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ABSTRACT

A MULTIOBRJECTIVE DECISION SUPPORT SYSTEM
FOR WATER PROJECT PORTFOLIO SELECTIONS

Recent rapid growth in the development and use of multiobijective
decision-aiding methods has bypassed a class of decision problems common
to at least three important federal water resources development programs.
The reasons for this situation are revealed by an examination of these
programs in the context of the evolution of federal water project
planning procedures from a single objective to a multiple objective
orientation. The study then selects one program for detailed analysis,
examines the characteristics of the decision problem to determine the
best solution approach, develops a multiobjective decision support system
to overcome the problem, tests the decision support system by trial
implementation using actual agency facilities, data and personnel, and
evaluates the results. The new decision support system is not limited
to the development of a mathematical decision-aiding algorithm, but
also includes all other components necessary for effective decision
making, including the development of an operational objectives set,
implementing software, data collection system, and implementation plan.

Four additional contributions to multiobjective decision making
are contained in the study:

1. An up—-to-date and comprehensive survey of the use of multi-
objective decision-~aiding techniques in water resources
planning, design and management is presented in the frame-
work of a new taxonomy that promotes an understanding of
the relationships among the various techniques and the
conditions under which each may be used most advantageously.

2. A new multiobjective decision-aiding model selection paradigm
is developed and presented.

3. A new approach to the difficult problem of objective set
specification is developed and described.

4. A new interactive multiobjective decision-aiding algorithm

that overcomes several disadvantages of previously developed
procedures is developed and presented.
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EXECUTIVE SUMMARY

Introduction

This study describes recent work to develop, implement and
evaluate a multiobjective decision support system for an important
class of problems in water resources decision making. This class of
problems is characterized by the need to select a preferred portfolio
of projects from a finite, but very large, set of discrete feasible
solutions. Throughout the study, emphasis was placed on demonstration
of the value of multiobjective methods in assisting with actual public
investment decisions in water resources development. To accomplish
this, a real decision problem was used as a vehicle for conducting a
large portion of the study. This decision-making environment provided
a context within which the newly developed decision support system
was evaluated and which enabled successful use of the decision support

system to be demonstrated.

Problem Statement

Since the U. S. Congress first appropriated money for the
construction of an irrigation canal on the Colorado River Indian Reser-
vation, Arizona in 1867, federal involvement in Indian water development
has increased steadily. By 1981, the Bureau of Indian Affairs had in
operation 91 irrigation projects serving 676,784 acres of land. Most
of these projects provide economic returns far less than would be

necessary to justify such investments solely on economic grounds. Thus
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it is clear that the Congress established and continues to fund the
Indian irrigation program to serve multiple objectives.

Many authors have demonstrated the complexities involved in
solving problems with multiple noncommensurable and conflicting objec-
tives. Historically, decision makers in the Bureau of Indian Affairs
have dealt heuristically with the problem of allocating limited finan-
cial resources among competing water projects to serve multiple objec-
tives. During each appropriations cycle, narrative justifications for
construction activities were developed at the local level and submitted
through the organizational hierarchy to the Bureau headquarters in
Washington, D. C. There the narratives were reviewed and priorities
assigned by staff specialists.

This approach may have been adequate when the program was small
and the number of competing projects were few. However, in the past
few years, the irrigation construction budget experienced a very rapid
growth. The average annual appropriation for the program was $9.6 million
in the years 1964-1973, as compared to an average of $38.5 million
annually for the years 1974-1983. 1In the five year period 1979-1983,
the average annual appropriation was $47.2 million.

In the fiscal year 1984 budget cycle, 133 narrative justifi-
cations were received for review in the headquarters office. The number
of portfolio combinations theoretically possible with 133 project
candidates is equal to 2133 or 1x1040. Although the size of the feasible
region in a given budget cycle normally would be smaller than this

(it is a function of the cost of each project candidate and the capital
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budget constraint), it is always an extremely large number, well beyond
the capability of human cognition to deal with. Because of this situation,
the Appropriations Committee (Subcommittee on Interior) of the House of
Representatives directed the Bureau in 1978 to develop a better way

of making project funding decisions, which led to this study.

Research Approach

Subsequent to problem formulation, the study was conducted in
four phases: design of an appropriate multiobjective decision-aiding
algorithm, development of other components necessary for an effective
decision support system, implementation of the decision support system,
and evaluation. The term "decision support system" as used in this study
refers to a complete, systematic procedure that is fully developed for
the support of complex decisions. It is not limited to the development
of a mathematical decision-aiding algorithm, but also includes all other
components necessary for effective decision making, such as the specifica-

tion of objectives, algorithm programming, and data collection system.

Design of a Multiobjective Decision-Aiding Algorithm

This phase of the study was conducted in three steps: compre-
hensive literature review of existing multiobjective decision-aiding
techniques to determine the conditions under which each may be used
most advantageously, development of a model selection paradigm to
match methodological capabilities with decision problem characteristics,

and use of paradigm output to design a tailored decision-aiding algorithm.

xXiv



In the first step, a new classification framework (Table 1) was developed
to structure a focused, comprehensive and up-to-date review of existing
multiobjective decision-aiding methods used in water resources planning,
design and management. Emphasis was placed on identification of decision
situation characteristics under which each method is particularly effec-
tive, The results of this review, combined with several additional
models having potential applicability to water resources problems,
provided a basis for the development of a new multiobjective decision-
aiding model selection paradigm. The purpose of the paradigm is to
enable analysts to tailor models to fit problem situations and avoid
the common practice of attempting to restructure decision problems to
fit fixed solution methodologies.

The follo@ing decision broblem characteristics and desirable
model attributes were used as input into the model selection paradigm
to identify the most appropriate approach to the water project port-
folio selection problem:

1. Finite set of discrete alternatives

2. Multi-stage decision problem with changing decision
maker preferences

3. Large number of objectives, decision variables and
alternatives

4. Reluctance of decision maker to express tradeoff prefer-
ences explicitly

5. Need to communicate solution methodology persuasively
to other parties

6. Use of real instead of hypothetical alternatives to assess
decision maker preferences

XV



Table 1

Multiobjective Decision-Aiding Techniques

Nondominated solution generating techniques
1. Constraint method

2. Weighting method

3. Multiobjective dynamic programming

4. Multiobjective simplex method

5. Noninferior set estimation method

Techniques involving a priori complete elicitation of
preferences

1. Optimal weights

2. Utility theory

3. Policy capture

4, Techcom method

Techniques involving a priori partial elicitation of
preferences

1. Lexicographic approach

2. Goal programming

3. ELECTRE method

4. Compromise programming .

5. Surrogate worth trade-off method

6. Iterative Lagrange multiplier method

Techniques involving progressive elicitation of preferences

1. Step method

2. Semops method

3. Trade method

4. Pairwise comparisons

5. Tradeoff cutting plane method

Visual attribute level displays

1. Objective achievement matrix displays
2. Graphical displays

3. Mapping
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7. Use of absolute levels of objective attainment instead of
marginal rates of substitution to assess decision maker
preferences

8. Implementation simplicity

Application of the paradigm resulted in identification of the interactive
approach as the best solution procedure for the decision problem. However,
none of the existing interactive multiobjective decision-aiding methods
were computationally tractible with decision problems involving the

search for an optimal portfolio of discrete alternatives from a very

large set of feasible solutions. Therefore, a new interactive multi-
objective decision-aiding algorithm was developed that combined desirable
features of several existing interactive methods with new capabilities,

The new algorithm is an interactive linear multiobjective

algorithm based on zero-one integer programming. The new algorithm
requires as input three types of data: the impact of the construction
of each candidate project on each objective, cost of each project
(combined construction cost and net present value of operation, mainte-
nance and replacement costs), and a capital budget constraint. The
algorithm sequentially calculates optimal contributions to each objective
in isolation (without regard to the other objectives) to obtain an

"jdeal unattainable vector" of objectiwve achievements. It then minimizes
the sum of the relative distances (absolute distances divided by the
optimal value of each respective objective) from the optimal level of
each objective to obtain an initial solution. This objective space
solution is presented to the decision maker who may vary the level of

one or more objectives to obtain a second solution. The decision maker
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selects his favored solution from this paired choice using a special

decision-aiding display. This sequence continues until the algorithm

converges to the decision maker's preferred solution.

A flowchart of the new algorithm is provided in Figure 1 using

the following notation:

A

al]

fO

AfS
fj*(f_)
£4(x5)

£*(x)

£ (xK)

m X n matrix of objective contributions

contribution of project candidate i to objective j
capital budget limit -

m x 1 vector of project construction capital requirements

capital requirement for the construction of project
candidate i

decision maker-specified change in objective f
maximum level attainable by objective j

contribution to objective j of project candidate vector
(portfolio) xk

vector of maximum values of all objectives displayed
simultaneously. Referred to as the "ideal unattainable
solution" vector

vector of objective attainment levels resulting from
project candidate vector (portfolio) §F

cycle counter
number of construction project candidates
number of objectives

vector of objective attainment percentages resulting from
project candidate vector (portfolio) §§

vector of project candidates x = (xl,...,xi,...,xm) at
iteration k

integer decision variable that takes on a value of 1 if
project candidate i is included in the portfolio,
0 otherwise
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Flowchart of Interactive Algorithm
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Development of a Decision Support System

This phase of the study was also conducted in three steps:
algorithm programming, development of an operational objectives set, and
collection of input data. The IBM program product MPSX/MIP 370 was
chosen for use in implementing the algorithm of Figure 1 because of its
capability in solving large integer programming problems and its ready
availability on the Amdahl V7 computer at the U. S. Geological Survey
headquarters in Reston, Virginia. The software consists of a master
program and 16 subroutines, all contained in Appendix D. Three languages
are used: FORTRAN, CLIST (IBM Command List Language) and MPSCL (IBM
Mathematical Programming System Control language).

The specification of objectives effort used recent research
results from the disciplines of management and psychology in the design
and implementation of a group idea generation and structuring process.
Sequential use of the Nominal Group Technique and Interpretive Structural
Modeling led to the development of the objectives hierarchy displayed in
Figure 2. The objectives set used in subsequent implementation of the
decision support system was composed of the lowest level of objectives
in Figure 2.

The data collection step was conducted in four increments:
determination of the most appropriate level of aggregation of project
features for data collection purposes, identification of separable
project features, development of a valid data set describing the impacts
of the construction of each project division on each objective, and
design of a plan for future data refinement.
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Increase national
welfare

Increase water
conservation

Increase Indian

Minimize total

Protect water

Maximize rumber
of Indians

welfare cost
1
) | 3
Minimize Minimize
construction appropriated
cost O&M cost
1

Increase Indian

rights benefitted income
Maximize rumber Maximize number Maximize number
Increase number of Indians of Indians of Indian
of Indian jobs receiving lease receiving 5““2;259”“*
incame direct profits beneficiaries
T Increase
ncrease non-— number of Increase Indian Increase Indian Increase Indian Increase value
irrigation Indian acres job income leage incame direct profits of locally
water use irrigated consumed Crops
Figure 2

fied upon which to base the data collection effort.

Objectives Hierarchy for the BIA Irrigation Program

The top level

involved collection of data to describe impacts of construction or

In the first increment, five lewvels of aggregation were identi-

rehabilitation of each of 91 project candidates on each of the identi-

fied program objectives.

At the lowest level of aggregation, the data

would describe impacts of construction or rehabilitation of individual
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work plan elements (such as installment of pumps, construction of individ-
val diversion dams, or lining of canals) on each objective. Selection
of the most appropriate level of aggregation involved a trade-off between
political attractiveness and the availability of valid data. The

highest level of aggregation would have the lowest level of political
attractiveness but the greatest availability of data, and the reverse
would be true of the lowest level of aggregation. The selected approach
involved collection of data describing impacts of the construction or
rehabilitation of separable project divisions on each program objective,
and represented a compromise between political attractiveness ard

data availability.

The second increment resulted in the identification of 152
separable project divisions having significant new construction needs
and 170 divisions having significant rehabilitation needs, for a total
of 322 separable project divisions. These are listed in Appendix E.

The third increment made extensive use of secondary data sources,
including several hundred project and watershed planning reports,
budget documents, and two existing management information systems in
the Bureau of Indian Affairs. A detailed description of data sources,
assumptions made, sources of data imprecision, and procedures used to
fill data gaps 1is provided. The complete data set is contained in
Appendix F.

The fourth increment resulted in the design of a logical frame-
work to improve the data set by the collection of primary field data.

It envisions a three-part procedure to be conducted on each project
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candidate: development of a written statement of the size, condition

and ultimate ownership of each project upon campletion, development of a
comprehensive construciton plan leading to attainment of the stated
completion goal, and determination of the impacts on each of the program

objectives of project construction.

Decision Support System Implementation

The test implementation phase resulted in one of the few existing
examples of successful application of a multiobjective decision support
system to an actual decision problem in water resources planning. The
test was conducted in a real decision environment in that it:

- 1nvolved interactions with an actual agency decision maker,

- was conducted using the same agency facilities that will be
used for future applications,

- used real input data as described above, and

- used the operational objectives set developed earlier.

Initially, common barriers to the effective implementation of
decision support systems were examined and related to the decision
environment in an attempt to identify and mitigate the severity of
potential problems. Only two potentially significant implementation
problems were identified, perceived problem urgency and data availa-
bility, neither of which adversely affected implementation.

The implementation phase of decision support system development
did not involve an abrupt change in the involvement of user organiza-
tion members. Since the decision maker and other members had been
involved in previous stages of the research, progression from model
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development to test implementation involved no user participation
discontinuities. Instead, it was treated as another stage of decision
support system growth. Because of this continuous user involvement,
requirements for the education of the decision maker at the time of
initial solution availability were very small.

In the first application of the decision support system, the
decision maker was able to converge on his preferred solution in only
four iterations. Figure 3 and Table 2 provide the decision-aiding display
used by the decision maker on one of the four iterations, including
decision space information added during the implementation process.

Computational experience for the test application is presented in Table 3.
Evaluation

Results of the test application were used to conduct an evaluation
of the decision support system in terms of effectiveness (i.e., develop-
ment of portfolios of projects that yield more desirable contributions
to the program objectives, under equivalent constraints, than did the
previous portfolio selection procedure), efficiency (i.e., consumption
of no more resources than its output justifies), and acceptability
(measures of effectiveness and efficiency are irrelevant if the using
organization fails to accept it). Nine design specifications developed
in the initial portion of the research project were used as evaluation
criteria. Three of the nine criteria were applied to the portfolio
selected with the assistance of the decision support system:

-~ contributions to program objectives,

XXV



ORJ 1 ORI 2 ORI 3 O 4 ORIS ORI 6 ORJ 7 oBJ 8 ORJ 9 oBJ 10 ORJ 11

(Indian (Indian (Indian {Indian (Indian (Irdlian (Indian {Indian (value {Non-irr {(Water
land farm jobs) lease suhsis farm job lease of suhs water con=-
irrig) benef) benef) benef) profits) incame) income) crops) use) served)

alternative D

Objective 43,766 a  2,R65 458 302 1,377 s$4,756M/yr 54,580M/yr S402M/yr  S950M/yr 6,593 AF 190,800 AF
attainment

pPercent of
maximum 66% 72% 83% 15% 308 70% 83% 5% 31% 68% 27%

attainable
Alternative C

Objective 49,468 a 2,158 462 300 1,827 $4,68§M/yr $4,620M/yr  $40SM/yr S1,013M/yr 7,155 AF 176,700
attainment

P:\::?:nimOE 75% 58% 3% 15% 40% 68% 83% 5% 33% 74% 25%
attainable
1008
75%
brofite
25%
0%
Figure 3
Decision-Aiding Display (Objective Space), Fourth Iteratioﬁ
Table 2
Decision-Aiding Display (Decision Space), Alternative D
Construction R&B Total
Area Projects $(mill) Projects ${mill) Projects $(mill)
Albugquerque 3 $ 4.498 3 $1.367 6 $ 5.865
Billings 4 7.051 2 1.700 6 8.751
Navajo 0 0.000 1 0.807 1 0.807
Phoenix 4 10.289 11 3.741 15 14.030
Portland 1 12.408 0 0.000 1 12.408
Sacramento 11 _7.096 9 1.043 20 8.139
Total 23 $41.342 26 $8.658 49 $50.000
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Table 3

Decision-Aiding Algorithm Computational Experience

Branches
Integer abandoned  Number

CPU Total solutions while of

Run time time Cost Class” found computing constraints
1 2.6s 1.98m  $26.83 A 4 121 1
2 6.5s 1.05m 12.77 B 2 31 1
3 5.4s 1.17m 11.96 B 2 32 1
4 5.5s 1.22m 7.03 D 2 21 1
5 3.4s 1.48m 5.70 D 1 1 1
6 11.3s 1.91m 18.18 B 2 159 1
7 5.4s 1.44m 6.89 D 2 31 1
8 5.0s 1.23m 11.35 B 2 23 1
9 8.9s 4.34m 15.25 B 3 120 1
10 17.9s 4.59m 25.68 B 3 216 1
11 3.9s 1.09m 5.90 D 1 1 1
Alt A lés 2.61m 17.74 D 1 195 1
Alt B 41s 2.94m 33.80 D 2 ** 2
Alt C 2m lés 10.22m 98.92 D 9 1526 3
Alt D 1m 47s 12.32m 77.13 D 4 *x 5

interactive
batch, daytime processing

A
B
D = batch, overnight processing

o

** Data for Alternatives B and D are for non-optimal solutions.
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- compatibility with existing construction capabilities of
the using organization, and

- political feasibility.
Six criteria were applied to the decision support model itself:

- cost of data collection,

- cost of computer support,

- time of decision maker required,

- compatibility with available data,

- compatibility with using organization expertise, and

- compatibility with decision style of the decision maker.

Application of these criteria demonstrated that the decision
support system can improve dramatically the effectiveness of decision making
by increasing the level of contributions to program objectives within
existing budgetary constraints. Using actual total program expenditures
for the past five years as a budget constraint, the decision support
system produced an initial portfolio that dominated actual project
selections made during the FY 1979-1983 time frame on all objectives,
and which provided a more equitable distribution of funding among regions.
This result is viewed as a lower bound on the effectiveness of the
decision support system since incorporation of the decision maker's
preferences would lead to an even more attractive portfolio.

To test for efficiency, a reasonable lower bound on monetary
benefits was obtained by finding the lowest cost portfolio that produced
at least as great a contribution for each program objective as did the

portfolios actually selected during FY 1979-1983 and subtracting the
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cost of the least cost portfolio from actual expenditures to yield cost
savings potential. Not only did this result in a cost savings potential
of $90.175 million, but the least cost portfolio also provided an improved
distribution of funding in the decision space. Use of the cost savings
potential and the total estimated cost of full decision support system
implementation ($1.5 million) yielded a decision support system benefit-
cost ration of 60.1 to one.

Evaluation of the decision support system with respect to
acceptability yielded findings that it has a satisfactory level of
compatibility with the existing expertise of the using agency, the
cognitive decision style of the decision maker and, given the prescribed
level of resources, available input data. The test application also
resulted in the identification of a preferred portfolio that was deter-
mined to be both compatible with existing construction capabilities

of the using organization and politically feasible.
Conclusion

Major contributions of this study to the existing body of know-

ledge may be summarized by five statements:

1. A new survey of multiobjective decision-aiding methods
useful in water resources planning, design and management
was developed. This survey is more up-to-date and compre-
hensive that any other existing survey. In addition, the
results of the survey have been presented in the framework

of a new taxonomy that promotes an understanding of relation-
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ships among multiobjective methods and the conditions under
which each may used most advantageously.

A new multiobjective decision-aiding model selection paradigm
was developed and demonstrated.

A new multiobjective decision-aiding algorithm was developed
for deterministic decision problems in which the decision
variables exhibit binary characteristics and in which optimal
portfolios from finite sets of feasible candidates are sought.
A new procedure for the identification of an operational set
of objectives using group idea generation and structuring
processes was developed and demonstrated.

A major demonstration of the successful application of a
multiobjective decision-aiding method to solve an actual
problem in water resources planning was provided by building
a fully developed decision support system around a theore-
tically valid multiobjective algorithm and applying it to a

real decision problem of high complexity.

A number of less significant accomplishments were also achieved
in the course of study. These included a survey of all major federal
water resources programs to identify existing problems of the class under
consideration, an investigation into the reasons why recent advances in
multiobjective decision-aiding techniques had not been used previously
to assist with such problems, development of the software necessary to

implement the new interactive algorithm, collection of data necessary
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to undertake trial implementation of the decision support system,
development of a data collection plan to increase the effectiveness of
the decision support system, examination of barriers to the effective
implementation of the multiobjective decision support system, and
development of a useful evaluation framework for multiobjective decision-
aiding methods, including the establishment of evaluation criteria.
Finally, nine promising directions for future research were identified

to increase the effectiveness and efficiency of the decision .support

system developed in the course of study and to extend it into other

areas.
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I would not, if I could, attempt to substitute
analytical techniques for judgment based on experience.
The very development and use of those techniques have
placed an even greater premium on that experience and
judgment, as issues have been clarified and basic
problems exposed to dispassionate examination. The
better the factual basis for reflective judgment, the
better the judgment is likely to be. The need to
provide the factual basis is the reason for emphasizing
the analytical approach.

Robert S. McNamara

quoted from Technological
Forecasting in Perspective,
Erich Jantsch, Organisation

for Economic Co-operation and
Development, Paris, 1967, p. 273.




Chapter 1
INTRODUCTION

In recent years the profession of water resources planning has
experienced explosive growth in the development and application of
techniques to assist decision makers in evaluating project and program
alternatives in terms of the contributions of these alternatives to
more than one objective. Such techniques have been referred to in the
literature variously as multiple objective optimization, multiobjective
analysis, multiple criteria decision making, multiattribute planning,
and vector optimization methods. These methods have been applied to
a wide variety of water resources problems, such as river basin
plapning, individual project planning, multiple reservoir operatidn,
and water quality management. In addition, they have been applied to
problems with either deterministic or stochastic characteristics,
have taken both theoretical and empirical approaches, have used both
continuous and discrete variables, and have used both linear and
non-linear formulations. Collectively, these decision-aiding
techniques have been applied widely to the planning of major federal
water development projects; to the evaluation of of federal, state and
local government programs and smaller projects; and, to a lesser extent,
to the planning and evaluation of water project investments in less
developed countries.

At the federal level, many multiobjective decision-aiding

techniques have been developed to support the project evaluation guide-
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lines of water project develcopment agencies. These technigues represent
attempts to operationalize the project evaluation guidelines of the
federal government. Federal guidelines have undergone a distinct
evolution in the last 20 years from single objective to multiple
objective evaluation, and the analytical techniques used by planners to
implement these procedures have followed suit.

However, multiobjective decision-aiding techniques have not been
applied by federal water development agencies to certain portfolio
selection decisions that do not fall under the purview of federal water
project evaluation guidelines. This 1s true despite a rather obvious
need for decision support systems utilizing such techniques. There are
at least two possible explanations for this situation. First, the
primary focus of analysts in the water resources field over the last
decade has been to develop techniques to assist planners in implementing
federal water project guidelines. Those programs not covered by such
guidelines have been ignored. The close relationship between the devel~
opment of multiobjective decision-aiding techniques for the application
to water resources problems and the evolution of federal water project
guidelines from a single to a multiple objective orientation is examined
in Chapter 3. Second, since most of the techniques have been developed
to assist in major water project planning, design and management deci-
sions, they have tended to be too expensive and time-consuming to be
useful for water project decision situations that are too small to fall
under the purview of federal water project evaluation guidelines.

However, some of these decision situations have a great need for multi-



objective decision support systems and the impacts of such decisions
are sufficiently important to warrant the development of decision-aiding
methodologies for them.

It is this particular problem that this study addresses. The
study investigates the reasons why the problem exists, selects the
water project portfolio selection problem of one federal agency for
detailed analysis, examines the characteristics of the decision
problem to determine the best solution approach, develops an
individually tailored decision support system to solve the problem,
applies the decision support system to the problem within the actual
decision making environment, and evaluates the results.,

It should be understood that the term "decision support system"
as used in this study refers to a complete, systematic procedure that
is fully developed for the support of complex decisions. It is not
limited to the development of a mathematical decision-aiding algorithm,
but also includes all other components necessary for effective
decision making, such as the specification of objectives, algorithm
programming, data collection system, and planning for effective
implementation.

Although one result of this study is the potential improvement
of decision making in a major federal water project construction
program, perhaps the major result is the demonstration of the work-
ability of multiobjective decision support methods within the
constraints of an actual decision making environment. It is hoped that

this demonstration will contribute to more rapid exploitation of the



value of these methods in solving complex planning problems.

In addition to these two contributions, the study presented
herein provides the following four contributions to the state of the
art in multiobjective decision making:

- an up~to-date and comprehensive survey of the use of multi-
objective decision-aiding techniques in water resources
planning, design and management is presented in the frame-
work of a new taxonomy that promotes an understanding of
the relationships among the various techniques and the
conditions under which each may be used most advantageously;

- a new multiobjective decision-aiding model selection
paradigm is developed and presented:

~ a new approach to the difficult problem of objective set
specification is developed and described; and

~ a new interactive multiobjective decision-aiding algorithm
that overcomes several disadvantages of previously produced
techniques is developed and presented.

The study is organized such that a statement of the problem
addressed by the research effort is provided initially. This problem
description is contained in Chapter 2. It identifies three federal
water programs that have a need for multiobjective decision support
systems and describes the nature of a problem that is common to all
of them. 1In addition, Chapter 2 contains data to indicate the magni-
tude of annual expenditures of these programs in order to impart an
appreciation of the impacts of the multiobjective decisions made in
them.

