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Abstract
In this dissertation, distributed control problems of multi-agent systems are studied. The appli-
cations of distributed control algorithms to the management of networked battery units are also
investigated.

The leader-following almost output consensus problem for both continuous-time and discrete-time
linear heterogeneous multi-agent systems is considered, in which the unstable zero dynamics of the
follower agents are affected by disturbance. Due to the inapplicability of high gain feedback to the
discrete-time setting, different conditions on the way the agents are affected by the disturbance in
the two cases have to be identified. Low-and-high gain-based state feedback and output feedback
consensus protocols are proposed for continuous-time multi-agent systems. State feedback and out-
put feedback consensus protocols for discrete-time multi-agent systems are constructed based on
low gain feedback and a modified discrete-time Riccati equation. The proposed consensus protocols
are shown to achieve leader-following output consensus to an arbitrarily high level of accuracy, and
attenuate the effect of the disturbance on the consensus errors to an arbitrarily low level.

The almost output consensus problem of nonlinear multi-agent systems is then considered. Con-
ditions on the nonlinear systems are established under which distributed consensus protocols are
designed in a recursive manner. The protocols are shown to achieve almost output consensus, that
is, output consensus of the system is achieved in the absence of the disturbances, and the L2-gain
from the disturbances to the output consensus error of agents when the system is operating in
output consensus can be made arbitrarily small.

The suboptimal output consensus problem for discrete-time heterogeneous linear multi-agent sys-
tems with unstable zero dynamics is also studied, where each agent possesses its own objective
function, and the sum of all these private objective functions, called the overall objective function,
is to be minimized. Mild assumptions on the communication topology and the agent dynamics are
made under which a parameterized distributed consensus protocol based on low gain feedback is
proposed for each agent. The multi-agent system is shown to achieve suboptimal output consensus
under the proposed protocols in the sense that the states of all agents remain bounded while their
outputs converge to a pre-specified arbitrarily small neighborhood of the optimal point as long as
the design parameter is chosen small enough.

Finally, the management problem of networked battery units in DC microgrids is studied. Specif-
ically, the control problem of balancing the state-of-charge (SoC) among the networked battery
units while satisfying the total charging/discharging power demand is considered. Power allocation
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algorithms for the battery units that make use of distributed estimators for the average desired
power and the average unit state and the adaptive parameter estimators are proposed. Power
allocation algorithms are also proposed based on adaptive parameter estimations for battery units
with unknown parameters. Algorithms that make use of SoC observers based on equivalent circuit
models of the batteries are also constructed for networked battery systems with unknown SoC. The
algorithms are shown to achieve SoC balancing among all battery units while satisfying the power
demand.
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Chapter 1

Introduction

The consensus problem of multi-agent systems has been an active research topic in recent years
due to its applications in various research and engineering areas such as distributed sensor fusion in
sensor networks, management and control of power systems, and formation control of multi-vehicle
systems (see, e.g., [10, 14, 67, 72, 68, 98, 40, 12]). Consensus or output consensus of a multi-agent
system entails that the states or outputs of all its agents reach agreement at some value, under the
influence of consensus protocols that specify interaction among neighbor agents.

Applications of consensus protocols to real-world systems inevitably lead to practical considera-
tions of the consensus protocols such as their robustness to disturbances, wind gusts affecting the
formation flight control of unmanned aerial vehicles [46, 32], as an example. Disturbance rejection
in individual systems has been an active research topic for several decades (see, e.g., [50, 28, 29,
42, 44]). There have also been many results on the design of consensus protocols that eliminate or
reduce the effect of the disturbances on the consensus errors (see, e.g., [25, 47, 95, 79, 3, 13, 78, 18,
76, 81]). Most works on the design of consensus protocols for multi-agent systems subject to dis-
turbances have implicitly assumed that the agent dynamics is of minimum phase, or nonminimum
phase systems with disturbances not affecting the unstable zero dynamics. However, many actual
dynamical systems are known to exhibit non-minimum phase characteristics. For example, the in-
verted pendulum on a cart [21], and the V/STOL aircraft [23] are both nonminimum phase systems.
The disturbances that affect the unstable zero dynamics of a system incur additional difficulty in
meeting the control objectives. Therefore, we are motivated to consider the consensus problem
of multi-agent systems whose agents dynamics are of nonminimum phase and are affected by the
disturbance. Besides the disturbance, nonlinearity in the dynamics of agents is also commonly seen
in real-world multi-agent systems. Therefore, in this thesis, we design consensus protocols that
achieve leader-following almost output consensus for both continuous-time and discrete-time multi-
agent systems with disturbance-affected unstable zero dynamics. The “almost output consensus”
is borrowed from the terminology “almost disturbance decoupling” for single systems. Here by
“almost” we mean that the output consensus error caused by the disturbance can be attenuated to
an arbitrarily low level. We also design consensus protocols for nonlinear multi-agent systems that
are affected by the disturbance.

1



The optimal consensus of a multi-agent system, on the other hand, entails that the states or
outputs of its agents not only reach an agreement, but such an agreement also minimizes the sum
of the individual objective functions of all agents, called the overall objective function. Originally
investigated in [65] for discrete-time systems, the optimal consensus problem has been further
studied in [48, 37, 22, 80]. The optimal output consensus is studied in [82, 83]. The global
optimal consensus problem is studied for multi-agent systems with bounded controls in [88], [89]
and [96], where the agent dynamics is represented by first-order and second-order integrators,
continuous-time general high order systems, and first-order discrete-time systems, respectively. In
[90], the suboptimal output consensus problem is considered for general continuous-time multi-
agent systems, whose agent dynamics are described by a weakly nonminimum phase linear system.
In this thesis, we solve the suboptimal output consensus problem for a discrete-time multi-agent
system, whose agents may possess polynomial unstable zero dynamics (i.e., the agents may be
of weakly nonminimum phase). In order to prevent the states of the unstable zero dynamics
from growing unbounded as the output approaches a nonzero constant value, the proposed design
achieves suboptimal output consensus, instead of optimal output consensus, by allowing the output
to vary in a neighborhood of the optimal point, whose size can be pre-specified to be arbitrarily
small.

Battery energy storage systems (BESSs) have seen rapid growth recently in microgrid applications
as their performance and durability continue to improve and their costs decrease [38]. BESSs
can be used to compensate the peak power demand and absorb excess power in off-peak time [39],
therefore enabling the generation equipment to operate near its optimal efficiency. They can also be
combined with renewable energy resources, which are of intermittent and stochastic characteristics,
to enhance supply reliability [63, 97]. Compared with other energy storage systems, BESSs have
their advantages, such as high efficiency, high energy density, and versatility [11].

Control of BESSs is an important but challenging problem (see, e.g., [86, 100, 64, 77, 99, 101]).
Every battery unit in a BESS has to be judiciously controlled so that safe and efficient operation
can be ensured while the charging and discharging requirements from the microgrid applications
are fulfilled. An important control problem for a BESS is to balance the state-of-charge (SoC) of
all its battery units while delivering the total desired charging/discharging power. Because of the
differences between the units’ intrinsic characteristics and their ambient variations, the SoC of the
units tends to differ from each other under normal operations. Maintaining SoC balancing can not
only avoid overcharge/overdischarge of battery units but also maximize the available energy storage
capacity and charging/discharging rates (see, e.g., [85, 49, 27, 62]). In real-world applications, the
parameters such as capacities and terminal voltages of the battery units may not be precisely
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known. Their true values may deviate from their nominal values due to aging and/or variations in
their manufacturing. In addition, the units’ parameters may vary under severe operating conditions
such as heavy load or low/high-temperature [102]. In this thesis, we consider the control design
for networked heterogeneous battery units in a BESS with both known and unknown parameters.
We design both non-adaptive and adaptive distributed power-allocating algorithms, under which
the SoC of all the units achieves balancing and the power demand is satisfied. Unlike voltage and
current, the SoC of battery units is not directly measurable. Therefore, SoC estimation is necessary
and is a challenging problem due to the complex chemical process in batteries. In this thesis, we
also consider the SoC observer design for the battery units based on an equivalent circuit model of
battery dynamics.

This thesis is organized as follows. In Chapter 2, we formulate and solve the almost output consensus
problem for linear continuous-time multi-agent systems with disturbance-affected unstable zero
dynamics. In Chapter 3, we formulate and solve the almost output consensus problem for linear
discrete-time multi-agent systems with disturbance-affected unstable zero dynamics. In Chapter 4,
we formulate and solve the almost output consensus problem for nonlinear multi-agent systems in
the presence of external disturbance. In Chapter 5, we formulate and solve the suboptimal output
consensus problem for linear discrete-time multi-agent systems with unstable zero dynamics. In
Chapter 6, we formulate and solve the control problem of balancing the state-of-charge among
battery units in networked battery systems while satisfying the total charging/discharging power
demand.

We use graphs to represent the communication networks in multi-agent systems. Specifically, for a
leaderless multi-agent system consisting of N agents, its communication topology is described by a
directed graph G = {V, E}, where V = {v1, v2, · · · , vN} is the set of nodes representing the agents,
and E is the set of edges representing the communication channels among agents. An edge in G
is an ordered pair (vi, vj) ∈ E , in which vi is said to be the parent of vj . A path in the directed
graph G from node vi1 to node vik is a ordered sequence of edges (vi1 , vi2), (vi2 , vi3), · · · , (vik−1

, vik).
A direct graph is called a directed tree if every node in the graph has one parent, except the root
which has no parent, and there is a directed path from the root to every other node. A directed tree
is called a directed spanning tree of graph G if it contains all the nodes in G. The adjacency matrix
A = [aij ] ∈ RN×N of the graph G is defined as aij = 1 if agent i can receive information directly
from follower agent j, otherwise aij = 0. In addition, we assume that aii = 0, i ∈ {1, 2, · · · , N}.
The Laplacian matrix associated with the graph G is defined as L = [lij ] ∈ RN×N , where lij = −aij
if i ̸= j and lii =

∑N
k=1,k ̸=i aik. The graph G is undirected if aij = aji, for all i, j,∈ {1, 2, · · · , N}.
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The communication topology of a leader-following multi-agent system is described by a directed
graph G = {V, E}, where V = {v0, v1, · · · , vN} is the set of nodes with v0 representing the leader
agent and v1, v2, · · · , vN representing the N follower agents, and E is the set of edges representing
the communication channels among agents. Let Ḡ = {V̄, Ē} be a subgraph of G that is only
associated with the communication topology of the N followers, i.e., V̄ = {v1, v2, · · · , vN}. The
adjacency matrix Ā = [aij ] ∈ RN×N and the Laplacian matrix L̄ = [lij ] ∈ RN×N are defined with
the subgraph Ḡ. The matrix B̄ = diag{b1, b2, · · · , bN} ∈ RN×N is defined to indicate the direct
accessibility of the leader agent’s information by the follower agents, where bi = 1 means that
follower agent i has direct knowledge of the leader agent, otherwise bi = 0.

The following notations will be used. Let Rn denote n-dimensional Euclidean space. For a matrix
A, let Im(A) denote its image space, ∥A∥ denote its norm and λ(A) denote its eigenvalues. For
a vector v, let ∥v∥ denote its norm. Let C, C⊙, and C d denote the entire complex plane, the
set of complex numbers inside the unit circle, and the set of complex numbers on the unit circle,
respectively.
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Chapter 2

Almost Output Consensus of Linear Continuous-Time Multi-Agent Systems

2.1 Introduction

In this chapter, we design both state feedback and output feedback consensus protocols for the
continuous-time multi-agent systems with disturbance-affected unstable zero dynamics over a di-
rected communication topology. The poles of the zero dynamics are allowed to be anywhere in the
closed left half-plane. The condition of the way the disturbance affects the zero dynamics of each
follower agent is identified. The leader agent’s output to be followed can be any bounded signal that
does not contain the frequency components of the jω-axis invariant zeros of the follower agents.
Novel state feedback and output feedback consensus protocols are constructed of a low-and-high
gain feedback structure in which the low gain feedback design technique [43] is utilized to stabilize
the zero dynamics of each follower agent by allowing its output to vary within a small neighborhood
of the desired output, and therefore maintains the boundedness of its state in the absence of the
disturbances. A state observer that facilitates the output feedback design is constructed for each
agent under the assumption that the agent dynamics are detectable. The observer error is shown to
be in the same order as the disturbance affecting the dynamics of the agent in terms of the L2-gain.
We show that, these state feedback and output feedback protocols achieve leader-following almost
output consensus, as long as the communication topology of the multi-agent system contains a di-
rected spanning tree with the leader as the root node. More specifically, the leader-following output
consensus is achieved to any pre-specified degree of accuracy while the states remain bounded in
the absence of the disturbances, and when the system is operating in output consensus within the
desired level of accuracy, the L2-gain from the disturbances to the difference between each follower
agent’s output with and without the disturbances from the same initial condition is attenuated to
any desired level of accuracy. We note that, compared to the results on individual systems, where
the output converges toward zero precisely in the absence of the disturbances, the output of the
multiple agents under our proposed protocols reaches consensus to a time-varying desired signal
only with a pre-specified accuracy. In order to analyze the effect of the disturbance on the output
consensus of the system, we have to compare the output in the absence and in the presence of the
disturbance.
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The remainder of this chapter is organized as follows. Section 2.2 formulates the leader-following
almost output consensus problem for linear continuous-time multi-agent systems with disturbance-
affected unstable zero dynamics. Section 2.3 establishes the state feedback results. Section 2.4
presents the simulation for state feedback design. Section 2.5 establishes the output feedback
results. Section 2.6 presents the simulation for output feedback design. Section 2.7 concludes this
chapter.

2.2 Problem Statement

In this section, we will formulate the leader-following almost output consensus problem for linear
continuous-time multi-agent systems with disturbance-affected unstable zero dynamics. Consider a
linear heterogeneous multi-agent system consisting of N follower agents and one leader agent. The
communication network among these agents is represented by a directed graph G that satisfies the
following assumption.

Assumption 2.1. The directed graph G representing the communication network of the leader-
following multi-agent system contains a directed spanning tree with the leader as the root node.

The dynamics of follower agents are described by

ẋi,0 = Ai,0xi,0 +Bi,0xi,1 +Di,0wi,

ẋi,m = xi,m+1 + di,mwi, m = 1, 2, · · · , ρ− 1,

ẋi,ρ = Ei,0xi,0 + βi,1xi,1 + βi,2xi,2 + · · ·+ βi,ρxi,ρ + ui + di,ρwi,

yi = xi,1, i ∈ {1, 2, · · · , N},

(2.1)

where xi,0 = [xi,0,1 xi,0,2 · · · xi,0,ri ]T ∈ Rri and xi = [xi,1 xi,2 · · · xi,ρ]T ∈ Rρ are the states,
ui ∈ R is the control input, yi ∈ R is the output, and wi ∈ R is the disturbance. Let Di,0 =

[di,0,1 di,0,2 · · · di,0,ri ]T ∈ Rri . The zero dynamics of the ith follower agent is the dynamics when
the output is restricted to zero and is represented by

ẋi,0 = Ai,0xi,0, i ∈ {1, 2, · · · , N}.

It is noted that any single input single output linear system can be transformed into the form of
(2.1), where ρ is the relative degree of the system, through a state transformation [5]. The follower
agents in the form of (2.1) are heterogeneous except they share the same relative degree ρ.
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The leader agent provides the desired output for the follower agents to follow and thus its dynamics
is assumed to have the same relative degree as the follower agents, as given by

ẋ0,m = x0,m+1, m = 1, 2, · · · , ρ− 1,

ẋ0,ρ = u0,

y0 = x0,1,

(2.2)

where x0 = [x0,1 x0,2 · · · x0,ρ]T ∈ Rρ is the state, u0 ∈ R is any control input that produces the
desired bounded leader output y0 ∈ R.

Assumptions 2.2 and 2.3 below, respectively, ensure that the dynamics of the follower agents is
stabilizable and detectable (for output feedback design).

Assumption 2.2. The pair (Ai,0, Bi,0) that represents the zero dynamics is stabilizable, and all
eigenvalues of Ai,0 are in the closed left half-plane.

Assumption 2.3. (For output feedback) The pair (Ai,0, Ei,0) is detectable.

Assumption 2.4. The vector Di,0 satisfies

Di,0 ∈ ∩ω∈λ0(Ai,0)Im(ωI −Ai,0), i ∈ {1, 2, · · · , N},

where λ0(Ai,0) are the set of all imaginary eigenvalues of Ai,0.

Assumption 2.5. The leader agent’s output y0(t) does not contain frequencies corresponding to
the imaginary eigenvalues of Ai,0, i ∈ {1, 2, · · · , N}.

The leader-following almost output consensus problem for linear multi-agent systems with disturbance-
affected unstable zero dynamics is stated as follows.

Problem 2.1. Consider the linear multi-agent system described by (2.1) and (2.2). For any
pre-specified η > 0 and γ > 0, design distributed state feedback and output feedback consensus
protocols under which leader-following almost output consensus is achieved in the following sense:

(i) In the absence of the disturbance, the states of all follower agents are bounded.

(ii) In the absence of the disturbance, leader-following output consensus is achieved within an
accuracy specified by η, i.e.,

lim sup
t→∞

|yi,w=0(t)− y0(t)| ≤ η, i ∈ {1, 2, · · · , N},

7



where yi,w=0 is the ith follower agent’s output.

(iii) In steady state, the effect of the disturbance w = [w1 w2 · · · wN ]T on the leader-following
output consensus, measured by the L2-gain, is attenuated to a level specified by γ, i.e.,∫ ∞

0

(
yi(t)− yi,w=0(t)

)2dt ≤ γ2
∫ ∞

0
∥w(t)∥2dt.

where yi(t) and yi,w=0(t) are, respectively, the output of the ith follower agent in the presence
and in the absence of the disturbance.

2.3 State Feedback Results

In this section, state feedback consensus protocols are designed in the following three steps. First, a
low gain feedback law is designed for each follower agent that stabilizes its unstable zero dynamics.
Second, a new output is renamed and a new set of states is defined for each follower agent, based
on the low gain feedback law. Last, a high gain feedback law utilizing the new states is designed
to attenuate the effect of the disturbance.

Step 1: Low Gain Feedback
For each follower agent i , i ∈ {1, 2, · · · , N}, find a nonsingular transformation Ti,0 ∈ Rri×ri such
that the pair

(
Ai,0, Bi,0

)
is transformed into

T−1
i,0 Ai,0Ti,0 =

[
A0

i,0 0

0 A−
i,0

]
, T−1

i,0 Bi,0 =

[
B0

i,0

B−
i,0

]
, (2.3)

where A0
i,0 ∈ Rr0i×r0i contains all the purely imaginary eigenvalues of Ai,0, and A−

i,0 ∈ Rr−i ×r−i

contains all the open left half-plane eigenvalues of Ai,0. Since A−
i,0 is Hurwitz, only the dynamics

associated with A0
i,0 is needed to be stabilized. Under Assumption 2.2,

(
A0

i,0, B
0
i,0

)
is controllable

and, without loss of generality, can be assumed to be in the following canonical form,

A0
i,0 =


0 1 · · · 0
...

... . . . ...
0 0 · · · 1

αi,1 αi,2 · · · αi,r0i

 , B0
i,0 =


0
...
0

1

 . (2.4)
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For each
(
A0

i,0, B
0
i,0

)
, let F 0

i,0(ε) ∈ R1×r0i be such that

λ
(
A0

i,0 −B0
i,0F

0
i,0(ε)

)
= −ε+ λ

(
A0

i,0

)
. (2.5)

Such design is referred to as low gain feedback since F 0
i,0(ε) tends to zero as the value of the design

parameter ε tends to zero.

Let
uL,i = −Fi,0(ε)xi,0, ε ∈ (0, 1], i ∈ {1, 2, · · · , N},

where Fi,0(ε) =
[
F 0
i,0(ε) 0

]
T−1
i,0 .

The following lemmas are recalled since they are useful in the later analysis of the closed-loop
system.

Lemma 2.1. [43] Consider
(
A0

i,0, B
0
i,0

)
in the form of (2.4) and F 0

i,0(ε) in (2.5). There exists
constant f̄i,0 > 0 such that

∥F 0
i,0(ε)∥ ≤ f̄i,0ε, ε ∈ (0, 1].

Lemma 2.2. [45] Consider (A0
i,0, B

0
i,0) in the form of (2.4) and F 0

i,0(ε) in (2.5). Let

det
(
sI −A0

i,0 +B0
i,0F

0
i,0(ε)

)
= (s+ ε)r

0
i,0

li∏
l=1

(s+ ε− jωi,l)
r0i,l(s+ ε+ jωi,l)

r0i,l .

Then, there exist ε∗ > 0 and constant γi > 0 such that

∥∥∥F 0
i,0(ε)

(
jωI −A0

i,0 +B0
i,0F

0
i,0(ε)

)−1
∥∥∥ ≤ γiε

li∑
l=0

r0i,l∑
r=1

∣∣∣∣ 1

(jω − jωi,l + ε)r

∣∣∣∣, ε ∈ (0, ε∗],

where ωi,0 = 0.

Lemma 2.3. [43] Consider (A0
i,0, B

0
i,0) in the form of (2.4) and F 0

i,0(ε) in (2.5). There exists a
nonsingular transformation matrix Qi(ε) ∈ Rr0i×r0i such that

Q−1
i (ε)

(
A0

i,0 −B0
i,0F

0
i,0(ε)

)
Qi(ε) = Ji(ε)

= blkdiag{Ji,0(ε), Ji,1(ε), · · · , Ji,li(ε)},
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where

Ji,0 =


−ε 1

. . . . . .
−ε 1

−ε


r0i,0×r0i,0

and for each l = 1 to li,

Ji,l(ε) =


J⋆
i,l(ε) I2

. . . . . .
J⋆
i,l(ε) I2

J⋆
i,l(ε)


2r0i,l×2r0i,l

, J⋆
i,l(ε) =

[
−ε ωi,l

−ωi,l −ε

]
,

with ωi,l > 0 for all l = 1 to li and ωi,l ̸= ωi,k for l ̸= k. In addition, there exists constant q̄i ≥ 0

such that ∥∥Qi(ε)
∥∥ ≤ q̄i,

∥∥Q−1
i (ε)

∥∥ ≤ q̄i, ε ∈ (0, 1].

Lemma 2.4. [43] Consider (A0
i,0, B

0
i,0) in the form of (2.4) and F 0

i,0(ε) in (2.5). Let Qi(ε), li, r0i,l, and
l ∈ I[0, li], be as defined in Lemma 2.3. Let Si(ε) = blkdiag{Si,0(ε), Si,1(ε), Si,2(ε), · · · , Si,li(ε)},
with Si,0(ε) = diag

{
εr

0
i,0−1, εr

0
i,0−2, · · · , ε, 1

}
and Si,l(ε) = diag

{
εr

0
i,l−1I2, ε

r0i,l−2I2, · · · , εI2, I2
}

, l ∈
{1, 2, · · · , li}. Then,

1.
Si(ε)Ji(ε)S

−1
i (ε) = εJ̃i(ε),

where J̃i(ε) = blkdiag{J̃i,0, J̃i,1(ε), · · · , J̃i,li},

J̃i,0 =


−1 1

. . . . . .
−1 1

−1


r0i,0×r0i,0
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and for each l = 1 to li,

J̃i,l(ε) =


J̃⋆
i,l(ε) I2

. . . . . .
J⋆
i,l(ε) I2

J⋆
i,l(ε)


2r0i,l×2r0i,l

, J̃⋆
i,l(ε) =

[
−1 ωi,l/ε

−ωi,l/ε −1

]
,

with ωi,l > 0 for all l = 1 to li and ωi,l ̸= ωi,k for l ̸= k.

2. The unique positive-definite solution P̃i,0 to the Lyapunov equation

J̃T
i (ε)P̃i,0 + P̃i,0J̃i(ε) = −I

is independent of ε.

3. There exists positive constant κi > 0 such that∥∥∥F 0
i,0(ε)Qi(ε)S

−1
i (ε)

∥∥∥ ≤ κiε, ε ∈ (0, 1].

Lemma 2.5. [43] Let Di,0, i ∈ I[1, N ], satisfy Assumption 2.4. Let Qi(ε) be as given in Lemma
2.3. Partition Q−1

i (ε)D0
i,0 according to that of Ji(ε) in Lemma 2.3 as

Q−1
i (ε)D0

i,0 =


D0

i,0,0(ε)

D0
i,0,1(ε)

...
D0

i,0,li
(ε)

 ,

with

D0
i,0,0 =


D0

i,0,0,1(ε)

D0
i,0,0,2(ε)

...
D0

i,0,0,r0i,0
(ε)


r0i,0×1

, and D0
i,0,l =


D0

i,0,l,1(ε)

D0
i,0,l,2(ε)

...
D0

i,0,l,r0i,l
(ε)


r0i,l×1

, l ∈ {1, 2, · · · , li}.

Then, there exists constant βi ≥ 0 such that∥∥∥D0
i,0,l,r0i,l

(ε)
∥∥∥ ≤ βiε, ε ∈ (0, 1], l ∈ {0, 1, 2, · · · , li}.

Step 2: Output Renaming
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Define a new output for each follower agent i as

ỹi = yi − uL,i = xi,1 + Fi,0(ε)xi,0.

For each i ∈ {1, 2, · · · , N}, also define the state transformation

zi,0 =
[
z0i,0

T
z−i,0

T]T
= T−1

i,0 xi,0.

Correspondingly, denote
[
D0

i,0
T
D−

i,0
T]T

= T−1
i,0 Di,0. Then, the dynamics of zi,0 is given as

[
ż0i,0

ż−i,0

]
=

[
A0

i,0 −B0
i,0F

0
i,0 0

B−
i,0F

0
i,0 A−

i,0

][
z0i,0

z−i,0

]
+

[
B0

i,0

B−
i,0

]
ỹi +

[
D0

i,0

D−
i,0

]
wi. (2.6)

Based on the new output ỹi and the state transformation zi,0 =
[
z0i,0

T
z−i,0

T]T, a set of new states
z̃0i,0 and x̃i =

[
x̃i,1 x̃i,2 · · · x̃i,ρ

]T are defined as

z̃0i,0 = Si(ε)Q
−1
i (ε)z0i,0,

x̃i,1 = ỹi = xi,1 + Fi,0(ε)xi,0,

x̃i,2 = xi,2 + Fi,0(ε)Ai,0xi,0 + Fi,0(ε)Bi,0xi,1,

...

x̃i,ρ = xi,ρ + F0,i(ε)A
ρ−1
0,i xi,0 + Fi,0(ε)A

ρ−2
i,0 Bi,0xi,1 + Fi,0(ε)A

ρ−3
i,0 Bi,0xi,2 + · · ·+ Fi,0(ε)Bi,0xi,ρ−1.

Design a pre-feedback law as

ui = −Ei,0xi,0 − βi,1xi,1 − βi,2xi,2 − · · · − βi,ρxi,ρ − Fi,0(ε)A
ρ
i,0xi,0

− Fi,0(ε)A
ρ−1
i,0 Bi,0xi,1 − Fi,0(ε)A

ρ−2
i,0 Bi,0xi,2 − · · · − Fi,0(ε)Bi,0xi,ρ + ũi, (2.7)

where ũi is to be designed later. Then, the dynamics of follower agent i in the new states is written
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as 

˙̃z0i,0 = εJ̃i(ε)z̃
0
i,0 + B̃0

i,0ỹi + D̃0
i,0wi,

˙̃xi,1 = x̃i,2 + d̃i,1wi,

˙̃xi,2 = x̃i,3 + d̃i,2wi,

...
˙̃xi,ρ−1 = x̃i,ρ + d̃i,ρ−1wi,

˙̃xi,ρ = ũi + d̃i,ρwi,

where J̃i(ε) is defined as in Lemma 2.4, B̃0
i,0 = Si(ε)Q

−1
i B0

i,0, D̃0
i,0 = Si(ε)Q

−1
i D0

i,0, and d̃i,m,
m = 1, 2, · · · , ρ, are defined in a straightforward way. Note that ∥B̃0

i,0∥ ≤ b̄ for some constant b̄ > 0

by Lemma 2.3, and ∥D̃0
i,0∥ ≤ d̄ε for some constant d̄ > 0, by Lemma 2.5.

Step 3: Protocol Design

Define the consensus error ξi = [ξi,1 ξi,2 · · · ξi,ρ]T as

ξi,m =
N∑
j=1

aij(x̃i,m − x̃j,m) + bi(x̃i,m − x0,m) (2.8)

where m = 1, 2, · · · , ρ, i ∈ {1, 2 · · · , N}.

Then, the consensus error dynamics is given as

ξ̇i,m =
N∑
j=1

aij
(
(x̃i,m+1 + d̃i,mwi)− (x̃j,m+1 + d̃j,mwj)

)
+ bi

(
(x̃i,m+1 + d̃i,mwi)− x0,m+1

)
,

m = 1, 2, · · · , ρ− 1,

ξ̇i,ρ =

N∑
j=1

aij
(
(ũi + d̃i,ρwi)− (ũj + d̃j,ρwj)

)
+ bi

(
(ũi + d̃i,ρwi)− u0

)
,

or in a compact form, ξ̇i,m = ξi,m+1 + d̄T
i,mw, m = 1, 2, · · · , ρ− 1,

ξ̇i,ρ = ūi + d̄T
i,ρw,

(2.9)

where we have denoted

d̄i,m =
[
− ai1d̃1,m − ai2d̃2,m · · · − ai(i−1)d̃i−1,m (|Ni|+ bi)d̃i,m − ai(i+1)d̃i+1,m · · · − aiN d̃N,m

]T
,

m = 1, 2, · · · , ρ,
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w = [w1 w2 · · · wN ]T,

ūi =

N∑
j=1

aij(ũi − ũj) + bi(ũi − u0),

where Ni is the set of neighbors of follower agent i. Design ũi such that

ūi = − 1

ερ
f1ξi,1 −

1

ερ−1
f2ξi,2 − · · · − 1

ε
fρξi,ρ, (2.10)

where f1, f2, · · · , fρ are the coefficients of any Hurwitz polynomial sρ+fρsρ−1+fρ−1s
ρ−2+ · · ·+f1.

It is clear that such ũi is given by

ũi =

(
N∑
i=1

aij + bi

)−1( N∑
i=1

aij ũj + biu0 + ūi

)
. (2.11)

It then follows from (2.7) and (2.10) that the consensus protocol for each follower agent in the
original coordinates is written as

ui = −Ei,0xi,0 − βi,1xi,1 − βi,2xi,2 − · · · − βi,ρxi,ρ − Fi,0(ε)A
ρ
i,0xi,0 − Fi,0(ε)A

ρ−1
i,0 Bi,0xi,1

− Fi,0(ε)A
ρ−2
i,0 Bi,0xi,2 − · · · − Fi,0(ε)Bi,0xi,ρ

+

(
N∑
i=1

aij + bi

)−1( N∑
i=1

aij ũj + biu0 −
1

ερ
f1ξi,1 −

1

ερ−1
f2ξi,2 − · · · − 1

ε
fρξi,ρ

)
. (2.12)

Remark 2.1. The construction of each consensus protocol ui only involves a state transformation
that block diagonalizes matrix Ai, separating the open left-half plane eigenvalues from the jω-axis
eigenvalues, a state transformation that transforms the pair (Ai, Bi) into its controllable canonical
form, and a pole placement algorithm.

Theorem 2.1. [55] Consider the multi-agent system with agent dynamics described by (2.1) and
(2.2). Let the communication topology satisfy Assumption 2.1. Let the follower agents’ dynamics
satisfy Assumptions 2.2 and 2.4. Let the leader agent’s output to be followed satisfy Assumption
2.5. Then, for any given η > 0 and γ > 0, there exists ε∗ ∈ (0, 1] such that, with any ε ∈ (0, ε∗],
the parameterized state feedback consensus protocols (2.12) solve Problem 2.1:

(i) The state of each follower agent is bounded in the absence of the disturbances.

(ii) The leader-following output consensus is achieved to the given accuracy η in the absence of
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the disturbances, i.e., there exists finite time T ≥ 0 such that

|yi,w=0(t)− y0(t)| ≤ η, t ≥ T, i ∈ {1, 2, · · · , N}.

(iii) In steady state, the effect of the disturbance w = [w1 w2 · · · wN ]T on the the leader-following
output consensus, measured by the L2-gain, is attenuated to the level specified by γ, i.e.,∫ ∞

0

(
yi(t)− yi,w=0(t)

)2dt ≤ γ2
∫ ∞

0
∥w(t)∥2dt.

Proof: In the proof, we will first show that the proposed consensus protocols stabilize the unstable
zero dynamics and guarantee the boundedness of all follower agents’ states, in the absence of
the disturbances. We will then show that the leader-following output consensus can be achieved
with a specified accuracy η > 0 by showing that all follower agents’ renamed outputs ỹi(t), i ∈
{1, 2, · · · , N}, will converge to the leader’s output y0(t), and the difference between each follower
agent’s output yi(t) and its renamed output ỹi(t) can be made less than η in steady state. Finally,
we will evaluate the effect of the disturbances on the consensus errors through Lyapunov analysis.

Consider the closed-loop disturbance-affected z̃0i,0 dynamics

˙̃z0i,0 = εJ̃i(ε)z̃
0
i,0 + B̃0

i,0ỹi + D̃0
i,0wi,

under the control

uL,i = −Fi,0(ε)xi,0

= F 0
i,0(ε)z

0
i,0

= −F 0
i,0(ε)Qi(ε)S

−1
i (ε)z̃0i,0

≜ ũL,i(z̃
0
i,0).

Let ỹi,w=0(t) and ỹi,w(t) with ỹi,w(0) = 0 be, respectively, the zero input response and the zero
state response of ỹi(t), that is,

ỹi(t) = ỹi,w=0(t) + ỹi,w(t),

by view the disturbance w as the input. Accordingly, we decompose z0i,0 and z̃0i,0 as

z0i,0(t) = z0i,0,w=0(t) + z0i,0,w(t)

z̃0i,0(t) = z̃0i,0,w=0(t) + z̃0i,0,w(t),
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with z0i,0,w(0) = 0, z̃0i,0,w(0) = 0, and

˙̃z0i,0,w=0 = εJ̃i(ε)z̃
0
i,0,w=0 + B̃0

i,0ỹi,w=0, (2.13)
˙̃z0i,0,w = εJ̃i(ε)z̃

0
i,0,w +B0

i,0ỹi,w + D̃0
i,0wi. (2.14)

It is noted that, in the absence of the disturbances, the response of each follower agent’s z̃0i,0
dynamics is governed by (2.13). In the presence of the disturbances, the response of each follower
agent’s z̃0i,0 dynamics is the superposition of (2.13) and (2.14).

