create a similar set of

manipulations as in Experiment 1.

Participants

23 undergraduate students attending the University of Virginia participated in the study as a require-335

ment for the Psychology program. 14 of the participants were female, and the participants averaged 18.696

years of age (SD=0.748). The study protocol was approved by the Institutional Review Board for Social and

Behavioral Research at the University of Virginia.

Stimuli and apparatus

The experiment was written and displayed using the State Machine Interface Library for Experiments340

(https://github.com/compmem/smile). The stimuli were generated on Windows operating systems with

Nvidia graphics cards. Each stimulus was composed of two sinusoidal gratings separated by 60 pixels with

a separate, Gaussian envelope obscuring each grating. The key parameter manipulated in each stimulus

was how similar the stimulus is to the experiment background, a parameter we will call the “contrast”

for the remainder of this article. As we have defined contrast, a grating with a larger contrast is easier345

to discriminate from the experiment background and a grating with a smaller contrast is more difficult

to discriminate from the experiment background. Each grating had a 150 pixel-length radius with a 180

degree orientation. The phase shift of the sine wave controlling the grating was 0 cycles and the frequency

of the sine wave was 20 cycles per pixel. The standard deviation of the Gaussian envelope was 7.5 pixels.

Procedure350

Participants were instructed to quickly and accurately choose the most clear grating (left or right).

The contrast of each grating could be either 0.40, 0.43, 0.46, or 0.49. Thus, as shown in Figure 6b, there were
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16 different experimental conditions the participants could encounter, including four different conditions

where the contrast of the left grating was equal to the contrast of the right grating.

Before stimulus presentation, a fixation cross was presented on screen for a random length between355

0.75 and 1.25 seconds. In each trial, the stimulus remained on the screen until the participant indicated

which grating stimulus was the most clear by pressing either the ‘D’ key for the left grating or the ‘K’ key

for the right grating. Immediately following the response, feedback was presented in the center of the

computer screen. The feedback was presented for 1 second and consisted of a green check mark symbol for

a correct response, a red ‘X’ symbol for an incorrect response, or the expression ‘Too Fast!’ if the participant360

answered before 100 milliseconds had elapsed after stimulus onset. In the equal-contrast trials, the green

checkmark and the red ‘X’ symbols were presented randomly, such that ‘D’ was the correct response in

exactly half of these trials. Each participant completed 8 blocks with 60 trials each for a total of 480 trials.

Figure 6: Illustration of the grating experiment and table of the experimental conditions. a) Depiction of one trial of
the experiment with the length of presentation below each image. b) Number of trials for each experimental
condition. The main diagonal shows the number of trials for each of the equal-contrast conditions.

Results

Responses faster than 0.2 seconds and slower than 5 seconds were excluded from data analysis (<2.6%365

of all data). Figure 7a shows how the contrast manipulation affects accuracy. We tested this finding with
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a mixed effects linear regression model that predicted accuracy from contrast difference with a random

intercept for each participant. Consistent with Experiment 1, as the difference in contrast between the left

and right gratings increased, participants responded with greater accuracy, B=4.731, 95% CI [4.272, 5.191],

p<0.001. Participant accuracy was at chance overall when all of the equal-contrast data were combined.370
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Figure 7: Proportion correct as a function of contrast difference and response times in each equal-contrast condition.
a) All of the participant data were organized by difference in contrast between the left and right direction.
First, proportion correct was calculated within participant, and then the mean was calculated between
participants. b) From only the four equal-contrast conditions, response times across all participants were
log transformed. Then the mean was calculated between participants. In both subfigures, the error bars
represent Loftus and Masson (1994) corrected 95% confidence intervals.

Figure 7b shows average log response time as a function of equal-contrast condition. Consistent with

Experiment 1, as the contrast between each grating stimulus and the background increased, the average log

response time decreased. We tested this finding with a mixed effects linear regression model that predicted

log response time from the equal-contrast condition with a random intercept for each participant. We found

response time decreased as the contrast between each grating stimulus and the background increased,375

B=-0.825, 95% CI [-1.277, -0.372], p<0.001.

Figure 8a shows the observed proportion correct across all participants as a function of incorrect

contrast condition. There is a clear decrease in participant accuracy as the difference in contrast between

the two stimuli becomes smaller which is consistent with the results from Experiment 1. We confirmed

this result with a mixed effects linear regression model that predicted accuracy from contrast condition380

where exactly one contrast was the highest contrast of 0.49. The model indicated that accuracy decreased as

the difference between the incorrect contrast and the highest contrast decreased, B=-2.975, 95% CI [-3.515,

-2.435], p<0.001.
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Figure 8: Response times and proportion correct in conditions where exactly one contrast equals 0.49. a) From only
the conditions where exactly one grating had the highest contrast of 0.49, proportion correct was calculated
between participants. b) From only the conditions where exactly one grating had the highest contrast of
0.49, response times associated with the correct response across all participants were log transformed. Then
the mean was calculated between participants. In both subfigures, the error bars represent Loftus and
Masson (1994) corrected 95% confidence intervals.

Figure 8b shows average log response time for the correct response across all participants as a function

of incorrect contrast condition. As the difference between the incorrect contrast and the highest contrast385

decreased, average log response time increased, which is consistent with Experiment 1. We confirmed the

presence of this pattern with a mixed effects linear regression model that predicted log response time from

contrast condition where exactly one contrast was the highest contrast of 0.49. The model indicated that

response time increased as the difference between the incorrect contrast and the highest contrast decreased,

B=1.842, 95% CI [1.246, 2.438], p<0.001.390

Discussion

Experiment 2 replicated the key findings of Experiment 1, providing evidence that the results from

Experiment 1 cannot be fully explained by perceptual effects that could have contaminated the RDM stimuli.

In Experiment 2, as in Experiment 1, we observed faster response times in the equal-contrast conditions as

the contrast between the stimuli and the background increased. In the unequal-contrast conditions, we395

observed slower response times and reduced accuracy as the difference in contrast between the two gratings

decreased which was consistent with Experiment 1. Taken together, our results from Experiments 1 and 2

indicate this task could provide sufficient constraint to discriminate between the classes of accumulator
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theories, with the greatest support for the partially-dependent accumulator theories, provided those classes

do generally predict the patterns of behavior we illustrated in the introduction. However, as we noted400

above, these theoretical predictions are based on the general architecture of the models and with a single

parameter setting; that is, they do not address the many types of predictions the models could produce

with different parameter settings, known as model flexibility. To examine whether any of the models are

flexible enough to still capture patterns in our data, in the following sections, we fit each of the models

using simulation-based Bayesian methods, which are known to balance model fit with model flexibility405

(Lee, 2008; Palestro, Sederberg, Osth, Van Zandt, & Turner, 2018; Turner, Sederberg, Brown, & Steyvers,

2013; Turner et al., 2016; B. M. Turner & Van Zandt, 2018).

Model Analysis 1

Although our behavioral analyses provide strong evidence in support of partially dependent accumu-

lator models, the prior analyses did not provide a thorough quantitative assessment of specific models.410

Our prior analyses also did not explore the influence of variability in theories of decision-making, so we

explored these influences in Model Analysis 2. Thus, we fit several well-studied models that implement

either independent, fully dependent, or partially dependent accumulators in the evidence accumulation

process to the data from Experiments 1 and 2. We fit each of the FFI model (Shadlen & Newsome, 2001),

the LCA model (Usher & McClelland, 2001), and the LBA model (Brown & Heathcote, 2008) to the full415

choice-response time distributions for each coherence condition using a simulation-based, Bayesian ap-

proach. In addition, we fit an additional fully dependent variant of the FFI model and two additional

independent variants of the LCA model to the data, giving rise to 6 total models spanning the three classes

of accumulator models: independent, partially dependent, and fully dependent.

The Feed-Forward Inhibition (FFI) Model420

We chose the FFI model because it has a parameter that can be fixed to create a fully dependent

model that resembles the DDM (Turner et al., 2016) or can be left free to create a partially dependent model.
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Because only one parameter is changed in the model between the two variants, we can directly compare

how the fully dependent and partially dependent versions capture the essential trends in our data.