Chapter 3 briefly traces the recent history of the evolution
of federal water project planning guidelines and demonstrates how this
evolution from a single objective to a multiple objective orientation

has led to the development of multiobjective decision-aiding techniques



for application to water resources problems. In addition to helping
gain an understanding of the problems that many of the multiobjective
decision—-aiding techniques were designed to address, Chapter 3 is
helpful in gaining an appreciation of why analysts in the water
resources field have focused most of their attention over the last
decade on problems covered by the federal water project planning
guidelines and have largely ignored other smaller but equally complex
problems. Chapter 3 also provides a foundation for the research effort
by presenting a short mathematical description of the general multi-
objective optimization problem. This description also establishes
the mathematical notation used in the remainder of the study.

Chapter 4 examines previous multiobjective decision-aiding
techniques that have been developed for, or applied to, water resources
planning, design and management problems. Over the last decade, the
evolution of federal water project planning procedures described in
Chapter 3 has led to a proliferation of such techniques. The estab-
lishment of categories of techniques based on common characteristics
is helpful in understanding the techniques and in gaining an appre-
ciation of the differences among them. Chapter 4 presents an overview
of the categories established by six previous surveys of these methods
which provides a basis for the development of a classification scheme
used to structure a focused, comprehensive and up-to-date review of
multiobjective decision-aiding techniques.

The development of a decision-aiding algorithm that is

responsive to the decision problem described in Chapter 2 is presented



in Chapter 5. This includes the description of a new multiobjective
model selection paradigm, an application of the paradigm to the
decision problem characteristics to determine the best approach to
the solution of the problem, and the development of a new decision-
aiding algorithm within the selected approach.

Chapter 6 describes the development of the ancillary components
necessary to convert the algorithm described in Chapter 5 into a fully
developed decision support system. These components include the speci-
fication of objectives, algorithm programming and data collection.

Chapter 7 recounts a test application of the decision support
system that was conducted in the actual decision making environment
using real program input data, actual agency computing facilities,
an operational objectives set, and the actual program decision maker.
Evaluation results from the test application using the original
research design specifications as evaluation criteria are presented
in Chapter 8.

Chapter 9 reviews the research methodology and findings of the

study, draws conclusions and presents recommendations for further

research.



Chapter 2
STATEMENT OF THE PROBLEM

An examination of 36 water resources programs of the federal
government revealed that three of these programs involve very similar
types of portfolio selection decision problems. Each of these programs
involves a single annual decision in which a portfolio of competing
construction projects or project components must be formulated, which
then becomes the basis for construction funding in the program. These
decision situations contrast with those of programs which provide funding
on an incremental basis throughout the fiscal year, such as the Public
Works Development Program of the Economic Development Administration
(EDA) in the Department of Commerce. Those such as the EDA program
generally evaluate candidate construction projects in terms of a set
of minimum threshold criteria, rather than attempt to structure a
portfolio of projects that maximize contributions to a set of specified
objectives,

Each of the three programs with similar types of portfolio
selection problems shares the commonality that the agency administrators
have a substantial amount of discretion in allocating the funding to
competing projects. These programs are:

- the Construction Grants Program for Wastewater Facilities

of the Environmental Protection Agency (portfolio decisions
in this program are made primarily by state agencies),

- the Irrigation Construction Program of the Bureau of Indian
Affairs in the Department of the Interior, and



- the Sanitation Facilities Constuction Program of the Indian
Health Service in the Department of Health and Human Services.

In each of these programs, the total cost of the projects
competing for funding greatly exceeds the budget for that program in
any given year. In addition, each of the programs has at least two
clearly identifiable objectives that have been articulated by their
respective agencies. Currently, funding allocation decisions within
the programs are based almost entirely on subjective judgement. No
consistent and objective methodology has been developed to assist the
portfolio selection decisions of the programs and, in each program,
agency officials have expressed both dissatisfaction with current
allocation procedures as well as the need for improved decision making
procedures (Brady, 1982; Hartz, 1982; Ragsdale, 1982). A short descrip-
tion of the portfolio selection decision problem contained in eacﬁ of
these programs follows.

The Construction Grants Program for Wastewater Facilities of
the Environmental Protection Agency (EPA) was authorized by Section 201
of the Federal Water Pollution Control Act Amendments of 1972 (U. S.
Congress, 1972). It provides for federal grants for the planning,
design and construction of wastewater treatment facilities, Appro-
priations for this program averaged $3.45 billion annually for the
years 1973-1983 (Council on Environmental Quality, 1982, p. 83).

Grants are usually made from EPA to the applicant (normally a munici-
pality). However, priorities for the various candidate projects within
a state are set by a state agency within broad guidelines set by EPA.

These guidelines establish four objectives for the Construction Grants
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program (U. S. Code of Federal Regulations, 198l). These are:

- the severity of pollution problems,

- existing population affected,

- the need for preservation of high quality waters, and

~ the category of need that is addressed.
Fach state is free to establish priorities for its wastewater treatment
facilities within this broad framework. A number of methods to establish
these priorities have been developed by the states. These vary widely in
quality and objectivity. An overview of the method currently used by the
State of New Jersey is presented here. New Jersey was chosen for illus-
trative purposes because its priority ranking system clearly identifies
State objectives for wastewater treatment facility construction and
because it uses a common multiobjective decision-aiding technique:
linear weighting.

In New Jersey, priorities for wastewater facility construction
grants are established by the Division of Water Resources of the
Department of Environmental Protection. The New Jersey system contains
four equally weighted objectives (New Jersey Department of Environmental
Protection, 1980). Three of the objectives are related to the geogra-
phical area in which the proposed project is to be located, and the
fourth concerns existing discharge conditions at the proposed site of
the project. Each potential project is scored on each objective and
the scores are summed. Then the projects are ranked according to total
scores. The objectives and the range of possible scores on each

objective are displayed below:
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Objectives Ranges
Population 1 - 200 (more points for
high populations)
Attainable Water Uses 0 - 200 (more points for
(potable water supply, swimming, more water uses)

fishing and shellfish industry)

Existing Water Quality 0 - 200 (more points for
poor water quality)

Existing Discharge Conditions 1 ~ 500 (more points for
less sophisticated
existing facilities)

The Irrigation Construction Program of the Bureau of Indian
Affairs (BIA) was authorized by the Snyder Act of 1921 (Water Policy
Implementation Interagency Task Force, 1979, p. 14-15). It provides
funding for the rehabilitation and extension of existing irrigation
and hydroelectric power projects and the construction of new projécts
on and near federally-recognized Indian reservations. Total identified
construction needs in excess of $400 million far exceed the current
average annual budget authority of $50 million for this program.
Priorities for the candidate construction projects are established,
with rare exceptions, by the BIA in its annual budget request to the
Congress. The BIA has identified 14 major objectives of the Irrigation
Construction Program (U. S. Bureau of Indian Affairs, 1979).

The Sanitation Facilities Construction Program of the Indian
Health Service was authorized by the Indian Sanitation Facilities Act
of 1959 (U. S. Indian Health Service, 1969). Projects constructed by
this program provide safe domestic surface and ground water supplies,

water treatment, distribution systems, and facilities for wastewater
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disposal on federally-recognized Indian reservations. Construction
appropriations for this program averaged about $66 million annually
in recent years (Water Policy Implementation Task Force, 1979, p. 61).
Annual portfolios of construction projects to serve existing homes and
communities are established subjectively and are based on narrative
justifications developed at the field offices of the organization.
Four objectives are used by the agency decision makers in developing
the portfolios. These are:

tribal contributions,

i

- existing health conditions,
- economic feasibility,

- type of service required (e.g., initial service, rehabilitation
etc,).

Total construction needs have far exceeded the funding levels available
in recent years.

The problem addressed in this research effort involves the
development of an effective, efficient and acceptable decision support
system to assist federal decision makers with the portfolio selection
problems identified above. In order to focus the research effort and
to provide a means of testing the effectiveness, efficiency and accept-
ability of such a decision support system, the Irrigation Construction
Program of the Bureau of Indian Affairs was chosen as a vehicle in
which the research was carried out. This program was chosen instead
of the others discussed above for six reasons.

First, a clear mandate exists to develop a declision support system

for the Irrigation Construction Program of the Bureau of Indian Affairs.
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During the appropriations hearings for the fiscal year 1979 budget of
the Bureau, the Subcommittee on Interior and Related Agencies of the
House Appropriations Committee directed the Bureau to (U. S. Congress,
1978, p. 53):

establish a funding priority system which takes into account

when each irrigation or power system will be self-sustaining,

the total estimated cost of the system, the number of people
affected, the availability of an adequate water supply, current
condition of the system, ultimate annual maintenance and
operating costs, and whether the system should be continued.
In the time since this directive was issued, the Bureau had expanded the
above list of seven criteria to 14, and had attempted to use a scoring
method to rank competing irrigation construction budget elements.
However, the effort encountered some difficulties, and the Bureau
system had not been used by the time of this study to assist in the
development of project portfolios for the annual appropriation request
of the Bureau.

Second, the short-term need for a decision support system is
great in the BIA irrigation program. In the past few years, the irriga-
tion construction budget has experienced a very rapid growth. The
average annual appropriation for this program was $9.6 million for the
years 1964 - 1973, as compared to an average annual appropriation of
$38.5 million for the years 1974 - 1983. 1In the five year period 1979
- 1983, the average annual appropriation was $47.2 million (U. S.
Bureau of Indian Affairs). However, the method used by the Bureau to
develop project portfolios for the annual budget requests had remained

unchanged for decades. Narrative justifications for construction

activities were developed at the local level and submitted through the
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organizational hierarchy to the Bureau headquarters in Washington,
D. C. There the narratives were reviewed and priorities assigned by
staff members of the Division of Water and Land Resources. In the
1984 budget cycle, 133 such narratives were reviewed (U. S. Bureau of
Indian Affairs). Obviously, high levels of objectivity and consistency
cannot be attained under such a system.

Third, the potential for well-defined specification of the
objectives of the irrigation program of the BIA was present at the
beginning of the research effort. As stated above, the Bureau had
developed a preliminary list of 14 objectives of Indian water development
prior to the initiation of the research effort,

Fourth, the existing data base of the BIA irrigation program
appeared to be more appropriate, extensive and accessable than those
of the other programs. In addition, data gaps seemed to be easier to
fill in the BIA irrigation program than in the others. The Bureau
had an extremely experienced cadre of field professiocnals in this
program and the potential for use of professional estimates to fill
data gaps appeared to be high. Many of these individuals had worked
with the Indian irrigation projects for substantially all of their
professional careers.

Fifth, the introduction of an appropriate decision support system
into the annual project portfolio selection problem of the Bureau
appeared to contain the potential to have a major impact on the actual
projects selected for funding. As indicated above, at the initiation

of this research effort both the Bureau and the Congress were actively
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looking for a methodology to establish funding priorities for Indian
irrigation projects. Chances for the adoption of an appropriate decision
support system and its successful application to an actual decision
problem appeared to be high.

Sixth, and perhaps most important, the federal agency involved
offered its full cooperation in the research effort. A number of
key officials in the Bureau of Indian Affairs were enthusiastic about
the project because of its apparent potential benefit to the agency.
Because of this situation, problems related to the procurement of data,
and access to necessary documentation and kKey personnel were not
expected to occur.

The Irrigation Construction Program of the BIA is clearly of
sufficient magnitude to warrant the development of a decision support
system to assist with the annual portfolio selection decision. In calen-
der year 1981, the 91 irrigation projects operated by the Bureau of
Indian Affairs served 676,784 acres of land with water, which in turn
produced crops valued at $178,062,616. These projects also served
27,163 customers with electrical power and returned $29,300,000 to the
U.S. Treasury from irrigation and power collections. In addition to
extensive rehabilitation needs of these projects, the Bureau has
existing plans for the irrigation of an additional 274,000 acres of
land, and a large potential for future mineral and energy development
and other purposes exists (Deason, 1982a, p. 15-17).

This, then, describes the problem that has been addressed in the

research effort presented in this study. Throughout the study, the
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usability of the decision support system to assist in actually solving
the stated problem and the ultimate acceptance of the methodology by

the using agency were kept foremost in mind.



Chapter 3

BACKGROUND

Evolution of Federal Water Project Evaluation Guidelines

The traditional approach to the analysis of multipurpose water
resources development proposals has been to determine the combination
of project or program componenﬁs that will maximize the net contributions
of the projectmor program to a single objective: national economic
development. Only in recent years has the concept of multiobjective
optimization been recognized explicitly in the planning guidelines of
the federal government. A brief look at the history of federal water
development policies provides a revealing insight into the major force
behind the recent interest in multiobjective optimization within the
water resources planning community.

Although the complete history of federal involvement in water
resources development begins when the first Congress enacted the first
water development act on August 7, 1789, our purpose here will be

served by confining this historical summary to the recent period begin-

ning with the Flood Control Act of 1936, which can be considered the

beginning of modern water resources planning theory. Table 3-1 presents
a summary of the milestones in federal water project planning since

that Act. A concise history of Congressional expressions of desired
objectives of water resources development before that Act may be found
in Werner (1968, p. 7-15), and an examination of Congressiocnal

and Executive Branch expressions of desired objectives in two major
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Table 3-1

Milestones in the Evolution of Federal Water Project Planning
From a Single to a Multiple Objective Orientation

Flood Control Act specifies, for the first time, that the
federal government should pursue water projects if "benefits
to whomsoever they accrue are in excess of the estimated costs."

Subcommittee on Benefits and Costs, Federal Inter-Agency
River Basin Committee issues the Green Book, which required
that water projects be sized according to their incremental
effects on national income.

U. S. Bureau of the Budget Circular A-47 requires benefits of
a project purpose to exceed economic costs attributable to
that purpose.

Senate Document 97 lists three objectives for water projects:
development , preservation, and well-being of people, but
provides guidance heavily weighted toward national economic
analysis.

Rivers and Harbors and Flood Control Act expresses
Congressional preference for four objectives in water project
development: regional development, environmental quality,
well-being of people and national economic development.

President approves Principles and Standards, which require
that water project plans be formulated toward two objectives:
national economic development and environmental quality, and
that impacts of such plans be calculated on two other
"accounts": regional development and social well-being.

President's Water Policy Message reiterates the two
objectives of the Principles and Standards.

President approves Principles and Guidelines, which return

to a single objective (national economic development) with

freedom to formulate other cost effective alternatives that
contribute to social, regional and environmental goals.,
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federal water resources programs prior to World War II may be found in
Major, et al. (1977).

The Flood Control Act of 1936 provided a milestone in the

evolution of federal water project planning activities when it speci-
fied, for the first time, that the federal government should pursue
water development projects if "benefits to whomsoever they accrue are
in excess of the estimated costs" (U.S. Congress, 1936, Section 1).
This recognition of econcmic efficiency from a national perspective
continues to this day as a major criterion of project merit.

The first major document developed by the Executive Branch of
the government to guide water planning activities was a report by the
Subcommittee on Benefits and Costs, Federal Inter-Agency River Basin
Committee, composed of the Corps of Engineers, the Departments ofb
Interior, Agriculture, and Commerce, and the Federal Power Commission.
The report, originally issued in 1950 and revised and reissued in
1958, became popularly known as the Green Book. The Green Book
required that projects be sized according to their incremental effects
on national income and became a major influence in institutionalizing
efficiency benefit-cost analysis in federal water project planning.

The concept of national economic efficiency as the single
objective of water development projects was strengthened by the issuance

of U.S. Bureau of the Budget Circular A-47 in 1952. Since this document

established criteria used by the Bureau of the Budget to review all
water resources programs, projects and budget estimates prior to submis-

sion to the Congress, it had a major impact on federal water planning.
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The nature of BOB Circular A-47 (p. 6) is captured by the following

key passage:

one essential criterion in justifying any program or project
will, except in unusual cases where adequate justification is
presented, be that its estimated benefits to whomsoever they may
accrue exceed its estimated costs. Inclusion in a multiple-
purpose program or project plan of any purpose of resource
development will, except in unusual cases where adequate justi-~
fication is presented, be considered only if the benefits
attributable to that particular purpose are greater than the
economic costs of including that purpose in the program or
project.

BOB Circular A-47 was rescinded in 1962 and replaced in that

year by an agreement between the Departments of Interior, Agriculture,
Army, and Health, Education and Welfare (HEW). This agreement was
~ approved by President Kennedy and printed by the U.S. Senate as Document

No. 97. Senate Document 97 (U. S. Senate, 1962, pP. 1-2) represented

a marked change from the single objective orientation of the Green

Book and BOB Circular A-47, as it explicitly listed three objectives

toward which plans were to be formulated. These were: (1) develcopment
(national economic development and development of each region within
the country), (2) preservation (stewardship of natural resources), and
(3) well-being of people (basic needs of particular groups of people).
Despite the multiple objective philosophy expressed in the directiwve,
however, the detailed guidance on standards for the formulation and
evaluation of plans were heavily weighted toward national economic

analysis. As a result, Senate Document 97 did not significantly

reorient the planning activities of the federal water planning estab-

lishment.

In general, the development of analytical models to support
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water resources planning activities prior to 1973 was focused on those
models with single objective functions. Cohon and Marks (1973, p. 826)
briefly discuss the work of five authors who introduced models based
only on the economic efficiency objective during this time frame. These
models represent attempts to make noncommensurable items commensurable
in order to serve a single objective function. The limited work
concerned with multiple objective analysis conducted during this
time frame apparently did not contribute significantly to a move toward
multiobjective planning. Werner (1968, p. 145) wrote that works in
the then "current literature for use of a multiple~term objective
function (are) not obviously practical for present use," but felt that
multiobjective analysis could improve the basis for decision making in
water resources planning. Other authors were more optimistic. Dbrfman
(1965, p. 336), for example, was referring to the growth of multi-
objective analysis in water resources planning when he wrote that "We
are only at the inception of this revolution...." The National Water
Commission (1973, p. 383) referred to the change toward multiobjective
planning as a pioneering phase that was proving to be difficult because
such change entails "significant changes in planning procedures and in
present levels of expertise.,"

Eight years after the appearance of Senate Document 97,

Congress provided a clear expression of predilection toward multi-

objective planning in the Rivers and Harbors and Flood Control Act of

1970. Section 209 declared that:

It is the intent of Congress that the objectives of enhancing
regional develcopment, the quality of the total environment,
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including its protection and improvement, the well-being of the
people of the United States, and the national economic develop-
ment are the objectives to be included in federally financed
water resource projects, and in the evaluation of benefits and
costs attributable thereto.

A major reorientation of federal water planning activities
toward multiobjective analysis was induced by the next major planning

document developed by the Executive Branch. This was the Principles

and Standards for Planning Water and Related Land Resources (U.S.

Water Resources Council, 1973). The Principles and Standards required

plans to be formulated in the context of contributions to the objectives
of national economic development and environmental quality. In
addition, consideration of the effects of plans on regional development
and social well-being "accounts" was allowed in selecting a recommended
plan. The extent to which this document affected federal water
development planning is disclosed in a 1975 collection of 10 papers,
each describing the implementation of multiobjective planning in a
different federal water development agency (Michalson, et al., 1975).
Congress gave further impetus to multiobjective water

resources planning in the Water Resources Development Act of 1974

(Section 80c) when it again expressed a preference for:

consideration of enhancing regional development, the quality
of the total environment including its protection and improve-
ment, the well-being of the people of the United States, and
the national economic development, as objectives to be included
in federally-funded water and related land resources proijects
and in the evaluation of costs and benefits attributable to

such projects.
The dual objectives of national economic development and

environmental quality contained in the Principles and Standards of 1973
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were reiterated by President Carter in his 1978 Water Policy Message

(Office of the White House Press Secretary, 1978, p. 3) and were

retained in the revised Principles and Standards issued in 1980 (U.S.

Water Resources Council, 1980, p. 64391).
In March 1983, the U. S. Water Resources Council issued a new

planning document entitled Economic and Environmental Principles and

Guidelines for Water and Related Land Resources Implementation Studies,

which replaced the Principles and Standards. Although the new document

reduces the number of water project planning objectives to one (national
economic development), it also contains the following provisions (p. 7):

In addition to a plan which reasonably maximizes contributions
to NED, other plans may be formulated which reduce NED benefits
in order to further address other Federal, State, local and
international concerns not fully addressed by the NED plan.
These additional plans should be formulated in order to allow
the decisionmaker the opportunity to judge whether these
beneficial effects outweigh the corresponding NED losses.

In addition, the new planning framework is intended to be in the

form of flexible guidelines, as opposed to the Principles and Standards,

which were promulgated as regulations. This should give water resource
planners more flexibility to address simultaneously additional objectives
that are warranted by the planning setting. The major role of multi-

objective analysis in implementing the new Principles and Guidelines is

discussed by Deason (1982b).

The need for flexibility to address multiple objectives, and
the subsequent need for multiobjective decision-aiding techniques, is
apparent in many of the documents produced under federal planning

guidelines. One recent example was provided by the Central Arizona
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Water Control Study, which was concerned with an analysis of flood
control alternatives in central Arizona. A 1980 report (U. S. Water
and Power Resources Service, p. 15) described how alternatives were
subjected to a "screening process"” and how the remaining alternatives
were subjected to a "trade-off analysis":

An analysis was made of the cost, performance characteristics,

and environmental and social effects of each of these systems

(e.g., alternatives). Each of these systems will work (e.g.,

is feasible), but some will provide more flood control than

others, some more regulatory storage than others, while others

have fewer environmental and social impacts. To assist in the
decision, these values will have to be "traded". In mid-November
the decision makers from each of the agencies held a "Trade-off

Meeting". They were presented economic, performance, environ-

mental, and social data. (parenthetical comments added)

The usefulness of a multiobjective analytical technique to

assist in this decision making process is obvious. The traditional
benefit-cost approach to multiobjective optimization problems such as
the above has been to reduce all attributes to a common basis of compar-
ison (monetary units) so that a single objective can be optimized.
This approach is in some ways more difficult and inherently inaccurate
than the multiobjective approach. That is, the benefit-cost approach
requires that the benefits and costs be measured in monetary units,
which is often difficult or impossible when no markets exist for project
outputs, This problem is avoided by multiobjective analysis because
noncommensurable benefits and costs are treated as such (Cohon and
Marks, 1973, p. 828).

Although the recent rapid growth in the development and

application of analytical multiobjective modeling techniques to water

resources problems seems to have been motivated largely by the
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reorientation of federal water planning guidelines toward the simul-
taneocus consideration of multiple objectives, there also exists within
the water planning establishment a number of planning functions that
are not subject to such guidelines, but which are clearly multiobjective
in nature. Goicocechea, Duckstein and Fogel (1976, 1979) address one
such application in a study to determine the optimal policies for land
treatment with respect to five objectives within the Charleston River
watershed in Arizona. Other examples are provided by Dean and Shih
(1973, 1975), Reid and Leung (1979), the U.S. House of Representatives
(1978) and Ashton, et al. (1980).

The rapid evolution of multiobjective analysis that has charac-
terized domestic water resources planning in recent years has not been
paralleled in less developed countries. However, recognition of the
value of multiobjective analysis in making water development initiatives
responsive to the special needs of such countries appears in the works
of the United Nations Economic Commission for Asia and the Far East
(1972, p. 58), Biswas (1976, p. 11-12), Major (1977, p. 52-53), and
Loucks (1977 and 1978). 1In addition, the notion that maximizing net
national income is the only appropriate objective for less developed
countries is apparently beginning to give way to the acceptance of
multiple objectives by such organizations as the United Nations
Industrial Development Organization and the World Bank (1976, p. 53-65

and Stone, 1981, p. 1).
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General Multiobjective Optimization Problem

Now that the relationship between water resources planning
guidelines of the federal govermment and the multiobjective decision-
aiding techniques that have been developed to serve those procedures
has been traced, the nature of the general problem that these techniques
address will be desbribed.

A description of the general multiobjective optimization
problem in two dimensions facilitates understanding and has intuitive
meaning, whereas a description in greater than two dimensions is more
complex and a description in greater than three dimensions cannot be
depicted graphically. Therefore, the following discussion is
conducted in two dimensions. However, it can be easily generalized
into n dimensions.

Assume that a project or program has two noncommensurable and
conflicting objectives, A and B. For a large river basin plan, such
objectives could be national income and environmental quality, or
national income and regional income. For a design problem, the objec-
tives could be the guantity of water stored in a reservoir and the
amount of water lost to evaporation.

Assume further that we have identified six alternative solutions
to the problem, a — £, all of which are feasible. These are depicted
graphically in Figure 3-1. It can be seen that alternative b
is preferred to alternative f in terms of objective A, but that the
reverse is true in terms of objective B. Therefore, it is not possible,

at this stage, to make a statement concerning the relative desirability
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of alternatives b and f.

However, it can be seen that alternative d is preferred to
alternative £ in terms of both objectives A and B. Alternative 4
therefore dominates alternative f, and £ should be deleted from further
consideration (assuming that only one alternative is to be chosen).
Likewise, alternative b dominates alternative a, and d dominates e.
Alternatives b, ¢ and d are nondominated, in that no other feasible
solutions exist that are superior to any of these alternatives in
terms of all objectives. 1In general, the set of all nondominated
feasible solution points forms a Pareto optimal curve, also called a
transformation curve or efficient frontier. This concept of Pareto
optimality serves as the basis for much of modern welfare economics
(Sage, to be published, p. 5.1) upon which multiobjective analysié is
based.

For an unconstrained problem, further ordering of the
alternatives cannot be conducted without the introduction of value
judgments. If exact preference information could somehow be elicited
from the decision maker, then a family of isopreference curves could
be superimposed over the Pareto optimal curve as illustrated in Figure
3-2. Isopreference curves are a family of curves with the property that
any two points on the same curve are equally desirable (Sage, 1977,

P. 340-341). The preferred alternative is that which results in the
greatest utility, which occurs, for continuous decision variables, at
the point of tangency of the highest isopreference curve with the

Pareto optimal curve (alternative c).
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A simple example will illustrate the usefulness of these concepts
in clarifying problems with noncommensurable objectives, and will
establish mathematical notation for the remainder of the study. Consider
the case of an irrigation construction program which is intended to
promote economic development and social well-being of people on Indian
reservations. Two noncommensurable objectives of this program might
be to maximize the economic return to Indians (measured in dollars)
and to maximize the number of Indian beneficiaries (measured in number
of people) of the program.

