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ABSTRACT 

Bacterial biofilms are complex 3-dimentional (3D) structures with substantial spatial and 

temporal heterogeneity at the single-cell level. Simultaneous multi-cell tracking in 3D is thus 

critical for analyzing single-cell behaviors, such as motility and metabolism, as well as lineage 

tracing in biofilms. Due to phototoxicity and photobleaching concerns, fluorescence images are 

often subject to low signal-to-background ratios (SBRs). High cell density, and large relative cell 

movements from frame to frame add additional challenges for accurate segmentation and tracking 

of individual cells in living biofilms. To address these challenges, I used lattice light sheet 

microscopy (LLSM) to image 3D bacterial biofilms with high spatial and temporal resolution and 

without substantial light-induced degradation of the SBRs over time.  I additionally incorporated 

a hermetically sealed microfluidic flow channel into the LLSM to sustain bacterial biofilm growth 

under precisely controllable physical and chemical conditions. To enable accurate cell 

segmentation in the acquired 3D movies, I trained convolutional neural networks (CNNs) to 

perform voxel classification and to translate 3D fluorescence images into 3D intermediate image 

representations that are more resistant to over- and under-segmentation errors. Using this 

approach, improved segmentation results are obtained even for low SBRs and/or high cell density 

biofilm images. In order to track individual cells, I further leveraged a separate machine learning 

algorithm to select cell features that facilitate linking corresponding cells between frames. We 

demonstrate the applications and limitations of our entire data processing pipeline by 

systematically evaluating tracking accuracy using both simulated and experimentally acquired 

time-lapse images. The combination of non-invasive imaging and machine-learning based 

computational image analysis pipeline provides new opportunities for investigating time-

dependent phenomena in living bacterial biofilms with single-cell resolution. 
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1.1 Bacterial biofilms and host-pathogen interface 

Bacterial biofilms are cohesive, multicellular microbial communities capable of adhering 

to biotic or abiotic surfaces1, 2. They constitute a major component of bacterial biomass on Earth, 

and thus have many direct impacts on public health, medical treatment and diagnosis as well as 

the food industry3. Undesired biofilm growth has been identified as a prominent problem in various 

industries. In healthcare and medical settings, most bacterial infection cases are associated with 

biofilms, which are known to develop resistance to antibiotic treatments4.  The estimated global 

expenditure on wound care linked to biofilms exceeds two hundred billion dollars annually5. 

Therefore, alternative and more efficient biofilm control strategies are not only crucial for 

combating bacterial infections but also are an economic necessity.  

Bacterial biofilms also play a positive, indispensable role in various industries, 

necessitating further research to harness their potentials. For example, bacterial biofilms play 

essential roles in wastewater management plans, where they either directly or indirectly aid the 

consumption of toxic materials in wastewater6. On the other hand, certain species of biofilms are 

capable of producing bioelectricity, encouraging scientists to research on the  development of fuel 

cells powered by biofilms7. In relation to human health, commensal bacteria perform digestive 

functions and serve as a critical line of defense against pathogens. 

It is paramount to closely investigate the biofilm cell biology and life cycle, whether the 

goal is to develop novel strategies to combat bacterial infections or to leverage beneficial microbial 

ecosystems for practical applications. It is believed that bacterial biofilm formation is a multi-step 

process. After bacteria interact with a surface, the production of extracellular polymeric substances 

(EPS) promotes cell-cell adhesion and ultimately allows biofilms to aggregate and mature2. 

However, the biofilm life cycle of different species is diverse over various stages and is yet to be 
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fully understood. The understandings of biofilm formation were largely based on ensemble 

average data, and biofilm studies were typically performed without measuring single-cell statistics. 

However, with the recent development of advanced imaging modalities, researchers now are trying 

to understand bacterial biofilms as well as their spatial-temporal heterogeneity at the single-cell 

level. Recent studies have indicated that bacterial biofilms are known to promote phenotypic 

diversity (e.g. changes in growth rate or gene expression) among individual bacteria that enable 

the coordination of cellular behaviors and the development of heterogenous functionalities1, 8-10. 

However, conventional microbiological or biochemical experiments did not preserve the spatial-

temporal information of individual cells, and therefore little was known about dynamic changes in 

motility, cell shapes, and gene expression profiles of individual cells in heterogeneous biofilms in 

response to different environmental cues and variable chemical signals. These mechanisms can 

enhance population survival in harsh environments and provide bacterial biofilms with emergent 

functional capabilities beyond those of planktonic bacterial cells. Therefore, rigorous 

investigations of single-cell behaviors are key to study not only for fundamental biology, such as 

biofilm life cycle, but also for practical applications associated with biofilms.  

 The host-pathogen interface, or host-microbe interface, represents the surface where 

pathogenic or commensal bacteria attach to and interact with host cells, making it physiologically 

relevant to study bacterial biofilms in human health. Bacterial biofilms are commonly observed to 

interact with host mucosal epithelia in the airway, gut, and genitourinary tract11. The host 

environment plays a critical role in the formation and regulation of bacterial biofilms in both health 

and disease, and thus is of high interest to researchers in various fields. However, little is known 

of how bacterial biofilm formation differs at host mucosal environments consisting of different 

structures, functions, and nutrient availability. 
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1.2 Advanced microscopy for imaging bacterial biofilms 

Fluorescence microcopy has been a driving force for cell biology for many decades. The 

development of modern fluorescence microscopes has made it possible to acquire four-

dimensional bacterial biofilm dynamics (x, y, z, and time). For instance, confocal microscopy and 

related imaging modalities like spinning disk confocal microscopy enable 3D time-lapse cellular 

and subcellular visualizations of live biological samples. In confocal microscopy, samples are 

scanned over a 2D or 3D raster, and a spatial pinhole (or equivalent) is typically used to block out-

of-focus light, thereby enhancing contrast. Although confocal microscopy offers good contrast and 

spatial resolution, it cannot continuously resolve individual cells over a long period of time due to 

the use of high-intensity lasers and waste of photon budgets (i.e., a large amount of out-of-focus 

light is blocked and discarded)12, 13.  

To overcome the abovementioned problems, light sheet-based fluorescence imaging 

modalities have been recently developed, combining high resolution with fast imaging speed and 

low phototoxicity surpassing the capabilities of confocal microscopy13-15. Light sheet-based 

microscopy has gained popularity for non-invasive time-lapse imaging of live biological tissues 

and samples, including bacterial biofilms16-18. However, even light sheet microscopy has 

limitations. Depending on the objectives of the research aims, the cellular sizes may be too small 

or, the cellular density or tissue thickness may be too high to clearly resolve individual cells with 

diffraction-limited microscopy. Super-resolution imaging modalities, in contrast, such as 

structured illumination microscopy19, 20, can theoretically improve the spatial resolution by two-

fold, but such improvements come at the cost of decreased temporal resolution and increased 

concerns of photobleaching and phototoxicity21, 22. Hence, trade-offs between contrast, 
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photobleaching, and spatial and temporal resolution need to be carefully considered when choosing 

an appropriate imaging modality for a specific research objective.   

An additional challenge in the field is gaining access to the imaging of physiologically 

relevant biofilm and host-microbe interfaces. There have been approaches to target bacterial 

biofilm as well as the host-microbe interface with either in vivo or ex vivo microscopy. Each 

approach has its advantages and disadvantages. The in vivo approach allows for close investigation 

of biofilms with physiological relevancy, but it is not feasible to obtain images with single-cell 

resolution due to typically used low numerical aperture objective lenses as well as other constraints 

23, 24. On the other hand, ex vivo imaging of the tissue slices offer single-cell, high spatial resolution 

of the host-pathogen interface, but usually involves imaging fixed tissue slices25. While offering 

high spatial resolution, such approaches can only capture single snapshots in time and thus fail to 

encapsulate dynamic information on host-microbe interactions. Static culture experiments imaged 

using confocal microscopy on immortalized human cell lines or harvested living tissues from 

animal models can offer temporal information, but they do not accurately reproduce the 

complexity and dynamism of human host-microbe interfaces in vivo, where shear forces, chemical 

gradients, and environment changes due to fluid flow are present. Although it is unlikely that one 

imaging setup can address all the aforementioned limitations, it can be concluded that using a 3D 

imaging modality with both high spatial and temporal resolution to image live cells, coupled with 

microfluidic technology for precise control of the physical and chemical environment, is the best 

approach for imaging host-microbe interfaces.  

In our lab, we use lattice light-sheet microscopy (LLSM), an advanced light sheet 

microscopy with high numerical aperture that combines diffraction-limited 3D spatial resolution 

(~250nm in xy and ~700 nm in z) with fast temporal resolution and low phototoxicity. LLSM is 
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well-suited for imaging bacterial biofilms, capturing both rapid short-term events such as motility 

and cell dispersion, as well as long-term phenomena such as cell growth dynamics and cell 

divisions26. More importantly, LLSM can operate at illumination intensities that are below the 

levels of cellular phototoxicity. LLSM can reduce fluorophore photobleaching by 1-2 orders of 

magnitude compared to confocal microscopy, thus achieving better spatial temporal resolution and 

signal-to-background ratios over extended period of time. Furthermore, LLSM outperforms some 

super-resolution modalities in terms of data acquisition speed, while being able to still resolve 

individual cell boundaries in a dense biofilm. However, computational image analysis, such as 

image segmentation and cell tracking, becomes more challenging with LLSM due to small 

intercellular gaps between bacterial cells within densely packed biofilms and the diffraction-

limited nature of the imaging system.  

Therefore, I have developed machine learning and deep learning-based computational 

solutions to recognize, segment, classify and track individual bacterial cells in bacterial biofilms. 

Further details on these approaches will be provided in Chapter 3 and Chapter 4. In addition to 

software developments, this thesis also represents a first step towards addressing the challenges of 

imaging the host-pathogen interface by integrating microfluidic technology and best practices for 

running stable, long-term experiments on LLSM. 

 

1.3 Deep learning for microscopy image processing 

Modern microscopy modalities, such as confocal and light sheet microscopy, are able to 

generate a massive amount of raw, 3D time-lapse imaging data. However, processing these data, 

as well as doing quantitative, unbiased measurements, is not a trivial task. In this section, I 
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introduce how deep learning techniques have revolutionized the field of microscopy image 

processing and briefly explain how and why deep learning techniques work. 

Machine learning algorithms can learn from the data to predict desired outputs or discover 

patterns. Deep learning algorithms are normally considered a subset of machine learning 

algorithms that use artificial neural networks that mimic how a human brain functions. More 

formally, a machine learning algorithm can be viewed as a function,  f, that maps an input,  x, to 

an output, y, by updating model parameters, θ27.   

𝑦 = 𝑓(𝑥; θ) 

Machine learning algorithms usually work on structured data, where the input, x, is typically a data 

frame or a matrix that contains m rows of data entry and n columns of features. A deep learning 

algorithm however typically works better for unstructured data, where features are difficult or 

impossible to extract effectively from highly complex data, such as texts, images, or videos.  

 There are a variety of tasks in the field of microscopy image processing that are well-suited 

for deep learning techniques, namely classification, image segmentation, object tracking and 

image reconstruction28. These tasks are usually fit into the supervised learning framework, which 

relies on labeled data (ground truth). Specifically, image classification has profound applications 

in the field of medical image analysis, where, for example, a deep learning classifier can help 

physicians classify cell types or cancer stages. It is one of the earlier applications of deep learning 

on microscopy imaging data, since training data are usually abundant and of low cost. In contrast, 

image reconstruction in microscopy data gained popularity only recently, when researchers 

realized deep learning techniques are able to map an image that has a low signal-to-noise ratio to 

an image of high signal-to-noise ratio by finding the underlying mapping functions that are too 
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complicated to do mathematically21, 29. Image reconstruction is a method that is thought to 

computationally address the fundamental tradeoffs between imaging speed, image resolution and 

signal-to-noise ratio for any imaging modality. However, there are still concerns in the field, one 

of which is whether image reconstruction through the means of deep learning may produce any 

unexpected artifacts. Researchers must take extra caution on extracting data from the reconstructed 

images, and it is possible that certain intensity-based measurements can be biased or even error-

prone.  

 

 

Figure 1.3.1. An overview of applications of deep learning in microscopy image analysis. 

Figure reproduced from Liu et al. 202128. 

 

Image segmentation and tracking, the major topics of this thesis, have been widely 

investigated on different biological tissues and structures. Image segmentation is a method of 

dividing an image into subgroups or classes of image segments, typically of desired research target. 

Instance image segmentation additionally divides a subgroup or class into an individual object if 
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there is more than one object within that subgroup. Instance segmentation requires not only the 

determination of the classes for each pixel in an image but also accurate determination of the 

boundaries of each object. Image segmentation can aid with image visualization; for instance, it is 

useful for automatically labeling cell compartmentalization and different tissues in an image. More 

importantly, the segmented image then provides single-object measurements that are crucial for 

biological investigations and statistical testing. Therefore, image segmentation is a crucial step for 

extracting meaningful biological information from a microscopy image. Additionally, tracking (or 

multi-object/multi-cell tracking) is a task that requires the detected object to be linked in time. It 

is especially useful to study single-cell motions and behaviors in a dynamic environment.  In a 

biofilm study, a successful tracking experiment can provide time-dependent single-cell 

observables, which may shed light on cell fate or mechanisms of antibiotic resistance, and thus 

offer invaluable insights for the study of biofilm life cycle and emergent behaviors.  