Consider the closed-loop system of the consensus error dynamics (2.9) with ūi being designed as
(2.10). Let ξ̃i = [ξ̃i,1 ξ̃i,2 · · · ξ̃i,ρ]T = [ξi,1 εξi,2 · · · ερ−1ξi,ρ]

T. Then, the dynamics in state ξ̃i is
rewritten as 

ε
˙̃
ξi,1 = ξ̃i,2 + εd̄T

i,1w,

ε
˙̃
ξi,2 = ξ̃i,3 + ε2d̄T

i,2w,

...

ε
˙̃
ξi,ρ−1 = ξ̃i,ρ + ερ−1d̄T

i,ρ−1w,

ε
˙̃
ξi,ρ = −f1ξ̃i,1 − f2ξ̃i,2 − · · · − fρξ̃i,ρ + ερd̄T

i,ρw.

(2.15)

It is obvious that
lim
t→∞

ξ̃i,m(t) = 0, m = 1, 2, · · · , ρ, i ∈ {1, 2, · · · , N},

in the absence of the disturbances because of the choice of the parameters f1, f2, · · · , fρ.

Under Assumption 2.1, we have H = L̄+ B̄ > 0 [26] and L̄1 = 0. It follows from (2.8) that

[ξ1,m ξ2,m · · · ξN,m]T = H[x̃1,m x̃2,m · · · x̃N,m]T − B̄x0,m1

= H[x̃1,m x̃2,m · · · x̃N,m]T − (B̄ + L̄)x0,m1

= H
(
[x̃1,m x̃2,m · · · x̃N,m]T − x0,m1

)
, (2.16)

m = 1, 2, · · · , ρ, and hence for i ∈ {1, 2, · · · , N}, we have

lim
t→∞

(
ỹi,w=0(t)− y0(t)

)
= 0,

lim
t→∞

(
x̃i,m(t)− x0,m(t)

)
= 0, m = 2, 3, · · · , ρ.

Note that the leader’s output y0 is bounded by the assumption on the leader agent. Under the
consensus protocols, ỹi,w=0 converges toward y0 exponentially with bounded steady state error.
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Thus, ỹi,w=0 is bounded. On the other hand, z̃0i,w=0(0) = Si(ε)Q
−1
i (ε)z0i,0(0) by definition and is

therefore finite at t = 0. Then, in view of equation (2.14), z̃0i,w=0 remains bounded. Thus, it
follows from the fact that limt→∞ ξ̃i = 0, i ∈ {1, 2, · · · , N}, that the states of the follower agents
are bounded in the absence of the disturbances.

Recall that
uL,i,w=0 = −F 0

i,0(ε)z
0
i,w=0,

In the absence of the disturbance. Then, under Assumption 2.5, Lemma 2.2 implies that, for any
given η, there exists ε∗i > 0 such that for all ε ∈ (0, ε∗i ], uL,i,w=0(t) satisfies

lim sup
t→∞

|uL,i,w=0(t)| ≤
1

2
η, i ∈ {1, 2, · · · , N}. (2.17)

Let ε∗η = min{ε∗1, ε∗2, · · · , ε∗N}. Then, it follows from

yi,w=0(t) = ỹi,w=0(t) + uL,i,w=0(t)

that for any given η,

lim sup
t→∞

∣∣yi,w=0(t)− y0(t)
∣∣ = lim sup

t→∞

∣∣(ỹi,w=0(t) + uL,i,w=0(t)
)
− y0(t)

∣∣
≤ lim sup

t→∞

∣∣ỹi,w=0(t)− y0(t)
∣∣+ lim sup

t→∞
|uL,i,w=0(t)|

≤ η, i ∈ {1, 2, · · · , N}.

for all ε ∈ (0, ε∗z],

In the presence of the disturbances, we consider the Lyapunov function Vi(ξ̃i) = ξ̃T
i P̃ ξ̃i, where

P̃ ∈ Rρ×ρ is the unique positive definite solution to the following Lyapunov equation,

P̃ Ã+ ÃTP̃ = −I,

with

Ã =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

−f1 −f2 −f3 · · · −fρ
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being Hurwitz.

The time derivative of Vi along the trajectory of (2.15) can be written as

V̇i =
1

ε
ξ̃T
i P̃
(
Ãξ̃i + D̃i(ε)w

)
+

1

ε

(
Ãξ̃i + D̃i(ε)w

)T
P̃ ξ̃i

=
1

ε
ξ̃T
i

(
P̃ Ã+ ÃTP̃

)
ξ̃i +

1

ε
ξ̃T
i P̃ D̃i(ε)w +

1

ε
wTD̃T

i (ε)P̃ ξ̃i

≤ −1

ε
ξ̃T
i ξ̃i +

2

ε
∥ξ̃i∥

∥∥P̃ D̃i(ε)
∥∥∥w∥

≤ −1

ε
ξ̃T
i ξ̃i +

1

ε

(1
4
∥ξ̃i∥2 + 4

∥∥P̃ D̃i(ε)
∥∥2∥w∥2)

≤ − 3

4ε
∥ξ̃i∥2 +

4

ε

∥∥P̃∥∥2∥∥D̃i(ε)
∥∥2∥w∥2, (2.18)

where D̃i(ε) = [εd̄i,1 ε
2d̄i,2 · · · ερd̄i,ρ]T and

lim
ε→0

∥∥D̃i(ε)
∥∥ = 0.

When the system is operating in steady state, we have ξ̃i,m(0) = 0, m = 1, 2, · · · , ρ, i ∈ {1, 2, · · · , N},
which implies that Vi

(
ξi(0)

)
= 0. By integrating both sides of inequality (2.18) and using Vi

(
ξi(0)

)
=

0, we obtain that ∫ ∞

0
∥ξ̃i(t)∥2dt ≤

16

3

∥∥P̃∥∥2∥∥D̃i(ε)
∥∥2 ∫ ∞

0
∥w(t)∥2dt,

and hence ∫ ∞

0
∥ξ̃i,1(t)∥2dt ≤

16

3

∥∥P̃∥∥2∥∥D̃i(ε)
∥∥2 ∫ ∞

0
∥w(t)∥2dt.

The L2-gain from the disturbance w to the difference between ỹ = [ỹ1 ỹ2 · · · ỹN ]T, the renamed
output of follower agents, and y01, the output of the leader, can be obtained from (2.16) as∫ ∞

0
∥ỹ(t)− y0(t)1∥2dt =

∫ ∞

0

∥∥H−1
∥∥2∥∥[ξ1,1(t) ξ2,1(t) · · · ξN,1(t)]

T
∥∥2dt

≤ 1

λ2min(H)

∫ ∞

0

N∑
i=1

∥ξ̃i,1(t)∥2dt

≤ 16∥P̃∥2

3λ2min(H)

(
N∑
i=1

∥∥D̃i(ε)
∥∥2)∫ ∞

0
∥w(t)∥2dt. (2.19)

Since ξ̃i,1(0) = 0, we have

ỹi,w=0(t) = y0(t), t ≥ 0, i ∈ {1, 2, · · · , N}.
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Replace y0(t) by ỹi,w=0(t) in (2.19), we have

∫ ∞

0
∥ỹi(t)− ỹi,w=0(t)∥2dt ≤

16∥P̃
∥∥2

3λ2min(H)

(
N∑
i=1

∥∥D̃i(ε)
∥∥2)∫ ∞

0
∥w(t)∥2dt. (2.20)

Recall that (2.14) can be rewritten as

˙̃z0i,0,w = εJ̃i(ε)z̃
0
i,0,w + B̃0

i,0(ỹi − ỹi,w=0) + D̃0
i,0wi. (2.21)

Consider the Lyapunov function

Vi,0
(
z̃0i,0,w

)
= z̃0i,0,w

TP̃i,0z̃
0
i,0,w

with P̃i,0 being as defined in Lemma 2.4. The time derivative of Vi,0 along the trajectory of (2.21)
can be written as

V̇i,0 =
(
εJ̃i(ε)z̃

0
i,0,w + B̃0

i,0(ỹi − ỹi,w=0) + D̃0
i,0wi

)T
P̃i,0z̃

0
i,0,w

+ z̃0i,0,w
TP̃i,0

(
εJ̃i(ε)z̃

0
i,0,w + B̃0

i,0(ỹi − ỹi,w=0) + D̃0
i,0wi

)
≤ −ε∥z̃0i,0,w∥2 + 2z̃0i,0,w

TP̃i,0B̃
0
i,0(ỹi − ỹi,w=0) + 2z̃0i,0,w

TP̃i,0D̃
0
i,0wi

≤ −ε
2
∥z̃0i,0,w∥2 +

4

ε

∥∥P̃i,0

∥∥2∥∥B̃0
i,0

∥∥2(ỹi − ỹi,w=0)
2 + 4εd̄2

∥∥P̃i,0

∥∥2∥wi∥2.

Integrating both sides of the above inequality and using Vi,0
(
z̃0i,0,w(0)

)
= 0 and (2.20), we obtain

that ∫ ∞

0
∥z̃0i,0,w(t)∥2dt ≤ 8

∥∥P̃i,0

∥∥2(16
∑N

i=1

∥∥D̃i(ε)
∥∥2

3ε2λ2min(H)

∥∥P̃i,0

∥∥2∥∥B̃0
i,0

∥∥2 + d̄2

)∫ ∞

0
∥w(t)∥2dt.

Recall that uL,i,w = −F 0
i,0(ε)Qi(ε)S

−1
i (ε)z̃0i,0,w and the fact |F 0

i,0(ε)Qi(ε)S
−1
i (ε)| ≤ κiε by Lemma

2.4, we have

∫ ∞

0
u2L,i,w(t)dt ≤ 8κ2i

∥∥P̃i,0

∥∥2(16
∑N

i=1

∥∥D̃i(ε)
∥∥2

3λ2min(H)

∥∥P̃i,0

∥∥2∥∥B̃0
i,0

∥∥2 + ε2d̄2

)∫ ∞

0
∥w(t)∥2dt. (2.22)

Consider the difference between yi(t), the output of each follower agent i in the presence of the
disturbances, and yi,w=0(t), the output of each follower agent i in the absence of the disturbances
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from the same initial condition. Since yi = ỹi + uL,i = ỹi + (uL,i,w=0 + uL,i,w), we have,

yi − yi,w=0 = (ỹi,w ̸=0 + uL,i,w=0 + uL,i,w)− (ỹi,w=0 + uL,i,w=0)

= ỹi − ỹi,w=0 + uL,i,w. (2.23)

Integrate the squares of both sides of (2.23) and use inequality (2.22), we have∫ ∞

0

(
yi(t)− yi,w=0(t)

)2dt
≤
∫ ∞

0

(
2
(
ỹi(t)− ỹi,w=0(t)

)2
+ 2u2L,i,w(t)

)
dt

≤

(
32
∥∥P̃∥∥2(∑N

i=1

∥∥D̃i(ε)
∥∥2)

3λ2min(H)
+ 16κ2i

∥∥P̃i,0

∥∥2(16
∑N

i=1 ∥D̃i(ε)∥2

3λ2min(H)
∥P̃i,0∥2b̄2 + ε2d̄2

))∫ ∞

0
∥w(t)∥2dt.

For any given γ > 0, let ε∗γ ∈ (0, 1] be such that

(
32
∥∥P̃∥∥2(∑N

i=1

∥∥D̃i(ε
∗
γ)
∥∥2)

3λ2min(H)
+ 16κ2i

∥∥P̃i

∥∥2(16
∑N

i=1 ∥D̃i(ε
∗
γ)∥2

3λ2min(H)
∥P̃i,0∥2b̄2 + ε∗γ

2d̄2
))

< γ2

and let ε∗ = min{ε∗η, ε∗γ} to complete the proof. □

2.4 Simulation For State Feedback

Consider a group of five agents, including one leader agent, labeled as 0, and four follower agents.
The follower agent dynamics are described by

żi,1 = zi,2 + wi,

żi,2 = xi,1,

ẋi,1 = xi,2 + wi,

ẋi,2 = ui + wi,

yi = xi,1, i ∈ {1, 2, 3, 4}.
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The desired output is generated by the leader agent, whose dynamics is described by
ẋ0,1 = x0,2,

ẋ0,2 = u0,

y0 = x0,1,

with u0 = −x0,1 − 2x0,2 + 30 sin(0.6t).

The underlying communication topology is described by L̄ and B̄ as

L̄ =


2 −1 −1 0

−1 1 0 0

−1 0 2 −1

0 0 −1 1

 , B̄ =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 .

The distributed consensus protocol for each follower agent i is designed as

ui = −ε2xi,1 − 2εxi,2 + ũi, i ∈ {1, 2, 3, 4}, (2.24)

with ũi as defined in (2.11).

It is noted that for each agent i, i ∈ {1, 2, 3, 4}, the implementation of ũi requires the signal ũj ’s
from its neighbors. This requirement is due to the presence of the control input u0 of the leader
agent. A similar requirement can be found in [35]. In the simulation, we set ũi(0) = 0 and the
signal ui’s are updated in a sequential manner.

Simulation is performed with the initial conditions of the agents (zT
1 (0), x

T
1 (0), z

T
2 (0), x

T
2 (0), z

T
3 (0),

xT
3 (0), z

T
4 (0), x

T
4 (0), x

T
0 (0))

T = (0, 0, 50, 30, 0, 0, 100, 30, 0, 0,−100,−20, 0, 0, 0,−20, 50, 50)T.

Figs. 2.1 and 2.2 show the evolution of the output tracking errors between the follower agents and
the leader agent as well as the states of the zero dynamics under protocols (2.24) with ε = 0.5

and ε = 0.1, respectively, in the absence of the disturbances. It is obvious that all states remain
bounded and as the parameter ε becomes smaller, the output tracking errors become smaller.

Figs. 2.3 and 2.4 show the evolution of the output tracking errors between the follower agents and
the leader agent as well as the states of the zero dynamics under protocols (2.24) with ε = 0.5 and
ε = 0.1, respectively, in the presence of the disturbances, where the disturbance signals are realized
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Figure 2.1: Evolution of the output tracking errors between the follower agents and the leader agent
as well as the states of the zero dynamics under protocols (2.24) with ε = 0.5 in the absence of the
disturbances.

Figure 2.2: Evolution of the output tracking errors between the follower agents and the leader agent
as well as the states of the zero dynamics under protocols (2.24) with ε = 0.1 in the absence of the
disturbances.

as

w1(t) = 10 sin(t) + 10 cos(5t),
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w2(t) = 10 sin(2t) + 10 cos(6t),

w3(t) = 10 sin(3t) + 10 cos(7t),

w4(t) = 10 sin(4t) + 10 cos(8t).

It is obvious that all states remain bounded and as the parameter ε becomes smaller, the output
tracking errors become smaller.

Figure 2.3: Evolution of the output tracking errors between the follower agents and the leader agent
as well as the states of the zero dynamics under protocols (2.24) with ϵ = 0.5, in the presence of
the disturbances.

2.5 Output Feedback Results

We will design the output feedback consensus protocols in four steps. First, state observers will
be constructed for all follower agents and the leader agent. Second, an observer-based low gain
feedback law will be designed for each follower agent that stabilizes its unstable zero dynamics.
Third, a new output will be renamed for each follower agent based on the low gain feedback law.
Last, a high gain feedback law that uses a combination of the observer states and the measured
output will be designed that attenuates the effect of the disturbances on the leader-following output
consensus.

Step 1: Observer Design
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Figure 2.4: Evolution of the output tracking errors between the follower agents and the leader agent
as well as the states of the zero dynamics under protocols (2.24) with ε = 0.1, in the presence of
the disturbances.

For each follower agent i, i ∈ {1, 2, · · · , N}, denote

Ai =



Ai,0 Bi,0 0ri×(ρ−1)

0(ρ−1)×ri

Ei,0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1

βi,1 βi,2 · · · βi,ρ


,

Ci =
[
01×ri 1 01×(ρ−1)

]
.

Choose the observer gain

Li = [LT
i,0 li,1 li,2 · · · li,ρ]T ∈ Rri+ρ, Li,0 ∈ Rri ,

be such that Ai − LiCi is Hurwitz. Such Li exists since the pair (Ai, Ci) is detectable, implied by
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Assumption 2.3. We construct a standard Leunberger observer as follows,
˙̂xi,0 = Ai,0x̂i,0 +Bi,0x̂i,1 − Li,0(x̂i,1 − yi),

˙̂xi,m = x̂i,m+1 − li,m(x̂i,1 − yi), m = 1, 2 · · · , ρ− 1,

˙̂xi,ρ = Ei,0x̂i,0 + βi,1x̂i,1 + βi,2x̂i,2 + · · ·+ βi,ρx̂i,ρ + ui − li,ρ(x̂i,1 − yi),

(2.25)

where x̂i,0 and x̂i = [x̂i,1 x̂i,2 · · · x̂i,ρ]T are the estimates of xi,0 and xi, respectively.

Denote the observer errors as

ei,0 = x̂i,0 − xi,0,

ei =


ei,1

ei,2
...
ei,ρ

 =


x̂i,1 − xi,1

x̂i,2 − xi,2
...

x̂i,ρ − xi,ρ

 .

Then, the observer error dynamics is given as
ėi,0 = Ai,0ei,0 +Bi,0ei,1 − Li,0ei,1 −Di,0wi,

ėi,m = ei,m+1 − li,mei,1 − di,mwi, m = 1, 2, · · · , ρ− 1,

ėi,ρ = Bi,0ei,0 + βi,1ei,1 + βi,2ei,2 + · · ·+ βi,ρei,ρ − li,ρei,1 − di,ρwi,

or in a compact form, [
ėi,0

ėi

]
= (Ai − LiCi)

[
ei,0

ei

]
−Diwi, (2.26)

where Di = [DT
i,0 di,1 di,2 · · · di,ρ]T.

We also construct an observer for the leader agent as ˙̂x0,m = x̂0,m+1 − l0,m(x̂0,1 − y0), m = 1, 2, · · · , ρ− 1,

˙̂x0,ρ = u0 − li,ρ(x̂0,1 − y0),
(2.27)

where l0,1, l0,2, · · · , l0,ρ are such that the polynomial

sρ + l0,ρs
ρ−1 + l0,ρ−1s

ρ−2 + · · ·+ l0,2s+ l0,1

is Hurwitz. The observer error is defined as e0 = [x̂0,1 − x0,1 x̂0,2 − x0,2 · · · x̂0,ρ − x0,ρ]
T.
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Step 2: Low Gain Feedback

A low gain feedback law is designed to stabilize the zero dynamics of each follower agent i, i ∈
{1, 2, · · · , N}. Find the nonsingular transformation Ti,0 ∈ Rri×ri such that the pair

(
Ai,0, Bi,0

)
is

transformed into the form in (2.3).

For each
(
A0

i,0, B
0
i,0

)
, let F 0

i,0(ε) ∈ R1×r0i be such that

λ
(
A0

i,0 −B0
i,0F

0
i,0(ε)

)
= −ε+ λ

(
A0

i,0

)
.

Let
uLi = −Fi,0(ε)x̂i,0, ε ∈ (0, 1], i ∈ {1, 2, · · · , N},

where Fi,0(ε) =
[
F 0
i,0(ε) 0

]
T−1
i,0 .

For each i ∈ {1, 2, · · · , N}, define the state transformation

zi,0 =
[
z0i,0

T
z−i,0

T]T
= T−1

i,0 xi,0.

Correspondingly, denote ẑi,0 =
[
ẑ0i,0

T ẑ−i,0
T
]T

= T−1
i,0 x̂i,0,

[
D0

i,0
T D−

i,0
T
]T

= T−1
i,0 Di,0, and ezi,0 =[

e0zi,0
T e−zi,0

T
]T

= T−1
i,0 ei,0. Then, the dynamics of zi,0 is given as

[
ż0i,0

ż−i,0

]
=

[
A0

i,0 −B0
i,0F

0
i,0 0

B−
i,0F

0
i,0 A−

i,0

][
z0i,0

z−i,0

]
+

[
B0

i,0

B−
i,0

]
ỹi −

[
B0

i,0F
0
i,0

B−
i,0F

0
i,0

]
e0zi,0 +

[
D0

i,0

D−
i,0

]
wi. (2.28)

Step 3: Output Renaming

For each follower agent i, define a new output as

ỹi = yi − uLi = xi,1 + Fi,0(ε)(xi,0 + ei,0), i ∈ {1, 2, · · · , N}.

Based on the definition of the new output ỹi and the state transformation zi,0 =
[
z0i,0

T z−i,0
T
]T, we
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define new states z̃0i,0 and x̃i =
[
x̃i,1 x̃i,2 · · · x̃i,ρ

]T as

z̃0i,0 = Si(ε)Q
−1
i (ε)z0i,0,

x̃i,1 = ỹi = xi,1 + Fi,0x̂i,0,

x̃i,2 = x̂i,2 + Fi,0Ai,0x̂i,0 + Fi,0Bi,0x̂i,1,

...

x̃i,ρ = x̂i,ρ + Fi,0A
ρ−1
i,0 x̂i,0 + Fi,0A

ρ−2
i,0 Bi,0x̂i,1 + Fi,0A

ρ−3
i,0 Bi,0x̂i,2 + · · ·+ Fi,0Bi,0x̂i,ρ−1.

These new states will be utilized for feedback in the consensus protocols. It is noted that the new
state x̃i,1 is a combination of the output xi,1 = yi and the observed state x̂i,0. The rest of them,
x̃i,m, m = 2, 3, · · · , ρ, are combinations of the observed states x̂i,m, m = 1, 2 · · · , ρ.

We design the consensus protocol ui as follows,

ui = −Bi,0x̂i,0 − βi,1x̂i,1 − βi,2x̂i,2 − · · · − βi,ρx̂i,ρ

− Fi,0A
ρ
i,0x̂i,0 − Fi,0A

ρ−1
i,0 Bi,0x̂i,1 − Fi,0A

ρ−2
i,0 Bi,0x̂i,2 − · · · − Fi,0Bi,0x̂i,ρ + ũi, (2.29)

where ũi is to be designed later. The dynamics of follower agent i in the new states is then given
as

˙̃z0i,0 = εJ̃iz̃
0
i,0 + SiQ

−1
i B0

i,0ỹi + SiQ
−1
i D0

i,0wi − SiQ
−1
i B0

i,0F
0
i,0ezi,0,

˙̃xi,1 = x̃i,2 − Fi,0Li,0ei,1 − ei,2 + di,1wi,

˙̃xi,2 = x̃i,3 −
(
li,2 + Fi,0Ai,0Li,0 + Fi,0Bi,0li,1

)
ei,1,

...
˙̃xi,ρ−1 = x̃i,ρ −

(
li,ρ−1 + Fi,0A

ρ−2
i,0 Li,0 + Fi,0A

ρ−3
i,0 Bi,0li,1 + Fi,0A

ρ−4
i,0 Bi,0li,2 + · · ·+ Fi,0Bi,0li,ρ−2

)
ei,1,

˙̃xi,ρ = −
(
li,ρ + Fi,0A

ρ−1
i,0 Li,0 + Fi,0A

ρ−2
i,0 Bi,0li,1 + Fi,0A

ρ−3
i,0 Bi,0li,2 + · · ·+ Fi,0Bi,0li,ρ−1

)
ei,1 + ũi.

Denoting

B̃0
i,0 = SiQ

−1
i B0

i,0,

D̃0
i,0 = SiQ

−1
i D0

i,0,

F̃ 0
i,0 = SiQ

−1
i B0

i,0F
0
i,0,

gi,1 = [−Fi,0Li,0 − 1 0 · · · 0],

gi,m = [−(li,m+ Fi,0A
m−1
i,0 Li,0 + Fi,0A

m−2
i,0 Bi,0li,1 + Fi,0A

m−3
i,0 Bi,0li,2 + · · ·
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+ Fi,0Bi,0li,m−1) 0 · · · 0], m = 2, 3 · · · , ρ,

we have 

˙̃z0i,0 = εJ̃iz̃
0
i,0 + B̃0

i,0x̃i,1 + D̃0
i,0wi − F̃ 0

i,0e
0
zi,0,

˙̃xi,1 = x̃i,2 + gi,1ei + di,1wi,

˙̃xi,2 = x̃i,3 + gi,2ei,

...
˙̃xi,ρ = ũi + gi,ρei.

Note that
∥∥B̃0

i,0

∥∥ ≤ b̄,
∥∥F̃ 0

i,0

∥∥ ≤ f̄ ε for some constants b̄ > 0 and f̄ > 0, by Lemma 2.3, and∥∥D̃0
i,0

∥∥ ≤ d̄ε for some constant d̄ > 0, by Lemma 2.5. Hence, ∥gi,m∥ ≤ ḡ, m ∈ I[1, ρ], for some
constant ḡ > 0.

Step 4: High Gain Feedback

Let the consensus error be defined as ξi = [ξi,1 ξi,2 · · · ξi,ρ]T, with

ξi,m =

N∑
j=1

aij(x̃i,m − x̃j,m) + bi(x̃i,m − x̂0,m), m = 1, 2 · · · , ρ. (2.30)

Then, the dynamics of the consensus error is given as

ξ̇i,1 =

N∑
j=1

aij
(
(x̃i,2 + gi,1ei + di,1wi)− (x̃j,2 + gj,1ej + dj,1wj)

)
+ bi

(
(x̃i,2 + gi,1ei + di,1wi)− (x̂0,1 − l0,1e0,1)

)
,

ξ̇i,m =
N∑
j=1

aij
(
(x̃i,m+1 + gi,mei)− (x̃j,m+1 + gj,mej)

)
+ bi

(
(x̃i,m+1 + gi,mei)− (x̂0,m+1 − l0,me0,1)

)
, m = 2, 3, · · · , ρ− 1,

ξ̇i,ρ =

N∑
j=1

aij
(
(ũi + gi,ρei)− (ũj + gj,ρej)

)
+ bi

(
(ũi + gi,ρei)− (u0 − l0,ρe0,1)

)
,

or in a compact form,
ξ̇i,1 = ξi,2 + g̃T

i,1e+ bil0,1e0,1 + d̃T
i,1w,

ξ̇i,m = ξi,m+1 + g̃T
i,me+ bil0,me0,m, m = 2, 3, · · · , ρ− 1,

ξ̇i,ρ = ṽi + g̃T
i,ρe+ bil0,ρe0,ρ,
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where e = [e1 e2 · · · eN ]T,

ṽi =

N∑
j=1

aij(ũi − ũj) + bi(ũi − u0),

and g̃i,1, g̃i,2, · · · , g̃i,ρ and d̃i,1 are defined in an obvious way.

Let ṽi be designed as
ṽi = − 1

ερ
fi,1ξi,1 −

1

ερ−1
fi,2ξi,2 − · · · − 1

ε
fi,ρξi,ρ, (2.31)

where fi,1, fi,2, · · · , fi,ρ are such that the polynomial

sρ + fi,ρs
ρ−1 + fi,ρ−1s

ρ−2 + · · ·+ fi,1

is Hurwitz. Then, we have

ũi =

(
N∑
j=1

aij + bi

)−1( N∑
j=1

aij ũj + biu0 + ṽi

)
.

We note that Assumption 2.1 implies that agent i is connected with either another follower or the
leader agent and hence

∑N
j=1 aij + bi > 0.

In view of (2.29), the consensus protocols are designed as

ui = −Bi,0x̂i,0 − βi,1x̂i,1 − βi,2x̂i,2 − · · · − βi,ρx̂i,ρ − Fi,0A
ρ
i,0x̂i,0 − Fi,0A

ρ−1
i,0 Bi,0x̂i,1

− Fi,0A
ρ−2
i,0 Bi,0x̂i,2 − · · · − Fi,0Bi,0x̂i,ρ +

(
N∑
j=1

aij + bi

)−1( N∑
j=1

aij ũj + biu0 + ṽi

)
. (2.32)

The following theorem establishes that the observer-based distributed consensus protocols we have
constructed solve Problem 2.1.

Theorem 2.2. [57] Consider the multi-agent system with agent dynamics described by (2.1) and
(2.2). Let the communication topology satisfy Assumption 2.1. Let the follower agents’ dynamics
satisfy Assumptions 2.2, 2.3 and 2.4. Let the leader agent’s output to be followed satisfy Assumption
2.5. Then, for any given η > 0 and γ > 0, there exists ε∗ ∈ (0, 1] such that, for any ε ∈ (0, ε∗], the
parameterized output feedback consensus protocols (2.32) solve Problem 2.1:

(i) The state of each follower agent is bounded in the absence of the disturbances.

(ii) The leader-following output consensus is achieved to the given accuracy η in the absence of
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the disturbances, i.e., there exists finite time T ≥ 0 such that

|yi,w=0(t)− y0(t)| ≤ η, t ≥ T, i ∈ {1, 2, · · · , N}.

(iii) In steady state, the effect of the disturbance w = [w1 w2 · · · wN ]T on the the leader-following
output consensus, measured by the L2-gain, is attenuated to the level specified by γ, i.e.,∫ ∞

0

(
yi(t)− yi,w=0(t)

)2dt ≤ γ2
∫ ∞

0
∥w(t)∥2dt.

Proof of Theorem 2.2: In the proof, we will first show that the proposed consensus protocols
stabilize the unstable zero dynamics and guarantee the boundedness of all follower agents’ states,
in the absence of the disturbances. We will then show that the leader-following output consensus can
be achieved with a specified accuracy η > 0 by showing that all follower agents’ renamed outputs
ỹi(t), i ∈ {1, 2, · · · , N}, will converge to the leader’s output y0(t), and the difference between each
follower agent’s output yi(t) and its renamed output ỹi(t) can be made less than η in steady state.
Finally, we will evaluate the effect of the disturbances on the consensus errors through Lyapunov
analysis.

Note that, in the absence of the disturbances, the errors of the observers (2.25) and (2.27) satisfy

lim
t→∞

ei,0(t) = 0, (2.33)

lim
t→∞

ei(t) = 0, (2.34)

lim
t→∞

e0(t) = 0, (2.35)

because of the choice of Li and l0,1, l0,2, · · · , l0,ρ.

Define ξ̃i =
[
ξ̃i,1 ξ̃i,2 · · · ξ̃i,ρ

]T
=
[
ξi,1 εξi,2 · · · ερ−1ξi,ρ

]T. Then, the ξ̃i dynamics is given as

ε
˙̃
ξi = Ãiξ̃i + εG̃ie+ εG̃i,0e0 + εD̃iw, (2.36)

where

Ãi =


0 1 · · · 0
...

... . . . ...
0 0 · · · 1

−fi,1 −fi,2 · · · −fi,ρ

 ,
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G̃i =
[
g̃i,1 εg̃i,2 · · · ερ−2g̃i,ρ−1 ερ−1g̃i,ρ

]T
, D̃i =

[
d̃i,1 0 · · · 0 0

]T
,

G̃i,0 = diag
{
bil0,1, εbil0,2, · · · , ερ−1bil0,ρ

}
.

It is obvious that, in the absence of the disturbances,

lim
t→∞

ξ̃i(t) = 0, i ∈ {1, 2, · · · , N},

because of the choice of the parameters fi,1, fi,2, · · · , fi,ρ and (2.33)-(2.35). Therefore,

lim
t→∞

ξi(t) = 0, i ∈ {1, 2, · · · , N}.

It follows from (2.30) and L̄1 = 0 that

[
ξ1,m ξ2,m · · · ξN,m

]T

= (L̄+ B̄)
[
x̃1,m x̃2,m · · · x̃N,m

]T − B̄x̂0,m1

= (L̄+ B̄)
[
x̃1,m x̃2,m · · · x̃N,m

]T − (L̄+ B̄)x̂0,m1

= (L̄+ B̄)
([
x̃1,m x̃2,m · · · x̃N,m

]T − x̂0,m1
)
, m = 1, 2, · · · , ρ.

Recalling that L̄+ B̄ has rank N , we have,

lim
t→∞

(
ỹi,w=0(t)− y0(t)

)
= 0,

lim
t→∞

(
x̃i,m(t)− x0,m(t)

)
= 0, m = 2, 3, · · · , ρ.

Since y0(t) is bounded, the follower agents’ renamed output ỹi,w=0(t) are also bounded in the
absence of the disturbances.

Since col
(
e0zi,0, e

−
zi,0
)
= T−1

i,0 ei,0, the boundedness of ei,0 implies the boundedness of e0zi,0. In view
of (2.28), the boundedness of ỹi,w=0 guarantee the boundedness of zi,0. Since xi,0 = Tzi,0, we can
conclude that xi,0 is also bounded. That is, in the absence of the disturbances, the states of each
follower agent are bounded.

We will next show that, in the absence of the disturbances, the leader-following output consensus
is achieved within the specified accuracy η. Consider the z0i,0 dynamics of the closed-loop system

ż0i,0 =
(
A0

i,0 −B0
i,0F

0
i,0(ε)

)
z0i,0 +B0

i,0ỹi −B0
i,0F

0
i,0(ε)e

0
zi,0
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Since
lim
t→∞

col
(
e0zi,0(t), e

−
zi,0(t)

)
= lim

t→∞
T−1
i,0 ei,0(t) = 0

and
lim
t→∞

(ỹi(t)− y0(t)) = 0,

the steady state trajectory of z0i,0(t) is all due to the desired output y0(t). Consider the transfer
function from y0 to uLi. Under Assumption 2.5, Lemma 2.2 implies that, for the given η, there is
ε∗η ∈ (0, 1] such that, for all ε ∈ (0, ε∗η], uLi satisfies

lim sup
t→∞

|uLi(t)| ≤
1

2
η.

Recall that in steady state, ỹi = yi − uLi = yi + F 0
i,0(ε)z

0
i,0. Then,

lim sup
t→∞

|yi(t)− y0(t)| = lim sup
t→∞

|(ỹi + uLi(t))− y0(t)|

≤ lim sup
t→∞

|ỹi(t)− y0(t)|+ |uLi(t)|

≤ η.

We will now show that, in steady state, the L2-gain from the disturbances to the difference between
yi(t) and yi,w=0(t), the outputs of each follower agent i in the presence and in the absence of the
disturbances, can be made less than or equal to the given γ.

We assume, without loss of generality, that the system is operating in steady state at t = 0, that
is, ei,0(0) = 0, ei(0) = 0, and ξi,m(0) = 0, m = 1, 2, · · · , ρ. Denote eobi = [eT

i,0 e
T
i ]

T and consider the
Lyapunov function candidate

Vobi(eobi) = eT
obiPobieobi,

where Pobi > 0 is the unique positive definite solution to the Lyapunov equation

Pobi(Ai − LiCi) + (Ai − LiCi)
TPobi = −I.

Such solution exists since Ai − LiCi is a Hurwitz matrix.