The FFI model assumes the inhibition on each accumulator is based on the average stimulus input to425

the other alternatives, such that

xc = (ρc −
ν

C− 1

∑
j6=c

ρj)
dt

τ
+ ξ

√
dt

τ
,

ξ ∼ N(0,η),

xc → max(xc, 0),

where ν is the FFI parameter, ρc represents the rate of evidence accumulation for the cth alternative, xc

represents the change in the value of the accumulator c at each timestep, ξ ∼ N(0,η) represents the within-430

trial variability (ξ is recalculated at each timestep), and C represents the number of choice alternatives. We

fixed dt = 0.01, τ = 0.1, and η = 1. Each accumulator xc is initialized to 0. At each timestep, each accumulator

value changes until one accumulator has a value greater than or equal to the threshold α. At which point,

the value of the threshold-surpassing accumulator plus non-decision time t0 (a parameter representing

perceptual and motor response) represents the response time for choice c made by the participant. Note,435

during this accumulation process, a lower boundary (Bogacz, Usher, Zhang, & McClelland, 2007; Diederich,

1995) is in place such that if the accumulator becomes negative, it is reset to zero.

In fitting the FFI model to the data, for each of the four ρc parameters, we specified a prior of a

truncated normal distribution with a mean of 2.5, standard deviation of 5, lower bound of 0, and upper

bound of 10. For ν, we specified a prior of a normal distribution with a mean of 0 and standard deviation440

of 1.4 altered by an inverse logit transform. For α, the prior specified was a truncated normal distribution

with a mean of 2.5, standard deviation of 10, lower bound of 0, and upper bound of 30. We specified a

prior for t0 of a uniform distribution with a lower bound of 0 and upper bound of the minimum observed

response (unique for each participant).

We also fit a variant of the FFI model to the data where we fixed ν to 1 (Turner et al., 2016). For clarity,445
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we will call this variant of the model the fixed FFI model and the variant with ν free the free FFI model.

By our definitions, the fixed FFI model is a fully dependent model and the free FFI model is a partially

dependent model. In the two-alternative case, the fixed FFI model behaves similarly to the DDM in that

the evidence accumulation process is completely anticorrelated. The only discrepancy between the fixed

FFI and the DDM occurs when one accumulator is pushed downward to zero evidence. In the DDM, the450

losing accumulator would continue to decrease (i.e., become negative), whereas in the fixed FFI, the losing

accumulator would just be perpetually reset to zero. This is a subtle difference that does not affect the

model predictions given that losing accumulators tend to continue losing in our paradigm, but it is worth

noting that the fixed FFI is not a perfect analogue to the DDM. We specified the same priors for the fixed

FFI model as the free FFI with the exception of ν.455

The Leaky Competing Accumulator (LCA) Model

We included the LCA model in our study because it makes a different prediction from the FFI model

about how partial inhibition during the evidence accumulation process is implemented. Whereas the FFI

model explains that inhibition occurs via input competition, the LCA model explains that inhibition occurs

laterally or based on the total value of the accumulator at each timestep. By comparing the fit of each460

model to the same dataset, we can determine which mechanism provides a more satisfactory explanation

of the observed patterns. Because the leak-only LCA model is simply the LCA model without lateral

inhibition, we will be able to further assess the importance of lateral inhibition to the model by comparing

the fits of the two models. Furthermore, we can evaluate the importance of the passive decay of evidence by

comparing the leak-only LCA model and the race LCA model, because that parameter is the only difference465

between the two models.

The LCA model is a partially dependent accumulator model where the stimulus input to one

accumulator does not directly inhibit the values of the other accumulators. Instead, at each timestep, the

total value of the other accumulators inhibits each accumulator. The model accounts for the passive decay

of old information with a leakage parameter. The following differential equation describes the accumulation470
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process in the LCA model:

xc = (ρc − κxc −β
∑
j6=c

xj)
dt

τ
+ ξ

√
dt

τ
,

ξ ∼ N(0,η),

xc → max(xc, 0),

where κ is the leakage parameter, β is the lateral inhibition parameter, ρc represents the rate of evidence

accumulation for the cth alternative, xc represents the change in the value of accumulator c at each timestep,475

and ξ ∼ N(0,η) represents the within-trial variability (ξ is recalculated at each timestep). We again fixed

dt = 0.01, τ = 0.1, and η = 1. In the LCA model, each accumulator xc is initialized to 0. At each timestep,

each accumulator value changes until one accumulator has a value greater than or equal to the threshold α.

At which point, the value of the threshold-surpassing accumulator plus non-decision time t0 represents

the response time for choice c made by the participant. Again, during this accumulation process, a lower480

reflecting boundary is in place such that the value of the accumulator cannot become negative. In fitting

the LCA model to the data, we specified the same priors for each of the ρ, α, and t0 parameters as for FFI.

For β and k, we specified a prior of a normal distribution with a mean of 0 and standard deviation of 1.4

passed through an inverse logit transform.

We fit two additional variants of the LCA model to the data: the leak-only LCA and the race LCA485

models. In the leak-only LCA model, we fixed β to 0. We fit the leak-only LCA to the data to illustrate

the importance of lateral inhibition to the LCA model (Purcell et al., 2010). In the race LCA model, we

fixed β and κ to 0. This change converts the LCA model into a racing diffusion model with a lower bound

where the accumulators are independent of each other (Bogacz et al., 2007). Both the leak-only LCA model

and the race LCA model are independent accumulator models because they both lack the lateral inhibition490

parameter.
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The Linear Ballistic Accumulator (LBA) Model

Unlike the other models we examined, the LBA model represents the evidence accumulation process

linearly rather than with noisy samples of evidence. The LBA model also considers variability in the starting

point and variability in the drift rates as parameters in the evidence accumulation process, so we can495

compare the fits of this model to the other models and determine if these considerations are advantageous

for fitting to these data. Note, we do not consider the LBA model to be a true between-trial variability

model because variability in the drift rate and variability in the starting point are required for this model to

generate response time distributions, because there is no within-trial variability present in the LBA model

as there is in LCA and FFI models.500

The LBA model represents each accumulator independently and assumes the path of each accumulator

towards the threshold is linear as represented in the following equations:

sc ∼ U(0, z),

dc ∼ N(ρc,η),

xc =
α− sc
dc

,

where sc and dc are, for the cth alternative, the starting point and the drive in the accumulation process505

respectively, α is the threshold, and η is fixed to 1. The LBA explains variability in the data by drawing

uniform random values for the starting point of each alternative and by drawing normally-distributed

random values for the drive in the accumulation process of each alternative. The decision time xc is

calculated from the above equation and added to non-decision time t0 to generate the response time. In

fitting the LBA model to the data, we specified the same priors for each of the ρ, α, and t0 parameters as for510

FFI and LCA. For z, the prior specified was a truncated normal distribution with a mean of 2.5, standard

deviation of 10, lower bound of 0, and upper bound of 30.
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Table 1: Summary of free parameters in the examined models and

the priors for those parameters.

Category Parameter Description Prior

All models α Decision threshold N(2.5, 10, 0, 30)

t0 Non-decision time U(0, min_rt)

ρc Drift rate for choice c (4 separate parameters) N(2.5, 5, 0, 10)

LCA κ Decay of information over time N(0, 1.4)

β Strength of lateral inhibition N(0, 1.4)

FFI ν Feed-forward inhibition N(0, 1.4)

LBA z Starting point variability N(2.5, 10, 0, 30)

Details of the model-fitting process

As with the behavioral analysis, responses faster than 0.2 seconds and slower than 5 seconds were

excluded from the model fitting process (<3.2% of all data). We fit each model individually to each515

participant, and we applied Differential Evolution Markov Chain Monte Carlo (DE-MCMC) via the

RunDEMC library (https://github.com/compmem/RunDEMC) to sample from the posterior distribution

(Turner et al., 2013). For the DE-MCMC procedure, we initialized 10k parallel chains, where k is the number

of free parameters per participant and simulated with the procedure for 400 iterations of burn-in followed

by 1000 samples from the posterior per chain. To evaluate the quality of each proposal, we used the520

probability density approximation (PDA) method to approximate the likelihood function for each model

(Turner & Sederberg, 2014). We chose this procedure because it efficiently generates informative proposals

by harnessing information about the structure of the posterior distribution. For PDA, we simulated each

parameter proposal 50,000 times to generate an approximate density function which we then used to

calculate the log likelihood. The prior distributions for each parameter that are necessary to perform525

Bayesian inference are listed in Table 1. To compare the models and their variants, we used the Bayesian
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Predictive Information Criterion (BPIC) (Ando, 2007):

BPIC = −2log(L(θ̂)) − 4(log(L(θ̂)) −min(log(L(θ)))),

where L(θ) represents the likelihood each set of parameter values in the posterior distribution generated

the observed data. BPIC is more stable and penalizes for complexity more than metrics such as the DIC

and has a greater scope than other model selection criteria (Ando, 2007). BPIC is designed such that models530

with smaller BPIC values are preferred over models with larger BPIC values.