In conclusion, in this thesis, I present instrumentation as well as computational solutions 

for analyzing individual bacterial cells within bacterial biofilms using image-based assays and 

analyses. My contributions described here will open new avenues to investigate biofilm 

heterogeneity and collective behaviors. 
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2.1 Lattice light sheet microscopy (LLSM) for 4D imaging 

Fluorescence microscopy provides the best imaging capability for dynamic 3D live 

biological samples30. However, conventional wide-field and confocal fluorescence microscopy 

that are used routinely in most laboratories are not optimized for 4D (3D + time) long-term, high-

temporal resolution imaging. A confocal microscope effectively scans the excitation beam and 

illuminates a section of the sample, but only the in-focus signals can be collected, and the out-of-

focus signals will be blocked and thus will not contribute to image signals (Figure 2.1.1 Left 

Panel). Such a configuration results in less efficient use of the photon budget, and therefore further 

leads to photobleaching of the fluorophores and even phototoxicity to the cells over time. In 

Chapter 3 and 4, I will demonstrate quantitatively how signal-to-background ratio and imaging 

frequency have a profound impact on the capabilities for automatic image segmentation and 

tracking. In contrast, lattice light sheet microscopy illuminates a plane of the sample by using a 

thin light sheet26. All of the fluorescence signals are collected by another objective lens that is 

conjugated to the sample plane (Figure 2.1.1 Right Panel). This approach not only increases the 

speed of the microscope, but also significantly reduces the photobleaching effects on fluorophores. 

For experimentally testing and comparing the photobleaching effect, a sample bacterial biofilm is 

imaged under both the LLSM and a spinning disk confocal microscope where similar image signal-

to-noise ratio and quality were obtained. The normalized intensity of the image is plotted against 

the number of Z-stacks, and it is shown that the photobleaching effect, measured by the exponential 

decay constants after curve fitting, is approximately an order of magnitude less for the lattice light 

sheet microscope compared to a spinning disk confocal microscope (Figure 2.1.2).  
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Figure 2.1.1. A schematic of how a lattice light sheet microscope compares to a confocal 

microscope for bacterial biofilm imaging. 
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Figure 2.1.2. Quantitative comparison of photobleaching for LLSM and spinning disk 

confocal microscopy. Image volumes with similar voxel resolution (~100 nm) and initial signal-

to-background ratios were recorded using GFP expressing Shewanella oneidensis MR-1 biofilms. 

Fluorescence intensity (normalized to the intensity of the first image volume I0) decreases as a 

function of acquired image volume. Data fitting using single-exponential decay functions show an 

order of magnitude decrease in the photobleaching rate for LLSM compared to confocal 

microscopy. Figure reproduced from Zhang et al. 202112. 

 

Lattice light sheet microscopy has noticeable advantages over other fluorescence 

microscopes on 4D live-cell imaging over a long period of time, especially for imaging light-

sensitive species (Figure 2.1.3a) and capturing highly dynamic cellular events (Figure 2.1.3b; 

Figure 2.1.3c for multi-channel imaging). LLSM makes imaging bacterial biofilm of different 

species possible, and it opens the door for more sophisticated image analysis as well as quantitative 
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analysis of cells, which has not been previously achieved and reported in the literature on the 

single-cell level. 

 

 

Figure 2.1.3. Example 4D biofilm images acquired by the lattice light sheet microscope.  (a) 

tdTomato expressing Myxococcus xanthus. (b) GFP expressing Shewanella oneidensis (c) M. 

xanthus labeled with tdTomato (green) and the extracellular matrix labeled with Concanavalin A 

conjugated with Alexa fluor 647 (magenta). 

 

2.2 LLSM-compatible microfluidic flow channel assembly  

A microfluidic imaging system plays a crucial role in imaging bacterial biofilms due to its 

importance in facilitating precise and controlled experimentation, analysis, and observation at the 

microscale. This technology enables researchers to manipulate and image biofilms in a flow 

system that mimics a physiological environment. The Gahlmann lab previously developed a 

microfluidic flow channel that can be used for imaging live bacterial biofilms under the lattice 

light sheet microscope (the previous version of the channel assembly was published and provided 

in Zhang et al. 202112). However, there are two major problems associated with the way the channel 

was previously assembled. The first is that the inlet and outlet were connected with PVC tubing 

sealed by heat shrinkable tubing on the junctions. However, the heat shrinkable tubing was 

a b c
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observed to weaken over time allowing air bubbles to come in. In addition, they tend to fall off 

over time for long time-lapse imaging experiments. The second problem is that the LOCA-133 

adhesive (My Polymers, Israel) tends to weaken over time in the heated basin, resulting in leakage 

from the channel.  To tackle these problems, a slightly updated way to assemble the flow channel 

is described here. A thin layer of silicone is applied to the film gap at the bottom of the channel. 

This is observed to improve success rate to seal the channel and consistently maintain sealing of 

the channel in a heated basin for several days. Silicone tubing is then directly attached to the barbed 

inlet and outlet, which secures the junctions tightly and prevent air bubbles from coming in (Figure 

2.2.1).  

 

 

Figure 2.2.1. 3D model of 3D-printed microfluidic channel with improved barbed design of 

the inlet and outlet. 

 

The channel inoculation protocol requires updating due to the new design of the channel 

and the use of tubing of larger diameters. Previously, in order to inoculate the channel with live 

bacterial cell cultures, a syringe was used to push cell culture through the tubing and the flow 



Chapter 2: Bacterial biofilm imaging and microscopy       

 

24 

channel. Then, the flow rate was ramped up to 0.5 mL/hour for 20 minutes to flush away 

nonadherent cells. Next, the flow rate was reduced to 0.03 mL/hour for the duration of imaging. 

For a flow experiment, it is important to control the shear stress on bacterial biofilms. The shear 

stress 𝜏 can be calculated as following in a circular tubing: 

𝜏 =
4𝜂𝑄

𝑟3π 

In the equation, Q is the flow rate, η the dynamic viscosity and r the radial distance from the 

centerline of the channel. When the tubing size is within an order of magnitude to the size of the 

flow channel, it can be assumed that the adherent cells can also form bacterial biofilm on the tubing 

wall upstream to the channel, which makes biofilm imaging experiments difficult to control. It was 

hypothesized that bacterial biofilms on the tubing wall upstream to the channel reduced nutrient 

concentration and added cellular waste to the downstream medium. In practice, however, it is 

difficult to control the biofilm formation on tubing walls by optimizing shear stress, so it is 

favorable to bypass the upstream tubing when inoculating. As a result, in the updated version of 

the protocol, a needle is used to pierce the wall of the tubing right at the inlet, and the cell culture 

is directly injected into the inlet of the flow channel. This protocol guarantees that only pristine 

medium is supplied through the flow channel. It is observed that more robust and consistent 

biofilms were formed using the described protocol. 

After inoculation, the channel was mounted on a piezo nanopositioning stage (Mad City 

Laboratories, NanoOP100HS) and immersed in the basin medium, where sucrose solution was 

used to match the refractive index of the growth media. The channel inlet port was connected to a 

syringe pump (Harvard Apparatus, Model 22), and the channel outlet port was connected to a 

waste container by using silicone tubing.   
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2.3 LLSM image acquisition and preprocessing  

In order to image the microfluidic channel for stable, time-lapse image acquisition 

described above, there are additional challenges. The first challenge is that the sucrose solution in 

the basin evaporates, and thereby its refractive index is altered over time. This effect is less 

pronounced for room-temperature experiments, but poses a major problem for long-term image 

acquisition under high temperature, such as 30 °C or 37 °C commonly used for imaging bacterial 

biofilms. We previously added water to the basin at a constant rate to offset the evaporation, but 

this method proved to be inaccurate because the evaporation rate depends on many factors, such 

as the desired temperature in the basin, room temperature and humidity. Instead, I used a sucrose 

circulation system to always supply excessive amount of sucrose solution to the basin. A large 

amount of sucrose is premade in a tank and gets pumped into the basin at a constant rate driven by 

controlled air pressure. The basin inevitably overflows, and the overflowed liquid will be removed 

from a vacuum system built-in to the LLSM basin. Before the fresh sucrose solution reaches the 

basin, it will pass through a long heating pipe heated by the same hot water that is used to heat the 

basin. This guarantees that the fresh sucrose is heated at the desired temperature before it reaches 

the basin, and thus will not change the temperature of the microfluidic channel.  

 Another challenge is that we have observed sample drift for imaging 3D printed 

microfluidic channels. Sample drift not only moves the sample to the side of the field of view and 

ultimately moves the sample out of the field of view, but also blurs the image data since the sample 

is illumined by a less ideal and thicker part of the light sheet. The blurring effect results in poor or 

impossible downstream analyses such as single-cell segmentation.  The drift is also problematic 

for automatic image acquisition and eventually cell tracking. 
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 In order to alleviate this problem, I have adopted several strategies. I first glued a 

fluorescent bead pad to a 3D printed channel made from Clear Resin (Formlabs), shown in Zhang 

et al. 202112. I estimated the drift by plotting the position of piezo micropositioning stage in z 

corresponding to the center position in the field of view of an arbitrarily chosen fluorescent bead 

against time. I fit the data with a linear equation, and the linear coefficient is the sample drift. With 

Clear Resin, the sample drift is estimated to be -0.14 µm/minute, or -8.4 µm/hour (Figure 2.3.1a). 

Compared to the size of the field of view, which is in the range of 40 µm to 60 µm, this is a 

significant amount of drift. In comparison, the original metal sample arm offers approximately an 

order of magnitude more stability, estimated to be -0.018 µm/minute (Figure 2.3.1b). Based on 

the direction of the drift and the specification of the resin material, I hypothesized that gravity pulls 

the channel down over time. Therefore, I used a machined metal scaffold that can be attached to 

the bottom of the channel giving extra support. However, this doesn’t eliminate the drift (Figure 

2.3.1b). I therefore tried a different material, Rigid 10k (Formlabs) to make the channel that is 

more rigid and stable.  However, switching to a more rigid resin material is not observed to dampen 

the drift either (Figure 2.3.1d). A possible explanation of the phenomena is that all resin materials 

from Formlabs absorb a small amount of water and get swollen over time in the basin. By the time 

the thesis is completed, I haven’t found any commercially available material that provides both 

great 3D printability and stability similar to stainless steel. 
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Figure 2.3.1. LLSM sample drift estimated by manually tracking fluorescent beads. (a) A 

fluorescent bead pad is glued to a 3D printed channel made from Clear Resin (Formlabs). The 

position of piezo micropositioning stage in z corresponding to the center position in the field of 

view of an arbitrarily chosen fluorescent bead is plotted against time. The dashed line represents 

the linear fit of the data, and the drift is estimated to be -0.14 µm/minute.  (b) The 3D printed 

channel made from Clear Resin (Formlabs) is secured by attaching a metal scaffold on the bottom. 

The drift is estimated to be -0.41 µm/minute.   (c) A fluorescent bead pad is glued to the original 

metal sample holder. The drift is estimated to be -0.019 µm/minute. (d) The 3D printed channel is 

made from Rigid 10k (Formlabs). The drift is estimated to be 0.13 µm/minute. 

 

I therefore decided to develop a software solution to address the sample drift problem. 

Sample drift is a common problem for various microscopy techniques, and there are already 



Chapter 2: Bacterial biofilm imaging and microscopy       

 

28 

software solutions available or built-in for commercial microscopes. However, for LLSM, no drift 

correction functionality is built in to the controlling software.  

The pseudocode for real-time drift correction for LLSM is shown in Figure 2.3.2. The 

algorithm assumes that samples between frames move reasonably small, because the core of the 

algorithm is to use the cross-correlation functions to find the drift comparing two biofilm images 

alone. This is typically the case for most bacterial biofilms imaged.  

 

 

Figure 2.3.2. Pseudocode for real-time drift correction for a Lattice light sheet microscope. 
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Figure 2.3.3. The x, y, and z directions are indicated for the microscope coordinates. The s-axis 

defines the direction the specimen moves from image plane to image plane. Figure reproduced 

from Chen et al. 201426. 

 

The algorithm takes a baseline image, img0, and when a new image is taken, the two images 

are Fourier transformed, and then the cross-correlation function is used to find how much deviation 

there is to the new image from the baseline. A vector in pixel space is obtained and later 

transformed into metric units by multiplying the pixel sizes of the microscope. The drift vector is 

in the microscope coordinate, which is at an angle, θ, from the piezo micropositioning stage 

(Figure 2.3.3, also refer to the configuration in Figure 2.1.1). The drift in all three directions needs 

to be transformed using trigonometry as following: 

𝑑𝑟𝑖𝑓𝑡𝑌𝑠𝑡𝑎𝑔𝑒  = 𝑑𝑟𝑖𝑓𝑡𝑋𝑚𝑖𝑐𝑟𝑜𝑠𝑐𝑝𝑒  

𝑑𝑟𝑖𝑓𝑡𝑍𝑠𝑡𝑎𝑔𝑒 = 𝑑𝑟𝑖𝑓𝑡𝑍𝑚𝑖𝑐𝑟𝑜𝑠𝑐𝑝𝑒 × cos(𝜃) −  𝑑𝑟𝑖𝑓𝑡𝑌𝑚𝑖𝑐𝑟𝑜𝑠𝑐𝑝𝑒 × sin(𝜃) 

𝑑𝑟𝑖𝑓𝑡𝑋𝑠𝑡𝑎𝑔𝑒 = 𝑑𝑟𝑖𝑓𝑡𝑌𝑚𝑖𝑐𝑟𝑜𝑠𝑐𝑝𝑒 × cos(𝜃) + 𝑑𝑟𝑖𝑓𝑡𝑍 × sin(𝜃) 

Finally, the drift vectors will be communicated to the LLSM controlling software and used to direct 

the movement of the piezo micropositioning stage. I thank Andy Chiu from Sciotex here for 

implementing the LabVIEW interface that talks to the piezo micropositioning stage. 

An image preprocessing pipeline for generating time-lapse 4D images is carried out in 

MATLAB and Fiji31. Raw 3D images are first background subtracted, then deskewed and 

deconvolved26, 32. The background subtraction is optional and is estimated by averaging intensity 

values of dark areas (devoid of cells) in the field of view. Deconvolution is performed using the 

Richardson-Lucy algorithm with 10 iterations using experimentally measured point spread 

functions (PSFs) as the deconvolution kernel. Deconvolution is only done for BCM3D 1.0, and 
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not in BCM3D 2.0.  The experimentally measured PSFs are obtained separately for each color 

channel using fluorescent beads (200 nm FluoSpheres®, Thermo Fisher) coated on a coverslip. A 

time sequence of 3D images is opened in Fiji as a hyperstack. A bounding box of a region of 

interest is manually selected, and then batch_crop.ijm is used to crop the bounding box in Fiji. 

