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ABSTRACT 

OLSEN, KAELEIGH E. Stoichiometric and Catalytic C–H Activations (Under the 
direction of T. Brent Gunnoe). 

 

The primary focus of this Thesis is the study and development of photo-driven 

processes for the selective partial oxidation of methane. Light alkanes (i.e., methane, 

ethane, propane) are the primary components of natural gas, which is an abundant resource 

accounting for approximately a quarter of global energy production. Complications exist 

regarding the storage of natural gas at these reserve sites and its transportation to other 

locations for its use due to its gaseous state. Additionally, current methods available for the 

conversion of natural gas to liquid products are not economically viable for at-wellhead 

implementation. Natural gas is often flared to carbon dioxide at these “stranded” locations, 

contributing several hundred million tons of carbon dioxide into the atmosphere annually. 

Thus, the development of an economically viable process for at-wellhead direct gas-to-

liquid conversion of natural gas, with a particular focus on methane-to-methanol, is highly 

desired.  

C–H activation is a platform for the functionalization of organic compounds, 

including alkanes, to more valuable products. Methods for C–H functionalization include 

transition metal catalysis and radical-based processes. The synergistic process described in 

Chapter Two combines the photoredox properties of a photocatalyst with halogen radical 

chemistry for the C–H functionalization of methane. With this process, we were able to 

achieve the selective partial oxidation of methane to functionalized product that is stable 

against over-oxidation with > 350 turnovers and ~60% yield based on methane.  
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We probe for the extension of our photo-driven process to use of simple transition 

metal salts in place of a photocatalyst in Chapter Three. Copper salts were found to be 

unsuccessful as oxidants under the conditions explored for photo-driven methane 

functionalization.  Manganese oxides were found to facilitate photo-driven methane 

functionalization, albeit stoichiometrically.  

In Chapter Four, the functionalization of carbon dioxide to carboxylic acids is 

discussed. Molecular, homogeneous bifunctional catalysis is proposed as a strategy to 

activate the C–H bonds of arenes for carboxylation to produce aromatic carboxylic acids. 

Herein, the activation of dihydrogen is chosen first as a model study. The hydrogenation 

of carbon dioxide and carbonyl-containing substrates (i.e., aldehydes and ketones) is 

explored through a tandem approach using computational and experimental chemistry.  
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1  Introduction 

1.1 C–H Bond Activation 

1.1.1 Hydrocarbons and Properties of C–H Bonds 

Hydrocarbons, a class of molecules comprised of only carbon and 

hydrogen, are the principal components of natural gas and petroleum.1 They are 

used as precursors to fuels and lubricants and are used by the chemical industry for 

the production of higher-value chemicals.1 Hydrocarbons can be saturated or 

unsaturated. Saturated hydrocarbons include alkanes (e.g., paraffins) and 

cycloalkanes.1 In these molecules, all four carbon atom valence electrons form 

bonds with unique carbon or hydrogen atoms (σ bonds). Unsaturated hydrocarbons 

include alkenes (e.g., olefins), aromatic hydrocarbons (e.g., arenes), and alkynes.1 

At the site of unsaturation, all four carbon atom valence electrons are not bound to 

unique carbon or hydrogen atoms. Alkenes contain at least one double bond (one σ 

bond plus one π bond) between carbon atoms. Aromatic hydrocarbons are cyclic 

structures with delocalized π electrons. Alkynes contain at least one triple bond 

(one σ bond plus two π bonds) between carbon atoms.  

Hydrocarbon C–H bonds are non-polar and typically possess large kinetic 

and thermodynamic barriers for their cleavage.2 The C–H bond dissociation 

energies (BDEs) and acidities (pKas) of select hydrocarbons are listed in Table 1.1. 

Often, these values can be used to understand trends in C–H bond cleavage. In 

general, there are two ways in which a C–H bond can be cleaved: homolytically 

and heterolytically (Scheme 1.1). Homolytic bond cleavage results in the two 

electrons of a σ bond being divided equally between the products to form two 
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radical species. BDE is defined as the standard enthalpy required to homolytically 

cleave a bond. Heterolytic bond cleavage results in both electrons of a σ bond being 

transferred to one of the products to produce an ion pair. 

 

Table 1.1. Bond dissociation energies and pKa values for C–H bonds in select 
hydrocarbons. Adapted from reference.2 

 

 

 

 

  
Scheme 1.1. Homolytic and heterolytic C–H bond cleavage of methane as a 
representative example.   

 

 

The following general trend exists regarding the magnitude of C–H BDEs: 

C(sp) > C(sp2)aromatic > C(sp2)vinyl > C(sp3)1º > C(sp3)2º > C(sp3)3º > C(sp3)allylic. 

Moving from sp to sp2 to sp3 hybridization, the C–H BDE decreases. Within C–H 

bonds with sp3 hybridization, moving from primary to secondary to tertiary 

substituted carbons, the C–H BDE decreases. This trend can be explained by 

comparing the stabilities of the radical species resulting from homolytic C–H bond 

cleavage. As the stability of the carbon-centered radical species increases, the 

energy required for bond dissociation decreases. The following trend exists 

regarding the magnitude of C–H bond pKas: C(sp) < C(sp2) < C(sp3). Moving from 

sp to sp2 to sp3 hybridization, the C–H pKa value increases. This trend can be 
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explained by comparing the stabilities of the deprotonated species resulting from 

heterolytic C–H bond cleavage. As C–H bond acidity increases, and pKa decreases, 

the stability of the deprotonated species increases.2  

1.1.2 Organometallic Mechanisms for C–H Activation 

An organometallic species is defined as a complex containing a metal-

carbon bond. In one definition, an organometallic C–H activation reaction results 

in the formation of a complex in which the activated substrate is bound to the metal 

center through a new metal-carbon bond. The seminal discovery of metal-mediated 

C–H activation is often credited to Chatt and Davidson and their 1965 report of a 

Ru(0) complex capable of naphthalene C–H bond activation.3 The Ru(0) 

bisdiphosphine complex Ru(dmpe)2 (dmpe = 1,2-bis(dimethylphosphino)ethane) 

was found to be capable of intramolecular C–H activation of its phosphine methyl 

group in the absence of naphthalene (Scheme 1.2 top), but in the presence of 

naphthalene, Ru(dmpe)2 is capable of intermolecular C–H activation of 

naphthalene to form (dmpe)2Ru(H)(naphthalene) (Scheme 1.2 bottom). This work 

represented some of the first examples of well-defined C–H bond cleavage 

mediated by a transition metal complex.4 
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Scheme 1.2. General depiction of the pioneering example of transition metal-
mediated C–H activation by Chatt and Davidson. Intramolecular activation of 1,2-
bis(dimethylphosphino)ethane (dmpe) shown at top and intermolecular activation 
of naphthalene shown at bottom. Adapted from reference.5 
 

 

 

 

 

 

 

 Mechanisms of transition metal-mediated C–H activation reactions have 

been studied extensively.4-6 Herein, four classifications of transition metal-

mediated C–H activation are discussed whereby an organometallic species is 

generated: oxidative addition, σ-bond metathesis, electrophilic substitution, and 

1,2-C–H addition. Scheme 1.3 shows reaction pathways for these four 

classifications of C–H activation.4  

 

Scheme 1.3. Traditional organometallic C–H activation pathways. For 1,2-C–H 
addition, Y = OR, NR, or NHR. Adapted from reference.4 
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 Oxidative addition typically occurs with low-valent, electron-rich, middle-

to-late transition metals. The active transition metal species for oxidative addition 

is generally coordinatively unsaturated, which often renders it unstable and 

reactive. Thus, the active species for oxidative addition is typically generated in 

situ from a more stable precursor. Oxidative addition generating two new metal-

ligand bonds at a single metal results in the formal oxidation of the metal center by 

two electrons.   

 Electrophilic substitution generally occurs with late or post-transition 

metals. In this reaction, metal-carbon bond formation is coupled with the loss of a 

proton, often through protonation of a base that is not coordinated to the metal 

center, in the C–H bond breaking step. In most cases of electrophilic substitution, 

the metal center’s formal oxidation state remains unchanged.  

σ-Bond metathesis mechanisms typically involve metal centers that are not 

easily oxidized (e.g., electron-deficient, early-to-mid transition metal complexes).  

In this mechanism, there is no formal change in the metal center oxidation state. 

This reaction operates through a four-centered metallocyclic transition state. The 

1,2-C–H addition reaction is similar to σ-bond metathesis in that it operates through 

a four-centered metallocyclic transition state. Here, a lone pair on the ligand 

heteroatom is involved in the C–H bond breaking process, leading to a six-electron 

transition state, which contrasts with the four-electron transition state for σ-bond 

metathesis. Traditionally, 1,2-C–H addition reactions have involved early (e.g., d0) 

transition metal-imido complexes.7-9 Reports of 1,2-C–H addition with RuII and IrIII 

complexes bearing hydroxy and methoxy ligands, respectively, suggest that late 
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transition metal complexes in high oxidation states can operate through this 

mechansim.10-12  

1.1.3 Electrophilic Processes for C–H Functionalization 

Electrophilic complexes have been shown to be effective for catalytic C–H 

bond functionalization. In the mid 20th century, Shilov reported a process using 

Pt(II) as an electrophilic catalyst for methane to MeX (X = Cl or OH) conversion 

in aqueous solvent.13, 14 Scheme 1.4 outlines the proposed mechanism for the Shilov 

process.6 The alkane (RH) is rendered susceptible to C–H bond activation by the 

electrophilic Pt(II), d8, 16-electron complex (Step A). The subsequent Pt(II)-alkyl 

complex is oxidized forming a Pt(IV), d6, 18-electron complex (Step B). The metal-

bound electrophilic alkyl group then reacts with water or chloride via a reductive 

nucleophilic functionalization step forming an equivalent of MeX product along 

with hydrochloric acid (Step C).  

 

Scheme 1.4. Proposed catalytic cycle of the Shilov process. Adapted from 
reference.6 
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Although the Shilov process was a groundbreaking achievement as an early 

example of a catalytic, direct methane-to-methanol (MTM) process, it suffered 

from limitations precluding it from commercialization.6 While the process is 

catalytic in Pt(II), Pt(IV) is needed as a stoichiometric oxidant. Also, the platinum 

catalyst is not overly stable and metallic platinum precipitates from solution.   

Following the report of the Shilov process, Periana and coworkers built 

upon this framework and extended electrophilic mediated C–H activation to a 

variety of late transition metal complexes.15-17 Most well-known is the development 

of the Catalytica process in 1998 in which (bpym)PtCl2 (bpym = 2,2’-bipyrimidine) 

was found to catalyze methane to methyl bisulfate conversion in oleum (fuming 

sulfuric acid).18 This process, shown in Scheme 1.5, uses a Pt(II) electrophilic 

catalyst, but, here, oleum serves as an air-recyclable oxidant rather than 

stoichiometric Pt(IV). In fact, oleum serves three roles in this process: as solvent, 

as oxidant, and as protecting group for the functionalized product.19 The reaction 

achieves > 90% selectivity at < 70% conversion. Methyl bisulfate, a derivative of 

methanol, was found to be ~100 times less reactive than methane under the reaction 

conditions.20  

Although the Catalytica process provides marked improvements to the 

Shilov process (no stoichiometric precious metal-based oxidant needed, bisulfate 

group serving as protecting group against over-oxidation, high methane conversion 

achieved), the requirements of superacidic solvent coupled with challenges 

regarding reaction rate, product separation, and water inhibition similarly limited 

the commercial application of the Catalytica process.21  
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The Schüth group found that substitution of the Catalytica catalyst, 

(bpym)PtCl2, with simple platinum salts (e.g., K2PtCl4) led to turnover frequencies 

(TOFs) ~20 times higher than (bpym)PtCl2 for methane to methyl bisulfate 

conversion in oleum.22 Impressively, the reaction achieves 99% selectivity for 

methyl bisulfate at conversions < 30%. Regarding the challenges associated with 

product separation in the Catalytica process, it was found that the addition of 

organic solvent (e.g., CHCl3, C2H4Cl2) simplifies hydrolysis and separation of 

methyl bisulfate from oleum.23 Regarding reaction inhibition by water, due to 

intolerance of the Pt(II) complexes, it was found that addition of ionic liquids as 

co-solvents improved the solubility of the Pt(II) complexes and higher yields of 

methyl bisulfate were achieved.24, 25  

Periana and coworkers found that metal-based electrophilic processes could 

be extended from transition metal to main group elements. Tl(TFA)3 and Pb(TFA)4 

are capable of light alkane (i.e., methane, ethane, propane) functionalization in 

trifluoroacetic acid (HTFA), a non-superacid, to the corresponding alkyl esters with 

moderate-to-high yields and selectivities.26 This report presented experimental and 

computational support for a mechanism involving electrophilic C–H bond 

activation to form metal alkyl intermediates. It was proposed that the absence of 

ligand field stabilization and the increased lability of ligands in main group 

complexes with filled d-orbitals allows more facile alkane coordination relative to 

transition metal complexes.  
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Scheme 1.5. Proposed catalytic cycle of the Catalytica process. X = Cl- or  
SO3OH-. Each complex contains an outer-sphere, anionic X, omitted for clarity. 
Adapted from reference.20 

 

Molecular iodine (I2) was found to be active for methane to methyl bisulfate 
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1.1.4 Radical-Based Processes for C–H Functionalization 

Radical-based methods offer an alternative route for C–H functionalization. 

Biology has developed enzymes, methane monooxygenases (MMOs), that operate 

via radical-based methods for MTM reactions.29 However, biological and 

biomimetic processes will not be discussed herein.  

C–H bonds do not necessarily need to interact with a metal center for C–H 

bond breaking to occur via a radical-based mechanism. In hydrogen atom 

abstraction, also referred to as hydrogen atom transfer (HAT), a hydrocarbon C–H 

bond is homolytically broken to form a hydrocarbyl radical. This process requires 

the formation of a reactive species that is capable of abstracting the hydrogen atom. 

Halogenation of C–H bonds to form C–X bonds is an example of a radical-

based C–H functionalization (Scheme 1.6A).30 This process involves the 

production of halogen radicals capable of hydrogen atom abstraction, which is 

typically achieved by irradiation or with a radical initiator. Halogenation reactions 

generally suffer from over-functionalization to produce poly-halogenated species 

since free radical-based homolytic C–H bond cleavage favors weaker bonds, and 

the C–H bonds of the mono-halogenated species are weaker than the C–H bonds of 

the starting species.31  

Scheme 1.6B shows a stepwise mechanism for the radical halogenation of 

methane as a representative example.30, 32 During initiation, a dihalogen bond is 

homolytically cleaved in an endothermic step. Then in propagation, a halogen 

radical abstracts a hydrogen atom from methane. The resulting methyl radical reacts 

with an additional equivalent of X–X forming a methyl halide. In termination, the 



 11 

free radicals undergo radical coupling reactions with one another forming 

equivalents of methyl halide, dihalogen, and ethane.  

 

Scheme 1.6. Reactions of halogenation (A) and oxyhalogenation (C) using methane 
as the substrate. B) Step-wise mechanism for the halogenation of methane. Adapted 
from reference.32 
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atom generates an equivalent of hydrochloric acid, an alternate process for more 

selective methyl chloride production was desired.34, 35  

The stability of halogen radicals increase as follows: F· < Cl· < Br· < I·. 

Methane fluorination (Scheme 1.6A, X = F) is extremely exothermic and can be 

explosive (ΔHºr = -103 kcal/mol). Methane iodination (Scheme 1.6A, X = I) is 

endothermic (ΔHºr = 13 kcal/mol). Methane chlorination (Scheme 1.6A, X = Cl) 

and bromination (Scheme 1.6A, X = Br) are both mildly exothermic, chlorination 

(ΔHºr = -25 kcal/mol) more than bromination (ΔHºr = -7.2 kcal/mol).34 Thus, both 

chlorine and bromine are poised for use in halogenation chemistry. Although 

bromination has been studied for halogenation chemistry, interest in bromine is 

largely outweighed by chlorine due to the lower cost and higher abundance of 

chlorine.  

Alkane oxyhalogenation uses HX (X = Cl, Br) and dioxygen with 

heterogeneous metal catalysts for production of halogenated species (Scheme 

1.6C).36 An appealing attribute to these reactions when compared to halogenation 

is that halogens are used with higher atom economy. Similar to halogenation 

chemistry, however, oxyhalogenation suffers from over-oxidation to poly-

halogenated species.36  

1.2 Thesis Aims 

This Thesis is comprised of projects related to C–H bond activation. In 

Chapter 2, a process for the partial oxidation of methane catalyzed by a 

photocatalyst will be described, for which we propose a HAT mechanism for the 

C–H activation of methane. Chapter 3 details efforts to extend the photo-driven 



 13 

process to use simple metal salts and oxides in place of a photocatalyst. Chapter 4 

contains the utilization of a bifunctional, molecular catalyst for hydrogenation of 

carbon dioxide as a model study for analogous hydroarylation chemistry of carbon 

dioxide.  
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2  Photo-Catalytic, Selective Partial Oxidation of Methane using Decatungstate 

This chapter is adapted from the manuscript “Partial Oxidation of Methane 

Enabled by Decatungstate Photocatalysis Coupled to Free Radical Chemistry” by 

Charles B. Musgrave III,# Kaeleigh Olsen,# Nichole S. Liebov, John T. Groves, 

William A. Goddard III, T. Brent Gunnoe, which has been submitted. 

 #These authors contributed approximately equally. 

2.1 Introduction 

2.1.1 Motivations for Gas-To-Liquid Technologies for Natural Gas Use 

Conversion of light alkanes from natural gas into value-added chemicals is 

a cornerstone of the chemical industry. The development of new catalytic processes 

for the direct conversion of methane (and other light alkanes) to higher-value liquid 

products is important for increased use of stranded natural gas and for other sources 

(e.g., biogas) of methane and light alkanes.1-3 Highly desired processes include the 

direct partial oxidation of methane, ethane, and propane to liquid products, so called 

direct gas-to-liquid (GTL) conversions, with a particular focus on methane-to-

methanol. Given the substantial global natural gas reserves, which account for 

~25% of global energy,4 there is enormous potential for direct GTL technologies. 