For each of the model variants, we mapped each of the four coherences (0, 0.1, 0.2, 0.3) onto their own

“drift rate” parameter, denoted as ρ in the previous model descriptions. When ordered by unique coherence

pairing, all 480 of our experimental trials can be grouped into ten partitions of data. We then simulated

each model variant for each of these ten partitions using the appropriate pair of these ρ parameters for the535

given partition (i.e. ρ0.0 and ρ0.1 for the partition where coherence was 0.0 in one direction and 0.1 in the

other). Consequently, when iterating toward the best-fitting sets of parameter values, each model must find

the four ρ parameter values that provide the best account of ten conditions given the architecture of that

model. Each of the ten conditions corresponds to a different response time distribution, which means the

selection of a given ρ parameter may result in a perfect fit to one condition, but at the cost of a substantially540

poorer fit to another condition.

Results

Table 2 and Table 3 show the mean best-fitting parameter values for each model fit to the data from

Experiment 1 and Experiment 2. Shown in Figure 9 are the BPIC values calculated for each model variant,

mean-centered for each participant. For the model fits to the data from Experiment 1, the LCA model545

had the lowest BPIC value for 13 participants, the LBA model had the lowest value for 2 participants, and

the fixed FFI model had the lowest value for 1 participant. For the model fits to the data for Experiment

2, the LCA model had the lowest BPIC value for 16 participants, the LBA model had the lowest value

for 5 participants, and the fixed FFI model had the lowest value for 2 participants. Clearly, out of these
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model variants, the LCA model provides the best fit to these perceptual decision-making datasets. In all550

participants, the LCA model fit the data better than the race and leak-only model variants. This suggests the

addition of the lateral inhibition parameter to the LCA model architecture is indeed necessary to provide a

good fit to this dataset.

Table 2: Mean best fitting parameter values calculated between

participants for each model fit to the data from Experiment 1. The

standard deviation is given in parentheses.

Model ρ0.0 ρ0.1 ρ0.2 ρ0.3 κ β ν z α t0

Fixed 2.916 3.109 3.297 3.493 - - - - 6.122 0.101

FFI (1.407) (1.413) (1.395) (1.373) (1.269) (0.114)

Free 0.036 0.201 0.372 0.57 - - 0.832 - 5.929 0.093

FFI (0.045) (0.109) (0.184) (0.207) (0.298) (1.481) (0.113)

LCA 3.167 3.363 3.547 3.723 0.449 0.543 - - 7.351 0.115

(1.583) (1.608) (1.635) (1.617) (0.234) (0.214) (3.184) (0.073)

Leak 1.800 1.915 2.034 2.177 0.624 - - - 4.971 0.151

Only (1.340) (1.352) (1.393) (1.398) (0.178) (2.091) (0.084)

LCA

Race 0.019 0.078 0.181 0.296 - - - - 4.574 0.096

(0.032) (0.074) (0.116) (0.144) (0.98) (0.103)

LBA 1.024 1.422 1.821 2.204 - - - 3.112 3.885 0.127

(0.625) (0.660) (0.684) (0.736) (3.617) (3.639) (0.101)
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Table 3: Mean best fitting parameter values calculated between

participants for each model fit to the data from Experiment 2. The

standard deviation is given in parentheses.

Model ρ0.0 ρ0.1 ρ0.2 ρ0.3 κ β ν z α t0

Fixed 2.139 2.416 2.705 2.998 - - - - 5.011 0.171

FFI (1.495) (1.478) (1.463) (1.492) (0.97) (0.098)

Free 1.751 2.029 2.306 2.608 - - 0.997 - 5.056 0.165

FFI (1.501) (1.487) (1.511) (1.507) (0.008) (0.976) (0.099)

LCA 4.921 5.214 5.462 5.688 0.386 0.575 - - 9.319 0.123

(1.404) (1.433) (1.457) (1.472) (0.186) (0.179) (3.126) (0.103)

Leak 2.417 2.555 2.684 2.821 0.661 - - - 5.227 0.167

Only (1.698) (1.691) (1.702) (1.720) (0.198) (2.205) (0.129)

LCA

Race 0.041 0.117 0.236 0.346 - - - - 3.738 0.173

(0.061) (0.127) (0.132) (0.149) (0.668) (0.098)

LBA 0.887 1.262 1.600 1.922 - - - 1.022 1.785 0.13

(0.671) (0.657) (0.575) (0.615) (0.995) (1.016) (0.119)

A comparison can be made between the FFI model with ν fixed to 1.0 (which is similar to the DDM)

and the FFI model with ν free. The fixed FFI model had a lower BPIC value than the free FFI model in 14555

participants from Experiment 1 and a lower BPIC value than the free FFI model in 22 participants from

Experiment 2. Since the calculation of BPIC penalizes the inclusion of extra parameters, it would appear

the benefit of freeing this parameter in the FFI model fails to overcome the complexity costs. The LBA

model fit better in 10 participants than a theoretically similar race model with an LCA architecture from

Experiment 1 and fit better in 21 participants from Experiment 2. Unlike the race model, the LBA model560

takes into account starting point variability and relies upon its between-trial variability mechanism to
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generate a distribution of response times. In this instance, it appears that one or both of these mechanisms

have provided an advantage when fitting to these data.
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Figure 9: Heatmap showing mean-centered BPIC values for each model and for each participant. This figure is
organized by participant and model variants with each column representing a single participant and each
row representing a single model variant. Each square in the figure represents the mean-centered BPIC
for that particular model with the mean calculated across the 8 model variants for the one participant.
Cooler colors represent lower (preferred) BPIC values and warmer colors represent higher BPIC values.
The squares outlined by the black line represent the model variants with the lowest BPIC value of the 6

variants. The final column represents the mean BPIC value for the model calculated across participants.
The LCA model had the lowest BPIC value for 13 of the 16 participants in Experiment 1 and 16 of the 23

participants in Experiment 2.

Figure 10 shows all the examined dependent accumulator models simulate nearly the same increase in

participant accuracy with increasing coherence difference as we observed in Experiment 1. For Experiment565

2, of the dependent accumulator models, the LCA model missed the most on the 0.03 and 0.06 contrast

difference conditions, despite simulating essentially the same proportion correct as observed in the 0.0

and 0.09 contrast difference conditions. Figure 10 shows, in the non-zero coherence difference conditions

from both Experiment 1 and Experiment 2, the independent accumulator models consistently predict a

lower proportion correct than we observed. The independent models have too few mechanisms to account570

for all of the effects in these data, so, throughout the course of the model fitting process, parameters are

selected that can fit as much data as possible. In this instance, it seems the best-fitting parameter values

were chosen to fit the equal-coherence data more because most observations lie within that subset. This
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resulted in a poorer fit to the remainder of the proportion correct data.
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Figure 10: Simulated proportion correct as a function of coherence difference or contrast difference. The gray bars
represent the same observed mean proportion correct data from Figures 4a and 7a. Using the unique
best-fitting parameter values of each participant, each accumulator model was simulated within participant
to generate the proportion correct for each coherence grouping for the data from Experiment 1 and for each
contrast grouping for the data from Experiment 2. The mean was then calculated between the participant
simulations for each model, just as in the actual data. The error bars represent Loftus and Masson (1994)
corrected 95% confidence intervals.

Figure 11 shows the model fits to response times from the equal-evidence conditions from Experiment575

1 and Experiment 2. Out of the dependent accumulator models, the LCA model provided the best fit to the

subset of response times shown in Figure 11. The LCA model closely matched the response times in each

condition of Experiment 1. For Experiment 2, the LCA model simulated progressively faster response times

as the contrast increased but missed on both the 0.40 and 0.49 conditions. The Free FFI model captured the
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general differences in response times reasonably well but had more difficulty capturing the response times580

of the 0.2 coherence and 0.3 coherence conditions from Experiment 1.

For this subset of response times from Experiment 1, the Fixed FFI model produced essentially the

same mean log response time for each condition. In the Fixed FFI model, evidence in each direction is

nearly perfectly anticorrelated. So, when evidence in both directions is equal, the drift is equal to 0 and

only noise is driving the accumulation process. Thus, given a sufficient number of simulations, the Fixed585

FFI model will predict essentially the same mean log response time for each equal-coherence condition

condition, regardless of the level of coherence. For Experiment 2, the fixed FFI model again produced

essentially the same mean log response time for each equal-contrast condition. The free FFI model also

produced the same mean log response time for each equal-contrast condition. As shown in Table 3, this is

because, to achieve the best fit to this dataset, the best fitting value for the input competition parameter in590

the free FFI model was close to 1.0. When this parameter is set to 1.0, the free FFI model is equivalent to

the fixed FFI model.