Cropped individual 3D images are then saved to a specified folder by running hyperstack2se.ijm 

in Fiji. Fiji script Correct_3D_drift.py is then used to do additional steps of post-drift correction, 

since the piezo-micropositioner described previously has limited precision33. A rectangle ROI is 

manually selected and then used to compute the drift for better performance. Two separate rounds 

of post-drift correction might be needed on only xy and only z for optimal results. 3D images are 

rendered using the 3D Viewer plugin in Fiji or ChimeraX34. renameForChimeraX.m is used to 

rename default file names to be compatible with ChimeraX nomenclature. For rendering large 4D 

images, the data needs to be converted to a Chimera map (cmap) format. The rendered movie can  

therefore be displayed and saved using proper ChimeraX commands34. 
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3.1 Overview 

Bacterial biofilm image segmentation refers to the process of separating the individual 

bacterial cells or clusters from the background and from each other within the biofilm image. It 

involves identifying and delineating the boundaries of the biofilm regions, enabling further 

analysis of the biofilm structure, composition, and growth patterns. 3D biofilm image 

segmentation was not fully solved in the literature given densely packed cells as well as small 

intercellular gaps between cells. 

In this chapter, I present two different avenues for 3D biofilm image segmentation using 

deep neural networks trained from simulated data. We used physical image representations as well 

as their corresponding ground truth as training pairs for the BCM3D 1.0 workflow (Figure 3.1.1 

left panel). In this approach, we modeled physical image representations as closely to how real 

images are acquired by a lattice light sheet microscope, where representative emitter distributions, 

image noise and microscope point spread function (PSF) were carefully modeled (please see 

Section 3.2.5 for more details). In contrast, BCM3D 2.0 pipeline relies on both physical image 

representations and designed non-physical image representations as the training data, the purpose 

of which is to enable high accuracy of image segmentation using conventional image processing 

techniques further downstream (Figure 3.1.1 right and bottom panel). This approach is 

particularly effective when cell density is high and when image signal-to-background is low. 

Details of the two pathways as well as their performance comparisons will be discussed in the 

following sections. 
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Figure 3.1.1. A schematic of how two versions of BCM3D (see details in the following sections) 

compare on 3D bacterial biofilm image segmentation.  

 

3.2 BCM3D 1.0: pixel-wise classification using deep neural networks 

3.2.1 Abstract 

Fluorescence microscopy enables spatial and temporal measurements of live cells and cellular 

communities. However, this potential has not yet been fully realized for investigations of 

individual cell behaviors and phenotypic changes in dense, three-dimensional (3D) bacterial 

biofilms. Accurate cell detection and cellular shape measurement in densely packed biofilms are 

challenging because of the limited resolution and low signal to background ratios (SBRs) in 

fluorescence microscopy images. In this work, we present Bacterial Cell Morphometry 3D 

(BCM3D), an image analysis workflow that combines deep learning with mathematical image 

analysis to accurately segment and classify single bacterial cells in 3D fluorescence images. In 
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BCM3D, deep convolutional neural networks (CNNs) are trained using simulated biofilm images 

with experimentally realistic SBRs, cell densities, labeling methods, and cell shapes. We 

systematically evaluate the segmentation accuracy of BCM3D using both simulated and 

experimental images. Compared to state-of-the-art bacterial cell segmentation approaches, 

BCM3D consistently achieves higher segmentation accuracy and further enables automated 

morphometric cell classifications in multi-population biofilms.  

 

3.2.2 Introduction   

Biofilms are multicellular communities of microorganisms that grow on biotic or abiotic 

surfaces35-38. In addition to cellular biomass, biofilms also contain an extracellular matrix (ECM) 

which is composed of polysaccharides, DNA, and proteins. Individual cells in biofilms interact 

with other cells, the ECM, or with the substrate surface, and the sum total of these interactions 

provide bacterial biofilms with emergent functional capabilities beyond those of individual cells. 

For example, biofilms are orders of magnitude more tolerant towards physical, chemical, and 

biological stressors, including antibiotic treatments and immune system clearance4, 35, 36, 39-41. 

Understanding how such capabilities emerge from the coordination of individual cell behaviors 

requires imaging technologies capable of resolving and simultaneous tracking of individual 

bacterial cells in 3D biofilms.  

Live cell-compatible imaging technologies, such as optical microscopy, can reveal the 

spatial and temporal context that affects cellular behaviors. However, conventional imaging 

modalities are not able to resolve individual cells within thick 3D biofilms over extended periods 

of time. For example, the diffraction-limited lateral x,y-resolution (~230 nm) of a confocal 

fluorescence microscope is barely sufficient to resolve bacterial cells positioned next to each other 
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on flat glass coverslips. Even worse, the diffraction-limited axial z-resolution (570 nm) is 

comparable to the size of a single bacterial cell, so that densely-packed cells become unresolvable 

in the axial z-dimension42, 43. Notable exceptions include loose biofilms (low cell density), spherical 

cell shapes44, 45, and mutant Vibrio cholera biofilms, in which cell-cell spacing is increased through 

the overproduction of ECM materials1, 8, 9. While single-cell resolved images have been obtained 

in such special situations, conventional optical microscopy modalities are not generally capable to 

accurately resolve and quantitatively track individual cells in dense 3D biofilms.  

While super-resolution derivatives of confocal microscopy, known as Image Scanning 

Microscopy46, can improve spatial resolution, a perhaps more important limitation for long-term 

live-cell imaging is photodamage to the specimen (phototoxicity) and to the fluorophores used for 

labeling (photobleaching)32, 47, 48. In confocal microscopy-based approaches, undesired out-of-

focus fluorescence emission is filtered out by confocal pinholes to yield optically-sectioned images 

with high contrast, i.e. high signal-to-background ratios (SBRs). However, repeated illumination 

of out-of-focus regions during laser scanning and high light intensities at the focal volume result 

in rapid photobleaching of fluorophores and unacceptable phototoxicity for light sensitive 

specimens32, 47, 48. In fact, confocal fluorescence microscopy (as well as its super-resolution 

derivatives) uses illumination light intensities that are two to three orders of magnitude higher than 

the light intensities under which life has evolved48. The high rates of phototoxicity and 

photobleaching make confocal-based microscopy unsuitable for high frame-rate time-lapse 

imaging of living specimens over many hours and days1, 8, 47, 49, 50. 

In recent years, light sheet-based fluorescence excitation and imaging approaches have 

been developed to overcome the drawbacks of confocal microscopy. Among these, lattice light 

sheet microscopy (LLSM)26, 32 and field synthesis variants thereof51, axially-swept light sheet 
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microscopy (ASLM)52, 53, dual-view light sheet microscopy17, 54, and single-objective oblique plane 

light sheet microscopy15, 55-59 now combine excellent 3D spatial resolution with fast temporal 

resolution and low phototoxicity at levels that cannot be matched by confocal microscopy. 

Specifically, light sheet-based microscopy approaches can operate at illumination intensities that 

are below the levels of cellular phototoxicity, even for notoriously light sensitive specimens, and 

reduce fluorophore photobleaching by 20-50 times compared to confocal microscopy, while 

maintaining comparable spatial resolution and contrast/SBR26, 56.  

An additional challenge in high-resolution biofilm imaging is data quantification. Even if 

sufficient resolution and high SBRs can be achieved to visually discern, i.e. qualitatively resolve 

individual cells, robust computational algorithms are still needed for automated cell segmentation 

and quantitative cell tracking. Towards this goal, image processing approaches based on the 

watershed technique and intensity thresholding have been developed over the years for single-cell 

segmentation in bacterial biofilms1, 8, 9, 50. The broad applicability of watershed- and threshold-

based image processing algorithms is however limited, because these algorithms require manual 

optimization of many user-selected parameters. Even with optimal parameters, watershed- and 

threshold-based image processing methods often produce sub-optimal segmentation results, 

especially when cell densities are high, when SBRs are low, and when cellular fluorescence 

intensities are not uniform across the cytosol or the cell surface. To overcome the drawbacks of 

traditional mathematical image processing approaches, automated solutions based on supervised 

training of deep convolutional neural networks (CNNs) have been used in recent years with great 

success for a wide range of problems in biomedical image analysis60.   

Here, we present Bacterial Cell Morphometry 3D (BCM3D)48, a generally applicable 

workflow for single-cell segmentation and shape determination in high-resolution 3D images of 
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bacterial biofilms. BCM3D uses CNNs, in silico-trained with computationally simulated biofilm 

images, in combination with mathematical image analysis to achieve accurate single cell 

segmentation in 3D. The CNNs employed in BCM3D are based on the 3D U-Net architecture and 

training strategy, which has achieved excellent performance in biomedical data analysis 

benchmark tests60. The mathematical image analysis modules of BCM3D enable post-processing 

of the CNN results to further improve the segmentation accuracy. We establish that experimental 

bacterial biofilms images, acquired by lattice light sheet microscopy, can be successfully 

segmented using CNNs trained with computationally simulated biofilm images, for which the 

ground-truth voxel-level annotation maps are known accurately and precisely. By systematically 

evaluating the performance of BCM3D for a range of SBRs, cell densities, and cell shapes, we find 

that voxel-level segmentation accuracies of >80%, as well as cell counting accuracies of >90%, 

can be robustly achieved. BCM3D consistently outperforms previously reported image 

segmentation approaches that rely exclusively on conventional image processing approaches. 

BCM3D also achieves higher segmentation accuracy on experimental 3D biofilm data than 

Cellpose61, a state-of-the-art, CNN-based, generalist algorithm for cell segmentation and the 

algorithm used by Hartmann et al.8, a specialized algorithm designed for bacterial cell 

segmentation based on traditional mathematical image processing. We expect that BCM3D, and 

CNN-based single-cell segmentation approaches in general, combined with non-invasive light 

sheet-based fluorescence microscopy will enable accurate cell tracking over time in dense 3D 

biofilms. This capability will launch a new era for bacterial biofilm research, in which the emergent 

properties of microbial populations can be studied in terms of the fully-resolved behavioral 

phenotypes of individual cells. 
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3.2.3 Results 

Cell segmentation by thresholding CNN confidence maps  

CNNs have been shown to perform well on pixel-level classification tasks for both 2D and 

3D data62, 63. Bacterial biofilms, however, present a unique challenge in this context. The cell 

shapes to be segmented are densely packed and barely resolvable even with the highest resolution 

optical microscopes. Additionally, living biofilms in fluorescence microscopes can only be imaged 

with low laser intensities to ameliorate phototoxicity and photobleaching concerns. Unfortunately, 

low intensity fluorescence excitation also reduces the SBR in the acquired images. So far, it 

remains unclear to what extent single-cell segmentation approaches can accurately identify and 

delineate cell shapes in bacterial biofilm images obtained under low intensity illumination 

conditions. To address this question, we implemented an in-silico CNN training strategy and 

systematically evaluated its voxel-level classification (cell morphometry) and cell counting 

accuracies using simulated biofilm images with cell densities and SBRs similar to those 

encountered in experimental data (see Methods).  

We compared two commonly used cell labeling approaches, namely genetic labeling 

through the expression of cell-internal fluorescent proteins and staining of the cell membranes 

using fluorescent dyes (Figure 3.2.1). For both labeling approaches, voxel-level segmentation and 

cell counting accuracies, obtained by thresholding CNN confidence maps (see Methods), depend 

mostly on cell density, whereas the SBR plays a less important role (Figure 3.2.2a-c and 3.2.2d-

f). For cell-internal labeling, SBRs of >1.7 and cell densities of <60% consistently produce voxel-

level classification accuracies of >80% and cell counting accuracies of >95%. On the other hand, 

SBRs of <1.7 and cell densities of >60% lead to lower segmentation accuracies. While lower 

segmentation accuracies are expected for higher cell densities and lower SBRs, the sharp drop-
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offs observed here may indicate a fundamental performance limitation of the CNNs employed. 

Still, the voxel-level classification and cell counting accuracies consistently surpass previous 

approaches for bacterial cell segmentation for commonly encountered cell densities and SBRs. 

Specifically, the cell counting accuracies obtained by Hartmann et al.8, Seg3D64, and Yan et al.9 

quickly drop to zero as a function of increasing IoU matching threshold (a quantitative measure of 

cell shape similarity relative to the ground truth, see Methods), indicating that cell shapes are not 

accurately estimated by conventional image processing approaches (Figure 3.2.2g-i). We also 

evaluated the segmentation accuracy of Cellpose, a recently developed, CNN-based cellular 

segmentation algorithm61. The segmentation accuracy of Cellpose is comparable or superior to the 

best-performing conventional image processing approaches – a considerable achievement given 

that Cellpose was trained primarily on images of eukaryotic cells. However, being a pre-trained 

generalist model, the segmentation accuracy of Cellpose is lower than the accuracy achieved by 

the specialist in silico-trained CNNs of BCM3D, which were trained specifically for 3D bacterial 

biofilm segmentation. Overall, the cell counting accuracies obtained by BCM3D are higher than 

other methods and remain higher even for IoU matching thresholds larger than 0.5, indicating that 

cell shapes are more accurately estimated by the in silico-trained CNNs. 
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Figure 3.2.1. Simulation of fluorescent biofilms images and annotation maps used for CNN 

training.  (a) Representative cell arrangements obtained by CellModeller. Due to the stochastic 

nature of biofilm growth, different cell arrangements are obtained in each new simulation. 

However, cell density is reproducible for each new simulated biofilm (typically N = 10 different 

biofilm simulations are used for CNN training, see Methods) (b) Simulated 3D fluorescence image 

based on the cell arrangements in a.  (c) XY slice through the 3D simulated fluorescence image in 

b (upper panel shows cells expressing cytosolic fluorescent proteins, lower panel shows cells 

stained with membrane-intercalating dyes).  (d) Ground truth cell arrangements giving rise to the 

image shown in c. Voxels are displayed as black (background), or in different colors (indicating 

different cells). 