Additionally, these reserves are often in stranded locations, where at-wellhead GTL 

conversion is most desirable. 

2.1.2 Methods for Methane Functionalization 

Current commercial methods for indirect methane-to-methanol conversion 

involve the highly energy- and capital-intensive methane reforming reaction (H2O 

+ CH4 à CO + 3 H2) followed by Fischer-Tropsch chemistry to produce methanol 
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or longer chain hydrocarbons.5, 6 A more desirable alternative is the direct mono-

oxygenation of methane by ½ O2 to produce methanol. While methane partial 

oxidation using ½ O2 is thermodynamically favorable, challenges include (1) 

overcoming the large activation barrier required to break a non-polar C–H bond of 

methane (bond dissociation energy ~105 kcal/mol), and (2) evading over-oxidation 

of methanol, due to the weaker C–H bond of methanol (96 kcal/mol) compared to 

methane.7, 8  

Radical-based chemistry, such as catalytic oxychlorination, offers a route 

for C–H functionalization of light alkanes to produce functionalized products (eq. 

1).9-13 Unfortunately, such processes often suffer from the over-oxidation dilemma, 

again due to weaker C–H bonds in the product (e.g., 101 kcal/mol for CH3Cl).14 In 

fact, methane conversion using catalytic oxychlorination is often limited to < 10% 

in order to achieve adequately high selectivity.15  

  

Electrophilic Pt(II) catalysis introduced by Shilov and coworkers was an 

early example of catalytic methane mono-functionalization, but this process 

suffered from the requirement of stoichiometric Pt(IV) oxidant.16 The Catalytica 

process pioneered by Periana and coworkers achieved methane to methyl bisulfate 

conversion with > 70% yield and > 90% selectivity, using the key strategy of 

protecting of the mono-functionalized product toward over oxidation by the 

electron-withdrawing bisulfate group. However, the energy requirements for the 

separation of product from oleum and reconcentration of sulfuric acid was a 

challenge for potential commercialization.17, 18 Molecular iodine has been shown to 

CH4 + HX + 1/2 O2
catalyst

heat
CH3X + H2O         (1)
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functionalize light alkanes in oleum, but this approach could not be extended to 

non-superacidic media.19, 20 Main group compounds, such as Tl(TFA)3, Pb(TFA)4, 

and hypervalent iodine, namely (C6F5)IIII(TFA)2, have been shown to functionalize 

light alkanes in non-superacidic solvent, albeit stoichiometrically.21 

Metal-exchanged zeolites (e.g., copper) are capable of methane oxidation 

to methanol.22-29 However, these catalysts typically do not yield high methane 

conversion with high selectivity. Also, methanol extraction requires significant 

dilution for separation, which typically destroys the active site, requiring 

subsequent high-temperature oxidation for catalyst restoration.30 

2.1.3 Oxy-Esterification (OxE) Process 

To improve product yields, we and other groups have pursued a strategy to 

circumvent over-oxidation through installation of a protecting group in the 

functionalized alkyl product.31, 32 For example, we reported the thermal (100-235 

ºC) partial oxidation of light alkanes (methane, ethane, propane) in trifluoroacetic 

acid (HTFA) by chloride-iodate and chloride-periodate systems via a method 

termed oxyesterification (OxE). OxE produced the corresponding alkyl esters 

(RTFA) with > 20% yield relative to the alkanes and > 80% selectivity towards 

mono-oxidized products.33, 34 We discovered that the ester moiety protects the 

products from subsequent oxidation, thus permitting production of the 

corresponding alcohol, along with regeneration of HTFA through hydrolysis.35, 36 

Oxygen-recyclable cobalt and manganese catalysts have also been shown to 

effectively oxidize methane in HTFA.37-39 Recently, we reported the use of 
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molecular Mn oxides and Mn salts for methane partial oxidation along with a 

mechanistic study.40  

2.1.4 Photo-Oxy-Esterification (Photo-OxE) Process 

Several groups have reported photo-driven C–H functionalization for which 

the generation of chlorine radical from chloride appears to be a key step. Germane 

here, several examples of such reactions that are successful for unactivated 

hydrocarbons (e.g., cyclohexane) have been reported.41-45 Using the strategy of 

generating chlorine from chloride, we recently pursued photo-driven light alkane 

functionalization in a process we refer to as photo-oxy-esterification (photo-

OxE).46, 47  Higher yields were obtained for the chloride-iodate process by photo-

OxE (~50% yield was achieved for methane) compared to yields for the analogous 

thermally driven reaction.47 We also reported that Fe(TFA)3 mediates photo-driven 

hydrocarbon functionalization.46 The Schelter and Goldberg groups recently 

reported photo-driven, aerobic alkane iodination in acetonitrile using catalytic 

[nBu4N]Cl.48 

2.1.5 Photocatalysis using Decatungstate 

Polyoxometalates (POMs) have emerged as a widely successful class of 

photocatalysts for organic transformations due to their ability to perform both 

electron transfer (ET) and hydrogen atom transfer (HAT) reactions.49-52 The 

decatungstate anion ([W10O32]4- or DT) is currently employed as a HAT 

photocatalyst because of its ready availability and the array of C–H bonds it can 

cleave.53-58 Furthermore, DT has been used for a variety of C(sp3)–H 

functionalizations, including C–C bond formations and oxidation reactions.59-73   
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Laudadio and coworkers reported the functionalization of light alkanes (e.g., 

methane, ethane, propane, isobutane) to C–C coupled products using DT in a 

photocatalytic flow system.74 In a separate report, Laudadio and coworkers reported 

DT-mediated selective oxidation of aliphatic substrates to ketone-containing 

products.63 Figure 2.1 depicts the structure of the DT salt, TBADT [TBA = 

(nBu4N)4 (nBu = n-butyl)], and its ability to perform HAT in its photoexcited state; 

here DT•• denotes the suspected excited triplet state (referred to in previous 

publications as wO or DT*)70 and HDT• denotes the reduced species after HAT. 

2.1.6 Project Goals 

Because our previously reported thermal and photo-initiated OxE processes 

for light alkane functionalization are proposed to rely on HAT,35, 36, 47 we 

hypothesized that the addition of DT as a photo-driven HAT reagent may accelerate 

the mono-oxidation of light alkanes to alkyl esters in a chloride-iodine system. 

Of particular interest was the possibility that photo-excited DT could also 

generate chlorine atoms, Cl•, under these reaction conditions due to the very high 

reduction potential of DT••.56 There have been a number of recent advances in the 

photogeneration of Cl•, including photoreduction of metal chlorides42, 43, 45, 46, 75-78 

and photoredox oxidation of chloride ion (Cl–).41, 79-81 As noted above, 

photogeneration of chlorine has been used to functionalize unactivated 

hydrocarbons.41-45 DT is robust under acidic conditions and has a high quantum 

yield for photoexcitation, but it has not been employed for the generation of Cl• as 

a C–H activation mediator. Herein, we study DT as a photocatalyst for methane 

partial oxidation in the presence of chloride and iodine to form methyl 
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trifluoroacetate (MeTFA) and methyl chloride (MeCl or CH3Cl) and use Density 

Functional Theory (DFT) calculations to investigate the mechanism. 

 

 
Figure 2.1. Simplified scheme showing capability of photoexcited decatungstate 
(DT••) for hydrogen atom abstraction from a generic alkane (RH). HDT• denotes 
the reduced radical species following hydrogen atom abstraction. 

 

2.2 Photo-OxE of Methane using Decatungstate 

2.2.1 Reagent Screening and Optimization 

An initial screening of the photochemical reactivity of an aerobic mixture 

of TBADT (0.014 mmol) and KCl (0.67 mmol) in HTFA (8 mL) pressurized with 

100 psig of methane (~24 mmol) resulted in the formation of 0.043 ± 0.015 mmol 

of MeX (X = TFA, Cl) after 24 h of mercury arc lamp irradiation. This corresponds 

to a yield of 0.18 ± 0.071% and a 42:1 ratio of MeTFA to MeCl. Herein, percent 

yields are reported with respect to methane, and all data are the result of a minimum 

of three separate experiments with standard deviations. Product formation was 

determined by 1H NMR spectroscopy and referenced against a known amount of 
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either HOAc or CH3NO2 as an internal standard. When TBADT was ground using 

a mortar and pestle before addition to the reactor (with all other conditions 

unchanged), 0.10 ± 0.008 mmol of MeX was produced in 0.43 ± 0.027% yield with 

a 33:1 ratio of MeTFA to MeCl (Figure 2.2). The corresponding turnovers (TOs) 

of TBADT were 3.1 ± 1.1 and 7.3 ± 0.58 when TBADT was unground and ground, 

respectively. The increased product formation and the decreased standard deviation 

using the ground TBADT suggests that smaller particle size increased TBADT’s 

solubility in HTFA.  

 

 

 

 

 

 

 

 

 

Figure 2.2. Initial screening for the photochemical functionalization of methane by 
TBADT (0.014 mmol) and KCl (0.67 mmol) in HTFA after 24 h of mercury arc 
lamp irradiation. TBADT was either used directly or ground before addition to the 
reactor. MeX (X = TFA, Cl) is plotted as methane conversion (A) and catalytic 
turnovers based on TBADT (B). Each bar graph represents the average of a 
minimum of three independent experiments with error bars depicting the standard 
deviation of the three experiments. 

 

The analogous reaction to that shown in Figure 2.1 but in the absence of 

KCl produced no MeTFA; this is likely because no radical traps are present to 

A) B) 
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quench CH3• (see below for mechanism discussion). Various loadings of KCl were 

tested, and it was observed that doubling the KCl loading from 0.67 mmol to 1.34 

mmol had a positive effect on MeX yield; however, increasing the KCl loading to 

2.68 mmol had minimal effect, within deviation, on MeX yield (Figure 2.3A). 

Using 1.34 mmol of KCl, various loadings of TBADT were tested, with the optimal 

amount of TBADT being 0.007 mmol, as this maximized MeX yield (Figure 2.3B).  

In our previous reports of light alkane partial oxidation using iodate as the 

oxidant, mechanistic studies indicated that I2 is likely generated in situ from iodate 

and serves to trap alkyl radicals in solution.35 Thus, I2 was explored as a reaction 

additive in our TBADT photochemistry. We found 0.025 mmol of I2 to be optimal, 

as this loading maximized MeX yield (Figure 2.3C). The addition of TBADT, KCl, 

and I2 in their optimized loadings in 8 mL HTFA led to the formation of 0.45 ± 

0.030 mmol of MeX in 1.9 ± 0.078% yield with a 4.2:1 ratio of MeTFA to MeCl 

after 24 h of mercury arc lamp irradiation. This MeX formation as a function of 

TBADT corresponds to 64 ± 4.3 TOs. These optimized reagent loadings in 8 mL 

HTFA and 100 psig CH4 will be referred to as the standard aerobic reaction 

conditions throughout the remainder of this chapter. 
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Figure 2.3. MeX (X = TFA, Cl) yield at various loadings of KCl (A), TBADT (B), 
and I2 (C). Red boxes indicate optimal reagent loadings in the standard aerobic 
reaction conditions. Each bar graph represents the average of at least three 
independent experiments with error bars depicting the standard deviations. 

 

Other combinations of TBADT, KCl and/or I2 in HTFA led to decreased 

CH4 functionalization (Table 2.1). For the reaction of KCl and I2, it was found that 

iodine loading is crucial for MeX production. Specifically, increasing the loading 
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of I2 to 0.050 mmol with 1.34 mmol of KCl led to no MeX production within 

standard deviation (Table 2.1, Entry 4). However, halving the amount of I2 to 0.025 

mmol with 1.34 mmol KCl (corresponding to standard aerobic reaction conditions) 

led to substantial MeX formation (Table 2.1, Entry 5). The investigation of the 

background reaction of 1.34 mmol of KCl and 0.025 mmol of I2 for methane 

functionalization in HTFA is described in the Appendix. The bimodal nature of 

MeX production as a function of time for this background reaction can be seen in 

Figure 2.13. The bifurcated results hint that radical chain processes for MeX 

formation are possible, but the initiation of such reactions is highly dependent on 

factors that we could not identify nor control. 

 

Table 2.1. MeX (X = TFA, Cl) yields for the control reactions of remaining 
combinations of reagents.a  
Entry Reagents % Yield of 

MeTFA 
% Yield of 
MeCl 

1 TBADT (0.007 mmol), I2 (0.025 
mmol) 

0.13 ± 0.069 0 

2 KCl (1.34 mmol) 0.36 ± 0.069 0.010 ± 0.0088 
3 I2 (0.025 mmol) 0.50 ± 0.16 0 
4 KCl (1.34 mmol), I2 (0.050 

mmol) 
0.010 ± 0.010 0 

5 KCl (1.34 mmol), I2 (0.025 
mmol) 

1.7 ± 0.26 0.42 ± 0.063 

a The reagents were added to 8 mL HTFA, pressurized with 100 psig CH4, and 
irradiated with a mercury arc lamp for 24 h. Each entry line represents the average 
of at least three independent experiments reported with their standard deviations. 

 

Additional control reactions were performed. When heated (180 ºC for 3 h) 

without irradiation, TBADT (0.014 mmol) and KCl (1.34 mmol) in HTFA (8 mL) 

with 100 psig CH4 resulted in no MeX formation. When the standard aerobic 

reaction conditions were pressurized with 100 psig Ar instead of CH4 and subjected 
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to a mercury arc lamp for 24 h, MeX production was not observed. Minimal 

methane functionalization (< 0.03% yield) occurred when KBr was used in place 

of KCl under the standard aerobic reaction conditions. When the standard aerobic 

reaction conditions were instead subjected to fume hood LED lighting or a 370 nm 

LED lamp, CH4 functionalization occurred, albeit at much slower rates and with 

lower yields. Acetic acid (HOAc) was explored as a solvent alternative to HTFA. 

With pure HOAc as solvent, MeX formation was not observed. Using HOAc and 

HTFA solvent mixtures, the chemistry was not clean enough to extract meaningful 

results. 

    Using standard aerobic reaction conditions, CH4 pressure was varied 

(Figure 2.4). At lower methane pressures, MeX yield based on methane was 

improved in the TBADT–KCl–I2 system. For example, reacting TBADT (0.007 

mmol), KCl (1.34 mmol), and I2 (0.025 mmol) with 15 psig of methane (~4 mmol) 

afforded 0.35 ± 0.0057 mmol of MeX in 8.9 ± 0.58% yield with a 6.4:1 ratio of 

MeTFA to MeCl after 24 h of reaction. This MeX formation as a function of 

TBADT corresponds to 50 ± 0.82 TOs. This is the highest conversion achieved 

with this system under aerobic conditions (without the inclusion of additional  

dioxygen).  
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Figure 2.4. The effect of methane pressure on MeX yield (A) and corresponding 
decatungstate TOs (B). Each bar graph represents the average of at least three 
independent experiments with error bars depicting the standard deviations. 

 

2.2.2 MeTFA Stability, Kinetics of Methane Functionalization, and Decatungstate 

Re-Oxidation with Dioxygen 

Product stability was explored under standard aerobic reaction conditions 

with the addition of 0.35 mmol MeTFA at time t = 0 h and pressurization with 100 

psig Ar in place of CH4. MeTFA was found to be stable under these conditions with 

> 94% MeTFA remaining after 41 h (Figure 2.5). 

Using standard aerobic reaction conditions, the time of mercury arc lamp 

irradiation was varied to explore CH4 oxidation as a function of time (Figure 2.5). 

According to product formation versus time, it appears that MeX formation halts at 

t ≅ 21 h. However, the exact time is difficult to discern due to the large deviations 

inherent to the photoreactions. The lack of further product formation after t ≅ 21 h 

could indicate depletion of the limiting reagent. At t ≅ 21 h, 0.44 ± 0.010 mmol of 
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MeX was present. This corresponds to ~62 ± 1.5 TOs of TBADT and consumption 

of ~32% of starting KCl. 

Using the standard aerobic reaction conditions, the reagents were added to 

the reactor in air and then sealed. It was speculated that the dioxygen present in the 

headspace of the reactor was fully consumed at t ≅ 21 h, thus preventing 

photocatalyst re-oxidation. The amount of dioxygen estimated to be in the 

headspace was calculated to be ~ 0.75 mmol. Thus, at t ≅ 21 h, the concentration 

of dioxygen likely becomes too low to re-oxidize TBADT. This speculation is 

further supported by the blue color of the post-reaction solutions, indicative of spent 

decatungstate in its reduced form.  

We began our studies on dioxygen dependence by varying the amount of 

dioxygen present in the reactor headspace before the start of the reaction. It has 

been shown that dioxygen is incapable of quenching DT••, such that catalyst 

deactivation by dioxygen is very unlikely.82 We studied the impact of dioxygen by 

purging the reaction solution with either dinitrogen or dioxygen. Purging was 

performed by bubbling the respective gas into the reaction solution for 1 minute 

after charging the reactor with TBADT, KCl, I2, and HTFA and before pressurizing 

with CH4. When the solution was purged with dinitrogen, no MeX was produced 

(Scheme 2.1B). When the solution was purged with dioxygen, 0.90 ± 0.30 mmol 

MeX was produced after 24 h of irradiation (Scheme 2.1C). Scheme 2.1 details a 

comparison of these solution-purged reactions to the standard aerobic reaction. 

These results provide support for dioxygen as the limiting reagent, in which 

dioxygen re-oxidizes spent TBADT back to its active form. 
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Figure 2.5. Methane functionalization and MeTFA decay under standard aerobic 
reaction conditions with TBADT, KCl, and I2 as a function of time. Each data point 
represents the average of at least three independent experiments with error bars 
depicting the standard deviations. 
 