The time derivative of Vobi(eobi) along the trajectory of (2.26) is evaluated as

V̇obi = eT
obiPobi

(
(Ai − LiCi)eobi −Diwi

)
+
(
(Ai − LiCi)eobi −Diwi

)T
Pobieobi

= −eT
obieobi − 2eT

obiPobiDiwi
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≤ −eT
obieobi +

1

2
∥eobi∥2 + 2∥PobiDi∥2w2

i

≤ −1

2
∥eobi∥2 + 2∥PobiDi∥2w2

i . (2.37)

Integrating (2.37) and noting that Vobi(eobi(0)) = 0, we have∫ ∞

0
∥eobi(t)∥2dt ≤ γ2obi

∫ ∞

0
w2
i (t)dt, (2.38)

where γ2obi = 4∥PobiDi∥2.

Consider the Lyapunov function candidate

Vi(ξ̃i) = ξ̃T
i P̃iξ̃i,

where P̃i > 0 is the unique positive definite solution to the Lyapunov equation

P̃iÃi + ÃT
i P̃i = −I.

Such solution exists since matrix Ãi is Hurwitz.

We note that e0(t) = 0, for all t ≥ 0, under the assumption that the system is operating in steady
state. Then, the time derivative of Vi(ξ̃i) along the trajectory of (2.36) is given as

V̇i =
1

ε
ξ̃T
i P̃i

(
Ãiξ̃i + εG̃ie+ εG̃i,0e0 + εD̃iw

)
+

1

ε

(
Ãiξ̃i + εG̃ie+ εG̃i,0e0 + εD̃iw

)T
P̃iξ̃i

= −1

ε
ξ̃T
i ξ̃i + 2ξ̃T

i P̃iG̃ie+ 2ξ̃T
i P̃iD̃iw

≤ −1

ε

∥∥ξ̃i∥∥2 + 1

3ε

∥∥ξ̃i∥∥2 + 3ε
∥∥P̃iG̃i

∥∥2∥e∥2 + 1

3ε

∥∥ξ̃i∥∥2 + 3ε
∥∥P̃iD̃i

∥∥2∥w∥2
= − 1

3ε

∥∥ξ̃i∥∥2 + 3ε
∥∥P̃iG̃i

∥∥2∥e∥2 + 3ε
∥∥P̃iD̃i

∥∥2∥w∥2. (2.39)

Integrating(2.39) and noting that Vi(ξ̃i(0)) = 0, we have,∫ ∞

0

∥∥ξ̃i(t)∥∥2dt ≤ 9ε2
∥∥P̃iG̃i

∥∥2 ∫ ∞

0
∥e(t)∥2dt+ 9ε2

∥∥P̃iD̃i

∥∥2 ∫ ∞

0
∥w(t)∥2dt

≤ ε2γ2
ξ̃i

∫ ∞

0
∥w(t)∥2dt,

where

γ2
ξ̃i
= 9
∥∥P̃iG̃i

∥∥2( N∑
j=1

4∥PobjDj∥2
)
+ 9
∥∥P̃iD̃i

∥∥2.
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Recalling that (L̄+ B̄)(ỹ − y01) =
[
ξ̃1,1 ξ̃2,1 · · · ξ̃N,1

]T and ỹ =
[
ỹ1 ỹ2 · · · ỹn

]T, we have

∫ ∞

0
|ỹ(t)− y0(t)1|2dt ≤

∥∥(L̄+ B̄)−1
∥∥2 N∑

i=1

∫ ∞

0

∣∣ξ̃i,1(t)∣∣2dt
≤ ε2γ2ỹ

∫ ∞

0
∥w(t)∥2dt,

where

γ2ỹ =
∥∥(L̄+ B̄)−1

∥∥ N∑
i=1

γ2
ξ̃i
.

Let ỹi,w=0(t) and ỹi,w(t) with ỹi,w(0) = 0 be respectively the zero input response and the zero state
response of ỹi(t). By viewing the disturbance w as the input, we have

ỹi(t) = ỹi,w=0(t) + ỹi,w(t).

Accordingly, we decompose z0i,0 and z̃0i,0 as

z0i,0(t) = z0i,0,w=0(t) + z0i,0,w(t),

z̃0i,0(t) = z̃0i,0,w=0(t) + z̃0i,0,w(t),

with z0i,0,w(0) = 0, z̃0i,0,w(0) = 0 and

˙̃z0i,0,w=0=εJ̃iz̃
0
i,0,w=0+B̃

0
i,0ỹi,w=0,

˙̃z0i,0,w=εJ̃iz̃
0
i,0,w+B̃

0
i,0ỹi,w+D̃

0
i,0wi−F̃ 0

i,0e
0
zi,0. (2.40)

Since ξi,m(0) = 0, m = 1, 2 · · · , ρ, in view of (2.36), we have

ỹi,w=0(t) = y0(t), t ≥ 0.

Then, ∫ ∞

0
ỹ2i,w(t)dt =

∫ ∞

0

(
ỹi(t)− ỹi,w=0(t)

)2dt
≤ ε2γ2ỹ

∫ ∞

0
∥w(t)∥2dt. (2.41)
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Consider the Lyapunov function candidate

Vi,0(z̃
0
i,0,w) = z̃0i,0,w

TP̃i,0z̃
0
i,0,w,

where P̃i,0 is given in Lemma 2.4. Then, V̇i,0 along the trajectory of (2.40) is evaluated as

V̇i,0 =
(
εJ̃iz̃

0
i,0,w + B̃0

i,0ỹi,w + D̃0
i,0wi − F̃ 0

i,0e
0
zi,0

)T
P̃i,0z̃

0
i,0,w

+ z̃0i,0,w
TP̃i,0

(
εJ̃iz̃

0
i,0,w + B̃0

i,0ỹi,w + D̃0
i,0wi − F̃ 0

i,0e
0
zi,0

)
≤ −ε∥z̃0i,0,w∥2 + 2z̃0i,0,w

TP̃i,0B̃
0
i,0ỹi,w + 2z̃0i,0,w

TP̃i,0D̃
0
i,0wi − 2z̃0i,0,w

TP̃i,0F̃
0
i,0e

0
zi,0

≤ −1

4
ε∥z̃0i,0,w∥2 +

4

ε

∥∥P̃i,0B̃
0
i,0

∥∥2ỹ2i,w +
4

ε

∥∥P̃i,0D̃
0
i,0

∥∥2∥w∥2 + 4

ε

∥∥P̃i,0F̃
0
i,0

∥∥2∥e0zi,0∥2. (2.42)

Integrating (2.42) and noting that Vi,0(0) = 0,
∥∥F̃ 0

i,0

∥∥ ≤ f̄ ε and
∥∥D̃0

i,0

∥∥ ≤ d̄ε, we have,∫ ∞

0
∥z̃0i,0,w(t)∥2dt ≤

16

ε2
∥∥P̃i,0

∥∥2b̄2 ∫ ∞

0
ỹ2i,w(t)dt+ 16

∥∥P̃i,0

∥∥2d̄2 ∫ ∞

0
∥w(t)∥2dt

+ 16f̄2
∥∥P̃i,0

∥∥2 ∫ ∞

0
∥ezi,0(t)∥2dt.

In view of (2.38) and (2.41), we have,∫ ∞

0
∥z̃0i,0,w(t)∥2dt ≤ γ2z̃0i,0,w

∫ ∞

0
∥w(t)∥2dt, (2.43)

where

γ2z̃0i,0,w
= 16

∥∥P̃i,0

∥∥2(b̄2γ2ỹ + d̄2+ 4f̄2
N∑
j=1

∥∥PobjDjT
−1
i,0

∥∥2).
When the system is operating in steady state, we have,

yi(t)− yi,w=0(t) =
(
ỹi(t) + uLi,w=0(t) + uLi,w(t)

)
−
(
ỹi,w=0(t) + uLi,w=0(t)

)
= ỹi,w(t) + uLi,w(t),

where uLi,w=0 = F 0
i,0z

0
i,0,w=0 and uLi,w = F 0

i,0(z
0
i,0,w + e0zi,0).

Recalling that
uLi,w = F 0

i,0Qi(ε)S
−1
i (ε)z̃0i,0,w + F 0

i,0e
0
zi,0,
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∥F 0
i,0(ε)∥ ≤ f̄0ε by Lemma 2.1, and

∥∥F 0
i,0(ε)Qi(ε)S

−1
i (ε)

∥∥ ≤ κiε by Lemma 2.4, we have,∫ ∞

0

(
yi(t)− yi,w=0(t)

)2dt
≤ 2

∫ ∞

0
ỹ2i,w(t)dt+ 2

∫ ∞

0
u2Li,w(t)dt

≤ 2

∫ ∞

0
ỹ2i,w(t)dt+ 4κ2i ε

2

∫ ∞

0
∥z̃0i,0,w(t)∥2dt+ 4ε2f̄20

∥∥T−1
i,0

∥∥2 ∫ ∞

0
∥ei,0(t)∥2dt,

which, together with (2.41), (2.43), and (2.38), gives that∫ ∞

0

(
yi(t)− yi,w=0(t)

)2dt ≤ ε2γ2i

∫ ∞

0
∥w(t)∥2dt,

where
γ2i =

(
2γ2ỹ + 4κ2i γz̃0i,0,w

+ 4f̄20
∥∥T−1

i,0

∥∥2γ2obi

)
.

For any given γ, choose ε∗ ≤ min
{
ε∗η,

γ
γi

}
. Then, for any ε ∈ (0, ε∗], the consensus protocols (2.32)

achieve the three objectives of Problem 2.1.

2.6 Simulation For Output Feedback

Consider five follower agents, described by

ẋi,0,1 = xi,0,2 + wi,

ẋi,0,2 = xi,1,

ẋi,1 = xi,2 + 2wi,

ẋi,2 = xi,0,1 + xi,0,2 − 2xi,1 + xi,2 + ui + 3wi,

yi = xi,1, i ∈ {1, 2, · · · , 5},

and one leader agent, described by 
ẋ0,1 = x0,2,

ẋ0,2 = u0,

y0 = x0,1,

with u0(t) = −x0,1(t)− 2x0,2(t) + 10 sin(3.14t).

The communication topology is shown in Fig. 2.5, in which the directed information flow is repre-
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sented by the arrows.

Figure 2.5: The communication topology.

The initial conditions of the agents were generated randomly as

x0(0) = col(3.8974, 7.8025),

col(x1,0(0), x1(0)) = col(2.4169, 4.0391, 0.9645, 1.3197),

col(x2,0(0), x2(0)) = col(9.4205, 9.5613, 5.7521, 0.5978),

col(x3,0(0), x3(0)) = col(2.3478, 3.5316, 8.2119, 0.1540),

col(x4,0(0), x4(0)) = col(0.4302, 1.6899, 6.4912, 7.3172),

col(x5,0(0), x5(0)) = col(6.4775, 4.5092, 5.4701, 2.9632).

The initial conditions of the observers were all chosen as zero. The disturbances were realized as

w1(t)

w2(t)

w3(t)

w4(t)

w5(t)


=



2 sin(11.1t) + cos(2.1t)
2 sin(5.8t) + cos(0.2t)
2 sin(0.6t) + cos(7.2t)
2 sin(0.1t) + cos(9.6t)
2 sin(3.6t) + cos(0.9t)


.

Figure 2.6 shows the output consensus errors of the multi-agent system in the absence of the
disturbances, with the design parameter ε = 0.5. Figure 2.8 shows the same quantities with the
design parameter ε = 0.1. It is observed that the output consensus errors are ultimately bounded
and the bounds become smaller as the value of ε becomes smaller. Figures. 2.7 and 2.9 show the
states of the follower agents, which remain bounded.

Figure 2.10 shows the output consensus errors of the multi-agent system in the presence of the
disturbances, with the design parameter ε = 0.5. Figure 2.11 shows the same quantities with the
design parameter ε = 0.1. It is observed that the effect of the disturbances become smaller as the
value of ε becomes smaller.
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Figure 2.6: The output consensus errors in the absence of the disturbances: ε = 0.5.

Figure 2.7: The states of the follower agents in the absence of the disturbances: ε = 0.5.
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Figure 2.8: The output consensus errors in the absence of the disturbances: ε = 0.1.

Figure 2.9: The states of the follower agents in the absence of the disturbances: ε = 0.1.
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Figure 2.10: The output consensus errors in the presence of the disturbances: ε = 0.5.

Figure 2.11: The output consensus errors in the presence of the disturbances: ε = 0.1.

2.7 Conclusions

In this chapter, the leader-following almost output consensus problem of linear continuous-time
multi-agent systems with disturbance-affected unstable zero dynamics was studied. Under condi-
tions on the agent dynamics and the way the disturbances affect the zero dynamics, we constructed
low-and-high gain based state feedback and output feedback consensus protocols for the follower
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agents. These conditions are the same as those necessary for achieving almost disturbance de-
coupling for individual systems and are thus mild. The protocols we constructed were shown to
achieve almost output consensus as long as the communication topology of the system contains a
directed spanning tree with the leader as the root node. Simulations were carried out to validate
the established results.

This chapter is based on the following publications:

• Tingyang Meng, and Zongli Lin, “Leader-following almost output consensus for linear het-
erogeneous multi-agent systems with disturbance-affected unstable zero dynamics by output
feedback.” IEEE Transactions on Control of Network Systems 9.3 (2022): 1281-1293.

• Tingyang Meng, and Zongli Lin, “Leader-following almost output consensus for linear multi-
agent systems with disturbance-affected unstable zero dynamics.” Systems & Control Letters
145 (2020): 104787.
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Chapter 3

Almost Output Consensus of Linear Discrete-Time Multi-Agent Systems

3.1 Introduction

In the previous chapter, we considered the leader-following almost output consensus problem for
continuous-time linear multi-agent systems in the presence of disturbance-affected unstable zero
dynamics. State feedback and output feedback consensus protocols were proposed based on the
low-and-high gain feedback design technique.

In this chapter, the problem of leader-following almost output consensus for discrete-time hetero-
geneous multi-agent systems is formulated and solved. The zero dynamics of the agents may be
unstable and subject to external disturbances. In particular, the zero dynamics of the follower
agents are allowed to have poles on the closed unit disc and are therefore allowed to be polynomi-
ally unstable. When the outputs of follower agents are tracking the non-zero bounded output of the
leader agent, the follower agents’ states corresponding to their unstable zero dynamics may grow to
infinity. It is therefore important to guarantee the internal stability of the follower agents’ dynamics
while reaching leader-following output consensus. State feedback consensus protocols are designed
based on the low gain feedback design technique [43] and the solution of a modified discrete-time
algebraic Riccati equation [73]. The unstable part of the zero dynamics is stabilized through a
small perturbation, dictated by a low gain feedback law, in the output of each follower agent. The
closed-loop system under the proposed consensus protocols is shown to achieve leader-following
consensus with a pre-specified arbitrarily high accuracy, and the L2-gain from the disturbance to
the consensus error is shown to be suppressed to a pre-specified arbitrarily low level. Additional
conditions are identified under which output feedback results are established.

A key feature of the work in this chapter is the consideration of the consensus and tracking of the
outputs of non-minimum phase agents in the presence of external disturbances. Given that precise
output tracking with internal stability is not possible for non-minimum phase systems, we identify
a class of nonlinear phase agent dynamics for which low gain feedback can be applied to achieve
leader-following output consensus to an arbitrarily high level of accuracy. Compared to the results
in the continuous-time setting in the previous chapter, which utilize both the low gain and high
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gain design techniques, the absence of high gain action in the discrete-time setting limits how the
disturbance can enter the agent dynamics and our ability to design the consensus protocols and
analyze the properties of the resulting closed-loop system, including its stability. The use of a newly
established result on a modified discrete-time Riccati equation [73] is instrumental in helping our
analysis under the proposed consensus protocols.

The remainder of this chapter is organized as follows. Section 3.2 formulates the leader-following
almost output consensus problem for linear discrete-time multi-agent system with disturbance-
affected unstable zero dynamics. Section 3.3 establishes the state feedback results. Section 3.4
presents the simulation for state feedback design. Section 3.5 establishes the output feedback
results. Section 3.6 presents the simulation for output feedback design. Section 3.7 concludes this
chapter.

3.2 Problem Statement

Consider a linear discrete-time heterogeneous multi-agent system consisting of N follower agents,
indexed as 1, 2, · · · , N , and one leader agent, indexed as 0. The communication network among
these agents is represented by a directed graph G that satisfies the following assumption.

Assumption 3.1. The directed graph G that represents the communication topology among the
N + 1 agents contains a directed spanning tree with the leader agent as its root.

The dynamics of the ith follower agent, i ∈ {1, 2, · · · , N}, is described by a discrete-time linear
system,

xi,0(k + 1) = Ai,0xi,0(k) +Bi,0yi(k) +Di,0wi(k),

xi,m(k + 1) = xi,m+1(k) + di,mwi(k), m = 1, 2, · · · , ρ− 1,

xi,ρ(k + 1) = Ei,0xi,0(k) + α1xi,1(k) + α2xi,2(k) + · · ·+ αρxi,ρ(k) + ui(k) + di,ρwi(k),

yi(k) = xi,1(k),

(3.1)

where xi,0 ∈ Rni,0 and xi = [xi,1 xi,2 · · · xi,ρ]T ∈ Rρ are the states, ui ∈ R is the input, yi ∈ R is the
output, and wi ∈ R is the disturbance. The xi,0 dynamics, which are allowed to be heterogeneous
for different agents, are referred to as the zero dynamics. The relative degree ρ is assumed to be
the same for all follower agents.
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The dynamics of the leader agent is described by the following discrete-time linear system,
x0,m(k + 1) = xi,m+1(k), m = 1, 2, · · · , ρ− 1,

x0,ρ(k + 1) = α1x0,1(k) + α2x0,2(k) + · · ·+ αρx0,ρ(k),

y0(k) = x0,1(k),

(3.2)

where x0 = [x0,1 x0,2 · · · x0,ρ]T ∈ Rρ is the states, and y0 ∈ R is the output.

We make the following assumptions on the dynamics of the agents.

Assumption 3.2. The pair
(
Ai,0, Bi,0

)
is stabilizable, and all eigenvalues of Ai,0 are on the closed

unit disc, i.e., the zero dynamics, which is governed by Ai,0, may be be polynomially unstable.

Assumption 3.3. Consider system (3.1), that is,

Σi :

x(k + 1) = Aix(k) +Biu(k) +Diwi(k),

y(k) = Cix(k),

where

Ai =



Ai,0 Bi,0 0ni,0×(ρ−1)

0(ρ−1)×ni,0

Ei,0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1

α1 α2 · · · αρ


, Bi =

[
0(ni,0+ρ−1)×1

1

]
,

Ci =
[
01×ni,0 1 01×(ρ−1)

]
, Di =



Di,0

di,1

di,2
...
di,ρ


.

Then, the vector Di satisfies

Im
(
Di

)
⊂ V⊙(Σi) ∩

{
∩|λ=1| Sλ(Σi)

}
,

where V⊙(Σi) is the maximal subspace of Rni,0+ρ, which is (Ai + BiF )-invariant and contained in
Ker(Ci) such that the eigenvalues of (Ai + BiF )|V⊙ are contained in C d∪ C⊙ for some constant
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matrix F , and

Sλ(Σi) =

{
x ∈ Cni,0+ρ

∣∣∃u ∈ Cni,0+ρ+1 :

(
x

0

)
=

[
Ai − λI Bi

Ci 0

]
u

}
.

Remark 3.1. By reference [4], conditions in Assumption 3.3 are necessary and sufficient for the
solvability of the almost disturbance decoupling problem with stability (ADDPS) for agent i op-
erating as an independent system. The ADDPS entails the design of a state feedback law, under
which the closed-loop system is asymptotically stable in the absence of the disturbance and the
L2 gain from the disturbance to the output of the closed-loop system with zero initial condition is
smaller than or equal to a pre-specified arbitrarily small value.

Assumption 3.4. The leader’s output y0 is bounded by a constant ȳ > 0, and it does not contain
frequency components corresponding to λ

d(
Ai,0

)
, i ∈ {1, 2, · · · , N}, where λ d(

Ai,0

)
denotes the

set of eigenvalues of Ai,0 that are on the unit circle.

Problem 3.1. Consider the discrete-time leader-following multi-agent system described by (3.1)
and (3.2). Let the communication topology satisfy Assumption 3.1. Let the dynamics of the
follower agents satisfy Assumptions 3.2 and 3.3. Let the output of the leader satisfy Assumption
3.4. For any pre-specified, arbitrarily small, scalars η > 0 and γ > 0, design distributed consensus
protocols ui, i ∈ {1, 2, · · · , N}, under which the following are satisfied.

(i) In the absence of disturbance, the states of all follower agents remain bounded, and the
leader-following output consensus is reached within the pre-specified accuracy η > 0, i.e.,

lim sup
k→∞

∣∣yi,w=0(k)− y0(k)
∣∣ ≤ η, i ∈ {1, 2, · · · , N},

where yi,w=0(k), i ∈ {1, 2, · · · , N}, are the outputs of the follower agents, with the subscript
w = 0 indicating the absence of the disturbance.

(ii) When the multi-agent system is operating in steady state, the effect of the disturbance w =

[w1 w2 · · · wN ]T on the leader-following output consensus in terms of the L2-gain, is less than
or equal to the pre-specified γ > 0, i.e.,

∞∑
k=0

∣∣yi,w ̸=0(k)− yi,w=0(k)
∣∣2 ≤ γ2

∞∑
k=0

∥w(k)∥2,

where yi,w ̸=0(k), i ∈ {1, 2, · · · , N}, are the outputs of the follower agents in the presence of
the disturbance.
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3.3 State Feedback Results

We first present in three steps our design of leader-following almost output consensus protocols. In
the first step, a virtual controller is designed by utilizing the low gain feedback design technique
for each follower agent to stabilize its zero dynamics. In the second step, a new output is defined
by shifting the original output by the low gain feedback designed in Step 1. Consensus protocols
are then constructed in Step 3.

Step 1: Low Gain Feedback

For each follower agent i, i ∈ {1, 2, · · · , N}, find a nonsingular transformation matrix Ti,0 ∈
Rni,0×ni,0 for the pair

(
Ai,0, Bi,0

)
such that,

T−1
i,0 Ai,0Ti,0 =

[
A

d
i,0 0

0 A⊙
i,0

]
, T−1

i,0 Bi,0 =

[
B

d
i,0

B⊙
i,0

]
, (3.3)

where A d
i,0 ∈ Rn

c
i,0×n

c
i,0 and A⊙

i,0 ∈ Rn⊙
i,0×n⊙

i,0 are such that λ
(
A

d
i,0

)
⊂ C d and λ

(
A⊙

i,0

)
⊂ C⊙.

Under Assumption 3.2,
(
A

d
i,0, B

d
i,0

)
is controllable and, without loss of generality, is assumed to be

in its controller canonical form,

A
d
i,0 =


0 1 · · · 0
...

... . . . ...
0 0 · · · 1

α
d
i,1 α

d
i,2 · · · α

d
i,n

c
i,0

 , B
d
i,0 =


0
...
0

1

 . (3.4)

Define a low gain feedback [43] virtual control for its unstable zero dynamics as

ui,0(k) = Fi,0(ε)xi,0, ε ∈ (0, 1], (3.5)

where Fi,0(ε) =
[
F

d
i,0 0

]
T−1
i,0 ∈ R1×ni,0 , in which F

d
i,0 ∈ R1×n

c
i,0 is such that

λ
(
A

d
i,0 +B

d
i,0F

d
i,0(ε)

)
= (1− ε)λ

(
A

d
i,0

)
⊂ C⊙, (3.6)

and ε is a design parameter.

Step 2: Output Redefinition

A new output y̌i(k) of each follower agent i, i ∈ {1, 2, · · · , N}, is defined based on its output and
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the virtual control as

y̌i = yi(k)− ui,0(k)

= xi,1 − Fi,0(ε)xi,0(k).

As will be shown later, consensus protocols will be designed such that the new output y̌i will be
driven towards the leader agent’s output y0, and the magnitude of ui,0 will be made small enough.
As such, the unstable zero dynamics is stabilized while the leader-following output consensus is
being achieved within the pre-specified accuracy.

A new set of states, x̌i =
[
x̌i,1 x̌i,2 · · · x̌i,ρ

]T, is also defined based on the new output y̌i as


x̌i,1(k) = y̌i = xi,1 − Fi,0(ε)xi,0(k),

x̌i,m(k) = xi,m(k)− Fi,0(ε)A
m−1
i,0 xi,0(k)−

m−1∑
l=1

Fi,0(ε)A
m−1−l
i,0 Bi,0xi,l(k), m = 2, 3, · · · , ρ.

(3.7)

The dynamics of the follower agent i, i ∈ {1, 2, · · · , N}, can be written in the new states as

xi,0(k + 1) = Aci,0(ε)xi,0(k) +Bi,0y̌i(k) +Di,0wi(k),

x̌i,m(k + 1) = x̌i,m+1(k) + ďi,mwi(k), r = 1, 2, · · · , ρ− 1,

x̌i,ρ(k + 1) = Ěi,0xi,0(k) + α̌i,1x̌i,1(k) + α̌i,2x̌i,2(k) + · · ·+ α̌i,ρx̌i,ρ(k) + ui(k) + ďi,ρwi(k),

y̌i(k) = x̌i,1(k),

where Aci,0(ε) = Ai,0 +Bi,0Fi,0(ε), and

ďi,1 = di,1 − Fi,0(ε)Di,0,

ďi,m = di,m − Fi,0(ε)A
m−1
i,0 Di,0 −

m−1∑
l=1

Fi,0(ε)A
m−1−l
i,0 Bi,0di,l, m = 2, 3, · · · , ρ,

Ěi,0 = Ei,0 − Fi,0(ε)A
ρ
i,0 +

ρ∑
l=1

(
αi,l − Fi,0(ε)A

ρ−l
i,0 Bi,0

)
Fi,0(ε)A

l−1
ci,0(ε),

α̌i,m = αi,m − Fi,0(ε)A
ρ−m
i,0 (ε)Bi,0 +

ρ∑
l=m+1

(
αi,l − Fi,0(ε)A

ρ−l
i,0 Bi,0

)
Fi,0(ε)A

l−1−m
ci,0 (ε)Bi,0,

m = 1, 2, · · · , ρ− 1,

α̌i,ρ = αi,ρ − Fi,0(ε)Bi,0.
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A pre-feedback law is design as

ui(k) = −Ěi,0xi,0(k)+ (α1 − α̌i,1)x̌i,1(k)+ (α2 − α̌i,2)x̌i,2(k)+ · · ·+(αρ − α̌i,ρ)x̌i,ρ(k)+ ǔi(k) (3.8)

with ǔi(k) to be designed later. Then, the state equation of the ith follower agent is rewritten as
xi,0(k + 1) = Aci,0(ε)xi,0(k) +Bi,0y̌i(k) +Di,0wi(k),

x̌i(k + 1) = Arx̌i(k) +Brǔi(k) + ďiwi,

y̌i(k) = x̌i,1(k),

(3.9)

where

Ar =


0 1 · · · 0
...

... . . . ...
0 0 · · · 1

α1 α2 · · · αρ


ρ×ρ

, Br =


0
...
0

1


ρ×1

, and ďi =


ďi,1

ďi,2
...
ďi,ρ

 . (3.10)

And the dynamics of the leader agent can be written asx0(k + 1) = Arx0(k),

y0(k) = x0,1(k).

Step 3: Consensus Protocol

We will first design the feedback control ǔi(k) of follower agent i, i ∈ {1, 2, · · · , N}, in the new
states as

ǔi(k) = −κK
( N∑

j=1

aij
(
x̌i(k)− x̌j(k)

)
+ hi

(
x̌i(k)− x0(k)

))
,

where K =
(
R+BT

r PBr
)−1

BT
r PAr, and P is the unique positive definite solution to the modified

discrete-time algebraic Riccati equation,

AT
r PAr − (1− δ)

(
AT

r PBr
)(
R+BT

r PBr
)−1(

BT
r PAr

)
− P = −Q, (3.11)

for some positive definite matrices R and Q, and
√
δ ∈

[
λN−λ1
λN+λ1

, 1
)

, with λ1 > 0 and λN > 0 being
the smallest and the largest eigenvalues of L̄+ H̄, respectively. The scalar κ satisfies

κ ∈

[
1−

√
δ

λ1
,
1 +

√
δ

λN

]
.
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We note that, by Assumption 3.1, matrix L̄ + H̄ is positive definite and all its eigenvalues are
positive.

The following Lemma guarantees the existence of the solution P to the modified discrete-time
algebraic Riccati equation (3.11).

Lemma 3.1. [73] The modified discrete-time algebraic Riccati equation (3.11) converges to a
solution if

δ <
1

Πnu
i=1

∣∣∣λ̃i∣∣∣2 ,
where

{
λ̃1, λ̃2, · · · , λ̃nu

}
is the set of all the nu unstable eigenvalues of Ar.

The consensus protocol ui(k) is given by (3.8) and ǔi(k) as

ui(k) =− Ěi,0xi,0 +

ρ∑
m=1

aij(αm − αi,m)x̌i,m

− κ
(
R+BT

r PBr
)−1

BT
r PAr

( N∑
j=1

(
x̌i(k)− x̌j(k)

)
+ hi

(
x̌i(k)− x0(k)

))
, ε ∈ (0, 1]. (3.12)

Theorem 3.1. [56] Consider the discrete-time heterogeneous multi-agent system described by
(3.1) and (3.2). Let the communication topology satisfy Assumption 3.1. Let the dynamics of the
follower agents satisfy Assumptions 3.2 and 3.3. Let the output the leader agent satisfy Assumption
3.4. Then, the family of state feedback consensus protocols (3.12) solve Problem 3.1.

To prove Theorem 3.1, we need to recall some technical lemmas, which will be used in the Lyapunov
analysis of the closed-loop system.

Lemma 3.2. [43] Consider the pair
(
A

d
i,0, B

d
i,0

)
as given in (3.4) and F d

i,0(ε) as given in (3.6). There
exists constant F̄i,0 > 0 such that

∥∥F d
i,0(ε)

∥∥ ≤ F̄i,0ε, ε ∈ (0, 1].

Lemma 3.3. [43] Consider the pair
(
A

d
i,0, B

d
i,0

)
as given in (3.4) and F d

i,0(ε) as given in (3.6). There
exists nonsingular transformation matrix Q d

i,0(ε) ∈ Rn
c
i,0×n

c
i,0 such that

(
Q

d
i,0

)−1
(ε)
(
A

d
i,0 +B

d
i,0F

d
i,0(ε)

)
Q

d
i,0(ε) = J

d
i,0(ε)

= blkdiag
{
J

d
i,0,−1(ε), J

d
i,0,+1(ε), J

d
i,0,1(ε), J

d
i,0,2(ε), · · · , J

d
i,0,li

(ε)
}
,
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where

J
d

i,0,−1 =


−(1− ε) 1

. . . . . .
−(1− ε) 1

−(1− ε)


n
c
i,0,−1×n

c
i,0,−1

,

J
d

i,0,+1 =


1− ε 1

. . . . . .
1− ε 1

1− ε


n
c
i,0,+1×n

c
i,0,+1

,

and for each l = 1 to li,

J
d

i,0,l(ε) =


J⋆
i,0,l(ε) I2

. . . . . .
J⋆
i,0,l(ε) I2

J⋆
i,0,l(ε)


2n

c
i,0,l×2n

c
i,0,l

, J⋆
i,0,l(ε) = (1− ε)

[
αi,0,l βi,0,l

−βi,0,l αi,0,l

]
,

with α2
i,0,l + β2i,0,l = 1 for all l = 1 to li and αi,0,j ̸= ωi,k for j ̸= k. Furthermore,

∥∥(Q d
i,0

)−1
(ε)
∥∥ ≤ q̄i,

∥∥Q d
i,0(ε)

∥∥ ≤ q̄i, ε ∈ (0, 1],

for some constant q̄i ≥ 0.

Lemma 3.4. [43] Consider the pair
(
A

d
i,0, B

d
i,0

)
as given in (3.4) and F

d
i,0(ε) as given in (3.6). Let

Q
d
i,0(ε) be as defined in Lemma 3.3. Let

S
d
i,0(ε) = blkdiag

{
S

d
i,0,−1(ε), S

d
i,0,+1(ε), S

d
i,0,1(ε), S

d
i,0,2(ε), · · · , S

d
i,0,li

(ε)
}
,

where

S
d
i,0,−1(ε) = diag

{
εn

c
i,0,−1−1, εn

c
i,0,−1−2, · · · , ε, 1

}
, S

d
i,0,+1(ε) = diag

{
εn

c
i,0,+1−1, εn

c
i,0,+1−2, · · · , ε, 1

}
,

and for each l = 1 to li,

Si,l(ε) = diag
{
εn

c
i,0,l−1I2, ε

n
c
i,0,l−2I2, · · · , εI2, I2

}
.
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Then,

1.

S
d
i,0(ε)J

d
i,0(ε)

(
S

d
i,0

)−1
(ε) = J̃

d
i,0(ε)

= blkdiag
{
J̃

d
i,0,−1(ε), J̃

d
i,0,+1(ε), J̃

d
i,0,1(ε), J̃

d
i,0,2ε), · · · , J̃

d
i,0,li

}
,

where

J̃
d

i,0,−1 =


−(1− ε) ε

. . . . . .
−(1− ε) ε

−(1− ε)


n
c
i,0,−1×n

c
i,0,−1

,

J̃
d

i,0,+1 =


1− ε ε

. . . . . .
1− ε ε

1− ε


n
c
i,0,+1×n

c
i,0,+1

,

and for each l = 1 to li,

J̃
d

i,0,l(ε) =


J⋆
i,0,l(ε) εI2

. . . . . .
J⋆
i,0,l(ε) εI2

J⋆
i,0,l(ε)


2n

c
i,0,l×2n

c
i,0,l

, J⋆
i,0,l(ε) = (1− ε)

[
αi,0,l βi,0,l

−βi,0,l αi,0,l

]
,

with βi,0,l ≥ 0 for all l = 1 to li and αi,0,j ̸= ωi,k for j ̸= k.

2. There is ε∗ ∈ (0, 1] such that the unique positive definite solution P̃
d

i,0(ε) to the Lyapunov
equation (

J̃
d

i,0

)T
(ε)P̃

d
i,0(ε)J̃

d
i,0(ε)− P̃

d
i,0(ε) = −εI

is bounded over ε ∈ (0, ε∗], i.e., there exist positive definite matrices P̃1 and P̃2 such that

P̃1 ≤ P̃
d

i,0(ε) ≤ P̃2, ε ∈ (0, ε∗].