 

The accuracies of single-cell shape estimation and cell counting are predominantly affected 

by cell density. The variation is more prominent for membrane-stained cells, because inter-cellular 

fluorescence intensity minima are less pronounced when cell membranes are labeled and cells 
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physically contact each other (red arrow in Figures 3.2.2c and 3.2.2f). By contrast, intracellular 

fluorophores produce the highest intensities at the cell center, so that the gaps between cells are 

more readily resolvable. Also noteworthy is the sharp drop-off in segmentation accuracies for 

SBRs of <1.7 for all cases. In such low SBR regimes, fluorescence signals of the cells become too 

difficult to be distinguished from the background. As a result, the CNNs falsely identify random 

noisy patterns in the background as cells. Additionally, thresholding of the CNN confidence maps 

often yields connected voxel clusters that contain multiple bacterial cells. False identification and 

incomplete delineation of cells cause the pronounced decrease in segmentation accuracy for SBRs 

of <1.7.  
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Figure 3.2.2. Performance of BCM3D using in silico-trained CNNs only on previously unseen 

simulated biofilm images. (a) The voxel-level segmentation accuracy quantifies whether each 

voxel has been assigned to the correct class (‘cell interior’, ‘cell boundary’, or ‘background’). Solid 

circles represent the maximum local density and average SBRs encountered in experimental 

datasets (red, orange and blue: E. coli expressing GFP). (b) The cell counting accuracy (using an 

IoU matching threshold of 0.5 for each segmented object, see Methods) averaged over N = 10 

replicate datasets for cells labeled with cytosolic fluorophores. (c) Example image of cells labeled 

with cytosolic fluorophores (Cell density = 60.0%, SBR = 1.34, indicated by white rectangle in 

panels a and b. Similar images were generated N = 10 times with different cell arrangements). (d) 

Voxel-level segmentation accuracy and (e) cell counting accuracy averaged over N = 10 replicate 

datasets for cells labeled with membrane-localized fluorophores. (f) Example image of cells 

labeled with membrane-localized fluorophores (Cell density = 60.0%, SBR = 1.34, indicated by 

white rectangles in panels d and e. Similar images were generated N = 10 times with different cell 

arrangements). The red arrows indicate a close cell-to-cell contact point. (g), (h) and (i) 

Comparison of segmentation accuracies achieved by conventional segmentation approaches 
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(Hartmann et al., Seg3D, Yan et al.), Cellpose, and BCM3D (only using in silico-trained CNNs). 

Three simulated datasets (cytosolic fluorophores) with different SBRs and cell densities are shown. 

Segmentation accuracy is parameterized in terms of cell counting accuracy (y axis) and IoU 

matching threshold (x axis, a measure of cell shape estimation accuracy). Each data point is the 

average of N = 10 independent biofilm images. Data are presented as mean values ± one standard 

deviation indicated by error bars. Curves approaching the upper right-hand corner indicate higher 

overall segmentation accuracy, as indicated by the dashed arrows.  

 

Post-processing of CNN confidence maps  

To better identify individual cells in low SBR and high cell density datasets, we developed 

a graph-based post-processing module (see Methods) that takes advantage of the fact that bacterial 

cell shapes are highly conserved for a given species. Briefly, we transformed the CNN ‘cell 

interior’ confidence maps into 3D point cloud data that trace out the central axes of individual 

cells. This transformation was achieved by medial axis extraction using size-constrained inscribed 

spheres65. Single-cell axes are then identified as linearly clustered data points by LCuts – a graph-

based data clustering method designed to detect linearly oriented groups of points66. The so-

identified single-cell axes are then mapped back onto the original segmentation volumes to obtain 

estimates of the 3D positions, shapes, and orientations of the now separated cells. 

Post-processing with LCuts takes advantage of a priori knowledge about expected bacterial 

cell sizes by removing erroneously segmented volumes that are significantly smaller than the 

expected value and by splitting incompletely segmented volumes representing fused cells. 

Improvements in cell counting accuracy of up to 15% and 36% are observed for cells labeled with 

cytosolic fluorophores (Figure 3.2.3a-c) and membrane-localized fluorophores (Figure 3.2.3d-f), 

respectively. The more substantial improvement for membrane-stained cells is due to fact that 

CNNs trained on membrane-stained cells are more prone to erroneously identifying speckled 

background noise as fluorescence signals in low SBR images. In addition, membrane-intercalating 

fluorophores of two adjacent cells are in close proximity, making it difficult to resolve fluorescence 
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signals from two separate cells due to spatial signal overlap (see the red arrow, Figure 3.2.2c and 

3.2.2f). LCuts thus provides an important benefit in improving the cell counting accuracy to an 

extent not achieved by currently available thresholding- or watershed-based post-processing 

algorithms.  

 

 

Figure 3.2.3. Performance of BCM3D (in silico-trained CNNs and additional post-processing 

by LCuts) on previously unseen simulated data. (a) Voxel-level segmentation accuracy and (b) 

cell counting accuracy (using a IoU matching threshold of 0.5 for each segmented object) averaged 

over N = 10 replicate datasets for cells labeled with cytosolic fluorophores. (c) Improvement 

relative to silico-trained convolutional neural networks without post-processing. (d) Voxel-level 

segmentation accuracy and (e) cell counting accuracy averaged over N = 10 replicate datasets for 

cells labeled with membrane-localized fluorophores. (f) Improvements relative to silico-trained 

convolutional neural networks without post-processing. 

 

Segmentation of experimental biofilm images 

To test the performance of BCM3D on experimentally acquired biofilm images, we 

acquired time-lapse images of GFP expressing E. coli biofilms every thirty minutes for ten hours 
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(see Methods). We then manually annotated one 2D slice in the 3D images at the t = 300, 360, and 

600-minutes time points (see Methods). When referenced to these manual segmentation results, 

the LCuts-processed CNN outputs consistently achieved better cell counting accuracies than 

conventional segmentation methods (Figure 3.2.4). Initially, Cellpose and the Hartmann et al. 

algorithm outperform the in silico-trained CNNs on two out of three of the test images (t = 360 

and 600 min), for which our in silico-trained CNNs struggle with undersegmentation problems. 

However, mathematical post-processing of the CNN outputs by LCuts corrects some of these 

errors, so that the integrated BCM3D workflow achieves improved results compared to Cellpose 

and Hartmann et al. at each of the indicated time points. Visual inspection of the segmentation 

results is also informative. Cellpose accurately segments individual cells in low density regions, 

but suffers from oversegmentation errors in high density biofilm regions. The Hartmann et al. 

algorithm provides reasonable estimates of cell positions in low- and high-density biofilm regions, 

but again struggles with cell shape estimation. On the other hand, the integrated BCM3D workflow 

(CNN + LCuts) produces biologically reasonable cell shapes regardless of cell density (Figure 

3.2.4).  
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Figure 3.2.4.  Comparison of segmentation accuracies achieved by conventional 

segmentation approaches (Hartmann et al., Seg3D, Yan et al.), Cellpose, and BCM3D. The 

estimated SBRs are 2.2, 1.8, and 1.3, respectively. The estimated cell densities are 54.8%, 59.0%, 

and 64.6%, respectively. (a-c) Three experimental E. coli datasets (cytosolic expression of GFP) 

acquired at different time points after inoculation of cells. Segmentation accuracy is parameterized 

in terms of cell counting accuracy (y axis) and IoU matching threshold (x axis). Each data point is 

the average of the cell counting accuracies calculated using annotation maps traced by N = 3 

different researchers. Data are presented as mean values ± one standard deviation indicated by 

error bars.  Curves approaching the upper right-hand corner indicate higher overall segmentation 

accuracy. (d) Comparison of segmentation results achieved at the t = 600 minutes time point by 

manual annotation, and by BCM3D using in silico-trained CNNs only and after further refinement 
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of CNN outputs using LCuts. Similar results were also obtained at the t = 300 and t = 360 minute 

time points.  

 

We attribute the more rapid drop-off of the cell counting accuracy as a function of 

increasing IoU matching threshold in Figure 3.2.4 to the following factors. First, human 

annotation of experimentally acquired biofilm images differs from the ground truth segmentation 

masks that are available for simulated data. The shape mismatches between algorithm segmented 

and manually annotated cell shapes lead to a global lowering of voxel-level segmentation accuracy 

and thus a more rapid drop-off of the cell counting accuracy as a function of increasing IoU 

matching threshold. Because bacterial cell shapes are not accurately captured by manual 

annotation, cell counting accuracies referenced to manual annotations should be compared only at 

low IoU matching thresholds (0.1-0.3, shaded grey in Figure 3.2.4a-c), as also pointed out 

previously67. We also note that bacterial cells in experimental images appear motion-blurred if they 

are only partially immobilized and therefore wiggle during image acquisition. Furthermore, optical 

aberrations and scattering effects were not included in training data simulations, which may 

decrease the performance of the CNNs on experimental data. Still, at IoU matching threshold < 

0.3, the cell counting accuracy of BCM3D remains above 75% while also producing biologically 

reasonable cell shapes. Thus, the bacterial cell segmentation results of BCM3D represent a 

substantial improvement over other approach (Figure 3.2.4). 

To demonstrate that BCM3D can achieve similarly high segmentation accuracies for 

membrane-stained cells in different cellular arrangements, we analyzed a small patch of a 

M. xanthus biofilm, which was stained with the membrane intercalating dye FM4-64 (Figure 

3.2.5a). In contrast to E. coli biofilms, the submerged M. xanthus biofilm imaged here features 

cells in a mesh-like arrangement with close cell-to-cell contacts, which presents a unique challenge 
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for 3D single-cell segmentation. To obtain reference data for 3D segmentation accuracy 

determination, we manually annotated each xy, xz, and yz slice of an entire 3D image stack 

(Figure 5b). When referenced to this 3D manual segmentation result, BCM3D (Figure 3.2.5c) 

produced cell counting accuracies above 70% at low (0.1-0.3) IoU matching thresholds, whereas 

segmentation results obtained by conventional image processing (Hartmann et al.) and by 

generalist CNN-processing (Cellpose) produced cell counting accuracies <50% in the same IoU 

matching threshold region (Figure 3.2.5d). We note however that neither Cellpose nor the 

Hartmann et al. algorithms were specifically optimized/designed for segmenting membrane-

stained cells. Indeed, the performance of Cellpose on this type of biofilm architecture is inferior to 

the results achieved using the in silico-trained CNNs of BCM3D alone (without using LCuts post-

processing). One reason might be that the pre-trained, generalist Cellpose model has not been 

trained sufficiently on long, thin, and highly interlaced rod-shaped cells, such as those contained 

in a M. xanthus biofilm.   
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Figure 3.2.5.  3D Segmentation accuracy evaluation using M. xanthus biofilm images (cell 

density = 36.2%, and SBR = 1.58) using in silico-trained CNN processing. (a) Maximum 

intensity projection of a 3D M. xanthus fluorescence image. Cells were labeled with membrane-

intercalating dye, FM4-64. Similar images were obtained at N = 120 different time points.  (b) 

Maximum intensity projection of the manually obtained 3D segmentation result. (c) Maximum 

intensity projection of a CNN-based 3D segmentation result after LCuts post-processing. Cells that 

can be matched with the GT are displayed in the same colors as GT or otherwise colored in white. 

(d) Segmentation accuracy of compared algorithms parameterized in terms of cell counting 

accuracy (y axis) and IoU matching threshold (x axis).  
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Morphological separation of mixed cell populations  

Given the improved segmentation results obtained using BCM3D, we reasoned that the 

same CNNs may have additional capacity to assign segmented objects to different cell types based 

on subtle morphological differences in the acquired images. Differences in the imaged cell 

morphologies arise due to physical differences in cell shapes (e.g. spherical vs. rod-shaped cells) 

or due to differences in the fluorescent labeling protocols (e.g. intracellular vs. cell membrane 

labeling), because fluorescence microscopes simply measure the spatial distributions of 

fluorophores in the sample. The ability to separate different cell morphologies is important for the 

study of multispecies biofilms, where interspecies cooperation and competition dictate population-

level outcomes37, 68-75. Separation of differentially labeled cells is also important for the study of 

gene activation in response to cell-to-cell signaling76. Expression of cytosolic fluorescent proteins 

by transcriptional reporter strains is a widely-used technique to visualize activation of a specific 

gene or genetic pathway in living cells. Such genetic labeling approaches can be complemented 

by chemical labeling approaches, e.g. using membrane intercalating chemical dyes that help 

visualize cells non-specifically or environmentally-sensitive membrane dyes that provide 

physiological information, including membrane composition77, 78, membrane organization and 

integrity79-81, and membrane potential82, 83. Chemical and genetic labeling approaches are 

traditionally implemented in two different color channels. However, there are important drawbacks 

to using multiple colors. First and foremost, the amount of excitation light delivered is increased 

by the necessity to excite differently colored fluorophores, raising phototoxicity and 

photobleaching concerns. Second, it takes N times as along to acquire N-color images (unless 

different color channels can be acquired simultaneously), making it challenging to achieve high 
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temporal sampling in time-lapse acquisition. For these reasons, methods that extract 

complementary physiological information from a single-color image are preferable.  

We evaluated the ability of BCM3D to automatically segment and identify rod-shaped and 

spherical bacterial cells consistent with shapes of E. coli and S. aureus in simulated images. To 

segment cells in two-population biofilms, we trained CNNs that classify pixels into five different 

classes: ‘background’, ‘cell interior of population 1’, ‘cell boundary of population 1’, ‘cell interior 

of population 2’ and ‘cell boundary of population 2’. Thresholding the CNNs confidence maps can 

achieve cell counting accuracies larger than 90% for both cell types independent of their population 

fractions (Figure 3.2.7a). Post-processing of this result using LCuts improved the cell counting 

accuracy by less than 0.5% on average, indicating that under-segmented cell clusters are not 

prevalent in this dataset.  