In this simple example, assume that there is only one decision
variable, the geographic concentration of investments in Indian irriga-
tion projects. If, at one extreme, it were decided to invest all
available funds in the most economically efficient alternative (in
terms of dollar returns to Indians), then the former objective would
be well served at the potential expense of the latter, For example,
if one particular Indian reservation were situated with easy access to
high quality water, large expanses of level, highly arable land, a
year-round growing season, easy access to markets, and similar attri-
butes, then it is possible that maximum economic return would be acheived
by the decision to invest all available funding for irrigation construc-
tion on that reservation alone. The total number of Indian people
benefitting from the investment would be relatively small.,

If, at the other extreme, it were decided to invest all available
funds in the most widely dispersed fashion, then the latter objective

would be well served at the potential expense of the former. This is
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likely to occur because the investment of irrigation funding on many
Indian reservations provides no economic return, as all of the crops
are consumed locally. Many Indian irrigation projects, particularly
those on smaller reservations, provide only subsistence units, from
which all of the crops are consumed directly by the farmer or bartered
locally.

This hypothetical situation is depicted graphically in Figure
3-3. It can be seen that.the number of‘peoplevserved increases monoton-
ically with increasing geographic dilution of investments only to a
certain point, beyond which it decreases. An explanation of this
decrease might be that there exists a point beyond which further geogra-
phic dilution of a fixed investment would benefit smaller numbers of
people, as some of the expenditures became so small within a given
geographic area that they benefit no one. Conversely, it is observed
that economic return increases monotonically with decreasing geographic
dilution of investments only to a certain point, beyond which it
decreases. An explanation of this decrease might be that there exists
an optimal size for a fixed investment in irrigation construction,
beyond which net economic return decreases.,

The problem facing the decision maker in this situation is what
quantity to assign to the decision variable such that the most desirable
mix of objective accomplishments is attained. The trade-offs between
objectives that the decision maker must face in arriving at a decision

is illustrated in Figure 3-4.
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This problem can be described mathematically as:

max {£1(x), £2(x)] (3-1)
X
subject to
g4(x) <0 J=1,2, ¢« ¢ « s n (3=2)
x>0 (3-3)

where f7(x) and f,(x) are the two objective functions, X is the single
decision variable and the gj(x) represent n constraints imposed on the
problem (such as the largest or smallest number of reservations on
which a fixed investment level can be spent within a given fiscal
year).

Of course, an initial screening of all possible values of x
and the objective function vector f£(x) can be obtained by examining
feasibility. The constraints gj(x), i=1,2, « » « , n define the
feasible set of values for the decision variable x. If we denote this
feasible set as Y, then Y is defined in vector notation as
Y = (x|g(x) < 0) . Further, each feasible value of x, or each x € Y,
determines a unique value of f(x). If we denote this feasible set as
Z, then Z is defined as Z = (§jx)lx € Y). Infeasible regions in our
hypothetical example are illustrated in Figures 3-5 and 3-6.

Further screening of the set of all feasible solutions can be
obtained by applying the concept of noninferiority. In this example,
a noninferior solution is a feasible solution x € Y, such that no
other feasible solution x' € Y exists such that £(x') > f(x), with

fi(x") > £i(x) for at least some i. That is, a noninferior solution
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is one in which no improvement can be made in terms of either of the two
objectives without a simultaneous decrease in the value of the other
objective. In Figures 3-7 and 3-8, it can be seen that every point in
the interval between those solution points defining f1*(x) and fo*(x) is
- a noninferior point.

Further ordering of the feasible solution set requires the
introduction of value judgments. Theoretically, the preferences of the
decision maker for various combinations of economic return (£7(x)) and
numbers of people served (f,(x)) at a fixed investment level can be rep-
resented by a family of isopreference curves. Since we have assumed
that the joint utility of £7(x) and f;(x) is monotonically increasing
in both £1(x) and f5(x), this family of curves might typically appear
as illustrated in Figure 3-2. These isopreference curves have the
property that any two points (£7(x1), £3(x7)) and (£1(x5), £3(x3)) are
equally desirable if and only if they are on the same isopreference
curve (Sage, 1977, p. 340). The greatest satisfaction is attained at
the point of tangency between the Pareto optimal frontier and the
highest isopreference curve, or (f1(x*), f5(x*)) in Figure 3-9.

The essence of the decision making process is to choose the
alternative that provides that point of greatest satisfaction. All
of the multiobjective decision-aiding techniques that are reviewed in
this study represent attempts to assist the decision maker (or, in
some cases, a number of decision makers) in finding an alternative
that approaches the pcoint of greatest satisfaction, referred to herein

as the "most preferred solution.”
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Chapter 4

LITERATURE REVIEW

Previous Surveys of Multiobjective Decision-Aiding Methods
1n Water Resources Planning ard Management

In the past ten years, there have been at least six attempts
to bring some order to the proliferation of multiobjective decision-
aiding techniques that have been developed for, or applied to, water
resources planning problems. Although this may seem to indicate that
considerable duplicative work has been undertaken, such is not the
case. These six literature reviews have had widely varied purposes,
scopes, degrees of exhaustiveness, and perspectives. Such differences
are manifested by the fact that each established different categofies
into which the multiobjective decision-aiding techniques are grouped,
and, for those that performed an evaluation function, each used different
evaluation criteria.

The fact that each of the six reviews established different
categories and evaluation criteria is not surprising, since the
problems of grouping and evaluating multiobjective decision-aiding
techniques are themselves multiobjective in nature. No category is
fully appropriate or exclusive, because most of the techniques have
attributes which could place them in more than one category, regardless
of the categories that are established. Evaluation criteria can be
used to assess the utility of the various multiobjective decision-aiding

techniques only with respect to specific problems. For different
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problems, for example, our relative concerns for accuracy, computational
efficiency, the amount of information provided to the decision maker,
the explicitness of trade-offs, the amount of data needed, the level
of resources required, and the amount of time demanded of the decision
maker could vary considerably. Cohon and Marks (1977, p. 693) wrote
that the use of different sets of criteria to evaluate multiobjective
optimization techniques is not inconsistent, but in fact is desirable
because it is helpful in gaining "insight into the relevance of different
techniques in different situations.”

A compendium of the six previous survey efforts is presented
in Table 4~1 and in Appendix A. Table 4-1 contains a listing of the
multiobjective decision-aiding categories that were used in the six
surveys and Appendix A contains a display of the categories into which
the works of various authors were placed in each survey. A note of
explanation concerning Appendix A is in order. Matrix entries appear
only where the authors of the respective surveys have associated the
various works with one or more of their categories. In some instances,
the survey authors have referenced works that they did not associate
with any particular category. In such cases, no entry appears.

The findings of each of these six surveys are summarized in
this seétion. This summary provides a basis for the development of a
classification scheme used in the next section to structure a focused,
conprehensive and up-to-date review of multiobjective decision-aiding
techniques that have been used to assist in solving water resources

problems.
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Cohon (1973)

The first significant review of multiobjective decision-aiding
techniques used in a water resources planning context was provided by
the graduate research work of Jared L. Cohon. In his doctoral disser-
tation (1973), Cohon sought to compare and evaluate multiobjective
decision-aiding techniques in terms of their applicability to river
basin planning problems. His work is broad in scope and, at the time
it was written, was comprehensive in the sense that it addressed the
major multiobjective decision-aiding techniques in existence with poten-
tial applicability to river basin planning. However, it made little
effort to discover the extent to which researchers and practitioners
had achieved success in applying the various technigques to actual
river basin planning problems. This latter approach may not have been
appropriate, however, as multiobjective decision-aiding technigues
had not been widely applied to water resources planning problems prior
to 1973, as we have seen,

Cohon's 1973 work was concerned largely with the manner in
which the various techniques elicit value judgments of decision makers
and how they incorporate these value judgments into the solution process.
This included the appropriate respective roles of analysts and decision
makers and the extent to which the opinions or biases of the analyst
were allowed to influence the decision. Cochon also examined the practi-
cability of the various techniques with respect to computer budget
constraints.

These perspectives provided the foundations for the evaluation
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Table 4-1

Categories Established by Previous Surveys of
Multiobjective Decision-Aiding Techniques

Cchon (1973) A. Black box decision making
1. Choice technigues
a. Welighting method
b. Constraint method
Cc. Adaptive search method
d. Approximation of the noninferior
set by curve fitting
e. Derivation of a functional
relationship for noninferior sets
2. Value techniques
a. Utility functions
b. Estimation of optimal weights
c. Goal programming
d. Surrogate worth tradeoff method
e. Generation of stronger partial
orderings
B. Explicit decision making
1. Interactive techniques
a. Step method
b. Interactive weighting method
c. Interactive goal programming
2. Multiple decision maker techniques
a. Restricted bargaining method
b. Paretian analysis
c. Vote-trading algorithms

Cohon and Marks (1975) A. Generating techniques
1. Weighting method
2. Constraint method
3. Derivation of a functional relation-
ship for noninferior sets
4., Adaptive search
B. Techniques which rely on prior
articulation of preferences
1. Goal programming
2. Assessing utility functions
3. Estimation of optimal weights
4. Electre method
5. Surrogate worth trade off method
C. Techniques which rely on progressive
articulation of preferences
1. Step method
2. Iterative weighting method
3. Sequential multiobjective problem
solving
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Table 4-1 (continued)

Haimes, Hall and A. Utility functions
Freedman (1975) B. Indifference functions
C. Iexicographic approach
D. Parametric approach
E. Epsilon-constraint approach
F. Goal programming
G. Goal attainment method
H. Adaptive search approach
I. Interactive approaches
J. Other approaches

Bishop, McKee, Morgan, A. Visual techniques
and Narayanan (1976) B. Rating and ranking methcds
C. Matrix and linear scoring
D. Tradeoff displays and analysis
E. Multiobjective programming
1. Lexicographic ordering
2. Parametric
3. Constraint
4. Goal programming
5. Marginal value tradeoffs
F. Goals evaluation methods
G. Iterative methods

Cohon (1978) A, Discrete multiobjective problems
B. Continuous multiobjective problems
1. Generating techniques
a. Weighting method
b. Constraint method
c. Noninferior set estimation
d. Multiobjective simplex method
2. Technigues that incorporate preferences
a. Multiattribute utility functions
b. Prior assessment of weights
Cc. Methods based on geometrical
definitions of best
d. Surrogate worth tradeoff method
e. Iterative techniques
3. Multiple decision-maker techniques
a. Techniques for the aggregation
of individual preferences
b. Methods used to counsel a single DM
c. Techniques for the prediction of
political outcomes

Mades and Tauxe (1980) A. River basin planning models
B. Water quality management models
C. Reservoir management models
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criteria Cohon employed, as well as the categories of multiobjective
optimization technigues that he established. The evaluation criteria
were divided into two groups: decision making criteria, which he used
to evaluate how consistent the techniques were with his model of the
political decision making process; and computational criteria, which
he used to determine how practical the techniques were in light of

limited budgets. The specific evaluation criteria (pp. 89-100) were:

Decision making criteria.

~ the number of models of the decision making process to
which the technigques are compatible

- the extent to which the decision making process 1is
explicitly considered by the techniques

- the number of value judgments required by the techniques

- the sensitivity of the techniques to the number and
accessibility of decision makers

Computational criteria,

- the size of models to which the techniques are applicable
(number of constraints and decision variables)

~ the sensitivity of the techniques to the number of
objectives

-~ the sensitivity of the techniques to the number of
solutions which are necessary to obtain an adequate
representation of the problem
The categories that Cohon established for grouping the techniques
are listed in Table 4-1. The "black box" techniques are those that do
not model the decision process, whereas the "explicit decision making”

techniques are those that model explicitly the decision process. The

"choice" techniques are those that simply supply information to the
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decision maker (a decision maker's choice of a solution using these
techniques would imply his value structure), whereas the "value"
techniques require value judgments from the decision maker prior to the
solution process (the value structure of the decision maker explicitly
determines his choice of a solution). In "interactive" techniques, the
decision maker's preferences guide the decision process, whereas the
"multiple decision maker" technigues attempt to predict the outcome of
the decision process. Cohon drew a number of conclusions regarding
conditions under which the various categories could be most advan-
tageocusly used and made numerous interesting observations about the
relative advantages and disadvantages of the techniques within each

category.

Cohon and Marks (1975)

In 1975, Cohon and Marks summarized and extended much of Cohon's
previcus work. The purpose of Cohon and Marks' work (p. 208) was to
evaluate "proposed multiobjective solution techniques,” to draw
"conclusions on the applicability of vector optimization techniques to
water resource planning problems," and to identify "useful directions
for future research in multiobjective problems."

As can be seen in Appendix A, Cohon and Marks' review is not
comprehensive, but the works that are included in that review are
representative of a broad scope of multiobjective optimization
techniques. The categories (Table 4-1) that were used by Cohon and Marks
to group the various techniques are based on the relative roles of the

decision maker and analyst. This set of categories is especially
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appropriate for the range of techniques examined and is similar to the
classification scheme used later in this paper.

The Cohon and Marks paper reflects a primary interest in the
mathematical characteristics of the various approaches, rather than in
an investigation of the demonstrated utility of the methods. The three
evaluation criteria applied by the authors are: computational feasi-
bility and efficiency, explicitness of quantification of the trade-offs
among objectives, and the quantity of information generated for decision
making (portions of the noninferior solution sets and portions of the
sets of all trade-offs among objectives corresponding to the noninferior
sets that are generated).

Cohon and Marks applied these three evaluation criteria and
concluded that techniques such as the weighting or constraint methods
are most advantageously used when there are fewer than four
objectives, and that techniques that restrict the size of the feasible
region, such as the surrogate worth trade-off method, are most
appropriate when there are four or more objectives. They also
concluded that several techniques are not generally applicable to
multiobjective water resource problems, but that every technique is

applicable in at least some situations (p. 219).

Haimes, Hall, and Freedman (1975)

Also in 1975, Haimes, Hall and Freedman published a text that
contained a survey of existing multiobjective decision-aiding techniques
(p. 15-33). The purpose of this survey (p. 15) was to review "solution

methodologies for multiple objective problems." Again, no attempt was
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made by the authors to undertake a comprehensive review of existing
works, although the works that are referenced do constitute a good
representation of a variety of approaches to multiobijective decision-
aiding. The scope of this review is indicated in Appendix A. The
emphasis of the Haimes, Hall and Freedman review is primarily on a
description of the characteristics of the techniques, and little effort
is devoted to explanations of the circumstances in which the methods
can be most advantageously used.

The authors did not attempt to evaluate the various techniques
and therefore did not establish evaluation criteria. The categories
used by Haimes, Hall and Freedman were based on the characteristics of
the methods, as can be seen in Table 4-1. Although such a classification
contributes to an understanding of the types of techniques that have
been developed, it would result in a significantly greater number of
categories than the 10 that the authors used if a more comprehensive

review were undertaken.

Bishop, McKee, Morgan, and Narayanan (1976)

The next survey of multiobjective optimization methods had a
significantly different scope and perspective than the three previous
ones. The work of Bishop, et al. (1976) is oriented more toward the
practical application of the technigques that are reviewed, and includes
a very broad range of techniques, including a review of non-mathematical
techniques for evaluating alternatives to problems with multiple

objectives. The purpose of the paper (p. 24) was to review
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the characteristics and capabilities of various multiobjective
methods as to their usefulness in generating the information
required by (the set of technically feasible noninferior alter-
natives and the social preferences for alternative outputs)
as well as their appropriateness to the various activities and
phases of the planning and decision-making process.,

As implied by the statement of purpose, the evaluation conducted
by Bishop, et al. is oriented toward practical application. The authors
used three types of evaluation criteria: "implementation characteristics”
(such as quantity of data or level of resources required), "technical
content attributes” (attributes related to the development of the
noninferior set, such as the portion of the noninferior set that is
generated or the explicitness of the trade-—offs that are generated),
and "value content attributes" (attributes related to elicitation of
the value structure of the decision maker).

The authors concluded that three of the six categories that
they used (Table 4-1) -— visual techniques, rating and ranking methcds,
and matrix and linear scoring methods -- can lead to faulty decision
making because these tend to aggregate information and obscure
trade-offs. These methods were found to be useful, however, in a
screening role early in the planning process. They further concluded
that two other categories, multiobjective programming and goals evalua-

tion methods, are effective in generating the noninferior solution set

and in describing trade-offs.

Cohon (1978)

In 1978, Cohon published an excellent text on multiobjective

programming and planning. This work amplifies and extends Cohon's
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previous efforts and includes multiobjective decision-aiding techniques
that are applicable to problems with multiple decision makers and to
problems concerning the predictions of political outcomes. The text
does not examine techniques that are applicable primarily to problems
with a finite number of discrete alternatives or techniques that attempt
to assist the cognition of the decision maker directly (such as visual
attribute displays).

The purpose of Cohon's text is to provide a reference and a
textbook on a wide range of multiobjective programming and planning
methodologies. The perspective of the text involves an examination of
the applicability of multiobjective decision-aiding techniques to public
decision making problems. The author makes an effort to stress the
pragmatic aspects of such technigues.

The categories that Cohon established were based on the

"characteristics of the decision-making process" in which a problem is
addressed (p. 85). According to this concept, in situations involving
a single decision maker with a "bottom-up" information flow (from
analyst to decision maker), generating techniques are appropriate.
Where a single decision maker and a "top-~down" information flow (from
decision maker to analyst) exists, techniques that incorporate
preferences are appropriate. For conflict resolution situations,
multiple decision maker methods are appropriate. A full listing of
Cohon's categories appears in Table 4-1.

Unlike his previous works, Cohon's text does not attempt to

evaluate the various multiobjective decision-aiding methods and therefore
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does not establish evaluation criteria. The reason given for this is
that an evaluation cannot be undertaken unless it is conducted with
respect to a specific problem and decision making context.

In his conclusions, Cohon tends to favor generating technigques
because they are felt to be the most widely applicable and because
they introduce lesser amounts of the bias of the analyst into the
decision making process than do other methods. He also indicates
that interactive techniques are an exciting area of future analysis,
which is a distinct change from the opinions of these techniques that
he expressed in his 1975 work with Marks. Finally, he expressed an
opinion that multiple decision maker methods and increased emphasis on
practical applications were the most promising directions of endeavor in

future years.

Mades and Tauxe (1980)

In 1980, Mades and Tauxe conducted a study of multiobjective
decision~aiding techniques for the Office of Water Research and Techno-
logy in the U. S. Department of the Interior that took a different
approach than did any of the previous surveys. Mades and Tauxe examined
the applicability of various multiobjective decision-aiding methods to
different types of water resource problems. Accordingly, the categories
established represent three broad classes of water resources problems:
general river basin planning, water quality management, and reservoir
management models. The authors also presented a very brief and general
review of vector optimization algorithms, which they categorized along

the lines of the 1975 Cohon and Marks work: trade-off function generating
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techniques, technigues requiring prior articulation of preferences, and
techniques requiring progressive articulation of preferences.

Although the Mades and Tauxe study is not comprehensive, as
indicated by Appendix A, it does provide an interesting overview of the
demonstrated utilities of various approaches toward solving real
multiobjective problems. In addition, the authors attempted to evaluate
the performances of various multiobjective decision-aiding techniques
under the number and types of constraints, decision variables and objec-
tives that were established by other investigators in applying the tech-
niques to real problems. Mades and Tauxe concluded only that multiobjec-
tive decision-aiding techniques can be applied effectively to complex,
large-scale water resources planning problems.

A New Taxonomy of Multiobjective Decision-Aiding Methods
in Water Resources Planning and Management

Although each of the six surveys of multiobjective decision—
aiding techniques that have been reviewed herein have contributed to the
body of knowledge that exists in this field, none are restricted to
those techniques that have been dewveloped for, or applied to, problems
concerned with the optimal development, management, control and use of
water resources, and none are thoroughly comprehensive in that sense.

In addition, because of the rapid advances that are being made in the
application of multiobjective decision-aiding techniques to water
resources problems, none are fully up to date currently.

Presented here are the results of a comprehensive study of

multiobjective decision-aiding techniques that is intended to extend
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the previous work in this area and to contribute to the existing body of
knowledge by providing a summary review that is:

- clearly focused on those techniques that have been developed
for, or applied to, water resources problems, or which appear
to have the potential for being applied to such problems in

the future;

- thoroughly comprehensive within the above stated scope of the
review;

- ordered in a rational manner so that it promotes effectively
an understanding of the relationships among the various
approaches and the conditions under which each may be most
appropriately used; and

- an accurate reflection of the current state of the art.

Since this review is focused on normative decision-aiding
techniques within a water resources context, models which are
descriptive in nature generally are excluded, with several exceptions.
Examples of such models are those that attempt to predict the political
outcomes of decision situations. Such models are described in the works
of Cohon (1973 and 1978) and Keith, et al. (1977).

In order to facilitate an understanding of the various
decision-aiding techniques and to promote efficiency and effectiveness
in their use, it is helpful to establish categories based on common
characteristics of the techniques. The characteristics used in this
review to establish such categories involve the ways in which the
different techniques elicit preference information from the decision
maker. For the purposes of establishing such categories, the
decision maker is assumed to be a known single individual. Although

several of the techniques that are summarized herein could be or have

been applied to decision situations in which there are multiple
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decision makers, all except the Techcom method are applicable to the
single decision maker situation. Although the assumption of a single
decision maker is not a realistic one for every decision situation
(although it is for some), such an assumption is useful for clarifying
the nature and uses of the various techniques.

The categories that are used for this review are presented in
Table 4~-2. In addition, Appendix A provides a summary overview of the
categories into which the works of various authors that have developed
multiobjective decision-aiding techniques for, or applied them to,
water resource problems, are grouped. Appendix A also includes the
categories into which various works were grouped in the previous
survey efforts. Such a comparison reveals how the current study
is related to those conducted in past years. The ensuing discuséion
follows the order of Table 4-2.

Category A ~ Nondaminated
Solution Generating Techniques

The techniques of Category A, referred to as "generating”
techniques, make no attempt to incorporate the preferences of the
decision maker into the decision-aiding process. These techniques
simply generate the set of nondominated solutions and tradeoffs
between objectives at various levels of objective accomplishment.

In other words, they assist the decision maker by reducing the set of
all possible alternatives to the set of Pareto optimal solutions
illustrated in Figures 3~7 and 3-8.

The categories below are ordered in terms of decreasing frequency
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Table 4-2

Multiobjective Decision-Aiding Techniques

Nondominated solution generating techniques

1. Constraint method

2. Weighting method

3. Multiobjective dynamic programming

4, Multiobjective simplex method

5. Noninferior set estimation method

Techniques involving a priori complete elicitation of
preferences

1. Optimal weights

2. Utility theory

3. Policy capture

4, Techcom method

Techniques involving a priori partial elicitation of
preferences

1. Lexicographic approach

2. Goal programming

3. ELECTRE method

4. Compromise programming

5. Surrogate worth trade-off method

6. Iterative Lagrange multiplier method

Techniques involving progressive elicitation of preferences
1. Step method

2. Semops method

3. Trade method

4. Pairwise comparisons

5. Tradeoff cutting plane method

Visual attribute level displays

1. Objective achievement matrix displays

2. Graphical displays

3. Mapping
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of use in water resources problems.

Constraint method. Perhaps the most widely used generating

technique, and one that is used in conjunction with a number of other
techniques, 1is the constraint method. In this approach, one objective
is optimized while the remaining objectives are constrained to some
specified value. This generates one point on the Pareti optimal
curve. Then, the constraint values are varied sequentially in
conjunction with repetitions of the optimization process, thus
producing other nondominated solutions. This process continues until
the entire nondominated solution set is generated. Using our previous

example, the problem defined by equations (3-1), (3-2) and (3-3) becomes

max fj(x)
X (4-1)
subject to
falx) 2z ¢ (4-2)
g4(x) =0 =1, 2, ¢ae s 1 (4-3)
x= 0 (4-4)

where € is chosen such that a feasible solution to the single objective
optimization problem exists, and is parametrically varied to cobtain the
nondominated solution set. A systematic way to carry out this procedure

is to choose for the initial value of g, that value of x that satisfies

max £,(x) (4-5)
X

Subject to
gj(X) =90 j = l’ 2’ cee p N (4—6)

x= 0 (4-7)
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and then to reduce sequentially the value of € until it reaches the

value of x that satisfies

max fq(x) (4-8)
X

subject to
gj(X) = 0 j = l’ 2, ese o NN (4'—9)
x= 0 . (4-10)

For n objectives, one would select one objective to optimize,
subject to (n - 1) additional constraints.

The theoretical basis of the constraint method for generating the
nondominated solution set has been discussed by a number of authors,
including Cohon (1973, p. 134-143), Loucks and Haith (1973, p. 43-44),
Haimes and Hall (1974, p. 617-618), Cohon and Marks (1975, p. 211-212),
Haimes, Hall and Freedman (1975, p. 19-23), Haimes (1977, p. 225), Haimes,
bas and Sung (1977, p. 38-40), Tauxe, Inman and Mades (1979%a, p. 1398)
and Mades and Tauxe (1980, p. 40).

Three major areas of water resources problems are planning,
design and operation. Of these, planning is the one to which the
constraint method has been the most frequently applied.

Perhaps the first use of the constraint method was by Marglin
(1966, p. 77-78, first published in 1964). Marglin introduced the concept
of representing objectives by constraints in a hypothetical two-objective
planning problem. Although he stopped short of generating the entire
nondominated set, he did address the possibility of varying the level of
the constrained objective to generate several alternatives to be presented

to the decision makers. In his 1967 work, Marglin (p. 24-25 and 29-32)
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more explicitly illustrated how the constraint method could be used to
generate a variety of nondominated solutions.

Rogers similarly used a constraint method approach in 1969 in
an international river basin planning problem. Rogers created a two-
objective problem by reducing six objectives within each of two countries
to a single objective in each country, using the common attribute of net
monetary benefits. He then generated two nondominated alternatives in
terms of net benefits to each country and suggested that the countries
would negotiate a compfomise solution between them.