Lemma 3.5. [43] Let Di,0 satisfy Assumption 3.3. Let Q d
i,0(ε) be as given in Lemma 3.3. Denote[(

D
d
i,0

)T (
D⊙

i,0

)T
]
= T−1

i,0 Di,0 and partition
(
Q

d
i,0

)−1
(ε)D

d
i,0 according to that of J d

i,0(ε) in Lemma
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3.3 as

(
Q

d
i,0

)−1
(ε)D

d
i,0



D
d
i,0,−1(ε)

D
d
i,0,+1(ε)

D
d
i,0,1(ε)

...
D

d
i,0,li

(ε)


,

with

D
d
i,0,−1 =


D

d
i,0,−1,1(ε)

D
d
i,0,−1,2(ε)

...
D

d
i,0,−1,n

c
i,0,−1

(ε)


n
c
i,0,−1×1

, D
d
i,0,+1 =


D

d
i,0,+1,1(ε)

D
d
i,0,+1,2(ε)

...
D

d
i,0,+1,n

c
i,0,+1

(ε)


n
c
i,0,+1×1

,

and D
d
i,0,l =


D

d
i,0,l,1(ε)

D
d
i,0,l,2(ε)

...
D

d
i,0,l,n

c
i,0,l

(ε)


2n

c
i,0,l×1

, l = 1, 2, · · · , li.

Then, there exists constant D̄i ≥ 0 such that∥∥∥D d
i,0,−1,n

c
i,0,−1

(ε)
∥∥∥ ≤ D̄iε,

∥∥∥D d
i,0,+1,n

c
i,0,+1

(ε)
∥∥∥ ≤ D̄iε, and

∥∥∥D d
i,0,l,n

c
i,0,l

(ε)
∥∥∥ ≤ D̄iε, l = 1, 2, · · · , li,

for all ε ∈ (0, 1].

We also recall the following frequency domain property of the closed-loop system under low gain
feedback. It will be used to ensure that the actual output of each follower agent stays within the
neighborhood of the renamed output in the steady state.

Lemma 3.6. [60] Consider the pair
(
A

d
i,0, B

d
i,0

)
as given in (3.4) and F

d
i,0(ε) as given in (3.6). Let

λ
d

ci,l, l = 1, 2 · · · ,mi, be the eigenvalues of A d
ci,0(ε) = A

d
i,0 + B

d
i,0F

d
i,0(ε) with multiplicity ni,l, i.e.,

det
(
zI −A

d
ci,0
)
=
∏mi

l=1

(
z − λ

d
ci,l
)ni,l . Then, there exists ε∗ ∈ (0, 12 ] such that, for all ε ∈ (0, ε∗],

∣∣∣F d
i,0(ε)

(
zI −A

d
i,0 −B

d
i,0F

d
i,0(ε)

)−1
∣∣∣ ≤ δiε

mi∑
l=1

ni,l∑
j=1

(ni,l − j + 1)

∣∣∣∣∣ 1(
z − λ

d
ci,l
)j
∣∣∣∣∣, z ∈ C,

where δi is some positive constant independent of ε.
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Proof of Theorem 3.1: The proof consists of two parts, corresponding to the two objectives in
Problem 3.1. We will first establish the boundedness of the states of all follower agents in the
absence of the disturbance, and for a sufficiently small value of ε, the leader-following output
consensus within the pre-specified accuracy η.

Define a state transformation for the zero dynamics according to (3.4) as

[(
x
d
i,0

)T (
x⊙i,0
)T]T

= T−1
i,0 xi,0.

Then, the dynamics of x d
i,0(k) and x⊙i,0(k) are given as

[
x
d
i,0(k + 1)

x⊙i,0(k + 1)

]
=

[
A

d
i,0 +B

d
i,0F

d
i,0 0

B⊙
i,0F

d
i,0 A⊙

i,0

][
x
d
i,0(k)

x⊙i,0(k)

]
+

[
B

d
i,0

B⊙
i,0

]
y̌i(k) +

[
D

d
i,0

D⊙
i,0

]
wi(k). (3.13)

It is obvious that the above system is stable and the states will remain bounded as long as y̌i is
bounded, in the absence of the disturbance.

Denote the error between the new states of follower agent i, i ∈ {1, 2, · · · , N}, and that of the
leader agent as

x̃i(k) = x̌i(k)− x0(k). (3.14)

Then, under the consensus protocol (3.12), we have

x̃i(k + 1) = Arx̃i(k)−BrκK

 N∑
j=1

aij
(
x̃i(k)− x̃j(k)

)
+ hix̃i(k)

 .

By denoting x̃(k) = [x̃1(k) x̃2(k) · · · x̃N (k)]T, the closed-loop system for the error dynamics of all
follower agents can be written in the following compact form,

x̃(k + 1) = (IN ⊗Ar)x̃(k)− (L̄+ H̄)⊗ (BrκK)x̃(k). (3.15)

Consider the Lyapunov function

V
(
x̃(k)

)
= x̃T(k)(IN ⊗ P )x̃(k).

V
(
x̃(k + 1)

)
is evaluated based on (3.15) as

V
(
x̃(k + 1)

)
= x̃T(k)

(
IN ⊗Ar − (L̄+ H̄)⊗ (BrκK)

)T
(IN ⊗ P )

(
IN ⊗Ar − (L̄+ H̄)⊗ (BrκK)

)
x̃(k)
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= x̃T(k)
(
IN ⊗AT

r PAr
)
x̃(k) + x̃T(k)

(
(L̄+ H̄)2 ⊗ (BrκK)TP (BrκK)

)
x̃(k)

− 2x̃T(k)(L̄+ H̄)⊗ (BrκK)TPArx̃(k).

Note that

(BrκK)TP (BrκK) = κ2AT
r PBr

(
R+BT

r PBr
)−1

BT
r PBr

(
R+BT

r PBr
)−1

BT
r PAr

= κ2AT
r PBr

(
R+BT

r PBr
)−1

BT
r PAr

− κ2AT
r PBr

(
R+BT

r PBr
)−1

R
(
R+BT

r PBr
)−1

BT
r PAr

≤ κ2AT
r PBr

(
R+BT

r PBr
)−1

BT
r PAr,

and
(BrκK)TPAr = κAT

r PBr
(
R+BT

r PBr
)−1

BT
r PAr.

Therefore,

V
(
x̃(k + 1)

)
≤ x̃T(k)

(
IN ⊗AT

r PAr
)
x̃(k) + x̃T(k)

((
κ2(L̄+ H̄)2

− 2κ(L̄+ H̄)
)
⊗
(
AT

r PBr
(
R+BT

r PBr
)−1

BT
r PAr

))
x̃(k). (3.16)

Since L̄+ H̄ > 0 under Assumption 3.1, there exists orthogonal transformation matrix T ∈ RN×N

such that
L̄+ H̄ = TTΛT,

where Λ = diag{λ1, λ2, · · · , λN}, with 0 < λ1 ≤ λ2 ≤ · · · ≤ λN being the eigenvalues of L̄ + H̄.
Define a state transformation as

x̄(k) =
[
x̄T
1 (k) x̄

T
2 (k) · · · x̄T

N (k)
]T

= (T ⊗ Iρ)x̃(k),

then, the second term in (3.16) is evaluated as

x̃T(k)
((
κ2(L̄+ H̄)2 − 2κ(L̄+ H̄)

)
⊗
(
AT

r PBr
(
R+BT

r PBr
)−1

BT
r PAr

))
x̃(k)

= x̃T(k)
(
κ2TTΛ2T − 2κTTΛT

)
⊗
(
AT

r PBr
(
R+BT

r PBr
)−1

BT
r PAr

)
x̃(k)

= x̃T(k)
(
TT ⊗ Iρ

)((
κ2Λ2 − 2κΛ

)
⊗
(
AT

r PBr
(
R+BT

r PBr
)−1

BT
r PAr

))(
T ⊗ Iρ

)
x̃(k)

=
N∑
i=1

x̄T
i (k)

(
κ2λ2i − 2κλi

)(
AT

r PBr
(
R+BT

r PBr
)−1

BT
r PAr

)
x̄i(k)
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≤ −(1− δ)
N∑
i=1

x̄T
i (k)

(
AT

r PBr
(
R+BT

r PBr
)−1

BT
r PAr

)
x̄i(k),

where we have used κ ∈
[
1−

√
δ

λ1
, 1+

√
δ

λN

]
for the last inequality.

Now, we can evaluate

∆V (k + 1) := V
(
x̃(k + 1)

)
− V

(
x̃(k)

)
≤ x̃T(k)

(
IN ⊗AT

r PAr
)
x̃(k)− (1− δ)

N∑
i=1

x̄T
i (k)

(
AT

r PBr
(
R+BT

r PBr
)−1

BT
r PAr

)
x̄i(k)

− x̃T(k)(IN ⊗ P )x̃(k)

= x̄T(k)
(
IN ⊗AT

r PAr
)
x̄(k)− (1− δ)

N∑
i=1

x̄T
i (k)

(
AT

r PBr
(
R+BT

r PBr
)−1

BT
r PAr

)
x̄i(k)

− x̄T(k)(IN ⊗ P )x̄(k)

=
N∑
i=1

x̄T
i (k)

(
AT

r PAr − (1− δ)
(
AT

r PBr
(
R+BT

r PBr
)−1

BT
r PAr

)
− P

)
x̄i(k)

= −x̃T(k)(IN ⊗Q)x̃(k). (3.17)

Since −x̃T(k)(IN ⊗Q)x̃(k) < 0 for x̃(k) ̸= 0, we have

lim
k→∞

x̃(k) = 0,

which is equivalent to
lim
k→∞

(
x̌i(k)− x0(k)

)
= 0, i ∈ {1, 2, · · · , N}. (3.18)

Therefore, we have
lim
k→∞

(
y̌i(k)− y0(k)

)
= 0, i ∈ {1, 2, · · · , N}, (3.19)

where y̌i(k) is the new output of follower agent i. By recalling Assumption 3.4 and (3.13), it can be
concluded that the states of all follower agents remain bounded in the absence of the disturbance.

Consider the x d
i,0 dynamics in (3.13) of the follower agents. The steady state trajectory of x d

i,0(k),
in the absence of the disturbance, is all due to y0(k) according to (3.19). By viewing y̌i(k) as the
input and ui,0(k) = Fi,0(ε)xi,0(k) = F

d
i,0(ε)x

d
i,0(k) as the output, the transfer function from y̌i to

ui,0 is given as F d
i,0(ε)

(
zI − A

d
i,0 − B

d
i,0F

d
i,0(ε)

)−1
B

d
i,0. Then, under Assumption 3.4, Lemma 3.6
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implies that, for the given η, there exists ε∗η ∈ (0, 12 ] such that for all ε ∈ (0, ε∗η],

lim
k→∞

sup |ui,0(k)| ≤ η, i ∈ {1, 2, · · · , N}.

By recalling that yi(k) = y̌i(k) + ui,0(k), we have, in the absence of disturbance,

lim
k→∞

sup |yi,w=0(k)− y0(k)| = lim
k→∞

sup |y̌i,w=0(k) + ui,0(k)− y0(k)|

≤ lim
k→∞

sup |y̌i,w=0(k)− y0(k)|+ lim
k→∞

sup |ui,0(k)|

≤ η,

where yi,w=0(k) denotes the output of follower agent i in the absence of the disturbance.

We will next show that, when the multi-agent system is operating in steady state, for a sufficiently
small value of ε, the effect of disturbance w = [w1 w2 · · · wN ]T on the leader-following output
consensus in terms of the L2-gain, is less than or equal to any pre-specified γ > 0. In the following
analysis, we will assume, without loss of generality, that the multi-agent system is operating in
steady state at k = 0, i.e., x̃(0) = 0.

To analyze the influence of the disturbance, we recall that

yi,w ̸=0(k) = y̌i,w ̸=0(k) + Fi,0(ε)xi,0,w ̸=0(k).

With the disturbance viewed as the input to the system, the zero input and the zero state responses
are respectively given as

yi,w=0(k) = y̌i,w=0(k) + Fi,0(ε)xi,0,w=0(k), (3.20)

yi,w(k) = y̌i,w(k) + Fi,0(ε)xi,0,w(k), (3.21)

in which the subscripts w = 0 and w represent zero input and zero state, respectively.

It is noted that the difference
∣∣yi,w ̸=0(k) − yi,w=0(k)

∣∣ is equivalent to |yi,w(k)|. Therefore, in what
follows the effect of the disturbance on both y̌i,w(k) and Fi,0(ε)xi,0,w(k) with be analyzed.

In the presence of the disturbance, the dynamics (3.15) becomes

x̃(k + 1) = (IN ⊗Ar)x̃(k)− (L̄+ H̄)⊗ (BrκK)x̃(k) + ďw(k),

where ď = blkdiag{ď1, ď2, · · · , ďN} with ďi given in (3.10). Note that Assumption 3.3 implies that
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di,m = 0, for all m = 1, 2, · · · , ρ, and the vector Di,0 satisfies Di,0 ∈ ∩ω∈λ cAi,0
Im
(
ωI − Ai,0

)
, i ∈

{1, 2, · · · , N}, where λ d(
Ai,0

)
are the set of all the eigenvalues of Ai,0 that are on the unit circle [43].

Then, Lemma 3.6 implies that for each i ∈ {1, 2, · · · , N}, there exists constant d̄i > 0 independent
of ε such that ∥∥ďi,m∥∥ ≤ d̄iε, m = 1, 2, · · · , ρ. (3.22)

Then, it is obvious that there exists constant d̄ > 0 independent of ε such that

∥∥ď∥∥ ≤ d̄ε.

The increment of V
(
x̃(k)

)
in (3.17) will become

∆V (k + 1) := V (x̃(k + 1))− V (x̃(k))

≤ −x̃T(k)(IN ⊗Q)x̃(k) +
(
ďw(k)

)T
(IN ⊗ P )ďw(k)

+ 2x̃T(k)
(
IN ⊗Ar − (L̄+ H̄)⊗ (BrκK)

)
(IN ⊗ P )ďw(k)

= −x̃T(k)(IN ⊗Q)x̃(k) +
(
ďw(k)

)T
(IN ⊗ P )ďw(k)

+ 2
(√2

2
x̃T(k)(IN ⊗Q)

1
2

)(√
2(IN ⊗Q)−

1
2
(
IN ⊗Ar − (L̄+ H̄)⊗ (BrκK)

)
(IN ⊗ P )ďw(k)

)
≤ −x̃T(k)(IN ⊗Q)x̃(k) +

(
ďw(k)

)T
(IN ⊗ P )ďw(k) +

1

2
x̃T(k)(IN ⊗Q)x̃(k) + 2

(
ďw(k)

)T
M̌ďw(k)

≤ −1

2
x̃T(k)(IN ⊗Q)x̃(k) +

(
ďw(k)

)T
Mďw(k), (3.23)

where M = (IN ⊗ P ) + 2M̌ and M̌ = (IN ⊗ P )
(
IN ⊗ Ar − (L̄+ H̄)⊗ (BrκK)

)T
(IN ⊗Q)−1

(
IN ⊗

Ar − (L̄+ H̄)⊗ (BrκK)
)
(IN ⊗ P ) is independent of ε.

By summing both sides of (3.23), using V
(
x̃(0)

)
= 0, and ∥ď∥ ≤ d̄ε, we have

∞∑
k=0

∥∥x̃(k)∥∥2 ≤ ε2γ2x

∞∑
k=0

∥w(k)∥2,

where γ2x = 2d̄2λmax(M)
λmin(Q) with λmax(M) being the largest eigenvalue of M and λmin(Q) being the

smallest eigenvalue of Q. Since y̌i,w = x̃i,1, we have

∞∑
k=0

∣∣y̌i,w(k)∣∣2 ≤ γ2x

∞∑
k=0

∥w(k)∥2. (3.24)

To see the effect of the disturbance on Fi,0(ε)xi,0,w(k), we define x̃ d
i,0 = S

d
i,0(ε)

(
Q

d
i,0

)−1
(ε)x

d
i,0. Then,
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the x̃ d
i,0 dynamics is written as

x̃
d
i,0(k + 1) = J̃

d
i,0(ε)x̃

d
i,0(k) + B̃

d
i,0y̌i(k) + D̃

d
i,0wi(k),

where B̃ d
i,0 = S

d
i,0

(
Q

d
i,0

)−1
B

d
i,0 and D̃

d
i,0 = S

d
i,0

(
Q

d
i,0

)−1
D

d
i,0.

Consider the zero input and the state responses of x̃ d
i,0(k) according to (3.20) and (3.21) as

x̃
d
i,0,w=0(k + 1) = J̃

d
i,0(ε)x̃

d
i,0,w=0(k) + B̃

d
i,0y̌i,w=0(k)

x̃
d
i,0,w(k + 1) = J̃

d
i,0(ε)x̃

d
i,0,w(k) + B̃

d
i,0y̌i,w(k) + D̃

d
i,0wi(k).

Then, the effect of the disturbance is all exhibited by x̃ d
i,0,w(k).

Consider the Lynapunov function

V
d

i,0

(
x̃
d
i,0,w(k)

)
=
(
x̃
d
i,0,w

)T
(k)P̃

d
i,0(ε)x̃

d
i,0,w(k).

Then,

V
d

i,0

(
x̃
d
i,0,w(k + 1)

)
=
(
J̃

d
i,0x̃

d
i,0,w(k) + D̃

d
i,0wi(k)

)T
P̃

d
i,0(ε)

(
J̃

d
i,0x̃

d
i,0,w(k) + D̃

d
i,0wi(k)

)
.

We have,

∆V
d

i,0(k + 1) : = V
d

i,0

(
x̃
d
i,0,w(k + 1)

)
− V

d
i,0

(
x̃
d
i,0,w(k)

)
= ε
(
x̃
d
i,0,w

)T
(k)x̃

d
i,0,w(k) + 2

(
x̃
d
i,0,w

)T
(k)
(
J̃

d
i,0

)T
P̃

d
i,0D̃

d
i,0wi(k)

+
(
D̃

d
i,0wi(k)

)T
P̃

d
i,0D̃

d
i,0wi(k)

= ε
(
x̃
d
i,0,w

)T
(k)x̃

d
i,0,w(k) + 2

(√ε√
2

(
x̃
d
i,0,w

)T
(k)
)(√2√

ε

(
J̃

d
i,0

)T
P̃

d
i,0D̃

d
i,0wi(k)

)
+
(
D̃

d
i,0wi(k)

)T
P̃

d
i,0D̃

d
i,0wi(k)

≤ −1

2
ε
∥∥x̃ d

i,0,w(k)
∥∥2 + (2

ε

∥∥(J̃ d
i,0

)T
P̃

d
i,0

∥∥2 + ∥∥P̃ d
i,0

∥∥)∥∥D̃ d
i,0

∥∥2∥wi(k)∥2. (3.25)

Note that Lemma 3.5 implies that there exists constant D̄ > 0 such that ∥D̃ d
i,0∥ ≤ D̄ε, for all

ε ∈ (0, 1]. By summing both sides of (3.25) and using V d
i,0

(
x̃
d
i,0,w(0)

)
= 0, we have

∞∑
k=0

∥∥x̃ d
i,0,w(k)

∥∥2 ≤ γ2i,0

∞∑
k=0

∥wi(k)∥2, (3.26)
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where γ2i,0 =
(
4J̃2 + 2

)∥∥P̃2

∥∥D̄2 independent of ε, with J̃ = supε∈(0,1]
∥∥J d

i,0(ε)
∥∥.

By recalling
∣∣yi,w ̸=0(k)− yi,w=0(k)

∣∣ ≤ ∣∣y̌i,w(k)∣∣+ ∣∣Fi,0(ε)xi,0,w(k)
∣∣, Fi,0(ε)xi,0,w(k) = F

d
i,0(ε)x̃

d
i,0(k),

and using ∥F d
i,0∥ ≤ F̄0ε with a constant F̄0 > 0, (3.24) and (3.26), we have

∞∑
k=0

∣∣yi,w ̸=0(k)− yi,w=0(k)
∣∣2 ≤ ε2

(
γ2x + F̄ 2

0 γ
2
i,0

) ∞∑
k=0

|w(k)|2.

Let ε∗γ = γ√
γ2
x+F̄ 2

0 γ
2
i,0

. Then, for any ε ∈ (0, ε∗γ ], we have

∞∑
k=0

∣∣yi,w ̸=0(k)− yi,w=0(k)
∣∣2 ≤ γ2

∞∑
k=0

|w(k)|2.

Finally, choose ε ∈
(
0,min{ε∗η, ε∗γ}

]
for the consensus protocol and we have completed the proof. □

3.4 Simulation for State Feedback

To illustrate our state feedback result, we will perform simulation with a discrete-time heterogeneous
multi-agent system consisting of four follower agents, labeled as 1, 2, 3, 4, and one leader agent,
labeled as 0. The communication topology is shown in Fig. 3.1, where the arrows indicate the
direction of information flow.

Figure 3.1: The communication topology.

The follower agents are heterogeneous and are described as

xi,0(k + 1) =


1 1 0

0 1 1

0 0 1

xi,0(k) +

0

0

1

 yi(k) +

1

1

0

wi(k),

xi,1(k + 1) = xi,2(k),

xi,2(k + 1) = xi,0,1(k)− xi,1(k) +
√
2xi,2(k) + ui(k)

yi(k) = xi,1(k), i ∈ {1, 2},
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and 

xi,0(k + 1) =

[
1 1

0 1

]
xi,0(k) +

[
0

1

]
yi(k) +

[
1

0

]
wi(k),

xi,1(k + 1) = xi,2(k),

xi,2(k + 1) = xi,0,1(k)− xi,1(k) +
√
2xi,2(k) + ui(k)

yi(k) = xi,1(k), i ∈ {3, 4}.

The leader agent is given as 
x0(k + 1) =

[
0 1

−1
√
2

]
x0(k),

y0(k) = x0,1(k).

Solving the modified discrete-time Riccati equation (3.11) with δ = 0.9 by the iterative algorithm
proposed in reference [73], we obtain

P =

[
37.8816 −27.4173

−27.4173 40.8711

]
,

and
K =

[
−0.9761 0.7256

]
.

With this K and κ = 0.2, we implement the family of consensus protocols (3.12) and simulate the
closed-loop system. In the simulation, the initial conditions of both the follower agents and the
leader agent are chosen randomly as

[xT
1,0(0) xT

1 (0)] = [2.4169 9.4205 2.3478 0.4302 6.4775],

[xT
2,0(0) xT

2 (0)] = [−3.4239 4.7059 4.5717 − 0.1462 3.0028],

[xT
3,0(0) xT

3 (0)] = [−3.5811 − 0.7824 4.1574 2.9221],

[xT
4,0(0) xT

4 (0)] = [1.5574 − 4.6429 3.4913 4.3399],

xT
0 (0) = [1.5548 − 3.2881],

and the disturbances are realized as

w1(k) = 10 sin(0.7060k + 0.0318),

w2(k) = 10 sin(0.2769k + 0.0462),

w3(k) = 10 sin(0.1869k + 0.7572),
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w4(k) = 10 sin(0.3804k + 0.0844).

Shown in Fig. 3.2 are the output consensus errors in the absence of the disturbance, with ε = 0.1.
Shown in Fig. 3.3 are the states of the follower agents in the absence of the disturbance, with
ε = 0.1.

Shown in Figs. 3.4 and 3.5 are respectively the output consensus errors and the states in the
absence of the disturbance, with ε = 0.02. As can be seen in these figures, the states of all follower
agents remain bounded, and the output consensus errors decrease as the value of ε decreases.

Shown in Figs. 3.6 and 3.7 are the output consensus errors in the presence of the disturbance, with
ε = 0.1 and ε = 0.02, respectively. It is observed that the effect of the disturbance on the output
consensus errors weakens as the value of ε decreases.

Figure 3.2: The output consensus errors in the absence of the disturbance, with ε = 0.1.
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Figure 3.3: The states of the follower agents in the absence of the disturbance, with ε = 0.1.

Figure 3.4: The output consensus errors in the absence of the disturbance, with ε = 0.02.
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Figure 3.5: The states of the follower agents in the absence of the disturbance, with ε = 0.02.

Figure 3.6: The output consensus errors in the presence of the disturbance, with ε = 0.1.
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Figure 3.7: The output consensus errors in the presence of the disturbance, with ε = 0.02.

3.5 Output Feedback Results

Consider the follower agent dynamics (3.1) with its zero dynamics transformed in the form of (3.3),
that is,

x
d
i,0(k + 1) = A

d
i,0x

d
i,0(k) +B

d
i,0yi(k) +D

d
i,0wi(k),

x⊙i,0(k + 1) = A⊙
i,0x

⊙
i,0(k) +B⊙

i,0yi(k) +D⊙
i,0wi(k),

xi,m(k + 1) = xi,m+1(k) + di,mwi(k), m = 1, 2, · · · , ρ− 1,

xi,ρ(k + 1) = E
d
i,0x

d
i,0(k) + E⊙

i,0x
⊙
i,0 + α1xi,1(k) + α2xi,2(k) + · · ·+ αρxi,ρ(k) + ui(k) + di,ρwi(k),

yi(k) = xi,1(k).

(3.27)
Beside Assumptions 3.2, 3.3 and 3.4, we made the following additional assumptions on the follower
agent dynamics (3.27).

Assumption 3.5. The pair (A
d
i,0, E

d
i,0) is observable.

Assumption 3.6. The unstable part of the zero dynamics is not affected by the disturbance, i.e.,
D

d
i,0 = 0.

Assumption 3.7. The stable part of the zero dynamics does not contribute the output, i.e.,
E⊙

i,0 = 0.

Remark 3.2. As seen in Section 3.3, because of the lack of high gain feedback in the discrete-time
setting, the effect of any disturbance in the xi,m dynamics on the output yi cannot be reduced
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to an arbitrarily high degree, which entails di,m = 0, implied by Assumption 3.3. In the state
feedback design, the term E

d
i,0x

d
i,0(k) + E⊙

i,0x
⊙
i,0, which carries the effect of the disturbance from

the zero dynamics into the xi,m dynamics, is canceled by feedback. In the output feedback case,
such a cancellation is carried out by the estimation of states x d

i,0 and x d
i,0. Assumptions 3.6 and 3.7

prevent the disturbances in the zero dynamics from being carried into the xi,m dynamics through
the state estimation errors.

Under the above assumptions, we construct a state observer for each follower agent as
x̂
d
i,0(k + 1) = A

d
i,0x̂

d
i,0(k) +B

d
i,0x̂i,1 + L

d
i,1(x̂i,1 − yi),

x̂i,m(k + 1) = x̂i,m+1(k) + li,m(x̂i,1 − yi),

x̂i,ρ(k + 1) = E
d
i,0x̂

d
0 + α1x̂i,1(k) + α2x̂i,2 + · · ·+ αρx̂i,ρ + ui(k) + li,ρ(x̂i,1 − yi),

where x̂ d
i,0(k) is the estimate of x d

i,0(k) and x̂i,m(k) is the estimate of xi,m(k), m = 1, 2, · · · , ρ. The
observer gain

L
d
i = col

(
L

d
i,0, li,1, li,2, · · · , li,ρ

)
∈ Rn

c
i +ρ, Li,0 ∈ Rn

c
i ,

is chosen such that all eigenvalues of A d
i + L

d
i C

d
i are inside the unit circle, where

A
d
i =



A
d
i,0 B

d
i,0 0

n
c
i ×(ρ−1)

0
(ρ−1)×n

c
i

E
d
i,0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1

α1 α2 · · · αρ


, C

d
i =

[
0
1×n

c
i

1 01×(ρ−1)

]
.

Define the observer errors as e d
i,0 = x̂

d
i,0 − x

d
i,0 and ei = [ei,1 ei,2 · · · ei,ρ]T = [x̂i,1 − xi,1 x̂i,2 −

xi,2 · · · x̂i,ρ − xi,ρ]
T, i ∈ {1, 2, · · · , N}. The error dynamics is then given as[

e
d
i,0(k + 1)

ei(k + 1)

]
=
(
A

d
i + L

d
i C

d
i

) [e d
i,0(k)

ei(k)

]
.

With the estimated states x̂ d
i,0(k), m = 1, 2, · · · ρ, the low gain feedback virtual control ui,0 =

Fi,0(ε)xi,0 = F
d

i,0(ε)x
d
i,0 for the zero dynamics is now implemented as

ui,0(k) = F
d

i,0(k)x̂
d
i,0(k).
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Accordingly, the definition of the new output and the new state x̌i,1 in (3.7) becomes

y̌i(k) = x̌i,1(k) = xi,1(k)− F
d

i,0(ε)x̂
d
i,0(k),

and the definition of the rest of the new states, x̌i,m, m = 2, 3, · · · , ρ, remains the same as in the
state feedback case.

The dynamics of the follower agents in the new states become

x
d
i,0(k + 1) = A

d
ci,0(ε)x

d
i,0(k) +B0

i,0y̌i(k) +B
d
i,0F

d
i,0e

d
i,0(k),

x⊙i,0(k + 1) = A⊙
i,0x

⊙
i,0(k) +B⊙

i,0yi(k) +D⊙
i,0wi(k),

x̌i,m(k + 1) = x̌i,m+1(k) + ďi,mwi(k) + ǧ
d
i,me

d
i,0(k) + ǧi,mei(k), r = 1, 2, · · · , ρ− 1,

x̌i,ρ(k + 1) = Ě
d
i,0x

d
i,0(k) + α̌i,1x̌i,1(k) + α̌i,2x̌i,2(k) + · · ·+ α̌i,ρx̌i,ρ(k) + ui(k) + ďi,ρwi(k)

+ ǧi,ρe
d
i,0(k) + ǧi,ρei(k),

y̌i(k) = x̌i,1(k),

where

A
d

ci,0(ε) = A
d
i,0 +B

d
i,0F

d
i,0(ε),

Ě
d
i,0 = E

d
i,0 − F

d
i,0(ε)A

d
i,0

ρ
+

ρ∑
l=1

(
αi,l − F

d
i,0(ε)A

d
i,0

ρ−l
B

d
i,0

)
F

d
i,0(ε)A

d
ci,0

l−1
(ε),

and g
d
i,m and ǧi,m. m = 1, 2, · · · , ρ, are defined in an obvious way.

The consensus protocols are implemented as

ui(k) =− Ě
d
i,0x̂

d
i,0 +

ρ∑
m=1

aij(αm − αi,m)ˆ̌xi,m

− κ
(
R+BT

r PBr
)−1

BT
r PAr

( N∑
j=1

(
ˆ̌xi(k)− ˆ̌xj(k)

)
+ hi

(
ˆ̌xi(k)− x0(k)

))
, m = 1, 2, · · · , ρ,

(3.28)

where ˆ̌xi,m is x̌i,m calculated using the estimated states, and P > 0 is as given in (3.11).

Theorem 3.2. [56] Consider the discrete-time heterogeneous multi-agent system described by
(3.27) and (3.2). Let the communication topology satisfy Assumption 3.1. Let the dynamics of the
follower agents satisfy Assumptions 3.2, 3.3, 3.5, 3.6 and 3.7. Let the output the leader agent satisfy
Assumption 3.4. Then, the family of output feedback consensus protocols (3.28) solve Problem 3.1.
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Proof of Theorem 3.2: Under the output feedback consensus protocols (3.28), the closed-loop system
(3.15) for the error dynamics of all follower agents becomes

x̃(k + 1) = (IN ⊗Ar)x̃(k)− (L̄+ H̄)⊗ (BrK)x̃(k) +Ge(k), (3.29)

where G = [GT
1 G

T
2 · · · GT

N ]T are defined in an obvious way, with ∥Gi∥ ≤ ḡ, for some ḡ > 0, and

for all i ∈ {1, 2, · · · , N}, and e(k) =

[[(
e
d
1,0

)T
e1

]T [(
e
d
2,0

)T
e2

]T
· · ·

[(
e
d
N,0

)T
eN

]T
]T

.

Let Pob be the unique positive definite solution of the Lyapunov equation

(
A

d
i + L

d
i C

d
i

)T
Pob
(
A

d
i + L

d
i C

d
i

)
− Pob = −Qob,

for some Qob > 0. Consider the Lyapunov function

Vof
(
x̃(k), e(k)

)
= x̃T(k)(IN ⊗ P )x̃(k) + eT(k)Pobe(k).

Then, we have

∆Vof(k + 1)

:= Vof
(
x̃(k + 1), e(k + 1)

)
− Vof

(
x̃(k), e(k)

)
≤ −x̃T(k)(IN ⊗Q)x̃(k)− eT(k)Qobe(k)

+ 2x̃T(k)
(
(IN ⊗Ar)− (L̄+ H̄)⊗ (BrK)

)T
(IN ⊗ P )Ge(k) +

(
Ge(k)

)T
(IN ⊗ P )Ge(k).

By choosing Qob such that Qob − GT(IN ⊗ P )G − MT(IN ⊗ Q)−1M is positive definite, where
M =

(
(IN ⊗Ar)− (L̄+ H̄)⊗ (BrK)

)T
(IN ⊗P )G, we have ∆Vof(k+1) < 0 for x̃(k) ̸= 0 or e(k) ̸= 0.

Thus,

lim
k→∞

x̃(k) = 0,

lim
k→∞

e(k) = 0.

Therefore, as in the proof of Theorem 3.1, we have

lim
k→∞

(
y̌i(k)− y0(k)

)
= 0, i ∈ {1, 2, · · · , N},

Since all eigenvalues of A d
ci,0(ε) and A⊙

i,0 are inside the unit circle, and y̌i, e
d
i,0 and yi are bounded,

the states of all follower agents will remain bounded in the absence of the disturbance.
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By recalling that yi(k) = y̌i(k) + ui,0(k), we have, as in the proof of Theorem 3.1, there exists
ε∗η ∈ (0, 12 ] such that, for all ε ∈ (0, ε∗η],

lim
k→∞

sup |yi,w(k)− y0(k)| ≤ η.

That is, the leader-following output consensus is reached within the pre-specified accuracy η > 0.

In the presence of the disturbance, the x⊙i,0 dynamics is affected. By equation (3.29), we have that
the effect of the disturbance is decoupled from the leader-following consensus error. Therefore, the
L2-gain from the disturbance to the consensus error is zero and thus less than any pre-specified
γ > 0. □

3.6 Simulation for Output Feedback

To illustrate our output feedback result, we will perform simulation with four follower agents and
one leader agent. The follower agents are described as

xi,0(k + 1) =


1 1 0

0 1 0

0 0 0.5

xi,0(k) +

0

1

1

 yi(k) +


0

0

0.8

wi(k),

xi,1(k + 1) = xi,2(k),

xi,2(k + 1) = xi,0,1(k)− xi,1(k) +
√
2xi,2(k) + ui(k),

yi(k) = xi,1(k), i ∈ {1, 2},

and 

xi,0(k + 1) =

[
1 0

0 0.3

]
xi,0(k) +

[
1

1

]
yi(k) +

[
0

1.2

]
wi(k),

xi,1(k + 1) = xi,2(k),

xi,2(k + 1) = xi,0,1(k)− xi,1(k) +
√
2xi,2(k) + ui(k),

yi(k) = xi,1(k), i ∈ {3, 4}.