In general, the independent accumulator models produced faster response times as the evidence

increased in the equal-evidence conditions, but, in many conditions, produced slower or faster response

times than we observed. In Experiment 1, the independent models closely matched the response times595

in the 0.1 equal-coherence condition but produced slower response times than we observed in the 0.0

condition, slightly faster response times than we observed in the 0.2 condition, and much faster response

times than we observed in the 0.3 condition. In Experiment 2, the independent models matched the 0.43

condition but greatly missed the observed response times of the other three conditions.

In the conditions where exactly one coherence was equal to 0.3 in Experiment 1, the two partially600

dependent accumulator models provided a good fit to the mean log response times displayed in Figure 12

and to the proportion correct data displayed in Figure 12. The fully dependent fixed FFI model provided a

good fit to the proportion correct data observed in these conditions but generated faster response times

than were observed in two of the conditions displayed in Figure 12. All of the independent models showed

the opposite pattern of results for the response times than we observed in these conditions. The mean log605
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Figure 11: Simulated log response time as a function of equal-coherence or equal-contrast condition. The gray
bars represent the same observed mean log response time data from Figures 4b and 7b. Using the unique
best-fitting parameter values of the participant, each dependent and independent accumulator model
was simulated within participant to generate response time distributions for each equal-coherence or
equal-contrast grouping. Then mean log response time was calculated between participants. The error bars
represent Loftus and Masson (1994) corrected 95% confidence intervals.
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Figure 12: Simulated log response time as a function of coherence or contrast condition. The gray bars represent
the same observed mean log response time data from Figures 5b and 8b. Only the conditions where exactly
one direction had a coherence of 0.3 in Experiment 1 are displayed. In Experiment 2, only the conditions
where exactly one grating had the highest contrast of 0.49 are displayed. For the Experiment 1 results,
the response times in this figure are those paired with the correct response of 0.3. For the Experiment
2 results, the response times in this figure are those paired with the correct response of 0.49. Using the
unique best-fitting parameter values of the participant, each dependent and independent accumulator
model was simulated within participant to generate response time distributions for each coherence or
contrast grouping. Then mean log response time was calculated between participants. The error bars
represent Loftus and Masson (1994) corrected 95% confidence intervals.
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response times simulated by the independent models decreased as incorrect response coherence approached

0.3. In other words, the independent models produced faster response times as the trials became objectively

more difficult for the participants. In addition, the independent models produced much lower proportion

correct than we observed in each of these three conditions.

In the conditions where exactly one contrast was the highest contrast of 0.49 in Experiment 2, each of610

the dependent accumulator models simulated slower response times for correct responses as the contrast

difference decreased. Of the dependent accumulator models, the LCA model appears to have matched

the observed response times the best. Crucially, the independent accumulator models simulated faster

response times as the contrast difference decreased. In general, the dependent accumulator models correctly

produced the observed subset of response times and the independent accumulator models failed to produce615

the observed response times. Of the six models we examined, the LCA model simulated the closest

proportion correct to the observed data. The other dependent accumulator models simulated the same

proportion correct for each condition, resulting in a substantially higher proportion correct than observed

in two of these conditions. In each of these conditions, the independent accumulator models simulated a

lower proportion correct than observed.620

Discussion

Overall, the partially dependent accumulator models, and, in particular, the LCA model, consistently

provided the best account of the data from Experiment 1 and Experiment 2. These models correctly

simulated the faster response times with greater evidence in the equal-evidence conditions and slower

response times as the difference between the evidence in the unequal-evidence conditions decreased. In625

contrast, while the fixed FFI model featuring fully dependent accumulators correctly simulated slower

response times as the difference in evidence increased in the unequal-evidence conditions, it failed to

simulate the faster response times observed as the evidence increased in the equal-evidence conditions.

Furthermore, the three independent accumulator models we examined failed to simulate the slowing of

response times for the correct choice of the 0.3 coherence when the competing coherence increases from630
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Figure 13: Simulated proportion correct as a function of coherence or contrast condition. The gray bars represent
the same observed proportion correct data from Figures 5a and 8a. Only the conditions where exactly
one direction had a coherence of 0.3 in Experiment 1 are displayed. In Experiment 2, only the conditions
where exactly one grating had the highest contrast of 0.49 are displayed. Using the unique best-fitting
parameter values of the participant, each dependent and independent accumulator model was simulated
within participant to calculate the proportion correct for each coherence or contrast grouping. Then mean
proportion correct was calculated between participants.The error bars represent Loftus and Masson (1994)
corrected 95% confidence intervals.
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0.0 to 0.2. The independent accumulator models also predicted less accurate responses than we observed

in each of the three unequal-evidence conditions we examined here. Thus, the models with partially

dependent accumulators are the preferred models for fitting to our data.

Our tasks are similar to many standard perceptual decision-making tasks that have historically

supported the models we examined, but combines all of these conditions together to create a challenging635

set of patterns of results for extant models of decision-making to fit. A priori, we expected the independent

accumulator models to provide a good fit to the equal-evidence data and provide a poor fit to the unequal-

evidence data because the accumulator for the incorrect response does not directly inhibit the accumulator

for the correct response. As predicted, because the independent accumulator models have no inhibitory

components by definition, the models could not generate the slower response times as the decision640

becomes more difficult in unequal-evidence conditions. The independent accumulator models did generate

faster response times as the coherence increased in the equal-evidence conditions, but, unexpectedly, the

models generated slower response times than were observed in the 0.0 equal-coherence condition and

faster response times than were observed in the 0.3 equal-coherence condition from Experiment 1. The

independent accumulator models also, contrary to our predictions, generated slower response times than645

were observed in the 0.4 equal-contrast condition and faster response times than were observed in the 0.46

and 0.49 equal-contrast conditions from Experiment 2. We suspect the multiple constraints imposed by our

task design caused these misses in some conditions where the theory would suggest a more accurate fit.

Fully dependent accumulator models have difficulty matching the response times observed in equal-

evidence conditions. In a two-choice decision, this is the case because fully dependent models represent the650

drift rate towards the decision threshold as the difference between the two drift rates. Because the drift

rates for both alternatives have the same value, the difference between them is zero. With a drift rate of

zero, the evidence accumulator crosses the decision threshold solely based on random noise in the signal,

which, on average, is equivalent across conditions.

Partially dependent accumulator models have the mechanisms to account for the choice–response655

time patterns observed in both the equal-evidence and unequal-evidence conditions of our experiments.
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In these models, for the equal-evidence conditions, the drift rates for the accumulators representing each

direction will be greater with more evidence. Now the difference between these drift rates is zero, but,

since the accumulators only partially inhibit each other, the accumulators will exceed the decision threshold

more quickly with more evidence and produce the patterns observed in our data. Partially dependent660

accumulator models also capture the unequal-evidence data because the degree of inhibition on each

accumulator will increase as the coherence difference decreases. As the decision becomes more difficult,

response times are slower and accuracy approaches chance. Both features are captured well in partially

dependent accumulator models.

Model Analysis 1 provided strong evidence supporting partially dependent accumulator models (and,665

in particular, the LCA model) over both fully dependent and independent accumulator models. Recent

work has examined how the mechanisms of within and between-trial variability can be implemented in

decision-making models to capture magnitude effects in simple perceptual decision-making tasks similar

to those presented in this paper (Ratcliff et al., 2018; Teodorescu et al., 2015). We wanted to determine

if adding these additional sources of variability into our examined models would change the fits and, in670

particular, give the fully dependent fixed FFI model the flexibility to provide a good fit to all of the patterns

observed in our data.

Model Analysis 2

As mentioned in the introduction, one approach to accounting for the decrease in response time as

evidence increases in the equal-evidence conditions is to add sources of variability that are correlated with675

the evidence levels. To test this approach on our datasets, we modified the LCA and the fixed FFI models

to represent the drift rate as a linear function of the difference in magnitude of the stimulus strengths and

added parameters and mechanisms to link within-trial and between-trial variability to the coherence of the

input. Our modifications are similar to the modifications made in the previous work which examined the

fits of these models to data where the overall evidence present in the stimulus was manipulated between680

trial while maintaining a constant difference in evidence between the choice alternatives (Ratcliff et al.,
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2018; Teodorescu et al., 2015). We will now explain each of model variants in this study in turn.

