
Developing a Reliable and Economical Web Portal for Meals on Wheels 
 

 
 

A Technical Report submitted to the Department of Computer Science 
 
 

Presented to the Faculty of the School of Engineering and Applied Science 
University of Virginia • Charlottesville, Virginia 

 
In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 
 
 

Alexander Hicks 
Spring, 2020 

 
 

Technical Project Team Members 
Michael Benos 
Kyle Leisure 

Kevin Naddoni 
Maxwell Patek 
Joshua Santana 

Nathanael Strawser 
 

 
On my honor as a University Student, I have neither given nor received 
unauthorized aid on this assignment as defined by the Honor Guidelines 

for Thesis-Related Assignments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1 

 
 

Developing a Reliable and Economical Web Portal for Meals on Wheels 
 

Table of Contents 

Abstract – 2 

List of Figures – 3 

1. Introduction – 3 
 1.1 Problem Statement – 3 
 1.2 Contributions – 4 

2. Related work – 5 

3. System Design – 6 
 3.1 System Requirements – 7 
 3.2 Wireframes – 9 
 3.3 Sample Code – 10 
 3.4 Sample Tests – 15 
 3.5 Code Coverage – 17 
 3.6 Installation Instructions – 19 

4. Results – 21 

5. Conclusions – 23 

6. Future Work – 24 

7. References - 25  



 2 

Abstract 

During the 2019-2020 school year, our capstone team developed a new web application 

to replace the existing portal for Meals on Wheels’ (MOW) Charlottesville office. Over eight 

months, we worked collaboratively with each other, our customer, and our professors/evaluators 

to iteratively develop an application that allowed Meals On Wheels to plan, track, assign, and 

deliver meals to its clients in the greater Charlottesville area. In the early stages of our project, 

we spent several meeting sessions with MOW staff to gather requirements and observe the 

existing portal. In doing so, we discovered several organizational flaws and inefficiencies in the 

existing portal, prompting a complete rebuild.  

We iteratively developed a new web portal in twelve sprints, each lasting two weeks. 

Using GitHub projects, we transformed our customer requirements into actionable issues of 

varying story point values, which were assigned to team members at each sprint planning 

meeting. Some of such issues were broken down into smaller items when needed and assigned to 

subsets of our team. Every other Friday, we met with MOW staff to show our progress and 

acquire feedback about our design choices. By doing so, we were able to develop an application 

that was significantly faster, better organized, and highly intuitive.  

Our web application is highly maintainable and built with modern frameworks and 

dependencies. The system serves both staff and volunteers in the day-to-day details of job 

assignment, meal packing, and route delivery. Staff are enabled to assign volunteers to specific 

jobs, update client information, and generate statistical counts and billing reports. Volunteers can 

view their assigned jobs and delivery routes as well as request and fill substitutions. Our web 

application allows for improved workflow for MOW coordinators by enabling them to better 

plan and distribute meals to a large number of clients. In creating this portal, we are contributing 



 3 

to mitigating nutritional scarcity and hunger in America’s population, and we believe that our 

application will robustly serve the local Charlottesville community for the next several years. 

List of Figures 

 
Figure 1  Screenshot of “Manage Jobs” page Page 8 

Figure 2 Screenshot of “Manage Assignments” page Page 8 

Figure 3 Screenshot of “Monthly Billing” report Page 27 

Figure 4 High-fidelity wireframe Page 11 

Figure 5 Interactive demo presented to the customer Page 12 

 

1. Introduction 

1.1 Problem Statement 

Despite America being one of the richest countries in the world, an estimated eight 

million of its aging citizens face the threat of hunger (World Bank, 2019; NCOA, 2015). Meals 

on Wheels is America’s oldest and largest organization dedicated to mitigating this issue through 

community chapters (MOWA, 2019). The non-profit’s local chapter delivers meals to disabled or 

elderly people in the Charlottesville-Albemarle area who cannot cook or buy food themselves. 

With the help of volunteers, the organization packs, labels, and distributes meals to customers 

via various delivery routes. In addition, volunteers drive a few shuttle routes to deliver meals to 

locations outside of the Charlottesville-Albemarle area (A. Dudley, personal communication, 

September 27, 2019). 



 4 

While the greater U.S. Meals on Wheels organization sells professional software to help 

staff manage the complexity of their tasks, the Charlottesville office cannot afford it (A. Dudley, 

personal communication, October 11, 2019). Thus, staff managed volunteers, customers, and 

routes by hand until approximately three years ago, when a University of Virginia computer 

science capstone team created a web portal for them. Adopting that web portal gave Meals on 

Wheels’ staff more time to focus on essential management by automating physical reports and 

tedious manual tasks, which include: managing delivery routes, maintaining current and 

prospective customer information, and ensuring that all daily jobs are filled by at least one 

volunteer, can get rather complex due to a combination of daily, weekly, biweekly, monthly, and 

one-time volunteer shifts and customer needs (S. Bayker, personal communication, September 

13, 2019).  