Additional experiments were performed to further probe the re-oxidation of 

TBADT by dioxygen. After irradiation of the high methane conversion aerobic 

reaction conditions (15 psig CH4) for 24 h, dioxygen top pressure was added to the 

reactors, followed by further irradiation. A series of experiments were performed 

in which we modulated the amount of dioxygen added, the number of dioxygen 

pressurizations, and the amount of irradiation time between dioxygen top pressure 

additions. In many of these experiments, the formation of MeCl could not be 

accurately quantified due to signal broadening in the 1H NMR spectra (see Figure 

2.11 for representative 1H NMR spectrum). A preliminary re-oxidation reaction as 
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well as the optimal re-oxidation reaction are displayed in Scheme 2.2, along with 

the high methane conversion aerobic reaction for comparison. We note that the 

optimal re-oxidation experiment reached the pressure limitations of the reaction 

vessel. Because dioxygen is our limiting reagent under these conditions, it is 

feasible that MeX formation will continue with additional dioxygen if a reactor with 

a higher-pressure limit or continuous-flow of dioxygen is used.  

 

Scheme 2.1. Effect of differing concentrations of dioxygen on MeX (X = TFA, Cl) 
production reported as mmol of product, catalyst turnovers, and percent yield. A = 
standard aerobic reaction conditions; B = dinitrogen-purged reaction solution; C = 
dioxygen-purged reaction solution. Each reaction scheme represents the average of 
at least three independent experiments reported with their standard deviation.  
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A) 

HTFA (8 mL)
hν, 24 h

TBADT (0.007 mmol)
KCl (1.34 mmol)
I2 (0.025 mmol)

CH4

(100 psig)

HTFA (8 mL)
dinitrogen purge

hν, 24 h

TBADT (0.007 mmol)
KCl (1.34 mmol)
I2 (0.025 mmol)

CH4

(100 psig)

HTFA (8 mL)
dioxygen purge

hν, 24 h

TBADT (0.007 mmol)
KCl (1.34 mmol)
I2 (0.025 mmol)

CH4

(100 psig)

0.36 ± 0.027 mmol MeTFA + 0.087 ± 0.012 mmol MeCl
52 ± 3.9 TOs MeTFA + 12 ± 1.7 TOs MeCl
1.5 ± 0.067% yield MeTFA + 0.36 ± 0.039% yield MeCl

0.82 ± 0.30 mmol MeTFA + 0.076 ± 0.014 mmol MeCl
120 ± 43 TOs MeTFA + 11 ± 2.0 TOs MeCl
3.4 ± 1.2% yield MeTFA + 0.31 ± 0.055% yield MeCl

0 mmol MeTFA + 0 mmol MeCl
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Scheme 2.2. Comparison of high methane conversion aerobic methane to MeX (X 
= TFA, Cl) reaction with standard reagent loadings (A) to preliminary re-oxidation 
reaction with standard reagent loadings (B) and to optimal re-oxidation reaction 
with standard reagent loadings (C). Results are reported as catalyst TOs and percent 
yields based on methane. Each reaction scheme represents the average of at least 
three independent experiments reported with their standard deviation. 

 

 

2.2.3 Screening of Non-Gaseous Oxidants for Decatungstate Re-Oxidation 

In an effort to circumvent the pressure limitations of the reactors described 

above with dioxygen, non-gaseous additives were explored as potential co-

oxidants, such as copper salts and peroxides. None of the copper salts explored 

(CuCl2•xH2O, Cu(OAc)2•xH2O {OAc = C2H3O2-}, Cu(TFA)2•xH2O) nor K2S2O8 

had any beneficial effect on product formation (Figure 2.12). Alkyl peroxides (tert-

butyl hydroperoxide, di-tert-butyl peroxide) were then explored as potential co-

oxidants, resulting in > 100% yield of MeX (Table 2.2). However, this > 100% 

MeX yield was due to peroxide decomposition for which photo-induced cleavage 

of the peroxide O–O bond followed by decomposition leads to the production of 

methyl radicals and acetone (see Appendix for details).83, 84 When hydrogen 

A) High Methane Conversion Aerobic Reaction 

B) Preliminary Re-oxidation Reaction 

C) Optimal Re-oxidation Reaction 

CH4

TBADT (0.007 mmol)
KCl (1.34 mmol)
I2 (0.025 mmol)

HTFA (8 mL)
O2 purge
hν, 24 h

(20 psig) hν, 24 h

15 psig O2 370 ± 85 TOs MeTFA
59 ± 14% yield MeTFA
*Cannot detect MeCl due to line broadening

x 6

CH4

TBADT (0.007 mmol)
KCl (1.34 mmol)
I2 (0.025 mmol)

HTFA (8 mL)
hν, 24 h

hν, 24 h

25 psig O2 100 ± 35 TOs MeTFA + 6.8 ± 1.3 TOs MeCl
13 ± 4.3% yield MeTFA + 0.89 ± 0.22% yield MeCl

(20 psig)

CH4
HTFA (8 mL)

TBADT (0.007 mmol)
KCl (1.34 mmol)
I2 (0.025 mmol) 43 ± 0.76 TOs MeTFA + 6.7 ± 0.29 TOs MeCl

7.7 ± 0.58% yield MeTFA + 1.2 ± 0.054% yield MeCl
hν, 24 h

(15 psig)
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peroxide (which is unable to generate methyl radicals) was used, no improvement 

of MeX yield (within deviation) was observed relative to the high methane 

conversion aerobic reaction. The large deviations for these reactions can be 

explained by photodecomposition. UV irradiation initiates O–O bond cleavage to 

hydroxyl radicals which form water and dioxygen through a radical chain 

mechanism, leading to differing concentrations of these three compounds in 

reaction solution.85 Overall, no solids or liquids were identified as effective co-

oxidants. 

2.2.4 Mechanistic Studies based on Density Functional Theory (DFT) 

Section 2.2.4 describes the computational studies carried out by Charles Musgrave. 

2.2.4.1 Global Mechanism 

DT’s involvement in the chemistry is not trivial. DT is primarily known for 

its ability to perform HAT on alkanes to generate alkyl radicals. In the present case, 

this could be HAT to convert methane to CH3•, which has been previously 

observed.74 We initially considered that DT also abstracts H from HTFA to form 

TFA•. However, HTFA’s polarity mismatch with DT55 and strong O–H BDE 

(113.7 kcal/mol) would make HAT of the HTFA O–H bond by DT unlikely.86 If 

we assume that HCl is generated through HAT from methane by Cl•, it is plausible 

that DT undergoes a HAT with HCl to regenerate the Cl•. However, the difference 

in pKa between H-TFA and H-Cl is > 6 units, such that HCl would likely 

deprotonate to form Cl–. An alternative path for Cl– would be to undergo electron 

transfer (ET) with DT•• to again form Cl• and reduce DT•• to DT•–.80, 87 We propose 

a two-fold involvement of DT in the methane oxidation chemistry. First, active 
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DT•• abstracts hydrogen from CH4 to form CH3•. Second, DT•• oxidizes Cl– to Cl•; 

Cl• can either directly react with CH4 via HAT, or associate with a Cl– to form a 

Cl2•– radical trap. With these considerations in mind, we propose the mechanism 

depicted in Figure 2.6. 

 

 

Figure 2.6. Global mechanism for methane oxidation towards MeX. The 
mechanism can be partitioned into 3 sub-mechanisms working synergistically. The 
first sub-mechanism (green, labeled CH4 to MeX) is the Cl/I radical-based pathway 
in which methane (or CH3• after HAT) is converted to MeTFA and MeCl (CH3Cl 
in figure). The second sub-mechanism (blue, labelled Cl– ET Cycle) is the DT•• + 
Cl– ET to generate Cl•. The third sub-mechanism (purple, labelled CH4 HAT Cycle) 
is the HAT of CH4 with DT•• or Cl• to generate CH3•. 

 

   We probed the mechanism for CH4 conversion to MeTFA hypothesized 

in Figure 6 using quantum mechanics (QM) calculations at the DFT level. We begin 

with the first sub-mechanism, which involves the actual conversion of CH4 to 

MeTFA. With Cl• as the HAT agent and I2 as the radical trap, the sub-mechanism 

occurs as: 

• CH4 reacts with Cl• to generate CH3• and HCl 

• CH3• is then trapped by I2 to form CH3I and I•  

• CH3I reacts with HTFA to form MeTFA and HI 



 36 

The free energy surface for this pathway is detailed in Scheme 2.3. 

 

Scheme 2.3. DFT Free energies at 298 K for the conversion of methane to MeTFA 
within the Cl/I system. 

 

2.2.4.2 Chlorine-Based Radical Mechanism 

The barrier required for HAT between CH4 and Cl• to produce CH3• and 

HCl is calculated to be 1.5 kcal/mol above the methane starting state, while the 

reaction step is overall downhill by -1.3 kcal/mol. Following formation of CH3•, 

molecular I2 reacts to form CH3I and I•. DFT predicts this step to be barrierless and 

exergonic by -35.6 kcal/mol, which places CH3I at -36.9 kcal/mol below the 

methane starting state. Following the formation of CH3I, MeTFA can now form by 

an SN2 solvolysis reaction with HTFA. In this reaction step, the divalent O of HTFA 

acts as a nucleophile to attack the C of CH3I, forming HTFA+-CH3 and I–. The now 

trivalent O of HTFA+-CH3 gives up H+ to I–, forming HI and the desired MeTFA 

product. DFT predicts that this conversion of HTFA and MeI to MeTFA and HI is 

uphill 8.9 kcal/mol. The acidity of HI, which should protonate water, would drive 

the conversion of MeI and HTFA to MeTFA and HI to completion.  In this sub-

mechanism, the overall conversion of CH4 to MeTFA is -28.0 kcal/mol when Cl• 

is the HAT agent with I2 as the radical trap. 
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2.2.4.3 Iodine-Free Radical Mechanism 

It is important that we also consider the chemistry in the absence of iodine, 

since this is the condition of some experiments. In the absence of iodine, we observe 

that oxidation of CH4 to MeTFA still occurs, however with decreased turnovers. 

This is likely because without iodine, Cl2 or Cl2•– (which forms when Cl• and Cl– 

associate)88 serve as the radical trapping agent, in which CH3Cl is formed instead 

of CH3I.35 Because Cl– is a poorer leaving group than I–, CH3Cl + HTFA solvolysis 

to form HCl and MeTFA is likely retarded. However, HAT between CH4 and Cl• 

is not affected by the absence of iodine. The free-energy pathway is depicted in 

Scheme 2.4. As noted, HAT between CH4 and Cl• remains unchanged with a barrier 

of 1.5 kcal/mol, resulting in the alkyl radical and HCl at -1.3 kcal/mol. Trapping of 

the alkyl radical with Cl2 is downhill -34.0 kcal/mol, resulting in formation of 

CH3Cl at -35.3 kcal/mol. With Cl2•–, radical trapping is downhill -46.3 kcal/mol, 

resulting in CH3Cl and Cl– at -47.6 kcal/mol. Like the case with CH3I, we propose 

CH3Cl follows an SN2 solvolysis pathway with HTFA to generate MeTFA and HCl. 

Solvolysis between CH3Cl and HTFA is uphill 4.7 kcal/mol, resulting in HCl and 

the desired MeTFA at -30.6 kcal/mol (-42.8 when Cl2•– is the radical trap). While 

solvolysis with MeCl (4.7 kcal/mol) is thermodynamically more accessible than 

MeI (8.9 kcal/mol), the actual kinetics for MeCl solvolysis will be slower because 

the HTFA+-CH3 + Cl– ion pair is less stable than the iodine analog, on account of 

Cl– being a worse leaving group than I–. 
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Scheme 2.4. DFT Free energies at 298 K for the conversion of methane to MeTFA 
in the absence of I2. 

 

 

 

 

 

 

 

2.2.4.4 Decatungstate Integration 

Previous reports have shown that ground state DT, specifically NaDT and 

TBADT, can be photoexcited by 365-390 nm light to a highly active HAT 

reagent.56, 67, 89, 90 The absorption spectrum for DT anion shows a large peak at 324 

nm, corresponding to a HOMO-LUMO transition, also marked by ligand to metal 

charge transfer (LMCT).91, 92 This photoexcitation is likely a closed-shell singlet to 

open-shell singlet transition of DT in which the SOMOs reside on the oxygens. The 

open-shell singlet relaxes from the Franck-Condon point to the open-shell singlet 

minima in < 1 ps.56 This excited singlet reportedly decays via an intersystem 

crossing to the active triplet state, which is stabilized by the exchange interaction. 

This active triplet state is formed with a quantum yield of 0.5-0.6 and exists for 55 

± 20 ns in acetonitrile.56, 93-98 The triplet state (DT••) has radical character on the 

electrophilic oxygens, such that it can readily pull H atoms off neighboring 

molecules (like CH4 and HCl) to generate radicals when the substrate oxidation 

potential is above +2.44 V vs. saturated calomel electrode (SCE).56 When the 
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oxidation potential is below +2.44 V vs. SCE, the complex is expected to perform 

ET; this is the regime in which DT oxidizes Cl– to Cl•.88 Following ET, protonation 

of DT• from the medium would result in HDT• with an overall doublet spin. 

Previously published experimental evidence shows that after reacting, the solution 

containing DT turns dark blue with strong absorption bands in the 600-800 nm 

range; which we interpret as the formal reduction of W in DT.82, 87, 90, 92, 99-101 The 

species responsible for the blue color occurs after relatively long periods of time 

and is not active in catalysis. For our purposes, we focus on the singlet ground state 

DT, the lowest-lying triplet DT•• and the reduced HDT•. 

We calculate that the initial excitation of DT to the lowest-lying triplet DT•• 

requires 43.5 kcal/mol; experimentally this excitation arises through irradiation by 

365-390 nm light. For simplicity, we set DT•• as the reference state of 0.0 kcal/mol 

in Scheme 2.5. Spin density analysis reveals significant unpaired spin on the 

bridging oxygens in DT••. Oddly, the terminal oxo ligands exhibit little spin 

density, contrary to previous beliefs that the terminal oxos are responsible for 

HAT.56 To confirm this finding, we analyzed the hydrogen binding (HB) energies 

for the 5 unique oxygens of DT•• (Figure 2.7). 
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DT Site H-binding Energy 
(kcal/mol) 

1 -29.0 
2 -47.3 
3 -35.0 
4 -47.7 
5 -41.4 

 

 
Figure 2.7. Spin-density diagram for the lowest-lying triplet decatungstate 
(purple=α, green=β) and hydrogen-binding energies (kcal/mol) for the 5 unique 
oxygen sites. The oxygen and tungsten atoms are red and grey, respectively.    

 

We define the HB energy as the free energy of the reaction H• + DT•• à 

HDT•. Sites 2, 4, and 5 are bridging oxygens and sites 1 and 3 are terminal oxo 

ligands. As the spin density analysis suggests, binding H• to the bridging oxygen 

sites was most favorable. The HB energy to sites 2, 4, and 5 are -47.3, -47.7, and -

41.4 kcal/mol respectively. In contrast, the HB energy to sites 1 and 3 are -29.0 and 

-35.0 kcal/mol respectively, indicating that binding H to the terminal oxo ligands 

is significantly less favorable. Overall, site 4 provides the best HB energy while site 

1 is the worst. Thus site 4 would appear responsible for the HAT since it binds H 

the strongest, but we note that site 4 is not easily accessible due to the two adjacent 

oxo groups. For example, CH4 does not readily undergo HAT with site 4 because 

the adjacent oxo ligands would repel the CH4 due to Pauli Repulsion. Instead, we 

propose that HAT occurs through site 2. Site 2 is easily accessible for HAT and 
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provides the second-best HB energy, only 0.4 kcal/mol less than site 4. Ravelli and 

coworkers also proposed that site 4 is shielded and therefore not active for HAT.56 

Site 1 was previously believed to be the active HAT site because it contributes more 

to the shape of the HOMO-1 orbital compared to site 2 (HOMO-1 is where the 

unpaired spin resides), and because its geometric parameters match that of HAT 

with a triplet carbonyl in which the process occurs in-plane with the C=O bond. We 

claim that the difference between sites 1 and 2 for HOMO-1 contribution is small 

and that both sites provide geometric parameters suitable for HAT with a carbonyl. 

This combined with site 2’s more favorable HB energy leads us to propose that site 

2 is responsible for HAT. 

 
Scheme 2.5. DFT Free energies at 298 K for (a) the generation of Cl• through ET 
of Cl– with DT•• and (b) for the generation of CH3• through HAT of CH4 with 
DT••. 

 

 

 

 

 

 

Scheme 2.5 shows ET to DT•• from Cl– to form Cl• and HAT to DT•• from 

CH4 to form CH3•; preceding these steps is the photoexcitation of DT to DT••, 

which DFT predicts requires 43.5 kcal/mol. For simplicity, we choose DT•• to be 

the reference state at 0.0 kcal/mol. DFT predicts ET to DT•• from Cl– is downhill -

4.3 kcal/mol.87, 102 Following ET, DT•– would protonate to form HDT• (not shown). 
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We find that HAT from CH4 to DT•• is -1.6 kcal/mol downhill with a transition 

state barrier of 6.1 kcal/mol above the DT•• reference state. Subsequent 

regeneration of DT from HDT• is achieved through oxidation by dioxygen. 

2.2.4.5 Decatungstate Regeneration by Dioxygen 

HAT leads to the HDT• species which can undergo further re-oxidation to 

regenerate the DT catalyst and funnel H towards H2O. Given the presence of 

dioxygen (O2) in the reaction vessel, the first step is likely a HAT in which triplet 

O2 pulls H off HDT• to generate HO2• and a ground state singlet DT. The HO2• can 

then pull another H off an additional equivalent of HDT• to generate HOOH. We 

envision that during catalysis, there exists a pool of O–H containing species such 

as OH•, HOOH, HO2•, etc. These species can react in numerous ways, making it 

difficult to predict exactly how O2 and HOOH may funnel towards a 

thermodynamic sink. However, our previous study on peroxide radical chemistry 

revealed that in a large ensemble of O–H-containing species, the reactions that 

occur most are (1) HOOH + OH• à HO2• + H2O and (2) HOOH + HO2• à OH• + 

O2 + H2O.103 Both reactions consume an HOOH and produce an H2O. We 

hypothesize that upon formation of HOOH from HO2•, either of these two reactions 

can consume the HOOH to form H2O. This H2O formation mechanism is depicted 

in Scheme 2.6. 
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Scheme 2.6. DFT Free energies at 298 K for the conversion of dioxygen to H2O 
and the regeneration of the DT ground state. 

