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Abstract—Breakthrough technologies have the potential to dis-
rupt markets and society. Anticipating such disruptions is crucial
for policymakers, investors, and businesses in being proactive
with regard to regulatory policies and in allocating resources
effectively. This project aims to develop an analytical approach
to identify companies that will lead in developing breakthrough
technologies. The analysis focuses on the semiconductor industry,
which has seen rapid growth in recent decades, surging from
$139 billion in revenue in 2001 to $573.5 billion in 2022. Our
systematic approach to predicting technological disruption in
the semiconductor industry involves leveraging a combination of
quantitative company data, human-centric elements, and feature
engineering. Data was collected on 244 private semiconductor
companies between 2012 and 2018, encompassing information
about leadership profiles, research endeavors, media exposure,
and financial performance. Two models were developed: a penal-
ized regression model, and a boosted tree model, both aimed at
forecasting the probability of a company achieving a valuation
exceeding $500 million within five years of its first funding deal.
Key variables such as the number of employees, year founded,
total invested equity, number of active patents, and country of
origin emerged as significant predictors of company success. This
paper discusses the performance of our models and explores
applying our findings to identify disruptive companies across
industries.

I. INTRODUCTION

A. Background

Technological disruptions are the events in which new, more
efficient, or more cost-effective technological solutions alter
the existing market landscape. They come in to replace
established products, services, and business models, reshaping
industries and businesses in the process. Technological disrup-
tions have substantial impacts on society. They can exacerbate
economic inequality, raise ethical and regulatory challenges,

and even prevent accessibility to certain populations. They
require thoughtful management and policies to ensure the
benefits are widely distributed and negative consequences are
mitigated.

The ability to predict technological disruptions is extremely
profitable. Investors who can identify potential disruptors gain
market share early on and capitalize on their skyrocketing rev-
enues. However, there are several other benefits to predicting
technological disruptions beyond this. First and foremost, it
allows organizations and policymakers to mitigate risks associ-
ated with the displacement of existing technologies, industries,
and jobs. Additionally, predicting technological disruptions
can develop customer-centric approaches. Businesses can
better understand the evolving needs of customers based on
the market trends they form. Finally, educational institutions
can adjust their curricula to better prepare students with the
skills and knowledge required for the disrupted market.

B. The Semiconductor Industry

Due to the complexity and expansivity of technological
disruptions, the scope of our analysis was narrowed down
to focus on the semiconductor industry. This allows for a
rigorous and thorough analysis of a ubiquitous industry that
only continues to grow in profitability. The industry is largely
fueled by the growing demand for chips in emerging tech-
nologies like 5G, artificial intelligence, and electric vehicles.
Figure 1, a visual on the overall growth projections in the
global semiconductor market from McKinsey & Company, is
indicative of this. In the visual, the left vertical bar shows
the market value of each sector in the year 2021 and the
middle bar shows the projected market value of each sector



Fig. 1: Global Semiconductor Market Value

in the year 2030. These bars are primarily dominated by
wireless communications and computing and data storage. The
numbers on the top of the bars indicate the value of the
entire industry at the time. McKinsey & Company estimated
the global semiconductor market to be worth $590 billion
in 2021 and projects it to be ”a $1 trillion industry by
[2030], assuming average price increases of about 2% a year
and a return to balanced supply and demand after current
volatility” [1]. In between those two bars is the compound
annual growth rate (CAGR) for respective sectors and the
overall CAGR of 7% for the entire semiconductor industry
at the top. Industrial electronics and automotive electronics
are poised to grow the most significantly year over year for
the next decade. The bar on the right shows how each sector
contributes to the growth of the semiconductor industry as
a whole, with wireless communications and computing and
data storage accounting for half of the overall growth over
the decade. Hence, the semiconductor industry emerges as
our prime focus, driven by its escalating significance and
promising avenues for prosperity.

C. Objectives

The project’s main objective is to construct a binary classifi-
cation model that forecasts whether a company will succeed or
fail within five years following its first recorded funding round.
For this study, a company’s success was characterized by
attaining a valuation of over $500 million within the specified
five-year period after the first recorded funding round. The
term ”unicorn” typically refers to startups valued at a billion
dollars, but this benchmark has been adjusted to $500 mil-
lion to broaden the model’s applicability, acknowledging that
valuations at this level also represent substantial investment
opportunities. Conversely, a company is deemed to have failed
if it does not achieve a $500 million valuation within the five
years following the initial funding round. The models were
developed with a focus on leveraging metrics that are most
indicative of success according to this criterion.