    Unfortunately, there were several issues with the existing portal. First, staff complained that 

the web application had become increasingly slow over time. After examining the existing 

codebase, we believed this slowness was likely due to its cluttered, unclear data storage and the 

use of a cheap, inefficient hosting solution. Second, staff identified several organizational 

oddities within the app layout, making some tasks take longer than required, sometimes 

necessitating twice the number of clicks and screens. Finally, staff requested the addition of new 

features, including historical report generation and general search functionality. It was clear that 

the system needed an update; however, the technical debt accumulated by the separate capstone 

teams developing features over a two-year period necessitated a rewrite (Allman, 2012). 

 

1.2 Contributions 



 5 

In the end, we were able to successfully deliver an freshly-built, improved web 

application to increase the efficiency and effectiveness of meal planning, volunteer delivery, and 

job filling.  

The new application satisfies Meals on Wheels’ needs and has a more reasonable and 

maintainable backend for long-term deployment, including state-of-the-art modularity via 

Docker, normalized database models, and cost-effective cloud deployment via Amazon Web 

Services (Microsoft, 2017). By redesigning and modernizing from the ground up, our project 

enables Meals on Wheels to operate at lower costs and function more quickly; the organization 

should have more time and money to help customers in need. The new web application was 

released on March 27th, 2020 and includes numerous critical features, such as client 

management, volunteer assignment, and route delivery. 

 

2. Related Work 

    Meals on Wheels of Charlottesville has been using a custom software solution to assist in 

daily operations for years. The national chapter of Meals on Wheels partners with software 

company Accessible Solutions, Inc. to offer licensing options of a software called ServTracker; 

although this software would fulfill the Charlottesville chapter’s needs, this solution is not 

affordable given the Charlottesville chapter’s budget (Accessible Solutions, Inc., 2018; A. 

Dudley, personal communication, October 11, 2019). For this reason, a prior capstone team was 

recruited to provide a pro bono solution. Over time, this custom solution became ineffective for a 

variety of reasons, including overall slow speed of some features, unpredictable system crashes 

and some features becoming obsolete altogether.  Our task involved rewriting the custom 

application in use, prioritizing usability and stability while introducing new functionality so that 



 6 

Meals on Wheels of Charlottesville could be more productive. Two notable features we added 

that did not exist in the previous portal include: the “Manage Jobs” page (Fig. 1) and the “Open 

in Google Maps” button. “Manage Jobs” allows staff to view who is working on a particular day 

without generating reports and “Open in Google Maps” allows users to export route directions 

directly into Google Maps from the portal.  

 

Fig 1. Screenshot of “Manage Jobs” page 

3. System Design 

At a high level, our application has two sets of users: the MOW staff and volunteers. The 

staff has the ability to manage jobs, customers, volunteers, assignments, routes, announcements, 

and substitutions. They can also view historical reports for billing and jobs. The volunteers have 

the ability to view the jobs they have signed up for, request a substitute for their assigned jobs, 

and take open substitutions.  



 7 

 

Fig 2. Screenshot of “Manage Assignments” page 

This application is a rewrite of a previous capstone project. For this reason, we continued 

to use the GPL-3.0 license so that we could utilize the previous code. We decided to develop our 

application using Django, a python web framework, because it was used for the previous 

capstone project and because we all had prior experience with it. 

3.1 System Requirements 

By communicating with the MOW staff, we are able to gather system requirements and 

co-align our vision with their needs. Because we focused on consistent customer collaboration, 

we were able to make healthy design decisions early on that improved our development 

speed  later on. Furthermore, we spent less time rewriting features and more time robustly 

building out the rest of the application 

 
Requirements for a Minimum Viable Product 

• All Users 
o As a user, I should be able to create my own account (including custom 

username), so I can log in and see personalized information. 
o As a user, I should be able to request to change my password in case I forget it. 

• Volunteers 



 8 

o As a volunteer, I should be able to release my route on a day, so someone else can 
substitute for that job. 

o As a volunteer, I should be able to pick up a released route on a particular day, so 
no routes go without a volunteer. 

o As a volunteer, I should be able to pick up a new route that has not been assigned 
to any volunteer, so I can plan my hours in advance. 

• Staff 
o As staff, I should be able to create clients, so I can accommodate a growing client 

base. 
o As staff, I should be able to generate reports, so I can prepare daily operations. 
o As staff, I should be able to manually create delivery routes, so I can customize 

the volunteer's tasks. 
o As staff, I should be able to manually delete delivery routes, so I can avoid 

cluttering the portal with unused routes. 
o As staff, I should be able to assign volunteers to recurring routes, so I can plan 

delivery. 
o As staff, I should be able to substitute one-time volunteers for jobs, so I can 

ensure that all necessary jobs are filled. 
o As staff, I should be able to release volunteers from their recurring routes, so I can 

assign another volunteer to the recurring route. 
o As staff, I should be able to one-time release volunteers from their routes, so I can 

allow other volunteers to substitute. 
o As staff, I should be able to print reports that have been generated by any staff, so 

can have physical report copies. 
o As staff, I should be able to see who is volunteering on a particular day, so I can 

stay organized and communicate as necessary. 