 

Starting with triplet O2, HAT to pull H off the doublet HDT• to regenerate 

ground state singlet DT while forming HO2• is uphill 8.1 kcal/mol. HO2• can now 

perform a secondary HAT on an additional HDT• to form HOOH plus another 

singlet DT; this step is downhill to -15.5 kcal/mol. Formation of HOOH opens 

numerous avenues for a plethora of possible reaction steps. However, we believe 

the most likely reactions that can occur are either (1) HOOH + OH• à HO2• + H2O 

or (2) HOOH + HO2• à OH• + O2 + H2O. Reaction 1 is barrierless to form HO2• 

and H2O at -48.7 kcal/mol. Reaction 2 requires a barrier of -1.5 kcal/mol (or 14.0 

kcal/mol relative to preceding HOOH intermediate) and is downhill to form OH•, 

O2, and H2O at -44.2 kcal/mol. Overall, this sub-mechanism converts O2 to H2O 

and regenerates 2 ground-state DT from 2 HDT•. We note that this mechanism does 

not account for DT’s reduced -5 or -6 states that are observed in experiment. We 

believe these states are formed via non-catalytic electron transfer side reactions that 

do not contribute to the catalytic methane oxidation chemistry. Indeed, previous 

experimental studies claim that these -5 and -6 states are formed over long time 

periods and are not catalytic.56 
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2.2.5 Reaction Tolerance to Water 

The DFT-predicted reaction mechanism suggests HO2• formation from the 

re-oxidation of HDT• by O2, which eventually funnels to the formation of H2O. 

Thus, we experimentally probed the reaction tolerance to water. Varying 

equivalents of water were added at the start of the reaction under our standard 

aerobic reaction conditions to quantify the effect on the amount of MeX produced. 

The formation of MeX is plotted against equivalents of added water relative to 

TBADT in Figure 2.8. At 1,000 equivalents of water relative to TBADT (7.0 mmol 

H2O), there is no effect on MeX production. At 10,000 equivalents of water relative 

to TBADT (70 mmol H2O), MeX production is shut down. At this concentration of 

water, the impact on reaction rate is likely due to a solvent effect (e.g., reduced 

acidity) rather than a specific kinetic impact (Figure 2.8). 
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Figure 2.8. Amount of MeX (X = TFA, Cl) produced under standard aerobic 
reaction conditions in which varying amounts of water were added to the start of 
the reaction. Equivalents of water are reported with respect to TBADT. Each bar 
graph represents the average of at least three independent experiments with error 
bars depicting the standard deviation of the three experiments. 

 

2.3 Summary and Conclusions 

We have demonstrated the partial oxidation of methane using a 

photochemically driven process comprised of catalytic TBADT, chloride, and 

iodine in HTFA. Under aerobic conditions, MeX yield reached ~9%. Our kinetic 

studies revealed a dependence on dioxygen concentration. Re-oxidation 

experiments with dioxygen led us to achieve methane to MeTFA conversion with 

> 350 TOs based on TBADT and ~60% yield based on methane when optimized. 

MeTFA was shown to be stable under standard reaction conditions, with > 94% 

remaining after 41 h. 
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Density Functional Theory calculations were used to determine the reaction 

mechanism, which validates our proposal that photo and radical chemistry 

synergistically perform methane functionalization. Based on the DFT calculations 

and experiments, we propose a radical pathway in which a hydrogen atom is 

abstracted from methane by a chlorine atom or by triplet DT•• to generate a methyl 

radical, which is then trapped by some chlorine or iodine species (Cl2, Cl2•–, I2) to 

generate a methyl halide.35 From there, HTFA undergoes SN2 solvolysis with the 

methyl halide to form the desired ester product, MeTFA. The chlorine radicals in 

this mechanism are generated through electron transfer from chloride anion to 

DT••. We propose that after ET by DT•• and subsequent protonation, dioxygen re-

oxidizes HDT• and subsequently forms water. 

The addition of DT to the chloride-iodine system presents a novel strategy 

for the photo-driven partial oxidation of methane towards MeTFA. DT’s 

remarkable quantum efficiency and HAT reactivity provides synergy with the free 

radical chemistry of chloride and iodine, affording the desired MeTFA product 

which maintains excellent stability.  

2.4 Experimental Section 

CAUTION. Many of the reagents and conditions described herein are 

particularly hazardous. Appropriate safety measures should be taken and 

appropriate personal protective equipment should be worn when handling strong 

acids, especially in large volumes. Broadband mercury arc lamps are dangerous to 

the skin and eyes, and even a brief exposure can result in permanent damage. The 

lamps must only be turned on while encased in an enclosure that precludes exposure 
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to the naked eye. Cool to room temperature water must always be recirculated 

around the lamp to prevent uncontrolled overheating; this is especially important 

when conducting reactions containing mixtures of methane and air or dioxygen. 

NOTE: Mixtures and methane and dioxygen are potentially explosive.104 

General Comments and Materials. All reactions were carried out under 

ambient atmosphere unless indicated otherwise. Methane, oxygen, nitrogen, and 

argon were purchased from GTS-Welco and used as received. Potassium chloride, 

potassium bromide, iodine, trifluoroacetic acid (> 99.9%), glacial acetic acid, 

nitromethane, copper(II) acetate hydrate, copper(II) chloride hydrate, copper(II) 

trifluoroacetate hydrate, potassium persulfate, di-tert-butyl peroxide, tert-butyl 

hydroperoxide, hydrogen peroxide, and trifluoroacetic anhydride were purchased 

commercially and used as received. Tetrabutylammonium decatungstate (TBADT) 

was synthesized and characterized according to literature procedure, for which the 

reagents were purchased commercially and used as received.105 High pressure 

reaction vessels were constructed from Fisher-Porter tubes, purchased from 

Andrews Glass, and custom-built reactor tops were constructed from Swagelok 

stainless steel fittings (see Figure 2.10). These reaction vessels can be safely 

pressurized to 250 psig at room temperature. The photolysis enclosure was 

constructed with a power supply feeding a broadband mercury arc lamp. The 

mercury arc lamp was nested in a quartz immersion well in which cool to room 

temperature DI water (15-40 ºC) was recirculated through at all times the lamp was 

powered on. The power supply (450-watt, product #7830-60), Hanovia mercury arc 

lamp (medium pressure, 450 watt, 121.92 mm arc length, 244.35 mm overall 
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length, product #7825-34), and quartz immersion well (product #7854-27) were 

purchased from Ace Glass. The mercury arc lamp is quoted to irradiate ~ 40-48% 

in the ultraviolet spectral range, ~ 40-43% in the visible spectral range, and the 

remainder in the infrared spectral range. Mercury arc lamps were replaced every 

1,000 hours. NMR analysis was performed using either a Varian Inova 500 or 600 

MHz spectrometer. 1H NMR data of reaction mixtures were obtained with a 

capillary of C6D6 as the internal lock reference. Chemical shifts are reported relative 

to the internal standards of either CH3NO2 (d 4.18) or HOAc (d 2.04). UV-vis 

spectral measurements of TBADT were collected on a Cary 60 UV-vis 

spectrometer. Samples were prepared in 1 cm square quartz cuvettes.  

General Procedure for Photochemical Methane Functionalization. 

Reactions were performed in triplicate. Each Fisher-Porter reactor was charged 

with a stir bar and solid reagents (TBADT, KCl, I2) followed by 8 mL HTFA. 

Unless specified otherwise, TBADT was ground with a mortar and pestle prior to 

adding to the reactor. The reactors were sealed under air and weighed. The reactors 

were then pressurized with methane and weighed again. The amount of methane 

added was quantified by the difference in mass before and after methane addition. 

The reactors were then added to a photolysis enclosure, each positioned 16 cm from 

the mercury arc lamp with uniform stirring. Reaction time was started 15 minutes 

following lamp turn on to account for lamp warm up time to reach full intensity. 

After the reaction, the lamp was turned off and the photolysis chamber was kept 

closed for at least one minute to ensure the lamp was safely powered off. The 

reactors were removed, weighed to probe for leaks, and cooled in front of a fan for 
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at least 15 minutes. The reactors were then vented in a fume hood, 20 µL of internal 

standard (either CH3NO2 or HOAc) was added to each reaction, and the reaction 

mixtures were thoroughly stirred. An aliquot from each reaction mixture was 

removed and centrifuged, from which the supernatant of each was added to an 

NMR tube containing a sealed capillary containing C6D6. The products were 

analyzed by 1H NMR spectroscopy. See Figure 2.9 for a sample 1H NMR spectrum.  

MeTFA Stability Under Photochemical Conditions. Reactions were 

performed in triplicate. Each Fisher-Porter reactor was charged with 0.007 mmol 

TBADT, 1.34 mmol KCl, 0.025 mmol I2, and a stir bar followed by 8 mL HTFA 

and 0.35 mmol of MeTFA. The reactors were sealed under air, pressurized with 

100 psig Ar, and weighed. The reactors were then added to a photolysis enclosure, 

each positioned 16 cm from the mercury arc lamp with uniform stirring. Reaction 

time was started 15 minutes following lamp turn on to account for lamp warm up 

time to reach full intensity. After the reaction, the lamp was turned off and the 

photolysis chamber was kept closed for at least one minute to ensure the lamp was 

safely powered off. The reactors were removed, weighed to probe for leaks, and 

cooled in front of a fan for at least 15 minutes. The reactors were then vented in a 

fume hood, 20 µL of internal standard (either CH3NO2 or HOAc) was added to each 

reaction, and the reaction mixtures were thoroughly stirred. An aliquot from each 

reaction mixture was removed and centrifuged, from which the supernatant of each 

was added to an NMR tube containing a sealed capillary containing C6D6. The 

products were analyzed by 1H NMR spectroscopy. 
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Experiments Involving Dinitrogen/Dioxygen Purges. Reactions were 

performed in triplicate. Each Fisher-Porter reactor was charged with 0.007 mmol 

TBADT, 1.34 mmol KCl, 0.025 mmol I2, and a stir bar followed by 8 mL HTFA. 

The reactor tops were fitted to the reactors but not sealed. Using a long needle, the 

respective gas was bubbled through each reaction solution one at a time. Following 

one minute of bubbling, the needle was removed and the reactor valve was quickly 

sealed. The reactors were weighed, pressurized with 100 psig methane, and 

weighed again. The amount of methane added was quantified by the difference in 

mass before and after methane addition. The reactors were then added to a 

photolysis enclosure, each positioned 16 cm from the mercury arc lamp with 

uniform stirring. Reaction time was started 15 minutes following lamp turn on to 

account for lamp warm up time to reach full intensity. After 24 h of reaction, the 

lamp was turned off and the photolysis chamber was kept closed for at least one 

minute to ensure the lamp was safely powered off. The reactors were removed, 

weighed to probe for leaks, and cooled in front of a fan for at least 15 minutes. The 

reactors were then vented in a fume hood, 20 µL of internal standard (either 

CH3NO2 or HOAc) was added to each reaction, and the reaction mixtures were 

thoroughly stirred. An aliquot from each reaction mixture was removed and 

centrifuged, from which the supernatant of each was added to an NMR tube 

containing a sealed capillary containing C6D6. The products were analyzed by 1H 

NMR spectroscopy. 

Re-oxidation Experiments with Dioxygen. Reactions were performed in 

triplicate. Each Fisher-Porter reactor was charged with 0.007 mmol TBADT, 1.34 
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mmol KCl, 0.025 mmol I2, and a stir bar followed by 8 mL HTFA. Reactors were 

either sealed under air or purged with dioxygen. The reactors were weighed, 

pressurized with methane and weighed again. The amount of methane added was 

quantified by the difference in mass before and after methane addition. The reactors 

were then added to a photolysis enclosure, each positioned 16 cm from the mercury 

arc lamp with uniform stirring. Reaction time was started 15 minutes following 

lamp turn on to account for lamp warm up time to reach full intensity. After the 

reaction, the lamp was turned off and the photolysis chamber was kept closed for 

at least one minute to ensure the lamp was safely powered off. The reactors were 

removed, weighed to probe for leaks, and cooled in front of a fan for at least 15 

minutes. The reactors were then pressurized with dioxygen top pressure and 

weighed again. The amount of dioxygen added was quantified by the difference in 

mass before and after dioxygen addition. The reactors were then subjected again to 

the mercury arc lamp. This process of adding additional dioxygen top pressure and 

re-subjecting to the mercury arc lamp was repeated as detailed in each set of 

reaction conditions. Following the last dioxygen addition and irradiation, the 

reactors were removed, weighed to probe for leaks, and cooled in front of a fan for 

at least 15 minutes. The reactors were then vented in a fume hood, 20 µL of internal 

standard (either CH3NO2 or HOAc) was added to each reaction, and the reaction 

mixtures were thoroughly stirred. An aliquot from each reaction mixture was 

removed and centrifuged, from which the supernatant of each was added to an 

NMR tube containing a sealed capillary containing C6D6. The products were 

analyzed by 1H NMR spectroscopy. 
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Computational Details. All Density Functional Theory calculations were 

performed within the Jaguar software package version 10.9 from Schrodinger Inc. 

Structures were first optimized using the PBE flavor of DFT including the Grimme-

Becke-Johnson (GBJ) D3 correction for London dispersion. W and I atoms were 

treated with the Los Alamos large-core triple-zeta pseudopotential augmented with 

polarization and diffuse functions (LAV3P*+ in Jaguar). All other atoms were 

treated with the 6-31+G(d) basis set. PBE-D3 geometry optimizations were 

followed by additional single-point energy (SPE) calculations with implicit solvent. 

SPEs were calculated with the M06-2X functional using the GBJ D3 dispersion 

correction. For the SPE, W and I were described with the Los Alamos small-core 

triple-zeta potential augmented with polarization and diffuse functions; all other 

atoms were described with the 6-311++G(d,p) basis set (LACV3P**++ in Jaguar). 

Solvent effects were included through the PBF Poisson Boltzmann continuum 

model with parameters matching trifluoroacetic acid. Frequency calculations were 

performed at the M06-2X-D3/LACV3P**++ level to predict thermochemical 

properties (zero-point energy, entropy, and temperature correction to enthalpy) at 

298K and to confirm intermediate and transition states. 
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2.6 Chapter Appendix 

2.6.1 Photochemical Methane Functionalization: Additional General Information 

 
 
 

 

Figure 2.9. Labeled representative 1H NMR spectrum for photochemical methane 
functionalization. Either HOAc (shown here) or CH3NO2 were used as internal 
standard, from which product yields were quantified. The small peak at 5.5 ppm 
may suggest that a small amount of MeCl was further chlorinated. 
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Figure 2.10. Photograph of a custom-built high pressure reaction vessel used for 
photolytic reactions.  
 
  



 70 

2.6.2 Re-Oxidation with Dioxygen

 

Figure 2.11. Labeled representative 1H NMR spectrum for re-oxidation 
experiments with dioxygen in which signal broadening prevents the ability to detect 
or measure MeCl formation. 
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2.6.3 Screening of Solids as In Situ Co-Oxidants  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.12. Comparison of the amount of MeX (X = TFA, Cl) produced as a 
method to screen substrates to serve as in situ oxidants for the re-oxidation of 
TBADT under standard aerobic reaction conditions. Each bar graph represents the 
average of at least three independent experiments with error bars depicting the 
standard deviations. 
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2.6.4 Screening of Peroxides as In Situ Co-Oxidants 

Anaerobic (i.e., dinitrogen-purged), but otherwise standard, reaction 

conditions were used to probe the ability of alkyl peroxides to serve as in situ 

oxidants for the re-oxidation of TBADT. The addition of ten equivalents of either 

di-tert-butyl peroxide (DTBP) or tert-butyl hydroperoxide (tBuOOH) relative to 

TBADT led to a decrease in MeX (X = TFA, Cl) production (Table 2.2, Entries 3 

and 4) compared to the reaction without alkyl peroxide addition (Table 2.2, Entry 

1).  

When the loading of tBuOOH was increased an additional ten-fold, both 

TBADT TOs and MeX yield increased (Table 2.2, Entry 5). The reaction with 100 

equivalents of tBuOOH reflects the highest peroxide loading that can be used while 

maintaining an environment that falls safely within the pressure limitations of the 

reaction vessel. This threshold was determined by considering the reaction of each 

equivalent of added peroxide with one equivalent of HTFA to produce one 

equivalent of CO2. Thus, in order to explore reactions with a higher excess of 

peroxide, the amount of methane was decreased to 15 psig (Table 2.2, Entry 6). The 

reaction with 15 psig methane and 100 equivalents of tBuOOH resulted in the same 

TOs, within standard deviation, but MeX yield was increased substantially.  

When tBuOOH loading was increased to 1,000 equivalents, > 100% MeX 

yield was observed (Table 2.2, Entry 7). This > 100% yield alerted us to the 

likelihood that methyl radical was being formed from a source other than methane 

under these conditions. The explanation for this additional methyl radical source 

was located in previous studies in which DTBP was shown to undergo photo-
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decomposition to form methyl radical.1, 2 First, tert-butoxy radical is likely formed 

from photo-induced O–O bond cleavage of the peroxide. The unstable tert-butoxy 

radical then decomposes to form acetone and methyl radical. In our case, the data 

for the reactions with peroxide addition are in agreement with this route of photo-

decomposition as a resonance in the 1H NMR spectra at 2.25 ppm is present and 

was confirmed to be acetone.  

When analogous conditions to Entry 6 were used, but with H2O2 as the 

peroxide, which is unable to generate methyl radicals, no improvement of MeX 

yield (within standard deviation) was observed (Table 2.2, Entry 8) relative to the 

high methane conversion aerobic reaction (Table 2.2, Entry 2).  