No Additional Variability Models

We examined both the fixed FFI model and the LCA model with no additional sources of variability

than the models from Model Analysis 1, but with the change to how the drift rate in each model is calculated.685

In the remainder of the paper, we will call these models the NV fixed FFI model and the NV LCA model

respectively. We fit these models to our data to determine if representing the rate of accumulation as

a function of the difference in the stimulus values provides an acceptable (or even improved) fit than

assigning a separate drift rate for each coherence or contrast value. One advantage of these models is that

they have two fewer parameters than their model counterparts in Model Analysis 1. First, we standardized690

the stimulus values to be on a 0 to 1 scale (a separate 0 to 1 scale for the RDM task and for the grating task).

Then, using the same 10 conditions that we used in Model Analysis 1, we calculated the differences between

the stimulus values and scaled that difference by the parameter µ. Then our drift rate for each condition

becomes the scaled difference value added to our single ρ parameter, which is still a free parameter in this

model. The ρ parameter is necessary to allow the drift rate to be greater than 0 in the conditions where the695

evidence supporting each direction is equivalent. The following equations describe the NV fixed FFI model:

mc = ρ+ µ|Ic − Ij|,

xc = (mc −mj)
dt

τ
+ ξ

√
dt

τ
,

ξ ∼ N(0,η),

where ρ represents the base rate of evidence accumulation, Ic and Ij represent the normalized stimulus

value for stimulus c and j respectively, µ modulates the effect of the difference in supporting evidence700

upon the rate of evidence accumulation, xc represents the change in the value of the accumulator c at each

timestep, and ξ ∼ N(0,η) represents the within-trial variability (ξ is recalculated at each timestep). The
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following equations describe the NV LCA model:

mc = ρ+ µ|Ic − Ij|,

xc = (mc − κxc −βxj)
dt

τ
+ ξ

√
dt

τ
,

705

ξ ∼ N(0,η),

where ρ, Ic, Ij, µ, xc, and ξ represent the same processes as in the NV fixed FFI model and κ represents the

passive decay of evidence and β represents the amount of lateral inhibition applied by accumulator j on

accumulator c.

Between-Trial Variability Models

Between-trial variability in drift rate is a powerful mechanism that has been used to fit fully dependent710

accumulator models to a variety of choice–response time data (Ratcliff, 2006; Ratcliff & McKoon, 2008;

Ratcliff & Rouder, 1998; Ratcliff et al., 2018). Ratcliff et al. (2018) have proposed to linearly scale the

between-trial variability parameter as a function of the evidence present in the stimulus as a mechanism to

allow fully dependent accumulator models to account for the magnitude effect. To test the fidelity of their

proposal, we included the linearly scaling mechanism in both the LCA and fixed FFI models, and compared715

them to the standard LCA and fixed FFI models, respectively. For the remainder of this paper, we will

abbreviate the models that linearly scale the between-trial variability as the BTV LCA model and the BTV

fixed FFI model, respectively. For each of these models, we scale and calculate the differences in stimulus

strength in the same manner as the NV models. The key difference between the BTV models and the NV

models is how the drift rate is calculated. For each simulation, the drift rate for option c is drawn from720

a normal distribution where the mean of the distribution varies with the difference in stimulus strength

between the two options and the standard deviation of the distribution varies with the strength of option c.

Thus, the drift rate for a choice depends on both the evidence supporting that choice, and the difference in
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evidence for that choice and the other choices. The following equations describe the BTV fixed FFI model:

mc = ρ+ µ|Ic − Ij|,

725

sc = σIc,

dc ∼ N(mc, sc),

xc = (dc − dj)
dt

τ
+ ξ

√
dt

τ
,

ξ ∼ N(0,η),

where ρ, Ic, Ij, µ, xc, and ξ represent the same processes as in the NV models, σ modulates the effect of

stimulus strength on the standard deviation of the normal distribution from which drift rate is calculated,730

and dc represents the drift rate for option c. The following equations describe the BTV LCA model:

mc = ρ+ µ|Ic − Ij|,

sc = σIc,

dc ∼ N(mc, sc),

xc = (dc − κxc −βxj)
dt

τ
+ ξ

√
dt

τ
,

735

ξ ∼ N(0,η),

where κ and β represent the same leak and lateral inhibition processes as in the NV LCA model and the

remaining parameters represent the same processes as in the BTV fixed FFI model.
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Within Trial Variability Models

Researchers have also accounted for magnitude effects in simple perceptual decision-making tasks by

including an additional source of within-trial variability in their model that increases as a function of the740

stimulus strength (Teodorescu et al., 2015). Within-trial variability has been an important mechanism in

several recent studies because activation-dependent, multiplicative noise introduces magnitude sensitivity

at the level of the input and is subsequently independent of the main decision mechanism (Louie, Khaw,

& Glimcher, 2013; Teodorescu et al., 2015). For our purposes, the within-trial variability mechanism

could allow the fixed FFI model to simulate faster response times as the evidence increases in the equal-745

evidence conditions and overcome the strong input competition in the model, which led to response

time distributions that did not match the observed data in Model Analysis 1. In our implementation, we

modulated within-trial variability through the parameter π. As with the BTV models above, we added the

within-trial variability mechanism to both the LCA model and the fixed FFI model. We will refer to these

models the WTV LCA model and the WTV fixed FFI model for the remainder of the paper. The WTV fixed750

FFI model is described by the following equations:

mc = ρ+ µ|Ic − Ij|,

xc = (mc −mj)
dt

τ
+ ξc

√
dt

τ
,

ξc ∼ N(0,η+ πIc),

where ρ, Ic, Ij, µ, xc, and ξ represent the same processes as in the NV models and pi is the sensitivity of

within-trial variability to the stimulus strength. The following equations describe the WTV LCA model:755

mc = ρ+ µ|Ic − Ij|,

xc = (mc − κxc −βxj)
dt

τ
+ ξc

√
dt

τ
,

ξc ∼ N(0,η+ πIc),
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where κ and β represent the same leak and lateral inhibition processes as in the NV LCA model and the

remaining parameters represent the same processes as in the WTV fixed FFI model.

The prior distributions for each parameter in each of the six models are listed in Table 4. We fixed dt760

= 0.01, τ = 0.1, and η = 1. As in Model Analysis 1, during the evidence accumulation process, the value of

the accumulator in each of the six model variants in this study is prevented from falling below 0 via the

following equation

xc → max(xc, 0),

Table 4: Summary of free parameters in the examined models

and the priors for those parameters. C represents the half cauchy

distribution.

Category Parameter Description Prior

All models α Decision threshold N(2.5, 10, 0, 30)

t0 Non-decision time U(0, min_rt)

ρ Base level of drift rate N(2.5, 5, 0, 10)

µ Effect of stimulus difference on drift rate N(0.75, 2, 0, 10)

LCA κ Decay of information over time N(0, 1.4)

β Strength of lateral inhibition N(0, 1.4)

BTV σ Sensitivity of BTV to stimulus strength C(0, 5.0)

WTV π Sensitivity of WTV to stimulus strength γ(4, 1)

Results

Table 5 and Table 6 show the mean best-fitting parameter values for each model fit to the data from765

Experiment 1 and Experiment 2. Figure 14 shows the mean-centered BPIC values for each model and

participant from Experiment 1 and 2. In Experiment 1, the BTV LCA had the lowest BPIC value in 6
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participants, the NV LCA had the lowest BPIC value in 7 participants, the NV fixed FFI had the lowest

BPIC value in 2 participants, and the WTV fixed FFI had the lowest BPIC in 1 participant. Overall, the

LCA models had the lowest BPIC values for 13 of the 16 participants. In Experiment 2, the BTV LCA had770

the lowest BPIC value in 14 participants, the NV LCA had the lowest BPIC value in 6 participants, the

WTV LCA had the lowest BPIC value in 1 participant, the NV fixed FFI had the lowest BPIC value in 1

participant, and the WTV fixed FFI had the lowest BPIC in 1 participant. Overall, the LCA models had

the lowest BPIC values for 21 of the 23 participants, providing more evidence that the partially dependent

LCA model is the preferred model for our datasets over the fully dependent fixed FFI model, even when775

additional sources of variability are considered.