II. METHODOLOGY

A. Data Description

PitchBook, a financial data provider with information on
global mergers and acquisitions, private equity, venture capital,
and other financial markets, was used to obtain data for
analysis. Specifically, we pulled from the database any deal
that included “semiconductors” as an industry variable and
received funding in the past eleven years. The eleven-year
time frame is enough time to be able to see the five-year
outcome of more recent companies, but not too far where the
“dot-com boom” or the 2008 financial crisis will skew the
data. Deals were collected on semiconductor companies in
design, manufacturing, supply chain, etc. to ensure robustness.

The raw dataset contained ninety-two different variables
with the identifier variable being Deal ID. From there, the
entry had information on the company involved in the deal
(Description, Primary Industry Group, Current Financing Sta-
tus, CEO Name, etc.), details of the deal itself (Deal Date,
Deal Size, Deal Type, Pre-Money Valuation, etc.), specifics of
stakeholders involved in the deal (Investors, Lenders, Sellers,
Beneficiaries, etc.), and information on the financial state
of the company receiving the deal (Revenue, Gross Profit,
Net Income, Total Debt, etc.). The analysis categorized
companies based on a binary outcome variable that denoted
success (defined as reaching a $500 million valuation) or
failure, including only those that had secured at least two
funding deals, with the first post-deal valuation below $500
million and dated before 2018, ensuring a complete five-
year outcome data for analysis. Derived from PitchBook and
enhanced through network and feature selection techniques,
the dataset encompassed a variety of variables, from funding
details to company-specific information like CEO, location,
and industry. Data was divided into training and testing sets,
with all transactions from January 1st, 2012 to June 30th,
2017 for training and those from July 1st, 2017 to December
31st, 2018 for testing, maintaining a training-to-testing split of
approximately 2/3 to 1/3. This resulted in 193 companies in
the training set, of which 15.5% were deemed successful, and
51 in the testing set, with a success rate of 31.4%.

B. Building a Network of Stakeholders

Stakeholders wield significant influence over technological
disruption through their financial resources, strategic decisions,
and other supportive mechanisms. By actively participating
in respective markets, they can shape the future of newly
developed industries. Therefore, CEOs, investors, sellers, and
companies’ country/territory were analyzed in an effort to
build a network of humans and corporations that stand at the
forefront of technological disruption. Identifying these net-
works of successful stakeholders and monitoring their capital
deployment should prove lucrative in theory.

Unfortunately, CEOs very rarely appeared more than once
in any sort of semiconductor deal included in the dataset. Only
three CEOs headed more than one company and the average



Fig. 2: Post Valuation Analysis Based on Country/Territory

post valuation across their companies was significantly lower
than that of companies headed by a CEO only appearing
once in the dataset. The number of times that a CEO
appears in a dataset and the actual name of the CEO proved
to be inadequate for our network analysis because of the
heterogeneity associated with the variable. Asset manage-
ment firms like BlackRock, Vanguard Group, and Fidelity
Investments appeared several times in both the investors and
sellers sections of the dataset. However, there were no
investors or sellers that drastically outperformed the pool. In
fact, most groups that had invested or sold in companies
receiving the greatest post valuations only invested or sold
in that one company, and there was no deal that several
of the top asset management names took part in. This
pattern persisted outside of the semiconductor industry as well,
across other industries including financial services, energy,
consumer products, and even blockchain. This goes to show,
that “even though investors generally treat technological dis-
ruption as a non-traditional risk, some leading investors do
use organized approaches for handling it. These approaches
differ substantially across investors” [2]. Very rarely is an
algorithm similar across different stakeholders and these are
methods used to encourage them to take their own actions
on semiconductor deals. Companies’ country/territory held
the greatest differences in post valuations deeming them the
most valuable in terms of building a network. Deals for
companies headquartered in China were, by far, the most likely
to achieve a post valuation exceeding $500 million, along
with an exceptionally high average post valuation compared
to other companies’ country/territory headquarters. Figure 2
shows the average post valuation, median post valuation, ratio
of companies exceeding a post valuation of $500 million, and
number of occurrences of deals in each of their respective
country/territory. Deals of the dataset are largely dominated
by the United States and China.