Desired Requirements 

• All Users 
o As a user, I should be able to access the site from mobile platforms, so I can 

access the portal from my cell phone. 
o As a user, I should be able to navigate to each feature within 5 clicks, so that it is 

not too complicated to use. 
o As a user, I should be able to get familiar with the portal quickly, so I don't have 

to spend a lot of time learning how to navigate it. 
o As a user, I should be able to use the portal without it being slow so I can get 

things done efficiently. 
• Staff 

o As staff, I should be able to sort volunteer schedules by the day of the week, so I 
can see who is scheduled for which routes each day. 

o As staff, I should be able to automatically email new volunteers through the 
portal, so I can welcome new volunteers to the portal. 

o As staff, I should be able to email volunteers scheduled for a given day, so I can 
have better day-to-day communication with the volunteers. 



 9 

o As staff, I should be able to store day-to-day statistics for meals for 3 months, so I 
can analyze substitutions and new volunteer counts. 

o As staff, I should be able to compile yearly reports, so I can submit them to the 
Board. 

o As staff, I should be able to access reports for at least a year, so I can refer back to 
past data if needed. 

o As admin-staff, I should be able to reset passwords for staff and volunteer 
accounts, so I can manage everyone's accounts if needed (lock-out, security, ...) 

o As staff, I should be able to remove clients, so I can eliminate confusion in meal 
planning 

o As staff, I should be able to update client data so I can accommodate any changes 
in their diet/address/... 

 

3.2 Wireframes 

 

Fig. 4: High-fidelity wireframe 

Wireframes are important to allow the customer to visualize the features proposed by the 

development team. Our team developed a series of wireframes to accomplish this, beginning 



 10 

with low-fidelity sketches. We used these sketches to develop higher fidelity wireframes, as 

shown in Figure 4. From this, we created an interactive prototype demo, as shown in Figure 5. 

Since our project involved maintaining the styling and much of the functionality of the legacy 

system, the demo focused on the changes that we were thinking to implement. The wireframes 

created before the interactive demo were useful for the development team to iterate on the 

proposed functionality, while the interactive demo itself was useful in conveying design 

decisions to the customer. 

 

Fig. 5: Interactive demo presented to the customer 

3.3 Sample Code 

In this section are three sample views, three sample models, and three sample templates 

from our application.  

 

This is the code for the view route on day functionality of the application. We have a more 
complex view for viewing and managing the general route, but this view is designed for the 
volunteer to be able to see all the necessary information for them to deliver to their route, 
including a google maps render of the route as well as instructions broken down by 
location.  To do this, this view gets the route and the day. If the day is in a bad format, it will 
return volunteers to a 404 because there is nothing else for them to see, and it will return staff 
to the route management page.   
 
@login_required 
def view_route_day(request, route_number, date): 
    """ 



 11 

    view route on a specific date 
    """ 
    # get the route instance 
    route = get_object_or_404(Route, number=route_number) 
    is_staff = request.user.is_staff 
    # convert the url to a datetime, if exception redirect based on auth 
    try: 
        date = datetime.datetime.strptime(date, "%m-%d-%Y") 
    except ValueError: 
        if is_staff: 
            # go the the no specific day view if staff 
            return HttpResponseRedirect(reverse("routes:view_route", args=[route.number])) 
        else: 
            # just 404 for the volunteers 
            raise Http404 
 
    navbar = "navbar_staff.html" if is_staff else "navbar_volunteer.html" 
    customers = get_customers(route, date) 
 
    return render( 
        request, 
        "route-on-day.html", 
        { 
            "customers": get_customers(route, date), 
            "route_name": route.name, 
            "route_num": route_number, 
            "date_picker_date": date.strftime("%Y-%m-%d"), 
            "navbar": navbar, 
            "MOW_LAT": MOW_LAT, 
            "MOW_LON": MOW_LON, 
        }, 
    )  

This view is the take substitution view that allows volunteers to fill a substitution that has been 
opened by another volunteer or staff member.  This view posts the request from the volunteer, 
making sure that the substitution has been requested before assigning the new volunteer to the 
job.   
 



 12 

@login_required 
def take_substitution(request): 
    """ 
    This function assigns a volunteer to a given job. 
    """ 
    if request.method == "POST": 
        try: 
            sub = get_object_or_404(Substitution, pk=request.POST.get("pk")) 
        except: 
            log.error("Attempting to take substitution that does not exist.") 
        if sub.assignment.volunteer == request.user.volunteer: 
            # might as well say it is not via substitutions in this case 
            sub.delete() 
        else: 
            sub.volunteer = request.user.volunteer 
            sub.save() 
        return HttpResponseRedirect(reverse("volunteers:open_jobs")) 
 
    else: 
        log.info( 
            "Attempting to take substitution with {} method. Only POST allowed.".format( 
                request.method 
            ) 
        ) 
        return HttpResponseRedirect(reverse("volunteers:my_jobs")) 

 

This view gathers all volunteers and renders a PDF of them ordered by the date they joined 
MOW. The to_pdf method takes in HTML and returns a FileResponse, making report 
generation simple. 
 