The leader agent, the communication topology and the design parameters K and κ are the same
as in the state feedback example.

Shown in Figs. 3.8 and 3.9 are respectively the output consensus errors and the states in the
presence of the disturbance, with ε = 0.1. Shown in Figs. 3.10 and 3.11 are respectively the output
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Figure 3.8: The output consensus errors in the presence of the disturbance under output feedback,
with ε = 0.1.

Figure 3.9: The states of the follower agents in the presence of the disturbance under output
feedback, with ε = 0.1.

consensus errors and the states in the presence of the disturbance, with ε = 0.02. As can be seen
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Figure 3.10: The output consensus errors in the presence of the disturbance under output feedback,
with ε = 0.02.

Figure 3.11: The states of the follower agents in the presence of the disturbance under output
feedback, with ε = 0.02.

in theses figures, the output consensus errors decrease as the value of ε decreases.
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3.7 Conclusions

In this chapter, the leader-following almost output consensus problem of discrete-time multi-agent
systems with disturbance-affected unstable zero dynamics was studied. Under conditions on the
agent dynamics and the way the disturbance affect the zero dynamics, we constructed state feedback
and output feedback consensus protocols based on the low gain feedback design technique and the
solution of a modified discrete-time algebraic Riccati equation for the follower agents. The protocols
were shown to solve the problem as long as the communication topology of the system contains a
directed spanning tree with the leader agent as its root. Simulations were carried out to validate
the established results.

This chapter is based on the following publication:

• Tingyang Meng, and Zongli Lin, “Leader-following almost output consensus for discrete-
time heterogeneous multi-agent systems in the presence of external disturbances”, Systems &
Control Letters, 169 (2022): 105380.
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Chapter 4

Almost Output Consensus of Nonlinear Multi-Agent Systems

4.1 Introduction

Motivated by the fact that nonlinear dynamics and disturbances extensively exist in real-world
multi-agent systems, in this chapter we consider the almost output consensus problem for nonlinear
multi-agent systems subject to mismatched disturbances. Moreover, our design allows the effect
of disturbances to be state-dependent and nonlinear and thus can be applied to more general
dynamics. Our approach is motivated by the results of the almost disturbance decoupling problem
for individual nonlinear systems (see, for example, [51, 52, 28, 29, 42]). In particular, we resort
to a recursive procedure to design parameterized distributed high gain consensus protocols with
state-dependent gains. Output consensus can be achieved in the absence of disturbance under
our proposed consensus protocols. In addition, the L2-gain from the disturbances to the output
consensus error of agents when the system is operating in output consensus, is inversely proportional
to the parameter, and thus can be attenuated to any desired degree of accuracy.

The remainder of this chapter is organized as follows. Section 4.2 formulates the almost output
consensus problem for nonlinear multi-agent systems in the presence of external disturbances.
Section 4.3 presents the consensus protocols as well as the analysis of the closed-loop system.
Section 4.4 presents a simulation example to verify the theoretical results. Section 4.5 concludes
this chapter.

4.2 Problem Statement

Consider a multi-agent system consisting of N agents that are subject to external disturbances.
The nonlinear dynamics of each agent i, i ∈ {1, 2, . . . , N}, is described by

ẋi = f(xi) + g(xi)ui +

p∑
l=1

ql(xi)θi,l(t),

yi = h(xi),

(4.1)

72



where xi ∈ Rn, ui ∈ R and yi ∈ R are the state, control input and output, respectively, f : Rn →
Rn, g : Rn → Rn, ql : Rn → Rn, h : Rn → R are smooth functions, p is a positive integer, and
θi,l(t), l = 1, 2, . . . , p, are the disturbances.

We recall the definition of the control characteristic index and the disturbance characteristic index
as follows [52].

Definition 4.1. The control characteristic index ρ of each agent with dynamics (4.1) is defined
such that

LgL
i
fh(x) = 0, 0 ≤ i ≤ ρ− 2, ∀x ∈ Rn,

LgL
ρ−1
f h(x) ̸= 0, ∀x ∈ Rn.

If LgL
i
fh(x) = 0, ∀i, ∀x ∈ Rn, then ρ = ∞.

Definition 4.2. The disturbance characteristic index ν of each agent with dynamics (4.1) is defined
such that

LqlL
i
fh(x) = 0, 1 ≤ l ≤ p, 0 ≤ i ≤ ν − 2, ∀x ∈ Rn,

LqlL
ν−1
f h(x) ̸= 0, for some x ∈ Rn, some l, 1 ≤ l ≤ p.

Assumption 4.1. For the multi-agent system described by (4.1), we make the following assump-
tions on the agent dynamics.

(i) the relative degree ρ is well defined,

(ii) βρ−1 = span{g, adfg, . . . , adρ−1
f g} is involutive and of constant rank ρ in Rn,

(iii) adqlβm ⊂ βm, l = 1, 2, . . . , p,m = 0, 1, . . . , ρ− 2, with βm = span{g, . . . , adm
f g}, and

(iv) the vector fields
f̃ = f − 1

LgL
ρ−1
f h

Lρ
fh, g̃ =

1

LgL
ρ−1
f h

g

are complete.

It is known that exact disturbance decoupling for individual systems can be achieved [52, 30, 66] if
and only if ν > ρ. Therefore here we assume that ν ≤ ρ.

We also make the following assumption on the communication topology.
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Assumption 4.2. The graph associated with the communication topology is undirected and con-
nected.

Problem 4.1. Consider the nonlinear multi-agent system described by (4.1). For any given γ >

0, design smooth distributed consensus protocols under which almost output consensus can be
achieved in the following sense:

(i) In the absence of the disturbances, that is, θi,l = 0, l = 1, 2, . . . , p, i ∈ {1, 2, . . . , N}, the
output consensus can be achieved, i.e.,

lim
t→∞

(
y(t)− α(t)1

)
= 0,

for some α(t) ∈ R, t ≥ 0, where y(t) = [y1(t) y2(t) . . . yN (t)]T ∈ RN .

(ii) When the system is operating in output consensus, the L2-gain from the disturbances to the
output consensus error of the agents is less than or equal to γ, i.e.,∫ t

0

∥∥e(τ)∥∥2
2
dτ ≤ γ2

∫ t

0
∥θ(τ)∥22dτ, t ∈ [0, T ),

for any open interval [0, T ) in which the corresponding solution exists, where e(t) = y(t) −
α(t)1 for some α(t) ∈ R, t ≥ 0, θ = [θT

1 θT
2 . . . θT

N ]T and θi = [θi,1 θi,2 . . . θi,p]
T, i ∈

{1, 2, . . . , N}.

4.3 Main Results

We first recall the Barbalat’s lemma as follows.

Lemma 4.1 (Barbalat’s Lemma). [34] Let f : R → R be a uniformly continuous function on
[0,∞). Suppose that limt→∞

∫ t
0 f(τ)dτ exists and is finite. Then,

lim
t→∞

f(t) = 0.

Lemma 4.2. Let L be the graph Laplacian associated with an undirected and connected graph.
Let λ2 > 0 be the second smallest eigenvalue of L.

(a) For any y(t) ∈ RN and d(t) ∈ RM , if ∥Ly(t)∥2 ≤ c∥d(t)∥2, t ≥ 0, for some constant c > 0,
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then we have
∥e(t)∥2 ≤

c

λ2
∥d(t)∥2,

where e(t) = y(t)− α(t)1 for some α(t) ∈ R, t ≥ 0.

(b) If
lim
t→∞

Ly(t) = 0,

then,
lim
t→∞

(y(t)− α(t)1) = 0,

for some α(t) ∈ R, t ≥ 0.

Proof: For any symmetric matrix L ∈ RN×N , there is an orthogonal matrix Σ = [σ1 σ2 . . . σN ] ∈
RN×N , whose columns are eigenvectors of L such that [53]

ΣTLΣ =


λ1 0 . . . 0

0 λ2 . . . 0
...

... . . . ...
0 0 . . . λN

 ,

or

L = Σ


λ1 0 . . . 0

0 λ2 . . . 0
...

... . . . ...
0 0 . . . λN

ΣT,

where λ1 ≤ λ2 ≤ · · · ≤ λN are the corresponding eigenvalues of L.

Since L is the Laplacian of an undirected and connected graph, λ1 = 0 with the corresponding
eigenvector σ1 = 1√

N
1, and λ2 > 0 [68].

It is obvious that, for any y(t) ∈ RN , there exist α1(t), α2(t), . . . , αN (t) ∈ R, such that

y(t) = α1(t)σ1 + α2(t)σ2 + · · ·+ αN (t)σN .

Let e(t) = y(t)− α1(t)σ1 = y(t)− α(t)1, where α(t) = 1√
N
α1(t). Then,

e(t) = α2(t)σ2 + α3(t)σ3 + · · ·+ αN (t)σN ,

eT(t)σ1 = 0,
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Ly(t) = Le(t) + α(t)L1

= Le(t).

Consequently, we have

∥Ly(t)∥22 = yT(t)LTLy(t)

= eT(t)LLe(t)

= eT(t)[σ1 σ2 . . . σN ]


0 0 . . . 0

0 λ2 . . . 0
...

... . . . ...
0 0 . . . λN

ΣTΣ


0 0 . . . 0

0 λ2 . . . 0
...

... . . . ...
0 0 . . . λN




σT
1

σT
2
...
σT
N

 e(t)

= eT(t)[σ1 σ2 . . . σN ]


0 0 . . . 0

0 λ22 . . . 0
...

... . . . ...
0 0 . . . λ2N




σT
1

σT
2
...
σT
N

 e(t)
= eT(t)(λ22 + λ23 + · · ·+ λ2N )e(t)

≥ λ22∥e(t)∥22, (4.2)

which implies that
∥e(t)∥2 ≤

c

λ2
∥d(t)∥2,

from which Item (a) follows.

To show Item (b), we note from (4.2) that

lim
t→∞

Ly(t) = 0

implies that
lim
t→∞

e(t) = 0,

that is,
lim
t→∞

(y(t)− α(t)1) = 0,

for some α ∈ R, t ≥ 0.
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Under Assumption 4.1, we can define a change of coordinates globally in Rn for each agent i as[52]

zi,1 = h(xi),

zi,2 = Lfh(xi),

...

zi,ρ = Lρ−1
f h(xi),

zi,ρ+1 = ϕρ+1(xi),

zi,ρ+2 = ϕρ+2(xi),

...

zi,n = ϕn(xi),

with ϕm(xi), m = ρ+1, ρ+2, . . . , n, ϕm(0) = 0, such that Lβρ−1ϕm(xi) = 0 and the state feedback

vi = LgL
ρ−1
f h(xi)ui + Lρ

fh(xi)

transforms (4.1) into

żi,m = zi,m+1 + wT
i,m(zi,1, zi,2, . . . , zi,m, zi,r)θi, m = 1, 2, . . . , ρ− 1,

żi,ρ = vi + wT
i,ρ(zi,1, zi,2, . . . , zi,ρ, zi,r)θi,

żi,r = φi(zi,1, zi,r) + ψT
i (zi,1, zi,r)θi,

yi = zi,1,

where zi,r = (zi,ρ+1, zi,ρ+2, . . . , zi,n)
T ∈ Rn−ρ, φi ∈ Rn−ρ, ψi ∈ Rp×(n−ρ), θi = (θi,1, θi,2, . . . , θi,p)

T ∈
Rp and wi,m ∈ Rp is defined as

p∑
l=1

Lqlh(xi)θi,l = wT
i,1(zi,1, zi,r)θi,

p∑
l=1

LqlL
m−1
f h(xi)θi,l = wT

i,m(zi,1, zi,2, . . . , zi,m, zi,r)θi, m = 2, 3, . . . , ρ.

We note here that if ν > ρ, wi,m(zi,1, zi,2, · · · , zi,m, zi,r) ≡ 0, m = 1, 2, . . . , ρ, i ∈ {1, 2, . . . , N}.

Theorem 4.1. [54] Consider the nonlinear multi-agent system with agent dynamics described by
(4.1). There exist consensus protocols that solve the almost output consensus problem.
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Proof: We design distributed consensus protocols for each agent in a recursive manner.

Consider the following dynamics for each agent i,

żi,1 = zi,2 + wi,1(zi,1, zi,r)
Tθi, i ∈ {1, 2, . . . , N}.

Define

z∗i,2 = −
(
1 +

1

4
k
(
1 + wT

i,1wi,1

)) N∑
j=1

aij
(
zi,1 − zj,1

)
, (4.3)

where the constant k > 0 is a design parameter to be specified later. Denote zm = (z1,m, z2,m,
. . . , zN,m)T, Wm = blkdiag{w1,m, w2,m, . . . , wN,m}, m = 1, 2, . . . , ρ, and θ = (θT

1 , θ
T
2 , . . . , θ

T
N )T. Let

zi,2 = z∗i,2, i ∈ {1, 2, . . . , N}. Then,

ż1 = −Lz1 −
1

4
k(I +WT

1 W1)Lz1 +WT
1 θ. (4.4)

Consider the function
V1
(
z1(t)

)
=

1

2
zT
1Lz1 ≥ 0.

Its time derivative along the trajectory of (4.4) can be evaluated as

V̇1 = zT
1Lż1

= −(Lz1)T(Lz1)−
1

4
k(Lz1)T(I +WT

1 W1)(Lz1) + (Lz1)TWT
1 θ

= −(Lz1)T(Lz1)− k
(1
4
(Lz1)T(I +WT

1 W1)(Lz1)−
1

k
(Lz1)TWT

1 θ

+
1

k2
(W1θ)

T(I +WT
1 W1)

−1(WT
1 θ)
)
+

1

k
(W1θ)

T(I +WT
1 W1)

−1(WT
1 θ)

= −∥Lz1∥22 − k
∥∥∥(1

2
(I +WT

1 W1)
1
2 (Lz1)−

1

k
(I +WT

1 W1)
− 1

2 (WT
1 θ)
∥∥∥2
2

+
1

k
(W1θ)

T(I +WT
1 W1)

−1(WT
1 θ)

≤ −∥Lz1∥22 +
1

k

N∑
i=1

∥wT
i,1θi∥22

1 + ∥wi,1∥22

≤ −∥Lz1∥22 +
1

k
∥θ∥22. (4.5)

Integrating both sides of inequality (4.5), we have

V1
(
z1(t)

)
− V1

(
z1(0)

)
≤ −

∫ t

0

∥∥Lz1(τ)∥∥22dτ + 1

k

∫ t

0

∥∥θ(τ)∥∥2
2
dτ. (4.6)
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The consensus protocols for ρ = 1 can then be designed in the following way.

Case 1: ρ = 1

Design vi = z∗i,2. In the original coordinates, the consensus protocol for each agent i can be written
as

ui =
z∗i,2 − Lfh(xi)

Lgh(xi)
(4.7)

with z∗i,2 as given in (4.3).

Conclusions can then be drawn from (4.6) as follows.

(i) In the absence of the disturbances, i.e., θ(t) = 0, for all t ≥ 0, we have∫ t

0
∥Lz1(τ)∥22dτ ≤ V1

(
z1(0)

)
− V1

(
z1(t)

)
≤ V1

(
z1(0)

)
.

By Lemma 4.1, we have
lim
t→∞

∥Lz1(t)∥22 = 0,

which in turn, by Lemma 4.2, implies that

lim
t→∞

(y(t)− α(t)1) = 0

for some α(t) ∈ R, t ≥ 0.

(ii) When the system is operating in output consensus, i.e., z1,1(0) = z2,1(0) · · · = zN,1(0), with
θ(t) ̸= 0, we have

V1(z1(0)) = 0,

and, from (4.6), ∫ t

0

∥∥Lz1(τ)∥∥22dτ ≤ 1

k

∫ t

0

∥∥θ(τ)∥∥2
2
dτ,

since V1(z1(t)) ≥ 0. Noting that y(t) = z1(t), we have, by Lemma 4.2,∫ t

0

∥∥e(τ)∥22dτ ≤ 1

kλ22

∫ t

0

∥∥θ(τ)∥∥2
2
dτ,

where e(t) = y(t)− α(t)1 for some α(t) ∈ R, t ≥ 0. Thus, the L2-gain from the disturbances
to the output consensus error is less than or equal to any given γ > 0 by setting k ≥ 1

γ2λ2
2
.

Case 2: ρ > 1
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Denote zr = (z1,r, z2,r, . . . , zN,r)
T, Φ = (φT

1 , φ
T
2 , . . . , φ

T
N )T and Ψ = blkdiag{ψ1, ψ2, . . . , ψN}. As-

sume that for a given index m, 1 ≤ m ≤ ρ, and the dynamics

ż1 = z2 +WT
1 θ,

ż2 = z3 +WT
2 θ,

...

żm = zm+1 +WT
mθ,

with zm+1 = z∗m+1, there exist m functions

z∗µ = z∗µ(z1, z2, . . . , zµ−1, zr, k), µ = 2, 3, . . . ,m+ 1,

such that in new the coordinates

z̃1 = z1,

z̃µ = zµ − z∗µ(z1, z2, . . . , zµ−1, zr, k), µ = 2, 3, . . . ,m,

the function
Vm(z̃1, z̃2, . . . , z̃m) =

1

2

m∑
µ=1

z̃T
µLz̃µ ≥ 0

has time derivative along the trajectory

˙̃z1 = z̃2 + z∗2 +WT
1 θ,

˙̃z2 = z̃3 + z∗3 +WT
2 θ −

(
∂z∗2
∂z1

(
z2 +WT

1 θ
)
+
∂z∗2
∂zr

(
Φ+ΨTθ

))
,

...

˙̃zm−1 = z̃m + z∗m +WT
m−1θ −

(
m−2∑
µ=1

∂z∗m−1

∂zµ

(
zµ+1 +WT

µ θ
)
+
∂z∗m−1

∂zr

(
Φ+ΨTθ

))
,

˙̃zm = z∗m+1 +WT
mθ −

(
m−1∑
µ=1

∂z∗m
∂zµ

(
zµ+1 +WT

µ θ
)
+
∂z∗m
∂zr

(
Φ+ΨTθ

))

that satisfies
V̇m ≤ −

m∑
µ=1

∥Lz̃µ∥22 +
m

k
∥θ∥22.
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Then, for index m+ 1, consider the system

ż1 = z2 +WT
1 θ,

ż2 = z3 +WT
2 θ,

...

żm+1 = zm+2 +WT
m+1θ,

with
zm+2 = z∗m+2(z1, z2, . . . , zm+1, zr, k),

in the new coordinates

z̃µ, µ = 1, 2, . . . ,m,

z̃m+1 = zm+1 − z∗m+1(z1, z2, . . . , zm, zr, k).

The time derivative of the function

Vm+1(z̃1, z̃2, . . . , z̃m+1) =
1

2

m+1∑
µ=1

z̃T
µLz̃µ

along the trajectory of

˙̃z1 = z̃2 + z∗2 +WT
1 θ,

˙̃z2 = z̃3 + z∗3 +WT
2 θ −

(
∂z∗2
∂z1

(
z2 +WT

1 θ
)
+
∂z∗2
∂zr

(
Φ+ΨTθ

))
,

...

˙̃zm = z̃m+1 + z∗m+1 +WT
mθ −

(
m−1∑
µ=1

∂z∗m
∂zµ

(
zµ+1 +WT

µ θ
)
+
∂z∗m
∂zr

(
Φ+ΨTθ

))

˙̃zm+1 = z∗m+2 +WT
m+1θ −

(
m∑

µ=1

∂z∗m+1

∂zµ

(
zµ+1 +WT

µ θ
)
+
∂z∗m+1

∂zr

(
Φ+ΨTθ

))

can be evaluated as

V̇m+1 ≤ −
m∑

µ=1

∥Lz̃µ∥2 +
m

k
∥θ∥2
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+ z̃T
m+1L

(
z̃m +WT

m+1θ −
m∑

µ=1

∂z∗m+1

∂zµ

(
zµ+1 +WT

µ θ
)
−
∂z∗m+1

∂zr

(
Φ+ΨTθ

)
+ z∗m+2

)
. (4.8)

Define

α(z1, z2, . . . , zm+1, zr) = z̃m −
m∑

µ=1

∂z∗m+1

∂zµ
zµ+1 −

∂z∗m+1

∂zr
Φ,

W̃m+1(z1, z2, . . . , zm+1, zr) =Wm+1 −
m∑

µ=1

Wµ

(
∂z∗m+1

∂zµ

)T

−Ψ

(
∂z∗m+1

∂zr

)T

,

z∗m+2 = −α− Lz̃m+1 −
1

4
k
(
I + W̃T

m+1W̃m+1

)
Lz̃m+1.

Then, inequality (4.8) becomes

V̇m+1 ≤ −
m+1∑
µ=1

∥Lz̃µ∥22 +
m

k
∥θ∥22 + (Lz̃m+1)

TW̃T
m+1θ −

1

4
k(Lz̃m+1)

T
(
I + W̃T

m+1W̃m+1

)
Lz̃m+1

= −
m+1∑
µ=1

∥Lz̃µ∥2 +
m

k
∥θi∥2 − k

(
1

4
(Lz̃m+1)

T
(
I + W̃T

m+1W̃m+1

)
(Lz̃m+1)−

1

k
(Lz̃m+1)

TW̃T
m+1θ

+
1

k2
(W̃T

m+1θ)
T
(
I + W̃T

m+1W̃m+1

)−1
(W̃T

m+1θ)

)
+

1

k
(W̃T

m+1θ)
T
(
I + W̃T

m+1W̃m+1

)−1
(W̃T

m+1θ)

= −
m+1∑
µ=1

∥Lz̃µ∥22 +
m

k
∥θ∥22

− k

∥∥∥∥∥12(I + W̃T
m+1W̃m+1

) 1
2 (Lz̃m+1)−

1

k

(
I + W̃T

m+1W̃m+1

)− 1
2 (W̃T

m+1θ)

∥∥∥∥∥
2

2

+
1

k
(W̃T

m+1θ)
T
(
I + W̃T

m+1W̃m+1

)−1
(W̃T

m+1θ)

≤ −
m+1∑
µ=1

∥Lz̃µ∥22 +
m

k
∥θ∥22 +

1

k
∥θ∥22 = −

m+1∑
µ=1

∥Lz̃µ∥22 +
m+ 1

k
∥θ∥22.

Now consider the system żm = zm+1 +WT
mθ, m = 1, 2, . . . , ρ− 1,

żρ = v +WT
ρ θ.
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in the new coordinates

z̃1 = z1,

z̃µ = zµ − z∗µ(z1, z2, . . . , zµ, zr, k), µ = 2, 3, . . . , ρ,

with v = (v1, v2, . . . , vN )T and z∗2 , z
∗
3 , . . . , z

∗
ρ+1 designed recursively according to the previous pro-

cess.

Define the consensus protocols as

vi = z∗i,ρ+1, i ∈ {1, 2, . . . , N},

which, in the original coordinates, can be written as

ui =
z∗i,ρ+1 − Lρ

fh(xi)

LgL
ρ−1
f h(xi)

, i ∈ {1, 2, . . . , N}.

Then, under these consensus protocols, the time derivative of the function

Vρ(z̃1, z̃2, . . . , z̃ρ) =
1

2

ρ∑
µ=1

z̃T
µLz̃µ

along the trajectories of the closed-loop system satisfies

V̇ρ ≤ −
ρ∑

µ=1

∥Lz̃µ∥22 +
ρ

k
∥θ∥22. (4.9)

By integrating both sides of inequality (4.9), the following conclusion can be made:

(i) In the absence of the disturbances, i.e., θ(t) = 0, for all t ≥ 0, we have

∫ t

0

ρ∑
µ=1

∥Lz̃µ(τ)∥22dτ ≤ Vρ(z̃1(0), z̃2(0), . . . , z̃ρ(0)).

By Lemma 4.1, we have

lim
t→∞

ρ∑
µ=1

∥Lz̃µ(t)∥22 = 0,

and therefore
lim
t→∞

∥Lz1(t)∥22 = 0,
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which in turn, by Lemma 4.2, implies that,

lim
t→∞

(y(t)− α(t)1) = 0,

for some α(t) ∈ R, t ≥ 0.

(ii) When the system is operating in output consensus, i.e., z1,1(0) = z2,1(0) = · · · = zN,1(0),
which also implies that z1,m(0) = z2,m(0) = · · · = zN,m(0), m = 2, 3, . . . , ρ, and hence

Vρ(z̃1(0), z̃2(0), . . . z̃ρ(0)) = 0.

Then, we have, ∫ t

0
∥e(τ)∥22dτ ≤ ρ

kλ22

∫ t

0
∥θ(τ)∥22dτ,

where e(t) = y(t)− α(t)1 for some α(t) ∈ R, t ≥ 0. Thus, the L2-gain from the disturbances
to the output consensus error is less than or equal to any given γ > 0 by setting k ≥ ρ

γ2λ2
2
.

4.4 Simulation

Consider a group of four agents, labeled as 1, 2, 3, and 4. The dynamics of each agent i is described
by 

ẋi,1 = ui + sinxi,2θi,1,

ẋi,2 = −0.1x3i,2 + xi,1(xi,2 + θi,2),

yi = xi,1.

The communication topology is described by L as

L =


2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

 .

The distributed consensus protocols are designed as

ui = −
(
1 +

1

4
k
(
1 + x2i,2

)) N∑
j=1

aij
(
xi,1 − xj,1

)
, i ∈ {1, 2, 3, 4}. (4.10)
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Figure 4.1 shows the evolution of the outputs of all agents with initial conditions [0 0 5 0 10 0 15 0]T

in the absence of external disturbances. It is obvious that output consensus of the system is achieved
under protocols (4.10).

Figure 4.1: Evolution of the outputs of all agents under the consensus protocols (4.10) with k = 0.1
in the absence of the external disturbances.

We next consider the presence of external disturbances. The disturbance signals are realized as
θ1,1(t) = θ4,2(t) = θ1(t), θ1,2(t) = θ2,2(t) = θ2(t), θ2,1 = θ3(t), θ3,2 = θ4(t), θ3,1 = θ4,1 = θ6(t), where
the signals θ1(t), θ2(t), . . . , θ6(t) are shown in Fig. 4.2.

Figure 4.2: External disturbances.

Fig. 4.3 shows the evolution of the output differences between agents from the initial condition
(10, 10, 10, 10, 10, 10, 10, 10)T, i.e., the system is operating in output consensus at t = 0, in the
presence of the external disturbances. It is observed that the outputs of agents approach closer as
the parameter k becomes larger.

Fig. 4.4 shows the evolution of the output differences between agents with non-identical initial
conditions (0, 0, 5, 0, 10, 0, 15, 0)T in the presence of external disturbances. It is observed that the
outputs of all agents converged to a common value and the effect of the disturbances is attenuated
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k = 0.1

k = 1

k = 10

Figure 4.3: Evolution of the output differences between agents in the presence of the external
disturbances with the initial condition (10, 10, 10, 10, 10, 10, 10, 10)T under the consensus protocols
(4.10), with k = 0.1, k = 1 and k = 10, respectively.

as the value of the parameter k is increased.
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k = 0.1

k = 1

k = 10

Figure 4.4: Evolution of the output differences between agents in the presence of the external
disturbances with the initial condition (0, 0, 5, 0, 10, 0, 15, 0)T under the consensus protocols (4.10)
with k = 0.1, k = 1 and k = 10, respectively.

4.5 Conclusions

In this chapter, the almost output consensus problem of nonlinear multi-agent systems in the
presence of external disturbances was studied. Under conditions on the agent dynamics, which
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are considered mild in the literature on disturbance rejection for individual nonlinear systems, we
constructed distributed consensus protocols for the agents. These consensus protocols were shown
to achieve almost output consensus when the communication topology is undirected and connected.
The simulation was carried out to validate the established results.

This chapter is based on the following publication:

• Tingyang Meng, and Zongli Lin, “Almost output consensus of nonlinear multiagent systems in
the presence of external disturbances.” International Journal of Robust and Nonlinear Control
30.17 (2020): 7355-7369.
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Chapter 5

Suboptimal Output Consensus of Linear Discrete-Time Multi-Agent Systems

5.1 Introduction

In this chapter, we consider the suboptimal output consensus problem for a discrete-time multi-
agent system, whose agents may possess polynomial unstable zero dynamics (i.e., the agents may
be of weakly nonminimum phase). The motivation for considering such agent dynamics is twofold.
First, many real-world systems evolve in discrete-time or are discretized for digital control. Second,
non-minimum phase systems are frequently found in real-world applications (see, for example, [23]),
for which a nonzero steady-state value of the output will cause the states of the zero dynamics to
grow unbounded. In order to prevent this from happening, we aim to achieve suboptimal output
consensus, instead of optimal output consensus, by explicitly taking the unstable zero dynamics
into consideration in the protocol design. Rather than aiming to reach perfect consensus at the
exact optimal point, we aim to design consensus protocols that stabilize the zero dynamics of each
agent by allowing its output to vary in a neighborhood of the optimal value, whose size can be
pre-specified to be arbitrarily small.

In order to prevent the states of the unstable zero dynamics from growing unbounded as the output
approaches a nonzero constant value, we aim to achieve suboptimal output consensus, instead of
optimal output consensus, by explicitly taking the unstable zero dynamics into consideration in
the protocol design. Rather than aiming to reach a perfect consensus at the exact optimal point,
we stabilize the zero dynamics of each agent by allowing its output to vary in a neighborhood of
the optimal point, whose size can be pre-specified to be arbitrarily small. More specifically, we
propose for each agent a parameterized distributed protocol based on the low gain feedback design
technique under which the states of all agents remain bounded, and suboptimal output consensus
of the system is achieved, i.e., the outputs of all agents converge to a pre-specified arbitrarily small
neighborhood of the optimal point that minimizes the overall objective function of the multi-agent
system, as long as the value of the low gain feedback parameter is chosen small enough.

Unlike in the continuous-time setting [90], a state transformation is required to transform the
agent dynamics into a form conducive for the construction of the consensus protocol. Furthermore,
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a frequency response property of a discrete-time closed-loop system under low gain feedback, which
is not available in the literature, also needs to be established. Such a property is expected to be
useful in other contexts in a discrete-time setting.

The remainder of this chapter is organized as follows. Section 5.2 formulates the suboptimal output
consensus problem for discrete-time linear multi-agent systems. Section 5.3 presents the design of
the consensus protocols and establishes that they solve the problem formulated in Section 5.2.
Section 5.4 provides a simulation example to demonstrate the proposed protocols. Section 5.5
concludes this chapter.

5.2 Problem Statement

Consider a discrete-time linear multi-agent system consisting of N agents, with possibly heteroge-
neous unstable zero dynamics.

The dynamics of the ith agent, i ∈ {1, 2, · · · , N}, is described by the following discrete-time system,

xi,0(k + 1) = Ai,0xi,0(k) +Bi,0xi,1(k),

xi,r(k + 1) = xi,r+1(k), r = 1, 2, · · · , ρ− 1,

xi,ρ(k + 1) = Ei,0xi,0(k) + αi,1xi,1(k) + αi,2xi,2(k) + · · ·+ αi,ρxi,ρ(k) + ui(k),

yi(k) = xi,1(k),

(5.1)

where xi,0 ∈ Rni,0 and xi = [xi,1 xi,2 · · · xi,ρ]T ∈ Rρ are the states, ui ∈ R is the input, and yi ∈ R
is the output. The dynamics of xi,0 is the zero dynamics of the system. The relative degree ρ is
assumed to be the same for all agents. The agents are allowed to have different zero dynamics. We
note that any single input single output linear system can be transformed into the form (5.1) by a
state transformation.

Assumption 5.1. The zero dynamics governed by Ai,0 is allowed to be polynomial unstable but
not exponentially unstable, and the eigenvalues of Ai,0 are away from z = 1. Without loss of
generality, assume that all eigenvalues of Ai,0 are located on the unit circle.
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Assumption 5.2. The pair (Ai,0, Bi,0) is controllable, and is in the following canonical form,

Ai,0 =


0 1 · · · 0
...

... . . . ...
0 0 · · · 1

ai,0,1 ai,0,2 · · · ai,0,ni,0

 , Bi,0 =


0
...
0

1

 .

Each agent i, i ∈ {1, 2, · · · , N}, has its local objective function fi(yi) : R → R that is only
known to itself. The overall objective function of the multi-agent system is

∑N
i=1 fi(yi) subject to

y1 = y2 = · · · = yN .

Assumption 5.3. The objective function fi : R → R, i ∈ {1, 2 · · · , N}, satisfies the following
conditions.

(i) It is differentiable and its gradient is Lipschitz with constant Mi > 0 in R, i.e.,

|∇fi(x)−∇fi(y)| ≤Mi|x− y|, ∀x, y ∈ R.

(ii) It is strongly convex with constant mi > 0 in R, i.e.,

(x− y)(∇fi(x)−∇fi(y)) ≥ mi(x− y)2, ∀x, y ∈ R.

We make the following assumption on the communication network.

Assumption 5.4. The graph that describes the communication network of the multi-agent system
is undirected and connected.

The suboptimal output consensus problem we are to study is formulated as follows.

Problem 5.1. Consider the discrete-time multi-agent system described by (5.1). Let the agent
dynamics satisfy Assumptions 5.1 and 5.2. Let the objective functions satisfy Assumption 5.3. Let
the communication network satisfy Assumption 5.4. For any given arbitrarily small scalar γ > 0,
design a distributed suboptimal output consensus protocol ui for each agent i, i ∈ {1, 2, · · · , N},
under which the states of all agents are bounded and

lim
k→∞

∣∣yi(k)− y∗
∣∣ ≤ γ,
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where y∗ ∈ R is an optimal point that minimizes the overall objective function

N∑
i=1

fi(yi), subject to y1 = y2 = · · · = yN ,

with y1 = y2 = · · · = yN = y∗.

Remark 5.1. Under Assumption 5.3, the optimal point y∗ is unique and satisfies the following
condition,

N∑
i=1

∇fi(y∗) = 0.

5.3 Main Results

We will present the protocol design in the following few steps. We will then show that the resulting
protocols solve Problem 5.1.

For each agent i ∈ {1, 2, · · · , N}, define

ui,0 = Fi,0(ε)xi,0,

where Fi,0(ε) ∈ R1×ni,0 is the unique matrix such that

λ(Ai,0 +Bi,0Fi,0(ε)) = (1− ε)λ(Ai,0) ∈ C⊙ (5.2)

with ε ∈ (0, 1] being a design parameter. Note that |Fi,0(ε)| tends to zero as ε tends to zero and
such feedback is referred to as the low gain feedback [43].

Define a new output for each agent i ∈ {1, 2, · · · , N} as

y̌i(k) = yi(k)− ui,0(k)

= xi,1(k)− Fi,0(ε)xi,0(k).