We next evaluated the ability of BCM3D to automatically segment and separate membrane-

stained cells that express cytosolic fluorescent proteins from those that do not. Again, the cell 

counting accuracy is consistently above 80% for all tested mixing ratios (Figure 3.2.7b). Finally, 

we applied BCM3D to experimentally acquired biofilm images of two different E. coli strains. 

Both strains were stained by the membrane intercalating dye FM4-64, but the second strain 

additionally expressed GFP (Figure 3.2.6). The cells were homogeneously mixed prior to 

mounting to randomize the spatial distribution of different cell types in the biofilm (see Materials 

and Methods). Multiple 2D slices from the 3D image stack were manually annotated and compared 

with the results obtained by BCM3D. Consistent with the single-species experimental data, a cell 

counting accuracy of 50% is achieved for each cell type at a 0.5 IoU matching threshold and, at 

lower IoU matching thresholds, the counting accuracies increased to 60% to 70%, (Figure 

3.2.7cd). Thus, using appropriately trained CNNs in BCM3D enables automated and accurate cell 
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type assignments based on subtle differences in cell morphologies in mixed population biofilms – 

a capability not available using conventional image processing methods. 

 

Figure 3.2.6.  Segmentation of experimental, mixed-population biofilms containing membrane-

stained cells and membrane-stained cells that additionally express an intracellular fluorescent 

protein. (a) Experimental 2D slice of a mixed E. coli population containing membrane-stained cells and 

membrane-stained cells that additionally express an intracellular fluorescent protein. The mixing ratio at 

the time of inoculation was 50:50. All cells were labeled by the FM4-64 membrane-intercalating dye. (b) 

BCM3D segmentation result corresponding to the image shown in (a). Membrane-stained cells are 

displayed in green, and cells that were both membrane-stained and cytosolically-labeled are displayed in 

magenta. Similar results were also obtained in N = 3 independent experiments. 
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Figure 3.2.7.  Performance of BCM3D on mixed-population biofilm images. (a) Cell counting 

accuracy of BCM3D on simulated images containing different ratios of rod-shaped and spherical 

cells. Black diamonds represent the counting accuracy for N = 10 independently simulated 

datasets. Green dots represent the cell density for each independent dataset. Error bars represent ± 

one standard deviation. (b) Cell counting accuracy of BCM3D on simulated images with different 

ratios of membrane-labeled, and membrane-labeled and interior fluorescent protein expressing 

cells. Black diamonds represent the counting accuracy for N = 10 independently simulated 

datasets. Green dots represent the cell density for N = 10 independent datasets. Error bars represent 

± one standard deviation. (c and d) Cell counting accuracy of BCM3D on experimental images of 

(c) membrane-labeled, and (d) membrane-labeled and interior fluorescent protein expressing E. 

coli cells (mixing ratio ~ 1:1). Each data point is the average of the cell counting accuracies 

calculated using annotation maps traced by three different researchers (N = 3). Data are presented 

as mean values ± one standard deviation indicated by error bars.  

 

3.2.4 Discussion 

CNNs have been successful applied to many different problems in biological image 

analysis, but their ability to segment individual cells in 3D and time-lapse 3D bacterial biofilm 

images has not yet been fully explored. Here, we demonstrated a CNN-based image analysis 

workflow, termed BCM3D, for single-cell segmentation and shape classification (morphometry) 

in 3D images of bacterial biofilms. In this work, we applied BCM3D to 3D images acquired by 

lattice light sheet microscopy. However, BCM3D readily generalizes to 3D images acquired by 

confocal microscopy or advanced super-resolution microscopy modalities, provided that realistic 

image formation models are used to simulate the training datasets. The use of simulated training 

data is a major advantage of BCM3D, because it overcomes inconsistencies inherent in manual 

dataset annotation (Figure S5 and S6) and thus solves the problem of obtaining sufficient amounts 

of accurately annotated 3D image data. The ability to use simulated training data provides needed 

flexibility not only in terms of the microscope platform used for imaging, but also in terms of the 

bacterial cell shapes that are to be segmented. 

We systematically investigated the advantages and limitations of BCM3D by evaluating 

both voxel- and cell-level segmentation accuracies using simulated and experimental datasets of 
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different cell densities and SBRs. BCM3D enabled accurate segmentation of individual cells in 

crowded environments and automatic assignments of individual cells to specific cell populations 

for most of the tested parameter space. Such capabilities are not readily available when using 

previously established segmentation methods that rely exclusively on conventional image and 

signal processing algorithms. 

While BCM3D surpasses the performance of previous approaches, we stress that further 

improvements are possible and, for long-term, high frame-rate time-lapse imaging experiments, 

absolutely needed. Our systematic analysis revealed that high cell density and low SBR datasets 

are particularly challenging for the CNNs used in this work. Future work will therefore focus on 

increasing the contrast and resolution in bacterial biofilm images. While, the use of optical super-

resolution modalities can provide higher spatial resolution, such resolution improvements often 

come at a cost of reduced image contrast and faster photobleaching/phototoxicity. Software 

solutions that can process images with limited resolution and low SBRs will therefore play a 

tremendously important role in biological imaging. BCM3D is a general workflow that integrates 

computational simulation of training data, in silico-training of CNNs for a specific task or a specific 

cell type, and mathematical post-processing of the CNN outputs. Incorporating different training 

strategies and different CNNs, such as the generalist CNN used in Cellpose61, into the BCM3D 

workflow will enable automated cross-validation of segmentation results when a ground truth or 

manual annotation map is not available. Furthermore, CNN-based image processing modules 

developed for contrast enhancement and denoising have also surpassed the performance of 

conventional methods based on mathematical signal processing21, 84-86. Incorporating these tools 

into the BCM3D workflow promises to further improve the single-cell segmentation accuracies. 

We anticipate that the ability to accurately identify and delineate individual cells in dense 3D 
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biofilms will enable accurate cell tracking over long periods of time. Detailed measurements of 

behavioral single-cell phenotypes in larger bacterial communities will help determine how 

macroscopic biofilm properties, such as its mechanical cohesion/adhesion and its biochemical 

metabolism, emerge from the collective actions of individual bacteria.  

 

3.2.5 Methods 

Lattice Light Sheet Imaging of Bacterial Biofilms 

Fluorescence images of bacterial biofilms were acquired on a home-built lattice light sheet 

microscope (LLSM). LLSM enables specimen illumination with a thin light sheet derived from 

2D optical lattice26, 87. Here, a continuous illumination light sheet was produced by a time-averaged 

(dithered), square lattice pattern26, and the illumination intensity at the sample was <1 W/cm2. The 

submicrometer thickness of the excitation light sheet is maintained over long propagation distances 

(~30 µm), which enables optical sectioning, and thus high resolution, high contrast imaging of 3D 

specimens comparable to confocal microscopy. However, fluorophore excitation by a 2D light 

sheet reduces phototoxicity, because each excitation photon has multiple opportunities to be 

absorbed by fluorophores in the excitation plane and produce in-focus fluorescence. Widefield 

fluorescence images corresponding to each illuminated specimen plane are recorded on a sCMOS 

detector (Hamamatsu ORCA Flash v2). In this work, 3D biofilm images were acquired by 

translating the specimen through the light sheet in 200 nm steps using a piezo nanopositioning 

stage (Physik Instrumente, P-621.1CD). The data acquisition program is written in LabVIEW 2013 

(National Instruments). 

Ampicillin resistant E.coli K12, constitutively expressing GFP88, were cultured at 37 

degrees overnight in LB medium with 100 μg/ml ampicillin. Overnight cultures were diluted 100 
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times into the same culture medium, grown to an optical density at 600 nm (OD600) of 0.6 – 1.0, 

and then diluted by an additional factor of 10. Round glass coverslips with the diameter of 5 mm 

were put into a 24-well plate (Falcon) and 400 μL of cell culture was added to the well. Cells were 

allowed to settle to the bottom of the well and adhere to the coverslip for 1 hour. The round 

coverslips were then mounted onto a sample holder and placed into the LLSM sample-basin filled 

with M9 medium. GFP fluorescence was excited using 488 nm light sheet excitation. Biofilm 

growth was imaged at room temperature every 30 min for a total of 20 time points. At each time 

point, a single 3D image stack contained 400 images, each acquired with a 15 ms exposure time 

to avoid motion blur. 

M. xanthus strain LS3908 expressing tdTomato under the control of the IPTG-inducible 

promoter89 and DK1622 (WT) were cultured in the nutrient rich CYE media at 30 degrees Celsius 

until it reached an OD600 of 0.6 - 1.0.  Media was supplemented with 1 mM IPTG for tdTomato 

expressing cells. Chitosan (Thermo Fisher)-coated 5 mm round glass coverslips were prepared by 

incubating coverslips with 1% (w/v) chitosan (1.5 % glacial acetic acid (v/v)) at room temperature 

for 1 hour. Coverslips were then rinsed with water and placed into a 24-well plate (Falcon) with 

350-400 μL of undiluted cell culture. WT cells were stained directly in the 24 well plate with 5 

ng/ml FM4-64 (Thermo Fisher) dye. Cells were allowed to settle and adhere to the coverslip for 2 

hours. After the settling period, the coverslip was gently rinsed with CYE media to flush away 

unattached cells. The rinsed coverslip was then mounted onto a sample holder and placed into the 

LLSM sample-basin filled with MC7 starvation buffer. tdTomato and FM 4-64 fluorescence was 

excited using 561 nm light sheet excitation. The 3D image stack contained 400 2D images. Each 

2D slice was acquired with an exposure time of 30 ms. 
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For mixed population biofilm imaging, ampicillin resistant E.coli K12, constitutively 

expressing GFP88, and ampicillin resistant E.coli K12, expressing mScarlet (pBAD vector, 

arabinose induce) were cultured separately at 37 degrees overnight in LB medium with 100 μg/ml 

ampicillin. Overnight cultures were diluted 100 times into the same culture medium, grown to an 

optical density at 600 nm (OD600) of 0.6 – 1.0, and then diluted to an OD of 0.1. After dilution, 

the two strains were mixed together. Round glass coverslips with the diameter of 5 mm were put 

into a 24-well plate (Falcon) and 500 μL of cell culture was added to the well. Cells were allowed 

to settle to the bottom of the well and adhere to the coverslip for 1 hour. The cell culture medium 

was then removed and replaced by 500 uL M9 medium containing 0.2% (w/v) arabinose. The co-

culture was incubated at 30 degrees overnight. 10 mins before imaging, the co-culture was stained 

with 5 ng/ml FM4-64 (Thermo Fisher) dye. 3D image stacks of 20 planes with 5 ms exposure time 

per frame were acquired using 488 nm excitation. 

 

Raw Data Processing 

Raw 3D images were background subtracted and then deskewed and deconvolved26, 32. The 

background was estimated by averaging intensity values of dark areas (devoid of cells) in the field 

of view. Deconvolution was performed using the Richardson-Lucy algorithm with 10 iterations 

using experimentally measured point spread functions (PSFs) as the deconvolution kernel. The 

experimentally measured PSFs were obtained separately for each color channel using fluorescent 

beads (200 nm FluoSpheres®, Thermo Fisher) coated on a coverslip90. 3D images were rendered 

using the 3D Viewer plugin in Fiji31 or ChimeraX34.  
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Generation of simulated biofilm images 

To generate data for training of CNNs, we computationally simulated fluorescence images 

of 3D biofilms, for which spatial arrangements among individual cells are known precisely and 

accurately. Growth and division of individual rod-shaped cells in a population were simulated 

using CellModeller, an individual-based computational model of biofilm growth (Figure 3.21a)91. 

In individual-based biofilm growth models, cells are the basic modeling units. Each cell is 

characterized by a set of parameters, including its 3D position, volume, and spatial orientation. All 

the cells in the simulated biofilm are then allowed to evolve in time according to predefined 

biological, chemical, and mechanical rules. For example, cells grow at a defined rate and then 

divide after reaching a certain volume threshold. Cellular collisions that are due to cell growth are 

alleviated by imposing a minimum distance criterion between cells at each time point. For our 

simulations, we chose cell diameter and cell length (d, l) parameters consistent with a given 

bacterial species, namely (1 μm, 3 μm) for E. coli92, (0.7 μm, 6 μm) for M. xanthus93, and (1 μm, 

1 μm) for spherically symmetric S. aureus94.While the cell volume can be readily adjusted in 

CellModeller, the cellular volume density, which is determined by the intercellular spacing, is not 

directly adjustable. We therefore adjusted the cellular volume density after each simulation by 

scaling the cellular positions (cell centroids) and thus the intercellular distances by a constant 

factor, while leaving cell sizes, shapes, and orientations unchanged. This post-processing 

procedure enabled simulation of the exact same 3D cell arrangements at adjustable cell volume 

densities.  

We fluorescently labeled simulated cell volumes and surfaces according to two commonly 

used labeling strategies in fluorescence microscopy. To simulate expression of intracellular 

fluorescent proteins, the fluorescence emitters were placed at random positions within the cell 
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volume. To simulate membrane staining, the fluorescence emitters were placed at random 

positions on the cell surface. Each cell contained between 500 - 1000 fluorophores to simulate 

expression level variations between cells, which is often observed in experimental images. Once 

the fluorophore spatial distributions were determined, a 3D fluorescence image (Figure 3.2.1b) 

was computationally generated. Each fluorophore was treated as an isotropic point emitter, so that 

it would produce a diffraction-limited point-spread-function (PSF) on the detector. Experimentally 

measured 3D PSF shapes (see Raw Data Processing) were used as the convolution kernel. Next, 

the fluorescence signal intensity was scaled by multiplying the image by a constant factor and then 

a constant background intensity was added to the image at ~200 photons per pixel, as measured in 

experimental data. This procedure enabled independent adjustments of the fluorescence signal and 

background to obtain signal-to-background ratios (SBRs) consistent with experimental data. In a 

final step, we introduced Poisson-distributed counting noise, based on the summed background 

and signal intensities, as well as Gaussian-distributed camera read-out noise (experimentally 

calibrated for our detector at 3.04 photons per pixel on average)95. This resulting image data 

(Figure 3.2.1c) was then processed in the same manner as experimental data (see Raw Data 

Processing). In contrast to experimental data, generation of the corresponding voxel-level 

annotation maps is fast and error free, because the underlying ground truth cell arrangements are 

known a priori (Figure 3.2.1d). 