Interestingly, all of the reactions with peroxides increased selectivity 

towards MeTFA. The reactions with peroxide addition, however, all suffered from 

large standard deviations.  
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Table 2.2. Screening of peroxides to serve as in situ oxidants for the re-oxidation 
of TBADT.a 

 
Entry Peroxide 

identity 
Equivalents 
of peroxide 
(relative to 
TBADT) 

Methane 
pressure 
(psig) 

TOs of 
MeX (X 
= TFA, 
Cl)b 

% Yield 
of MeX 
(X = 
TFA, Cl)c 

Molar 
ratio of 
MeTFA:
MeCl  

1 None N/A 100 64 ± 4.3 1.9 ± 
0.078 

4.2:1 

2 None N/A 15 50 ± 0.82 8.9 ± 0.58 6.4:1 

3 DTBP 10 100 20 ± 8.7 0.60 ± 
0.24 

35:1 

4 tBuOOH 10 100 13 ± 6.2 0.39 ± 
0.20 

22:1 

5 tBuOOH 100 100 160 ± 22 4.7 ± 0.53 280:1 

6 tBuOOH 100 15 150 ± 23 39 ± 10 MeTFA 
exclusive-
ly 

7 tBuOOH 1,000 15 660 ± 67 120 ± 12 69:1 

8 H2O2 1,000 15 66 ± 25 13 ± 6.5 22:1 
a Reaction conditions: 0.007 mmol TBADT, 1.34 mmol KCl, and 0.025 mmol I2, 8 mL HTFA, N2 

purge, pressurized with CH4, and 24 h of Hg lamp irradiation. Each entry line represents the average 
of at least three independent experiments reported with their standard deviations; b TOs are 
calculated with respect to TBADT; c Percent yields are calculated with respect to methane. 
 
 

2.6.5 Reactions with Trifluoroacetic Anhydride 

In our study of reaction tolerance to water, it was found that water should 

be considered as a potential detriment in reactions for which TBADT TOs exceed 

~1,000. Experiments were performed in which trifluoroacetic anhydride (TFAA) 

was added at the start of the reaction in an effort to remove in situ formed water. 

When the solvent composition was changed from HTFA to a 3:1 mixture of HTFA 

to TFAA under otherwise identical standard aerobic reaction conditions, the 

CH4
HTFA (8 mL)

MeX

hν, 24 h X= TFA, Cl

TBADT (0.007 mmol)
KCl (1.34 mmol)
I2 (0.025 mmol)

Peroxide
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production of MeX was hindered (Scheme 2.7A). When standard aerobic reaction 

conditions were used in a 3:1 solvent mixture of HTFA to TFAA and then charged 

with 7.0 mmol of water (1,000 equivalents relative to TBADT) before 

pressurization of methane, the production of MeX was hindered to a lesser extent 

(Scheme 2.7B). Due to the hinderance on MeX production, the addition of TFAA 

does not appear to be an effective strategy to remove in situ generated water.  

 
 
Scheme 2.7. Modification of standard aerobic reaction conditions to include a 
mixture of HTFA and TFAA as reaction solvent, without (A) and with (B) added 
water, led to decreased MeX (X = TFA, Cl) production. Each reaction scheme 
represents the average of at least three independent experiments reported with their 
standard deviations. 
 
 
 

 

 

 

 

 

 

2.6.6 Background Reaction of Potassium Chloride and Iodine  

Chlorine radicals are known to activate C–H bonds.3 Thus, the reaction of 

KCl and I2 in the absence of TBADT was investigated. As noted in the main text, 

preliminary screening of these reagents (1.34 mmol KCl, 0.050 mmol I2) in 8 mL 

HTFA with 100 psig methane led to no MeX (X = TFA, Cl) formation within 

standard deviation (Table 2.1, Entry 4). However, when the loading of I2 was halved 

A) 

B) 

CH4

TBADT (0.007 mmol)
KCl (1.34 mmol)
I2 (0.025 mmol)

HTFA/TFAA 3:1 (8 mL)
hν, 24 h(100 psig) 0.146 ± 0.004 mmol MeTFA + 0.003 mmol MeCl

CH4

TBADT (0.007 mmol)
KCl (1.34 mmol)
I2 (0.025 mmol)
H2O (7 mmol)

HTFA/TFAA 3:1 (8 mL)
hν, 24 h(100 psig)

0.235 ± 0.020 mmol MeTFA + 0.013 ± 0.002 mmol MeCl
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but all other conditions remained identical, 0.52 ± 0.06 mmol of MeX (X = TFA, 

Cl) was produced in 2.1 ± 0.27% yield with a 3.9:1 ratio of MeTFA to MeCl after 

24 h of subjection to a mercury arc lamp. After obtaining these results, we wanted 

to investigate in more detail the ability of this background reaction to perform 

methane functionalization.  

A kinetic study was performed with 1.34 mmol of KCl and 0.025 mmol of 

I2 in order to compare with the kinetic study using standard aerobic reaction 

conditions. The results from these 94 methane functionalization reactions, plotted 

as averages with standard deviations for each timepoint, are depicted in Figure 2.13. 

We observed experiments resulting in substantial MeX formation alongside 

experiments resulting in little to no MeX formation. Figure 2.14 and Table 2.3 

contain the breakdown of each individual reaction, rather than the report of 

averages with standard deviations. The inconsistent results likely indicate that 

radical chain processes for MeX formation are possible, but the success of such 

reactions is highly dependent on factors that we could not identify nor control. 
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Figure 2.13. Photochemical methane functionalization under standard aerobic 
reaction conditions in the absence of TBADT as a function of time. Each data point 
represents the average of at least three independent experiments with error bars 
depicting the standard deviation of the three experiments. 
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Figure 2.14. Depiction of the set of experiments in Figure 2.13 as a scatter plot in 
which each data point represents an independent experiment.  
 

 

Table 2.3. Depiction of the set of experiments in Figure 2.13 as a table in which 
each line entry represents an independent experiment. 
 

        
Reaction time 
(h) 

Amount of MeTFA 
(mmol) 

Amount of MeCl 
(mmol) 

 
 
 
1.5  

0.011 0 
0.019 0 
0.022 0 
0 0 
0.008 0 
0.004 0 

 
2  

0.011 0 
0.026 0 

CH4
HTFA (8 mL)(100 psig)

MeX

hν X= TFA, Cl

KCl (1.34 mmol)
I2 (0.025 mmol)
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0.019 0 
 
 
 
3  

0.011 0 
0.011 0 
0.011 0 
0.011 0 
0.011 0 
0.026 0 

 
 
4  

0.041 0.004 
0.011 0 
0.011 0 
0.067 0.011 
0.05 0.007 

 
 
 
6  

0.011 0 
0.01 0 
0.011 0 
0.011 0 
0.011 0 
0.011 0 

 
9 

0.011 0 
0.011 0 
0.011 0 

 
10 

0.011 0 
0.011 0 
0.011 0 

 
 
 
15 

0.011 0 
0.224 0.052 
0.015 0 
0.011 0 
0.011 0 
0.011 0 

 
 
 
20 

0.011 0 
0.172 0.030 
0.381 0.093 
0.351 0.086 
0.411 0.097 
0.374 0.090 

 
 
 

0.011 0 
0.011 0 
0.011 0 
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21  

0.011 0 
0.011 0 
0.015 0 
0.011 0 
0.015 0 
0.011 0 

 
 
22 

0.396 0.101 
0.430 0.105 
0.374 0.082 
0.019 0 
0.011 0 

 
 
 
 
 
23 
 
 
  

0.011 0 
0.011 0 
0.011 0 
0.041 0.004 
0.093 0.015 
0.011 0 
0.011 0 
0.015 0 
0.011 0 

 
 
 
 
24  

0.462 0.122 
0.392 0.087 
0.409 0.091 
0.400 0.105 
0.456 0.116 
0.015 0 
0.366 0.097 
0.486 0.123 
0.396 0.097 

 
 
 
27  

0.011 0 
0.015 0 
0.015 0 
0.011 0 
0.015 0 
0.011 0 

 
39 

0.220 0.045 
0.471 0.105 
0.235 0.045 

 0.138 0.026 
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45  

0.489 0.123 
0.011 0 
0.284 0.056 
0.019 0 
0.359 0.063 

 
48 

0.527 0.134 
0.512 0.127 
0.560 0.134 

 
 

2.6.7 Additional Calculations: Alternative Pathways 

Our mechanism suggests a radical pool containing I•, Cl• and CH3• species. 

It is plausible that these radicals react according to our proposed mechanism; 

however, it is likely that the radicals also react in other undesired paths that could 

inhibit the desired methane oxidation chemistry. Consequently, we explored other 

mechanisms that could potentially occur through our radical species. 

Given the presence of radical chlorine species, we sought out alternative 

paths in which Cl• could potentially react to give either the desired products or 

towards undesired byproducts. When Cl• is present in solution, one plausible 

reaction step is direct chlorination of methane to produce MeCl and H• according 

to the following reaction: CH4 + Cl* à MeCl + H•. We evaluated direct chlorination 

and found the reaction to be uphill 21.5 kcal/mol with a transition state energy of 

31.9 kcal/mol. Since this reaction step is substantially uphill with a large barrier to 

surmount, it is not likely to occur in solution. 

Another feasible reaction is of Cl• with MeI to afford MeCl and leave I• 

according to: MeI+Cl•àMeCl+I•. Chlorination of MeI is downhill -12.7 kcal/mol 

with a transition state free energy of 32.6 kcal/mol. The C–Cl bond in MeCl is far 
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stronger than the C–I bond in MeI, and I• makes a much better leaving group than 

Cl•, so this reaction is exergonic. However, the barrier is quite high, so we consider 

this step unlikely to occur. We predict that when chlorine and iodine are used 

simultaneously in catalysis, the two species compete for alkyl radical trapping. 

Once trapped, the alkyl halides cannot interconvert due to this large barrier (i.e., 

MeIàMeCl or vise-versa). 

Given the overwhelming presence of HTFA, we considered the possibility 

of HAT between a solvent HTFA and DT•• to form TFA•. DFT predicts that this 

HAT requires a barrier of 12.5 kcal/mol and is downhill -2.1 kcal/mol. This barrier 

is relatively large, such that we do not expect this reaction to occur. This agrees 

with previous experimental observations that claimed HTFA does not undergo 

HAT due to polarity mismatch with DT. 
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3 Extension of the Photo-OxE Process to Oxidants other than Decatungstate 

3.1 Introduction 

Previous work by our group has shown that the photo-oxyesterification 

(photo-OxE) process functions using iodine oxides,1 iron salts,2 and high valent 

manganese complexes3 in addition to use of decatungstate as a photocatalyst (see 

Chapter 2). With motivation to expand the scope of traditional oxidants capable of 

facilitating the selective, partial oxidation of light alkanes via the photo-OxE 

process, several compounds were screened for possible photo-driven methane 

oxidation.  

Copper(II) salts serve as oxidants in Wacker-type olefin oxidation 

chemistry.4 Since the discovery of the Wacker process for the Pd-catalyzed 

conversion of ethylene to acetaldehyde using copper(II) chloride,5 other copper(II) 

salts, such as copper(II) acetate, have been employed in Wacker-type oxidations.4 

Through the Wacker process, it was discovered that Cu(II) can be recycled from 

Cu(I) and acid with unpurified air in addition to pure dioxygen.6, 7 Our group has 

used copper(II) salts, namely copper(II) carboxylates, as oxidants for catalytic 

arene alkenylation chemistry.8-12 For these reasons, a series of copper(II) salts was 

screened for methane oxidation using our photo-OxE reaction conditions.  

Our group recently reported manganese oxides and manganese salts in 

thermal OxE processes for alkane partial oxidation.13 We were interested in 

whether these manganese oxides and manganese salts could be extended for use as 

oxidants in a photo-OxE process. Previous efforts by our group showed that 

manganese(IV) dioxide was effective for photo-OxE, leading to interest in whether 
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this could be extended to manganese oxides in additional oxidation states and/or to 

manganese salts. This Chapter describes efforts regarding copper(II) and 

manganese sources as candidates for use in photo-OxE processes.  

3.2 Attempted Extension of the Photo-OxE Process to Copper(II) Oxidants 

A series of commercial, air-stable copper(II) salts (i.e., CuCl2·xH2O, 

Cu(OAc)2·xH2O (OAc = CH3CO2-), Cu(TFA)2·xH2O), were investigated with and 

without additives (i.e., KCl, I2) for the aerobic photo-oxidation of methane. The 

abilities of the Cu(II) salts to functionalize methane were compared to the 

analogous functionalization reactions of KCl and I2 in the absence of Cu(II) salts.  

The screening of copper(II) chloride hydrate (CuCl2·xH2O) for methane 

functionalization is shown in Figure 3.1, wherein MeX (X = TFA, Cl) yield is 

plotted against the combination of additives. The oxidation of methane using 

CuCl2·xH2O alone and CuCl2·xH2O with KCl and I2 led to variable MeX 

production with large standard deviations. The reaction using CuCl2·xH2O with 

KCl led to higher MeX yield than the corresponding reaction using only KCl 

(Figure 3.2). The reaction of 0.042 mmol CuCl2·xH2O with 0.67 mmol KCl 

produced MeX in 0.62 ± 0.084% yield with respect to methane and 3.7 ± 0.47 TOs 

of CuCl2·xH2O. The control reaction using CuCl2·xH2O with KCl was performed 

under thermal conditions. Heating 0.042 mmol CuCl2·xH2O and 0.67 mmol KCl in 

8 mL HTFA with 100 psig CH4 at 180 ºC for 3 h resulted in the formation of 

MeTFA in 0.084 ± 0.032% yield and MeCl in 0.051 ± 0.051% yield. CuCl2·xH2O 

suffered from solubility challenges in HTFA both prior to and following irradiation, 

so our focus was shifted to explore other copper(II) salts.   



 85 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. Screening of CuCl2·xH2O with and without additives for the 
photochemical functionalization of methane in HTFA after 24 h of irradiation with 
a mercury arc lamp. MeX (X = TFA, Cl) production is plotted as yield with respect 
to methane. Each bar graph represents the average of at least three independent 
experiments with error bars depicting the standard deviations.  
 

 

 

 

 

 

 

 

Figure 3.2. Comparison of reactions with and without CuCl2·xH2O for the 
photochemical functionalization of methane using KCl in HTFA after 24 h of 
irradiation with a mercury arc lamp. MeX (X = TFA, Cl) production is plotted as 
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yield with respect to methane. Each bar graph represents the average of at least 
three independent experiments with error bars depicting the standard deviations.  
  

Copper(II) acetate hydrate (Cu(OAc)2·xH2O) was similarly screened for 

aerobic photo-driven methane functionalization with and without KCl and I2 

additives (Figure 3.3). Cu(OAc)2·xH2O alone was not capable of functionalizing 

methane. The reaction of Cu(OAc)2·xH2O with KCl showed no improved yield 

over the analogous reaction in the absence of copper(II) salt (see “Without copper” 

in Figure 3.2). Here, the addition of both KCl and I2 led to MeX production with 

1.7 ± 0.27% yield with respect to methane and 9.6 ±1.6 TOs of Cu(OAc)2·xH2O. 

Excited by these results, further screening was performed to determine the effect of 

varying the additive loadings relative to Cu(OAc)2·xH2O.  

 

 

 

 

 

 

 

 

 
Figure 3.3. Screening of Cu(OAc)2·xH2O with and without additives for the 
photochemical functionalization of methane in HTFA after 24 h of irradiation with 
a mercury arc lamp. MeX (X = TFA, Cl) production is plotted as yield with respect 
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to methane. Each bar graph represents the average of at least three independent 
experiments with error bars depicting the standard deviations.  

 

When the loading of KCl was doubled to 1.34 mmol for the reaction of 

Cu(OAc)2·xH2O and KCl, methane was selectively functionalized to MeTFA, 

albeit with lower yield and higher standard deviation (Figure 3.4). When the 

loading of KCl was decreased to 0.15 mmol, undesired decarboxylation of the 

HTFA solvent was observed as indicated by the presence of CF3H in 1H NMR 

spectra. From these experiments, the preferable loading of KCl was identified as 

0.67 mmol. Using 0.67 mmol of KCl, the amount of iodine was varied for the 

reaction using Cu(OAc)2·xH2O with both KCl and I2 (Figure 3.5). Doubling the 

loading of I2 to 0.10 mmol yielded no MeX within standard deviation. Thus, the 

optimized conditions for methane functionalization using 0.042 mmol 

Cu(OAc)2·xH2O were determined as 0.67 mmol KCl and 0.05 mmol I2.  

 

 

 

 

 

 

 

 

Figure 3.4. Variation of KCl loading for the photochemical functionalization of 
methane using Cu(OAc)2·xH2O in HTFA after 24 h of irradiation with a mercury 
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arc lamp. MeX (X = TFA, Cl) production is plotted as yield with respect to 
methane. Each bar graph represents the average of at least three independent 
experiments with error bars depicting the standard deviations.  

 

Copper(II) trifluoroacetate hydrate (Cu(TFA)2·xH2O) was preliminarily 

screened for the aerobic photo-oxidation of methane. After 24 h of irradiation of 

0.05 mmol Cu(TFA)2·xH2O, 0.67 mmol KCl, and 0.05 mmol I2 in 8 mL HTFA 

pressurized with 100 psig CH4, MeTFA was formed in 0.94 ± 1.3% yield and MeCl 

in 0.18 ± 0.25% yield. Because no MeX was formed within deviation along with 

the standard deviations being larger than the MeX yields values themselves, the 

screening of Cu(TFA)2·xH2O was not pursued further. 

 

 

 

 

 

 

 

 

 
Figure 3.5. Variation of I2 loading for the photochemical functionalization of 
methane using Cu(OAc)2·xH2O and KCl in HTFA after 24 h of irradiation with a 
mercury arc lamp. MeX (X = TFA, Cl) production is plotted as yield with respect 
to methane. Each bar graph represents the average of at least three independent 
experiments with error bars depicting the standard deviations.  
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3.3 Extension of the Photo-OxE Process to Manganese Oxidants 

In our investigation of manganese oxides for use in the thermal OxE 

process, it was found that MnIV, MnIII, and MnII,III oxides are active for methane 

oxidation to MeTFA in HTFA, but MnII oxides are not.13 Additive screening with 

MnO2 exhibited that neither KCl nor I2 are required for thermal methane oxidation, 

but increased yield (~60% based on Mn) occurs in the presence of I2. The presence 

or absence of KCl did not have an effect on thermal methane oxidation using MnO2. 