@staff_member_required 
def volunteer_join_date_report(request): 
    """ 
    Generates a pdf list of volunteer join dates 
    """ 
 
    # order clients by join date, then by name 
    join_dates = Volunteer.objects.all().order_by("join_date", "user") 
    template = get_template("pdfs/volunteer-join-date-report.html") 
 
    return to_pdf( 
        template.render({"join_dates": join_dates, "today": datetime.datetime.now(),}) 
    ) 

 



 13 

This model maintains all necessary data for the volunteers of MOW. 
 
class Volunteer(models.Model): 
    """ 
    Model for meals volunteers 
    """ 
 
    user = models.OneToOneField(User, on_delete=models.CASCADE) 
    organization = models.CharField(max_length=100, default="", blank=True) 
    address = AddressField(null=True, blank=True, on_delete=models.PROTECT) 
    home_phone = models.CharField(max_length=50, default="", blank=True)  # Home Phone 
    cell_phone = models.CharField(max_length=50, default="", blank=True) 
    work_phone = models.CharField(max_length=50, default="", blank=True) 
    birth_date = models.DateField(null=True, blank=True) 
    notes = models.TextField(default="", blank=True) 
    join_date = models.DateField(default=date.today) 
    number_of_people = models.IntegerField(default=1) 
    dont_email = models.BooleanField(default=False) 
 
    def __str__(self): 
        return f"{self.user.first_name} {self.user.last_name}" 
 
    class Meta: 
        ordering = ["user__last_name", "user__first_name"]  

This model is for announcements that staff members post to the application. It keeps track of 
which user made it, as well as when it should stop being displayed in addition to the actual 
content.  
 
class ManagerAnnouncement(models.Model): 
    created_by = models.ForeignKey(Volunteer, on_delete=models.PROTECT, null=True) 
    display_until = models.DateField(null=True, blank=False) 
    date_created = models.DateField( 
        default=date.today, editable=False, blank=False, null=False 
    ) 
    announcement = models.TextField(default="", blank=False) 
 
    def __str__(self): 
        return self.announcement  

This model maintains historical records for volunteer data. A cron job that runs daily saves 
instances of this model to keep track of the volunteer, date, and job so that historical reports 
can be generated. 
 
class VolunteerRecord(models.Model): 
    """ 
    This serves to record-keep volunteers and what jobs they actually did 
    """ 
 
    volunteer = models.ForeignKey( 
        Volunteer, related_name="record", on_delete=models.SET_NULL, default=None, null=True 
    ) 
    job = models.ForeignKey(Job, on_delete=models.SET_NULL, default=None, null=True) 



 14 

    date = models.DateField(default=date.today) 
    original = models.ForeignKey(Volunteer, on_delete=models.SET_NULL, default=None, null=True) 
    is_substitution = models.BooleanField() 
 
    class Meta: 
        unique_together = ["volunteer", "job", "date"]  

 

This template is for the “My Jobs” page. It renders all the jobs for a given month based on a 
URL parameter and lists those jobs, along with a link to their detail page if the job is also a 
route. Buttons at the top allow the user to toggle to different months. 
 
<div class="container" style="padding-bottom: 5%;"> 
  <div align="right"> 
      {% if request.GET.month %} 
        {% if request.GET.month != "0" %} 
          <a href="{% url 'volunteers:my_jobs'%}?month={{request.GET.month|add:-1}}"><button 
type="button" class="btn btn-default">Previous month</button></a> 
        {% endif %} 
          <a href="{% url 'volunteers:my_jobs'%}?month={{request.GET.month|add:1}}"><button type="button" 
class="btn btn-default">Next month</button></a> 
        {% else %} 
      <a href="{% url 'volunteers:my_jobs'%}?month=1"><button type="button" class="btn btn-default">Next 
month</button></a> 
 
      {% endif %} 
    </div> 
    <center><h1> My Jobs for {{month}}, {{year}}</h1></center> 
 
    </br></br> 
        <table class="table" style="width:100%; font-size:medium"> 
      <tr> 
        <th>Job</th> 
        <th>Type</th> 
        <th>Date</th> 
        <th> </th> 
      </tr> 
      {% for job, date, date_url, is_sub, is_route, sub_or_assignment_pk in my_jobs %} 
          <tr> 
            <td> 
            {% if is_route %} 
              <a href="{% url 'routes:view_route_day' route_number=job.job.route.number 
date=date_url%}">{{job.job}}</a> 
            {% else %} 
              {{job.job}} 
            {% endif %} 
 
            {% if is_sub %} 
              <td>Substitution</td> 
            {% else %} 
              <td>Recurring</td> 
 



 15 

            {% endif %} 
            <td>{{date}}</td> 
            <td><button type="button" class="btn btn-default" 
onclick="post_substitute_request({{sub_or_assignment_pk}}, '{{date}}', '{{is_sub}}');">Request 
Substitute</button></td> 
          </tr> 
      {% empty %} 
          <td>There are no jobs to display.</td><td></td><td></td><td></td> 
      {% endfor %} 
    </table> 
</div> 
{% endblock %} 

 

This is the template rendered to create an announcement which simply displays a form. 
 