To confirm the representations for the models of Model Analysis 2 provide a better fit than their

counterparts in Model Analysis 1, we compared the NV fixed FFI model with the Model Analysis 1 fixed

FFI model and the NV LCA model with the Model Analysis 1 LCA model. The NV fixed FFI model

had lower BPIC values than the fixed FFI model of Model Analysis 1 for all 16 of the participants from780

Experiment 1 and for all 23 of the participants from Experiment 2. The NV LCA model had lower BPIC

values than the LCA model of Model Analysis 1 for all 16 of the participants from Experiment 1 and for 21

of the 23 participants from Experiment 2. Taken together, these results provide evidence that these NV

models fit the data from both experiments better than the models of Model Analysis 1.

Table 5: Mean best fitting parameter values calculated between

participants for each model fit to the data from Experiment 1. The

standard deviation is given in parentheses.

Model ρ µ σ π κ β α t0

BTV 2.784 0.361 0.349 - 0.439 0.537 6.144 0.166

LCA (2.230) (0.177) (0.267) (0.171) (0.154) (3.595) (0.092)

WTV 3.353 0.301 - 0.889 0.488 0.493 6.876 0.165

LCA (2.136) (0.167) (0.447) (0.131) (0.193) (3.588) (0.097)

NV 2.933 0.321 - - 0.44 0.508 6.478 0.158
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Model ρ µ σ π κ β α t0

LCA (2.270) (0.150) (0.152) (0.130) (3.886) (0.084)

BTV 3.146 0.385 0.635 - - - 6.716 0.11

Fixed (1.280) (0.228) (0.333) (1.367) (0.126)

FFI

WTV 2.819 0.297 - 0.817 - - 6.634 0.101

Fixed (1.547) (0.163) (0.281) (1.397) (0.122)

FFI

NV 3.148 0.278 - - - - 6.296 0.094

Fixed (1.313) (0.164) (1.299) (0.119)

FFI

Table 6: Mean best fitting parameter values calculated between

participants for each model fit to the data from Experiment 2. The

standard deviation is given in parentheses.

Model ρ µ σ π κ β α t0

BTV 2.095 0.526 0.241 - 0.358 0.364 5.239 0.193

LCA (1.460) (0.218) (0.186) (0.161) (0.171) (2.896) (0.112)

WTV 4.207 0.428 - 0.448 0.387 0.489 7.783 0.149

LCA (1.893) (0.135) (0.154) (0.194) (0.205) (2.767) (0.099)

NV 4.227 0.421 - - 0.369 0.435 8.083 0.138

LCA (2.383) (0.132) (0.169) (0.195) (3.726) (0.112)

BTV 4.184 0.518 0.409 - - - 5.217 0.182

Fixed (1.983) (0.205) (0.223) (1.102) (0.098)

FFI

WTV 2.871 0.442 - 0.465 - - 5.204 0.169
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Model ρ µ σ π κ β α t0

Fixed (1.495) (0.137) (0.102) (1.016) (0.095)

FFI

NV 4.662 0.424 - - - - 5.025 0.167

Fixed (1.905) (0.135) (0.975) (0.096)

FFI
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Figure 14: Heatmap showing mean-centered BPIC values for each model and for each participant. This figure is
organized by participant and model variants with each column representing a single participant and each
row representing a single model variant. Each square in the figure represents the mean-centered BPIC
for that particular model with the mean calculated across the 6 model variants for the one participant.
Cooler colors represent lower (preferred) BPIC values and warmer colors represent higher BPIC values.
The squares outlined by the black line represent the model variants with the lowest BPIC value of the 6

variants. The final column represents the mean BPIC value for the model calculated across participants.
The model with the LCA architecture had the numerically lowest BPIC value for 13 of the 16 participants in
Experiment 1 and for 21 of the 23 participants in Experiment 2.

Figure 15 shows the fit of each model to the proportion correct in the RDM data from Experiment 1785

and grating data from Experiment 2. For Experiment 1, the WTV LCA, NV LCA, and NV fixed FFI models

closely match the observed proportion correct in every coherence difference condition. The BTV LCA and

WTV fixed FFI models slightly underestimate the observed proportion correct in the 0.1 and 0.2 coherence

difference conditions but simulate the correct proportion correct in the other two conditions for Experiment
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1.The BTV fixed FFI model underestimates the proportion correct the more than the other 5 model variants,790

but this model correctly simulates increasing accuracy as coherence difference increases. For Experiment 2,

all models provide similar fits to these data with the BTV fixed FFI having a slightly worse fit than the

other models to the 0.1 and 0.2 conditions.

0.0 0.1 0.2 0.3
Coherence Difference

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

po
rti

on
 C

or
re

ct

Experiment 1
Data
BTV LCA
WTV LCA
NV LCA
BTV Fixed FFI
WTV Fixed FFI
NV Fixed FFI

0.0 0.03 0.06 0.09
Contrast Difference

0.4

0.6

0.8

1.0

P
ro

po
rti

on
 C

or
re

ct

Experiment 2
Data
BTV LCA
WTV LCA
NV LCA
BTV Fixed FFI
WTV Fixed FFI
NV Fixed FFI

Figure 15: Simulated proportion correct as a function of coherence difference or contrast difference. The gray bars
represent the same observed mean proportion correct data from Figures 4a and 7a. Using the unique
best-fitting parameter values of the participant, each dependent and independent accumulator model was
simulated within participant to generate the proportion correct for each coherence grouping for the data
from Experiment 1 and for each contrast grouping for the data from Experiment 2. The mean was then
calculated between the participant simulations for each model. The error bars represent Loftus and Masson
(1994) corrected 95% confidence intervals.

Figure 16 shows the fit of each model to the equal-evidence response time data from Experiments

1 and 2. Each model struggled to fit to some aspect of the data from Experiment 1 with the BTV LCA795
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model providing the closest fit overall. As expected, for both Experiments 1 and 2, the NV models could

not simulate the decrease in response time as the evidence increased. This is because the difference in

stimulus strength is zero regardless of equal-evidence condition, and there is no other mechanism besides

the difference that can adjust the response times as the stimulus magnitude changes. A stimulus strength of

zero will result in the same response times irrespective of the amount of evidence present in the stimulus.800

For Experiment 1, the BTV fixed FFI and WTV fixed FFI models simulate different response times

than we observed in the equal-coherence data because the amount of inhibition upon each accumulator is

high in spite of the additional sources of variability. The additional sources of variability allow these fixed

FFI models to simulate faster response times as the amount of evidence present in the stimulus increases,

but the response times are faster than we observe in the 0.3 condition and slower than we observe in the805

0.0 condition. The BTV LCA model can fit these data because each accumulator only partially inhibits

the other accumulator in the model which gives the model more flexibility in fitting each participant. For

Experiment 2, the BTV and WTV LCA models fit the equal-contrast data well in general, but the BTV and

WTV fixed FFI models simulate response times that are too slow in the 0.4 and 0.43 conditions. It appears

that the mechanisms in these models are too insensitive to simulate the slope of the observed decrease in810

response time as a function of contrast condition.

Figure 16 shows the fit of each model to the response times associated with the correct response in

conditions where exactly one coherence is equal to 0.3 in Experiment 1 and where exactly one contrast is

equal to the highest contrast in Experiment 2. For Experiment 1, the BTV LCA model closely matches each

of these three conditions. The two NV models match the 0.0 condition but simulate slower response times815

than observed in the other two conditions. The WTV models and the BTV Fixed FFI model simulate faster

response times than observed in all three conditions. For Experiment 2, all models simulate faster response

times than observed in the 0.4 condition. For the other two conditions, the response times simulated by

the BTV models are the closest to the observed response times. The response times simulated by the NV

models are slower than the observed response times in the most difficult of these three conditions, the 0.46820

condition.

47



Figure 18 shows the fit of each model to the proportion correct data in the conditions where exactly

one coherence is equal to 0.3 in Experiment 1 and where exactly one contrast is equal to the highest contrast

in Experiment 2. The NV models and the WTV LCA model provide the best fit to this subset of data from

Experiment 1. The BTV LCA and WTV fixed FFI simulate a slightly lower proportion correct than observed825

in the 0.1 condition. The BTV fixed FFI model simulates a lower proportion correct than observed in each

of the three conditions. The NV models provide the best fit to this subset of data from Experiment 2. The

two WTV models and the BTV LCA model simulate a slightly lower proportion correct than observed in

the 0.46 condition. The BTV fixed FFI model simulates a lower proportion correct than observed in both

the 0.43 and 0.46 conditions.830

Discussion

We fit both the LCA and fixed FFI models with additional sources of variability that have been

proposed by other researchers to the RDM data from Experiment 1 and to the grating data from Experiment

2. Across the two experiments, an LCA model variant had the lowest BPIC value in 34 of the 39 participants.

Both how the stimulus was represented in the model and how the sources of variability were added to each835

model were identical for the LCA and for the fixed FFI model. This suggests that even when between-trial

variability gave rise to an improved fit, lateral inhibition is a key mechanism for attaining the best fit to our

datasets instead of the fully dependent mechanism of the fixed FFI model. In general, the qualitative fits of

all models to most conditions was good, but the BTV and WTV fixed FFI models simulated faster response

times than were observed in the highest evidence equal-coherence condition of Experiment 1 and slower840

response times than were observed in the lowest evidence equal-contrast condition of Experiment 2.