It is proposed that, in this manganese chemistry, I2 serves to convert heterogeneous 

MnO2 into a soluble form, which is supported by the fact that the initial induction 

period that occurs for methane functionalization in the presence of MnO2 in the 

absence of I2 in HTFA is not present for the same reaction in the presence of I2. 

Product analysis via 1H NMR spectroscopy using manganese oxides for 

oxidation reactions in HTFA is difficult due to significant resonance broadening 

from paramagnetic, reduced manganese species. It was found that a work-up 

procedure involving the addition of NaBiO3 to the spent product mixtures served 

to oxidize the reduced manganese species and, therefore, minimized resonance 

broadening in 1H NMR spectra.3 This work-up procedure was used for all reactions 

using manganese oxides (i.e., MnO2, MnO) described herein.  

MnO2 was examined under photo-driven conditions and it was found that, 

unlike under thermal conditions, both KCl and I2 have an effect on the extent of 

aerobic methane functionalization. With MnO2 and either KCl or I2, MeTFA is 

produced in ~10% yield with respect to MnO2. When both KCl and I2 are added, 
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the yield of MeTFA is increased to 94 ± 8.8% with respect to MnO2, which 

corresponds to 4.1 ± 0.48% yield with respect to methane (Figure 3.6).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3.6. Screening of additives for the photochemical functionalization of 
methane using MnO2 in HTFA after 24 h of irradiation with a mercury arc lamp. 
MeTFA is plotted as percent yield with respect to MnO2. Each bar graph represents 
the average of at least three independent experiments with error bars depicting the 
standard deviations. Adapted from reference.3 
 
 

A preliminary screening reaction of MnO for aerobic photo-driven methane 

functionalization was similarly carried out using 1.1 mmol MnO, 0.1 mmol KCl 

and 0.1 mmol I2. After 24 h of photolysis in HTFA, MeTFA was produced in 25 ± 

2.1% yield with respect to MnO and 1.1 ± 0.064% yield with respect to methane. 

From there, various loadings of iodine, including the reaction in the absence of 

iodine, were tested under otherwise identical conditions (Figure 3.7). The presence 

of iodine was shown to have an important effect on MeX (X = TFA, Cl) production. 
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function of MnO and as a function of methane. However, at the loading of 0.10 

mmol I2, MeTFA was produced selectively over MeCl.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Variation of iodine loading for the photochemical functionalization of 
methane using MnO and KCl in HTFA after 24 h of irradiation with a mercury arc 
lamp. MeX (X = TFA, Cl) is plotted as percent yield with respect to MnO (top) and 
as percent yield with respect to methane (bottom). Each bar graph represents the 
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In our previous thermal investigation, a bimetallic trifluoroacetate 

manganese(II) salt, Mn2(HTFA)4(µ-TFA)2(TFA)2 was explored for methane 

oxidation (Figure 3.8).13 Catalytic turnover was achieved for methane oxidation 

using MnO2 (Scheme 3.1A) and Mn2(HTFA)4(µ-TFA)2(TFA)2 (Scheme 3.1B) 

when a dioxygen atmosphere was used and trifluoroacetic anhydride (TFAA) was 

present. In an effort to achieve catalytic turnover using Mn2(HTFA)4(µ-

TFA)2(TFA)2 via our photo-driven process, similar reaction conditions were tested. 

Photolysis of 0.007 mmol Mn2(HTFA)4(µ-TFA)2(TFA)2 under a dioxygen 

atmosphere in a HTFA/TFAA solvent mixture for 24 h produced MeTFA with ~3 

TOs per Mn atom or ~6 TOs per Mn dimer (Scheme 3.2A). In an analogous 

experiment where the loading of Mn2(HTFA)4(µ-TFA)2(TFA)2 was tripled to 0.021 

mmol, MeTFA production was reduced to stoichiometric yield (~65%) as a 

function of Mn atom and ~1.3 TOs as a function of Mn dimer (Scheme 3.2B).  

 

 

 

 

 

Figure 3.8. Structure of Mn2(HTFA)4(µ-TFA)2(TFA)2. Adapted from reference.14 
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Scheme 3.1. Reactions for which the addition of TFAA enables catalytic turnover 
using Mn sources for thermal methane oxidation in the presence of O2.a Mn source 
= MnO2 (A), Mn2(HTFA)4(µ-TFA)2(TFA)2 (B). Adapted from reference.13 

 

 

 

 

 

a MeTFA production is reported as the average of at least three independent 
experiments with standard deviations. 
 
 
Scheme 3.2. Reactions for which the addition of TFAA enables catalytic turnover 
using Mn2(HTFA)4(µ-TFA)2(TFA)2 for photochemical methane oxidation in the 
presence of O2.a 

 

 

 

 

 

a MeTFA production is reported as the average of at least three independent 
experiments with standard deviations. 
 
 

3.4 Conclusions and Future Directions 

 This Chapter presents preliminary studies of Cu(II) and Mn oxidants as 

candidates for use in our photo-OxE process for methane functionalization. Mn 

oxidants had previously been studied for our thermal OxE process.13 For 

CuCl2·xH2O, the highest MeX (X = TFA, Cl) yield in HTFA was achieved in the 

presence of KCl. Twenty-four hours of photolysis of a HTFA mixture of 0.042 

mmol CuCl2·xH2O and 0.67 mmol KCl with 100 psig CH4 produced MeX in 0.62 
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± 0.084% yield with respect to methane and 3.7 ± 0.47 TOs of CuCl2·xH2O. For 

Cu(OAc)2·xH2O, the highest MeX (X = TFA, Cl) yield in HTFA was achieved in 

the presence of KCl and I2. Twenty-four hours of photolysis of a HTFA mixture of 

0.042 mmol CuCl2·xH2O, 0.67 mmol KCl, and 0.05 mmol I2 with 100 psig CH4 

produced MeX in 1.7 ± 0.27% yield with respect to methane and 9.6 ±1.6 TOs of 

Cu(OAc)2·xH2O. In a preliminary series of reactions, Cu(TFA)2·xH2O with 

addition of KCl and I2 was shown to be an ineffective system for methane 

functionalization in HTFA.  

The ability of MnO2 to perform photo-driven methane oxidation was 

extended to MnO; however, lower yields were observed with MnII compared to 

MnIV. Twenty-four hours of photolysis of a HTFA mixture of 1.1 mmol MnO2, 0.1 

mmol KCl, and 0.1 mmol I2 with 100 psig CH4 produced MeX in 94 ± 8.8% with 

respect to MnO2 and 4.1 ± 0.48% yield with respect to methane. Twenty-four hours 

of photolysis of a HTFA mixture of 1.1 mmol MnO, 0.1 mmol KCl, and 0.1 mmol 

I2 with 100 psig CH4 produced MeX in 25 ± 2.1% yield with respect to MnO and 

1.1 ± 0.064% yield with respect to methane.  

 Unimpressive reactivity of the Cu(II) and Mn oxidants prevented their 

further study towards application in our photo-OxE process. The copper(II) 

complexes showed little-to-no improvement over analogous aerobic photo-driven 

methane oxidation mediated by KCl only. MnO suffered from the challenges of 

low yields based on methane (< 1.6%) and stoichiometric yields based on Mn 

oxidant (< 35%). For Mn2(HTFA)4(µ-TFA)2(TFA)2, catalytic turnover was 
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observed upon addition of TFAA and under a dioxygen atmosphere; however, these 

reactions still suffered from low yields based on methane (< 0.2%).  

 The goals of the photo-OxE process remain to find effective oxidants for 

selective, partial oxidation of light alkanes under the milder conditions of 

photochemistry, compared to thermal chemistry, that can be recycled with pure 

dioxygen or, ideally, with air. The screening of metal oxides, in particular, has been 

far from exhaustive to date. KCl and I2 should continue to be explored as additives 

for future photo-OxE studies and the roles that they hold should be investigated. 

Mechanistic studies may elucidate that their roles differ from what was originally 

observed in our iodate/chloride and periodate/chloride studies,15, 16 as is proposed 

with our thermal manganese chemistry.13 As oxidants that function under 

photochemical conditions for the partial oxidation of light alkanes are identified, 

future directions should include the extension from use of HTFA as solvent to non-

superacidic solvents, such as acetic acid.  

3.5 Experimental Section 

CAUTION: Many of the reagents and conditions described herein are 

particularly hazardous. Appropriate safety measures should be taken and 

appropriate personal protective equipment should be worn (long nitrile gloves up 

to the elbow) when handling strong acids, especially in large volumes. Broadband 

mercury arc lamps are dangerous to the skin and eyes, and even a brief exposure 

can result in permanent damage. The lamps must only be turned on while encased 

in an enclosure that precludes exposure to the naked eye. Cool to room temperature 

water must always be recirculated around the lamp to prevent uncontrolled 
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overheating; this is especially important when conducting reactions containing 

mixtures of methane and air or dioxygen, which can be explosive. 

General Comments and Materials. All reactions were carried out under 

ambient atmosphere unless indicated otherwise. Potassium chloride, iodine, 

trifluoroacetic acid (> 99.9%), trifluoroacetic anhydride, glacial acetic acid, 

nitromethane, copper(II) acetate hydrate, copper(II) chloride hydrate, copper(II) 

trifluoroacetate hydrate, manganese dioxide, manganese oxide, and sodium 

bismuth oxide were purchased commercially and used as received. Mn2(HTFA)4(µ-

TFA)2(TFA)2 was synthesized according to literature procedure.14 High pressure 

reaction vessels were constructed from Fisher-Porter tubes, purchased from 

Andrews Glass, and custom-built reactor tops made with Swagelok stainless steel 

fittings. These reaction vessels can be safely pressurized to 250 psig at room 

temperature. The photolysis enclosure was constructed with a power supply feeding 

a broadband mercury arc lamp. The mercury arc lamp was nested in a quartz 

immersion well in which cool to room temperature DI water (15-40 ºC) was 

recirculated through at all times the lamp was powered on. The power supply (450 

watt, product #7830-60), Hanovia mercury arc lamp (medium pressure, 450 watt, 

121.92 mm arc length, 244.35 mm overall length, product #7825-34), and quartz 

immersion well (product #7854-27) were purchased from Ace Glass. The mercury 

arc lamp is quoted to irradiate ~ 40-48% in the ultraviolet spectral range, ~ 40-43% 

in the visible spectral range, and the remainder in the infrared spectral range. 

Mercury arc lamps were replaced every 1,000 hours. NMR analysis was performed 

using either a Varian Inova 500 or 600 MHz spectrometer. 1H NMR data of reaction 
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mixtures were obtained with a capillary of C6D6 as the internal lock reference. 

Chemical shifts are reported relative to the internal standards of either CH3NO2 (d 

4.18) or HOAc (d 2.04). 

General Procedure for Photochemical Methane Functionalization with 

Copper Salts. Reactions were performed in triplicate. A stir bar was added to each 

Fisher-Porter reactor and then charged first with solid reagents (copper salt, KCl, 

I2) followed by 8 mL HTFA. The reactors were sealed under air and weighed. The 

reactors were then pressurized with methane and weighed again. The amount of 

methane added was quantified by the difference in mass before and after methane 

addition. The reactors were then added to a photolysis enclosure, each positioned 

16 cm from the mercury arc lamp with uniform stirring. Reaction time was started 

15 minutes following lamp turn on to account for lamp warm up time to reach full 

intensity. After the reaction, the lamp was turned off and the photolysis chamber 

was kept closed for at least one minute to ensure the lamp was safely powered off. 

The reactors were removed, weighed to probe for leaks, and cooled in front of a fan 

for at least 15 minutes. The reactors were then vented in a fume hood, 20 µL of 

internal standard (either CH3NO2 or HOAc) were added to each reaction, and the 

reaction mixtures were thoroughly stirred. An aliquot from each reaction mixture 

was removed and centrifuged, from which the supernatant of each was added to an 

NMR tube containing a sealed capillary containing C6D6. The products were 

analyzed by 1H NMR spectroscopy. 
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Figure 3.9. Labeled representative 1H NMR spectrum for photochemical methane 
functionalization using Cu(II) salts. Either HOAc (shown here) or CH3NO2 was 
used as internal standard, from which product yields were calculated. Conditions: 
CH4 (100 psig), Cu(OAc)2·xH2O (0.042 mmol), KCl (0.67 mmol), I2 (0.05 mmol), 
HTFA (8 mL), 24 h of photolysis with a mercury arc lamp. 
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intensity. After the reaction, the lamp was turned off and the photolysis chamber 

was kept closed for at least one minute to ensure the lamp was safely powered off. 

The reactors were removed, weighed to probe for leaks, and cooled in front of a fan 

for at least 15 minutes. The reactors were then vented in a fume hood, 20 µL of 

internal standard (either CH3NO2 or HOAc) were added to each reaction, and the 

reaction mixtures were thoroughly stirred. An aliquot from each reaction mixture 

was removed and added to a centrifuge tube with NaBiO3. The tube was carefully 

shaken and vented, followed by centrifugation. The supernatant of each centrifuge 

tube was added to an NMR tube containing a sealed capillary containing C6D6. The 

products were analyzed by 1H NMR spectroscopy. 

 

 

Figure 3.10. Labeled representative 1H NMR spectrum for photochemical methane 
functionalization using Mn oxides. Either HOAc or CH3NO2 (shown here) was 
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used as internal standard, from which product yields were calculated. Conditions: 
CH4 (100 psig), MnO (1.1 mmol), KCl (0.1 mmol), I2 (0.025 mmol), HTFA (8 mL), 
24 h of photolysis with a mercury arc lamp.  
 

General Procedure for Photochemical Methane Functionalization with 

Mn2(HTFA)4(µ-TFA)2(TFA)2. Reactions were performed in triplicate. 

Synthesized Mn2(HTFA)4(µ-TFA)2(TFA)2 was stored in a dinitrogen-filled 

glovebox to protect against degradation over time. The Fisher-Porter reactors were 

brought into the glovebox, charged with Mn2(HTFA)4(µ-TFA)2(TFA)2, sealed and 

removed from the glovebox.  Through the needle valve of each reactor top, 8 mL 

of solvent (HTFA, TFAA) were added and then dioxygen was bubbled through the 

reaction solution using a long needle. Following one minute of bubbling, the needle 

was removed and the reactor valve was quickly sealed. The reactors were weighed, 

pressurized with methane, and weighed again. The amount of methane added was 

quantified by the difference in mass before and after methane addition. The reactors 

were then added to a photolysis enclosure, each positioned 16 cm from the mercury 

arc lamp with uniform stirring. Reaction time was started 15 minutes following 

lamp turn on to account for lamp warm up time to reach full intensity. After the 

reaction, the lamp was turned off and the photolysis chamber was kept closed for 

at least one minute to ensure the lamp was safely powered off. The reactors were 

removed, weighed to probe for leaks, and cooled in front of a fan for at least 15 

minutes. The reactors were then vented in a fume hood, 20 µL of internal standard 

(either CH3NO2 or HOAc) were added to each reaction, and the reaction mixtures 

were thoroughly stirred. An aliquot from each reaction mixture was removed and 

centrifuged, from which the supernatant of each was added to an NMR tube 
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containing a sealed capillary containing C6D6. The products were analyzed by 1H 

NMR spectroscopy. 
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4 A Tandem Experimental and Computational Study Using Hydrogenation as a 

Probe Reaction for New Methods of Carbon Dioxide Hydroarylation Using 

Bifunctional Catalysis 

4.1 Introduction 

4.1.1 C1 Incorporation Chemistry and Anthropogenic Carbon Dioxide (CO2) 

 Catalytic conversion of single-carbon-atom (C1) containing molecules 

(e.g., CO, CO2, CH4) into fuels and value-added chemicals is important to the 

chemical industry.1 Not only does the abundance of these molecules make them 

desirable feedstocks for the chemical industry, but their conversion is also desirable 

in order to limit environmental pollution. However, there is not one strategy that 

can be utilized for C1 incorporation chemistry. C1 molecules are often inert (e.g., 

CO2, CH4) or quite reactive (e.g., CO), and each category brings challenges for C1 

incorporation chemistry. Examples of C1 incorporation chemistry used in industry 

include the Fischer-Tropsch process, the water-gas shift reaction, and methane 

steam reforming. These industrial C1 conversions suffer from high energy 

requirements, multi-step reactions, and difficult product separations.1  

 CO2 is the greatest anthropogenically emitted greenhouse gas (GHG).2 

Since the industrial revolution, emissions have largely outweighed the amount 

required for the Earth’s natural carbon-cycle, leading to a continual rise in 

atmospheric CO2 concentration ever since.3 In 2018, the U.S. emitted ~6,677 

million metric tons of CO2, a 2.9% increase over 2017 emissions.2 Substantial 

efforts have been dedicated to developing technologies for carbon capture and 

sequestration (CCS). In CCS, CO2 is captured from power plants and industrial 
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processes, transported and compressed (usually in pipelines), and then injected into 

deep underground rock formations.4 In another vision, considering an economically 

viable method for capture, the anthropogenically released CO2 could be used by the 

chemical industry as feedstock for the production of fuels or higher-value 

chemicals, including carboxylic acids, which will be the focus herein.5, 6 It can be 

argued that implementation of CO2 fixation processes in synthetic methods will 

most likely not reduce its atmospheric concentration, and until dihydrogen is 

produced from a source other than fossil fuels, CO2 reduction chemistry will remain 

a curiosity rather than a method to combat atmospheric levels.  