<div class="container" style="padding-bottom: 5%;"> 
    <h1>Create an Announcement</h1> 
    </br> 
 
    <form method="post" class="post-form"> 
    {% csrf_token %} 
    {{form.media}} 
    <div class="form-row"> 
        <p> 
          {{ form.display_until|as_crispy_field }} 
        </p> 
     
    <div class="form-row"> 
        <p> 
          {{ form.announcement|as_crispy_field }} 
        </p> 
    </div> 
         
      <div class ="form-row"> 
          <button type="submit" class="btn btn-primary">Create</button> 
      </div> 
  </form> 
</div> 

 

 

3.4 Sample Tests 

Testing is necessary to ensure that all written code functions as intended and to ensure 

that no new code breaks previous functionality. In this project, we use Django’s unit test 

framework to accomplish this task. Unit tests are intended to isolate a specific subroutine. By 

doing so, it becomes clear what functionality breaks if these tests begin to fail. 



 16 

The test below is found in the volunteer section of our application. Volunteers are 

assigned jobs, and they can find a list of these upcoming jobs in the portal. This test creates a 

new job, assigns it to the test volunteer as a recurring assignment, and then ensures that the 

response returned from viewing the “My Jobs” page contains the name of the job just created. 

def test_displays_correct_job_name(self): 
        job_type = JobType.objects.create(name="test_type") 
        job = Job.objects.create( 
            name="TEST NAME OF JOB", num_vols_required=1, job_type=job_type 
        ) 
        job.save() 
        recurring = Assignment( 
            volunteer=self.test_volunteer.volunteer, 
            job_id=job.pk, 
        day_of_week=date_to_day_of_month(datetime.date.today()).day_of_week, 
            week_of_month=date_to_day_of_month(datetime.date.today()).week_of_month, 
        ) 
        recurring.save() 
        response = self.client.get("/volunteer/my_jobs/") 
        self.assertContains(response, "TEST NAME OF JOB")  

 
On the “My Jobs” page for volunteers to view, both routes and packer jobs are listed. The 

application should recognize which jobs are routes and display links to their corresponding 

pages. This test verifies that functionality.  

def test_route_link_shown(self): 
        """ 
        This test ensures the correct route link is shown on the my_jobs page. 
        """ 
        job_type = JobType.objects.create(name="test_type") 
        job = Route.objects.create(name="Test Route", number=1, job_type=job_type) 
        job.save() 
        recurring = Assignment( 
            volunteer=self.test_volunteer.volunteer, 
            job_id=job.pk, 
            day_of_week=date_to_day_of_month(datetime.date.today()).day_of_week, 
            week_of_month=date_to_day_of_month(datetime.date.today()).week_of_month, 
        ) 
        recurring.save() 
        response = self.client.get("/volunteer/my_jobs/") 
        self.assertContains(response, f"/routes/{job.number}/") 

 



 17 

The following test ensures that attempting to manage a job for an invalid date will redirect to the 

current day’s manage jobs page. 

@freeze_time("2020-03-13") 
def test_manage_open_job_date_not_valid(self): 
        """ 
        make sure it handles the case with a bad date 
        """ 
        day = datetime.date.today() 
        week_of_month = (day.day - 1) // 7 + 1 
        # need this stuff to create a substitution 
        job_type = JobType.objects.get_or_create(name="test_type")[0] 
        job = Job.objects.get_or_create( 
            name="new-job", num_vols_required=1, job_type=job_type )[0] 
        assignment = Assignment.objects.get_or_create( 
            volunteer=None, job=job, day_of_week=day.isoweekday(), 
week_of_month=week_of_month,)[0] 
        response = self.client.get( 
            "/staff/manage-open-job/{}/{}/".format(assignment.id, "02-30-2019")) # date does not exist 
        self.assertRedirects( 
            response, "/staff/manage-jobs/{}/".format(day.strftime("%m-%d-%Y")))  

 

3.5 Code Coverage 

We use coverage.py in our application, which can be installed via: “pip install coverage.” 

Since our project is dockerized, adding “coverage” to our requirements.txt file was sufficient; all 

requirements are installed at start-up. We created a Makefile target that starts the application, 

runs the code coverage tool, and outputs this information. The result can be found below.  