To mimic imaging of reporter gene expression in a subset of cells, we simulated biofilm 

images, in which all cells were stained at the cell surface (e.g. with a membrane intercalating 

fluorescent dye) and a subset of cells additionally contained intracellular fluorophores (e.g. 

through the expression of an intracellular fluorescent protein) (Figure 3.2.8ab). The mixing ratios 

between membrane-labelled, and membrane and interior labelled cells were 10:90, 30:70, 50:50, 
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70:30 and 90:10. Ten different cell arrangements containing ~300 cells were simulated for each 

ratio. To train the CNNs (see next section), six datasets were used, all with a 50:50 mixing ratio.  

To mimic imaging of cells with different morphologies, we simulated biofilms containing 

spherical and rod-shaped cells (Figure 3.2.8cd). Cell arrangements were first simulated using rod 

shaped cells and then a fraction of rod-shaped cells is replaced with spherical cells. The size of the 

rod-shaped cells is that of E. coli (~3 × 1 μm, length by diameter). The size of the spherical cells 

is that of S. aureus (~1 μm in diameter)96. Both cell types were labelled by intracellular 

fluorophores, as described above. The mixing ratios between rod-shaped and spherical cells were 

10:90, 30:70, 50:50, 70:30 and 90:10. Ten different cell arrangements containing ~300 cells were 

simulated for each ratio. To train the CNNs (see next section), we picked one image from each 

mixing ratio for a total of five images.  
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Figure 3.2.8. Simulation of mixed labeling and mixed cell shape biofilms. Cell arrangements (green 

indicates membrane labeled cells, magenta indicates membrane labeled cells that simultaneously express 

interior fluorescence protein). (b) Simulated fluorescence image based on the cell arrangements in (a) as 

displayed by the volume viewer plugin of Fiji97. N = 10 independent images with similar cell densities, but 

different cell arrangements, where analyzed for each data point in Figure 6. (c) Cell arrangements (green 

indicates rod-shaped cells, magenta indicates spherical shaped cells). (d) Simulated fluorescence image 

based on the cell arrangements in (c) as displayed by the volume viewer plugin of Fiji97. N = 10 independent 

images with similar cell densities, but different cell arrangements, where analyzed for each data point in 

Figure 3.2.6. 

 

Training the convolutional neural networks 

We trained 3D U-Net CNNs for voxel-level classification tasks98 within the NiftyNet 

platform99 (network architecture depth 4, convolution kernel size 3, ReLU activation function, 32 

initial feature maps, and random dropout of 0.5 during training). To achieve robust performance, 
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we trained these networks using five to ten simulated biofilm images with randomly selected cell 

densities and signal-to-background ratios (see Generation of simulated biofilm images). The same 

raw data processing steps used for experimental data (see Raw Data Processing) were also applied 

to simulated data. 3D deconvolved simulated data and their corresponding voxel-level annotations 

were used to train the CNNs. Each image used for training contained ~9 million voxels. We trained 

CNNs by classifying each voxel as ‘background’, ‘cell interior’ or as ‘cell boundary’ based on the 

underlying cell arrangements. For mixed-species biofilms, two additional classes, ‘cell interior’ 

and ‘cell boundary’ of the second species, were used. This type of annotation scheme has been 

shown to increase separation of bacterial cells in 2D100. For data augmentation, we applied 

NiftyNet’s built-in scaling, rotation, and elastic deformation functions. Instead of the original 

cross-entropy loss function combined with uniform sampling, we used the Dice loss function and 

‘balanced sampler’, so that every label has the same probability of occurrence in training. All 

networks were trained for 2000 to 3600 iterations with a learning rate of 0.0001. Using these 

parameters, it took approximately 24 hours to train the CNNs on a NVIDIA Tesla V100 GPU with 

16 GB memory. 

 

Thresholding of CNN-produced confidence maps 

Voxel-level classification by CNNs generates different confidence maps (one confidence 

map for each annotation class). The confidence values range between 0 and 1 and represent the 

confidence of assigning individual voxels to a given class. After thresholding the ‘cell interior’ 

confidence map to obtain a binary image, connected voxel clusters can be isolated and identified 

as single cell objects using 3D connected component labeling101. A conservative size-exclusion 

filter was applied: small objects with a volume ~10 times less than the expected cell size were 
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considered background noise and filtered out using an area open operator101. Since the cell-interior 

volumes do not contain the cell boundaries, we dilated each object by 1-2 voxels to increase the 

cell volumes using standard morphological dilation101. The threshold value to segment individual 

cell objects based on the ‘cell interior’ confidence map was determined by plotting the overall 

voxel-level segmentation accuracy , quantified as the Intersection-over-Union value (IoU value, 

aka Jaccard index102) versus the confidence value thresholds. Optimal voxel-level segmentation 

accuracies were consistently obtained using confidence thresholds between 0.88 and 0.94. 

Throughout this work, we use 0.94 for cells labeled with intracellular fluorophores and 0.88 for 

cells labeled with membrane-localized fluorophores.  

 

Post-processing of U-Net result using a refined LCuts algorithm 

Thresholding of the ‘cell interior’ confidence map produces a binary segmentation result 

(background = 0, cell interior =1), where groups of connected, non-zero voxels identify individual 

cells in most cases. However, when cells are touching, they are often not segmented as individuals, 

but remain part of the same voxel cluster (undersegmentation). On the other hand, a single cell 

may be erroneously split into smaller sub-cellular objects (oversegmentation). Finally, in datasets 

with low SBR, connected voxel clusters may be detected that do not correspond to cells and thus 

produce false positive objects. To address these errors and improve the segmentation accuracy 

further, we included additional mathematical image analysis steps to post-process the CNN results 

and reduce undersegmentation and oversegmentation errors. 

Step 1. False positive objects are identified by evaluating the coefficient of variation103, 104 

for each connected voxel cluster i: 

𝐶𝑉𝑖 =  
𝜎𝑖

𝜇𝑖
    (1) 
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where 𝜎𝑖 and 𝜇𝑖 denote the standard deviation and the mean of the intensity taken over all voxels 

contained in connected voxel cluster i. If the coefficient of variation is larger than ρ, then the 

current object will be classified as a false positive object and removed from the confidence map 

by setting all its voxels to zero. The removed objects will then no longer be counted when 

evaluating the cell counting accuracy. The value of ρ is selected based on the coefficient of 

variation of the background. For the datasets analyzed here, this sample coefficient of variation 

was determined to be ρ = 1.1. After CV-filtering, objects smaller than 25% of the expected 

bacterial cell size are also removed by setting its voxels to zero. The remaining connected voxel 

clusters are then considered for further processing.  

Step 2. To identify and delineate individual cells in the connected voxel clusters identified 

in the previous step, we implemented medial axis extraction using the method of inscribed 

spheres65, with the constraint that the sphere radii do not exceed the expected diameter of a single 

bacterial cell (e.g. d = 0.8 µm). The set of N inscribed spheres are tangent to the object’s surface 

and parameterized by (xi, yi, zi; ri<d/2) for i = 1, …, N.  Determination of the (xi, yi, zi; ri) 

coordinates is achieved using the Euclidean distance transform of the objects’ boundary105, so that 

the points with coordinates (xi, yi, zi) reliably trace out the central cell axes of individual bacterial 

cells.  

Step 3. To separate different linear segments after cell axis extraction, we used a refined 

version of the linear cuts (LCuts) algorithm66. LCuts is a graph-based data clustering method 

designed to detect linearly oriented groups of points with certain properties. The fundamental 

elements of a weighted mathematical graph are nodes, edges, and edge weights. Here, the points 

with coordinates (xi, yi, zi) represent the graph nodes. Edges are the connections among nodes. 

Edges are assigned weights, for example, to reflect the confidence that two nodes belong to the 
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same group. LCuts achieves grouping by assigning weights to edges in the fully connected graph 

to reflect the similarity between two nodes. The features of each node include its location and 

direction, where the location of each node is simply its Cartesian coordinates. The direction of 

each node is found by first determining its 5-hop neighborhood, removing nodes at large relative 

angles, and evaluating the major direction of the outlier removed neighborhood.     

The algorithm to separate the nodes into different groups is a recursive graph cutting 

method66. Graph cuts (e.g. nCut106) disconnect the edges between two groups of nodes when the 

combined weights of these edges are minimized. The weights, between node i and node j, are 

calculated as follows: 

 

where  

 

 

𝑤𝐷   weighs the distance between two nodes and 𝑤𝑇  weighs difference between node 

directions. 𝐷𝑖𝑗 is the Euclidean distance between node i and node j, and r is set to eliminate edges 

between two far away nodes. 𝜃𝑖𝑗 is the relative angle between the directions of nodes i and j. 𝜎𝐷 

and 𝜎𝑇 are adjustable parameters that control the rate of exponential decay. LCuts continues to 

separate groups of nodes until each group satisfies a stopping criterion. The stopping criterion is 

biologically inspired based on the expected length L of a single bacterial cell and a group’s linearity 

after each recursion. LCuts yields linearly oriented groups of points that trace out the central axes 

of individual cells. Importantly, cell separation is achieved without having to specify the number 

𝑤𝑖𝑗 = 𝑤𝐷 ∙ 𝑤𝑇       (2) 

𝑤𝐷 = {
𝑒−𝐷𝑖𝑗

2 /𝜎𝐷
2

    if 𝐷𝑖𝑗
2 ≤ 𝑟

0                 if 𝐷𝑖𝑗
2 > 𝑟

      (3) 

𝑤𝑇 = 𝑒−(cos(𝜃𝑖𝑗)−1)
2

/𝜎𝑇
2
         (4) 
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of cells in the biofilm in advance. Furthermore, to limit the need for optimization of postprocessing 

routines, the four adjustable parameters used in LCuts, namely cell diameter d, the cell length L, 

and the decay parameters σD and σT are chosen based on a priori knowledge about the bacterial 

cells under investigation. We found that the performance of LCuts is not sensitive to the particular 

values of d, L, σD and σT as long as they are consistent with the imaged bacterial cell sizes and 

shapes. Identification of single cells provided by LCuts alleviates under-segmentation errors of the 

CNN-based segmentation.  

Step 4. The final output of linear clustering can provide length, location and orientation of 

each cell. Based on these linear clusters, the cellular architecture of the biofilms can be 

reconstructed by placing geometrical models of cells in space. For fast computation, 

spherocylinders are used as the geometrical model using a radius consistent with the known sizes 

of bacterial cells. To further refine the cell surfaces to better align with the CNN-segmented 

volumes, we enclosed the inscribed spheres found in Step 2 in a convex hull. 

 

Performance Evaluation 

We quantified segmentation accuracy both at the cell-level (object counting) and at the 

voxel-level (cell shape estimation). To quantify the cell-level segmentation accuracy, we 

designated segmented objects as true positive (TP) if their voxel overlap with the ground truth or 

the manual annotation resulted in an IoU value larger than a particular IoU matching threshold. 

This criterion ensures one-to-one matching. A threshold of 0.5 is typically chosen when reporting 

single cell counting accuracy values 61, 67. We follow this convention here. If the segmented cell 

object could not be matched to a ground truth/manually annotated cell volume, then it was counted 

as a false positive (FP) and the IoU value of that segmented object was set to zero. If a ground 
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truth/manually annotated cell volume was not identified in the image, then it was counted as false 

negative (FN). The cell (object) counting accuracy was then defined as TP/(TP+FP+FN). The 

average IoU value over all segmented objects in the image quantifies the voxel-level segmentation 

accuracy, i.e. the accuracy of cell shape estimation.  

To evaluate the accuracy of cell segmentation on experimental data, three researchers 

separately traced the cell contours on experimental 2D slices by using freehand selections in Fiji 

ROI Manger97. Because human annotation is very time consuming (about 50 hours for a complete 

3D dataset containing ~300 cells in a 22 x 32 x 12 um3 volume), one to three single 2D slices were 

selected for each dataset. One exception is the 3D M. xanthus, for which the cell outlines in all 

available x, y and z slices were traced manually. For straight, rod-shaped cells, the centroids of the 

resulting 2D cell contours all fall within the cell interior volume. To group together the contours 

belonging to the same cells, the centroid of each contour was projected along the x, y and z 

dimension. If the projected centroid was enclosed by any other contour in a different slice, then 

the centroid of that contour was projected onto the plane of the initial contour. Two contours were 

labeled as related if they contained each other’s projected centroids. This process is repeated for 

all possible contour pairs and their relationship is recorded in an adjacency matrix. Next, related 

contours were assigned to individual cells. To separate incorrectly grouped contours, we 

additionally identified clusters of centroids using the DBSCAN point clustering algorithm107. In a 

final step, we manually removed incorrectly traced contours. Cells are reconstructed by creating 

convex hulls with the grouped contours. This procedure determined the approximate positions, 

shapes, and orientations of individual cells in the 3D biofilm.  