C. Using Feature Engineering to Transform Raw Data

The model features obtained from PitchBook make up most
of the attributes of the models. However, there were also other
features both derived from PitchBook data and retrieved from
external sources. One way in which data was derived from
PitchBook was by using the CEO Education attribute which
was unstructured text listing all of the education levels the
CEO of the company has completed. The raw unstructured
text was parsed into five columns consisting of Ph.D., MBA,

Masters, BS, and BA in order to see if the level of education a
CEO had showed any relation to the “success” of the company
[3].

Data was also retrieved externally from OpenAlex which is
an open-source research database that contains over 240 mil-
lion scholarly documents like journal articles, books, datasets,
and theses. OpenAlex collects these works from a vari-
ety of sources including Crossref, PubMed, institutional and
discipline-specific repositories.

With the goal of being able to capture engagement sur-
rounding these semiconductor companies prior to their initial
funding round, the OpenAlexAPI was used to count the
number of scholarly documents related to each company and
their CEO from up to three years out to the day of their funding
round. The search function used to query across OpenAlex’s
works looked for matching text across titles, abstracts, and full
text. Both the counts for each year prior to the initial funding
round and the percent increase/decrease between years were
retrieved and turned into new attributes. The counts of the
CEOs and companies appearing in works would help account
for the weight/magnitude of publicity the company was getting
prior to the funding round and the percent change between
years captures trends within said publicity. This resulted in
the creation of 10 new attributes: one attribute that counts
the number of scholarly documents related to the company’s
name between 3 and 2 years before the initial funding round,
another for the count between 2 and 1 years, and a third for
the count between 1 year and the day of the initial funding
round. Additionally, there are percentage change attributes that
calculate the percentage increase or decrease between the 3-2
year count and the 2-1 year count, as well as between the 2-1
year count and the count from year 1 to the day of the initial
funding round. This same process is repeated for the name of
the CEO of that company [4].

D. Building Models to Predict Disruptions

The goal of modeling is to predict which semiconductor
companies will reach a valuation of at least $500 million
within five years from their initial funding deal. Lasso logistic
regression was selected as one of the modeling methods, and
it is particularly suitable for this scenario. The dataset features
a significant number of variables, among which some may be
irrelevant or redundant when predicting a company’s success.
Lasso logistic regression addresses this by integrating feature
selection into the model fitting process, applying a penalty to
the coefficients’ absolute values. This penalty can reduce some
coefficients to zero, effectively removing those variables from
the model. This process helps to prevent overfitting, thereby
simplifying the model and making it more interpretable [5].
Models were also built using XGBoost, a popular gradient-
boosting machine-learning algorithm. XGBoost was used to
help better capture the nonlinear relationships and interac-
tions between the variables in the dataset [6]. Due to the
large number of variables in the data, feature selection was
done by utilizing feature importance scores and selecting the



variables with a non-zero score. Bayes optimization was used
to optimize tuning parameters such as max depth, number of
estimators, and the learning rate [7].

III. RESULTS AND ANALYSIS

Fig. 3: ROC Curve Comparison

The AUC score was used as a metric for evaluating the
models. Since every model was developed on the same training
and testing sets, direct comparisons in performance were
made. The Area Under the Curve (AUC) score is a metric used
to evaluate the performance of binary classification models,
derived from the Receiver Operating Characteristic (ROC)
curve. The ROC curve plots the true positive rate against
the false positive rate at various threshold settings, visually
representing the trade-off between correctly identifying pos-
itive cases and falsely identifying negative cases as positive.
The AUC score, ranging from 0 to 1, quantifies this trade-
off by measuring the area under the ROC curve. An AUC
score of 1 represents a perfect model that correctly classifies
all positive and negative cases. Conversely, an AUC score of
0.5 suggests no discriminative power, equivalent to random
guessing. Therefore, the closer the AUC score is to 1, the
better the model is at distinguishing between the positive and
negative classes across all thresholds. We use the AUC score as
a metric because it provides a single number that summarizes
the model’s ability to rank predictions correctly, regardless of
the specific classification threshold. This makes it particularly
useful for comparing the performance of different models
and for situations where the balance between sensitivity and
specificity is important but may vary depending on the context
or application.

In Figure 3, the ROC curve graphs show a visual compar-
ison of the models’ effectiveness in navigating the trade-off
between false negatives and false positives. When evaluated
on the testing dataset, the XGBoost model had an AUC score
of 62.86% and the logistic regression model had a score of
77.68%.