 
Coverage report: 93% 
 
Module    statements    missing    excluded    coverage 
Total    5040    367    0    93% 
accounts/__init__.py    0    0    0    100% 
accounts/admin.py    0    0    0    100% 
accounts/forms.py    50    5    0    90% 
accounts/migrations/__init__.py    0    0    0    100% 
accounts/tests.py    73    0    0    100% 
accounts/urls.py    4    0    0    100% 
accounts/views.py    55    23    0    58% 
config/config.py    7    0    0    100% 
interfaces/__init__.py    0    0    0    100% 



 18 

interfaces/address_lookup.py    20    1    0    95% 
interfaces/recurrence.py    93    1    0    99% 
interfaces/tests/__init__.py    0    0    0    100% 
interfaces/tests/test_recurrence.py    112    2    0    98% 
legacy/__init__.py    0    0    0    100% 
legacy/admin.py    7    0    0    100% 
legacy/management/commands/importlegacy.py    62    15    0    76% 
legacy/migrations/0001_initial.py    7    0    0    100% 
legacy/migrations/__init__.py    0    0    0    100% 
legacy/models.py    408    40    0    90% 
legacy/tests.py    264    0    0    100% 
manage.py    9    2    0    78% 
meals/__init__.py    0    0    0    100% 
meals/constants.py    17    0    0    100% 
meals/settings.py    42    1    0    98% 
meals/urls.py    8    0    0    100% 
models/__init__.py    0    0    0    100% 
models/admin.py    7    0    0    100% 
models/migrations/0001_initial.py    10    0    0    100% 
models/migrations/0002_auto_20200128_1619.py    4    0    0    100% 
models/migrations/0003_auto_20200128_1636.py    4    0    0    100% 
models/migrations/0004_remove_customer_route_order.py    4    0    0    100% 
models/migrations/0005_auto_20200206_1756.py    5    0    0    100% 
models/migrations/0005_customer_historical_route.py    4    0    0    100% 
models/migrations/0006_auto_20200207_2047.py    4    0    0    100% 
models/migrations/0006_volunteer_dont_email.py    4    0    0    100% 
models/migrations/0007_auto_20200209_1730.py    4    0    0    100% 
models/migrations/0008_merge_20200212_1354.py    4    0    0    100% 
models/migrations/0009_auto_20200225_2248.py    4    0    0    100% 
models/migrations/0009_auto_20200226_1738.py    4    0    0    100% 
models/migrations/0010_auto_20200225_2304.py    4    0    0    100% 
models/migrations/0010_volunteerrecord.py    6    0    0    100% 
models/migrations/0011_auto_20200226_1000.py    4    0    0    100% 
models/migrations/0011_auto_20200301_0007.py    4    0    0    100% 
models/migrations/0012_auto_20200301_0116.py    5    0    0    100% 
models/migrations/0013_remove_volunteerrecord_is_substitution.py    4    0    0    100% 
models/migrations/0014_auto_20200304_0944.py    5    0    0    100% 
models/migrations/0015_auto_20200304_0947.py    5    0    0    100% 
models/migrations/0016_volunteerrecord_is_substitution.py    4    0    0    100% 
models/migrations/0017_auto_20200305_1620.py    4    0    0    100% 
models/migrations/0018_auto_20200316_2125.py    4    0    0    100% 
models/migrations/0018_merge_20200315_1707.py    4    0    0    100% 
models/migrations/0019_auto_20200316_2302.py    4    0    0    100% 
models/migrations/0020_merge_20200317_0900.py    4    0    0    100% 
models/migrations/__init__.py    0    0    0    100% 
models/models.py    293    14    0    95% 
models/tests.py    238    0    0    100% 
pdfs/__init__.py    0    0    0    100% 
pdfs/admin.py    1    0    0    100% 
pdfs/cron.py    72    2    0    97% 
pdfs/migrations/__init__.py    0    0    0    100% 
pdfs/templatetags/route_extras.py    26    4    0    85% 
pdfs/tests/__init__.py    0    0    0    100% 
pdfs/tests/test_cron.py    174    5    0    97% 
pdfs/tests/test_views.py    233    0    0    100% 