General Discussion

For over half a century, the principles underlying sequential sampling theory (SST) have proven

themselves as an invaluable guide for developing specific models of decision-making. The most successful

extant models of choice–response time all inherit the basic architecture of SST, but make different assump-845
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Figure 16: Simulated log response time as a function of equal-coherence or equal-contrast condition. The gray bars
represent the same observed mean log response time data from Figures 4b and 7b. These response times
were log transformed and then the mean was calculated between participants. Using the unique best-fitting
parameter values of the participant, each model was simulated within participant to generate response
time distributions for each equal-evidence grouping. Then mean log response time was calculated between
participants. The error bars represent Loftus and Masson (1994) corrected 95% confidence intervals.
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Figure 17: Simulated log response time as a function of coherence or contrast condition. The gray bars represent the
same observed mean log response time data from Figures 5b and 8b. For Experiment 1, only the conditions
where exactly one direction had a coherence of 0.3 are displayed. For Experiment 2, only the conditions
where exactly one grating had the highest contrast of 0.49 are displayed. For the Experiment 1 results,
the response times in this figure are those paired with the correct response of 0.3. For the Experiment
2 results, the response times in this figure are those paired with the correct response of 0.49. Using the
unique best-fitting parameter values of the participant, each dependent and independent accumulator
model was simulated within participant to generate response time distributions for each coherence or
contrast grouping. Then mean log response time was calculated between participants. The error bars
represent Loftus and Masson (1994) corrected 95% confidence intervals.
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Figure 18: Simulated proportion correct as a function of coherence or contrast condition. The gray bars represent
the same observed proportion correct data from Figures 5a and 8a. In Experiment 1, only the conditions
where exactly one direction had a coherence of 0.3 are displayed. In Experiment 2, only the conditions
where exactly one grating had the highest contrast of 0.49 are displayed. Using the unique best-fitting
parameter values of the participant, each dependent and independent accumulator model was simulated
within participant to calculate the proportion correct for each coherence or contrast grouping. Then mean
proportion correct was calculated between participants. The error bars represent Loftus and Masson
corrected 95% confidence intervals.
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tions about the type of dependency among accumulators and the role of trial-to-trial variability. The set

of modifications have all proven useful under different considerations such as dynamic, time-varying

information (Tsetsos et al., 2011; Usher & McClelland, 2001), statistical fluctuations from unobservable

attentional sources (Franco-Watkins & Johnson, 2011; Krajbich & Rangel, 2011; Mittner et al., 2014; Turner et

al., 2017; Turner, van Maanen, & Forstmann, 2015), and mathematical tractability (Brown & Heathcote, 2008;850

Trueblood & Heathcote, 2014; B. M. Turner et al., 2018). Given an environment where an assortment of

different theoretical and practical pressures on model development have been applied, it is predictable that

a range of models have evolved that optimize for specific objectives, while still capturing key regularities in

empirical data.

Each of the leading, extant models of choice–response time instantiate a particular set of mechanisms,855

and these combinations have proven useful in capturing patterns of behavioral data across a wide array

of experiments. However, by stepping back from the particular constellations of model mechanisms, in

this article, we have defined a set of three classes that can be used to group possible types of conceivable

models (i.e., models that have and have not yet been realized): fully dependent, partially dependent,

and independent accumulation. Although many mechanisms can be mixed to produce new model860

variants within these classes, the architectural constraints provide strong guidelines on how those models

can ultimately behave. When the patterns of predictions defined by architecture are compared against

experimental data involving exhaustive and systematic configurations of perceptual evidence embedded

within the stimulus itself, strong tests emerge that can be used to provide theoretical support for types of

architectures, and hence, classes of models.865

Exclusive to our task was the factorial manipulation of stimulus ‘coherence’ for one of two options.

That is, each stimulus was a mixture of evidence for alternative one (e.g., “left” response) and alternative

two (e.g., “right” response), and the degree of evidence was manipulated such that stimuli could have equal

amounts of evidence for both alternatives, zero evidence for both alternatives (i.e., a special case of equal

evidence), or could have preferential evidence for one alternative. We used this basic factorial schematic870

within the classic paradigm of random dot motion, as well as contrast discrimination of grating stimuli.

Both experiments exhibited strong consistency in terms of the patterns of data that emerged, providing
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evidence that the design itself reveals insight into decision-making processes, and the tasks are neither

subject to idiosyncratic features of the stimuli nor the apparatus.

We then defined a set of models each inheriting a specific type of architectural constraint: full875

dependence, partial dependence, or independence. A set of 12 model variants were examined across two

sets of analyses, ultimately revealing that while various mechanisms could be used to improve fits to data

within a class, the architecture of dependency imposed on the class was strong enough to provide consensus

about which type of dependency best captured choice–response time data across both experiments. These

analyses revealed that partial dependency was the strongest contributor to model performance, evaluated880

as the total number of individuals best accounted for by each model. Specifically, the mechanisms of

lateral inhibition and leakage as specified in the LCA model showed clear promise in explaining human

decision-making across the tasks investigated here.

Given that our results show such strong consistency for partially dependent accumulation, one may

wonder why other researchers with similar curiosities either failed to find consistency or found consistency885

in an alternative architecture type. Similar to our study, recent work has examined the fits of the LCA model

and the DDM to data where the overall evidence present in the stimulus changes, but the difference in

evidence between the two options is consistent (Ratcliff et al., 2018; Teodorescu et al., 2015). Teodorescu and

colleagues (2015) found that an implementation of the DDM where processing noise in the model increases

with increased input intensity fit 3 out of 6 participants worse than the LCA model in the choice–response890

time data from a two-choice brightness discrimination task. Ratcliff and colleagues (2018) found that a

similar implementation of the DDM provided a better fit in more participants than the LCA model to their

brightness discrimination task data. Contrary to these two studies, in our study, the LCA models fit to 34

of the 39 participants better than the fixed FFI model similar to the DDM implementation of the previous

two experiments. This suggests that allowing either within- or between-trial variability to be a function of895

the magnitude of the input is insufficient for the DDM to fit these data better than the LCA model.

One explanation for the discrepancy between the results of our study and the results of previous

studies could be the specific models compared differed by too many mechanisms for the key mechanism of
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the LCA model, lateral inhibition, to be fairly compared to the full inhibition process of the DDM model.

Particularly relevant to this paper, Teodorescu and colleagues (2015) compared models similar to the WTV900

LCA and WTV fixed FFI models, but did not consider the between-trial variability versions of the LCA and

fixed FFI models, our BTV LCA and BTV FFI, respectively. Ratcliff and colleagues (2018) compared models

similar to the BTV and WTV fixed FFI models and the NV LCA model, but did not include models similar

to the BTV or WTV LCA models. In our study, the BTV LCA model quantitatively fit the data better than

the NV LCA model indicating that the between-trial variability mechanism specifically improved the fit of905

the BTV model to our datasets over that of the NV LCA model. Furthermore, the only difference between

the BTV LCA and BTV fixed FFI models were the passive decay of evidence and lateral inhibition processes

of the LCA model against the fully dependent input competition process of the fixed FFI model. Because

the BTV LCA model fit our datasets better than both the BTV and WTV fixed FFI model, it is possible that

the BTV LCA model would have fit the data from Ratcliff and colleagues (2018) better than the models they910

tested that were similar to the BTV and WTV fixed FFI models. However, it is interesting that even the NV

LCA model outperformed the BTV and WTV variants of the fixed FFI models used here.

Given its prior success in capturing a wide range of decision-making data, it is perhaps unsurprising

that the LCA model fit our data well. The LCA model has been successfully fit to data from binary

perceptual judgment tasks (Usher & McClelland, 2001), numerosity judgment tasks (Usher & McClelland,915

2001), value-based multi-attribute choice tasks (Bogacz et al., 2007; Turner et al., 2018; Usher & McClelland,

2004), brightness discrimination tasks (Teodorescu et al., 2015; Teodorescu & Usher, 2013; Tsetsos et

al., 2011) and other random dot motion tasks (Turner et al., 2016). Previous research has identified

lateral inhibition, the key mechanism of the LCA model, in the brain during decision-making process.