Additionally, to further analyze the models, a threshold of
0.5 was set to evaluate the accuracy and frequency of type
1 and type 2 errors. It is important to note that depending
on one’s objective for using the models, the threshold can
be adjusted to better meet their needs. A higher threshold is
best for those who want to minimize the type 1 error rate,
while a lower threshold is better for those looking to take on
more risk. Figure 4 shows the confusion matrices for the two
models. The Lasso model predicted failure, ‘0’, correctly 34
times, and success, ’1’, correctly 2 times. However, it also
incorrectly predicted success when the true value was failure
once, and incorrectly predicted failure when the true value was
success 14 times. The 95% confidence interval for the accuracy
ranges from 56.17% to 82.51%, suggesting a moderate level
of uncertainty in the accuracy estimate, which is a reflection
of the small sample size. In terms of the logistic regression
model’s ability to identify each class, sensitivity (the true
negative rate for class ’0’) is high at 97.14%, showing that the
model is very good at identifying actual instances of class ’0’.
Conversely, specificity (the true positive rate for class ’1’) is
very low at 12.5%, indicating the model struggles to correctly
identify actual instances of class ’1’. The XGBoost model
on the other hand, was slightly better at correctly identifying
instances of class ‘1’ with a rate of 25%, while it struggled
more than the Lasso model to identify instances of class ‘0’,
91.42% at the threshold of 0.5.

Fig. 4: Confusion Matrices

Due to the uncertainty reflected in the models’ performance
metrics, its utility is primarily derived from the insights
gained regarding which variables it identified as predictive.
The outcomes from both models highlighted similar variables
as significant in predicting the success of companies. These
key variables, as shown in Figure 5, include the company’s
number of employees, founding year, total invested equity, the
presence of early-stage venture capitalist deals, the number
of active patents, pre-money valuation, and company location.
The feature importance was determined by the average gain
attributed to each feature during data splitting. This method
takes into account both the frequency of a feature’s usage
in splits and its contribution to the model’s predictive power.



Fig. 5: Feature Importance Plot

The analysis suggests that larger companies, both in terms
of workforce and pre-deal valuation, alongside those with
substantial equity investments, have a higher probability of
success. This outcome aligns with expectations, as larger
organizations with considerable financial backing and mar-
ket valuation are generally better positioned for growth and
stability. Additionally, the significance of early-stage venture
capital deals in predicting success shows the importance of
initial funding and support for startups to kickstart operations
and scale effectively. Given that this type of deal is designed to
provide the necessary funding for companies to initiate their
operations and establish themselves, its prediction of future
success is logical. An interesting aspect of the findings is the
superior success rate of Chinese companies; approximately
11% of the Chinese companies considered in this study
achieved valuations exceeding $500 million, in contrast to just
5% of American companies reaching this valuation.

IV. DISCUSSION

A. Greater Success of Semiconductor Companies in China

As previously mentioned, the semiconductor industry is one
of the most globalized industries in the world and therefore
one of the most strategically important. “The global model
of semiconductor development has resulted in an asymmetric
and interdependent relationship between China’s critical role
in semiconductor production and the United States which
controls the key inputs into the value chain” [8]. In fact, 77%
of all of the semiconductor deals represented in the study were
concentrated in China or the United States. However, only
twelve out of the one hundred and nineteen deals based out of
the United States reached a post valuation within five years of
over $500 million whereas twenty-six out of the seventy deals
based out of China achieved this same feat. Furthermore,
Chinese companies averaged a post valuation that was 1.53
times greater than the average post valuation of American
companies and each of the top four valued post-valuation deals
were based out of China. Thus the question is raised - why

do semiconductor companies in China appear to have greater
success than a peer competitor like the United States?