To estimate the SBRs of both simulated and experimental images, we manually selected 

and determined the intensities of approximately ten ‘signal’ and ten ‘background’ regions in the 
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images. We computed the SBR as the mean signal intensity divided by the mean background 

intensity. To estimate the local density of a biofilm cluster of simulated images, we sliced the 

considered several 3D tiles within the biofilm of size 64 by 64 by 8 voxels. We then estimated the 

local density as total cell volume contained in each tile divided by the tile volume. We calculated 

the mean density of the 10 densest tiles to define the ‘local density’ metric reported for each dataset 

in the paper. To estimate the cell density in an experimentally acquired biofilm image, the same 

calculations were performed on either 3D manual annotations (if available) or binary masks 

obtained by CNN-processing. 
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3.3 BCM3D 2.0: improved segmentation performances by image-to-image translation using 

deep neural networks 

3.3.1 Abstract 

Accurate detection and segmentation of single cells in three-dimensional (3D) fluorescence 

time-lapse images is essential for observing individual cell behaviors in large bacterial 

communities called biofilms. Recent progress in machine-learning-based image analysis is 

providing this capability with ever increasing accuracy. Leveraging the capabilities of deep 

convolutional neural networks (CNNs), we recently developed bacterial cell morphometry in 3D 

(BCM3D), an integrated image analysis pipeline that combines deep learning with conventional 

image analysis to detect and segment single biofilm-dwelling cells in 3D fluorescence images. 

While the first release of BCM3D (BCM3D 1.0) achieved state-of-the-art 3D bacterial cell 

segmentation accuracies, low signal-to-background ratios (SBRs) and images of very dense 

biofilms remained challenging. Here, we present BCM3D 2.0 to address this challenge. BCM3D 

2.0 is entirely complementary to the approach utilized in BCM3D 1.0. Instead of training CNNs to 

perform voxel classification, we trained CNNs to translate 3D fluorescence images into 

intermediate 3D image representations that are, when combined appropriately, more amenable to 

conventional mathematical image processing than a single experimental image. Using this 

approach, improved segmentation results are obtained even for very low SBRs and/or high cell 

density biofilm images. The improved cell segmentation accuracies in turn enable improved 

accuracies of tracking individual cells through 3D space and time. This capability opens the door 

to investigating time-dependent phenomena in bacterial biofilms at the cellular level.  
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3.3.2 Introduction 

Most terrestrial bacteria live in extended 3-dimensional tissue-like communities, named 

biofilms. As multicellular communities, bacteria can successfully colonize various biotic and 

abiotic surfaces. Biofilm-dwelling bacteria interact intimately not only with each other and the 

surface they reside on, but also with a self-produced extracellular matrix (ECM) that consists of 

proteins, DNA, and polysaccharides37, 109, 110. The sum total of these interactions helps biofilms 

develop emergent capabilities beyond those of isolated cells37, 109, 111, 112. Most notably, biofilms are 

more tolerant towards physical, chemical, and biological stressors4, 112, 113. Understanding how such 

capabilities emerge from the cooperative or antagonistic behaviors among individual cells requires 

live-cell compatible imaging technologies that are capable of resolving and tracking single cells 

within dense 3D biofilms.  

Recently developed light sheet-based fluorescence imaging modalities combine high 

resolution with fast imaging speed and low phototoxicity at levels that cannot be matched by 

confocal microscopy13-15. Light sheet-based microscopy modalities are therefore increasingly used 

for non-invasive time-lapse imaging of eukaryotic cells and tissues114-116 as well as bacterial 

biofilms16-18. Depending on the type of biofilm, the cell density may however be too high to clearly 

resolve the gaps between cells with diffraction-limited microscopy. Super-resolution imaging 

modalities, such as structured illumination microscopy19, 20, improve the spatial resolution, but 

experimental improvements in spatial resolution come at the cost of decreased temporal resolution 

and increased light exposure to the specimen, which again raises photobleaching and phototoxicity 

concerns21, 22. An additional challenge arises for cell tracking studies. Tracking motile cells may 

require high frame rate imaging to achieve sufficient temporal resolution. Higher frame rates need 

to be accompanied by a proportional decrease in excitation laser intensities to mitigate 
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photobleaching and phototoxicity. The decreased excitation laser intensities then result in lower 

signal-to-background ratios (SBRs) and signal-to-noise ratios (SNRs) in the individual images. 

The inherent trade-offs between spatial and temporal resolution, SBR/SNR, and photobleaching 

and phototoxicity is driving the continued development of new and improved image processing 

approaches that extract ever increasing amounts of useful information from the available 

experimental images.    

Image processing pipelines based on supervised training of deep convolutional neural 

networks (CNNs) have been shown to outperform conventional image processing approaches for 

a variety of tasks in biomedical image analysis62, 117. For 3D biofilm image segmentation, we have 

recently developed  Bacterial Cell Morphometry 3D (BCM3D 1.0), which achieved state-of-the-

art performance for bacterial cell counting and cell shape estimation108. BCM3D 1.0 does not rely 

on manually annotated training data, but instead combines in silico-trained CNNs for voxel 

classification with graph-theoretical linear clustering (mLCuts118) to post-process the thresholded 

CNNs outputs (i.e. the confidence maps for voxel-level classification). Using this approach, 

BCM3D 1.0 automatically identifies individual cells in 3D images of 3D bacterial biofilms, reports 

their 3D shape and orientation, and classifies cell types with different morphologies. However, 

processing images with low SBRs and high cell densities remains challenging. Specifically, over- 

and under-segmentation errors increase in frequency for low SBR and high cell density images.  

Cellpose119 ,StarDist120 and the work by Scherr et al.,121 are CNN-based approaches that 

create intermediate image representations for better segmentation. We reasoned that solving an 

image-to-image translation task may prove to be a more robust strategy for handling extreme 

imaging conditions than the voxel classification approach implemented in BCM3D 1.0 or, at least, 

yield complementary segmentation results to BCM3D 1.0. Two different intermediate image 
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representations are generally employed. The first representation is used to locate objects and the 

second representation is used to highlight the boundaries of objects. In previous work119-121, the 

CNN-predicted Euclidean distance to the nearest background pixel/voxel or the CNN-predicted 

object/background probability map was used to locate objects. Generation of boundary 

representations vary more widely: StarDist and Cellpose use star-convex polygons and spatial 

gradients separately to give complete boundaries, which can be used for object shape estimation. 

Scherr et al. instead enhance boundary regions that are close to other objects to prevent them from 

merging. Inspired by these approaches, we expanded the BCM3D workflow with a complementary 

CNN-based processing pipeline that translates the raw 3D fluorescence images into two distinct 

intermediate image representations that, in combination, are more amenable to conventional 

mathematical image processing, namely seeded watershed122 and Otsu thresholding123. For object 

localization, we adapted the approach used by StarDist67 and Scherr et al.121. For boundary 

information, however, we generated a new intermediate image representation that provides a 

complete 3D boundary of an object and additionally highlights whether the boundary is near other 

objects. We establish that, when combined and processed appropriately, these intermediate image 

representations provide biofilm segmentation results with higher accuracy than BCM3D 1.0. 

Importantly and in contrast to BCM3D 1.0, generation of intermediate image representations does 

not require image deconvolution as a pre-processing step. Deconvolution can lead to noise 

amplification124 that then leads to false positive object segmentation with physiologically 

unreasonable shapes. We show that, using intermediate image representations, experimentally 

acquired biofilm images can be successfully segmented using CNNs trained with computationally 

simulated biofilm images – a feature shared with BCM3D 1.0 that provides the flexibility to 

segment a wide variety of different cell shapes108. The segmentation performance of this new 
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approach, which we term BCM3D 2.0, is superior to Omnipose and Cellpose 2.0, two recently-

developed, state-of-the-art, CNN-based cell segmentation approaches, especially for dense 

biofilms imaged at low SBRs. The improvements in segmentation accuracy of BCM3D 2.0 enables 

accurate multi-cell tracking, which is demonstrated using 3D simulated and experimental time-

lapse biofilm images. 

 

3.3.3 Results 

Cell segmentation using intermediate image representations 

High cell density and low SBR datasets are encountered often in biofilm research, 

especially when cells touch each other and biofilms extend farther into the vertical (z-) dimension, 

so that light scattering becomes a pronounced background contribution12. We therefore sought to 

specifically improve bacterial cell segmentation accuracy for high cell density and low SBR 

biofilm images. Our previous approach (BCM3D 1.0) relied on deconvolution as a preprocessing 

step to sharpen the image and to increase the SBR. However, deconvolution can introduce artifacts 

into an image, such as ringing125, and noise amplification126, and thereby introduce errors into the 

segmentation results. The segmentation pipeline of BCM3D 2.0, in contrast, works on the raw 

image data directly without the need for deconvolution.  

We compared two commonly used cell labeling approaches, namely cell interior labeling 

through expression of cytosolic fluorescent proteins and cell membrane staining with membrane-

embedded fluorescent dyes. For cell interior labeling (Figure 3.3.1ab), BCM3D 2.0 consistently 

produces cell counting accuracies of >95% for SBRs > 1.3 and cell densities < 65%. A clear drop-

off in cell counting accuracy is observed for SBRs of 1.19 but cell counting accuracies of >70% 
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are still achieved even for high cell densities of 65%. Importantly, the performance of BCM3D 2.0 

on low SBR datasets represents a substantial improvement (>20%) over the performance of 

BCM3D 1.0. Membrane staining (Figure 3.3.1cd) produces even more challenging images for 

segmentation, due to the less pronounced fluorescence intensity minima between cells (red arrow 

in Figure 3.3.1bd). We again observe a drop in cell counting accuracy for SBRs of 1.19. This 

drop-off is however much less pronounced than for the previous results obtained with BCM3D 1.0, 

and represents an even larger (>29%) improvement over BCM3D 1.0 for such extremely low SBR 

datasets. Visual inspection of slices through the image volumes (Figure 3.3.1bd) reveals that even 

for SBR = 1.3, the cell bodies are difficult to distinguish for expert human annotators, especially 

for membrane-stained cells. Despite the low contrast in the SBR = 1.3 datasets, BCM3D 2.0 is still 

able to achieve >90% cell counting accuracies, which, depending on cell density, represents a 6-

26% increase over the performance of BCM3D 1.0.  

To determine the improvement in cell shape estimation, we evaluated the cell counting 

accuracies as a function of IoU matching threshold for a SBR of 1.3 and a cell density of 62% (the 

IoU matching threshold is a quantitative measure of cell shape similarity relative to the ground 

truth). The cell counting accuracies obtained by BCM3D 2.0 are consistently higher than BCM3D 

1.0 (CNN + LCuts) and substantially higher than Omnipose and Cellpose 2, especially for IoU 

matching thresholds larger than 0.5, indicating that cell shapes in this high density, low SBR 

dataset are most accurately estimated by BCM3D 2.0 (Figure 3.3.1ef). A similar trend is observed 

for single-cell segmentation accuracy and single-cell boundary F1 score127 – two additional metrics 

for segmentation accuracy (Table 3.3.1). We note that we trained Omnipose, Cellpose 2, and 

BCM3D 2.0 using the same simulated training data for this comparison. Consistent with previous 

findings128, Cellpose, the precursor algorithm to Omnipose, did not produce physiologically-
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reasonable cell shapes (Figure 3.3.2). Taken together, these results establish that more robust cell 

segmentation can be achieved using the BCM3D 2.0 image processing pipeline, which uses CNNs 

to generate two distinct intermediate image representations for subsequent mathematical 

processing. 
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Figure 3.3.1. Performance of BCM3D 2.0 on previously unseen simulated biofilm images. (a) Cell 

counting accuracy (using an Intersection-over-Union (IoU) matching threshold of 0.5 for each 

segmented object) averaged over N=10 replicate datasets for cells labeled with cytosolic 

fluorophores. IoU is well-documented metric67, 108, 129 quantifying the amount of overlap between 

predicted cell and actual cell volumes.  (b) Example image of cells labeled with cytosolic 

fluorophores (Cell density = 62.2%, SBR = 1.34, indicated by white rectangle in panel a).  (c) Cell 

counting accuracy (using an IoU matching threshold of 0.5 for each segmented object) averaged 

over N=10 replicate datasets for cells labeled with membrane-localized fluorophores. (d) Example 

image of cells labeled with membrane-localized fluorophores (Cell density = 62.2%, SBR = 1.34, 

indicated by white rectangles in panel c). The red arrow indicates a close cell-to-cell contact. (e 

and f) Comparison of segmentation accuracies achieved by BCM3D 1.0 (CNN + LCuts), 

Omnipose trained from scratch, Cellpose 2 fine-tuned and BCM3D 2.0 for cytosolic and membrane 

labeling, respectively (SBR = 1.34, cell density = 62.2%). Segmentation accuracy is parameterized 

in terms of cell counting accuracy (y axis) and IoU matching threshold (x axis). Each data point is 

the average of N=10 independent biofilm images. Data are presented as mean values ± one standard 

deviation. 

 

Table 3.3.1. Quantitative comparison of single cell level segmentation accuracy between BCM3D 

1.0 and BCM3D 2.0. 

 Cytosolic labeling Membrane labeling 

 SSA* SBF1** SSA* SBF1** 

BCM3D 1.0 

(CNN + LCuts) 

0.796 ± 0.021 0.983 ± 0.008 0.756 ± 0.009 0.961 ± 0.007 

BCM3D 2.0 

Omnipose                                              

 

Cellpose 2  

0.791 ± 0.004 

0.599 ± 0.011 

0.566 ± 0.016 

0.995 ± 0.001 

0.868 ± 0.017 

0.825 ± 0.016 

0.773 ± 0.005 

0.615 ± 0.021 

0.572 ± 0.008 

0.988 ± 0.002 

0.824 ± 0.025 

0.820 ± 0.009 

*SSA and **SBF1 estimate how accurately the shape of a matched object compare with it of the 

corresponding ground truth. Here, the IoU threshold is 0.5 and the distance error tolerance for 

SBF1 is √3 voxels. (See Methods for details). Data are presented as mean values ± one standard 

deviation, the best performance (if different within error) is marked in bold.  
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Figure 3.3.2. Visualization of segmentation results for simulated datasets used for Figure 

3.3.1e and f. (a, f) 2D cross section through the ground truth cell volumes used to generate the 

simulated images in Figure 3.3.1b and d. (b-e) Segmentation results produced by BCM3D 2.0, 

BCM3D 1.0 (CNN+LCuts), Omnipose, and Cellpose 2.0 respectively for cytosol-labeled biofilms. 