A partial constraint method approach was again used in 1973 by
Andrews and Weyrick, who examined the effects of various policies in a
river basin planning problem. The authors postulated a large number
of objectives, and then generated alternatives in which each objeétive
was optimized in turn, while the other objectives were left
unconstrained. This procedure, in effect, located the set of extreme
points on the nondominated surface. Andrews and Weyrick then calculated
shadow prices (trade—off ratios) at these extreme points to assist them
in developing qualitative predictions of the effects of various policy
approaches.

A major study of water resource development potential in the
Rio Colorado basin in Argentina, carried out in 1970-1973 by a group
of faculty and students from the Massachusetts Institute of Technology
in conjunction with members of the Argentinian State Secretariat for
Water Resources, also utilized a partial constraint method approach. As

summarized by Major and Lenton (1979, p. 74-75 and 179-192), the multi-
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objective formulations developed by the group were most often optimized
with all but one objective treated as constraints.

Miller ard Byers (1973) and Byers and Miller (1975) used the
constraint method to generate nondominated solutions for a series of
two-objective problems, trading off a national economic objective against
each of 11 environmental objectives (such as the level of phosphorus
loads in the water) for a Soil Conservation Service small watershed
project in Indiana. As formulated by the authors, the problem contained
nine structural design alternatives and 10 land management practices
(which could be combined into many land management alternatives).
Initially, an econcmic objective was optimized, unconstrained by environ-
mental considerations. Then the authors developed trade-off curves
between the economic objective and each of the environmental objeétives
by holding 10 of the 11 environmental objectives fixed at their levels
in the optimal economic alternative, and maximizing net economic benefits
subject to parametrically varied levels of the non-fixed environmental
objective. These trade—off curves were then to be presented to the
decision maker to aid in the decision process. Since the decision maker
would be faced with a set of such trade-off curves (each displaying the
trade-offs between the economic objective and one of the environmental
objectives), the authors concluded that it would be desirable to aggregate
the environmental objectives whenever they are large in number. In
their 1973 work, the environmental objectives were aggregated by averaging
the percentage reductions in environmental pollutants at various levels

of the economic objective to produce a two-dimensional trade-off curve,
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which would then be used by the decision maker.

Major, et al. (1974) generated transformation curves among the
three objectives of national income, environmental quality and income
redistribution in the Lehigh River Basin, Pennsylvania. The model was
developed to provide a project alternative screening mechanism for
planners at the district level in the Corps of Engineers or the regional
level in the Bureau of Reclamation.

In 1976, Brill, et al. used the constraint method to assist in
an analysis of potential water quality management policies for the Dela-
ware Estuary. The authors postulated the two objectives of total invest-
ment costs and equity, where equity was defined as the sum of the
deviations from the most equitable situation (e.g., requiring all
polluters to obtain the same removal efficiencies). They then minimized
the equity deviations, subject to a parametrically varied cost constraint,
to obtain the nondominated solution set, but did not address the issue
of obtaining the preferred solution from the nondominated set.

Croley and Rao (1977) incorporated the stochastic nature of
reservoir inflows in analyzing the tradeoffs between flood control and
recreational benefits. These authors synthetically generated 10 inflow
patterns for the Coralville Reservoir near Iowa City, Iowa and calculated
benefit trade-off curves for each inflow pattern. WNo specific reservoir
operating policy was identified from this exercise., Instead, the trade-
off curves were provided to the reservoir managing agency as a convenient
display which could be used to improve operating decisions.

In 1982, Louie, Yeh and Hsu used the constraint method to develop

a test set of nondominated river basin management plans in terms of three
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objectives: minimization of water supply and wastewater disposal,
minimization of water quality degradations, and minimization of
groundwater table declines.

In recent years, a frequent use of the constraint method has
been as part of the application of the surrogate worth trade-off method,
commonly referred to in the literature by the acronym of SWT. The SWT
method generally involves two phases: generation of the nondominated
set and elicitation of the preferences of the decision maker, using
information contained in the nondominated set. The second phase of the
SWT method will be addressed later.

In 1975, Haimes and Hall used the constraint method in a demon-
stration of the application of the SWT method to a hypothetical three-
objective water quality planning problem. In 1978, Lindsay also used it
to generate the nondominated solution set as part of an application of
the SWT method to a two-objective model of policy options for wastewater
sludge disposal in Boston.

Perhaps the most rigorous test to date of a multiobjective deci-
sion-aiding technique within an actual water resources planning situation
was provided by the application of the SWT method to the planning of the
Maumee River Basin. The Maumee River Basin planning study, which will
be summarized later in the discussion of the SWT method, involved exten-
sive use of the constraint method for generating nondominated solutions
in models with up to six objective functions. These applications of
the constraint method are discussed in Haimes, Das and Sung (1977,

P. 106-109), Haimes (1977, p. 314-317), Haimes, Das and Sung (1979,
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p. 58-59) and Das and Haimes (1979, p. 1318-1320).

Although the primary use of the constraint method to date has
been for planning, its usefulness for design studies has been demonstrated
in at least threg works. Haimes and Hall (1974) demonstrated how the
constraint method can be useful for design decisions when they applied
the SWT method to obtain a preferred solution to the Reid-Vemuri reservoir
sizing problem (1971), using a hypothetical decision maker. The Reid-
Vemuri problem contains three objectives (minimize cost, minimize the
annual volume of water lost to evaporation, and maximize reservoir volume)
and two decision variables (man-hours of construction labor and mean
radius of the reservoir). Also in 1974, Croley used the constraint
method to generate nondominated alternatives in a cooling-tower design
problem. Croley's problem contained two objectives: minimize excess
costs over the least-cost design and minimize the incidence of fogging
caused by the cooling tower. In the same work, Croley also demonstrated
the use of the constraint method in a reservoir problem. In this demon-
stration, he generated alternative reservoir operations plans that maxi-
mized both flood control benefits and the number of recreational user-
days spent at the reservoir.

In 1975, Miller and Erickson used the constraint method to generate
nondominated solutions to a five-objective model (minimize cost and
minimize each of four water quality parameters) of an urban storm drain

design problem in West Lafayette, Indiana.

Weighting method. In the weighting method, the cbjective

function becomes a weighted sum of the objectives in the problem
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formulation. - To illustrate, our example problem becomes:

2
max  Wefk (x) (4-11)
X k=1
subject to
g4(x) < 0 j =1, 2/ ese , N (4-12)

In order to generate the nondominated solution using the weighting
method, the objective weights wy are varied parametrically as the
optimizations are carried out. Usually, the objective weights are
normalized such that % wg = 1.

The weightingK;éthod has a drawback that is not true of the
constraint method in that it cannot find all nondominated solutions when
the feasible region in the objective space is not convex.

Like the constraint method, the theory of the weighting méthod
has been discussed by a number of authors. These include Cohon (1973,
p. 122-134), Haith and Loucks (1973, p. 46), Haimes and Hall (1974,

p. 617), Cohon and Marks (1975, p. 211), Haimes, Hall and Freedman
(1975, p. 17-19), Haimes (1977, p. 220), Tauxe, Inman and Mades (1979a,
pP. 1398) and Mades and Tauxe (1980, p. 39-40).

Although conceptually similar to the constraint approach, the
weighting method has not been used as often. One of the first uses was
by Marglin (1967, p. 23-37), who demonstrated how the assignment of
various values to the objective weights could be used to generate nondom—
inated solutions. In 1970 Dorfman and Jacoby used the weighting method

in a descriptive political decision making prediction model. Dorfman and

Jacoby varied the weights assigned to the objective functions of each
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of a number of constituent groups to see how the weights affected the
set of efficient solutions.

Reid (1971) and Reid and Vemuri (1974) used a weighting approach
in the development of a functional relationship between the objectives
and the objective weights in a problem with Cobb-Douglas type objective
functions: that is, those of the form

n iJ
— a

i=1,2, eee + 9 (4-14)
The motivation was to produce a generating technique in which a nondom-
inated point in the objective space could be generated by the substitution
of a set of weights into the functional relationship. However, Cohon
(1973, p. 149-150) and Cohon and Marks (1975, p. 212-213) found the
application of Reid and Vemuri's approach to be extremely limited due to
the necessity of having the objectives expressed in the Cobb-Douglas
form, the fact that it is limited to unconstrained problems, and the
computational intractability that results when more than a few decision
variables are involved. 1In 1978, Passey investigated the Reid-Vemuri
approach and showed that, if the objective functions are of the Cobb-
Douglas type, then either all solutions are dominated or all solutions
are nondominated. In the case of the Reid-Vemuri example, all solutions
are nondominated.

In 1979, Thampapillai and Sinden used the weighting method to
develop the Pareto optimal curve in a two-objective (maximization of
income and environmental quality) problem. The authors then used the

results to examine alternative water development plans for New South

Wales, Australia.
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Perhaps the best use of the weighting method is to use it to
provide decision makers with a feel for the effects of various weights
on the objectives. Such an approach was included in the Rio Colorado
river basin study previously mentioned (Major and Lenton, 1979, p. 74,
143~145 and 186-189; and Major, 1973, p. 237) when a range of weights
was assigned to a six-objective formulation. The objectives in this
formulation were national income, and regional income for each of five

provinces.

Multiobjective dynamic programming. Although dynamic programming

is normally associated with problems involving temporal variations,
Tauxe, Inman and Mades (197%a and 1979b) have demonstrated that Bellman's
principle of optimality can be used to generate the nondominated solution
set for a multiobjective formulation when the objective functions are
separable and few in number.

In a multiobjective dynamic programming formulation, one
objective is chosen arbitrarily as the primary objective and the other
objectives are treated as constraints, which necessitates the establishment
of one additional state variable for each additional objective. The
presence of additional objectives can have severe computational implications
as Bellman's “curse of dimensionality" (Bertsekas, 1976, p. 179-180)
takes its toll. For this reason, the multiobjective dynamic programming
approach is useful only for problems in which the number of objectives
is small, generally three or less.

To illustrate this approach, our example problem is put into
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a dynamic programming formulation. The level of attainment of the

primary objective, f£1(x), through stage i is expressed by the recursive

equation
fli(sir fzi) = max ri(xi, si, f2i) + fli_l(si"l,fzi"l) (4-15)

X

subject to
si7l = mied, i, £, (4-16)
£,371 = n,i(xt, st, £51) (4-17)
g4(x) <0 3 =1, 2/eee, n (4-18)
x>0 (4-19)

where

fkl is the accumulated return function for objective k through
stage 1i;

sl is a structural state variable;

xl is the decision variable for stage 1i;

ri is the immediate return function for stage 1; and

Tki is the state transformation function for the k™ state

variable.

Multiobjective simplex method. An algorithm utilizing the

simplex method to generate the noninferior set when all objective func-
tions and constraints are linear has been summarized by Cohon (1978).
The method uses a simplex tableau augmented with an additional objective
row for each additional objective, along with a corresponding additional
reduced cost row for each additional objective. The multiobjective
simplex algorithm moves from one noninferior extreme point to another in

a finite number of pivots until all such points have been located.
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Noninferior set estimation method. Cohon (1978, p. 127-140)

and Cohon, et al. (1979) presented an algorithm for generating an
approximation of the nondominated set which can overcome some of the
computational burdens of the constraint and weighting methods. However,
it is limited to problems in which the feasible region 1is a convex set
(as is the weighting method) and in which the objective functions are
linear.

The algorithm starts by optimizing each objective separately.
Then the maximum possible error between the line connecting the two
optima (assuming a two objective problem in this explanation) and the
two linear indifference curves corresponding to the weighted objective
functions used in the generation of the two optimal solutions is calcu-
lated and compared to the maximum allowable error (preset by the énalyst).
If the maximum possible error is less than the allowable error, the
algorithm exits. Otherwise, a new weighted objective function with the
ratio of the objective weights equal to the negative slope of the line
connecting the optima is optimized. This yields a new point in the
objective space, which is the solution that is farthest out in the direc-
tion perpendicular to the line segment between the original optima.
This process is repeated until the allowable error exceeds the maximum
possible error. The maximum possible error will get smaller at each

iteration and the algorithm is guaranteed to converge.
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Category B -~ Techniques
Involving A Priorl Complete
Elicitation of Preferences

The techniques of Category B, like those of Categories C and D,
involve an explicit elicitation of the preference structure of the
decision maker such that the preferred solution is attained as part of
the analysis. However, unlike the techniques of Categories C and D,
these generally develop a mathematical approximation of the complete

preference structure of the decision maker.

Optimal weights. Of those technigues in Category B, the

assessment of optimal weights is both the simplest and the most
frequently used in the literature. The optimal weighting approach
assumes that the isopreference curves illustrated in Figure 3-2 afe
linear. That is, it assumes that the marginal rates of substitution
between the objectives are independent of the absolute levels of the
objectives. In addition, it is well known that the slopes of the linear
isopreferences curves are equal to the negative of the ratios of the
objective weights. Using our example, this means that, once the optimal
weights wk* are found, then the preferred solution can be obtained by
solving the problem:

max% Wk*fk(x) (4-20)

X k=1

subject to

gj(X) < 0 j = l, 2, ese o I (4"’21)

x=2 0 . (4-22)
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An early suggestion concerning the application of the optimal
weighting approach was provided by Haveman (1965). Haveman conducted an
empirical analysis of Corps of Engineers projects in 10 southern states
and showed that a number of objectives were served by the projects, even
though the projects were planned only to maximize economic efficiency.

He suggested that past allocations of funds for water projects be observed
in order to derive weights to guide future investments. He further
suggested that the inverse of the effective marginal tax rates be used

as a Congressional expression of a social welfare function. Steiner
(1969, p. 33) cited the works of other economists who suggested that
optimal weights can be inferred from past Congressional actions.

Marglin (1966, p. 79) also suggested the use of the optimal
weighting approach to obtain the preferred solutions to a problem>in
water resources decision making when he hypothesized a problem in which
planners would develop plans to maximize a weighted sum of the two objec-
tives of income redistribution to American Indians and national economic
efficiency. 1In his 1967 work (p. 37), Marglin further suggested that
such optimal weights, once found, be revised periodically, such as every
five years, as information from past decisions is used to refine the
preferences of society.

In 1969, Major showed that the slope of the line that is tangent
to both the Pareto optimal set and the greatest isopreference curve is
equal to the negative of the ratio of the optimal objective weights.
Major advocated using these optimal weights to obtain a multiobjective

benefit-cost ratio in which the numerator contains a weighted sum of
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national income and regional income benefits and the denominator
contains a weighted summation of national and regional costs.

Freeman and Haveman (1970), in a paper that reflected different
views from those expressed in Haveman's 1965 work, were critical of
Major's approach, pointing out that the establishment of regional weighting
factors is impossible politically, and, even if it were not, the real
equity concern should be with differences in individual income levels,
not regional income levels. Therefore, any equity objective should
focus on the effects of the income levels of low-income people, regardless
of the regions in which they live. Freeman and Haveman were also critical
of Major's assertion that the optimal weights can be approximated from
past decisions reached by the Congress. They wrote that social preferences
are not stable over time, and that even if they were, the properties of
a social welfare function cannot be inferred from the Congressional
process. Freeman (1969, p. 673) explained that inferring weights from
past Congressional decisions is inappropriate in any case since members
of Congress obviously do not have full knowledge of all consequences
when they make their decisions.

In 1970, Dorfman and Jacoby took a different approach to the
estimation of optimal weights. 1In an attempt to model the political
process in order to predict the outcome of political decision making,
Dorfman and Jacoby tried to estimate weights based on the influence of
each of the various groups in the political process. The authors felt
that such a model could be useful as a tool in understanding and facili-

tating the political decision process.
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A number of authors have applied weighting methods to the

problem of assessing the impacts of water resource development projects
on multiple environmental criteria. The Batelle Columbus Laboratories
developed such a method for the Bureau of Reclamation (Dee, et al., 1972
and 1973; and Seader, 1975). The method converted the predicted impacts
of each proposed project on each of 78 "environmental impact units" by
the formula

78 78
EIU =2 wiEQj(with project) — X% lWiEQi(without project)  (4-23)
1=

1=]1 .

where

i = environmental criteria index,

wi = weight of envirommental criterion i, and

EQi = environmental quality measure of criterion i.
The environmental quality measures (EQj) were normalized by equating the
greatest conceivable impact to an environmental quality level of 1 and
the least conceivable impact measure to an environmental quality level
of 0 for each of the 78 criteria, and then developing a functional
relationship between the extremes (not all were assumed to be linear).
Of course, once this process was completed for all alternative project
proposals, the projects could be evaluated with respect to the 78
criteria simply by using the commensurable environmental impact units.

The Tulsa District of the Corps of Engineers developed a
similar method for the assessment of environmental impacts of water
Projects in 1972. The major differences between the method of the

Tulsa District and that of the Bureau of Reclamation involved the manner

of assessing the raw scores for each environmental criterion (the EQ in
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the Reclamation method) and the fact that the Tulsa District approach
resulted in a separate score for each of three major objectives for each
project alternative. With the exception of the deletion of dominated
alternatives, the method gave no guidance on assisting the decision
maker from that point. A practically identical method was applied by
O'Riordan (1972) in developing a river basin plan for the Okanagan
valley, British Columbia.

Brown and Valenti presented another interesting application of
linear weighting in a procedure entitled Multi-Attribute Tradeoff System
(MATS). The MATS procedure (1983) was designed to assist Bureau of
Reclamation planners in evaluating and comparing the effects of alterna-
tive water project plans. It is composed of three parts: development of
a value function for each element of an objectives set, specification of
weights for each objective, and calculation of a value score for each
alternative plan.,

The MATS procedure provides two ways of specifying the value
function for each objective: direct specification by the decision maker
or by use of an interactive interrogation process. Both approaches
yield a graphical display of objective attainment value (on a scale of
zero to one) versus objective attainment (on a scale of minimum to
maximum achievable objective levels). In the interrogation process,
the decision maker is presented with a series of tradeoff questions
concerning preferences for different levels of the same objective.

His responses determine the shape of the value function.

As with the specification of value functional forms, the
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MATS technique provides two ways of specifying objective weights:
direct specification by the decision maker or by use of an interactive
interrogation process. In the interrogation mode, the decision maker
is again presented with a series of tradeoff questions, but these involve
preference decisions for tradeoffs between objectives. These pairwise
prompts continue for four iterations or until indifference is reached.
If indifference has not been reached at the conclusion of four iterations,
the algorithm selects the midpoint between the last two responses as
an estimate of the indifference point.

Calculation of the value score for each discrete alternative
is carried out by multiplying the value score on each objective by the
objective weight, summed over all objectives. The alternatives are
then ranked according to score.

In 1978, the Bureaus of Reclamation and Indian Affairs used a
different set of weights in each of four different future scenerios in
attempting to identify the most promising opportunities for water
conservation in the western states (U. S. Department of the Interior).
Seaver, et al. (1979) used a linear weighting value function in a simpli-
fied utility theory approach to multiobijective water resources problems.
The linear weighting approach has also been applied commonly in other

disciplines (Edwards, 1977).

Utility theory. In general, utility theory assumes that the

utility structure of the decision maker can be derived, and it, in turn,
can be used to make different objectives commensurable so that a

Preferred alternative can be identified from a set of alternatives,
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each of which contributes some amount toward each of the objectives.
At the fundamental level, utility theory is based on six assumptions
which are described by Sage (1977, p. 329-331). When more than one
objective is involved, utility theory is commonly referred to as
multiple attribute utility theory.

Some authors make a distinction between utility functions and
value functions, which serves to indicate whether or not risk is
involved in the elicitation of the preference structure. In this
short discussion of the use of utility theory to assist in water
resources decision problems, such a distinction is not made. In the
applications of utility theory to water resources decision problems
that have been made to date, almost no consideration has been given to
risk. Perhaps this is one of the reasons that utility theory has not
enjoyed wide use in the resolution of water resourceskproblems. Many
water resources problems inwvolve stochastic phenomena which, in turn,
involve risk. Examples include problems concerned with the
reliability of water supplies or the amount of exposure to flood
damages. Certainly the attitudes of the decision maker or the public
toward risk aversion or risk proneness could be significant factors in
such problems. However, despite the fact that utility theory is well
suited to address such factors, it has not yet been used extensively
in that way.

The assessment of optimal weights, discussed in the section
above, is actually just a special case of utility theory. A linear

weighting approach implies that the preferences of the decision maker
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for various levels of a given objective are independent of the absolute
levels of the other objectives, which, of course, is not always valid.

A discussion of various other forms of the utility function is contained
in Sage (1977, p. 346-353) and in Keeney and Raiffa (1976, p. 288-297).

One of the earliest applications of utility theory to a water
resources decision problem was conducted by Dean and Shih, who assumed
that additive utility functions were valid in two water development
planning problems in Texas. The first problem that they addressed (1973)
involved choosing the best source of augmentation water supplies for the
city of San Angelo, Texas from 10 alternatives. In this four objective
problem, the authors used the delphi method to elicit the preferences of
the public in order to establish scaling constants, which were substituted
into an additive utility function to ascertain the preferred soluﬁion.

In 1975, Dean and Shih used a similar approach in a problem involving

the expansion of a "River Walk" development project along the San Antonio
River in San Antonio, Texas. This problem had eight discrete alternatives
and five objectives. Again, the authors used an additive utility function
to identify the preferred alternative.

Sinden (1974) used utility theory to estimate the benefits
accruing from water-based recreational opportunities in an attempt to
improve on the standard travel-cost method for evaluating recreational
benefits of water projects. Sinden elicited the utilities of users of
water-based recreational facilities for various recreational and
aesthetic experiences and used this information to develop a family of

indifference curves. Using these curves, data on the marginal costs of
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consuming the various recreational activities, and estimates of consumer
recreational budgets, he then developed demand curves for the various
recreational alternatives. The demand curves were used, in turn, to
estimate the benefits accruing from the various recreational facilities.

In 1974, Major used indifference curves to in a descriptive sense
to illustrate the compromise that took place between the Corps of Engineers
and the Izaak Walton ILeague (a conservationist group) concerning two
objectives of a proposed dam and reservoir in Indiana.

Perhaps the most complete application of utility theory to a
problem in water resources planning was provided by Keeney and Wood
(1977) when they evaluated five water resource development plans for the
Tisza River Basin in Hungary. In this twelve objective problem, they
carried out the steps of investigating the independence properties of
the attributes, determining the appropriate form of the utility
function, assessing the component utility functions, assessing the
scaling factors, and calculating the total utilities of each alternative
using the composite utility function. This same problem was examined by
David and Duckstein (1976) using the ELECTRE method and by Duckstein and
Opricovic (1980) using compromise programming. The results of the
three studies were similar. Keeney and Wood (p. 705) found that the use
of utility theory had the following advantages over the other approaches
in the problem that they addressed:

- it does not require that the preferences of the decision maker

for various levels of one objective be independent of the

levels of the other objectives, as does the assessment of
optimal weights;
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- 1t avoids awarding undue weight to an objective that varies
over a small range over the noninferior set; and

- it can handle systems with a large number of decision varia-

bles and constraints without excessive confusion.

In 1978, Reid and Leung presented a utility theory approach to
the problem of establishing water resource development priorities within
the State of Oklahoma and demonstrated an application in 1979. The
authors developed two indices of project merit, a "single index" and a
wdouble index". The single index was simply an additive utility func-
tion. The double index consisted of a "demand index" and a "desirability
index”, both of which used additive utility functions. The demand index
included only certain objectives, deemed "need and deficiency parameters".
The demand index was used to cluster the alternatives into a hierarchy
of desirability. The alternatives were further ranked within each cluster
by the desirability index, which used an additive utility function that
included only the remaining objectives. The authors provided no informa-
tion concerning the derivation of the component utility functions or the
scaling constants, or of any tests for additive independence of the

attributes.

Policy capture. In 1975, Crews and Johnson presented an adapta-

tion of the social judgment theory of Kenneth R. Hammond (Balke, et al.,
1973; Hammond, et al., 1975; Hammond and Adelman, 1978; Hammond, et al.,
1977) to water resources planning and applied the name policy capture to
the procedure. The policy capture method provides a means of estimating

the utility functions of decision makers using regression analysis. The
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authors generated 30 hypothetical future scenerios which contained various
levels of two objectives, Two decision makers expressed their preferences
for these scenerios by placing them on scales, which were then normalized
to facilitate comparisons., The authors then used a nonlinear multivariate
regression model to derive utility functions for each decision maker.
In an attempt to aggregate the two utility functions, the authors developed
marginal rates of substitution (MRS) curves for each decision maker and
found that they had a common point. Crews and Johnson then concluded
that the slope of the line from the origin to the intersection of the
MRS curves represented a common trade-off, and that any alternative
involving such a trade-off would be acceptable to both decision makers.
Although the conclusion is erroneous, the method of policy capture could
be a useful approach for approximating utility functions.

In a manner similar to that of Crews and Johnson, Moreau,
et al. (1981, p. 74-83 and 94-102) used hypothetical alternatives to
elicit preferences and a regression analysis to derive objective weights
in a watershed planning problem in the Research Triangle region of North

Carolina,

Techcom method. The Techcom method was developed during the time

frame 1970-1974 by the Technical Cammittee of the Water Resources Research
Centers of the Thirteen Western States (Technical Committee, 1971 and
1974; Gum, et al., 1976). The Technical Committee was an ad hoc group
formed to develop the Techcom method under a grant by the Office of

Water Resources Research in the U. S. Department of the Interior.

The Techcom method differs from the other multiobjective decision-
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aiding methods reviewed herein in that its primary focus is on the identi-
fication of the preferences of different groups of people for use by a
decision maker, rather than on the generation of nondominated alternatives
or the elicitation of the preference structure of a decision maker. The
Techcom method is camposed of two parts: the development of an objectives
hierarchy and an identification of the preferences of groups of peoplé.
for the objectives and sub-objectives of the objectives hierarchy.

The hierarchy established by the Techcam method is camposed of
"goals" (highest level objectives), "sub—goals" (intermediate level
objectives) and "social indicators" (lowest level objectives, which
are the most readily measured). The method also contains "policy action
variables" (decision variables) and "connectives" (functional relation-
ships which map decision variables onto lowest level indicators). In
many cases, the connectives merely indicate the direction of impact
(i.e., +, — or 0).