Consensus protocols will be constructed later, under which the new output y̌i is driven to the
optimal point y∗, and the real output yi is allowed to vary within a small vicinity of y∗, whose size
is specified by γ. In this way, the zero dynamics is stabilized and the suboptimal output consensus
of the system is achieved under the designed protocols.

Define a set of new states [x̌i,1 x̌i,2 · · · x̌i,N ]T for each agent i ∈ {1, 2, · · · , N} based on the renamed
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output y̌i as 

x̌i,1(k) = y̌i(k) = xi,1(k)− Fi,0(ε)xi,0(k),

x̌i,r(k) = xi,r(k)− Fi,0(ε)A
r−1
i,0 xi,0(k)

−
r−1∑
l=1

Fi,0(ε)A
r−1−l
i,0 Bi,0xi,l(k), r = 2, 3, · · · , ρ.

(5.3)

Then, the agent’s dynamics (5.1) can be rewritten in these states as

xi,0(k + 1) = Aci,0(ε)xi,0(k) +Bi,0x̌i,1(k),

x̌i,r(k + 1) = x̌i,r+1(k), r ∈ I[1, ρ− 1],

x̌i,ρ(k + 1) = Ěi,0xi,0(k) + α̌i,1x̌i,1(k) + α̌i,2x̌i,2(k) + · · ·

+ α̌i,ρx̌i,ρ(k) + ui(k),

y̌i(k) = x̌i,1(k),

(5.4)

where Aci,0(ε) = Ai,0 +Bi,0Fi,0(ε), and

Ěi,0 = Ei,0 − Fi,0(ε)A
ρ
i,0 +

ρ∑
r=1

(
αi,r − Fi,0(ε)A

ρ−r
i,0 Bi,0

)
Fi,0(ε)A

r−1
ci,0 (ε),

α̌i,r = αi,r − Fi,0(ε)A
ρ−r
i,0 (ε)Bi,0

+

ρ∑
l=r+1

(
αi,l − Fi,0(ε)A

ρ−l
i,0 Bi,0

)
Fi,0(ε)A

l−1−r
ci,0 (ε)Bi,0,

r = 1, 2, · · · , ρ− 1,

α̌i,ρ = αi,ρ − Fi,0(ε)Bi,0.

Let
ui(k) = ǔi(k)− Ěi,0xi,0(k)− α̌i,1x̌i,1(k)− α̌i,2x̌i,2(k)− · · · − α̌i,ρx̌i,ρ(k), (5.5)

where ǔi(k) is to be designed later. Then, the dynamics (5.4) can be rewritten as
xi,0(k + 1) = Aci,0(ε)xi,0(k) +Bi,0x̌i,1(k),

x̌i(k + 1) = Ǎx̌i(k) + B̌ ǔi(k),

y̌i(k) = x̌i,1(k),
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where

Ǎ =


0 1 · · · 0
...

... . . . ...
0 0 · · · 1

0 0 · · · 0


ρ×ρ

, B̌ =


0
...
0

1


ρ×1

.

We now define a state transformation x̆i = T̆ x̌i for each agent i ∈ {1, 2, · · · , N} that transforms
the agent dynamics into the following form,

x̆i(k + 1) =



1 1 0 · · · 0 0

0 1 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 1

−Cρ
ρ −Cρ−1

ρ −Cρ−2
ρ · · · −C2

ρ −C1
ρ + 1


x̆i(k) +



0

0
...
0

1


ǔi(k), (5.6)

where x̆i = [x̆i,1 x̆i,2 · · · x̆i,ρ]T. Such a state transformation is explicitly given as

T̆ =



C0
0 0 · · · 0 0

−C1
1 C0

1 · · · 0 0
...

... . . . ...
...

(−1)ρ−2Cρ−2
ρ−2 (−1)ρ−3Cρ−3

ρ−2 · · · C0
ρ−2 0

(−1)ρ−1Cρ−1
ρ−1 (−1)ρ−2Cρ−2

ρ−1 · · · −Cρ−2
ρ−1 C0

ρ−1


.

We further define a state transformation x̄i = T̄ x̆i that transforms the dynamics (5.6) into the
following form,

x̄i(k + 1) =



1 1 · · · 1 1

0 1 · · · 1 1
...

... . . . ...
...

0 0 · · · 1 1

0 0 · · · 0 1


x̄i(k) +



1

1
...
1

1


ūi(k),

where x̄i = [x̄i,1 x̄i,2 · · · x̄i,ρ]T and

ūi = [−Cρ
ρ − Cρ−1

ρ · · · − C1
ρ]x̆i + ǔi. (5.7)
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Such a state transformation is explicitly given as

T̄ =


Cρ−1
ρ−1 Cρ−2

ρ−1 · · · C0
ρ−1

0 Cρ−2
ρ−2 · · · C0

ρ−2
...

... . . . ...
0 0 · · · C0

0

 .

As will be seen later, the above state transformation will facilitate the protocol design and the
analysis of the closed-loop system.

We now construct ūi, i ∈ {1, 2, · · · , N}, based on the transformed state x̄i as follows,

vi(k + 1) = vi(k) + αβ
N∑
j=1

aij
(
x̄i,1(k)− x̄j,1(k)

)
, vi(0) = 0,

ūi(k) = −
ρ∑

r=2

x̄i,r(k)− vi(k)− β

N∑
j=1

aij
(
x̄i,1(k)− x̄j,1(k)

)
− α∇fi

(
x̄i,1(k)

)
,

(5.8)

where x̄i = T̄ T̆ x̌i with x̌i being defined in (5.3).

The closed-loop system, under the protocol (5.8), is given as

xi,0(k + 1) = Aci,0(ε)xi,0(k) +Bi,0x̌i,1(k),

vi(k + 1) = vi(k) + αβ
N∑
j=1

aij
(
x̄i,1(k)− x̄j,1(k)

)
,

x̄i,1(k + 1) = x̄i,1(k)− vi(k)− β

N∑
j=1

aij
(
x̄i,1(k)− x̄j,1(k)

)
− α∇fi

(
x̄i,1(k)

)
,

x̄i,2(k + 1) = −vi(k)− β
N∑
j=1

aij
(
x̄i,1(k)− x̄j,1(k)

)
− α∇fi

(
x̄i,1(k)

)
,

x̄i,r(k + 1) = −
r−1∑
l=2

x̄i,l(k)− vi(k)− β

N∑
j=1

aij
(
x̄i,1(k)− x̄j,1(k)

)
− α∇fi

(
x̄i,1(k)

)
, r = 3, 4, · · · , ρ.

(5.9)

It is noted that the unstable xi,0 dynamics is now stabilized and governed by Aci,0. The rest of
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the system can be viewed as two cascaded subsystems, namely, the vi, x̄i,1 subsystem and the
x̄i,2, x̄i,3, · · · , x̄i,r subsystem. As will be seen in the proof of Theorem 5.1, x̄i,1 will be driven to y∗

and x̄i,2, x̄i,3, · · · , x̄i,r will converge to zero.

We have the following result on the solution of Problem 5.1.

Theorem 5.1. [60] Consider the multi-agent system (5.1). Let the agent dynamics satisfy As-
sumptions 5.1 and 5.2. Let the objective functions satisfy Assumption 5.3. Let the communication
network satisfy Assumption 5.4. For any given γ > 0, there exists ε∗ ∈ (0, 1] such that, for all
ε ∈ (0, ε∗], the proposed distributed consensus protocols (5.5), (5.7) and (5.8) solve Problem 5.1.

Remark 5.2. Compared to the result in [90] for suboptimal output consensus of weakly nonmini-
mum phase linear systems in the continuous-time setting, our result focuses on discrete-time weakly
nonminimum phase agents and thus a different protocol design needs to be carried out and a new
analytical tool needs to be established. Compared to [96], in which the result is for discrete-time
first-order dynamics, our result is applicable to more general discrete-time dynamics.

Remark 5.3. The proposed suboptimal consensus protocol for each agent i, i ∈ {1, 2, · · · , N}, is
based on its own state, the gradient of its own objective function, and the states of its neighbors.
A standard Luenberger observer can be employed as long as system (5.1) representing the agent
dynamics is observable, i.e., the pair (Ai,0, Ei,0), i ∈ {1, 2, · · · , N}, is observable, and the protocol
design will remain the same. We only present the state feedback design here for brevity.

To prove Theorem 5.1, we first present the following lemma.

Lemma 5.1. Consider the pair (Ai,0, Bi,0) as given in (5.2) and Fi,0(ε) as given in (5.2). Let
λci,l, l ∈ {1, 2 · · · ,mi}, be the eigenvalues of Aci,0 = Ai,0 + Bi,0Fi,0(ε) with multiplicity ni,l, i.e.,
det(zI −Aci,0) =

∏mi
l=1(z − λci,l)

ni,l . Then, there exists an ε∗ ∈ (0, 12 ] such that, for all ε ∈ (0, ε∗],∣∣∣Fi,0(ε)
(
zI −Ai,0 −Bi,0Fi,0(ε)

)−1
∣∣∣

≤ δiε

mi∑
l=1

ni,l∑
j=1

(ni,l − j + 1)

∣∣∣∣ 1

(z − λci,l)j

∣∣∣∣, z ∈ C,

where δi is some positive constant independent of ε.

Proof of Lemma 5.1: Recall that the state transition matrix Φi(k) of the zero dynamics

xi,0(k) = Aci,0xi,0(k) +Bi,0y̌i(k)
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is given as

Φi(k) = (Ai,0 +Bi,0Fi,0(ε))
k

= Z−1{z(zI −Ai,0 −Bi,0Fi,0(ε))
−1}.

From the above equation, we have,

(zI −Ai,0 −Bi,0Fi,0(ε))
−1 =

1

z
Z{Φi(k)}.

Let Pi = [p11 p
1
2 · · · p1ni,1

· · · pmi
1 pmi

2 · · · pmi
ni,mi

], where, for each l = 1 to mi, pl1, pl2, · · · , plni,l
are

the ni,l generalized eigenvectors of Ai,0. Let Qi(ε) = [q11 q
1
2 · · · q1ni,1

· · · qmi
1 qmi

2 · · · qmi
ni,mi

], where,
for each l = 1 to mi, ql1, ql2, · · · , qlni,l

are the ni,l generalized eigenvectors of Aci,0. Then, there exists
an ε∗ ∈ (0, 12 ] such that, for all ε ∈ (0, ε∗] ([43]),

|Qi(ε)| ≤ |Pi|+ 1,
∣∣Q−1

i (ε)
∣∣ ≤ ∣∣P−1

i

∣∣+ 1.

In addition,

Q−1
i (ε)

(
Ai,0 +Bi,0Fi,0(ε)

)
Qi(ε) =


Ji,1 0 · · · 0

0 Ji,2 · · · 0
...

... . . . ...
0 0 · · · Ji,mi

 ,

where, for l = 1 to mi,

Ji,l =


λci,l 1 0 · · · 0

0 λci,l 1 · · · 0
...

...
... . . . ...

0 0 0 · · · λci,l

 .

Then, we have∣∣∣Fi,0(ε)
(
zI −Ai,0 −Bi,0Fi,0(ε)

)−1
∣∣∣

=
∣∣∣1
z
Fi,0(ε)Z

{
(Ai,0 +Bi,0Fi,0(ε))

k
}∣∣∣

=
∣∣∣1
z
Fi,0(ε)Z

{
Qi(ε)

(
Q−1

i (ε)(Ai,0 +Bi,0Fi,0(ε))Qi(ε)
)k
Q−1

i (ε)
}∣∣∣

≤
(
|Pi|+ 1

)(
|P−1

i |+ 1
) mi∑

l=1

∣∣Fi,0(ε)
∣∣∣∣∣1
z
Z
{
Jk
i,l

}∣∣∣
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≤ δiε

mi∑
l=1

∣∣∣∣∣∣∣∣∣∣∣
1

z
Z




λkci,l kλk−1

ci,l
k(k−1)

2! λk−2
ci,l · · · k(k−1)···(k−ni,l+2)

(ni,l−1)! λ
k−ni,l+1
ci,l

0 λkci,l kλk−1
ci,l · · · k(k−1)···(k−ni,l+1)

(ni,l−2)! λ
k−ni,l+2
ci,l

...
...

... . . . ...
0 0 0 · · · λkci,l





∣∣∣∣∣∣∣∣∣∣∣
= δiε

mi∑
l=1

ni,l∑
j=1

(ni,l − j + 1)

∣∣∣∣ 1

(z − λci,l)j

∣∣∣∣,
for some δi > 0 independent of ε, where we have used the fact that |Fi,0(ε)| ≤ αiε for some constant
αi independent of ε [43].

We next present the proof of the theorem.

Proof of Theorem 5.1: Denote v = [v1 v2 · · · vN ]T and x̄r = [x̄1,r x̄2,r · · · x̄N,r]
T, r ∈ I[1, ρ].

Correspondingly, denote the equilibrium point of the closed-loop system (5.9) as ve, x̄e
1, x̄e

2, · · · , x̄e
ρ.

Denote ∇F (x̄1) = [∇f1(x̄1,1) ∇f2(x̄2,1) · · · ∇fN (x̄N,1)]
T. Partition the states as χ1 = [vT x̄T

1 ]
T

and χ2 = [x̄T
2 x̄T

3 · · · x̄T
ρ ]

T, and the closed-loop system (5.9) without the zero dynamics takes the
following cascade form, χ1(k + 1) = g1(χ1(k)),

χ2(k + 1) = A2χ2(k) +B2g2(χ1(k)),
(5.10)

where the χ1 dynamics is given as

v(k + 1) = v(k) + αβLx̄1(k), (5.11)

x̄1(k + 1) = x̄1(k)− v(k)− βLx̄1(k)− α∇F (x̄1(k)), (5.12)

and the χ2 dynamics is described by

A2 =



0 0 · · · 0 0

−IN 0 · · · 0 0

−IN −IN · · · 0 0
...

... . . . ...
...

−IN −IN · · · −IN 0


, B2 =


IN

IN
...
IN

 ,

g2(χ1) = −v̄ − βLx̄1 − α∇F (x̄1).

In what follows, we will prove the result of Theorem 5.1 in three steps. First, we will show that the
equilibrium point x̄e

1 takes the form x̄e
1 = xc1, where xc is some scalar that minimizes the overall
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objective function. Second, we will show that the closed-loop system is globally asymptotically
stable at the equilibrium point ve, x̄e

1, x̄e
2, · · · , x̄e

ρ, where [x̄e
1 x̄e

2 · · · x̄e
ρ] = [xc1 0 · · · 0]. Finally,

we will show that the proposed protocols solve Problem 5.1.

Step 1: From (5.11) and (5.12), we see that the equilibrium point must satisfy

αβLx̄e
1 = 0, (5.13)

−ve − βLx̄e
1 − α∇F (x̄e

1) = 0. (5.14)

Under Assumption 5.4, equation (5.13) implies that x̄e
1 = xc1 for some constant xc.

Left multiplying (5.11) by 1T gives

1Tv(k + 1) = 1Tv(k) + αβ1TLx̄1(k),

which, together with 1TL = 0, implies that the term 1Tv(k) remains constant for all k. Therefore,

1Tve = 1Tv(0) =
N∑
i=1

vi(0) = 0, ∀k = 0, 1, · · · .

By left multiplying (5.14) by 1T, we have,

−1Tve − β1TLx̄e
1 − α1T∇F (x̄e

1) = 0,

from which we can conclude that

1T∇F (x̄e
1) =

N∑
i=1

∇fi(xc) = 0,

i.e., y∗ = xc is the unique optimal point that minimizes the overall objective function f(y) =∑N
i=1 fi(y).

Step 2: Define error terms as x̃1(k) = x̄1(k) − x̄e
1 and ṽ(k) = v(k) − ve. Then, the dynamics of

x̃1(k) and ṽ(k) is given as
x̃1(k + 1) = x̃1(k)− ṽ(k)− βLx̃1(k)

− α
(
∇F (x̃1(k) + x̄e

1)−∇F (x̄e
1)
)
,

ṽ(k + 1) = ṽ(k) + αβLx̃1(k).

(5.15)
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We will show that the origin of the system (5.15) is globally asymptotically stable in the subspace
{[vT x̄T

1 ]
T : 1Tṽ = 0}.

To this end, consider the Lyapunov function candidate

V = η̃Tη̃ + 2αβη̃TLx̃1 + αβx̃T
1Lx̃1,

where
η̃(k) := −ṽ(k)− βLx̃1(k)− α

(
∇F (x̃1(k) + x̄e

1)−∇F (x̄e
1)
)
.

Note that V can be rewritten as

V =
[
η̃T x̃T

1L
] [ 1 αβ

αβ κ

][
η̃

Lx̃1

]
+ x̃T

1

(
αβL − κL2

)
x̃1. (5.16)

It is observed that the first term in (5.16) is non-negative and is equal to zero if and only if η̃ = 0

and Lx̃1 = 0 when κ > α2β2. It is also observed that the second term is non-negative and is equal
to zero if and only if Lx̃1 = 0 when κ < αβ

λmax(L) . Therefore, V ≥ 0 and is radially unbounded in
the subspace {[vT x̄T

1 ]
T : 1Tṽ = 0} if κ, α and β satisfy the above conditions.

We will next show that V > 0, that is, V = 0 if and only if x̃1 = 0 and ṽ = 0. It is noted that
V = 0 if and only if Lx̃1 = 0 and η̃ = 0. By recalling the definition of η̃, we have,

− ṽ(k)− α
(
∇F (x̃1(k) + x̄e

1)−∇F (x̄e
1)
)
= 0. (5.17)

By left multiplying (5.17) with 1T and recalling 1Tṽ(k) = 0, ∀k = 0, 1, · · · , and 1T∇F (x̄e
1) = 0, we

have,
1T∇F (x̃1(k) + x̄e

1) = 0. (5.18)

Since x̄e
1 = xc1 with xc being the unique optimal point such that

∑N
i=1∇fi(xc) = 0, it follows from

(5.18) that x̃1(k) = 0 if V = 0. Since the second term in (5.17) is equal to zero as x̃1(k) = 0, we
conclude that ṽ(k) = 0 if V = 0.

We will now consider

∆V
(
x̃1(k), ṽ(k)

)
:= V

(
x̃1(k + 1), ṽ(k + 1)

)
− V

(
x̃1(k), ṽ(k)

)
.
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Denote V (k + 1) := V
(
x̃1(k + 1), ṽ(k + 1)

)
and it is computed as

V (k + 1) = η̃T(k + 1)η̃(k + 1) + 2αβη̃T(k + 1)Lx̃1(k + 1) + αβx̃T
1 (k + 1)Lx̃1(k + 1),

with

η̃(k + 1) = −ṽ(k + 1)− α
(
∇F (x̃1(k + 1) + x̄e

1)−∇F (x̄e
1)
)
− βLx̃1(k + 1)

= −
(
ṽ(k) + αβLx̃1(k)

)
− α

(
∇F (x̃1(k) + η̃(k) + x̄e

1)−∇F (x̄e
1)
)

− βL(x̃1(k) + η̃(k))

= η̃ − αβLx̃1 − α∆F − βLη̃,

where ∆F := ∇F (x̃1(k + 1) + x̄e
1)−∇F (x̃1(k) + x̄e

1).

Let us now compute

∆V
(
x̃1(k), ṽ(k)

)
= η̃T(k + 1)η̃(k + 1)− η̃T(k)η̃(k) + 2αβη̃T(k + 1)Lx̃1(k)

+ 2αβη̃T(k + 1)Lη̃(k) + αβη̃T(k)Lη̃(k)

= − 3α2β2(Lx̃1)
T(Lx̃1)− (2α− 1)β2(Lη̃)T(Lη̃)− (2− 3α)βη̃TLη̃

+ α2(∆F )T∆F − 4α2β2(Lx̃1)
T(Lη̃)− 2αη̃T∆F + 2αβ(1− α)(∆F )TLη̃.

Under Assumption 5.3, we have

(∆F )T∆F =

N∑
i=1

(
∇fi(x̃i,1(k + 1) + x̄e

i,1)−∇fi(x̃i,1(k) + x̄e
i,1)
)2

≤
n∑

i=1

M2
i

(
x̃i,1(k + 1)− x̃i,1(k)

)2
≤ M̄ η̃Tη̃ (5.19)

where M̄ = maxi∈{1,2,··· ,N}{M2
i }. We also have

(
x̃i,1(k + 1)− x̃i,1(k)

)(
∇fi(x̃i,1(k + 1) + x̄e

i,1)−∇fi(x̃i,1(k) + x̄e
i,1)
)

≥ mi

(
x̃i,1(k + 1)− x̃i,1(k)

)2
,

i.e.,
η̃T∆F ≥ mη̃Tη̃, (5.20)
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where m = mini∈{1,2,··· ,N}{mi}.

In view of (5.19) and (5.20), ∆V can be further evaluated as

∆V (x̃1(k), ṽ(k))

= − 3α2β2(Lx̃1)
T(Lx̃1)− (2α− 1)β2(Lη̃)T(Lη̃)− (2− 3α)βη̃TLη̃

+ α2∆FT∆F − 2
(√

2αβ(Lx̃1)
T
)(√

2αβ(Lη̃)
)
− 2αη̃∆F

+ 2(α∆FT)
(
(1− α)β(Lη̃)

)
≤ − α2β2(Lx̃1)

T(Lx̃1)−
(
(2α− 1)− 2α2 − (1− α)2

)
β2(Lη̃)T(Lη̃)

− (2− 3α)βη̃TLη̃ − 2(αm− α2M̄)η̃Tη̃.

By choosing α < min{m/M̄, 3/2}, and β <
√

2(αm−α2M̄)
ϕλmax(L2)

, where ϕ = −((2α−1)−2α2−(1−α)2) > 0,
we have, ∆V (x̃1(k), ṽ(k)) ≤ 0, and the equality holds if and only if Lx̃1(k) = 0 and η̃(k) = 0.
By recalling the previous analysis, we can further conclude that the equality holds if and only if
x̃1(k) = 0 and ṽ(k) = 0. Therefore, the origin of system (5.15) is globally asymptotically stable in
the subspace {[ṽT, x̃T

1 ]
T : 1Tṽ = 0}, i.e., the equilibrium point ve, x̄e

1 of the system (5.11)-(5.12)
is globally asymptotically stable in the subspace {[vT x̄T

1 ]
T : 1Tv = 0}. Since g2(x̄e,ve) = 0 by

(5.14) and all eigenvalues of A2 are inside the unit circle, the χ2 subsystem in (5.10) is globally
asymptotically stable at its equilibrium point x̄e

2 = x̄e
3 = · · · = x̄e

ρ = 0.

Therefore, the cascade system (5.10) is globally asymptotically stable at its equilibrium point
ve, x̄e

1 = xc1, x̄e
2 = x̄e

3 = · · · = x̄e
ρ = 0.

Step 3: By recalling the state transformations x̆i = T̆ x̌i and x̄i = T̄ x̆i, we have, x̌i = T̆−1T̄−1x̄i.
Since limk→∞ x̄i,1(k) = xc = y∗ and limk→∞ x̄i,r(k) = 0, for all r = 2, 3, · · · , ρ and i ∈ {1, 2, · · · , N},
we have

lim
k→∞

y̌i(k) = lim
k→∞

x̌i,1(k) = xc = y∗,

i.e., the new output y̌i converges to the optimal point y∗.

We will now show that there exists ε∗ ∈ (0, 1] such that, for all ε ∈ (0, ε∗],

lim
k→∞

∣∣Fi,0(ε)xi,0(k)
∣∣ ≤ γ, i ∈ {1, 2, · · · , N}.

Recall that the zero dynamics xi,0 in (5.4) can be written as

xi,0(k + 1) = Aci,0(ε)xi,0(k) +Bi,0(y̌i(k)− y∗) +Bi,0y
∗,
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with Aci,0 being Hurwitz and limk→∞ y̌i(k) = y∗. Thus, the steady state trajectory of xi,0 is all
due to y∗. Consider the stable transfer function from y∗ to ui,0 = Fi,0(ε)xi,0. By applying the final
value theorem, we have,

|ui,0|ss = lim
z→1

∣∣∣∣∣(z − 1)
(
Fi,0(ε)(zI −Ai,0 +Bi,0Fi,0(ε))

−1Bi,0

)( z

z − 1
y∗
)∣∣∣∣∣

Under Assumption 5.1, Lemma 5.1 implies that,

|ui,0|ss ≤ δ̄iε,

for some positive constant δ̄i independent of ε.

By choosing 0 < ε∗ ≤ γ
maxi∈{1,2,··· ,N} δ̄i

, we have, for all ε ∈ (0, ε∗],

lim
k→∞

∣∣Fi,0(ε)xi,0(k)
∣∣ ≤ γ, i ∈ {1, 2, · · · , N},

i.e., for all ε ∈ (0, ε∗],

lim
k→∞

∣∣yi(k)− y∗
∣∣ ≤ lim

k→∞

∣∣yi(k)− y̌i(k)
∣∣+ lim

k→∞

∣∣y̌i(k)− y∗
∣∣

= lim
k→∞

∣∣Fi,0(ε)xi,0(k)
∣∣+ 0

≤ γ.

This completes the proof of Theorem 5.1. □

5.4 Simulation

The simulation is performed with a multi-agent system consisting of three agents. The communi-
cation network is shown in Fig 5.1.

Figure 5.1: The communication network.
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The agent dynamics is described by

xi,0(k + 1) =


0 1 0 0

0 0 1 0

0 0 0 1

−1 2
√
2 −4 2

√
2

xi,0(k) +

0

0

0

1

xi,1(k),
xi,1(k + 1) = xi,2(k),

xi,2(k + 1) = −xi,1(k) + 2xi,2(k) + ui(k),

yi(k) = xi,1(k), i ∈ {1, 2, 3}.

The zero dynamics is polynomially unstable with poles at
{√

2
2 +j

√
2
2 ,

√
2
2 +j

√
2
2 ,

√
2
2 −j

√
2
2 ,

√
2
2 −j

√
2
2

}
.

The low gain feedback gain matrix is constructed for each agent i, i ∈ {1, 2, 3}, as

Fi,0(ε) =
[
−ε4+4ε3−6ε2+4ε −2

√
2ε3+6

√
2ε2−6

√
2ε −4ε2+8ε −2

√
2ε
]
,

where ε ∈ (0, 1] is the design parameter. The individual objective functions are f1(y1) = (y1 − 1)2,
f2(y2) = y22, and f3(y3) = (y3−5)2, respectively, with M1 =M2 =M3 = 2, and m1 = m2 = m3 = 2.
The optimal point is y∗ = 2. The suboptimal consensus protocols are constructed according to
(5.5), (5.7) and (5.8).

Figure 5.2: The outputs of all agents: ε = 0.1.

Shown in Figs. 5.2 and 5.3 are the outputs of all agents and the evolution of their zero dynamics,
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Figure 5.3: The evolution of xi,0, i ∈ {1, 2, 3}: ε = 0.1.

Figure 5.4: The outputs of all agents: ε = 0.05.

respectively, with the design parameter ε = 0.1. It is observed that the outputs of all agents satisfy
limk→∞ |yi(k)− y∗| ≤ 0.38, i ∈ {1, 2, 3}, and all their states remain bounded.

Shown in Figs. 5.4 and 5.5, Figs. 5.6 and 5.6 are the simulation results with the design parameter
ε = 0.05 and ε = 0.01, respectively. It is observed that limk→∞ |yi(k)− y∗| ≤ 0.20 when ε = 0.05,
and limk→∞ |yi(k)− y∗| ≤ 0.04 when ε = 0.01, and the states remain bounded.
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Figure 5.5: The evolution of xi,0, i ∈ {1, 2, 3}: ε = 0.05.

Figure 5.6: The outputs of all agents: ε = 0.01.

As shown in the simulation, the output of all agents converges closer to the optimal point as the
value of the design parameter ε decrease, which demonstrates the effectiveness of the proposed
protocols.
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Figure 5.7: The evolution of xi,0, i ∈ {1, 2, 3}: ε = 0.01.

5.5 Conclusions

In this chapter, the suboptimal output consensus problem of discrete-time linear multi-agent sys-
tems with unstable zero dynamics was studied, where each agent possesses a private objective
function. A low gain feedback based parameterized consensus protocol is proposed for each agent
utilizing its own objective function and the states of its neighbors. Suboptimal output consensus
of the system is shown to be achieved when the design parameter is chosen properly and the com-
munication topology is undirected and connected. The simulation was carried out to validate the
established results.

This chapter is based on the following publication:

• Tingyang Meng, Yijing Xie, and Zongli Lin, “Suboptimal output consensus of a group of
discrete-time heterogeneous linear non-minimum phase systems.” Systems & Control Letters
161 (2022): 105134.
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Chapter 6

Management of Networked Battery Units

6.1 Introduction

Energy storage systems are essential components in microgrids [6]. They not only ensure power
quality and reliability but also reduce energy loss in microgrids. Among various energy storage
technologies, battery energy storage systems (BESSs) have emerged as an appealing technology due
to their versatility, rapid response, high energy density, and efficiency [38]. By absorbing power
from the grid during the off-peak time and supplying power to the grid in peak time, BESSs enable
the grid to have the ability of peak-shaving/shifting, power quality enhancement, and congestion
relief [24]. As a result, BESSs of various types are increasingly being integrated into modern energy
systems [20, 17]. Despite the technological advancements in electrochemistry, management/control
of BESSs remains a challenging problem [70].

In general, a BESS may be composed of multiple battery units. Each unit monitors its own state
and controls its own charging/discharging power while communicating with nearby units. The fun-
damental control objective of a BESS is to satisfy the charging/discharging power desired by the
grid while balancing the state-of-charge (SoC) of all its units. Due to variations in their manufac-
turing process and in their operating conditions, battery units may exhibit different characteristics
even if they have the same nominal specifications. As a result, the SoC of all battery units may
diverge with the same charging/discharging power. The divergence of their SoC can eventually lead
to overcharge/overdischarge of the units, which significantly reduces not only the efficiency of the
system but also the lifetime of battery units, and may even cause dangerous situations. Therefore,
the design of coordinated control of charging/discharging power for the units in a BESS with SoC
balancing has been an active research problem (see, for example, [1, 62, 94, 91, 92]).

The control scheme of a BESS consisting of networked battery units can be either centralized or
distributed. A centralized controller monitors all battery units’ SoC and other critical states, and
coordinates the charging/discharging power of each individual unit by external balancing circuits
[2]. Such centralized control schemes for large-scale systems are costly to implement and can
introduce single-point failures. In addition, the balancing circuits may introduce circulating currents
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that cause energy loss. Distributed control schemes, on the other hand, provide advantages such
as robustness and reconfigurability. Models such as multi-agent systems match the networked
structure of battery units in BESSs. Thus, the control problem of a BESS can be reformulated
in the framework of multi-agent systems (see, for example, [68, 69, 16, 71, 41, 15, 9]), in which
the battery units are regarded as a group of locally interacting agents. Distributed controllers and
estimators can be designed by using local information and communication among neighbors so that
the desired power is satisfied while SoC balancing of all units is achieved.

State-of-charge (SoC)[74] balancing control of BESSs has recently attracted considerable research
interest. For example, in [27], an energy-sharing controller was proposed based on a redesigned DC–
DC power stage to achieve SoC balancing among the battery cells while providing DC bus voltage
regulation. In [1], a distributed SoC balancing control scheme based on the local reference power
calculated from individual energy coordinators and distributed average desired power observers
was proposed. In [62], a multi-agent sliding mode SoC balancing control algorithm was proposed,
which can be integrated with multi-agent secondary control for average voltage regulation and
current sharing. In [91], with the desired total charging/discharging power known to each BESS in
a group of networked BESSs, each representing a battery unit, the charging/discharging power of
each BESS is assigned based on the average of the states of the BESSs that contain both intrinsic
properties as well as the SoC of the BESSs. Event-triggered design is adopted to reduce unnecessary
communication loads. Simulation results demonstrate that, in the event that the average of the
states of the BESSs is not accessible to all individual BESSs and needs to be estimated by distributed
average state estimators, the controllers are able to achieve the control objective approximately
despite the estimation errors.

In this chapter, we first design distributed power allocation algorithms for a BESS consisting
of N networked heterogeneous battery units. A novel control framework based on distributed
estimators is proposed that only requires the, possibly time-varying, power demand of the system
to be known by at least one of the battery units. The SoC of all battery units is balanced through
the charging/discharging process by allocating the power demand of the entire BESS among its
units. A distributed power allocation algorithm is designed for each battery unit based on the
distributed estimators built for the battery unit that estimates the average power demand and
the average battery unit state. These estimators are referred to as the average power demand
estimators and the average unit state estimators, respectively. Compared to the existing results in
[91], we provide an explicit analysis of the effects of estimation errors on control accuracy. We show
that, by setting the design parameters properly, the charging/discharging power demand can be
satisfied and SoC balancing can be achieved by any pre-specified accuracy. In addition, we propose
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alternative finite-time estimators that can achieve perfect power supply and SoC balancing.

In real-world applications, the parameters such as capacities and terminal voltages of the battery
units may not be precisely known. Their true values may deviate from their nominal values due to
aging and/or variations in their manufacturing. In addition, the units’ parameters may vary under
severe operating conditions such as heavy load or low/high temperature [102]. In this chapter,
we also design distributed adaptive power allocation algorithms for the BESS. In particular, the
adaptive estimation of the battery parameters facilitates us to develop algorithms without direct
knowledge of battery units’ parameters. The SoC balancing is achieved by actively allocating the
power demand based on distributed estimations of the average unit state and the average desired
power, and the adaptive estimations of the units’ unknown parameters. We show that, under
the proposed distributed adaptive power allocating algorithms, the BESS achieves SoC balancing
among its battery units and satisfies the power demand. Our ability to precisely estimate the
battery parameters can also help us to monitor the health of the battery units. For example, a
capacity drop may indicate a degradation or failure of the battery unit [75].

Lastly, we consider a BESS consisting of N battery units, whose SoC are assumed to be unknown.
The battery characteristic is captured by a second-order Thevenin equivalent circuit model. A
distributed observer-based SoC balancing control law is proposed for each battery unit in the
BESS. In particular, a nonlinear state observer is constructed based on the equivalent circuit
model of the battery dynamics and a nonlinear map from the SoC to the equivalent open circuit
voltage (OCV) of the battery unit. Distributed estimation algorithms for the average battery state
and the average power demand are also constructed. The power demand of the system is then
distributed among individual battery units based on their estimated SoC, the estimated average
state of the battery units, and the estimated average power demand. Analysis of the closed-
loop system establishes that, under mild conditions on the communication network and the power
demand, the BESS achieves SoC balancing among all its battery units while satisfying the power
demand. The use of an electrical equivalent circuit model of the battery dynamics is appealing in
real-time applications because of their concise structure and low implementation cost, compared to
physics-based electrochemical models that are based on the physical and chemical processes inside
the batteries, and data-driven models that are usually based on neural networks [87]. Compared to
the look-up table-based SoC estimation method that requires measurements of the battery at rest
for a sufficiently long period, and the coulomb counting SoC estimation method in which errors
may accumulate from open-loop integration [93], the design of an equivalent circuit model-based
SoC observer facilitates us to estimate the SoC while the battery unit is in a charging or discharging
transient process. The observer’s initial condition can be set close to the true state according to
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the look-up table established for the battery units at rest. During a dynamic process of a battery,
the observer provides a real-time estimate of the SoC based on the measurement of the terminal
voltage.