 19 

pdfs/urls.py    4    0    0    100% 
pdfs/views.py    142    7    0    95% 
routes/__init__.py    0    0    0    100% 
routes/admin.py    1    0    0    100% 
routes/forms.py    27    0    0    100% 
routes/migrations/__init__.py    0    0    0    100% 
routes/models.py    1    0    0    100% 
routes/tests.py    286    0    0    100% 
routes/urls.py    4    0    0    100% 
routes/utility.py    15    0    0    100% 
routes/views.py    93    3    0    97% 
staff/__init__.py    0    0    0    100% 
staff/admin.py    1    0    0    100% 
staff/all_views.py    15    0    0    100% 
staff/forms.py    206    18    0    91% 
staff/migrations/__init__.py    0    0    0    100% 
staff/tests/__init__.py    0    0    0    100% 
staff/tests/test_announcements.py    0    0    0    100% 
staff/tests/test_assignment_management.py    306    0    0    100% 
staff/tests/test_autocompleter.py    36    0    0    100% 
staff/tests/test_customer_management.py    56    0    0    100% 
staff/tests/test_email.py    17    0    0    100% 
staff/tests/test_index.py    49    0    0    100% 
staff/tests/test_job_management.py    109    0    0    100% 
staff/tests/test_othermodels_deletions.py    0    0    0    100% 
staff/tests/test_reports.py    24    0    0    100% 
staff/tests/test_substitution_management.py    223    2    0    99% 
staff/tests/test_volunteer_management.py    0    0    0    100% 
staff/urls.py    20    0    0    100% 
staff/views/announcements.py    22    12    0    45% 
staff/views/assignment_management.py    127    0    0    100% 
staff/views/autocompleter.py    33    17    0    48% 
staff/views/customer_management.py    67    25    0    63% 
staff/views/email.py    10    0    0    100% 
staff/views/index.py    24    0    0    100% 
staff/views/job_management.py    202    42    0    79% 
staff/views/othermodels_deletions.py    26    12    0    54% 
staff/views/reports.py    70    53    0    24% 
staff/views/substitution_management.py    82    0    0    100% 
staff/views/volunteer_management.py    65    45    0    31% 
volunteers/__init__.py    0    0    0    100% 
volunteers/admin.py    1    0    0    100% 
volunteers/migrations/__init__.py    0    0    0    100% 
volunteers/models.py    1    0    0    100% 
volunteers/tests.py    182    0    0    100% 
volunteers/urls.py    5    0    0    100% 
volunteers/views.py    90    16    0    82% 
No items found using the specified filter. 
 
coverage.py v5.0.4, created at 2020-03-29 23:52  

 

3.6 Installation Instructions 



 20 

The installation instructions for the Meals on Wheels management system are below and 

are broken down into three parts: provision an AWS instance, install Docker, Docker Compose, 

and Make, install the application. 

 
Provision an AWS instance 

First, register or login to an account on AWS and log in to the EC2 console in order to 

provision an instance. We recommend using "Ubuntu Server 18.04 LTS (HVM), SSD Volume 

Type" as the AMI. Next we recommend using at least a T2-small instance with protection for 

accidental termination (termination protection located on next page). We also recommend for 

storage a General Purpose SSD of 20 GB. There are no tags that need to be added, but in the 

configure security group page, add the default rules for HTTP and HTTPS from the Add Rule 

button in addition for the default rule for SSH. (If testing in a non-production environment, also 

allow port 8000). When prompted, create a new key pair and save the key somewhere safe and 

accessible. 

 
Install Docker, Docker Compose, and Make 

First, connect to your instance by right clicking on it in the dashboard and selecting 

Connect. Once connected, run the following commands 

curl -fsSL https://get.docker.com -o get-docker.sh 
sudo sh get-docker.sh 
sudo usermod -aG docker $USER 
sudo curl -L https://github.com/docker/compose/releases/download/1.25.4/docker-compose-`uname -s`-`uname -
m` -o /usr/local/bin/docker-compose 
sudo chmod +x /usr/local/bin/docker-compose 
sudo apt update 
sudo apt install make 
sudo reboot  

Now we let the app reboot before right clicking and connecting again. 

 
Install the Application 



 21 

To download the code and run the application run the following commands. 

curl -fsSL http://cs.virginia.edu/~awh4kc/githubkey.gpg -o ~/.ssh/githubkey.gpg 
cd ~/.ssh 
gpg githubkey.gpg 

Use password: M#gh7fRH06nD 
eval "$(ssh-agent -s)" 
chmod 600 ~/.ssh/githubkey 
ssh-add ~/.ssh/githubkey 
cd ~ 
git clone git@github.com:uva-cp-1920/Meals-on-Wheels.git 

type yes when prompted 
cd ~/Meals-on-Wheels/src 
make env=prod deploy 

Now you can verify the app is running by going to portal.cvillemeals.org in a browser. 

 

4. Results 

After spending nearly seven months iteratively developing the portal, we successfully 

deployed the application to production. The application meets all of the requirements mentioned 

in Section 3.1, thus solving our customer’s issues. There are two main stakeholders that use the 

system, staff members and volunteers; the portal is designed to designate appropriate privileges 

and responsibilities to each account holder based upon stakeholder status. 

    Our customer, MOW administration, is in charge of the staff side responsibilities of the portal. 

To use the portal, staff log in and are redirected to the “Announcements” landing page, where 

they can quickly see any open substitution requests. As staff, they have access to all of the 

management aspects of meal delivery; therefore, in the menu ribbon at the top of the page, they 

can manage jobs, customers, volunteers, assignments, and substitutions. The customer and 

volunteer management pages allow staff members to edit user information, including their meal 

recurrences and delivery availability. The “Manage Jobs” page provides staff an interface to 



 22 

view all of the daily jobs and assigned volunteers, including the ability to adjust the routes 

directly, generate the route delivery sheets for drivers, and open/fill substitution requests. The 

assignment and substitution management pages enable staff to view, edit, and create such data. 