The identification of the preferences of groups of people is
accamplished by means of the Metfessel General Allocation Test. This
test is administered by a mass mailing of questionnaires to which
respondents reveal preferences by dividing 100 points between the
elements of sets of sub-objectives. These are then used as weights
in additive or multiplicative functions which relate social indicators,
sub~goals and goals,

Ardrews, et al. (1979) conducted an evaluation of the Techcam
method by analyzing the social impacts of the campleted Weber Basin

Project in Utah and comparing those impacts with the taxonomy of impacts
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contained in the Techcom method. The authors found a number of areas
in need of improvement.
Category C - Techniques

Involving A Priori Partial
Elicitation of Preferences

The techniques in Category C also involve elicitation of the
preferences of the decision maker, but in contrast to Category B, these
techniques involve only a partial expression of preferences. Since the
entire preference structure of the decision maker is not modeled by these
methods, they generally cannot be used to derive an accurate cardinal
ordering of a set of widely different alternatives. With the exception
of the Surrogate Worth Trade-Off (SWT) and Iterative Lagrange Multiplier
(ILM) methods, these techniques are noncampensatory in nature in that
they do not involve elicitation of decision maker preferences using

trade—offs between objectives.

Lexicographic approach. With the exception of the work of

Thampapillai and Sinden (1981), all lexicographic models discussed in

this section were developed in a descriptive sense to explain cognitive
decision rules. They are included in this overview of normative models
because they have been used in a normative manner in water resources
decision making. In its simplest form, the lexicographic approach is
sometimes used to f£ind the preferred solution from the set of all

feasible alternatives by finding the alternative that is most desirable
according to the most important objective and, if two or more alternatives

are equally desirable at that juncture, proceeding to the next most
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important objective, and so on. This is the "lexicographic order of

the plane" referred to by Fishburn (1974, p. 1443)., Fishburn cites
several examples of applications of this decision rule (p. 1442). In a
variation, the lexicographic approach has been used to find the preferred
solution by finding the alternative that satisfies simultaneously as
many objectives as possible, beginning with the most important objective
and working toward the least important objective (Haimes, et al., 1975,
p. 16-17).

Another variant is lexicographic semi-ordering in which

perceptible but insignificant differences are ignored (Fishburn, 1974,
p. 1446). According to this decision rule, preferences will be based
on the most important objective unless the difference between alterna-
tives is less than a threshold amount, in which case the preferences
Qill be based on the next most important objective, and so on, Choices
may not be transitive under such a lexicographic semi-ordering decision

rule,

The lexicographic approach has also been used to produce a partial
ordering from a set of alternatives (Fishburn, 1974, p. 1451). To do
this, each objective is partitioned into acceptable and unacceptable
levels., Alternatives are then screened against the most important objec-
tive, Those that are acceptable are retained, while the others are
discarded. Then the retained alternatives are screened against the next
most important objective, and so on. If there are enough objectives or
if the levels of acceptable objective attainment are high enough, this

method can be used to select a single preferred alternative. A refinement
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to this satisficing technique (Fishburn, 1974, p. 1451-1452) approaches
the goal programming algorithm of the next section. In this model, more
than one satisficing level is specified for each objective, If all
minimally satisfactory levels can be attained by a subset of alterna-
tives, then the next highest level is used to further screen the alter-
natives, and so on, Yet another variant of lexicographic ordering with
aspiration levels uses the lowest-level objective whose aspiration level
is not satisfied as the basis for the decision (Keeney and Raiffa,

1976, p. 78-79).

Another lexicographic model has been presented by Tversky (1972a
and 1972b). Tversky's model, which is referred to as elimination by
aspects, differs from those discussed by Fishburn in that the ordering
of the objectives is not specified by the decision maker prior to the
decision process, but instead is determined by a probabilistic distribu-
tion during the decision process. In the elimination by aspects model,
one aspect (objective level) is chosen and all alternatives that do not
meet that objective threshold are eliminated., Then another aspect is
chosen and the process continues until one alternative remains. Since
the order of the objectives is not established prior to the analysis,
any particular sequence of objectives used is regarded by Tversky (1972a,
P. 296) as a reflection of the state of mind of the decision maker.
Tversky (1972a, p. 298) notes that the elimination by aspects decision
rule is attractive because it is easy to understand, easy to apply and
easy to explain and justify. However, it can also lead to poor decisions

since almost any alternative can be chosen if an appropriate sequence of
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aspects is devised.

Despite their inherent simplicity, lexicographic approaches
have not been used widely to support decisions to problems in the
water resources field. Steiner (1969, p. 32) noted, however, that a
number of econamists insist on an essentially lexicographic approach in
the selection of water projects., That is, the view of these econcmists
is that, although there may be a number of valid objectives in a particular
situation, the national econamic efficiency objective is the most impor—
tant. Therefore, all project alternatives that are worth considering
must provide more econamic benefits to the Nation than they incur in
costs., Once the set of alternatives has been thus screened, then the
lesser objectives can be examined.

Thampapillai and Sinden (1979) used a lexicographic apprbach
to induce a partial order on a set of noninferior land-use alternatives.

The authors narrowed the range of noninferior solutions by calculating

the mean variaton of the most important objective, average annual agricul-
tural incame, and eliminating all alternatives that did not provide at
least the maximum attainable annual agricultural inccme less the mean
variation., The authors noted that, to refine the set of remaining alter-—
natives further the next most important objective, envirormmental quality,

would then be examined.

Goal programming. The goal programming approach is somewhat

similar to the constraint method of generating noninferior solutions.
In goal programming, target levels of each objective are set by the

decision maker and the alternative that minimizes the sum of the deviations
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from each target is sought,

The goal programming formulation for our example problem is:

2
max L (4" + d7) (4-24)
x k=1
subject to .
£ (x) = T = 4" = dy k=1, 2 (4-25)
gj(x) 5_ 0 j = l, 2' see8 7 n (4'—'26)
x>0 (4-27)

where Tk is the target level for objective k-and dk+ and dk' are the
positive and negative deviations, respectively, from the target levels
of the objectives.

In the goal programming algorithm, the target levels do not have
to be set within the feasible set., 1In fact, if the target levels are
within the feasible set, an inferior solution may result.

In a variant to the goal programming approach, sometimes referred
to as goal attainment, weights can be assigned to the variocus objectives

(Gembicki and Haimes, 1975, p. 769). Then (4-24) becomes:

2
max I w(d " + d.7) (4-28)
x k=1
2
where wy is normalized such that I wy = 1.
k=1

From this formulation, it can be seen that goal programming is
similar to the optimal weighting approach in that the deviation weights
W are analogous to the objective weights in the optimal weighting
approach. However, in one sense it is more accurate than the optimal

weighting approach. Both the optimal weighting and goal programming
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approaches are based on the assumption that preferences of the decision
maker for marginal rates of substitution between the objectives are
independent of the absolute levels of the objectives. However, in
setting deviation weights and goal levels, the decision maker in the
goal programming approach is implicitly limiting the range over which
his trade-off preferences are constant to some neighborhood around the
goal levels. In the optimal weighting approach, on the other hand, the
trade-of f preferences expressed by the decision maker apply across the
entire feasible ranges of all objectives., In other words, the goal
programming approach provides the decision maker with a set of absolute
levels of objective attainment (i.e., his stated goal levels) upon which
to base his weights, whereas the only such basis provided in the
optimal weighting approach is the entire n-dimensional range over which
the n objectives can vary.

Several authors (Haith and Loucks, 1973, p. 34; Neely,!gg_gi.,
1976, p. 19 and 1977, p. 198) have advocated a goal programming approach
as the most consistent with the planning guidelines of the Principles

and Standards (U. S. Water Resources Council, 1973). Neely, et al.

(1976) illustrated the applicability of goal programming to the planning
of water project construction programs with a hypothetical multiproject,
multiperiod problem. The authors minimized the weighted deviations from
ten environmental quality and economic goals, subject to construction
and operation and maintenance budget constraints. 1In 1977, the same
authors used data from actual and proposed water projects of the

Tennessee Valley Authority (TVA) to test an expanded version of their
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goal programming model., The actual budget levels for the period 1965-
1973 were used as constraints and the objective function minimized
weighted deviations from 17 national econamic, regional econamic and
environmental quality goals. The results indicated that the portfolio
of projects yielded by a model with an equal weighting of national econo-
mic, regional economic and environmental quality goals could have provided
more net national economic benefits than the portfolio actually selected
by TVA, in addition to improving most environmental quality indicators.
Although there were same differences between projects actually selected
by TVA and those selected by the model, the major differences involved
the timing of project construction.

Bishop, et al. (1977) applied goal programming to a hypothetical
river basin system to illustrate its usefulness to regional water quality
planning under Section 208 of the Federal Water Pollution Control Act.
The approach used in this effort, in a variant to that used above, did
not require the decision maker to establish weights for the various
objectives, but instead to establish an ordinal ranking of the objectives
based on his perceptions of the relative importances of the objectives,
After the rankings were established, deviations from the highest priority
goal were minimized, subject to total cost, regional cost, pollution
level and water quality constraints. Then, deviations from the second
highest priority goal were minimized, with the optimal value of the
first objective imposed as an additional constraint. This process
continued until all objectives were exhausted.

In 1979, Lohani and Adulbhan presented another application of
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goal programming to the problem of regional water pollution management.
The authors minimized deviations from the goals of waste treatment,
cost and the level of dissolved oxygen in the water in each of three
cases: equal weighting to both objectives, heavier weighting to the cost
objective, and heavier weighting to the water quality objective,

Sellers and North (1979) used goal programming to evaluate
alternatives in a restudy of the Cross Florida Barge Canal Project of
the Corps of Engineers. The model developed by the authors contained 23
objectives, After identifying the preferred solution, the authors removed
it from the feasible set and optimized the model again to identify the
second best solution.

Can, et al. (1982) applied goal programming to the optimization
of operations on a four reservoir system in the Green River Basin,
Kentucky. The authors suggested that the model could be used fof real—
time operational decisions by using releases called for by the model
only for the first day of the operating horizon and solving the goal
programming problem again each day using updated inflow forecasts and
storage conditions,

One major weakness of goal programming involves the elicitation
of the preferences of the decision maker, None of the authors referenced
herein directly addressed the problem of establishing goal levels or
objective weights. In most cases, a variety of goal levels and objective
weights were assumed in order to produce a corresponding variety of
outputs. Sellers and North (1979, p. 173) advocated the use of maximum

attainable levels of the objectives as a simple way of setting goal
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levels. However, such an approach fails to recognize that the goal
levels may be used by the decision maker to express his objective weights,
and that the maximum attainable levels of all objectives may be far from
the levels of objective attaimment in the preferred solution. Therefore,
if the marginal rates of substitution between objectives preferred by
the decision maker are not constant but instead vary with levels of
objective attainment, then such an approach may introduce inaccuracies

in the analysis.

ELECTRE Method. A method that requires the decision maker to

specify not only an ordinal ranking of objectives but also the speci-
fication of objective weights prior to the analysis was presented by
Roy in 1971 (p. 250-257). He assigned the acronym ELECTRE (elimination
et choice translating reality) to the method. The method assumes that
the set of noninferior solutions and the cardinal weights of the
objectives, reflecting the preferences of the decision maker, are known
prior to the analysis. Roy (1971, p. 254-255) wrote that these latter
values can be derived from simple ordinal relationships between the
objectives, but the example that he presents to illustrate this is
incorrect. A better illustration of the elicitation of objective weights
in the deterministic case is presented by Keeney and Raiffa (1976, p.
121-123).

The ELECTRE method involves a pairwise comparison of alterna-
tives in an attempt to establish a stronger partial ordering on the
noninferior set. For each pair of alternatives, a "concordance condition"

is calculated. For alternatives x! and xJ, Roy defines the concordance



86

index as the ratio

sum of objective weights where xl is preferred to xJ
sum of objective welghts where xJ 1s preferred to x! .

In addition, a "discordance condition” is established which is applied

to each pairwise comparison. The discordance condition defines a range
over each objective that cannot be violated by an "outranking relation-
ship." That is, if 5} outranks 5? by the concordance index, but §ﬁ

is preferred to 5} on at least one criterion (objective measure), and

the amount by which §ﬁ exceeds 5} on that criterion is greater than the
discordance index, then one cannot say that 5} is preferred to Ej' despite
the favorable concordance condition. In other words, necessary and
sufficient conditions for alternative 5} to be preferred over alternative
§j are that both the concordance and discordance conditions must be
satisfied,

Thus, in addition to specifying the objective weights, the
decision maker is also reguired to specify a parameter which the concor-
dance index must exceed and a range over each objective that the discor-
dance index cannot exceed, in order for the ELECTRE method to determine
that one alternative is preferred over another. These requirements have
two major drawbacks. First, the requirement for the decision maker to
specify objective weights assumes that the relative importances of the
Objectives are independent of the absolute levels of the objectives.

As McKee, et al. (1981, p. 23) pointed out, such an assumption is seldom
valid unless the entire analysis is conducted within a small region of
the decision maker's preference structure. Where cost is a criterion,

for example, it may be of overwhelming importance when extremely high
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cost alternatives are under consideration, but might be relatively
unimportant if low cost alternatives are under consideration. Second,
the requirement for the decision maker to establish concordance thresholds
and discordance condition ranges certainly must reduce the clarity of
the analysis from the decision maker's perspective. If the decision
maker experiences severe difficulties in understanding what it is he
is being asked to do, then it must detract from the accuracy and relia-
bility of the analysis. -

Despite these difficulties, the ELECTRE method has been applied
to at least three problems in water resources planning. In 1976, David
and Duckstein used the ELECTRE method to reduce a set of five noninferior
water development alternatives for the Tisza River Basin in Hungary to a
preferred subset of two alternatives. The authors used 11 evaluation
criteria (objectives), the weights of which were assumed to be known.
Their analysis was a straightforward application of the ELECTRE method
presented by Roy (1971) with the exception that the concordance and
discordance conditions were defined differently. The "concord index,”
as used by David and Duckstein was defined as

sum of objective weights where x1 is preferred to §j
total sum of weights .

The "discord index" defined the adverse difference between alternatives
5? and zj to be a percentage of the total range of each objective. Thus
the discord index was specified by the decision maker to be a fixed
fraction which was applied to all objectives in the pairwise comparison
Procedure, rather than a specified range for each objective as defined

by Roy. Various concord and discord indices were then applied to the
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pairwise comparisons of all alternatives. Cne set of indices enabled the
authors to reduce the noninferior set to a preferred subset of two alter—
natives. A subjective evaluaticn was then performed on the two remaining
alternatives and one was selected as the preferred solution because it
represented a "more reasonable compromise" between objectives.

In 1977, Nijkamp and Vos applied the ELECTRE method to a five
alternative, 12 objective problem concerning the reclamation of land
from the interior sea of the Netherlands. Nijkamp and Vos also introduced
four variants to the method presented by Roy (1971). First, the authors
established two sets of objective weights, one for positive differences
between alternatives and one for negative differences. The weights used
by the authors were the averages of those elicited from a number of
decision makers and interest groups. Second, the authors developed a
"norm vector," the elements of which represented satisficing outcomes
of each objective. Third, the authors calculated the concordance indices
with respect to the norm vector for each pairwise comparison, rather
than with respect to the other alternatives in the paired comparisons.
Fourth, the authors used a different definition of the discordance index,
wherein it measured deviations on each objective from the norm vector
for each alternative. After initially specifying the concordance and
discordance thresholds, the ELECTRE method was used to reduce the number
of alternatives from five to four. To further order the noninferior
set, the thresholds were strengthened (i.e., the concordance index was
increased and the discordance index was decreased), which reduced the

number of alternatives to two. The authors concluded that new information
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would be required to further reduce the number of alternatives to a
single preferred alternative.

In 1982, Gershon, EE_Ei' (p. 193) applied the ELECTRE method in
examining 25 development alternatives in terms of 13 evaluation criteria
in the Santa Cruz River Basin in southern Arizona. The study provides a
good example of the ELECTRE method but gives no information on the manner
in which the criteria weights or concordance and discordance thresholds
were established by the decision maker. The authors performed a sensiti-
vity analysis and found that the model was fairly robust with respect to

changes in scales and weights.

Compromise programming. In 1980, Duckstein and Opricovic

presented an approach that was based on the work of Zeleny (1973).

The method involves minimizing distances from an ideal solution vector
and is oriented toward decision situations with a small number of
discrete alternatives and a large number of objectives. It involves the
construction of a "system wversus criteria" array in which each column is
composed of the objective levels for one alternative and each row is
composed of the levels of one objective for all alternatives. Then, the

solution is sought that solves

. 1/p
min {Za.Pr |f.*(x) - £.(x)| 4P (4-29)
l{{ 1 3 ( )l}

fl*(i(.) - fimnl <

for values of p =1, 2 and « , and i = 1, where fi*(i) 1s the best
attainable level of objective i, fimin(z) is the worst attainable level of

Oobjective i, and n is the number of objectives. The authors pointed out
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that this procedure reduces to goal programming for p = 1 and o = 1;

1l; and that it

]

that it reduces to linear weighting for p = 1 and &t
reduces to a minimax problem for p = and a3 = 1.
The authors suggested presenting the solutions for (4-29) for
p=1l, 2and o and & = 1 to the decision maker for his use in selecting
the preferred solution. They further suggested that the same procedure be
followed again using values of ai if the weighting coefficients can be
elicited from the decision maker. The fact that the decision maker esta-
blishes the objective weights based on the initial compromise program-—
ming solution is the reason why this method appears in Category C.
Duckstein and Opricovic illustrated their method with a 12
objective, five alternative problem. They found that the first alterna-
tive was preferred with p = 1, but that the second alternative was
preferred with p = 2 and p =, At p = 1, the "total utility" solution
resulted, while at p =%, the "individual regret" of each objective was
minimized. Therefore, if the decision maker were more concerned that
none of the objectives strayed far from their ideal values, then he
would tend to favor the solution at p = 2 or p =%, On the other hand,
if he were more concerned with the overall effect on the objective set
without regard to any individual objective, then he would tend to favor

the solution at p = 1.

Surrogate Worth Trade-Off Method. It is interesting to compare

the Surrogate Worth Trade-Off (SWT) method (Haimes, et al., 1975) with
multiattribute utility theory (MAUT). One major difference between the

two approaches is that preferences of the decision maker are obtained by



eliciting preferences for objective trade-offs in the SWT method, but
are obtained by comparing absolute levels of objective attainment in
MAUT. Another difference is that the SWT method does not define the
preference structure of the decision maker over the full range of objec-
tive accomplishment levels, as does the MAUT approach, but instead
approximates the preference structure within a region of interest.
This latter distinction is the reason the MAUT approach has been placed
in Category B while the SWT method has been placed in Category C.

The SWT method starts by using the constraint method to define
the noninferior set. That is, the multiobjective problem is reformulated

into the problem

min £4(X) (4-30)
subject to :
£4(%) > e (4-31)
fK(_}E) = SK k = l' 2,-'01 l“l, i+l,-o-’ (4—32)
j"'l’ j+l,-o¢' p
x28 (4-33)

where p is the number of objective functions, the €4 are parametrically
varied levels of fy(x) and the e are fixed levels of the functions fk(x).
This problem is then solved for N values of €5 which produces, at most,
N noninferior solutions. At this juncture, we have taken a look at a
two-dimensional slice of the p-dimensional cbjective space. The dual
variable (Lagrange multiplier) associated with constraint (objective) j

is &ij and represents the trade-offs between objectives i and j. Next,
regression analysis is used to determine the functickaij(fj(§)) from the
calculated values of kij and f4(x). This function relates the values of

the trade-offs between objectives‘i and j to absolute levels of fj(i)'
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The next step is to repeat the above procedure with the objective
j replaced by another of the k # j objectives. Then it is repeated for
all k objectives until p-1 functions Xij(fk(g)) are generated. Each
of these functions relates the values of the trade-offs between objectives
i and k to absolute levels of fi(x) with all other objectives held at
fixed levels.

Next, objective i is replaced with objective k £ i and the
procedure is repeated. This results in a (p-1)x(p-1l) matrix of trade-off
fmwﬂmmkhdﬁdy)fm:i=l,2“.”&d,hH“.”pamik=l,2“.”
1-1, 1+1,.40, Do

The (p-1)2 trade-off functions are then used to elicit the
preference structure of the decision maker. Initially, the first trade-
off function kij(fj(i))r with the remaining objective functions on
fK(§), K=1, 2pe0e,p 1=-1, i+lsee0e, IJ-1, j+l,..., P, held fixed, is
used to generate several values of'kij and corresponding values of £4(x),
which are then presented to the decision maker. The decision maker is
asked to assign a value between -10 and +10 to each set ofA.ij and
corresponding fj(§) values. These values express how much he prefers
tradingl-ij units of £5(x) for one unit of fj(ﬁ), given that all
remaining objectives are fixed such that fx(x) =ex, kK =1, 2,..., i~1,
1+l,e00, J=1, J+l,..., P. Since the values wi4 that the decision maker
assigns are functions of fj(§), the function Wij(fj(i)) is called the
surrogate worth function of the decision maker. It is defined (Haimes,
1977, p. 228) such that

wiy > 0 when kij marginal units of fj(x) are preferred over
one marginal unit of fj(i), given the satisfaction
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of all other objectives at levels eg;

Wig = 0 when Aij marginal units of fj(x) are equivalent to
one marginal unit of fj(g); and

Wi < 0 when Ajj marginal units of fj

X) are not preferred
over one marginal unit of £5(x).

(
X

The value of ki- at which wis =0 is designated ki-*. In addition, a

J J J
band of indifference (in which wij = 0) 1s asumed toO exist in the

neighborhood of Xij* and is to be found with additional questioning of
the decision maker. Within the indifference band, the improvement of
one objective is eguivalent, in the opinion of the decision maker, to
the degradation of the other.

After all the bands of indifference, kij*’ K=1, 2/e0e,

1-1, 1+1,..., p hawe been determined, the final step is to determine

. * * . )
a solution vector x that corresponds to all ki' . This can be accomp-

J
lished by solving the single objective maximization problem
max £ (x) (4-34)
subject to N
£ (x) < £ (X)), R=1, 27000y i-1, 1+l,..., P (4-35)

where the fK*(§) are the values of the objective function fk(i)
corresponding to Xik*'

More detailled discussions of the SWT theory and variations to
the procedure summarized above are contained in Haimes and Hall (1974,
p. 618-621), Haimes, Hall and Freedman (1975, p. 34-35), Haimes (1977,
P. 224-233), Haimes, Das and Sung (1977, p. 32-44), Haimes (1980,
p. 87-96), Hall (1980) and Loucks, Stedinger and Haith (198l).

The SWT method has at least two major drawbacks. One of them is



94
that the method is very computationally burdensome, especially for
problems with a large number of objectives. The second drawback is
related to the first. The method contains no technique to identify the
levels at which to constrain the fixed objectives, or the p-2 values of
Ex. If the values of € were selected in the neighborhood of the
actual preferred solution, then this problem would not be a major one.
Since this cannot be accomplished with any degree of confidence, a
sensitivity analysis must be conducted. One way of doing this is to
repeat the SWT method using the values of fk(ﬁ) found in the first
analysis. Such a procedure compounds the computational burden of the
SWT method.

The literature contains several applications of the SWT method
to problems in water resources planning and design. In 1975, Haimes and
Hall presented an application to a three cbjective water quality problem.
The objectives of the Hlaimes and Hall problem were the minimization of
wastewater treatment costs, temperature changes and algae concentrations.
The authors did not report the numerical results of their analysis.

In 1977, Keith, et al. presented the results of a joint study of
the Utah Water Research Laboratory and the Nevada Center for Water
Resources Research to evaluate the use of the SWT method in multiobjective
river basin planning. The authors reported a variety of problems in
implementing the SWT method. First, problems were encountered in
specifying the individual objective functions. For example, great
difficulties were encountered in finding consistent relationships between

different land management alternatives and groundwater levels, river
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flows, surface water quality measures and agricultural production. Such
difficulties, however, were not due to the nature of the SWT method, but
would have been encountered irrespective of the multiobijective decision-
aiding method that was chosen. Second, the authors found that meaningful
trade-offs among objectives did not occur in their problem. Since agri-
cultural water use was dominant in the region, alternatives involving
slight adjustments in irrigation efficiencies were found to be capable
of satisfying easily all objectives. The authors felt that this fact
could have been discovered with a less intensive method than the SWT
method and suggested that a simpler decision-aiding technique should
have been applied prior to using the SWT method. Third, the authors
found that, had meaningful trade-offs between objectives been present in
the problem, an objective inwolving the destruction of a rare species of
minnow would have been particularly difficult since a group of ecologists
would accept no alternative which would have destroyed it. Again, this
difficulty would confront any of the multiobjective decision-aiding
methods. It possibly could have been handled better as a constraint.

In 1978, Lindsay applied the SWT method to a two objective,
three decision variable model of policy options for sludge disposal in
Boston. The author used a questionnaire to elicit the surrogate worth
functions of four-decision makers. No information was given regarding
whether or not an attempt was made to aggregate the preferences of the
decision makers in order to arrive at a preferred solution.

Haimes and Olenik (1978) demonstrated how the SWT method could

be applied to a levee design problem. In a report to the North Central
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Division of the Corps of Engineers, the authors developed a procedure,
referred to as the Multiobjective Statistical Method, to optimize the
expected values of several objective functions over a set of alternative
drainage system configurations. This approach involved the conversion
of a stochastic system to a deterministic framework by using the joint
probability distributions of river stages and rainfall events to determine
expected values of objective accomplishment. Haimes and Olenik hypothe-
sized six objectives of such an optimization problem (minimization of
business losses, drownings, health hazards, environmental damages and
land use losses, and maximization of aesthetics) and recommended ways of
establishing functional relationships between the decision variables and
such objectives. Haimes, et al. presented the results of an application
of the Multiobjective Statistical Method to a hypothetical three objective
problem in 1980.