The remainder of this chapter is organized as follows. Section 6.2 formulates the distributed control
problem of balancing the SoC of networked battery units in a BESS while satisfying the total
charging/discharging power demand. Section 6.3 presents power allocation algorithms based on
average state estimators and average power demand estimators. Section 6.4 provides simulation
examples to demonstrate the design in 6.3. Section 6.5 extends the results in Section 6.3 to BESSs
with unknown battery parameters by deploying an adaptive parameter estimator for each battery
unit. Section 6.6 provides a simulation example for the design in 6.3. Section 6.7 presents the design
of a power allocation algorithm based on a nonlinear observer and distributed average estimators.
Section 6.8 presents a simulation example to illustrate the effectiveness of the design in 6.7. Section
6.9 concludes this chapter.

6.2 Problem Statement

In this section, we will formulate the distributed control problem of balancing the SoC of networked
battery units in a BESS while satisfying the total charging/discharging power demand. We will
consider a BESS consisting of N heterogeneous networked battery units. Each battery unit, with
its own distributed controller, is able to communicate with nearby battery units and exchange
information so that the overall control objective of the networked system can be achieved.

Assumption 6.1. The graph associated with the communication topology among the battery
units is undirected and connected, and the power demand is known to at least one battery unit.

Assumption 6.2. The power demand P ∗(t) is known to at least one battery unit.

The SoC Si(t) of battery unit i is a dimensionless quantity, and it is theoretically defined by
Coulomb counting as

Si(t) = Si,init −
∫ t

0

Ii(τ)

Qnom,i
dτ, (6.1)

where Si,init is the initial SoC, Qnom,i is the nominal capacity of the battery unit, and Ii(t) is the
output current. The output current Ii > 0 indicates discharging and Ii < 0 indicates charging.
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The SoC dynamics of each battery unit is given as

Ṡi = − 1

Qnom,i
Ii, i ∈ {1, 2, · · · , N}. (6.2)

The output power Pi(t) of each battery unit is calculated as

Pi(t) = ViIi(t), i ∈ {1, 2, · · · , N},

where Vi is the constant terminal voltage of the DC-to-DC bidirectional converter connected to the
battery unit. The output power Pi > 0 indicates discharging and Pi < 0 indicates charging.

The relationship between the SoC Si(t) and the output power Pi(t) of the ith battery unit is written
as

Ṡi = − 1

Qnom,iVi
Pi, i ∈ {1, 2, · · · , N}. (6.3)

Since the state of the BESS will remain unchanged with zero charging/discharging power demand,
we will, without loss of generality, make the following assumption on the power demand.

Assumption 6.3. The desired total charging/discharging power P ∗(t) of the BESS satisfies

P ≤ |P ∗(t)| ≤ P̄ , t ≥ 0,

|Ṗ ∗(t)| ≤ Q̄, t ≥ 0

for some positive constants P , P̄ and Q̄. P ∗ > 0 indicates discharging, and P ∗ < 0 indicates
charging.

The state-of-charge balancing and power delivery problem of the battery energy storage system is
formulated as follows.

Problem 6.1. Consider a BESS consisting of N networked battery units with their SoC dynamics
modeled by (6.2). Let the communication network satisfy Assumptions 6.1 and 6.2. Let the power
demand satisfy Assumption 6.3. For each battery unit i, design a power allocation law Pi such that

(i) all units achieve SoC balancing with any pre-specified accuracy εs ≥ 0 in steady state, i.e.,

lim
t→∞

∣∣Si(t)− Sj(t)
∣∣ ≤ εs, for all i, j ∈ {1, 2, · · · , N},

(ii) the total charging/discharging power of the BESS tracks the power demand with any pre-
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specified accuracy εp ≥ 0, i.e.,

lim
t→∞

∣∣PΣ(t)− P ∗(t)
∣∣ ≤ εp,

where PΣ(t) =
∑N

i=1 Pi(t) is the total charging/discharging power.

6.3 Average Estimation based State-of-Charge Balancing and Power Delivery

In this section, we will first recall the SoC variation rules for the battery units based on their SoC,
and power allocation laws based on the average state of all units [91]. We will then design average
battery unit state estimators and average power demand estimators to facilitate the final design of
power allocation laws.

It is noted that, by properly allocating the power demand P ∗(t) among individual battery units
based on their SoC, capacity, and voltage, the SoC balancing can be achieved during the charg-
ing/discharging process.

In [91] the authors proposed the following rules to regulate the SoC variation during the charg-
ing/discharging process:

(i) in discharging mode
Ṡ1
S1

=
Ṡ2
S2

= · · · = ṠN
SN

= −kd(t) < 0, (6.4)

(ii) in charging mode
Ṡ1

1− S1
=

Ṡ2
1− S2

= · · · = ṠN
1− SN

= kc(t) > 0, (6.5)

where kd(t) and kc(t) are some functions lower bounded by a positive number and satisfying the
power demand. In other words, during the discharging process, a battery unit with higher SoC
discharges at a higher rate while a unit with lower SoC discharges at a lower rate. A similar
principle holds for the charging process.

Lemma 6.1. [91] Consider a BESS consisting of N networked battery units with SoC dynamics
described by (6.2). Under discharging/charging rules (6.4) and (6.5), the SoC of all battery units
will converge to the same value asymptotically.

Next, we recall power allocation laws that specify the charging/discharging power of individual
battery units [91].
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For each battery unit i, i ∈ {1, 2, · · · , N}, define the state

xd,i(t) = Qnom,iViSi(t),

for the discharging mode, and
xc,i(t) = Qnom,iVi

(
1− Si(t)

)
,

for the charging mode. The overall state of the battery unit i is denoted as

xi(t) =

{
xd,i(t) in discharging mode,
xc,i(t) in charging mode.

In view of (6.3), we have
ẋd,i = Qnom,iViṠi = −Pi(t),

for the discharging mode, and
ẋc,i = −Qnom,iViṠi = Pi(t),

for the charging mode.

Since
Ṡi
Si

= − Pi

xd,i
, i ∈ {1, 2, · · · , N},

for the discharging mode, and

Ṡi
1− Si

= − Pi

xc,i
, i ∈ {1, 2, · · · , N},

for the charging mode, the charging/discharging power of all battery units must satisfy

P1

xd,1
=

P2

xd,2
= · · · = PN

xd,N
,

for the discharging mode, and
P1

xc,1
=

P2

xc,2
= · · · = PN

xc,N
,

for the charging mode.

Design the charging/discharging power of each battery unit as

Pi(t) =
xd,i(t)∑N
j=1 xd,j(t)

P ∗(t), i ∈ {1, 2, · · · , N}, (6.6)
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for the discharging mode, and

Pi(t) =
xc,i(t)∑N
j=1 xc,j(t)

P ∗(t), i ∈ {1, 2, · · · , N}, (6.7)

for the charging mode.

Then, it is straightforward to verify that both the SoC balancing and the desired total power is
satisfied. Denote the average unit state as

xa(t) =
1

N

N∑
i=1

xd,i(t),

for the discharging mode, and

xa(t) =
1

N

N∑
i=1

xc,i(t),

for the charging mode. Denote the average power demand as

Pa(t) =
1

N
P ∗(t).

Then, (6.6) and (6.7) can be written as

Pi(t) =
xi(t)

xa(t)
Pa(t).

Assumption 6.4. There exist constants a1, a2 > 0 such that

a1 ≤ xi ≤ a2, t ≥ 0, i ∈ {1, 2, · · · , N}.

Since the signals xa(t) and Pa(t) are global information that might not be available for all battery
units, we will design distributed estimators for such quantities.

In order to estimate the average desired power Pa(t) = 1
NP

∗(t), we define the diagonal matrix
B = diag{b1, b2, · · · , bN}, where bi = 1 if the ith battery unit has access to the desired power P ∗(t)

and bi = 0 otherwise. Under Assumptions 6.1 and 6.2, the matrix H = L+ B > 0 [26].

For each battery unit i, i ∈ {1, 2, · · · , N}, we design the following average unit state estimator that
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estimates the signal xa(t) asymptotically,
˙̂xa,i = ẋi − α(x̂a,i − xi)− β

N∑
j=1

aij(x̂a,i − x̂a,j)− νi,

ν̇i = αβ

N∑
j=1

aij(x̂a,i − x̂a,j),

(6.8)

where x̂a,i is the ith battery unit’s estimate of xa(t) and νi is the internal state. The initial
conditions of the estimators are chosen as x̂a,i(0) = xi(0) and νi(0) = 0, i ∈ {1, 2, · · · , N}. The
positive constants α and β are design parameters.

We also design the following estimator adopted from leader-following consensus protocols as the
average power demand estimator to estimate the signal Pa(t),

˙̂pa,i = −κ

(
N∑
j=1

aij(p̂a,i − p̂a,j) + bi(p̂a,i − Pa)

)
, (6.9)

where p̂a,i is the ith battery unit’s estimate of Pa(t) and κ > 0 is a design parameter. that control
the convergence rate of the estimator. The initial condition of the estimator is chosen as p̂a,i(0) = 0,
i ∈ {1, 2, · · · , N}.

The following two lemmas establish the convergence of the average unit state estimators and the
average power demand estimators, respectively.

Lemma 6.2. [36] There exists a constant γx > 0 such that, for any α, β > 0, the estimator
state x̂a,i(t) with initial conditions x̂a,i(0), νi(0) such that

∑N
i=1 νi(0) = 0 converges toward xa(t)

exponentially fast with a steady state error

lim
t→∞

sup
∣∣∣x̂a,i(t)− xa(t)

∣∣∣ ≤ γx
βλ2

.

Lemma 6.3. [1] There exists a constant γp > 0 such that, for any κ > 0, the estimator state p̂a,i(t)

converges toward Pa(t) exponentially fast with a steady-state error

lim
t→∞

sup|p̂a,i(t)− pa(t)| ≤
ψγp
κ
.

It is noted that a larger value of the design parameter κ in the estimator (6.9) results in a smaller
steady state error.
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By using the average unit state estimators and the average power demand estimators, the charg-
ing/discharging power of each battery unit i, (6.6) and (6.7), can be implemented as

Pi(t) =
xd,i(t)

max{a1
2 , x̂a,i(t)}

p̂a,i(t), (6.10)

for the discharging mode, and

Pi(t) =
xc,i(t)

max{a1
2 , x̂a,i(t)}

p̂a,i(t), (6.11)

for the charging mode. Note that max{a1
2 , x̂a,i(t)} ≥ a1

2 > 0, where a1 is defined in Assumption
6.4.

We have the following result on the performance of the distributed power allocation algorithms
(6.10) and (6.11) with estimators (6.8) and (6.9).

Theorem 6.1. [58] Consider a BESS consisting ofN networked battery units. The relation between
the dynamics of SoC and the charging/discharging power of each battery unit is described by (6.3).
Let the communication topology satisfy Assumptions 6.1 and 6.2. Let the power demand satisfy
Assumption 6.3. Then, for any given εs, εp > 0, there exist β, κ > 0 such that the distributed
power allocation algorithms (6.10) and (6.11) with the average unit state estimator (6.8) and the
average power demand estimator (6.9) solve Problem 6.1.

Proof: We consider the discharge mode in the following analysis. The analysis for the charging
mode can be carried out in a similar way.

Define

x̃i(t) = x̂a,i(t)− xa(t),

p̃i(t) = p̂a,i(t)− Pa(t),

as the estimator errors. Choose β ≥ 2γx
α1λ2

, where γx is as defined in Lemma 6.2. Then, under
Assumption 6.4, we have limt→∞ sup|x̃i(t)| < 1

2a1 by Lemma 6.2. Since xa(t) ≥ a1, t ≥ 0, by
Assumption 6.4, in steady state, we have

x̂a,i ≥
1

2
a1.

By Lemma 6.3, p̃i(t) converges toward zero exponentially fast with limt→∞ sup|p̃i(t)| ≤ Q̄γp
κ , we
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have
lim
t→∞

sup
∣∣∣ p̃i(t)
Pa(t)

∣∣∣ ≤ NQ̄γp
κP

.

The discharging power of each battery unit i in steady state is written as

Pi(t) =
xd,i(t)

xa(t) + x̃i(t)
(Pa + p̃i)

=
1 + p̃i

Pa

1 + x̃i
xa

xd,i
xa

Pa.

Then, in steady state, we have,

1− NQ̄γp
κP

1 + γx
a1βλ2

≤
1 + p̃i(t)

Pa(t)

1 + x̃i(t)
xa(t)

≤
1 +

NQ̄γp
κP

1− γx
a1βλ2

. (6.12)

Define

δi(t) =
1 + p̃i(t)

Pa(t)

1 + x̃i(t)
xa(t)

− 1,

δ− =
1− NQ̄γp

κP

1 + γx
a1βλ2

− 1 < 0,

δ+ =
1 +

NQ̄γp
κP

1− γx
a1βλ2

− 1 > 0.

Then, in steady state, we have
δ− ≤ δi(t) ≤ δ+.

In addition, the bound can be made arbitrarily tight by choosing the parameters β and κ sufficiently
large.

Define
ki(t) =

xd,i(t)

xa(t)
.

Then, equation (6.10) can be rewritten in terms of k(t) and δi(t) as

Pi = k(1 + δi)p̂a,i.

Note that k(t) ≥ a1
a2
> 0 since xd,i(t) ≥ a1 and xa(t) ≤ a2, t ≥ 0.
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Recall that Ṡi = − 1
Qnom,iVi

Pi and xd,i = Qnom,iViSi, we have

Ṡi = −k(1 + δi)Si. (6.13)

Consider the function

Vij =
1

2

(
Si(t)− Sj(t)

)2
, i ̸= j, i, j ∈ {1, 2, · · · , N}.

The time derivative of Vij along the trajectory of (6.13) is written as

V̇ij = (Si − Sj)(Ṡi − Ṡj)

= −k(t)(Si − Sj)
(
(1 + δi)Si − (1 + δj)Sj

)
.

It is obvious that V̇ij < 0 if

(Si − Sj)
(
(1 + δi)Si − (1 + δj)Sj

)
> 0,

i.e.,
Si > Sj and Si

Sj
>

1 + δj
1 + δi

or
Sj < Si and Si

Sj
<

1 + δj
1 + δi

.

Since δ− ≤ δi(t) ≤ δ+, from the above analysis, we have V̇ij < 0 if

Si
Sj

>
1 + δ+

1 + δ−
or Si

Sj
<

1 + δ−

1 + δ+
.

That is, in steady state,
1 + δ−

1 + δ+
≤ Si
Sj

≤ 1 + δ+

1 + δ−

for any pair of Si and Sj .

Since 0 < Si(t) ≤ 1, i ∈ {1, 2, · · · , N}, for all t ≥ 0, the SoC of any pair of battery units i and j

will converge to the set {(Si, Sj) : |Si − Sj | ≤ δ+−δ−

1+δ− }.

The total output power of the system is calculated as

PΣ =
N∑
i=1

1 + p̃i
Pa

1 + x̃i
xa

xi
xa
Pa.
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Given (6.12), the output power at steady state can be bounded as

(1 + δ−)P ∗ ≤ PΣ ≤ (1 + δ+)P ∗.

For any given εs > 0 and εp > 0, choose β and κ such that

δ+ − δ−

1 + δ−
≤ εs,

δ+ ≤ εp,

and the control objectives are achieved. □

We will next present power allocation laws based on finite-time average battery state estimators
and finite-time average power demand estimators. Motivated by [19], where a robust dynamic
average consensus algorithm for signals with bounded derivatives was proposed, we design, for each
battery unit i, i ∈ {1, 2, · · · , N}, the following finite-time average unit state estimator,

q̇i = −αsign
( N∑

j=1

aij(x̂a,i − x̂a,j)
)
,

x̂a,i =
N∑
j=1

aij(qi − qj) + xi,

(6.14)

where x̂a,i is the ith battery unit’s estimate of xa(t) and qi is the internal state, and α > 0 is a
design parameter. The initial condition of the estimator is chosen as x̂a,i(0) = xi(0) and qi(0) = 0.
The following lemma establishes the property of the average unit state estimators (6.14).

Lemma 6.4. Consider a BESS consisting of N networked battery units with estimators designed
as (6.14). Let the SoC dynamics of each battery unit satisfy Assumption 6.3. Then, there exists a
finite T ∗

x ≥ 0 such that
x̂a,i(t) = xa(t), t ≥ T ∗

x , i ∈ {1, 2, · · · , N},

if the design parameter α is chosen such that

α ≥
√
NP̄

λ2
+ 1,

where P̄ is as defined in Assumption 6.3 and λ2 is the second smallest eigenvalue of L.

Next we design, for each battery unit i, i ∈ {1, 2, · · · , N}, the following average power demand
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estimator, 
˙̂pa,i = −βsign(νi),

νi =
∑
j∈Ni

(p̂a,i − p̂a,j) + bi(p̂a,i − Pa),
(6.15)

where p̂a,i is the ith battery unit’s estimate of Pa(t) and β > 0 is a design parameter.

The following lemma establishes the property of the average power demand estimators (6.15).

Lemma 6.5. Consider a BESS consisting of N networked battery units, each with its average
power demand estimator designed as (6.15). Let the communication topology satisfy Assumptions
6.1 and 6.2. Then, there exists a finite T ∗

p ≥ 0 such that

p̂a,i(t) =
1

N
P ∗(t), t ≥ T ∗

p , i ∈ {1, 2, · · · , N},

if the design parameter β is chosen such that

β ≥ Q̄

N
+ 1,

where Q̄ is as defined in Assumption 6.3.

Proof: Denote

p̂ = [p̂a,1 p̂a,2 · · · p̂a,N ]T,

p̃ = [p̃1 p̃2 · · · p̃N ]T

= p̂− 1NPa,

ν = [ν1 ν2 · · · νN )T.

Then,

ν = Hp̂− B1NPa

= Hp̃,

where H = L+ B > 0 and

ν̇ = H ˙̃p

= H
(
˙̂p− 1

N
1N Ṗ

∗
)
. (6.16)
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Consider the Lyapunov function
V (ν) =

1

2
νTH−1ν.

The time derivative of V along the trajectory of (6.16) is evaluated as

V̇ = νTH−1H ˙̃p

= νT
(
˙̂p− 1

N
1N Ṗ

∗
)

≤ −β
N∑
i=1

|νi|+
Q̄

N
∥ν∥1

≤
( Q̄
N

− β
)
∥ν∥1,

where Q̄ is as given in Assumption 6.3.

Thus, for

β ≥ Q̄

N
+ 1,

we have

V̇ ≤ −∥ν∥1

≤ −∥ν∥2.

which, in view of V ≤ 1
2λmax(H−1)∥ν∥22, implies that

V̇ ≤ −

√
2

λmax(H−1)
V

1
2 .

Let W = V
1
2 , we have

Ẇ ≤ −

√
2

λmax(H−1)
,

which in turn implies that W and hence p̃ will reach zero in a finite time, T ∗
p ≥ 0 and remain at

zero thereafter. □

It is noted that the estimated average unit state and the estimated average power demand are equal
to the true values for all t ≥ max{T ∗

x , T
∗
p }. Therefore, these estimators are referred to as finite-time

estimators.

We have the following result on the performance of the distributed power allocation algorithms
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(6.10) and (6.11) with estimators (6.14) and (6.15).

Theorem 6.2. [58] Consider a BESS consisting ofN networked battery units. The relation between
the dynamics of SoC and the charging/discharging power of each battery unit is described by (6.3).
Let the communication topology satisfy Assumptions 6.1 and 6.2. Let the power demand satisfy
Assumption 6.3. Then, the distributed power allocation algorithms (6.10) and (6.11) with the
average unit state estimators (6.14) and the average power demand estimator (6.15) solve Problem
6.1.

Proof: It is obvious that, with the proposed estimators (6.14) and (6.15), we have x̂a,i(t) = xa(t),
p̂a,i(t) = Pa(t), i ∈ {1, 2 . . . , N}, for all t ≥ max{T ∗

x , T
∗
p }. After that, controllers (6.10) and (6.11)

with such estimators become the desired controllers (6.6) and (6.7). From the previous analysis,
we know that SoC balancing will be achieved among all battery units and the power demand will
be satisfied. □

6.4 Simulation for Average Estimation Based Algorithms

Consider a BESS consisting of six networked battery units. The parameters of the battery units
are

(Qnom,1, Qnom,2, Qnom,3, Qnom,4, Qnom,5, Qnom,6) = (180, 190, 200, 210, 220, 230)Ah,

(V1, V2, V3, V4, V5, V6) = (20, 20, 20, 20, 20, 20)V.

The communication topology of the system is shown in Fig. 6.1. In addition, only battery unit 1

has access to the charging/discharging power demand, i.e., b1 = 1 and bi = 0, i = 2, 3, · · · , 6.

Figure 6.1: The communication topology.

The distributed allocated power for each battery unit i is designed as,

Pi =
xi
x̂i
p̂i, i = 1, 2, . . . , 6, (6.17)
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where xi = Qnom,iVisi for discharging mode and xi = Qnom,iVi(1− si) for charging mode, x̂i and p̂i
are the estimate of xa = 1

6

∑N
j=1 xi and Pa = 1

6P
∗ by the ith battery unit, respectively.

6.4.1 Asymptotic Estimation

The estimates x̂i and p̂i for each battery unit i are given by,
˙̂xi = ẋi − α(x̂i − xi)− β

∑
j∈Ni

(x̂i − x̂j)− νi,

ν̇i = αβ
∑
j∈Ni

(x̂i − x̂j),
(6.18)

with x̂i(0) = xi(0), νi(0) = 0, for i = 1, 2, · · · , 6, and

˙̂pi = −κ

(
N∑
j=1

aij(p̂i − p̂j) + bi(p̂i − Pa)

)
, (6.19)

with p̂i(0) = 0 for i = 1, 2, · · · , 6.

Figure 6.2: The evolution of SoC of all battery units under power allocation (6.17) and estimators
(6.18), (6.19) with α = 1000, β = 2 and κ = 20.

Shown in Figs. 6.2-6.9 are simulation results performed with the discharging power demand P ∗(t) =

(−4200 sin(t)+ 4200)W under power allocation (6.17) and estimators (6.18), (6.19) for two different
sets of design parameters in the estimators. The initial SoC of the battery units is (0.96, 0.89,

0.75, 0.8, 0.73, 0.88). Note that PΣ > 0 indicates that the BESS is discharging and providing power
to the grid.

Shown in Figs. 6.2-6.5 are the SoC evolution of all battery units during the discharging process,
the total power of the BESS and the power demand and the state evolution of the estimators,
respectively, with the parameters in the estimators chosen as α = 1000, β = 2 and κ = 20. Shown

124



Figure 6.3: The total output power of all battery units and the power demand under power alloca-
tion (6.17) and estimators (6.18), (6.19) with α = 1000, β = 2 and κ = 20.

Figure 6.4: The estimated value by all battery units and the true value of xa under estimators
(6.18) with α = 1000 and β = 2.

Figure 6.5: The estimated value by all battery units and the true value of Pa under estimators
(6.19) with κ = 20.

in Figs. 6.6-6.9 are the same quantities with the parameters in the estimators chosen as α = 1000,
β = 0.3 and κ = 3. It is observed that with larger values of β and κ, the SoC of all battery units
converge closer to each other during the discharging process and the total output power of the
BESS tracks the power demand more accurately.
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Figure 6.6: The evolution of SoC of all battery units under power allocation (6.17) and estimators
(6.18), (6.19) with α = 1000, β = 0.3 and κ = 3.

Figure 6.7: The total output power of all battery units and the power demand under power alloca-
tion (6.17) and estimators (6.18), (6.19) with α = 1000, β = 0.3 and κ = 3.

Figure 6.8: The estimated value by all battery units and the true value of xa under estimators
(6.18) with α = 1000 and β = 0.3.

Shown in Figs. 6.10-6.17 are simulation results performed with the charging power demand
P ∗(t) = (4200 sin(t) −4200)W under power allocation (6.17) and estimators (6.18), (6.19), again
for two different sets of design parameters in the estimators. The initial SoC of the battery units is
(0.04, 0.11, 0.25, 0.2, 0.27, 0.12). Note that pΣ < 0 indicates that the BESS is charging and absorbing
power from the grid.
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Figure 6.9: The estimated value by all battery units and the true value of Pa under estimators
(6.19) with κ = 3.

Figure 6.10: The evolution of SoC of all battery units under power allocation (6.17) and estimators
(6.18), (6.19) with α = 1000, β = 2 and κ = 20.

Figure 6.11: The total output power of all battery units and the power demand under power
allocation (6.17) and estimators (6.18), (6.19) with α = 1000, β = 2 and κ = 20.

Shown in Figs. 6.10-6.13 are the SoC evolution of all battery units during the charging process,
the total power of the BESS and the power demand and the state evolution of the estimators,
respectively, with the parameters in the estimators chosen as α = 1000, β = 2 and κ = 20. Shown
in Figs. 6.14-6.17 are the same quantities with the parameters in the estimators chosen as α = 1000,
β = 0.3 and κ = 3. Again, with larger β and κ, the SoC of all battery units converge closer to
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Figure 6.12: The estimated value by all battery units and the true value of xa under estimators
(6.18) with α = 1000 and β = 2.

Figure 6.13: The estimated value by all battery units and the true value of Pa under estimators
(6.19) with κ = 20.

Figure 6.14: The evolution of SoC of all battery units under power allocation (6.17) and estimators
(6.18), (6.19) with α = 1000, β = 0.3 and κ = 3.

each other during the charging process and the total output power of the BESS tracks the power
demand more accurately.
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Figure 6.15: The total output power of all battery units and the power demand under power
allocation (6.17) and estimators (6.18), (6.19) with α = 1000, β = 0.3 and κ = 3.

Figure 6.16: The estimated value by all battery units and the true value of xa under estimators
(6.18) with α = 1000 and β = 0.3.

Figure 6.17: The estimated value by all battery units and the true value of Pa under estimators
(6.19) with κ = 3.
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6.4.2 Finite-Time Estimation

The estimates x̂i and p̂i for each battery unit i are given by
q̇i = −αsign

( N∑
j=1

aij(x̂i − x̂j)
)
,

x̂i =
N∑
j=1

aij(qi − qj) + xi,

with qi(0) = 0, x̂i(0) = xi(0), i = 1, 2, · · · , 6, and

˙̂pi = −βsign
( N∑

j=1

aij(p̂i − p̂j) + bi(p̂i − Pa)
)
, (6.20)

with p̂i(0) = 0, i = 1, 2, · · · , 6.

Figure 6.18: The evolution of SoC of all battery units under power allocation (6.17) and estimators
(6.4.2), (6.20).

Figure 6.19: The total output power of all battery units and the power demand under power
allocation (6.17) and estimators (6.4.2), (6.20).

Shown in Figs. 6.18-6.21 are simulation results performed with the discharging power demand
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Figure 6.20: The estimated value by all battery units and the true value of xa under estimators
(6.4.2).

Figure 6.21: The estimated value by all battery units and the true value of Pa under estimators
(6.20).

Figure 6.22: The evolution of SoC of all battery units under power allocation (6.17) and estimators
(6.4.2), (6.20).

P ∗(t) = (4200 sin(t) + 4200)W under power allocation (6.17) and estimators (6.4.2), (6.20). The
initial SoC of the battery units are (0.96, 0.89, 0.75, 0.8, 0.73, 0.88).

Shown in Figs. 6.22-6.25 are the SoC evolution of all battery units during the charging process,
the total power of the BESS and the power demand and the state evolution of the estimators,
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Figure 6.23: The total output power of all battery units and the power demand under power
allocation (6.17) and estimators (6.4.2), (6.20).

Figure 6.24: The estimated value by all battery units and the true value of xa under estimators
(6.4.2).

Figure 6.25: The estimated value by all battery units and the true value of Pa under estimators
(6.20).

respectively, with the parameters in the estimators chosen as α = 1000 and β = 1000. It is observed
that the SoC of all battery units converges closer to each other during the charging/discharging
process and the total charging/discharging power of the BESS tracks the power demand. The
estimates of xa and pa by all battery units converge to the true value accurately in finite time.
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6.5 Adaptive Parameter Estimation Based State-of-Charge Balancing and Power

Delivery

In this section, we consider the control design for networked heterogeneous battery units in a BESS
with unknown parameters. A novel design of adaptive power distribution algorithms is presented,
followed by a rigorous analysis of the performance of the closed-loop system. In particular, the
adaptive estimation of the battery parameters facilitates us to develop distributed control algo-
rithms for the battery units without direct knowledge of their parameters. This design strengthens
the design in the previous section, which requires precise knowledge of the capacities and the ter-
minal voltages of the battery units. The SoC balancing is achieved by adaptively allocating the
total power demand based on distributed estimations of the average unit state and the average de-
sired power, and the adaptive estimations of the units’ unknown parameters. We show that, under
the proposed distributed adaptive power allocating algorithms, the BESS achieves SoC balancing
among its battery units and delivers the desired total power to any pre-specified level of accuracy.
Our ability to precisely estimate the battery parameters can also help us to monitor the health
of the battery units. For example, a capacity drop may indicate a degradation or failure of the
battery unit [75].

We will first design adaptive parameter estimators for the battery units. We rewrite the SoC
dynamics of battery unit i as

s[Si](t) = θ∗i Pi(t), (6.21)

where θ∗i = − 1
Qnom,iVi

is the true value of the unknown constant parameter and s is the differenti-
ation operator s[Si](t) = ṡi.

For each battery unit i, choose Λi(s) = s+ λ0,i with λ0,i > 0. By operating on both sides of (6.21)
with the stable filter 1

Λi(s)
, we have

s

s+ λ0,i
[Si](t) =

θ∗i
s+ λ0,i

[Pi](t),

which can be rewritten as

Si(t)−
λ0,i

s+ λ0,i
[Si](t) =

θ∗i
s+ λ0,i

[Pi](t). (6.22)

We note the presence of the unknown parameter θ∗i in the right-hand side of (6.22).

Let θi(t) be the estimate of the parameter θ∗i and define the estimation error as ϵi(t) =
(
θi(t) −
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θ∗i
)

1
s+λ0,i

[Pi](t). Then, in view of (6.22), we have

ϵi(t) =
θi(t)

s+ λ0,i
[Pi](t)−

(
Si(t)−

λ0,i
s+ λ0,i

[Si](t)

)
.

To generate the signals ωi,1(t) =
1

s+λ0,i
[Pi](t) and ωi,2(t) =

1
s+λ0,i

[Si](t), we construct the following
dynamic systems, ω̇i,1(t) = −λ0,iωi,1(t) + Pi(t),

ω̇i,2(t) = −λ0,iωi,2(t) + Si(t).

Then, the estimation error is given as

ϵi(t) = θi(t)ωi,1(t)−
(
Si(t)− λ0,iωi,2(t)

)
.

We will use the normalized gradient algorithm [84] for updating the parameter estimation θi(t).
Consider the quadratic cost function Ji(θi) = ϵ2i (t)

2m2
i (t)

, with mi(t) being the normalizing signal. The
steepest decent direction of Ji(θi(t)) is

−∂Ji
∂θi

=
ϵi(t)wi,1(t)

m2
i (t)

.

Given the knowledge of the parameter region [θmin, θmax], an adaptive parameter update law for
θi(t) is designed as

θ̇i(t) = gi(t) + fi(t), θi(0) = θi,0, t ≥ 0, (6.23)

where θi,0 ∈ [θmin, θmax] is the initial estimate of θ∗i and is usually set to the nominal value of the
parameter,

gi(t) = −Γiωi,1(t)ϵi(t)

m2
i (t)

, (6.24)

with the gain Γi > 0 and mi(t) =
√

1 + γiω2
i,1, γi > 0, and

fi(t) =


0, if θi(t) ∈ (θmin, θmax), or

if θi(t) = θmin, gi(t) ≥ 0, or
if θi(t) = θmax, gi(t) ≤ 0,

−gi(t), otherwise.

(6.25)

Theorem 6.3. The adaptive parameter update law (6.23)-(6.25) guarantees that θi(t), θ̇i(t) and
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ϵi(t)
mi(t)

are bounded, and θi(t) ∈ [θmin, θmax]. In addition, limt→∞ θi(t) = θ∗i exponentially.

Proof: Consider the positive definite function Ṽi(θ̃i) = 1
2Γi
θ̃2i (t), where θ̃i(t) = θi(t)− θ∗i . Note that

˙̃
θi(t) = θ̇i(t) as θ∗i is constant. Recalling that ϵi(t) = θ̃i(t)ωi,1(t), we have

˙̃Vi = − ϵ2i (t)

m2
i (t)

+
1

Γi
θ̃i(t)fi(t), t ≥ 0. (6.26)

It is noted that 1
Γ θ̃i(t)fi(t) ≤ 0 because of the definition of fi(t). Hence, Ṽi(θ̃i), θ̃i(t) and θi(t)

are bounded. It can also be observed from the definition of fi(t) that the update law ensures that
θi(t) ∈ [θmin, θmax], t ≥ 0. By the boundedness of θ̃i(t) and the relation |ϵi(t)|

mi(t)
=

|θ̃i(t)||ωi,1(t)|√
1+γiω2

i,1(t)
, we

have the boundedness of ϵi(t)
mi(t)

, which, together with the inequality

|θ̇i(t)| ≤
Γi|ωi,1(t)|√
1 + γiω2

i,1(t)

|ϵi(t)|
mi(t)

, (6.27)

implies that θ̇i(t) is bounded.

Note that, under Assumption 6.3, both signals ωi,1(t) and ωi,1(t)
mi(t)

are persistently exciting [84]. Thus,

there exist constants δ > 0 and c > 0 such that
∫ σ+δ
σ

ω2
i,1(τ)

m2
i (τ)

dτ ≥ c for any σ ≥ 0. It follows from
(6.26) that

˙̃Vi ≤ −2Γi

ω2
i,1(t)

m2
i (t)

Ṽi, (6.28)

which, by the comparison theorem, implies that,

Ṽi(σ + δ) ≤ e
−2Γi

∫ σ+δ
σ

ω2
i,1(τ)

m2
i
(τ)

dτ
Ṽi(σ)

≤ e−2cΓiδṼi(σ), σ ≥ 0,

or
|θ̃i(σ + δ)| ≤ e−cΓiδ|θ̃i(σ)|, σ ≥ 0.