The Chinese government’s desire for economic development
likely takes credit. The country has organized itself as a “So-
cialist Market Economy,” where the economy is realistically a
“mechanism used by the government to achieve certain social-
ist goals that can be restricted by it if it fails to achieve them”
[9]. With that, work in China is often cheaper due to low labor
costs, economies of scale, government policies, infrastructure
investments, and regulatory environments. Additionally, China
has the largest population in the world making it easier for
factories to employ large numbers of workers at low lease
costs, charges for land use, electricity fees, permits, and so
on. The country is known as ”the world’s factory.” The “Made
in China 2025” initiative put on by the Chinese government
serves as a good example of this, it targeted unrealistic goals
of 40% self-sufficiency of semiconductor manufacturing and
production by 2020 and 70% by 2025. The ultimate goal is
to ”reduce reliance on foreign technologies [by] creating and
developing companies that can innovate through research and
development, dominate domestically, and produce competitive
exports” [10]. Several sectors requiring these semiconductors
are displayed in figure 6 along with their respective Made
in China 2025 goals for 2020 and 2025. To put this into
context, the country was only covering 20.5% of its overall
semiconductor consumption by 2023. The plan is shunned
internationally because its unrealistic economic goals take
precedence over the people. “Local governments, charged
with the unfunded mandate of enforcement, are unwilling to
implement protective legislation at the sacrifice of economic
development. The generation of employment and tax revenue
take priority over decent working conditions” [11]. This
goes beyond the government of China alone, it has also
allowed private and foreign investors to exploit these workers
as well. Companies can drastically cut their production costs
because of the abundant labor supply, government incentives,
and limited worker protections that China offers.

Fig. 6: Targets for Domestic Market Share of Chinese Products



B. Limitations

While the models have shown some success, especially
when looking at Chinese companies within the semiconductor
industry, there are some limitations to consider when interpret-
ing the results and practical use of this model.

One limitation is since each company used in the training
data takes 5 years to mature into either a “success” or a
“failure”, there will be at least a 5-year gap between the
training data and the test data. This could lead to potential drift
in the model where there may be important trends in the data
that occur within those 5 years that we will be unable to apply
to our test set. In the case of the model used for this project,
data is only collected from companies receiving their initial
round of funding between January 1st, 2012, and December
31st, 2018 (at the latest). This means if there was interest
in investing in a company on January 1st, 2023, economic
trends from Covid-19 (2020) and the government’s 50 billion
dollar investment in semiconductors (2022) would not be fully
captured within the model.

Also, the initial/early-stage funding round that is used in the
data is not necessarily the company’s first funding round. It is
the earliest round of funding that was available from the data
collected from PitchBook between 2012-2018. This means that
each company may be further along in the funding stages than
others causing some discrepancies there within the data.

Another caveat to note is that investments do not fully
capture a company’s valuation since the company itself will
take investments at arbitrary times. A company’s valuation can
change drastically over time but the data collected for the
model only records the valuation at specific points in time.
However, this is currently the closest information that can be
obtained about a company’s current value due to the lack of
investor visibility for most private companies.

The outcome variable (over 500M within 5 years after the
funding round) itself is an arbitrary value but has a major
impact on model performance. The threshold of a success
could have been shifted from 500M to another value and
the “within 5 years” time constraint would have also been
adjusted but these were chosen with thoughtful deliberation.
Also instead of having the response variable measuring if a
company is valued over 500M, a variable that measures the
percent increase in valuation could have been used instead.
However, that metric may not accurately identify market-
disrupting companies because a substantial valuation increase
could occur for companies with relatively small overall values.
That being said, one could make an argument to have used
some variation of a different response variable which would
likely have resulted in different results.

C. Implications and Further Research

The implications of the models and the research conducted
on predicting technological breakthroughs in the semiconduc-
tor industry extend beyond the immediate findings. This study
highlights the complex interplay of various factors, including
company characteristics, and funding dynamics, in shaping the

success trajectories of semiconductor companies. The analysis
identified certain variables (like number of employees, found-
ing year, and total invested equity) as predictive of success in
the semiconductor industry. This suggests that these factors can
serve as important considerations when evaluating potential
investments.

For entrepreneurs and business leaders, understanding the
factors that contribute to a semiconductor company’s success
can guide strategic planning, operational improvements, and
innovation efforts. Emphasizing patent development, secur-
ing early-stage venture capital, and leveraging geographical
advantages could be beneficial considerations for emerging
companies in the sector.

Additionally, the observed differences in success rates be-
tween semiconductor companies in different countries may
reflect varying national policies, investment in R&D, and
support for innovation. It’s reasonable to infer that strategic
government actions can influence industry success, but the
specific policies and their impacts would require detailed
policy analysis to fully understand their effectiveness.

While this study provides valuable insights into the semi-
conductor industry, similar methodologies could be used to
uncover industry-specific success factors in other rapidly
evolving sectors such as biotechnology, renewable energy, and
artificial intelligence.
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