Finally, staff can generate a variety of reports to count and summarize meal delivery, jobs, and 

substitutions over a specific time range via the reports dropdown. 

    MOW carries out its mission with a number of volunteers, the other type of primary 

stakeholder in the system. The portal interface for volunteers is simpler because volunteers only 

need minimal information about their specific role in meal delivery. On the volunteer-side, users 

can see a list of their monthly upcoming jobs, along with a map of how to deliver meals for each 

route. Furthermore, the menu ribbon allows volunteers to view open substitution requests and fill 

them if they want to volunteer for an extra job. Finally, the last ribbon option is for volunteers to 

view their own profile information. By having a simple interface for volunteers, we have 

designed an intuitive system allowing them to focus exclusively on their meal delivery job. 

    Comparing our new system to the old portal reveals a number of concrete improvements to 

speed and ease of use. While many of our optimizations consisted of backend organization or 

improvements to UI, they are most clearly reflected in the reports. The MOW staff rely on the 

reports to provide drivers with accurate information for their routes, for billing purposes, and for 

a variety of other mission critical tasks. By consolidating/restructuring the existing Django 

models, we were able to cut the number of reports needed to encapsulate the same data from 16 

on the old site to 7 on ours. For example, the job overview report now generates the data from 

what used to be three separate reports into one larger one. Reducing the number of required 

reports allows the MOW staff to more efficiently collect the information they need to operate on 

a day to day basis.  



 23 

Perhaps the most significant improvement to the reports is the speed in which they are 

generated. One of MOW staff’s biggest complaints about the existing portal was how long it 

took for it to create and display the printable pdf reports. If the aforementioned job overview 

report generated at all without a timeout error, it would take on the order of minutes. It now takes 

approximately 10 seconds to generate data for an entire month because of how we cleaned up the 

data storage and management on the backend. Other reports, like the billing report (Fig. 3), used 

to take about 10 seconds to load; they are now more or less instantaneous. Finally, there were 

some reports, such as the Daily Count sheet, that simply yielded incorrect data. In this particular 

case, the report would always show a count of 0 for meals for a day; this issue has been solved in 

our system. 

 

Fig 3. Screenshot of “Monthly Billing” report 

5. Conclusions 

As we have developed together over the course of the year, our team feels as though we 

have learned a lot in both the technical aspect and team portion of the capstone project. By 

working on a project that directly impacted real-world customers, we felt motivated and 



 24 

obligated to provide the best product to improve the lives of so many people. At the beginning of 

this project, we underestimated the complexity and depth that would be required in designing an 

application of this type from scratch. However, as we learned and communicated more with our 

customer, we realized the initial shortcomings in previous iterations of this app. Once we 

understood that these shortcomings were the real problems with the portal, we strove to design, 

code, and test extensively to ensure that every feature was intuitive, tested, and efficient. 

In summary, we have proudly built an application that serves the local Charlottesville 

community. In doing so, we have become better developers, communicators, team members, and 

are eager to apply and improve our skills to serve society further in the future. 

 
6. Future Work 

    The web application will likely require maintenance in the future as packages become 

outdated and/or Meal on Wheels’ needs change. Changes in these needs are difficult to predict; 

though, they may entail improving the application’s design to allow for better scaling or 

adjusting the time the application retains data. Aside from maintenance, further work could 

include acquiring volunteer input about their side of the web application. This side of the 

application has limited functionality and use, but substantial feedback about its user interface 

could be valuable as we will likely not have easy access to it due to Meals on Wheels’ temporary 

COVID-19 closure around our deployment date.  

  



 25 

7. References 

Accessible Solutions, Inc. (2018, June, 13). Accessible Solutions, Inc. Announces Meals On 

Wheels America® Partnership. https://accessiblesolutions.com/news/news-2/accessible-

solutions-inc-announces-meals-on-wheels-america-partnership 

Allman, E. (2012). Managing technical debt. Communications of the ACM, 55(5), 50.  

https://doi.org/10.1145/2160718.2160733 

Meal Provider Software - ServTracker: Meals on Wheels: Senior Nutrition. (n.d.). Retrieved 

from https://accessiblesolutions.com/meal-delivery-software 

Microsoft (2017). Description of the database normalization basics. 

https://support.microsoft.com/en-us/help/283878/description-of-the-database-

normalization-basics. 

MOWA. (2019). Meals on Wheels America. National Office.  

https://www.mealsonwheelsamerica.org/learn-more/national 

NCOA. (2015, June 4). National Council On Aging. Facts About Senior Hunger.  

https://www.ncoa.org/news/resources-for-reporters/get-the-facts/senior-hunger-facts/ 

World Bank (2019). GDP per capita. https://data.worldbank.org/indicator/ny.gdp.pcap.cd 