Researchers have identified lateral inhibition in the inferior temporal cortex of nonhuman primates in visual920

search tasks in electrophysiological studies (Chelazzi, Miller, Duncan, & Desimone, 1993; Desimone, 1998;

Reynolds, Chelazzi, & Desimone, 1996), in nonhuman primates in economic decision-making tasks in an

electrophysiological study (Padoa-Schioppa, 2013), in humans in a flanker task in a study of event-related

potentials (Gratton, Coles, Sirevaag, Eriksen, & Donchin, 1988), and in humans in an intertemporal choice

task which found correlations between the lateral inhibition parameters in the model with the BOLD925
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response in the dorsomedial frontal cortex, right and left dorsolateral prefrontal cortex, and right posterior

parietal cortex (Turner et al., 2018).
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Figure 19: DE-MCMC chains for the LCA model fit to the data of participant 9. This figure shows each of
the 80 chains from the DE-MCMC and PDA algorithm, which was implemented to fit the LCA model to
participant 9 of Experiment 1 in Model Analysis 1. For the clarity of the figure, the first 100 iterations of the
process are not shown. At iteration 400, we switched over from burnin mode to sampling mode. After
switching over from sampling mode, we waited for 200 additional samples before considering the chains as
being a true sample of the posterior distribution.

Despite the success of the LCA model, one reason researchers have been hesitant to fit this model

to their data may be because it does not have an analytic likelihood function, which means it requires

simulations that are potentially computationally intensive (Trueblood & Heathcote, 2014; Turner et al.,930

2018; Turner & Sederberg, 2014). Even though the LCA model does not have an analytic likelihood

function, the LCA parameters have been determined to be recoverable if a DE-MCMC sampler is used

with the PDA method to fit to either a sufficiently constrained or sufficiently large dataset (Miletić, Turner,

Forstmann, & van Maanen, 2017; Turner, 2019). We believe our fitting procedure and dataset satisfy these

criteria. In Figure 19, we show the DE-MCMC chains for the LCA model fit to the data of one of the935

participants from Experiment 1. From this figure, it can be observed that proper mixing is occurring such
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that we can be confident that the posterior distributions will be well-estimated. In Appendix A, we show

a successful recovery of the parameters of the BTV LCA model. Each of the generating BTV LCA model

parameters was within the respective posterior distribution. To overcome the computational intensity of

fitting the LCA model to data, our model fitting code was written such that it could be efficiently run on a940

graphics processing unit (GPU). As a result, it only took 1 to 2 hours of compute time for each participant

to produce full posterior distributions of the model parameters. Hence, we believe that computational

concerns are no longer reasonable justifications for excluding the LCA from serious investigations of human

decision-making.

Another possible reason for the discrepancy between our results and other researchers is due strictly945

to methodological concerns. In nearly all previous applications, quantiles have been used to reduce the full

set of data down to a set of 10 summary statistics. Models are then fit to these 10 summary statistics by

minimizing the distance between the model predictions and the observed data. Although reducing the full

choice–response time distribution down to a set of summary statistics clearly reduces the computational

burden of fitting a model to data, the benefit also comes with an important cost. Namely, reducing the950

data to summary statistics will necessarily reduce the informativeness of said data unless the summary

statistics are sufficient for the model parameters (Palestro et al., 2018; Turner & Sederberg, 2014; Turner &

Van Zandt, 2012; B. M. Turner & Van Zandt, 2018). However, for simulation-based models such as the ones

used here, demonstrating whether or not summary statistics are sufficient is difficult, if not impossible.

To provide some indication of whether or not statistics are sufficient for models of choice–response time,955

one can compare estimated posterior distributions under two conditions: fitting the model using quantiles,

and fitting the model using the full set of data. If the two posteriors closely align, then the set of summary

statistics could be declared as jointly sufficient for the parameters of the model under consideration (Molloy,

Galdo, Bahg, Liu, & Turner, 2019). Turner and Sederberg (2014) demonstrated using the LBA model (which

has a tractable likelihood function) that quantiles are not jointly sufficient for the LBA parameters, and thus960

do not convey the same information as the full choice–response time distribution when fitting the model to

data. Given the consistency between the parameters of the DDM and LBA (Donkin, Brown, Heathcote, &

Wagenmakers, 2011; Rodriguez, Turner, & McClure, 2014), we believe that quantiles are also insufficient
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for conveying the full granularity of information in the data to the parameters of other models such as

the DDM and LCA, which will clearly affect conclusions about model parameters and relative model fits965

to data. Our study fit 12 models sampled from the three architectures of accumulator dependency to the

full response time distributions for each participant individually. Both the level of constraint provided by

our tasks and the methods we applied to fit the models to our data provide what we consider to be an

unbiased and comprehensive assessment of the strengths and weaknesses of the examined accumulator

models, focused on the theoretical question of the nature of choice dependency.970

There are models we did not examine in this study that may have the mechanisms necessary to fit

this dataset. The full normalization model of Louie et al. (2013) is structured such that it continuously

transitions between a relative ratio model and an independent race model. Because this model has both

dependency and independency accumulation processes, it may be sufficiently flexible to capture the patterns

of response times observed in both the equal-evidence and unequal-evidence conditions. A differential975

relativity account may also be able to capture all of the patterns observed in our dataset (Moreno-Bote,

2010; Teodorescu et al., 2015; Zylberberg, Barttfeld, & Sigman, 2012). Differential relativity models are

designed such that one parameter can manipulate the degree of dependence of the accumulators, allowing

the model to flexibly switch between independent and dependent processes using input competition in a

similar manner to the FFI model. Although these hybrid models with both independent and dependent980

accumulation styles could potentially capture our data, ultimately they are nested within the architecture of

partial dependency. One approach to establishing the level of dependency would be to fit a hybrid model

to our data and report the estimates of the parameter that allows the hybrid model to transition from fully

dependent to independent. However, another approach, used here, is to define sets of models according

to the extreme classes that hybrid models transition between. Evidence for the type of dependency can985

then be assessed by examining relative model fits, rather than parameter estimates. Both approaches are

appropropriate, but as our goal was to evaluate whether or not the extreme positions of independence and

full dependence were valid, we chose model evaluation metrics over parameter estimates within hybrid

models (but see Osth & Dennis (2015) for an example).
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Conclusions990

Sequential sampling theory has proven to be a plausible framework for investigating the dynamics of

decision-making. Since its inception, many models have been developed that provide exquisite accounts

of behavioral data for a handful of empirical benchmarks of decision-making. Although these models

make use of a variety of different mechanisms, at their core is an explicit architectural assumption about

the type of dependency that describes the accumulation of evidence. Here we have investigated the995

plausibility of three types of dependency – fully dependent, partially dependent, and independent – using

a combination of a fully factorial experimental design and a consortium of models, followed by model

evaluation techniques. In the end, our results provide remarkable consensus that the type of dependency

among choice alternatives is neither independent nor fully dependent. Instead, partial dependency best

accounts for human decision-making, and the degree of dependency is an important source of variation1000

among individuals.

Appendix A: LCA Parameter Recovery

In this section, we provide evidence that the LCA parameters can be recovered when the LCA model

is fit to data collected from our experimental paradigms. We selected participant 9 from Experiment 1

and used the best fitting parameters obtained from the fit of the BTV LCA to choice–response time data1005

participant 9 produced to generate simulated data. Consistent with the amount of trials participants

completed in Experiment 1, we simulated 48 trials for each of the 10 conditions for a total of 480 trials of

simulated data. Using the same DE-MCMC and PDA methods as Model Analyses 1 and 2, we fit the BTV

LCA to the simulated data. Figure 20 shows the results of this BTV LCA parameter recovery. The posterior

distributions of every parameter from the fit of BTV LCA to the simulated data include the true, generating1010

parameters. This is initial evidence that the parameters from the BTV LCA model can be recovered when

the model is fit to data from our tasks.
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Figure 20: Recovery of BTV LCA parameter values. We fit the BTV LCA model to simulated data generated
by the same model to determine if the parameters of the BTV LCA model are recoverable. The red lines
represent the parameter values that we used to generate the simulated data, the gray bars represent the
posterior distributions for each parameter, and the green lines represent the best fitting parameter of the
fits to the simulated data. The lower and upper bounds on each x-axis are the same values as the lower
and upper bounds of the prior distributions we specified for each parameter except for µ and σ where we
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