The SWT method was used extensively in a major effort by the
Case Western Reserve University and the Maumee River Basin Planning
Board to develop a river basin plan for the Maumee River Basin in Indiana,
Michigan and Chio (Haimes, 1977, p. 295-323; Haimes, Das and Sung, 1979;
Das and Haimes, 1979; and Haimes, 1980, p. 100-101). This project
provides an excellent illustration of the tailoring of theoretically
workable multiobjective decision techniques to fit the unique circum-
stances of a complex water resources planning problem. The Maumee River
Basin Study involved the establishment of a multilevel hierarchy of
objectives, multiple decision makers, and multiple planning subareas.

Indifference bands were calculated for each decision maker and were used



to identify areas of agreement and disagreement such that compromises
could be reached. Although the final recommended plan did not fall
within the indifference bands of all of the members of the Maumee
Planning Board, it was consistent with the preferences of a majority of
the members.

The Maumee River Basin Study provides an interesting numerical
application of the SWI' theory, but the most interesting aspect is perhaps
the illustration that it provides of the difficulties involved in the
integration of a quantitatiwve decision-aiding method into the organiza-
tional and institutional framework of an actual river basin planning
process. The difficulties inwlved in getting the various decision
makers, influence groups and other interested parties to accept and
understand the technique, and the iterative nature of the planning process,
are made evident in this complex undertaking. Further, the Maumee Study
vividly illustrates the reality that the SWT method, like any other
multiobjective decision-aiding method, cannot be viewed as a replacement
for the decision making process in the public arena, but is rather an
instrument that can be a valuable aid to the decision making process if

properly used.

Iterative Lagrange Multiplier Method. In 1977, Neuman and Krzysz-

tofowicz presented a new solution technigue referred to as the Iterative
Lagrange Multiplier (ILM) algorithm. The method is applicable only to
Problems with continuously differentiable objective functions and to
which assumptions of decision maker preferential independence among

Objectives can be applied without unacceptable loss of accuracy.
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Although the algorithm is conceptually similar to the Surrogate Worth
Trade-Cff method, it differs in two major respects: (1) noninferior
solutions are generated by use of the Lagrange multiplier method in the
ILM approach instead of the constraint method of the SWT procedure, and

(2) in the IIM method, decision maker preferences are elicited by direct

specification of indifferences on graphical representations of objective
levels versus tradeoff ratios or objective levels versus objective levels,
whereas preferences under SWT are elicited by decision maker assignment
of numerical values (surrogate worth values) indicating the relative
desirability of marginal rates of substitution between each pair of
objectives.

The authors noted the tollowing attractions of the IIM procedure:

- it reduces complex multiobjective problems to a series of two-
objective problems,

- 1t requires significantly fewer decision maker decisions
than does the SWT method,

- 1t has computational advantages over techniques using the
constraint method because it requires fewer constraints and
can generate efficiently the Lagrange multipliers,

- decision maker preferences are elicited in the objective
space rather than in the decision space,

- it overcomes problems with the constraint method wherein
certain combinations of parameters may lead to infeasible
results, and

- 1t requires no regression analysis, such as that of the SWT
method.

Limitations of the IIM procedure include its failure to
generate all noninferior solutions when objective functions are not

Strictly convex and involve a duality gap, the lack of applicability to
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discrete problems, and the potential for inconsistent decision maker
responses when preferential independence among objectives is not a
valid assumption.

Category D - Technigues

Involving Progressive Elicitation
of Preferences

The techniques of Category D, when applied to continuous problems,
are usually used in conjunction with the nondominated set generating
techniques of Category A since the Category D techniques can be used only
after at least some nondominated solutions have been identified. These
techniques make use of information contained in the nondominated solutions
to elicit the preferences of the decision maker in an iterative fashion.
These techniques are sometimes called interactive or iterative techniques.
They generally inwlve the following steps: presentation of the decision
maker with a nondominated solution, elicitation of preference information
concerning that solution, use of the preference information to generate
another nondominated solution, and continuation until a satisfactory

solution is obtained.

Step method. This method, also known by the acronym Stem, was
initially introduced by Benayoun, et al. (1971). The step method and
variants to the step method been the most widely used of the interactive
techniques in ﬁhe water resources literature.

The step method presented by Benayoun, et al. begins with the
construction of a "payoff table," which is a matrix composed of the

levels attained by the set of objectives as each is optimized separately.
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That is, given the multiobjective problem

max £(x) (4-36)
subject to

g(x) <0 (4-37)

x>0 ' (4-38)

the payoff table entries are found by solving the following p problems:

max fi(_}_(_) i = l, 2,0.., p
(4-39)
subject to
g(x) <0 (4-40)
x>0 . (4-41)
The following payoff table could then be constructed:
] fTED £20xH) SRR ST
*
x? £ (x2) £, (x%) ... fp(3<_2)
» e . L) (4—'42)
*
D £ (xP) S )

In this table, ii represents the value of the decision variable vector
at which fi(_’i) is maximized, fj (_>_<_i) represents the value of the jth
objective when the jth objective is maximized, and f j*(z(_j) represents the

highest attainable value of objective j.

The solution at which all fj(.’i ) are maximized simultaneously is

denoted as the "ideal solution" by Benayoun, et al. (1971, p. 369).
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Such a solution is assumed to be infeasible since, if it were feasible,
the objectives would not be in conflict. After construction of the
payoff table, the feasible solution is sought that minimizes the maximum
deviation from the ideal solution. This is accomplished by solving the

following problem:

min A (4-43)
subject to
[£,7(x) - £,(x)]w; <A i=1, 2., p (4-44)
x € xi (4-45)
A>0 (4-46)
where the [fi*(i) - fi(g_)] r1 =1, 2,..., P represent distances from the

"ideal solution," the w;

j are objective weights and zi_i defines the feasible

region at the ith iteration and, at the first iteration, X = [E‘E(E)S 0;

X 2 0]. The weights are defined to be

Wi = Aj (4-47)
1 G,li
1
. n
A, = £5%(x) - £;M(x) [ I (¢;%?) (4-48)

ET%(X) k=1

where fimin(_zi) is the minimum value of objective i in the payoff table and

th

ciK is the coefficient of the kth decision variable in the i~ objective
p

function. The @ are defined such that I wiy = 1 and the valuves of the
i=1

weights depend upon the deviation of the objective function £j(x) from
the ideal solutions fi*(f_)'

The feasible solution obtained from (4-43) - (4-46) is presented
to the decision maker. If the decision maker feels that the levels of

all objectives are satisfactory, then the preferred solution has been
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found. If the levels of none of the objectives are satisfactory, then
no preferred solution exists, according to the algorithm. If some objec-
tives are acceptable and others are not, the decision maker is asked to
specify a decrease Afjg in the level of one of the satisfied objectives
that he would be willing to accept in order to obtain an increase in the
level of the unsatisfied objectives iu. Then the problem (4-43) - (4-46)
is repeated with w; = 0 and with (4-45) redefined such that x € x1*1,

where §}+l is defined as

Xi
g1+l £ (xthy > £ (xl) - Af, (4-49)
- 182 - 18 1S
i+l i
Biox™0) > £,(x7) .

The solution to this problem is presented to the decision maker and the
procedure is repeated until all objectives are satisfied or until it is
determined that all objectives cannot be satisfied. For a problem with
p objectives, the procedure would have to be carried out for a maximum of
p iterations.

Ioucks (1977 and 1978) presented an application of a modified
Stem approach to an irrigation planning problem in northern Africa. The
four objectives established in the Loucks papers were the maximization of
the yield and the reliability of the water source, and the minimization
of capital costs and operation, maintenance and replacement (OMR) costs
of the project. Loucks modified the definition of the wj described in

(4-47) and (4-48) to

[fi*(i) z 1 ]'l for unsatisfactory objectives
wi = €3 £1%(x) (4-50)

0 for satisfactory objectives,
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where J is defined as the set of unsatisfactory objectives at each
iteration. 1In addition, Loucks allowed the decision maker to specify
reductions in the levels of more than one satisfied objective at each
iteration and allowed the decision maker to change such levels more than
once for each objective, thereby allowing the decision maker to have
much more flexibility in establishing satisfactory objective levels.
This approach, however, removes the guarantee that the algorithm will
terminate in at least p iterations for a p objective problem. Loucks
presented the results of one set of interactions with a decision maker
in which a preferred solution was obtained in six iterations (for a four

objective problem).

Semops method. Monarchi (1972) and Monarchi, et al. (1973)

presented a method similar to the Step method. The authors called their
method Semops, for "sequential multiobjective problem solving." The method
involves specification by the decision maker of aspiration levels
for each objective, and the algorithm seeks to minimize deviations from
these aspiration levels.
Initially, the surrogate objective function
P
S= Xdj (4-51)

i=1
is formed, where the d; are deviations from the aspiration levels of the
p objectives. The dj can take on one of five forms, depending upon the
nature of objective function i. These five forms are (p. 838):

d = z/L for objectives that are to achieve less than a
specified gquantity,
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d = L/z for objectives that are to achieve more than a
specified quantity,

d = 1/2(L/2 + z/L) for objectives that are to egqual a
specified quantity,
d = [Lyp/(Iq+Ly)1(Ly/z + z/Ly) for objectives that are to remain
within a specified interval, and
d = Iy + Ly for objectives that are to remain outside

Lp(Ly/z + 2/Lp) a specified interval.

Here, z represents the objective level for a given solution and L, Ij
and Lo represent aspiration levels specified by the decision maker.
After the aspiration levels are specified by the decision maker,

an initial solution is obtained by solving the problem

min S (4-52)

subject to »
g(x) < © (4-53)
x>0 . , {4-54)

Then a "payoff table” is completed. This differs from the payoff table
of the Step method (4-42), however, in that the fi*(f) represent the
aspiration levels specified by the decision maker for each objective,
rather than the best attainable levels of the objectives. The x1
represent the values of the decision variable vectors at which £i(x)

1y

attains its aspiration level, and fj(i

jth objective when the ith objective attains its aspiration level.

represents the value of the

The decision maker uses the initial solution and the payoff
table to determine which objective to remove from the set of objective
functions and to enter as a constraint. In the words of Monarchi, et al.,

he decides which aspiration level to "crystallize" (p. 8392). This
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reduces the number of objective functions by one. Next, the surrogate
objective function (4-51) is modified by removing the dj corresponding
to the "crystallized" objectiwve and the problem (4-52) - (4-54) is repeated.
This procedure continues until only one objective function remains,
which is then optimized to obtain the preferred solution.

Monarchi, et al. illustrated their algorithm with a hypothetical

six objective, three decision variable model.

Trade method. In 1976, Goicoechea, et al. presented the applica-

tion of a variant to the Stem method to a multiobjective watershed manage-
ment problem. The authors labeled their procedure Trade. The Trade
algorithm begins with the construction of the payoff table in a manner
identical to that of the Step method. Then a surrogate objective func-

tion S51(x) is formed

p
S1(x) = I Gji(x) (4-55)
x) = & silx
where .
Gj(x) = £3(x) - £;M(x) (4-56)
jub fI*T_)_(_) - fimux(é) R

Thus, the quantities Gj(x) represent percentages of goal attainment for
each objective.

Next, the problem

max S1(x) (4-57)

subject to
g(x) <0 (4-58)
x>0 (4-59)

is solved and is used to generate the wvectors
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£xDT = (xh), £5xh) e, £ (4-60)

1
Gy (xh) s Gytxhy,eens 6

P

and cxHH)T x1) . (4-61)

p

Here, Ejg}) is a vector of objective levels in the ith solution and

915?) is a wector of percentages of goal attainment. The decision

maker is presented with these vectors and, if he is satisfied, then the
algorithm terminates. Otherwise, he selects one objective to reduce, as
in the Step method, and specifies a lower acceptable level € for that
objective. Then the problem (4-57) - (4-59) is repeated with the selected
objective removed from the surrogate objective function and added to the

constraint set. The new problem

n-1 P
max Sp(x) =max [ L Gi(x) + L& Gi(x)] (4-62)
i=1 i=n+1
subject to
g(x) <0 (4-63)
fn(_}f_) _enio (’4"’64)
x>0 (4-65)

is solved and is used to generate the vectors f(x2) and G(x2). These
are then presented to the decision maker and the algorithm proceeds
until a satisfactory solution is found.

Goicoechea, et al. appled their algorithm to a watershed manage-
ment model containing five objective functions, 33 decision variables
and 18 constraints. The authors presented the results of a series of
interactions with a hypothetical decision maker to illustrate how the
Trade method can be used to find a preferred watershed management policy.

The solution vectors obtained on the fifth iteration were assumed to be
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satisfactory to the decision maker. Like the Step method, the Trade
method terminates in a maximum of p iterations for a p objective problem.

In 1979, Goicoechea, et al. extended the Trade method by modifying
the surrogate objective function and providing the decision maker with a
sense of the risk involved in decision making situations. This algorithm,
called Protrade (prcbabilistic Trade), used equations (4-55) - (4-59) to
generate initial wectors £}§}) and gjz}) the same as 1in the Trade
method. The authors then made use of information elicited from the
decision maker regarding preferences for the various objectives and used
a multiobjective utility function (p. 207) to calculate objective weights.

These were then used to modify (4-55) to

p
S1(x) =Z wiGi(X) (4-66)
i=1
which was then used to generate another solution using (4-57) - (4-59).

At this point, the levels of the objectives obtained by the
current solution were expressed as normally distributed random variables.
That is, using the example of Goicoechea, et al. (p. 207-208), the
vector of objective attainment

0.370
0.480
f(xl) = |0.354
0.998
0.016

becones

0.370, 0.5
0.480, 0.5
£(x1) = |0.354, 0.5
0.998, 0.5
0.016, 0.5
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This indicates, for example, that the probability of attaining at least
37% of the maximum attainéble level for objective 1 is 50%.

The decision maker 1s next asked to specify both a minimum level
of objective attainment and a minimum probability of achieving that
level of objective attainment for the least satisfactory objective.
These specifications are added to the constraint set, and the algorithm
proceeds until a satisfactory solution is found. The authors illus-
trated their method by applying it to a model containing five objective

functions, twelve decision variables and three initial constraints.

Pairwise comparisons. The interactive use of pairwise comparisons

of objectives was presented by Croley (1974) and Takama and Loucks (198l).
In both of these works, the constraint method was used to generate the
nondominated set. The preferred solution was obtained from the nondomin-
ated set by requiring the decision maker to express his preferences
between two alternatives at a time with all but two objectives fixed.
Croley favored calculating the tradeoffs between the two non-fixed objec-
tives and providing that information to the decision maker as an aid in
expressing his preferences between the two alternatives. Takama and
Loucks favored presenting the decision maker only with the absolute
levels of the objectives and asking the decision maker which alternative
was preferred. In either case, the two dimensional search continues
until indifference is reached. Then two other objectives are varied
while the others are held fixed. This procedure is repeated until indif-

ference is reached between all pairs of objectives.
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Although the use of such pairwise comparisons is straightforward,
the procedure could be extremely time-consuming, tédious and expensive
if the problem contains at least a moderate number of objectives. 1In a
simple three objective illustration presented by Takama and Loucks
(p. 451-452), for example, a total of 36 pairwise comparisons were
required before indifference between the three objectives was obtained.
Recent work has also shown that pairwise comparisons can result
in intransitive behavior on the part of the decision maker if the decision
problems are not carefully framed to avoid the effects of cognitive
bias. Sage and White (1983) used regret theory to explain preference
reversals in paired choice problems under uncertainty. Tversky and
Kahneman (1974) explained how an adjustment and anchoring heuristic
can lead to intransitive choices dve to recency effects, improper
evaluations of conjunctive and disjunctive events, and use of different

approaches to subjective probability distributions.

Tradeoff Cutting Plane. Musselman and Talavage (1979 and 1980)

presented the develpoment of an interactive technique, referred to as
the Tradeoff Cutting Plane method, which is a modified version of an
algorithm developed in 1972 by Geoffrion, et al. Musselman and Talavage
applied their method to an urban storm drainage proplem in West Layfay-
ette, Indiana.

The algorithms of Geoffrion, et al. and Musselman and Talavage
both elicit local preference information from the decision maker on an
interactive basis. The algorithms initiate from an arbitrarily selected

feasible point. The objective space solution at that point is presented
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to the decision maker, who is asked to specify the tradeoffs between a
selected objective and all remaining objectives to which he is indif-

ferent. That 1s, he 1s asked to specify

Af, (%) ¥ i.
AESRSY X

i
In the method of Geoffrion, et al., this information is then used in

the Frank-Wolfe (1956) steepest ascent algorithm to solve the problem

d

max I w0 f (xNTy (4-67)
i=]1 -
where K K
wi = AL, (x) ~ aU(X™) /3U0(x7) ’
AL (X)) Jf(x7) / afy(x™)
foi(§5) is the gradient of fi(§) evaluated at §$, and K is the iteration

counter. The solution y is then used to calculate the most promising
direction dK in which to seek improvement of the current solution by using
gk =gk -xk (4-68)

Next, further interaction with the decision maker is required to determine
the desired distance along the direction gﬁ in which to proceed. This
is conducted by presenting the decision maker with a display of
fi(zf + tkgf)v i for various values of tK, 0 S_tk < 1. Decision maker
selection of the preferred f(xK) defines tK and §ﬁ+l is set equal to
§¥ + tkgﬁ. This procedure continues until the most preferred solution
is reached; that is, when tK = 0.

The approach of Musselman and Talavage differs in that a modified
steepest ascent approach is used with the introduction of a new constraint
at each iteration. The added constraints, referred to as "tradeoff cuts,”

successively reduce the convex set containing the preferred solution.



111
That is, at each iteration, the algorithm retains both the current
solution and the preferred solution.

In addition, the algorithm of Musselman and Talavage does not
require the decision maker to identify preferred step sizes at each iter-
ation. Instead of updating the current solution using the steepest
ascent direction and preferred step size, the Tradeoff Cutting Plane
method uses the solution of the ascent algorithm as the next solution.
The algorithm terminates when the decision maker's preferred tradeoffs
indicate that no further improvements can be made.

The original approach of Musselman and Talavage required that all
objective functions and constraints be continuocusly differentiable.
However , they have adopted the method for use with discrete problems,
although identification of a most preferred solution in such cases is
not guaranteed.

The Tradeoff Cutting Plane approach does not require step-size
decisions by the decision maker, but still requires elicitations of the
decision maker's preferred tradeoff rates at each iteration, and provides
no guidance about how this should be conducted. This is a disadvantage
of the method, as Dyer (1973), Wallenius (1975) and Takama and Loucks
(1981) reported findings that decision makers are able to express
preferénces for absolute levels of objective attainment much more easily
than for tradeoffs among objectives. A further disadvantage is the fact
that the approach presented for problems with discrete solutions would
be computationally intractable for some problems with a very large number

of discrete feasible solutions.
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Category E - Visual Attribute
Ievel Displays

The methods of Category E do not involve explicit elicitations
of the preference structure of the decision maker. Instead, these methods
provide ways in which to organize measures of objective achievement
from a set of alternatives in such a way that they aid the human mind
in making cognitive choices. In using such methods, the decision maker
can either examine the display of objective achievement levels across
all alternatives to select the preferred alternative, or he can use a
pairwise comparison approach to reduce the set of alternatives under
consideration until a preferred alternative is identified. Such methods
have the advantages that they are straightforward and easy to understand.
However, for decision situations involving more than a very small
number of objectives and alternatives, such methods normally are not
sufficiently powerful to assist adequately the decision maker in dealing

with the complexity involved.

Objective achievement matrix displays. The use of matrices

to display the levels of objective achievement from a set of alternatives
is conceptually the simplest cognitive decision aid of Category E.

They are sometimes referred to in the literature as objective impact
matrices or tabular displays. Such matrices allow the decision maker

to examine directly levels of objective achievement from a set of
alternatives in order to identify a preferred alternative. Such an
approach provides a framework for the decision maker in which levels

of objective achievement can be examined across all alternatives in
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an orderly fashion. Although this method does not in all cases reduce
the complexity of the decision problem, it does help to manage the
complexity and to reduce the level of confusion in the mind of the
decision maker.

Matrix displays have been used frequently to assist in multi-
objective water resources decision problems, and have been required
explicitly by recent federal water project planning guidelines. In 1970,
Freeman and Havemen (p. 1534) characterized the preparation of a tableau
listing all monetary and non-monetary benefits and costs as the mos£
realistic decision-aiding tool for water project selection decision
problems.

A typical example of the use of objective achievement matrices
to assist decision makers in multiobjective water planning decision
problems was provided by Jonathan O'Riordan in 1972. O'Riordan used
an evaluation matrix to compare comprehensive water resources development
and management alternatives in the Okanagan Valley, British Columbia.
O'Riordan's evaluation matrix consisted of a display of the impacts of
a set of alternatives on a set of planning objectives. In developing
the matrix, he used a scoring procedure, based on a scale of -10 to +10,
to estimate impacts that could not be measured in monetary units, such
as the impacts on wildlife or recreation objectives. In addition,
he adjusted such non-economic impacts by objective weights, which osten-
sibly reflected the relative values of the non-economic objectives
to society. The author used pailrwise comparisons to identify the pre-

ferred alternative. To accomplish this, he first used paired comparisons
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in an elimination process to reduce sets of similar alternatives to
a single preferred alternative within each set, and then compared these
preferred alternatives with those of the other sets to arrive at an
overall preferred alternative,

Variants to the matrix display approach have been developed
and used by Leopold, et al. (1971), Duke, et al. (1972) and the Tulsa
District of the Corps of Engineers (1972) to assist decision makers
in considering the environmental consequences of water project alterna-
tives in making water project selection decisions.

In 1973, the U. 5. Water Resources Council institutionalized
the use of matrix displays by requiring the development of tables to
display the impacts of waterlproject alternatives on two national
planning objectives (national economic development and environmental
quality) and two planning accounts (regional development and social well-
being) that were to be considered in project selection decisions. Other
examples of impact displays to assist decision makers in multiobjective
water resources decision problems have been presented by the United
Nations Economic Commission for Asia and the Far East (1972); Schwarz,
Major and Frost (1975); Moriwasa and Vemuri (1975); and Major and
Lenton (1979). Seweral of these works also used matrix displays as a

part of or in conjunction with more sophisticated decision-aiding

techniques.

Graphical displays. Closely related to objective achievement

matrices and tabular displays are graphical displays. Essentially,

graphical displays provide to the decision maker the same information
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that could be provided in tabular form. In some cases, however, graphical
representation of data may impart to the decision maker a better apprecia-
tion of the differences among alternatives.

Graphical displays have been used to present levels of objective
achievement under various alternatives as well as objective trade-offs
between alternatives. Examples of the former are provided by the works
of O'Riordan (1972) and Bishop (1972). Both authors used a graphical
description of alternatives called a factor profile, which displays levels
of objective achievement from a set of alternatives, as illustrated in
Figure 4-1. The factor profile used by O'Riordan scaled objective
achievement in absolute terms, whereas the factor profile of Bishop
scaled objective achievement in terms of percentages of maximum possible
objective achievement.

An example of the use of graphical techniques to display
objective trade-offs between alternatives was provided by Byers and
Miller in 1975. As indicated earlier, Byers and Miller developed a
family of trade-off curves between an economic objective and each of
11 environmental objectives using the constraint method. The authors
then presented the set of 11 trade-off curve families to the decision

maker to assist in the decision process.

Mapping. Techniques involving the display of spatial patterns
of objective achievements have been used beneficially when the spatial
distributions of such achievements are of interest. Such situations
occur when decision problems involve the identification of geographical

areas that may be suitable for multipurpose development, or the iden-
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Illustration of Factor Profile

tification of areas in which constraints preclude development. The

most common mapping technigques involve the use of overlays or computer-
based point rating systems which aggregate resource data within specified
geographical areas. An example of the use of mapping techniques to
assist in multiobjective decision problems involving water resources

planning within geographical regions is provided by Murray, et al. (1971).



Chapter 5
A MULTIOBRJECTIVE DECISION-AIDING ALGORITHM

Over the past decade, professicnals in the academic and public
sectérs have made extraordinary advances in the development of multi-
objective or multicriteria decision support aids for water resources
planning. These recent advances have been summarized in the preceding
chapter. In the midst of this new wealth of knowledge, however, at
least three federal water development agencies are still making extremely
complex water project portfolio selection decisions without the benefit
of well-designed analytical decision support systems. The portfolio
selection problems of these three federal agencies were described in
Chapter 2. The purpose of this chapter is to describe the development
of a new multiobjective decision-aiding algorithm that 1s responsive
to the needs of these decision problems and which will form the heart
of a fully developed decision support system designed for the irrigation
construction program of the Bureau of Indian Affairs.

The development of the algorithm described herein represents an
extension of previous research in multiobjective decision-aiding tech-
niques. The work is described in four parts. First, a new paradigm
that was developed to assist with multiobjective decision-aiding model
selection problems is described. Use of the new paradigm to identify
the most appropriate multiobjective decision-aiding model for the
irrigation construction program is then discussed. Second, a descrip-
tion of the desirable attributes that the new interactive algorithm

117
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should have to be fully responsive to the decision problem-is provided.
Third, a description of the new muliobjective decision-aiding algorithm

is provided. Finally, a discussion of the new algorithm is presented.

Selection of Model

Although the field of multiobjective analysis has enjoyed a
large amount of attention over the last decade, very little work has
been devoted to examination of the conditions under which the great
variety of multiobjective techniques can be used most advantageously.

As indicated earlier, a significant amount of effort has been devoted

- to the identification of common characteristics of the various methods
in order to dewvelcp useful categories into which they can be grouped.
Such efforts are useful in facilitating an understanding of the methods,
but stop short of providing help to researchers and practitioners in
coupling multiobjective decision problems with the most appropriate
solution techniques.