Consequently, we have |θ̃(σ+kδ)| ≤ e−kcΓiδ|θ̃(σ)|, for any σ ≥ 0 and any integer k. Since e−cΓi < 1,
we conclude that limt→∞ θ̃i(t) = 0 exponentially. □

With the adaptive parameter estimations, the distributed average desired power estimators (6.9)
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remain unchanged and the distributed average unit state estimators (6.8) are implemented as
˙̂xa,i = ˙̄xi − α(x̂a,i − x̄i)− β

N∑
j=1

aij(x̂a,i − x̂a,j)− νi, x̂a,i(0) = xi(0),

ν̇i = αβ

N∑
j=1

aij(x̂a,i − x̂a,j), vi(0) = 0,

(6.29)

where

x̄i(t) =

{
x̄d,i(t) = −Si(t)/θi(t) (in discharging mode),
x̄c,i(t) = (Si(t)− 1)/θi(t) (in charging mode).

The power distribution algorithms (6.10) and (6.11) for battery unit i is implemented with the
adaptive parameter estimation as,

Pi(t) =


x̄d,i(t)

max{a1
2
,x̂a,i(t)}

p̂a,i(t) (in discharging mode),
x̄c,i(t)

max{a1
2
,x̂a,i(t)}

p̂a,i(t) (in charging mode),
(6.30)

where x̂a,i is given by (6.29).

The following result pertains to the proposed adaptive power distribution algorithms (6.30).

Theorem 6.4. [61] Consider a BESS consisting of N networked battery units with unknown
parameters. The relation between the dynamics of SoC and the charging/discharging power of
each battery unit is described by (6.3). Let the communication topology satisfy Assumptions 6.1
and 6.2. Let the power demand satisfy Assumption 6.3. Then, for any given εs, εp > 0, there exist
β, κ > 0 such that the distributed battery unit control algorithms (6.30) solve Problem 6.1.

Proof: We will prove only the case of discharging. The case of charging can be proven similarly.

Define x̃d,i = x̄d,i−xd,i, x̃a,i = x̂a,i−xa,i, and p̃a,i = p̂a,i−Pa. Choose β > 2γs
α1λ2

. Then, there exists
T > 0 such that x̂a,i(t) ≥ 1

2a1, t ≥ T .

The discharging power (6.30) can be rewritten as

Pi(t) =
xd,i(t) + x̃d,i(t)

xa(t) + x̃i(t)
(Pa(t) + p̃i(t))

=

(
1 +

x̃d,i(t)
xd,i(t)

)(
1 + p̃i(t)

Pa(t)

)
1 + x̃i(t)

xa(t)

Pa(t)

xa(t)
xd,i(t)

= k(t)(1 + δi(t))Pa(t), t ≥ T,
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where k(t) = Pa(t)
xa(t)

≥ P
Na2

and δi(t) =

(
1+

x̃d,i(t)
xd,i(t)

)(
1+

p̃i(t)

Pa(t)

)
1+

x̃i(t)

xa(t)
−1. Then, recalling that Ṡi = − 1

Qnom,iVi
Pi

and xd,i = Qnom,iViSi, we have
Ṡi = −k(t)(1 + δi(t))Si. (6.31)

The time derivative of the function

Vij =
1

2

(
Si − Sj

)2
, i ̸= j, i, j ∈ {1, 2, · · · , N},

along the trajectory of (6.31) is given as

V̇ij = −k(t)(Si − Sj)
(
(1 + δi(t))Si − (1 + δj(t))Sj

)
.

It follows that V̇ij < 0 if Si > Sj and Si
Sj
>

1+δj(t)
1+δi(t)

, or if Sj < Si and Si
Sj
<

1+δj(t)
1+δi(t)

. Then, in steady
state, we have

1 + δ

1 + δ̄
≤ Si
Sj

≤ 1 + δ̄

1 + δ

where δ =
1−NQ̄γp

κp

1+ γs
a1βλ2

− 1 < 0 and δ̄ =
1+

NQ̄γp
κp

1− γs
a1βλ2

− 1 > 0 can be rendered arbitrarily small by selecting
sufficiently large values of the design parameters β and κ.

The total discharging power of the BESS is given as

PΣ(t) =

N∑
i=1

(
1 +

x̃d,i(t)
xd,i(t)

)(
1 + p̃i(t)

Pa(t)

)
1 + x̃i(t)

xa(t)

xd,i(t)

xa(t)
Pa(t).

In steady state, PΣ(t) satisfies

(1 + δ)P ∗ ≤ PΣ(t) ≤ (1 + δ̄)P ∗,

and thus can be made arbitrarily close to P ∗(t) by selecting sufficiently large values of the param-
eters β and κ. □

6.6 Simulation For Adaptive Parameter Estimation Based Algorithm

Consider a BESS with six battery units. The communication network is as shown in Fig. 6.26. Let
battery unit 1 be the only battery unit with the knowledge of the power demand, i.e., b1 = 1 and
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bi = 0, i ̸= 1.

Figure 6.26: The communication topology.

Let the true values of the parameters of the battery units be (Qnom,1, Qnom,2, Qnom,3, Qnom,4, Qnom,5,
Qnom,6) = (100, 190, 200, 210, 220, 230) Ah and (V1, V2, V3, V4, V5, V6) = (50, 50, 50, 50, 50, 50) V,
which are unknown to the controllers. The capacity of the 4th battery unit drops to 70% at t = 15

h.

Let the initial SoC be (S1(0), S2(0), S3(0), S4(0), S5(0), S6(0)) = (0.96, 0.89, 0.75, 0.8, 0.73, 0.88).
Let the discharging power demand be P ∗(t) = 1680 W. Let the parameters in the distributed
estimators be αi = 2000, βi = 20 and κi = 50, i = 1, 2, · · · , 6. The parameters in the adaptive
update laws are chosen as Γi = 1, γi = 1 and λ0,i = 100, i = 1, 2, · · · , 6. Let ωi,1(0) = ωi,2(0) = 0,
i = 1, 2, · · · , 6. The region of the parameter is chosen as

[
− 1

0.2Qnom,iVi
,− 1

1.5Qnom,iVi

]
, i = 1, 2, · · · , 6.

In the simulation, we adopt the nominal value θi,0 = − 1
10000 (Wh)−1, i = 1, 2, · · · , 6.

Shown in Fig. 6.27 is the evolution of the SoC of all battery units. Clearly, the six battery
units achieve SoC balancing. Fig. 6.28 shows that the total power of all batter units tracks the
discharging power demand.

Figure 6.27: The SoC of all battery units.

Fig. 6.29 shows the power of individual battery units. It is observed that units with a larger value
of their state have higher power. After t = 15 h, the powers of all units adapt to the capacity drop
of the 4th battery unit and satisfy the power demand.
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Figure 6.28: The total power and the power demand.

Figure 6.29: The discharging powers of individual battery units.

Fig. 6.30 shows that the estimated average power demand tracks the true average power demand.
Fig. 6.31 shows that the estimated average unit state tracks the true average unit state. Fig. 6.32
shows the estimated parameters of all battery units. It is observed that the estimated parameters
stay in the pre-specified region and converge to their true values (−0.2000 × 10−3,−0.1053 ×
10−3,−0.1000× 10−3,−0.0952× 10−3,−0.0909× 10−3,−0.0870× 10−3) (Wh)−1 in t = 0 to t = 15

h. After t = 15 h, the estimate θ4(t) converges to its new true value.

6.7 Nonlinear Observer Based State-of-Charge Balancing and Power Delivery

The second-order Thevenin equivalent circuit model is used to characterize the internal dynamics
of the battery units. The equivalent circuit model is shown in Fig. 6.33, in which UOC,i is the
equivalent OCV of the ith battery unit, UB,i is the terminal voltage and Ii is the current. The
resistor R0,i represents the internal ohmic resistance. The two resistor-capacitor circuit components,
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Figure 6.30: The estimated average power demand versus the true average power demand.

Figure 6.31: The estimated average unit state versus the true average unit state.

Figure 6.32: The adaptively estimated battery unit parameters.

respectively characterized by (R1,i, C1,i) and (R2,i, C2,i), are used to simulate the physical processes
inside the battery units. These parameters can be identified by experimental results and are
assumed to be known constants in this work.
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Figure 6.33: The second-order Thevenin model of a battery unit.

For a battery unit in its steady state, its OCV UOC,i is directly correlated to its SoC and other
operating conditions such as ambient temperature. We assume that the operating condition remains
constant in this work, under which the UOC,i is known to be monotonically and nonlinearly related
to the SoC Si. Such a nonlinear SoC-OCV map can be approximated as (see, for example, [7, 33])

UOC,i(Si) =

k̄∑
k=0

ckS
k
i , Si ∈ [0, 1],

with dUOC,i

dSi
≥ di > 0 for some constant di, in which k̄ > 0 is the degree of the polynomial and ck

are the coefficients that can be derived by curve fitting of the SoC-OCV relation.

By applying Kirchoff’s voltage and current laws to the above equivalent circuit model, we obtain
the following equations that describe the dynamics inside each battery unit i,

UOC,i(Si) = IiR0,i + U1,i + U2,i + UB,i,

Ii =
U1,i

R1,i
+ C1,iU̇1,i,

Ii =
U2,i

R2,i
+ C2,iU̇2,i,

where U1,i and U2,i are the voltage across the capacitors C1,i and C2,i, respectively. Meanwhile,
recall the equation of the dynamics of the SoC related to the current as

Ṡi = − 1

Qnom,i
Ii. (6.32)
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By rearranging the above equations, we can rewrite the dynamical model of the ith battery unit as

U̇1,i = − 1

R1,iC1,i
U1,i +

1

C1,i
Ii,

U̇2,i = − 1

R2,iC2,i
U2,i +

1

C2,i
Ii,

Ṡi = − 1

Qnom,i
Ii,

UB,i = UOC,i(Si)− U1,i − U2,i −R0,iIi.

(6.33)

The power of the ith battery unit is calculated as

PB,i = UB,iIi.

Given the direction of Ii as indicated in Fig. 6.33, PB,i > 0 when the ith battery unit is discharging,
and PB,i < 0 when the unit is charging. The total power of the system is given by

PΣ =
N∑
i=1

PB,i.

In what follows, a nonlinear observer is first constructed for each battery unit i based on the
equivalent circuit model and the nonlinear SoC-OCV map. Then, distributed estimation algorithms
for the average battery state and the average power demand are designed, based on which a power
distribution law is proposed for each battery unit i. Finally, the analysis of the closed-loop system
is provided to show that the proposed design meets the objectives of SoC balancing and power
delivery.

The dynamical model (6.33) of the battery units can be written in a compact state-space form asẋi = Aixi +Biui,

yi = hi(xi, ui),
(6.34)

where

Ai=


− 1

R1,iC1,i
0 0

0 − 1
R2,iC2,i

0

0 0 0

, Bi=


1

C1,i

1
C2,i

− 1
Qnom,i

,
hi(xi, ui)=−xi,1 − xi,2 − UOC,i(xi,3)−R0,iui,
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and xi = [xi,1 xi,2 xi,3]
T = [U1,i U2,i Si]

T is the state, ui = Ii is the input, and yi = UB,i is the
output. It is noted that a nonlinear relationship exists from the state xi to the output yi because
of the nonlinear function UOC,i(xi,3).

Since the SoC of each battery unit is modeled as an unknown internal state, we will design an
observer to estimate the SoC from the battery terminal voltage and the current. Motivated by [31],
we construct a nonlinear SoC observer for battery unit i based on its model (6.34) as follows,

˙̂xi = Aix̂i +Biui +Ki

(∂hi
∂xi

)T
(x̂i, ui)

(
y − hi(x̂i, ui)

)
, (6.35)

where x̂i = [x̂i,1 x̂i,2 x̂i,3]
T is the estimate of xi = [xi,1 xi,2 xi,3]

T = [U1,i U2,i Si]
T. The initial

condition of the observer is set according to the measurement of the battery unit at rest, which can
be assumed to be close to the true state. The gain matrix Ki is designed to be a symmetric and
positive definite solution to the Lyapunov equation

−Di = AT
i K

−1
i +K−1

i Ai, (6.36)

with the matrix Di = diag{d1, d2, 0}, in which d1 > 0, d2 > 0. Such a Ki exists due to the negative
semidefiniteness and the structure of Ai.

From the estimated state x̂i, the estimated SoC is given as

Ŝi = x̂i,3, i = 1, 2, · · · , N.

The power distribution law for the ith battery unit for discharging is designed as

PB,i =
Qnom,iUB,iSi

1
N

∑N
j=1Qnom,jUB,jSj

P ∗
a , i = 1, 2, · · · , N,

and the power distribution law for the ith battery unit for charging is designed as

PB,i =
Qnom,iUB,i(1− Si)

1
N

∑N
j=1Qnom,jUB,j(1− Sj)

P ∗
a , i = 1, 2, · · · , N,

where P ∗
a = 1

NP
∗ is the average power demand per battery unit, and the signals 1

N

∑N
j=1Qnom,jUB,jSj

and 1
N

∑N
j=1Qnom,jUB,j(1− Sj) are the average of signals Qnom,jUB,jSj and Qnom,jUB,j(1− Sj) of

all batteries, respectively. It is noted that the power of the ith battery unit is based on P ∗
a , and

adjusted by the signal Qnom,iUB,iSi over the average of all battery units for discharging, or by

143



Qnom,iUB,i(1− Si) over the corresponding average for charging.

Using the estimated SoC Ŝi from the observer (6.35), the above power distribution laws are given
as

PB,i =
Qnom,iUB,iŜi

1
N

∑N
j=1Qnom,jUB,jŜj

P ∗
a , i = 1, 2, · · · , N, (6.37)

for discharging, and

PB,i =
Qnom,iUB,i(1− Ŝi)

1
N

∑N
j=1Qnom,jUB,j(1− Ŝj)

P ∗
a , i = 1, 2, · · · , N, (6.38)

for charging.

Since the average signals 1
N

∑N
j=1Qnom,jUB,jŜj and 1

N

∑N
j=1Qnom,jUB,j(1 − Ŝj) are global infor-

mation of the system, we design the following distributed finite-time average estimation algorithm
[19], 

µ̇i = −αsign
( N∑

j=1

aij
(
ξ̂a,i − ξ̂a,j

))
,

ξ̂a,i =
N∑
j=1

aij(µi − µj) + ξi,

(6.39)

where α > 0 is a design parameter, and ξ̂a,i is the ditributed estimation of the average signal
1
N

∑N
j=1 ξj by the ith battery unit, with ξi = Qnom,iUB,iŜi for discharging and ξi = Qnom,iUB,i(1−Ŝi)

for charging.

Since the average power demand is only known to a portion of the battery units, we design the
following distributed finite-time average power estimation algorithm [59],

˙̂
Pa,i = −βsign(νi),

νi =

N∑
j=1

aij(P̂a,i − P̂a,j) + bi(P̂a,i − P ∗
a ),

(6.40)

where β > 0 is a design parameter and P̂a,i is the distributed estimation of P ∗
a by the ith battery

unit.

The proposed estimation algorithms (6.39) and (6.40) have the following properties.

Lemma 6.6. [59, 19] Under Assumptions 6.1 and 6.2, there exist finite T1 ≥ 0 and T2 ≥ 0, and
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α > 0 and β > 0 such that, for all i = 1, 2, · · · , N ,

ξ̂a,i(t) =



1

N

N∑
j=1

Qnom,jUB,jŜj(t), for discharging,

1

N

N∑
j=1

Qnom,jUB,j

(
1− Ŝj(t)

)
, for charging,

for t ≥ T1 and α ≥ α, and
P̂a,i(t) =

1

N
P ∗,

for t ≥ T2 and β ≥ β.

With the proposed distributed estimation algorithms, the power distribution laws for discharging
are implemented as

PB,i =
Qnom,iUB,iŜi

ξ̂a,i
P̂a,i, i = 1, 2, · · · , N, (6.41)

and for charging are implemented as

PB,i =
Qnom,iUB,i(1− Ŝi)

ξ̂a,i
P̂a,i, i = 1, 2, · · · , N. (6.42)

As will be shown in the next subsection, under such power distribution laws, the BESS achieves
SoC balancing among all its battery units while satisfying the power demand.

We now establish the local stability of the observer error. Then, we show that SoC balancing is
achieved among all the battery units. Finally, we show that the total power of the system satisfies
the power demand.

Define the estimation error of the observer for the ith battery unit as x̃i = xi − x̂i. Then, the
estimation error dynamics is obtained from (6.33) and (6.35) as

˙̃xi = Aix̃i +Ki

(
h′i
)T
(xi + x̃i)

(
hi(xi, ui)− hi(xi + x̃i, ui)

)
, (6.43)

where

h′i(xi + x̃i) ≜
∂hi
∂xi

(
xi + x̃i, ui

)
=
[
−1 −1 −U ′

OC,i

]
,
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with U ′
OC,i =

dUOC,i

dSi
(Ŝi) for notational simplicity.

Applying the mean value theorem yields

hi(xi, ui)− hi(xi + x̃i, ui)

= −h′i(zi)x̃i

= −h′i(xi + x̃i)x̃i −
(
h′i(zi)− h′i(xi + x̃i)

)
x̃i,

≜ −h′i(xi + x̃i)x̃i − gi(xi + x̃i)x̃i,

where zi is a point on the line segment connecting xi to xi + x̃i, and the function gi(xi + x̃i) ≜
h′i(zi)− h′i(xi + x̃i) satisfies ∥gi(xi + x̃i)∥ → 0 as ∥x̃i∥ → 0 because of the continuity of ∂hi/∂xi.

The estimation error dynamics (6.43) is then further written as

˙̃xi =
(
Ai −Ki(h

′
i)

Th′i
)
x̃i −Ki(h

′
i)

Tgix̃i, (6.44)

where h′i = h′i(xi + x̃i) and gi = gi(xi + x̃i).

Consider the following function of the estimation error,

Vob,i(x̃i) = x̃T
i K

−1
i x̃i.

Define a level set of Vob,i as Ω̄ob,i = {x̃i |Vob,i ≤ c̄i} for some constant c̄i > 0. The time derivative
of Vob,i along the trajectory of (6.44) inside Ω̄ob,i is evaluated as

V̇ob,i = x̃T
i

(
K−1

i Ai +AT
i K

−1
i

)
x̃i − 2x̃T

i (h
′
i)

Th′ix̃i − 2x̃T
i (h

′
i)

Tgix̃i

= −x̃T
i

(
Di + 2(h′i)

Th′i
)
x̃i − 2x̃T

i (h
′
i)

Tgix̃i,

where

Di + 2(h′i)
Th′i =


d1 + 2 2 2U ′

OC,i

2 d2 + 2 2U ′
OC,i

2U ′
OC,i 2U ′

OC,i 2
(
U ′

OC,i

)2
 . (6.45)

It is obvious that ∥h′i∥ ≤ h̄i for some constant h̄i > 0, for all x̃i ∈ Ω̄ob,i. It is also straightforward
to verify that Di + 2(h′i)

Th′i > 0, given that U ′
OC,i ≥ di.

Let λi,m > 0, m = 1, 2, 3, be the eigenvalues of Di + 2(h′i)
Th′i. Then,

λi,1λi,2λi,3 = det
(
Di + 2(h′i)

Th′i
)
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= 2d1d2
(
U ′

OC,i

)2
≥ 2d1d2d

2
i . (6.46)

Since for x̃i ∈ Ω̄ob,i, there exists constant d̄i such that U ′
OC,i ≤ d̄i, we have

λi,1 + λi,2 + λi,3 = trace
(
Di + 2(h′i)

Th′i
)

= 4 + d1 + d2 + 2
(
U ′

OC,i

)2
≤ 4 + d1 + d2 + 2d̄2i . (6.47)

Inequality (6.47) and the fact that λi,m > 0 imply that λi,m < 4 + d1 + d2 + 2d̄2i , m = 1, 2, 3,
which, along with (6.46), further imply that there exists constant λi > 0, such that λi,min =

min{λi,1, λi,2, λi,3} ≥ λi, for all x̃i ∈ Ω̄ob,i.

Recall that ∥gi(xi + x̃i)∥ → 0 as ∥x̃i∥ → 0. We have, for any γi > 0, there exists positive constant
ci ≤ c̄i such that ∥gi(xi + x̃i)x̃i∥ ≤ γi∥x̃i∥, for all x̃i ∈ Ωob,i = {x̃i |Vob,i ≤ ci} ⊆ Ω̄ob,i. Then, V̇ob,i

is further evaluated as

V̇ob,i ≤ −λi,min∥x̃i∥2 + 2γi∥h′i∥∥x̃i∥2

≤ −
(
λi − 2γih̄i

)
∥x̃i∥2. (6.48)

Let γi satisfy γi < λi/2h̄i . Then, we have, V̇ob,i < 0, for all x̃i ∈ Ωob,i. That is, any trajectory of
the observer error that starts in Ωob,i will stay in it and converge to zero.

We will next establish that the SoC balancing is achieved among the battery units. It is noted that
under Assumptions 6.1, 6.2, and 6.3, for t ≥ max{T1, T2}, the implemented power distribution laws
(6.41) and (6.42) become the desired power distribution laws (6.37) and (6.38).

Recall that the equation of Ṡi can be rewritten in terms of the battery power PB,i as

Ṡi = − 1

Qnom,iUB,i
PB,i.

Then, consider the following quantities associated with the evolution of the SoC under (6.37) and
(6.38),

Ṡi
Si

= −
PB,i

Qnom,iUB,iSi

147



= − Ŝi
Si

P ∗
a

1
N

∑N
j=1Qnom,jUB,jŜj

≜ − Ŝi
Si
kd, (6.49)

in which kd > 0 satisfies kd ≤ kd ≤ k̄d for positive constants kd and k̄d under Assumption 6.3 for
discharging mode, and

Ṡi
1− Si

= −
PB,i

Qnom,iUB,i(1− Si)

= −1− Ŝi
1− Si

P ∗
a

1
N

∑N
j=1Qnom,jUB,j(1− Ŝj)

≜ −1− Ŝi
1− Si

kc, (6.50)

in which kc < 0 satisfies kc ≤ kc ≤ k̄c for negative constants kc and k̄c under Assumption 6.3 for
charging mode. Equations (6.49) and (6.50) will be used in the later analysis of the closed-loop
system.

Consider the following function for the discharging mode,

Vij
(
∆Sij , x̃i, x̃j

)
=

1

2
∆S2

ij + kix̃
T
i K

−1
i x̃i + kj x̃

T
jK

−1
j x̃j ,

where ∆Sij ≜ Si − Sj , and ki > 0, kj > 0 are to be determined. It is obvious that Vij > 0 for all
(∆Sij , x̃i, x̃j) ̸= 0. Assume that the initial conditions of the observers are set sufficiently close to
the true states, that is, the observer errors satisfy x̃i(0) ∈ Ωob,i and x̃j(0) ∈ Ωob,j . This implies
that x̃l stays in Ωob,l and converges to zero, l = i, j.

The time derivative of Vij along the trajectories of (6.44) and (6.49) is evaluated as

V̇ij = ∆Sij
(
(−Ŝi)kd − (−Ŝj)kd

)
− kix̃

T
i

(
Di + 2(h′i)

Th′i + 2(h′i)
Tgi
)
x̃i

− kj x̃
T
j

(
Dj + 2(h′j)

Th′j + 2(h′j)
Tgj
)
x̃j

= −∆Sij
(
∆Sij + (S̃i − S̃j)

)
kd − kiλi,min∥x̃i∥2 − kjλj,min∥x̃j∥2

+ 2kiγih̄i∥x̃i∥2 + 2kjγj h̄j∥x̃j∥2

≤ −kd∆S
2
ij − kd∆Sij(S̃i − S̃j)− ki

(
λi − 2γih̄i

)
∥x̃i∥2

− kj
(
λj − 2γj h̄j

)
∥x̃j∥2, (6.51)

where S̃i = Ŝi − Si, i = 1, 2, · · · , N . Recall that S̃i = x̃i,3. Then, V̇ij in (6.51) is further evaluated
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as

V̇ij ≤ −kd∆S
2
ij + kd|∆Sij |

(
∥x̃i∥+ ∥x̃j∥

)
− ki

(
λi − 2γih̄i

)
∥x̃i∥2

− kj
(
λj − 2γj h̄j

)
∥x̃j∥2

= −kd∆S
2
ij + 2

(1
2

√
kd|∆Sij |

)(√
kd∥x̃i∥

)
+ 2
(1
2

√
kd|∆Sij |

)(√
kd∥x̃j∥

)
− ki

(
λi − 2γih̄i

)
∥x̃i∥2 − kj

(
λj − 2γj h̄j

)
∥x̃j∥2

≤ −kd∆S
2
ij +

1

4
kd∆S

2
ij + kd∥x̃i∥2 +

1

4
kd∆S

2
ij + kd∥x̃j∥2

− ki
(
λi − 2γih̄i

)
∥x̃i∥2 − kj

(
λj − 2γj h̄j

)
∥x̃j∥2

≤ −1

2
kd∆S

2
ij −

(
ki(λi − 2γih̄i)− k̄d

)
∥x̃i∥2 −

(
kj(λj − 2γj h̄j)− k̄d

)
∥x̃j∥2.

Let ki > k̄d/(λ−2γih̄) and kj > k̄d/(λ−2γj h̄). Then, it follows that V̇ij < 0, for all (∆Sij , x̃i, x̃j) ̸=
0, with x̃i ∈ Ωob,i and x̃j ∈ Ωob,j . Since it has been shown that any x̃l, l = i, j, with x̃l(0) ∈ Ωob,l,
stays in Ωob,l and converges to zero, ∆Sij will also converge to zero. Thus, SoC balancing is achieved
among the battery units, as long as the initial estimates of the states are close enough. A similar
analysis can be carried out for the charging mode.

We will now consider the total power of the system. For t ≥ max{T1, T2}, the total power during
a discharging process is calculated as

PΣ =
N∑
i=1

Qnom,iUB,iŜi
1
N

∑N
j=1Qnom,jUB,jŜj

P ∗
a

=

∑N
i=1Qnom,iUB,iŜi∑N
j=1Qnom,jUB,jŜj

P ∗

= P ∗,

and the total power of the system during a charging process is calculated as

PΣ =

N∑
i=1

Qnom,iUB,i(1− Ŝi)
1
N

∑N
j=1Qnom,jUB,j(1− Ŝj)

P ∗
a

=

∑N
i=1Qnom,iUB,i(1− Ŝi)∑N
j=1Qnom,jUB,j(1− Ŝj)

P ∗

= P ∗.

Thus, the total power of the system PΣ will be equal to the power demand P ∗ for t ≥ max{T1, T2}.
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Summarizing the above analysis, the following theorem is stated.

Theorem 6.5. Consider a BESS consisting of N battery units. Let the communication network
satisfy Assumptions 6.1 and 6.2. Let the power demand satisfy Assumption 6.3. Assume that the
initial conditions of the observers are set sufficiently close to the true states. Then, the power
distribution laws (6.41) and (6.42), based on the observer (6.35) and the average estimation algo-
rithms (6.39) and (6.40), solve Problem 6.2. That is, under (6.41) and (6.42), the BESS achieves
SoC balancing among all its battery units and satisfies the power demand.

6.8 Simulation For Observer Based Algorithms

A battery energy storage system consisting of four battery units is considered in the simulation.
The communication topology among the battery units is shown in Fig. 6.34. The power demand
P ∗(t) is only known to battery unit 1.

Figure 6.34: The communication topology.

The parameters in the models of the battery units are [8]

R0,i = 1× 10−3Ω,

R1,i = 0.7× 10−3Ω, R2,i = 2.5× 10−3Ω,

C1,i = 6.5× 103F, C2,i = 2.2× 105F,

for i = 1, 2, 3, 4, and

(Qnom,1, Qnom,2, Qnom,3, Qnom,4) = (20, 17, 22, 19)AH.

The polynomial approximation of the SoC-OCV relation, UOC,i(Si), i = 1, 2, 3, 4, used in the
simulation is [33]

UOC,i = 11.65S7
i − 35.01S6

i + 40.4S5
i − 24.87S4

i + 11.73S3
i − 4.439S2

i + 1.28Si + 3.42.
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Given the above parameters and quantities, the matrices representing the state-space models are
calculated as

Ai =


−0.2198 0 0

0 −0.0018 0

0 0 0

 , i = 1, 2, 3, 4

B1 = 10−3


0.1538

0.0045

−0.0136

 , B2 = 10−3


0.1538

0.0045

−0.0160

 ,

B3 = 10−3


0.1538

0.0045

−0.0124

 , B4 = 10−3


0.1538

0.0045

−0.0135

 .

The observer gain matrices are designed as

Ki =


0.001 0 0

0 0.001 0

0 0 1

 , i = 1, 2, 3, 4,

with

Di =


4.396× 10−4 0 0

0 3.6× 10−6 0

0 0 0

 , i = 1, 2, 3, 4.

The parameters in the average battery state estimators and the average power estimators are chosen
as α = 300 and β = 30.

We first demonstrate the discharging process. Let the power demand be P ∗(t) = 1200W. The
initial SoC for the simulation is

(S1,init, S2,init, S3,init, S4,init) = (0.99, 0.92, 0.83, 0.75).

The initial condition of the observers are chosen as

x̂i(0) = [0 0 0.70]T, i = 1, 2, 3, 4,

that is, the initial estimates of the SoC are chosen as Ŝi(0) = 0.70, i = 1, 2, 3, 4.
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Figure 6.35 shows the evolution of the estimated SoC Ŝi, and the true SoC Si of all battery units
in discharging mode. It is seen that the estimated SoC from the observers converges to the true
SoC. Figure 6.36 shows the individual power PB,i, the total power of the system PΣ, and the power
demand P ∗ in discharging mode. It is seen that the power demand is satisfied. Figures 6.37 and
6.38 show the estimated average state and the estimated average power demand by the battery
units converge to their true values.

Figure 6.35: The estimated SoC and the true SoC of all battery units for discharging.

Figure 6.36: The powers of the individual battery units, the total power, and the power demand
for discharging.

We next demonstrate the charging process. Let the power demand be P ∗(t) = −1200W. The initial
SoC for the simulation is

(S1,init, S2,init, S3,init, S4,init) = (0.27, 0.08, 0.17, 0.25).
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Figure 6.37: The estimated average state of the battery units, and the true average state for
discharging.

Figure 6.38: The estimated average power demand by the battery units, and the true average power
demand for discharging.

The initial condition of the observers are chosen as

x̂i(0) = [0 0 0.40]T, i = 1, 2, 3, 4,

that is, the initial estimates of the SoC are chosen as Ŝi(0) = 0.40, i = 1, 2, 3, 4.

Figure 6.39 shows the evolution of the estimated SoC Ŝi, and the true SoC Si of all battery units
in charging mode. It is seen that the estimated SoC from the observers converges to the true SoC.
Figure 6.40 shows the individual power PB,i, the total power of the system PΣ, and the power
demand P ∗ in charging mode. It is seen that the power demand is satisfied. Figures 6.41 and 6.42
show the estimated average state and the estimated average power demand by the battery units
converge to their true values.
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Figure 6.39: The estimated SoC and the true SoC of all battery units for charging.

Figure 6.40: The powers of the individual battery units, the total power, and the power demand
for charging.

Figure 6.41: The estimated average state of the battery units, and the true average state for
charging.
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Figure 6.42: The estimated average power demand by the battery units, and the true average power
demand for charging.

In summary, it is shown by the simulation that during the operation of the system both in dis-
charging and charging, the SoC is correctly estimated, the system reaches SoC balancing among
its battery units, and the power demand is satisfied.

6.9 Conclusions

In this chapter, the distributed control problem of a BESS consisting of networked battery units
is studied. In particular, the problem of balancing the SoC and satisfying the power demand is
considered. A distributed power allocation algorithm is first designed based on distributed average
unit state estimators and distributed average power demand estimators. Then, a distributed and
adaptive power-allocating algorithm is designed for each battery unit with unknown parameters,
based on adaptive parameter estimation and average estimation. Last, a nonlinear state-of-charge
observer-based power allocation algorithm is designed for each battery unit whose SoC is unknown,
based on the state-of-charge as estimated by the observer, as well as the estimated battery average
state and the estimated average power demand. We show that, by choosing the design parameters
properly, the proposed power allocation algorithms achieve SoC balancing of all battery units and
satisfy the power demand, as long as the communication topology among battery units is undirected
and connected, and the power demand is under certain constraints and is known to at least one
battery unit.

This chapter is based on the following publications:

• Tingyang Meng, Zongli Lin, Yan Wan, and Yacov A. Shamash, “Nonlinear observer-based
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state-of-charge balancing of networked battery energy storage systems”, Systems & Control
Letters, (2023, under review).

• Tingyang Meng, Zongli Lin, Yan Wan, and Yacov A. Shamash, “State-of-charge balancing for
battery energy storage systems in DC microgrids by distributed adaptive power distribution.”
IEEE Control Systems Letters 6 (2021): 512-517.

• Tingyang Meng, Zongli Lin, and Yacov A. Shamash, “Distributed cooperative control of
battery energy storage systems in DC microgrids.” IEEE/CAA Journal of Automatica Sinica
8.3 (2021): 606-616.

156



Chapter 7

Summary and Future Work

In this dissertation, distributed control problems of multi-agent systems are studied, and consensus
algorithms for solving these problems are proposed. Applications of consensus algorithms to the
management problems of networked battery units are also investigated.

The following are potential topics for future work. First, the distributed control problems of multi-
agent systems can be studied under time-varying communication topologies.

Second, the power distribution algorithms based on equivalent circuit models can be improved by
introducing online battery model parameter identification. Currently, the power distribution based
on the equivalent circuit model of batteries relies on off-line generated parameters such as the
capacities and resistances in the model. Online parameter estimation will enhance the adaptivity
of the algorithms.

Third, models of battery dynamics and battery aging can be constructed using neural networks.
In the current work, the battery dynamics is approximated by an equivalent circuit model, and the
aging of batteries is not considered. Neural networks can be adopted to model the complex and
nonlinear behaviors of battery dynamics and battery aging. In order to construct and train the
networks, data sets need to be generated by conducting data acquisition experiments with battery
systems.

Fourth, modeling, and analysis of the power conversion systems associated with networked battery
systems can be considered. In the current work, the power distribution algorithms are proposed
at a high level, without consideration of the effect of the dynamics of power conversion systems on
the design.

Fifth, the proposed power distribution laws can be implemented and experimented with real hard-
ware and battery systems.

Last, extra safety features of the management of networked battery systems such as fault avoidance,
fault detection, and fault handling of battery packs can be considered in future design.
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