4.1.2 Chemical Properties and Reactivity of CO2 

 Although CO2 is abundant, non-toxic, and inexpensive, its inherent 

stability, both thermodynamic and kinetic, presents a challenge for its 

transformation into chemical commodities.3, 7 The bond energy of each C=O bond 

in CO2 is ~190 kcal/mol.8 CO2 is a linear molecule with D∞h symmetry. It is a non-

polar molecule with two opposing C=O dipole moments. The electronegativity of 

both oxygen atoms renders them reactive towards electrophilic molecules. At the 

same time, the electron withdrawing nature of the two oxygen atoms renders the 

carbon atom electron-deficient, making the carbon atom reactive towards 

nucleophiles.  

Some generic transformations with CO2 are depicted in Scheme 4.1. 

Nucleophilic attack of the carbon atom of CO2 by Grignard reagents can occur at 

low temperature. Reaction of CO2 with unsaturated molecules (e.g., alkenes, 
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alkynes) and low valent transition metal complexes produce five-membered 

metallalactones.7  

 

Scheme 4.1. Common transformations of CO2: nucleophilic attack (top) and 
transition-metal mediated oxidative cycloaddition (bottom). X–Y depicts a generic 
nucleophile. A=B depicts a generic unsaturated molecule. LnM depicts a generic 
low valent transition metal-ligated complex. Adapted from reference.7 

 

 

 

 

 
 

 CO2 binds to transition metals through different modes. Transition metals 

in low oxidation states typically bind CO2 through its carbon atom and transition 

metals in high oxidation states typically bind CO2 through one or both of its oxygen 

atoms.6 This reactivity with transition metals can be rationalized by considering the 

molecular orbitals (MOs) of CO2. The highest occupied molecular orbital (HOMO) 

of CO2 is localized on the oxygen atoms, and the lowest unoccupied molecular 

orbital (LUMO) of CO2 has more localization on the carbon atom than oxygen 

atoms. The MOs of CO2 as well as its binding modes to transition metals are 

displayed in Figure 4.1.  
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Figure 4.1. Binding modes of CO2 to transition metal complexes can be understood 
by the HOMO and LUMO of CO2. MLn depicts generic transition metal-ligated 
complex. Adapted from reference.6 

 
 
4.1.3 Industrial Processes for Synthesis of Carboxylic Acids 

 Carboxylic acids are used by the chemical, textile, cosmetic, and protective 

coating industries, among others.6 Current industrial production of carboxylic acids 

uses primarily two methods, one being from alkene starting material and the other 

being from alcohol starting material. The first method is the cobalt- or rhodium-

catalyzed hydroformylation of alkenes with carbon monoxide followed by 

aldehyde oxidation (Scheme 4.2A).9 This two-step process (starting from 

alkene/CO/H2) suffers from the fact that it requires separation of the aldehyde 

following the first step and before the oxidation step. The second method is the 

rhodium/iodide co-catalyzed carbonylation of alcohols using the Monsanto 

process, and, similarly, the iridium/iodide co-catalyzed carbonylation of methanol 

using the Cativa process (Scheme 4.2B).10 The Monsanto process is limited to small 

alkyl groups (denoted by R in Scheme 4.2) on the alcohol, which restricts the scope 

of carboxylic acids that can be produced. The major disadvantage of both processes 

is that they require the utilization of carbon monoxide, a toxic gas, and therefore 

suffer from safety concerns. 
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Scheme 4.2. Current industrial methods for the synthesis of carboxylic acids: 
hydroformylation of alkenes followed by aldehyde oxidation (A) and the 
Monsanto/Cativa process (B). [O] denotes oxidant. R denotes alkyl group. 

 

 

 
 

4.1.4 Desired Direct Carboxylation of Hydrocarbons and Arenes  

 The mitigation of problems associated with current industrial processes for 

the production of carboxylic acids and the utilization of CO2 as a C1 feedstock 

source could be combined in an alternate route for carboxylic acid synthesis 

through the direct carboxylation of hydrocarbons with CO2. This desirable, one-

step process is depicted in Scheme 4.3. 

 

Scheme 4.3. Alternate, desired strategy for synthesis of carboxylic acids through 
direct carboxylation with CO2. R denotes alkyl or aryl group.  
 

 

More specifically, the synthesis of aromatic carboxylic acids from CO2 is a 

reaction of interest. Aromatic carboxylic acids are common motifs in biologically 

active molecules, pharmaceuticals, agrochemicals, polymers, among other fine 

chemicals.11, 12 The Kolbe-Schmitt reaction is an industrial process for the 

carboxylation of phenol with CO2 to make salicylic acid, which is the precursor to 

aspirin.13 The Kolbe-Schmitt reaction requires elevated temperature (125 ºC) and 

pressure (100 atm), as well as stoichiometric amounts of strong acid (H2SO4).  
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The direct catalytic carboxylation of arenes was previously limited to use 

of aryl Grignard compounds, aryl boronic esters, or aryl halides, making the 

carboxylation a multi-step process.11 However, in recent years, the number of 

reports of direct carboxylation reactions have increased.12 CO2 conversion to 

aromatic/aryl carboxylic acids have been catalyzed by both homogeneous and 

heterogeneous processes through approaches such as electrochemical, 

photocatalytic, enzymatic, and porous materials. Challenges still remain including 

the requirement of elevated temperatures and pressures as well as the often 

necessity of a base or Lewis acid. 

4.1.5 Metal-Ligand Bifunctional Catalysis 

 Rapidly developed over the past few decades, metal-ligand bifunctional 

catalysis has emerged as a highly efficient strategy for organic transformations, 

namely hydrogenations and dehydrogenations, in both academia and industry.14, 15 

Industrial companies including Takasago Int. Corp., Merck, Mitsubishi Chemical 

Corp., and Pfizer utilize bifunctional catalysis for the large-scale hydrogenation of 

C=O and C=N functionalities.16-18  

A metal-ligand bifunctional catalyst has two active sites with dual 

reactivities: one nucleophilic site directly bound to the metal center and one 

electrophilic site located on a ligand (Figure 4.2). Pioneering examples of metal-

ligand bifunctional catalysts are depicted in Figure 4.3, for which a hydride ligand 

occupies the metal-bound nucleophilic site and a proton occupies the ligand-bound 

electrophilic site.  
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Figure 4.2. General structure of a metal-ligand bifunctional catalyst with a metal-
bound nucleophilic site and a ligand-bound electrophilic site.   
 

 
 

 
Figure 4.3. Early examples of M/OH, M/NH, and M/CH metal-ligand bifunctional 
catalysts. Red H denotes Hδ+ and blue H denotes Hδ-. Adapted from reference.15 
 

 

4.1.6 Project Goals 

CO2 fixation chemistry, particularly towards methanol production, has been 

achieved with zeolites and metal oxides functioning as bifunctional catalysts.19 In 

addition to transition metal-ligated complexes, examples of quaternary ammonium 

and phosphonium salts and metal-organic frameworks can serve as bifunctional 
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project described herein was focused on CO2 fixation chemistry using molecular, 
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from CO2 and arenes in a base-free, stoichiometric additive-free system.  
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to the ligand. CO2 is then rendered susceptible to reactivity with this intermediate 

due to its C–O bond dipole, forming a metallocycle transition state that then 

releases the aromatic carboxylic acid and regenerates the metal-ligand bifunctional 

catalyst. This project used computational modeling and experimental chemistry for 

analysis of catalyst design, reactivity studies, and mechanistic studies. 

 

Scheme 4.4. Proposed catalytic cycle for a novel process combining aromatic C–H 
activation and CO2 functionalization for the production of aromatic carboxylic 
acids using metal-ligand bifunctional catalysis. Ar–H denotes generic arene.  
M---X denotes a simplified catalyst comprised of a transition metal center (M) and 
ligand (X).   
 

 

 

 

 
 

4.1.7 Shvo Catalyst Background and Hydrogenation as Starting Point 

Shvo’s catalyst, labeled as 1 in Scheme 4.5, was chosen due to its precedent 

for a wide variety of organic transformations, including oxidations and 

reductions.24-26 It has been studied for the transfer hydrogenation of ketones, 

aldehydes, imines, alkenes, and alkynes with turnovers exceeding 2,700.27, 28 
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conversion between the two catalytically active species (Scheme 4.6). Complex 2 

facilitates dehydrogenation chemistry, and complex 3 facilitates hydrogenation 

chemistry (Scheme 4.6). In one monomer, Ru is in the +2 oxidation state (3), and 

in the other, Ru is in the zero oxidation state (2). This creates a situation in which 

the formally more oxidized monomer (3) is the reducing component and the 

formally more reduced monomer (2) is the oxidizing component. Single crystal X-

ray structures of 2 and 3 have never been obtained, but solution NMR, mechanistic 

probes, and trapping experiments have provided evidence for their respective 

monomeric structures.27  

 

Scheme 4.5. Dimeric and monomeric forms of Shvo’s catalyst. The dimeric species 
1 thermally dissociates into two active species, 2 and 3.  
 

 

 
 
 
 
 
Scheme 4.6. Conversion between the monomeric forms of Shvo’s catalyst is 
achieved through addition or depletion of dihydrogen. Saturated species 3 catalyzes 
hydrogenation chemistry and saturated species 2 catalyzes dehydrogenation 
chemistry.  

 

 

 

 

 

 

Ru Ru

COOC

O O
H

H

Ph

Ph
Ph

Ph Ph

Ph

Ph
Ph

CO CO

Ph
O

PhPh

Ph

Ru

COOC

Ru

HO

H
Ph

Ph
Ph

Ph

CO CO

proton donor

hydride donor

∆

1 2 3

C
R H
R

OH

C
O

R R
C
O

R R

C
R H
R

OH H2 H2
Ph

PhPh

O

Ru

OC CO

Ph

Ru

HO

H
Ph

Ph
Ph

Ph

CO CO

Dehydrogenation

Hydrogenation

3

2



 113 

The application of this catalyst to our envisioned use for the direct 

carboxylation of hydrocarbons and arenes is depicted in Scheme 4.7 (i.e., Scheme 

4.7 shows our proposed catalytic process). In solution phase in an absence of 

dihydrogen, Shvo’s catalyst will access the form of monomer 2. To species 2, an 

arene undergoes C–H activation to form intermediate 4, a species 3 analogue with 

an aryl group in place of the metal-hydride. CO2 should be rendered susceptible to 

reaction with the aryl-activated Ru species 4 at each bifunctional site, in a manner 

analogous to that shown in Scheme 4.4. Through a metallacyclic transition state 

(5), the aromatic carboxylic acid is released and 2 is regenerated.  

 To our knowledge, there is no precedent for hydroarylation chemistry with 

Shvo’s catalyst. This extension seems feasible because the bond dissociation 

energy (BDE) of H2 is 104 kcal/mol and benzene, for example, is 113 kcal/mol.29 

Additionally, to our knowledge, there is no precedent for CO2 chemistry with 

Shvo’s catalyst. Because of the large precedent for hydrogenation chemistry with 

Shvo’s catalyst, hydrogenation of CO2 was chosen as a starting point. Results from 

novel hydrogenation of CO2 with Shvo’s catalyst could be benchmarked against 

previously measured hydrogenation of carbonyl-containing substrates. Following 

the investigation of CO2 hydrogenation, CO2 hydroarylation was to be explored.  
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Scheme 4.7. Proposed catalytic cycle for Shvo-catalyzed arene carboxylation. Ar–
H denotes generic arene. 

 

 

 

 

 

 

 

 
 

4.2 Experimental Approach to Hydrogenation Chemistry  

 Before attempting hydrogenation of CO2, the activity of Shvo-catalyzed 
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hydrogenation, but in all cases, no formic acid was detected by GC-MS nor 1H 

NMR. 

 
Scheme 4.8. Hydrogenation of cyclohexanone and styrene by Shvo’s catalyst. 
aConditions: 50 mmol cyclohexanone, 25 µmol 1, 500 psig H2, 100 ºC, 5 h, Average 
of four independent experiments. bConditions: 52 mmol styrene, 20 µmol 1, 500 
psig H2, 145 ºC, 12 h, Average of five independent experiments. Products were 
quantified using GC-FID.  

  

 

 

 

 

 

4.3 Computational Approach to Hydrogenation Chemistry 

4.3.1 Density Functional Theory Details and Model System 

 In collaboration with the Ess group at Brigham-Young University, I 

performed Density Functional Theory (DFT) calculations to study mechanistic 

details of Shvo-catalyzed hydrogenation chemistry in silico. Calculations on Shvo’s 

catalyst were performed using a simplified model wherein the phenyl groups of the 

cyclopentadienyl ring were substituted with hydrogen atoms (Figure 4.4). No 

significant differences were found between the simplified and full systems, with 

calculated energies differing by, at most, 4 kcal/mol. Reaction solvent was modeled 

using an implicit solvent model. 
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Figure 4.4. Comparison of complex 3 to simplified model system used in DFT 
calculations. Complex 2 is analogously modeled in which ligand phenyl groups are 
replaced with protons. 
 

Calculations were performed separately using two functionals: the hybrid 

generalized gradient-approximation functional B3LYP30-32 and the hybrid meta-

generalized gradient-approximation functional M06.33 The difference between the 

two functionals lies in the tradeoff between accuracy and computational cost. Both 

functionals include local spin-density and the gradient of the local spin-density in 

order to approximate the exchange-correlation energy.34 However, the added 

dependence of the exchange-correlation energy on kinetic energy density in the 

M06 functional is considered advantageous for the accuracy in transition metal-

containing calculations. With presently-available functionals, DFT calculations are 

considered to be accurate within 2-3 kcal/mol.35 

4.3.2 Mechanisms of Shvo-Catalyzed Hydrogenation 

 Precedent exists for the elucidation of the mechanisms for Shvo-catalyzed 

hydrogenation, both experimentally and computationally.27 It has been proposed 

that for ketones, aldehydes, and alcohols the proton and hydride are transferred 

from the catalyst to the substrate in a concerted manner, but for amines and imines 

they are transferred in a sequential manner with protonation occurring first.36  
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Scheme 4.9. Proposed inner sphere concerted mechanism for Shvo-catalyzed 
ketone hydrogenation using formaldehyde as a model substrate. Adapted from 
reference.27  
 

 

 

 

 

 

 

 

 

 

There has been debate regarding whether the hydrogenation reactions of 
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thus, the outer sphere concerted mechanism was the primary mechanism explored 

for the computational mechanistic investigation herein.  

 

Scheme 4.10. Proposed outer sphere concerted mechanism for Shvo-catalyzed 
ketone hydrogenation using formaldehyde as a model substrate. Adapted from 
reference.27  
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formaldehyde is commonly chosen as the carbonyl-containing substrate.36, 38  

The energy profile diagrams for Shvo-catalyzed hydrogenation of 

formaldehyde and CO2 are shown in Scheme 4.11. In order to make a 

comprehensive comparison between substrates, and to determine if one functional 

Ru

HO

H
H

H
H

H

CO CO

Ru

O

H
H

H
H

H

CO CO

O

H
O

H H

H
H
HH

O

Ru

COOC

OH

H H
H

H2

H H



 119 

led to different results than the other, both B3LYP and M06 functionals were used 

in separate series of calculations. It was found that the hydrogenation of 

formaldehyde is calculated to be a slightly exergonic reaction (ΔG < 0) with a 

moderate kinetic barrier (∆G‡ ≅ 14-17 kcal/mol). The hydrogenation of CO2 is 

calculated to be an endergonic reaction (ΔG > 0) with a larger kinetic barrier (∆G‡ 

≅ 28-29 kcal/mol). Within the accuracy of DFT mentioned above, both functionals 

yielded similar results with respect to one another. Thus, for many subsequent 

calculations, B3LYP was utilized due to its lower computational cost.  

 

Scheme 4.11. DFT calculated free energy profile diagrams for hydrogenation of 
formaldehyde (left) and CO2 (right) using outer sphere concerted mechanism. 
Calculations were performed using the B3LYP functional (orange) and the M06 
functional (green). Tetrahydrofuran solvent was modeled using the SMD implicit 
model. 
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4.3.4 Solvent Effects on Formaldehyde and Carbon Dioxide Hydrogenation via 

Outer Sphere Concerted Mechanism 

Because of the ionic nature of metal-ligand bifunctional catalysis, it is 

hypothesized that polarity and proticity of the reaction solvent may play an 

important role in the feasibility and/or rate of hydrogenation. Thus, the effects of 

solvent on the energetics of the reaction were explored using a series of four 

implicit solvents: toluene, tetrahydrofuran, methanol, and water. These calculations 

were performed using the B3LYP functional. Scheme 4.12 contains the energy 

profile diagrams for the hydrogenation of formaldehyde and CO2 via the outer 

sphere concerted mechanism. These results depict several trends. Regarding 

formaldehyde hydrogenation, ∆G‡ values show little variation. On the contrary, 

∆G‡ values decrease with an increase in solvent polarity for CO2 hydrogenation. In 

both cases of hydrogenation, ∆G‡ values are dependent on solvent polarity. For 

formaldehyde hydrogenation, the reaction moves from energy-neutral to exergonic 

with increasing solvent polarity. For CO2 hydrogenation, the reaction becomes less 

endergonic with increasing solvent polarity.  
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Scheme 4.12. DFT calculated free energy profile diagrams for hydrogenation of 
formaldehyde (left) and CO2 (right) using outer sphere concerted mechanism as a 
function of solvent (red = toluene, orange = tetrahydrofuran, purple = methanol, 
blue = water). Calculations were performed using the B3LYP functional. Solvent 
was modeled using the SMD implicit model. 

 

 

 

 

 

 

 

 

 
 

From ∆G‡ values, rates of reaction (k) can be predicted using the Eyring 

equation, for which h is Plank’s constant, kb is the Boltzmann constant, and R is the 

ideal gas constant. The ∆G‡ values of 17.0 and 27.9 kcal/mol obtained for the 

hydrogenation of formaldehyde and CO2 in tetrahydrofuran, a slightly polar, aprotic 

solvent, can be used to calculate the predicted rate constants of 430 and 9.15 x 10-

6 s-1 at 100 ºC, respectively. Considering instead the ∆G‡ values of 16.9 and 22.2 

kcal/mol obtained for the hydrogenation of formaldehyde and CO2 in water, the 

most polar, protic solvent, the predicted rate constants are calculated as 974 and 
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the rate of CO2 hydrogenation in water compared to the rate in tetrahydrofuran 
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supports the prediction that polarity and/or proticity of the reaction solvent plays a 

role in the rate of hydrogenation for CO2.  