Despite the fact that the multiobjective model choice problem
has received little attention to date, it is one of significant impor-
tance. Gershon (1981, p. 2-3) pointed out that the results from poorly
matched problems and solution techniques can be suboptimal or even
misleading. He further contended that such poor results can lead to a
weakening demand for such techniques and ultimately a general trend away
from the use of these potentially valuable tools. Duckstein, et al.
(1982) demonstrated the significantly different results that can be

obtained by the application of different multiobjective techniques to
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the same problem.

Loucks (1977, p. 158) cbserved that the model selection problem
is not one of identifying the best model for a particular situation,
but rather one of determining the most desirable trade-offs among the
attributes of the various models available. Thus, the problem of
selecting the most appropriate approach to apply to a specific multi-
objective decision problem is itself a multiobjective decision problem.

In making a multiobjective decision-aiding model selection, an
analyst typically has a number of concerns. Normally no multiobijective
decision-aiding technique will satisfy fully all of these concerns, and
the relative importances of such concerns is highly problem situation
specific. The multiobjective problem is to identify the multiobjective
technique which provides the best compromise among the concerns. This
problem is confronted in the pages that follow. First, a summary of
previous research into the multiobjective model selection problem is
presented. Since no acceptable method of solving the model selection
problem was located in the existing literature, a new multiobjective
decision-aiding model selection paradigm was developed and is described
in the following section. Finally, an application of the new paradigm

to the BIA irrigation project portfolio selection problem is presented.

Previous Multicbjective Model Selection Research

Although the research that has been conducted to date concerning
the multiobjective technique selection problem has been very limited,
some attention has been devoted to this problem. Wallenius (1975)

recognized the need to better match multiobjective methods and the
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characteristics of the decision maker. He postulated the following six

criteria with which to compare methods (p. 1389):

—

decision maker's confidence in the best compromise,
ease of use of the method,
ease of understanding the logic of the methcd,

usefulness of the information provided to aid the decision
maker,

rapidity of convergence, and

computer time required.

Wallenius conducted a laboratory experiment using these criteria

to compare three multiobjective decision-alding methods. He found that

simple decision maker—-analyst interactions and ease of use of the methods

should be important criteria in selection decisions (p. 1391) and that

there is a great need to better match multiobjective decision-aiding

methods with human factor considerations (p. 1394).

Seaver, et al. (1979) proposed the following five criteria for

deciding when the decision analysis approach is appropriate (p. 26):

presence of clear-cut alternatives,
presence of perplexing or controversial considerations,

necessity to communicate persuasively the decision to other
parties,

presence of high stakes, and

expectations of the recurrence of similar decision situations.

Gershon (1981) developed an algorithm to assist with the model

choice problem which contained the following 27 criteria:

ability to handle qualitative criteria,
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ability to choose among discrete sets of alternatives,
ability to choose among continuous sets of alternatives,
ability to solve dynamic problems,
ability to solve stochastic problems,
comparison to goal point,
comparison to aspiration level,
direct comparison,
strongly efficient solution,
complete ranking,
cardinal ranking,
ability to handle integer variables,
computer time required,
implementation time required,
interaction time required,
knowledge required of decision maker,
consistency of results,
robustness of results,
applicability to case of group decision maker,
number of objectives,
number of systems,
number of constraints,
number of variables,
level of decision maker's knowledge,
time available for interaction,

desire for interaction, and
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- confidence in original preference structure.

These 27 criteria were divided into four groups:

- "mandatory binary criteria” which deleted techniques from
further consideration if they failed to qualify;

- "non-mandatory binary criteria" which did not necessarily
delete techniques from further consideration if they
failed to qualify;

-  "techniqgue-dependent criteria" which were technique-specific
and against which techniques were rated on a 1-10 scale; and

- "application-dependent criteria" which were problem-specific
and against which technigues were rated on a 1-10 scale.

Gershon's model selection algorithm involved the selection of a
supbset of the 27 criteria that were relevant to the problem, assignment
of weights to the criteria in the subset, assignment of values (on a 1-10
scale) for the "application-dependent criteria" in the subset, and
sequential application of the subset of criteria by category to the set
of candidate techniques. Gershon illustrated his model choice algorithm
with a 13 criteria, 25 alternative river basin planning problem, and a
two objective, continuous resource allocation problem. Gershon and Duck-
stein (1982) further illustrated the algorithm with a four objective,
five alternative design problem.

Duckstein, et al. (1982) used the following six criteria to
evaluate and compare three multiobjective decision-aiding techniques:

- type of data needed (qualitative or duantitative),

- nature of systems to be analyzed (discrete or continuous),

- consistency of results between techniques,

- robustness of results with respect to changes in parameter
values,
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- ease of computation, and

- amount of interaction required between the decision maker and
the analyst.

Multiobjective Decision-Aiding Model Selection Paradigm

Although the existing works provide valuable insights into the
model choice problem, research in this area had not progressed to the point
that a suitable paradigm was available to guide the technique selection
process. All of the approaches mentioned above contain provisions
that make them inapplicable to the general multiobjective decision-
aiding model selection problem, although each may be useful in certain
situations. Such provisions include requirements to determine an a
priori preference structure over model selection criteria, requirements
to include model characteristics that are irrelevant to the decision
process (such as preferences for géal point or aspiration level
approaches), unnecessary elimination of methods from consideration under
certain decision situations, and limited numbers of multiobjective
decision-aiding methods contained in the selection procedure.

Because of this lack of a usable existing model selection
pProcedure, a new paradigm was developed to assist with the model
selection decision. This work built upon the previous work in this
area and resulted in the development of a procedure which may be useful
for the solution of future multiobjective decision-aiding technique

selection problems.
The paradigm is based upon a set of descriptors which characterize

multiobjective decision situvations. For a given technique selection
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problem, a subset of the descriptor set is selected that accurately

describes the decision situation, and that subset is used to screen

sequentially the set of available techniques. Formally, the multiobjec-

tive decision-aiding technigue selection procedure consists of the

following steps:

1.

2.

5.

6.

lO.

11.

Define list of available multiobjective decision-aiding
techniques.

Formulate the decision problem and gain an understanding
of the decision situation.

Examine each decision situation descriptor to determine
relevance to the decision situation.

Select decision situation descriptor subset by deleting
irrelevant descriptors.

Screen list of multiobjective decision-aiding techniques
using templates corresponding to selected subset of
decision situation descriptors.

If all technigues have been eliminated, identify the
technigue (s) eliminated by the smallest number of templates.
Ctherwise, go to Step 9.

Examine templates eliminating identified technique(s) to
determine modifications which allow deficiencies to be
overcome. If modifications can be identified, go to Step 11.
Ctherwise, go to Step 8.

Remove weakest descriptors from the descriptor subset
(Step 4) until one or more acceptable techniques are rein-
stated.

If more than one technigue remains after the completion of
Step 6, develop a matrix display of decision criteria not
reflected by the decision situation descriptors in Table 5-1.
Ctherwise, select the one remaining method as the most
appropriate and stop.

Select the most appropriate method using the matrix display
as a cognitive aid.

Modify identified technique(s) to overcome deficiencies.
Stop.
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A flow chart of the model selection paradigm appears in Figure
5-1. Each of the eight steps of the paradigm is described below.

Step 1 - Define List of Available Multiobjective Decision-Aiding

Techniques. This list should include all methods to which the analyst
has access. In most cases, such a list should be quite extensive.

Step 2 - Formulate Decision Problem. In this step a thorough

understanding of the decision problem and the context within which the

. problem 1is to be solved should be gained. This includes knowledge of
alternative solutions available, type of solution needed by the decision
maker (single best solution, complete or partial ranking, ordinal or
cardinal ranking, etc.), decision~maker attitude toward "satisficing"
solutions, resource constraints, probability of repeated decisions,
ability of the decision maker to conceptualize hypothetical situations,
willingness of the decision maker to express preferences for tradeoffs
among objectives explicitly, use of solution, and time available with
the decision maker. In practice, this step will be carried out with
Step 3 on an iterative basis. That is, proper examination of each
decision situation descriptor to determine its relevance to the decision
situation (Step 3) will force the analyst to return to Step 2 for addi-
tional information in each instance where a characteristic of the
decision situation addressed by a descriptor is not fully understood.

Step 3 - Examine Descriptors for Relevance. Table 5-1 contains a

list of descriptors that characterize multiobjectiwve decision situations.
This list represents the outcome of an investigation into the conditions

under which each technique listed in Table 4-2 may he applied most
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Table 5~1

Decision Situation Descriptors

Finite set of discrete alternatives

Continuous alternatives

Ordinal attributes

Ordinal ranking of alternatives sought

Cardinal ranking of alternatives sought

pPortfolio of discrete alternatives sought

Single-stage decision problem

Multi-stage decision problém with changing preferences
Large number of objectives or discrete alternatives
Need for highly refined solution

Decision maker reluctant to express preferences explicitly

Decision maker experiences difficulty in conceptualizing
hypothetical trade—-offs or goal levels

Decision maker preferences for marginal rates of substitution
among objectives not independent of absolute lewvels of
objective attainment

Need for decision maker understanding of method

Limited time with decision maker available
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appropriately. For the model selection paradigm, Table 4-2 was augmented
by the addition of the interactive methods of Geoffrion, et al. (1972)
and Zionts and Wallenius (1976). The methods of Geoffrion and Zionts-
Wallenius, although not developed for or applied to problems in water
resources planning, have the potential to be useful in such a context.
The descriptor list contains only those elements that were found to
represent distinct characteristics of multiobjective decision situations
that can be identified readily and which provide meaningful information
to the model selection decision process.

To conduct Step 3, each descriptor is compared to the decision
situation to determine which are relevant. To facilitate this step,

each descriptor is described below:

A. Finite set of discrete alternatives. Multiobjective decision

problems in this category contain a finite set of discrete
values that can be assumed by the decision variables. An
example of such a decision problem is the selection of reser-
voir sites from a finite set of alternative sites,

B. Continuous alternatives. This category of multiobjective

problems contains decision variables which can assume a
continuum of values. Continuocus problems can be discretized
so that discrete problem techniques can be applied to them.
Such converted problems represent only approximations of

the original problems. An example of a problem with contin-
uous alternatives is a reservoir sizing problem.

C. Ordinal attributes. Problems with this characteristic have
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E.
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at least one attribute that is susceptible to ordinal compar-
isons only. That is, the degree of objective attainment
along such an attribute is not measurable on a cardinal
scale. Thus, the decision maker may be able to establish
ordinal rankings of alternatives along such an attribute to
reflect his preferences, but cannot place them on a cardinal
scale. An example of such an ordinal attribute is aesthetic

appeal .

Ordinal ranking of alternatives sought. The output of a

decision process can be the identification of the single most
preferred alternative, a partial or complete ordinal ranking
of alternatives, or a partial or complete cardinal ranking
of alternatives. In problems characterized by this déscrip—
tor, the desired output of the decision process is an ordinal
ranking of alternatives.

Cardinal ranking of alternatives sought. In problems char-

acterized by this descriptor, the desired output of the
decision process is a cardinal ranking of alternatives.

Since all decision-aiding methods that yield cardinal rankings
of alternatives also yield ordinal rankings, this descriptor
may be viewed as a finer screen then Descriptor D, above.

Portfolio of discrete alternatives sought. Problems

inwlving the identification of a preferred portfolio of
alternatives are contrasted by this descriptor from problems

in which a single preferred alternative or a ranking of
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alternatives is sought. In such problems, the most preferred
combination from a finite set of discrete alternatives,
under a set of feasibility constraints, is sought.

Single-stage decision problem. This descriptor is appropriate

for one-time decision problems. In such problems, the decision
is not to be repeated and is not affected by considerations

of future decisions. Identification of the complete

preference structure of the decision maker in such problems
may not be needed to determine preferences over the entire
noninferior solution set. In addition, elicitation of
preferences over an attribute that shows small variance over
the set of noninferior solutions may not be necessary.

Multi-stage decision problem with changing preferences.

This type of decision problem is characterized by the
necessity to make repeated decisions, with a significant
probability that the preference structure of the decision
maker will change between decisions. Such problems require
considerations of updating estimates of the preference
structure at each stacge.

Large number of objectives or discrete alternatives. Decision

problems containing large numbers of objectives or discrete
alternatives may render some methods infeasible because of
severe computational implications.

Need for highly refined solution. In this category of deci-

sion problems, sub-optimal or "satisficing" solutions are
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not acceptable. The benefits of increased accuracy in such
problem situations outweigh the increased costs, time and
effort required to implement methods which yield more accurate
and consistent solutions.

Decision maker reluctant to express preferences explicitly.

In decision problems characterized by this descriptor, the
decision maker finds it unacceptable to express preferences
for tradeoffs among objectives explicitly. An example is a
situation in which a decision maker wishes to mitigate
political repercussions from a decision on a controversial
issue.

Decision maker experiences difficulty in conceptualizing

hypothetical tradeoffs or goal levels. In situations where

the decision maker expresses difficulty in expressing
preferred tradeoffs or goal levels without knowledge of
feasible solutions, methods that use actual alternatives in
the decision-aiding process are more appropriate than those
which rely entirely on hypothetical levels of objective
achievement or tradeoffs in the elicitation of decision
maker preferences.,

Decision maker preferences for marginal rates of substitution

among objectives not independent of absolute levels of

objective attainment. In decision situations where the

assumption of independence between decision maker preferences

for tradeoffs and absolute levels of objective attainment
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(preferential independence) is not acceptable, methods which

are based upon such an assumption are not appropriate.

N. Need for decision maker understanding of method. In situations

requiring decision maker understanding of the "black box", methods
which are not easy to understand are inappropriate. Such
situations occur when difficulty is anticipated in gaining
acceptance of solutions or when the decision must be commun-
icated persuasively to other parties. Tversky (1972, p. 296)

and Dyer (1973b, p. 213) have noted the importance of this
criterion in model selection.

0. Limited time with decision maker available. Since the

accessability of the decision maker can vary widely from one
decision problem to another, those methods which require

the analyst to spend large amounts of time with the decision
maker should be avoided when such access is not reasonably
available.

It is noted that the above list of decision situation descriptors
includes only those descriptors which provide meaningful distinctions
among the various multiobjective decision-aiding methods. A number of
additional descriptors which do not reflect distinct differences among
the methods can also be envisioned. Examples of such additional descriptors
that are related to the above list include:

- oObjectives susceptable to cardinal comparisons (related to
Descriptor C);

- single most preferred alternative sought (related to Descriptors
D and E);
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- multi-stage decision problem with unchanging decision maker
preferences (related to Descriptors G and H); and

~ need for screening of alternative solutions (related to
Descriptor J).

None of the additional decision situation desriptors are sufficiently
strong to reduce a list of multiobjective decision-aiding methods
under consideration for application to a particular problen.

Step 4 - Selection of Decision Situation Descriptor Subset.

This step involves a reduction of the list of descriptors contained in
Table 5-1 to a subset that.describes accurately the decision situation
under consideration. This provides a subset of descriptors which will
be used to screen a list of available multiobjective decision-aiding
techniques.

Step 5 - Screen List of Multiobjective Decision-Aiding Techniques.

In order to screen the list of available multiobjective decision-aiding
techniques developed in Step 1 using the reduced set of descriptors
developed in Step 4, the screening templates contained in Appendix B

are used. Fach template corresponds to one of the decision situation
descriptors listed in Table 5-1. These templates provide an effective
and efficient means of rapidly reducing the list of available methods to
a much smaller subset.

Use of the screening templates is straightforward. The analyst
sequentially screens the available set of techniques from Step 1 with the
template corresponding to each of the descriptors remaining in the reduced
set developed in Step 4. In order to insure that the analyst understands

the process and to provide a check on the sequential elimination process,



134
each template contains a set of notes that explains the reasons why the
methods are eliminated under each decision situation descriptor.

It is noted that this sequential elimination process is similar
to the elimination by aspects model of Tversky (1972a and 1972b). However,
it differs in that all descriptors (aspects) are used in the sequential
elimination process, whereas in Tversky's model the sequential use of each
aspect terminates when the set of alternatives has been reduced to a
single member.

Step 6 - Identify Techniques Eliminated by Smallest Number of

Templates. Step 6 1s necessary only if all available techniques have
been eliminated by the initial screening in Step 5. Should this occur,
those techniques eliminated by the smallest number of templates in

Step 5 are identified. If all available technigues were not eliminated
in Step 5, the paradigm proceeds to Step 9.

Step 7 - Identify Modifications. In this step, templates

eliminating the techniques identified in Step 6 are examined to determine
the reasons why the techniques were eliminated. Then an attempt is

made to identify modifications to owvercome deficiencies that make the
techniques inapplicable to the decision problem. Chances of successful
modification will be higher when the number of templates eliminating

the techniques are small in number. If such modifications can be
developed, the paradigm proceeds to Step 11.

Step 8 - Removal of Weakest Descriptors. If modifications to

overcome identified deficiencies could not be identified in Step 7,

the paradigm returns the analyst to Step 4 in order to identify that
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element of the current element subset that is least relevant to the
decision situation. That descriptor is deleted from the subset and
the process continues until at least one technigue is retained at the

conclusion of Step 5.

Step 9 - Develop Matrix of Additional Selection Criteria. In this

step, any considerations (criteria) that the analyst might have in selecting
the most appropriate multiobjective decision~aiding technique, but

which are not reflected in the decision situation descriptor set contained
in Table 5-1, come into play. Such criteria might include such elements
as the availability of the expertise needed for implementation of the
method, the amount of computer time that is required, or how compatible
the method is with group decision making or conflict resolution (Alter,
1977, p. 113). The matrix display is developed by labeling the rows with
the list of methods remaining after Step 8 and creating column headings
from the additional selection criteria. Information for the matrix
entries can be obtained by reviewing the descriptions in Chapter 4 of

the methods remaining under consideration, supplemented if necessary by

a review of the works referenced in Appendix A that pertain to such

methods.

Step 10 - Select Most Appropriate Method. At the conclusion of

Step 9, the analyst has a relatively small matrix display which can

be used as a cognitive aid to assist in selecting the most appropriate
multiobjective decision-aiding method to use in the unigue circumstances
of the decision situation with which he is dealing. At this point

the selection decision can be made from a small number of alternatives
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in consideration of the proper integration of the behavioral, institu-

tional and quantitative aspects of the decision situation.

Step 11 - Modify Identified Technique(s). In this step,

modifications identified in Step 7 are fully developed. Such modifi-
cations could inwvolve changes to a single existing technigue or the

conbination of desirable features of more than one technigue.

Implementation of the Model Selection Paradigm

The model selection paradigm described above was used to determine
the most appropriate algorithmic approach for the development of a deci-
sion support system for the BIA irrigation program portfolio selection
problem. In order to describe the manner in which that selection decision
was made and to illustrate the use of the model selection paradigm, the
outcome of the application of each step of the paradigm to the portfolio

selection problem is summarized below.

Step 1 -~ Define List of Multiobjective Decision-Aiding Technigues.

The list of technigues considered to be available for application to the
BIA irrigation program portfolio selection decision problem was the complete
list contained in Table 4-2 augmented by the interactive methods of
Geoffrion, EE_ii' (1972) and Zionts and Wallenius (1976).

Step 2 - Formulate Decision Problem. Since the decision problem

ard the decision situation in which it is immersed have been documented
earlier, they will not be repeated in detail here. It should suffice
to mention that, at this step, the objectives and alternatives of the
problem had been identified, and that characteristics of the decision

maker and resource and instituticnal constraints had been assessed. In
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addition, it was known that a single most preferred portfolio solution
was desired, that the decision would be repeated annually, and that
access to the decision maker was available. Finally, a good under-
standing of the use of the output of the decision support system had
been gained.

Step 3 - Examine Descriptors for Relevance. In this step, all

decision situation descriptors in Table 5-1 were examined in the context
of the decision situation. Seven descriptors were found to be irrelevant
to the decision situation. A listing of those descriptors and the reasons
why each was found to be irrelevant are provided below:

B. Continuous alternatives. 'The decision problem contains
a finite set of discrete water project construction alternatives
in each budget cycle (fiscal year). Therefore, the cbntinuous
alternatives descriptor was eliminated.

C. Ordinal attributes. All of the attributes related to the
set of objectives to be used in the decision support system
were susceptable to cardinal measurements.

D. Ordinal ranking of alternatives sought. The decision problem
calls for the identification of the preferred portfolio of
alternatives, as contrasted to a ranking of alternatives.

E. Cardinal ranking of alternatives sought. Same rationale as
that for the deletion of Descriptor D.

G. Bingle-stage decision problem. The decision problem requires
a portfolio selection decision to be made in each fiscal year.

A significant probability exists that the preferences of the
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decision maker will change from year to year due to changing
policies or priorities mandated by the Secretary of the
Interior, the Office of Management and Budget, or Congressional
authorization or appropriations committees.

M. Lack of independence between decision maker preferences and levels
of objective attainment. At each stage of this decision problem,
the potential range of impacts of the decision on each of the
objectives is assumed to be small relative to the total unmet
need in each objective. For example, the maximum possible
contribution of jobs resulting from a single year's appropriation
level in the irrigation program is assumed to be small
compared to the number of jobs needed on the reservations
potentially benefitting from the irrigation program. If the
appropriation level available to the program were to be
dramatically increased, then this assumption might become
invalid.

O. Limited time with decision maker available. The decision maker
identified in Step 2 had expressed a strong interest in the
research project and free access to him in the decision making
process was not anticipated to be a problem.

Step 4 - Selection of Decision Situation Descriptor Set. The

descriptor subset used in this application was determined by deleting the

irrelevant descriptors identified in Step 3 from the descriptor set
contained in Table 5-1. The remaining descriptors were:

A. Finite set of discrete alternatives;
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F. Portfolio of discrete alternatives sought;
H. Multi-stage decision problem with changing preferences;
I. Large number of objectives or discrete alternatives;
J. Need for highly refined solution;
K. Decision maker reluctant to express preferences explicitly:;

L. Decision maker experiences difficulty in conceptualizing
hypothetical tradeoffs or goal levels; and

N. Need for deciéion maker understanding of method.

Step 5 - Screen List of Multicbjective Decision-Aiding Techniques.

Screening templates corresponding to the decision situation descriptors
identified in Step 4 were used to screen the list of available techniques
defined in Step 1. A summary of the results of this screening process

is provided below. This summary illustrates the logic upon which the
multiobjective decision-aiding model selection procedure is based.

A more complete understanding of the reasons for the eliminations in this
particular application may be obtained from a reading of the notes of the
templates corresponding to the descriptors listed in Step 4.

All technigues included in the nondominated solution generating

category (first category of methods in Table 4-2) were eliminated
because they are not applicable to discrete problems. For discrete
rroblems, a simple check for dominance can be used to derive the non-
dominated set from the set of all alternatives.

The a priori complete elicitation technigues were eliminated

because of decision maker reluctance to express tradeoffs explicitly
and the difficulties inwolved in reassessing decision maker preferences

at each decision point. Since the results of decisions made using the
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selected model will be disseminated throughout the organizational
hierarchy of the BIA and communicated to Indian leaders on the reser-
vations, any explicit tradeoffs between such objectives as the
protection of water rights and the number of jobs provided could be
extremely controversial. Because of this consideration, the BIA official
identified as the decision maker in the problem situation (Chief Irriga-
tion Engineer) indicated that he would be unwilling to express such

preferences in an explicit form. All of the a priori complete elicitation

methods, however, reguire explicit expressions of preferences. An addi-
tional difficulty with these methods involves the amount of decision
maker time that is required to assess preferences. With the possible
exception of the optimal weighting method, the necessity of eliciting
the preference structure of the decision maker at each decision stége
may be prohibitive.

The methods included in the a priori partial elicitation category

were eliminated for a variety of reasons. These included the need for
the decision maker and others to understand the "black box" of the
selected method, the lack of acceptability of an approximate solution

and computational infeasibility. The problem situation involves not

only the identification of the preferred portfolio of projects, but also
the effective communication of the decision support system to budget
officials of the Interior Department and the Office of Management and
Budget, and to the Congressional appropriations subcommittees. Therefore,
an important criterion in the model selection task is the ease with

which the method can be explained and the perceived credibility that
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is associated with it. The need to establish concordance and discordance
thresholds may reduce the clarity of the ELECTRE method, and the concepts
of the surrogate worth function and the surrogate worth values may
introduce significant difficulties in understanding the SWT method.

In addition, the lexicographic and goal programming approaches were
eliminated since a more finely tuned solution was desired than these
methods can deliver. Further, the lexicographic and ELECTRE methods

can lead to inconsistent results between applications since the order
established on the set of alternatives is a function of the order in
which the objectives are used, or the threshold values chosen for the
discordance condition, respectively. Finally, since the portfolio selec~
tion problem involves a large number of noninferior feasible portfolio
combinations, the need to calculate concordance and discordance conditions
or to develop system versus criteria arrays makes the ELECTRE and compro-
mise programming methods camputationally intractible.

Two of the methods in the progressive elicitation category

were eliminated. The Tradeoff Cutting Plane method was eliminated due
to computational intractibility associated with the very large number of
possible feasible solutions. The methods of Geoffrion and Zionts-Wallen-
ius were eliminated due to their lack of applicability to problems with
discrete alternatives. In addition, since the decision problem contains
a relatively large number of objectives, the requirement to make pairwise
camparisons between all pairs of objectives would make the interaction
between the decision maker and the analyst intolerably time-consuming and

tedious. 'Therefore, the pairwise comparison approach was also eliminated.
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The methods contained in the visual attribute display category

were eliminated because of the large number of feasible portfolio
combinations contained in the decision problem.

Thus, sequential application of the screening templates of
Appendix A corresponding to the descriptors selected in Step 4 resulted
in the elimination of all but three of the multiobjective decision-aiding
methods contained in Table 5-1. Therefore, the paradigm proceeds to
Step 9.

Step 9 - Develop Matrix of Additional Selection Criteria. Two

criteria were identified in this step to select from among the remaining
methods. These were: maximization of the value of the learning process
inherent in the use of interactive models and effectiveness of the deci-
sion maker-model link. However, none of the models was determined to be
superior on both of these counts. All three methods emphasize guaranteed
convergence over extraction of the maximum value of the inherent learning
process, ard only the Trade approach addresses the decision maker-model
link, ‘Therefore, it was decided to incorporate the best attributes of
each of the three methods into a hybrid decision-aiding algorithm which
would remove the emphasis on speed of convergence, focus on extraction
of the maximum learning value of the interactive methods, and contain
an improved decision-aiding display.

A detalled description of the new interactive multicbjective
decision-aiding algorithm that was developed as a result of the applica-
tion of the model selection paradigm is provided later in this chapter.

To illustrate use of the model selection paradigm in cases
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where all methods are eliminated and modifications cannot be identified
in Step 7, an example of the weakening of the descriptor set (Step 8) is
provided below, using the same problem situation.

If no modifications were identified in Step 7 to overcome
deficiencies diagnosed in Step 6, the descriptor set identified in Step 4
would be reexamined to identify the least relevant members. Of the
eight members of the descriptor subset, fiwve clearly could not be deleted
since they are inalterably relevant to the decision problem. These are:

A. Finite set of discrete alternatives;

F. Portfolio of discrete alternatives sought;

H. Multi-stage decision problem with changing preferences;

I. ILarge number of objectives or discrete alternatives; and

K. Decision maker reluctant to express preferences explicitly.

The remaining three descriptors, however, conceivably could be
deleted. These are listed in order of increasing relevance:

L. Decision maker experiences difficulty in conceptualizing
hypothetical tradeoffs or goal levels;

J. Need for highly refined solution; and

N. Need for decision maker understanding of method.

Although the elimination of Descriptors L or N would not reinstate
any methods, the elimination of Descriptor J would reinstate the
lexicographic and goal programming approaches for further consideration.

At the conclusion of Step 8, a matrix of additional selection
criteria (Step 9) would be developed and used for final selection of
the most appropriate technique (Step 10), as discussed previously.

Thus, application of the model selection paradigm led to the
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recognition that modification of the Step, Semops or Trade interactive
methods to overcome identified deficiencies could yield a more effective
tool for the decision problem than was present in the set of available
methods. This recognition, in turn, led to the development of a new
multiobjective decision-aiding algorithm that retained the positive
features of existing interactive methods while overcoming the lack of
learning flexibility of the Step, Semops. and Trade methods. A descrip-
tion of the new algorithm is presented in the pages that follow. First,
desirable attributes that the new algorithm should have relative to the
decision problem are identified and discussed. Then a detailed descrip-
tion of the algorithm is provided, followed by a short discussion of the

new procedure.

Attributes of New Algorithm

In recent years, a number of interactive methods and variations
have appeared in the literature to assist with the multiobjective decision
making problem. Many of these are described in Chapter 4. Limited
comparative evaluations of interactive methods have been presented by
Wallenius (1975) and Dyer (1973b). As demonstrated by the application
of the multiobjective model selection paradigm in the preceding section,
interactive methods may be very suitable for portfolio selection
problems of the type that is the principal focus of this research.
However, in order for an interactive procedure to be fully effective in
addressing that problem, it must not only overcome the previously

identified disability of other interactive procedures, but must also



145
be responsive to a number of other important considerations. These
include the following elements: (1) use of absolute levels of objective
attainment in eliciting decision maker preferences, (2) use of pairwise
comparisons of portfolios, (3) absence of a requirement for expression
of decision maker preferences among objectives in explicit terms,

(4) use of real contextual situations, (5) capture of the maximum
value of learning processes inherent in interactive procedures,

(6) simplicity of implementation, and (7) ability to handle changing
decision maker preferences. Each of these attributes is discussed
briefly below.

Wallenius (1975, p. 1391) reported an experimental finding that
decision makers experienced a much easier task in expressing preferences
for absolute levels of objective attainment than in expressing preferences
for tradeoffs or marginal rates of substitution between objectives.

Dyer (1973a, p. 1379) and Takama and Loucks (1981, p. 449) reported
similar findings. Therefore, it seems logical to assume that an
interactive decision-aiding procedure that elicits decision maker
preferences using absolute levels of objective attainment would be
preferred over one that elicits statements of preferred tradeoff rates.

Cohon and Marks (1975, p. 218) and Krzysztofowicz, gg*gi.

(1977, p. 691) pointed out that the elicitation of preferences through
pairwise comparisons of alternatives has major advantages over elicitation
approaches that present the decision maker with more complex decisions.
This would seem to be an additional desirable feature of a new interactive

procedure if problems with intransitive behavior associated with paired
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choices, as explained by Tversky and Kahneman (1981) and Sage and White
(1983), can be held to an acceptable level. Both Wallenius (1975, p. 1391)
and Krzysztofowicz, et al. (1977, p. 691) expressed convictions that
the decision maker—aﬁalyst interaction should be kept as simple as possible.
Wallenius (1975, p. 1391) and Dinkelbach and Isermann (1980, p. 99)
reported findings that speed of convergence, which has been a major
objective in the development of some interactive methods, 1s not a
significant factor in the chances for successful application of such
methods to real problems in multiobjective decision making.

Loucks (1975, p. 221) cobserved that many decision makers are
reluctant to discuss their preferences among conflicting objectives in
explicit terms. Since the decision maker in the irrigation program
of the Bureau of Indian Affairs may have his decisions scrutinized by
groups of varied interests, this may be a significant consideration.
Therefore, the decision support system should not reguire the decision
maker to express trade-off preferences in explicit terms.

Chandler (1973, p. 419) and Zionts and Wallenius (1976, p. 653)
reported findings that decision makers find it easier to respond to
preference questions in the context of actual situations rather than
in abstract situations. Thus, use of real alternatives in eliciting
decision maker preferences would seem to be a desirable feature to
incorporate into a new decision-aiding procedure.

Hammond, et al. (1977, p. 359), Krzysztofowicz, et al. (1977,

P. 691) and Zeleny (1980, p. 2) emphasized the importance of the learning

Process that is embodied in some computer-assisted decision-aiding proce-
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dures. In order to provide for such a learning process, an interactive
procedure must allow the decision maker to change his mind about earlier
responses based on learning that has occurred during the interactive
process. Zionts and Wallenius (1976, p. 659) and Dinkelbach and Isermann
(1980, p. 99 and 103) explained that such flexibility can be provided
only if early decision maker responses do not constrain the outcomes of
subsequent iterations. Thus, to insure that the learning process inherent
in the interactive approach is not inhibited, the new procedure must
allow the decision maker to use knowledge gained in the interactive
process to modify earlier decisions.

Dyer (1973b, p. 213) reported findings that some interactive
procedures are‘appropriate for use in situations where continuous
availability of expert assistance cannot be assumed. Such situations
would include those in which a multiobjective decision is to be made
on a repeated basis over a long period of time, and the organization
in which the decisions are to be made has limited requisite internal
expertise. Since such is the case in the BIA irrigation portfolio selection
problem, considerations of use in the presence of limited expert assistance
would seem to be significant. In addition, ease of understanding of
the procedure and consequent ease of communicating results to others
are significant considerations in the design of the interactive procedure
in light of the decision situation.

Since the preference structure of the decision maker may change
between subsequent decisions, as noted previocusly, the new interactive

pProcedure should make no assumptlons regarding the form of the decision
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maker's preference structure and should not demand full information on
the complete preference structure of the decision maker. That is, it
should be able to handle changing preferences between subsequent decisions.

An interactive algorithm was developed that overcomes the problems
with computational intractibility inherent in previously developed
interactive precedures when applied to portfolio selection problems.
In addition, it is responsive to all of the considerations discussed above.

A description of the new algorithm is presented below.

Algorithm Description

The new algorithm is an interactive linear multiobjective algo-

rithm based on zero-cne integer programming. As discussed previously,

a significant amount of work has been devoted to the development of
interactive decision-aiding methods. In addition, the literature reflects
some work conducted to develop zero—one integer programming algorithms

for single objective resource-constrained project scheduling problems
(Pritsker, et al., 1969; and Talbot and Patterson, 1978). Further,

Bitran (1977) reported the development of a multiobjective zero-one
integer programming algorithm to be used to generate noninferior sets

of alternatives. However, no work was identified that was focused on

the develcopment of a multiobjective zero-one integer programming algorithm
that can be used on an interactive basis for decision making. This is
somewhat surprising in light of the apparent usefulness of such an approach
to assist with deterministic resource-constrained portfolio selection

problems; a problem class that seems to be fairly common.
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A collection of the notation used to explain the algorithm is

presented below, followed by a description of the algorithm.

Notation

m X n matrix of objective contributions

contribution of construction project candidate i to
objective 7j; ajy > 0 Y i, )

capital budget limit
m X 1 vector of project construction capital requirements

capital requirement for the construction of project
candidate 1

decision maker-specified change in objective 3
objective function selected for change by decision. maker
maximum level attainable by objective j

contribution to objective j of project candidate vector
(portfolio) xK

vector of maximum values of all objectives displayed
simultaneously. Referred to as the "ideal unattainable

solution" vector; f*(x) = [fj*(g): d=1, 2s4e., 0]

vector of objective attainment levels resulting from
project candidate vector (portfolio) xK

cycle counter

number of construction project candidates
number of objectives

vector of cbjective attainment percentages resulting from
project candidate vector (portfolio) xX;
p* = [£.(x) : =1, 2,..., n] -

3*(x)

vector of project candidates X = (XjreeesXjreeesXy) at

iteration k; x* = [x;: i=1, 27..., m]
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Xi integer decision variable that takes on a value of 1 if
project candidate 1 is included in the portfolio,
0 otherwise
Algorithm

Step 1 - Input coefficients which express the potential contribu-
tion of each construction project candidate to each
objective. That is, input A = [aij: 1 =1, 27000,
j =1, 2/¢.., n]. The coefficients ajg of A express
the potential contributions of construction project
candidate 1 to objective j. Such ccefficients are
derived from field data. Objectiwves that are to be
minimized are converted to maximization problems by
multiplying the coefficients in columns j by -1 (see
Step 4).

Step 2 - Input coefficients which express capital requirements
for project candidates. That is, input C = [cj: i=1,2,
««+r m]. The coefficients cj of C express the capital
requirements of project candidates i. Such coefficients
are obtained from project planning documents.

Step 3 - Input budget constraint b. Scalar b represents the capital
resource constraint. Initialize cycle counter K to k = 1.

Step 4 - Calculate maximum possible contributions to each objective
separately within budget constraint b without regard to
the levels of other objectives. That is, calculate

*

£ (x) = {fj*(g): j=1,2s+.., n}]. This is accomplished by



Step 5 -

Step 6 -
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solving the n problems:

m
£4*(x) = max .Z aj§Xi
i=1

m
i=1

xi =0, 1 Vi .

The solutions to these n problems represent the maximum
attainable levels of the n objectiQes fj(§); 3 =1y 25000, Ny
without consideration of the levels of the other objectives.
The 1 x n vector ff(§) is referred to as the "ideal
unattainable solution”.

Calculate the initial solution. That 1is, calculate

F = [x:1: £x5) = [£.(x5)]; and P* = [£,(x5) .
TR TR e

This is accamplished by solving the problem:

m
n fa*(x) - L aj4xi
min X 1= i=]1 ] (6-2)
J=1
£5*(x)
subject to
m
L cixj <b (6=3)
i=1
x; =0, 1 ¥Yi . (6-4)

Present the decision maker with the initial solution.

This consists of the following information:
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a. E£(xF) = [£5(x))

=)
c. Factor profile graphic depicting E}EF).

Step 6 represents the initial involvement of the decision
maker with the decision support system for a given
decision problem. The solution display includes a
vector of absolute levels of objective achievement,
a vector of percentages of ideal (unattainable)
objective achievement, and a graphical display of objec-
tive achievement. The display is arranged to facilitate
ease of decision maker comprehension, as illustrated in
the example problem in Appendix C.

Step 7 - Ask the decision maker if the current nondominated solu-
tion is his most preferred solution. It is not antici-
pated that an affirmative answer will be received to
this question during the first iteration, even though
it is entirely possible that the initial solution will

ultimately be identified as the most preferred solution.

Unlike most other interactive algorithms, this procedure
is sufficiently flexible to enable the decision maker

to explore other solutions that may be less satisfactory
than the current one and still return to the current

one at some future point. If an affirmative answer is
received to the question, the algorithm goes to Step 11

and the procedure terminates. If a negative answer is
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received, the algorithm proceeds to the next step.
Step 8 - Ask the decision maker to specify an increase or
decrease in the attained level of one or more objectives.
This may be accomplished by asking the following four
guestions: (1) which objectives are the least satis-
fied, (2) how much change is desired in the least
satisfied objective, (3) in which objectives is the
decision maker willing to accept a decreased contri-
bution, and (4) how much change is acceptable for the
objectives to be decreased? Add appropriate constraints
and find the next solution. That is, ask the decision
maker to specify one or more objectives § and changes
Af5(x). 2A4d new constraints £5(x) > £3(x) +
A f’3’<§)- Note: A fa(i) can be positive or negative.
Set K =k + 1. Step 8 allows the decision maker to
specify an increase or decrease 1in one or more oObjectives
so that the impact on the other objectives may be observed.
Step 9 - Calculate new solution. That is, calculate xK, f(xK)
and pk. This is accomplished by solving problems (6-2)-
(6~4) with the additional constraint(s)
f'a(zq_“)z?j(g_j"l) +Af.'5. (6-5)
Step 10 - Present the decision maker with the new and previous
solutions. This includes the following information:

a. Previous solution -

£(xk-1) ; pk-1 ; factor profile



b. Current solution -
£(xX) ; p* ; factor profile

Ask which solution is preferred.
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depending on the response of the decision maker. Go

to Step 7.

Step 11 - The most preferred solution has been identified. Print

£(xK), pK, xK and factor profile.

Stop.

Figure 5-2 presents a flow chart of the interactive algorithm.

For problems in which objective contributions ajj can assume

negative values, equation (6-2) must be modified to

m
n | E£4%(x) - & ajqxj
min & i=1 |
j:]_ fj*(zi) . fjuu.u(i)
where fjmin(g) is fourd by solving the problem
min a4
£.N(%) =min ¥ a;.x.
b= i=p It
m
subject to L cixj <b
i=]

ki =0,1 Vi,

In such problems, pX must be modified to

E& = ,fﬁ(XK) . .
fj*(_}f\)-}_ fjluul(.—xjx)

(6-6)

(6=7)

(6-8)

(6-10)

Such changes are necessary to account for the fact that the lower bound

of the range variation for objectives with negative

could be less than zero.

ajy coefficients
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Input A, C and b

Set k =1

o

Calculate _:f_* (x):

m
max & ajiXi
i=1

m
s.t., & cixXi < b =~ ]
i=1 -

Xi=0'l iJ

E

Calculate xK, £(xf) and pX:

m
. n £4*(x) -.2 aj§xi
min X i=1
j=
£5*(x)
m
s.t. &L cjxi <b , % =0,1 Vi
i=] -

o

Display for decision maker:
£(xK), pk, factor profile

Figure 5-2

Flowchart of Interactive Algorithm
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current
solution the
most preferred
clution?

Decisio’r} maker specifies
J and Af3
r k=k+1 l

1
Calculate xX, £(xK), and pK:

m
n fa*(x) = L aj-xi
min & 1= i=1 ]
j=1

fj*(_}g)

- o gkl .
set. £3(x%) > £5(*7H) +A£3
m

L cixi <b ,xi =0,1 Vi
i=1 —

]
Display for decision maker:

£(xk-1), pk-1, cycle k-1 factor profile

£(x), pX, cycle k factor profile

ich
solution

‘ ~ £ (ik-’l) is preferred?

£(xX)

)

Figure 5-2 (continued)

Flowchart of Interactive Algorithm
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Discussion

A number of points concerning the above algorithm warrant
discussion. As stated earlier, the algorithm enters a frontier that
has heretofore received little, if any, attention: the use of zero-one
integer programming on an interactive basis for resource-~constrained
multiobjective decision making. In addition, it differs from many
other multiobjective approaches in several other wéys.

Most interactive methods tﬂét have been developed to date have
emphasized speed of convergence at the expense of learning and flexi-
bility. Hammond, et al. (1977), Rrzysztofowicz, et al. (1977) and others
have pointed to the learning process that is inherent in interactive
procedures as one of thelr most valuable attributes. However, it would
seem that speed of convergence and learning are conflicting objectives
of interactive methods. This is because procedures that provide for
rapid convergence to a preferred solution do not allow decision makers
to use the knowledge gained in the interactive process to modify earlier
statements of preference. If sufficient flexibility is incorporated into
an interactive algorithm to allow a decision maker to change his mind
in such a manner that earlier preference decisions do not constrain the
outcomes of subsequent interactions, then convergence cannot be guaran-—
teed. It has been noted previously that Wallenius (1975, p. 1391) and
Dinkelbach and Isermann (1980, p. 99) reported experimental findings
that speed of convergence does not appear to be a significant factor
for success in the minds of decision makers. Thus, the new algorithm

Presented above emphasizes flexibility and the extraction of maximum
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value from the learning process over guaranteed convergehce.

Some multiobjective methods that are based on minimizing distances
from ideal or aspiration levels use absolute distances for the distance
metric. As pointed out by Zeleny (1973, p. 299), however, such an
approach does not provide for commensurate metrics when the feasible
ranges of decision variables are significantly different. Therefore,
the minimization problems contained in Steps 5 and 9 are based on
relative distances from the "ideal unattainable solution" rather than
upon absolute distances. Although an absolute distance metric could
have been used, it may have resulted in the generation of initial solutions
in Step 5 that were far from the preferred solution being sought, thus
increasing the level of difficulty for the decision maker and increasing
the number of interactions required to converge on the preferred solution.

The fact that the algorithm is based on minimization of relative
distances from the ideal unattainable solution rather than from decision
maker-specified aspiration levels is also significant. Methods using
the aspiration level approach, such as the Semops method, reguire the
decision maker to supply preference information in order to find an
initial solution. The use of aspiration levels may introduce needless
complexity into the decision problem since the decision maker may have
no idea of where to place them. Payne, Laughhunn and Crum (1980) also
demonstrated that use of achievable aspiration levels can result in
intransitive choice behavior since decision maker preferences for
incremental changes in objective achievement and attitudes toward risk

can change whenever a translation involves crossing an aspiration level.
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The use of maximum or minimum attainable values for each objective serves
the same purpose as aspiration levels, requires no preference information
to get an initial solution, and eliminates intransitive behavior
associated with crossing sepiration levels.

Another important characteristic is that, since the algorithm
uses pairwise comparisons of alternatives instead of pairwise comparisons
between objectives to elicit decision maker preferences, the assumption of
preferential independence among objectives is not a necessary condition
for model use. In addition, many of the problems with intransitive
behavior in some paired choice solution methodologies do not arise in
use of the algorithm developed in this study. Since the model is deter-
ministic, certain preference reversals in paired choice situations
explainable by regret theory (Bell, 1982; Sage and White, 1983) and
prospect theory (Tversky and Kahneman, 1981) do not occur. 1In the latter
case, decision weights that may be associated with probabilities of
outcomes are not variable, since the model is to be operated under
conditions of certainty. As Tversky and Kahneman (1981, p. 454) pointed
out, non~variable decision weights do not contribute to preference
reversals dve to framing of acts, outcomes or contingencies. The use of
target levels that cannot be exceeded prevents problems with intransi-
tivities assocliated with translation across aspiration levels, as
described by Payne, Laughhunn and Crum (1980). Finally, the algorithm
reduces the occurrence of intransitive behavior associated with incon-
sistent framing by allowing the portfolio selection problem to be

treated as a concurrent decision problem. Tversky and Kahnemen (1981,
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p. 455) pointed out that the complexity of many problems, such as port-
folio selection problems, prevents decision makers from integrating
alternatives even if they wanted to do so. Such problems are therefore
treated as many independently framed decision problems, yielding pre-
ferences that are different than would occur if the decisions were
compined. The new decision-aiding algorithm allows the decision maker
to treat a water project portfolio selection decision as a concurrent
decision problem instead of as a series of individual problems.

Other characteristics of the new algorithm that differ from
other multiobjective decision-aiding methods, but which are responsive to
the decision situation, include the requirement that the decision maker
express preferences for absolute levels of objective attainment rather
than preferences for tradeoff ratios between objectives, the proViéion
for pairwise comparisons of alternative solutions rather than requirements
for more complex decision maker decisions, and the use of actual non-
inferior alternatives to elicit decision maker preferences rather than
the use of hypothetical alternatives.

The use of both tabular and graphic output displays to aid
decision making is appropriate to the decision situation. Lucas (1981)
found that cognitive decision style is an important factor in successful
use of decision support systems. Lucas' experimental results indicated
that decision makers with heuristic decision styles respond differently
to graphic output displays than do those with analytic decision styles.
Generally, graphic displays were found to be more effective than

tabular displays for decision makers with heuristic decision styles,
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although tabular displays were more useful for some purposes with
analytic users. Sage (1981l), on the other hand, held that separation of
thought processes into analytical and heuristic models was not compatible
with reality (p. 658). Sage further pointed out that cognitive processes
vary not only across individuals but within the same individual and that
decision support processes must provide for both analytical and heuristic
support to be effective. Huber (1983) found the literature linking
observed behavior and presumed cognitive style to be contradictory. He
concluded that decision support systems should not be designed to fit
the cognitive style of a particular decision maker, but should enable
users to exercise an assortment of styles in their decision tasks. He
pointed out that, not only do individual users exhibit variable
decision characteristics, but that most decision support systems
have multiple users over time.

Doktor and Hamilton (1973) found that managers typically have
heuristic decision styles whereas management scientists typically have
analytic decision styles. Decision makers (decision support system users)
in the irrigation program of the Bureau of Indian Affairs typically are
program managers with engineering backgrounds. It is reascnable to
expect that such decision makers would exhibit both heuristic and
analytic characteristics, as described by Sage (1981). Thus, use of a
decision~aiding display that uses both tabular and graphic output is
appropriate.

The new interactive decision-aiding algorithm is illustrated

with a simple numerical example in Appendix C.



Chapter 6
DEVELOPMENT OF A DECISION SUPPORT SYSTEM

The multiobjective decision-aiding algorithm described in the
previous chapter 1is just one of many that have been developed in recent
years. Unlike most, however, this algorithm constitutes the heart of a
fully developed decision support system that has been constructed to
solve an actual problem in water resources decision making.

The term, "decision support system" as used herein refers to
a complete, systematic procedure that is fully developed for the support
of complex decisions. Such a system is normally tailored to fit the
unique circumstances of a specific problem situation. It is not limited
to the development of a mathematical decision-aiding algorithm, but also
includes all other components that are necessary for effective decision
making, such as the specification of objectives, algorithm programming,
ard data collection system.

This chapter describes the development of a decision support
system for the water project portfolio selection problem. The decision
support system is built around the decision-aiding algorithm described
in the previous chapter and is set forth in the following components:
Preparation of a computer program to operationalize the algorithm, speci-
fication of the objectives upon which the decision is to be based, and

collection of input data.
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Algorithm Programming

During the development of the interactive algorithm described

in Chapter 5, the potential size of the rortfolio selection problem was
of concern initially. The number of portfolio combinations possible
with the 322 project candidates identified in the data collection effort,
for example, is 2322 = 5,3x10%6., The algorithm, although conceptually
sound, would not be useful if the capability did not exist to implement
it with the size of problems that it was likely to encounter. Therefore,
an lnvestigation was made in conjunction with the development of the
algorithm to determine the capability of modern hardware and software to
solve zero-one programming problems of such an order of magnitude. The
results of that investigation are summarized below, followed by a des-

cription of the program that was developed to implement the algorithm.

State of the Art of Zero-One Integer Programming

A widely accepted framework for classifying and comparing integer
programming solution technigues was developed by Geoffrion and Marsten
in 1972. Geoffrion and Marsten divided integer programming solution
technigues into four categories: enumerative, Bender's decomposition,
cutting plane and group theory. Enumerative approaches involve searches
for all possible solutions in ways that make exhaustive consideration
of each possible solution individually unnecessary. This category includes
all implicit enumeration and branch and bound techniques. The Bender's
decomposition approach converts mixed integer programming problems to

equivalent all-integer problems for solution. Cutting plane methods
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involve the relaxation of problem constraints, followed by sequential
constrictions. Group theory methods involve relaxation of nonnegativity
constraints on integer variables and separation of the problem into
cardidate problems.

A number of authors have investigated computational efficiencies
of integer programming software, with some work dewvoted to the solution
. of pure zero-one programming problems. The results of these efforts
reflect the considerable progress that has taken place in recent years
to improve the computational efficiencies of such software. |

In 1967, Lemke and Spielberg reported computational experiences
with three integer programming codes to solwve (-1 problems. Although
they found widely varied efficiencies, they reported successful solutions
to problems with up to 89 0-1 variables and 28 constraints.

In 1969, Geoffrion tested the relative efficiencies of five
implicit enumeration programs using problems containing up to 80 0-1
variables. In addition, he found an improved implicit enumeration
algorithm to be capable of solving problems with up to 90 0-1 variables.

In their 1972 work, Geoffrion and Marsten reviewed 14 integer
Programming packages and reported data on problem solving efficiencies
on a number of these, including some results on applications to pure
0-1 programming problems. Their findings included a 114 0-1 variable,

60 row problem which was solved in 0.3 minutes of CPU time using an
enumerative algorithm; and a 7,000 0-1 variable, 150 row problem which was
solved in 40 minutes of CPU time using a cutting-plane algorithm.

Brue and Burdet (1974) demonstrated the efficiency of a general
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branch and bourd algorithm to solwve pure 0-1 programming problems by
presenting data on the solutions to 13 problems with up to 500 0-1
variables and 200 constraints.

Granot and Granot (1980) reported findings that over 95% of 800
problems with up to 70 0~1 variables and 50 constraints were solved in
less than 90 seconds of CPU time.

Hughes, EE,ii' (1976, p. 2) and Nauss (1979, p. 5) observed that
the current trend in integer programming is toward almost exclusive use
of branch and bound (enumerative) approaches. Reasons for this trend
have been suggested by Nauss to include the flexibility inherent in the
b