A more thorough investigation of solvent effects would be achieved through 

utilization of explicit solvent models.39 Explicit solvent models can more 

realistically model the specific interactions of solvent molecules with the catalyst 

and substrate. Inclusion of these specific interactions are important when solvent 

molecules actively participate in the chemistry. Here, hydrogen bonding is an 

intermolecular interaction that would be important to consider for realistic 

modeling.  

4.4 Exploration of Ligand Modifications 

4.4.1  Selection of Shvo Analogues  

Analogues to Shvo’s catalyst containing modifications to the 

tetraphenylcyclopentadienone ligand have been documented in previous reports.40 

In an effort to investigate the effect of electronic modifications to the 

tetraphenylcyclopentadienone ligand on hydrogenation chemistry, two analogues 

were chosen to compare to Shvo’s catalyst (Figure 4.5). The first analogue, 18e-

Br, contains para-substitution of bromine atoms on the two ligand phenyl rings 

furthest from the OH functionality. The second analogue, 18e-OMe, contains para-

substitution of methoxy groups on the two ligand phenyl rings furthest from the OH 

functionality. We were curious to what extent the electron-withdrawing and 

electron-donating natures of 18e-Br and 18e-OMe, respectively, might affect 

hydrogenation chemistry, both computationally and experimentally, relative to 

Shvo’s catalyst, which will be referred to as 18e in the following sections for clarity.  
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Figure 4.5. Shvo’s catalyst and analogues depicted in their full chemical structures 
and in their simplified models utilized in DFT calculations.  
 

 

4.4.2 Mechanistic Investigation of Formaldehyde and Carbon Dioxide 

Hydrogenation with Shvo Analogues via Outer Sphere Concerted Mechanism 

 We were interested in investigating how the electronic modifications of the 

Shvo analogues would affect the reaction barriers for formaldehyde and CO2 

hydrogenation. DFT calculations using the simplified models of these analogues 

were performed for formaldehyde (Scheme 4.13) and CO2 (Scheme 4.14) 

hydrogenation via the outer sphere concerted mechanism using the B3LYP 

functional. Calculations with each of the aforementioned four solvents (toluene, 

tetrahydrofuran, methanol, water) were performed using an implicit solvent model.  
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Scheme 4.13. DFT calculated free energy profile diagrams for hydrogenation of 
formaldehyde using Shvo analogues via outer sphere concerted mechanism as a 
function of solvent (red = toluene, orange = tetrahydrofuran, purple = methanol, 
blue = water). Calculations were performed using the B3LYP functional. Solvent 
was modeled using the SMD implicit model. 
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solvent, the ∆G value for the hydrogenation of CO2 becomes just slightly positive.  
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Scheme 4.14. DFT calculated free energy profile diagrams for hydrogenation of 
CO2 using Shvo analogues via outer sphere concerted mechanism as a function of 
solvent (red = toluene, orange = tetrahydrofuran, purple = methanol, blue = water). 
Calculations were performed using the B3LYP functional. Solvent was modeled 
using the SMD implicit model. 

 

 

 

 

 

 

 

 

4.4.3 Experimental Investigation of Carbon Dioxide Hydrogenation with Shvo 

Analogues 

 From the predictions made by DFT, we were particularly interested in 

whether experimental reactivity of 18e-OMe would afford formic acid from CO2. 
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cyclohexanol with 1348 ± 75 TOs and 78 ± 5% conversion. The percent conversion 
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no formic acid was detected via GC-MS nor via 1H NMR spectroscopy. 
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4.5 Conclusions and Future Directions 

 The development of a process that utilizes CO2 instead of CO as chemical 

feedstock could lay the groundwork for future, renewable methods of C1 

incorporation chemistry. Metal-ligand bifunctional catalysis offers a strategy for 

homogeneous, base-free functionalization of carbon dioxide. Utilization of Shvo’s 

catalyst was a desirable starting point due to its effectiveness in a wide variety of 

transformations, specifically in transfer hydrogenation. Hydrogenation of CO2 was 

chosen as a starting point to this project with hydroarylation being the overall 

reactivity we aimed to achieve.  

 Following the synthesis of Shvo’s catalyst, ketone and alkene 

hydrogenations were performed, for which the results were compared to literature, 

in order to determine that the experimental methods used for hydrogenation were 

adequate. Quantification methods for formic acid were developed using GC-MS 

and 1H NMR spectroscopy. However, CO2 hydrogenation experiments with Shvo’s 

catalyst were unsuccessful.  

Mechanistic studies using DFT calculations allowed Shvo-catalyzed CO2 

hydrogenation to be compared to previously reported formaldehyde 

hydrogenation.36, 38 Separate calculations were performed with two functionals of 

differing levels of approximations, B3LYP and M06, and it was found that both 

produced similar results. Further mechanistic studies compared hydrogenations of 

formaldehyde and CO2 in four solvents of differing polarities using an implicit 

solvent model and it was found that more polar solvents led to more favorable 

energetics, both of the reaction and of the transition state. Analogues to Shvo’s 



 127 

catalyst, for which experimental methods for their syntheses have been previously 

reported, were compared computationally for the hydrogenation of formaldehyde 

and of CO2 in the aforementioned four solvents. These mechanistic studies 

identified an analogue containing a methoxy-derivatized ligand as more favorable 

for formaldehyde and CO2 hydrogenation. However, neither of the analogues 

showed experimental success for CO2 hydrogenation.   

Because Shvo’s catalyst was shown to be unsuccessful for CO2 

hydrogenation, CO2 hydroarylation was not pursued. However, the strategy 

outlined in this chapter could be extended to the investigation of alternate metal-

ligand bifunctional catalysts. In fact, the tandem experimental and computational 

nature of this project allows for in silico prediction of likely candidates for arene 

carboxylation chemistry before time and resources are expended for the synthesis 

of catalysts and execution of reactivity studies.  

4.6 Experimental Section 

 General Comments and Materials. Unless otherwise noted, all reactions 

were performed under ambient atmosphere. All chemicals and gases were 

purchased from commercial sources and used as received. Carbon dioxide and 

dihydrogen pressure were monitored by a Span pressure gauge (0-3000 psig, with 

50 psig markings). 1H NMR data were collected on a Varian 600 MHz spectrometer 

and referenced to either CDCl3 or CD2Cl2 solvent residual signals. Chemical shifts 

are reported in ppm (ẟ). Infrared spectroscopy (IR) data were collected on a 

Shimadzu IRAffinity-1 spectrometer with KBr film/pellet holder. GC-MS data 

were collected on a GCMS-QP2010 Plus spectrometer with a DB-FFAP capillary 
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column (60 m x 0.250 mm x 0.25 μm). GC-FID data were collected on a Shimadzu 

GC-2014 spectrometer with a DB-5MS UI capillary column (30 m x 0.320 mm x 

0.25 μm). X-ray diffraction (XRD) data were collected on a Bruker Kappa APEXII 

Duo system equipped with a fine-focus sealed tube and a graphite monochromator. 

Crystals were mounted on a MiTeGen MicroLoop coated with Paratone oil. All 

high-pressure reactions were performed in custom-built Swagelok stainless-steel 

high-pressure reactors containing a custom-built stainless-steel reaction vessel and 

Teflon liner. The reactors were sealed using a polytetrafluoroethylene (PTFE) O-

ring.  

Synthesis of Tetraphenylcyclopentadienone. The procedure is adapted 

from a published procedure.41 A round-bottom flask was charged with 40 mL of 

200 proof ethanol and a stir bar and heated to 60 °C. Benzil (10 mmol) and dibenzyl 

ketone (10 mmol) were added to the flask. Potassium hydroxide (5 mmol) was 

dissolved in 5 mL of 200 proof ethanol. A reflux apparatus was assembled, and the 

temperature was increased to 72 °C. The potassium hydroxide solution was added 

dropwise. The solution was refluxed for 25 min and then submerged in an ice bath. 

Tetraphenylcyclopentadienone (9.4 mmol, 94%) was isolated via vacuum filtration 

and washed with 200 proof ethanol. The solid was stored in a glovebox. 

Tetraphenylcyclopentadienone was characterized by IR and 1H NMR spectroscopy. 

IR: 1709, 1701 cm-1. 1H NMR (CDCl3): 6.9-7.3 (m).  
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Figure 4.6. IR spectrum of tetraphenylcyclopentadienone. 

 

Figure 4.7. 1H NMR spectrum of tetraphenylcyclopentadienone.  

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0
ppm

0
.0
7

1
.2
5

1
.5
4

6
.9
2

7
.1
7

7
.2
4

C
D

C
l 3 ph

en
yl

 

w
at

er
 

et
ha

no
l  

gr
ea

se
 



 130 

Synthesis of 3,4-Bis(4-bromophenyl)-2,5-diphenyl-2,4-

cyclopentadienone. A round-bottom flask was charged with 40 mL of 200 proof 

ethanol and a stir bar and heated to 60 °C. 4,4’-Dibromobenzil (5 mmol) and 

dibenzyl ketone (5 mmol) were added to the flask. Potassium hydroxide (5 mmol) 

was dissolved in 8 mL of 200 proof ethanol. A reflux apparatus was assembled, and 

the temperature was increased to 72 °C. The potassium hydroxide solution was 

added dropwise. The solution was refluxed for 2 h and then submerged in an ice 

bath. 3,4-Bis(4-bromophenyl)-2,5-diphenyl-2,4-cyclopentadienone (2.7 mmol, 

54%) was isolated via vacuum filtration and washed with 200 proof ethanol. The 

solid was stored in a glovebox. 3,4-Bis(4-bromophenyl)-2,5-diphenyl-2,4-

cyclopentadienone was characterized by 1H NMR spectroscopy. 1H NMR 

(CD2Cl2): 6.8-7.4 (m). 

Synthesis of 3,4-Bis(4-methoxyphenyl)-2,5-diphenyl-2,4-

cyclopentadienone. A round-bottom flask was charged with 40 mL of 200 proof 

ethanol and a stir bar and heated to 60 °C. 4,4’-Dimethoxybenzil (5 mmol) and 

dibenzyl ketone (5 mmol) were added to the flask. Potassium hydroxide (5 mmol) 

was dissolved in 8 mL of 200 proof ethanol. A reflux apparatus was assembled, and 

the temperature was increased to 72 °C. The potassium hydroxide solution was 

added dropwise. The solution was refluxed for 30 mins and then submerged in an 

ice bath. 3,4-Bis(methoxyphenyl)-2,5-diphenyl-2,4-cyclopentadienone was 

isolated via vacuum filtration and washed with 200 proof ethanol. The solid was 

stored in a glovebox. 3,4-Bis(methoxyphenyl)-2,5-diphenyl-2,4-
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cyclopentadienone was characterized by 1H NMR spectroscopy. 1H NMR 

(CD2Cl2): 3.8 (s, 6H), 6.7-7.2 (m, 18H). 

Synthesis of Shvo’s Catalyst (1). The procedure is adapted from a 

published procedure.42 A round-bottom flask was charged with triruthenium 

dodecacarbonyl (0.49 mmol), tetraphenylcyclopentadienone (1.5 mmol), 80 mL 

methanol, and a stir bar. Standard Schlenk techniques were used to reflux the 

mixture under a dinitrogen atmosphere for 40 h. The yellow-orange solid (0.33 

mmol, 45%) was isolated via vacuum filtration and washed with methanol. The 

solid was stored in a glovebox. Shvo’s catalyst (Ru2C62H42O6) was characterized 

by IR spectroscopy, 1H NMR spectroscopy, and X-ray crystallography. IR: 3057, 

2033, 2006, 1975, 1962 cm-1. 1H NMR (CD2Cl2): -18.4 (s, 1H), 7.0 (m, 40H). 

 

Figure 4.8. IR spectrum of 1.  
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Figure 4.9. 1H NMR spectrum of 1.  

 

 

Figure 4.10. ORTEP plot of 1 as determined by single crystal X-ray 
crystallography. Ellipsoids are drawn at 50% probability level. Hydrogen atoms, 
with the exception of the bridging hydride and hydroxyl proton, are omitted for 
clarity. A molecule of tetrahydrofuran that co-crystallized with the catalyst is also 
omitted for clarity. The crystal structure of 1 has been previously reported and can 
be located in the Cambridge Structural Database by CCDC number 953038.43 
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Table 4.1. Crystallographic data for 1.a 
Chemical formula C66H50O7Ru2 
FW (g/mol) 1157.20 
T (K) 100(2) 
λ (Å) 0.71073 
Crystal size (mm) 0.199 x 0.227 x 0.247 
Crystal habit yellow block 
Crystal system triclinic 
Space group P -1 
a (Å) 12.8846(11) 
b (Å) 14.5125(12) 
c (Å) 14.5549(13) 
α (º) 74.998(2) 
β (º) 89.665(2) 
γ (º) 86.969(2) 
V (Å3) 2625.1(4) 
Z 2 
ρcalc (g/cm3) 1.464 
μ (mm-1) 0.632 
F(000) 1180 
θ range (º) 1.45 to 29.62 
Index ranges -17 ≤ h ≤ 16, -20 ≤ k ≤ 20, -20 ≤ l ≤ 20 
Reflections collected 62411 
Independent reflections 14764 [R(int) = 0.0288] 
Data / restraints / parameters 14764 / 0 / 684 
Goodness-of-fit on F2 1.017 
R1 [I>2σ(I)] 0.0239 
wR2 [all data] 0.0603 
a Data reported here correspond to the crystal structure I obtained, depicted in 
Figure 4.10.  

 
Table 4.2. Select bond lengths for 1.a 
Bond  Length (Å) 
Ru1–H1 1.72(2) 
Ru2–H1 1.68(2) 
O1–H2 1.53(3) 
O2–H2 0.97(3) 
a Data reported here correspond to the crystal structure I obtained, depicted in 
Figure 4.10.  
 

Synthesis of Shvo’s Catalyst Analogues. A round-bottom flask was 

charged with triruthenium dodecacarbonyl and either 3,4-bis(bromophenyl)-2,5-
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diphenyl-2,4-cyclopentadienone or 3,4-bis(methoxyphenyl)-2,5-diphenyl-2,4-

cyclopentadienone in a 1:3 molar ratio, 80 mL methanol, and a stir bar. Standard 

Schlenk techniques were used to reflux the mixture under a dinitrogen atmosphere 

for 40 h. The solid was isolated via vacuum filtration and washed with methanol. 

The solid was stored in a glovebox and was characterized by 1H NMR 

spectroscopy. For bromine analogue: 1H NMR (CD2Cl2): -18.5 (s, 1H), 6.8-7.4 (m, 

36H). For methoxy analogue: 1H NMR (CD2Cl2): -18.5 (s, 1H), 3.7 (s, 12H), 7.2-

6.5(m, 36H). 

General Ketone/Alkene Hydrogenation Procedure. A Teflon liner was 

charged with Shvo’s catalyst, substrate, and a stir bar. The Teflon liner was added 

to a stainless-steel reaction vessel, the reactor was assembled, and then sealed with 

a vise. The high-pressure line was used to pressurize the reactor with 500 psig H2. 

The reactor was added to an aluminum block, heated to the desired temperature and 

stirred at 800 rpm. Following the reaction, the reactors were allowed to cool to room 

temperature and then were slowly vented in a fume hood. Biphenyl (for 

cyclohexanone hydrogenation) or hexamethylbenzene (for styrene hydrogenation) 

was added to the reaction mixture as internal standard. GC-FID was used for 

product quantification using linear regression analysis. A plot of peak area ratios 

versus molar ratios gave a regression line. For cyclohexanone hydrogenation, the 

slope and correlation coefficient of the regression lines were 2.42 and 0.994 

(cyclohexanone) and 2.31 and 0.999 (cyclohexanol). For styrene hydrogenation, 

the slope and correlation coefficient of the regression lines were 1.78 and 0.999 

(styrene) and 1.81 and 0.999 (ethylbenzene).  
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General CO2 Hydrogenation Procedure. A Teflon liner was charged with 

Shvo’s catalyst, 5 mL solvent, and a stir bar. The Teflon liner was added to a 

stainless-steel reaction vessel, the reactor was assembled, and then sealed with a 

vise. The high-pressure line was used to pressurize the reactor with 250 psig CO2 

followed by 250 psig H2. The reactor was added to an aluminum block, heated at 

the desired temperature and stirred at 800 rpm. Following the reaction, the reactors 

were allowed to cool to room temperature and then were slowly vented in a fume 

hood. Cyclohexane was added to the reaction mixture as internal standard. GC-MS 

was used for formic acid quantification using linear regression analysis. A plot of 

peak area ratios versus molar ratios gave a regression line. The slope and correlation 

coefficient of the regression line were 0.0720 and 0.999 (formic acid).  

Computational Details. Calculations were carried out using Gaussian0944 

at DFT level by means of the hybrid B3LYP functional and analogously by means 

of the M06 functional. Shvo’s catalyst was modeled by [(ƞ5-C4H4COH)Ru(CO)2H], 

where the phenyl substituents on the cyclopentadienyl ring were replaced by 

hydrogen atoms. Optimization calculations were performed using the 6-31G(d,p) 

basis set for carbon, oxygen, and hydrogen atoms and the lanl2dz basis set45 for 

ruthenium. Single point energy calculations were performed using the def2-tzvpd 

basis set46 for all atoms. All calculations were performed without any geometrical 

constraints. For optimized structures, analytical frequency calculations were 

performed to characterize the structures as minima or transition states. IRC 

calculations were performed to confirm the connection between transition states 

and their relevant minima. Solvent effects were included using the SMD continuum 
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model.47 Calculations were submitted to the Fulton Supercomputing Lab at 

Brigham Young University and the Rivanna Supercomputing Lab at the University 

of Virginia. Optimized coordinates can be found on the Gunnoe Group Hard Drive. 
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