(g-j) Segmentation results produced by BCM3D 2.0, BCM3D 1.0 (CNN+LCuts), Omnipose, and 

Cellpose 2.0 respectively for membrane-labeled biofilms.  

 

Segmentation of experimentally obtained biofilm images 

To test the performance of BCM3D 2.0 on experimental data, we first tested BCM3D 2.0 

on a previously published E.coli biofilm image, for which manual annotation masks are available 

108.  For this dataset, which features a relatively low cell density, BCM3D 2.0 performed on par 

with BCM3D 1.0 (CNN + LCuts), but again outperformed Omnipose and Cellpose 2 (Figure 

3.3.3). (We only considered recently developed 3D instance segmentation approaches for these 

comparisons. In previous work108, we established that BCM3D 1.0 (CNN + LCuts) outperformed 

both Cellpose and the segmentation algorithm developed by Hartmann et al.) To further 

demonstrate the versatility of BCM3D 2.0, we acquired images of a thick S. oneidensis biofilm 

expressing GFP that has an order of magnitude more cells. Visual inspection of the segmentation 

results obtained by applying BCM3D 2.0, showed physiologically reasonable cell shapes for a 

majority of segmented objects (Figure 3.3.4). For this biofilm image, which has a good SBR, 

BCM3D 2.0 outperforms all other approaches, including Omnipose, BCM3D 1.0 (CNN + LCuts) 

and Cellpose 2.0 (Figure 3.3.5).   
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Figure 3.3.3. Comparison of segmentation results on Zhang et al. 2020 t = 600 min data.108 

Noted the images have been rotated 90 degrees and flipped horizontally in this figure. (a) Same 

2D cross section shown in Zhang et al. 2020 Figure 4 t = 600 min. (b) Manual annotation result. 
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(c) Segmentation result produced by BCM3D 2.0. (d) Segmentation result produced by BCM3D 

1.0 CNN + LCuts. (e) Segmentation result produced by Omnipose trained from scratch for up to 

800 epochs using the same simulated training dataset that BCM3D 2.0 was trained on. (f) 

Segmentation result produced by Cellpose 2.0 fine-tuned for up to 250 epochs using the randomly 

selected 2D slices of the same simulated training dataset that BCM3D 2.0 was trained on. (g) 

Segmentation accuracy is parameterized in terms of cell counting accuracy (y-axis) and IoU 

matching threshold (x-axis). Each data point is the average of the cell counting accuracies 

calculated using annotation maps traced by N = 3 researchers. Data are presented as mean 

values ± one standard deviation indicated by error bars.   

 

The above quantitative comparisons were made with reference to manual annotation results 

made in selected 2D slices. Manual annotation of 3D biofilm images is however too time 

consuming for thousands of cells distributed in 3D space108. We therefore chose to additionally 

assess the segmentation accuracy using representative morphological observables that are 

available after segmentation, namely object volume, object solidity (volume fraction of the object 

as compared to the smallest convex polygon that encloses it), major axis length, longer minor axis 

length, and the ratio of the two minor axes lengths (longer minor axis divided by the shorter one). 

We performed principal component analysis (PCA) using these morphological observables and 

project each segmented object onto a plane spanned by the first two principal components. For 

simulated data (for which the ground truth is known) this approach shows a distribution for which 

the correctly segmented objects are concentrated near the origin, whereas the incorrectly 

segmented objects are predominantly located at the periphery (Figure 3.3.4a inset). 

We applied the same PCA approach to experimental segmentation results obtained for a 

S. oneidensis biofilm containing ~3000 cells. Similar to simulated data, most of the segmentation 

objects cluster near the origin of the two principal component axes (Figure 3.3.4a). However, 

several segmented objects are asymmetrically scattered around the periphery of the distribution. 

Inspecting the 3D shapes of a few manually selected objects revealed that, consistent with 
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simulated data, physiologically reasonable cell shapes cluster near the center of the distribution, 

while oddly shaped objects predominantly localize at the periphery. To automatically separate 

oddly shaped objects from the physiologically reasonable, rod-shape shaped objects, we trained a 

3D CNN (independent of BCM3D) with manually validated segmentation objects (obtained from 

experimental data, see methods). The trained network efficiently (accuracy of 97% on the 

validation set) separates rod-shaped objects (~82% of total) from oddly shaped objects (~18% of 

total). This classification enables the display of both subpopulations separately even though they 

are completely intermixed in 3D space (Figure 3.3.4bc).  In contrast, Omnipose and Cellpose 2.0 

have 40% and 5% rod-shaped objects respectively identified by the shape classifier on this dataset.  

We next compared the distributions of solidity and minor axis ratio between rod-shaped 

and oddly shaped populations. Rod-shaped objects are characterized high values of solidity and 

minor axis ratio (Figure 3.3.4de). In contrast, solidity and minor axis ratio for oddly shaped objects 

take on values less than one and thus show a much broader distribution (Figure 3.3.4de insets). 

These results show that, when using BCM3D 2.0, ~82% of cells are segmented with 

physiologically reasonable cell shapes. The remaining 18% of cells can then be subjected to further 

processing to identify and correct the remaining segmentation errors108, 118, 127 and/or be subjected 

to further scrutiny to determine whether they are due to aberrant cell shapes exhibited by sick or 

intoxicated cells128.   
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Figure 3.3.4. Performance of BCM3D 2.0 on experimental biofilm images. (a) Principal 

component analysis of the segmentation objects (obtained from experimentally acquired images) 

that were classified by a pre-trained 3D CNN as either physiologically reasonable rod-shaped cells 

or oddly shaped (not-rod shaped) cells. Three examples cell shapes of each class are shown to the 
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right and left, respectively. Inset: same analysis on simulated biofilm images.  (b) 3D segmentation 

results for objects classified as physiologically reasonable rod-shaped cells. (c) 3D segmentation 

results for objects classified as oddly shaped. (d) and (e) Comparison of the solidity and minor axis 

ratio distributions of rod-shaped and oddly shaped objects. 
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Figure 3.3.5. Performance comparisons on S. oneidensis dataset in Figure 3.3.4. (a) Small 2D 

cross section selected from the large 3D biofilm shown in Figure 3. (b) Manual annotation result. 

(c) Segmentation result produced by BCM3D 2.0. (d) Segmentation result produced by the 

pretrained Cellpose model. (e) Segmentation result produced by Cellpose2 fine-tuned using the 

simulated training data from this work. Cellpose2 can be used for quickly prototyping new 

specialist models from a generalist model with minimal new training data. We note that Cellpose2 

only uses 2D data for training and fine-tuning, so thirty different 2D slices in all three dimensions 

of the 3D training data were selected to fine-tune the network. (f) Segmentation result produced 

by Omnipose trained from scratch for up to 800 epochs using the same simulated training dataset 

that BCM3D 2.0 was trained on. Validation loss was observed to stop decreasing after 

approximately 600 epochs. (g) Segmentation result produced by BCM3D 1.0 CNN + LCuts (h) 

Segmentation accuracy is parameterized in terms of cell counting accuracy (y-axis) and IoU 

matching threshold (x-axis). Each data point is the average of the cell counting accuracies 

calculated using annotation maps traced by N = 2 researchers. Data are presented as mean 

values ± one standard deviation indicated by error bars.  

 

3.3.4 Discussion 

We expanded the BCM3D workflow with a complementary CNN-based processing 

pipeline, named BCM3D 2.0, which transfers raw 3D fluorescence images to intermediate image 

representations that are more amenable to conventional mathematical image processing 

(specifically, seeded watershed and single- and multi-level Otsu thresholding). Using the BCM3D 

2.0 image processing pipeline, unprecedented segmentation results are obtained, especially for 

challenging datasets characterized by low SBRs and high cell densities. BCM3D 2.0 consistently 

achieves better segmentation accuracy than Cellpose 2.0 and Omnipose, as well as our predecessor 

algorithm, BCM3D 1.0, which represented the previous state-of-the-art for 3D cell segmentation 

in bacterial biofilms.  

We used the segmentation results provided by BCM3D 2.0 as the input to a nearest 

neighbor tracking algorithm to explore the possibility of simultaneous multi-cell tracking in 3D 

biofilms. We found that accurate, automated multi-cell tracking in 3D time-lapse movies is 

possible with a nearest neighbor tracking algorithm, if the relative cell movement (RM) between 
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consecutive frames is small. Depending on the type of biofilm and the bacterial species, small RM 

values can be achieved using moderate time resolutions of 1-5 minutes. However, for the motile 

S. oneidensis cells imaged here, a time resolution of 5 minutes was insufficient for automated 

nearest-neighbor cell tracking in dense biofilm regions. Tracking accuracy is reduced especially if 

cells undergo large and unpredictable displacements within the biofilm, and when cells associate 

or dissociate to and from the biofilm. Even so, single-cell observables, such as growth rates and 

cell division times can still be extracted based on manual tracking establishing that such 

information is in fact contained in movies acquired with a time resolution of 5 minutes. Because 

manual cell tracking is not feasible for biofilms containing thousands of cells, future work will 

have to focus on extracting this information in an automated manner, efficiently and accurately.  

Machine-learning based solutions will likely prove to be useful in this context.  

A clear experimental solution would be to image biofilms at high time resolutions. 

However, every fluorescence imaging modality is subject to trade-offs between the achievable 

spatial and temporal resolution, image contrast (SBR), and phototoxicity and photodamage. If 

reducing the total radiation dose delivered to the cells is an experimental necessity, light sheet-

based microscopy approaches offer substantial advantages over confocal microscopy12.  

While BCM3D 2.0 is capable of segmenting biofilm datasets of lower SBR than previous 

methods, further modifications to the image processing pipeline may be needed to enable the 

tracking of extremely light sensitive or highly motile bacterial species. Additional modifications 

could be made to further improve segmentation accuracy for datasets with even lower SBRs than 

those successfully segmented here. On the other hand, more sophisticated tracking algorithms 

could be employed that consider additional features beyond the Euclidian distances between 

objects. Recently developed deep learning-based cell trackers for both 2D and 3D data130, 131 are 
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primarily designed for mammalian cells with unique cell shapes. These approaches utilize 

additional similarity features that inform cell linking across different frames. To what extent such 

approaches would improve tracking of bacterial cells that have more homogeneous cell shapes 

remains to be explored. Further benefits may also be gained by utilizing punctate cell labeling 

schemes17 or adaptive microscopy approaches, in which higher illumination intensity frames are 

interspersed with lower illumination intensity frames and the segmentation results in lower SBR 

frames are informed by the more accurate results obtained in the higher SBR frames.   

In summary, the ability to accurately identify and track individual cells in dense 3D 

biofilms over long periods of time will require the combination of non-invasive fluorescence 

microscopy approaches for long-term time-lapse imaging and sophisticated image analysis and 

multi-object tracking tools that provide robust results even for datasets with limited spatial and 

temporal resolution, and SBR. Here, we have presented an image processing pipeline that enables 

improved segmentation of dense biofilm-dwelling cells based on 3D fluorescence images of low 

SBR. The feasibility of simultaneous, automated multi-cell tracking using a simple nearest 

neighbor tracking algorithm was demonstrated on high time resolution datasets, while manual 

tracking was possible on lower time resolution datasets. The tools developed here can thus be 

leveraged to improve our understanding of how coordinated behaviors among biofilm-dwelling 

cells eventually produce in the macroscopic properties of bacterial biofilms.  
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3.3.5 Methods 

Lattice Light Sheet Microscope Imaging of Bacterial Biofilms 

Fluorescence images of bacterial biofilms were acquired on a home-built lattice light sheet 

microscope (LLSM). LLSM enables specimen illumination with a thin light sheet derived from a 

2D optical lattice26, 87; here, an intensity uniform light sheet was produced by dithering a square 

lattice. The average illumination intensity across the light sheet was less than 1 W/cm2. The sub-

micrometer thickness of the light sheet is maintained over a propagation distance of ~30 µm to 

achieve high resolution, high contrast imaging of 3D specimens comparable to confocal 

microscopy but with lower concomitant photobleaching and phototoxicity. Widefield fluorescence 

images of illuminated planes in the specimen are recorded on a sCMOS detector (Hamamatsu 

ORCA Flash v2). 3D biofilm images were acquired by translating the specimen through the light 

sheet in 200 nm step sizes using a piezo nano-positioning stage (Mad City Labs, NanoOP100HS). 

The data acquisition program is written in LabVIEW 2013 (National Instruments). 

Kanamycin resistant S. oneidensis MR-1, constitutively expressing GFP, were cultured at 

30 °C overnight in LB medium with 50 μg/ml Kanamycin. Overnight cultures were diluted 100 

times into the same culture medium, grown to an optical density at 600 nm (OD600) of 0.4 – 1.0, 

and then diluted to OD600 ~ 0.05 using M9 media with 0.05% (W/V) casamino acids. Poly-l-

lysine coated round glass coverslips with the diameter of 5 mm were put into a 24-well plate 

(Falcon) and 400 μl of diluted cell culture was added to the well. Cells were allowed to settle to 

the bottom of the well and adhere to the coverslip for 1 hour. After the settling period, the coverslip 

was gently rinsed with M9 media to flush away unattached cells. Then 400 μl of M9 media (0.05% 

casamino acids) were added to ensure immersion of the coverslips. The well plate was set in a 30 

°C chamber for 72-96 hours to allow dense biofilms to develop. Media were exchanged every 24 
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hours. Before imaging, the coverslip was rinsed again with fresh M9 media. The rinsed coverslip 

was then mounted onto a sample holder and placed into the LLSM sample-basin filled with M9 

media. GFP was excited using 488 nm light sheet excitation. 3D biofilm stacks were acquired by 

translating the specimen through the light sheet in 200 nm or 235 nm steps. Each 2D slice was 

acquired with an exposure time of 5 ms or 10 ms. 

Samples for time-lapse images were prepared by the same procedures, except imaging was 

started after either 24-hour or 48-hour cell attachment period, and the imaging experiment was 

carried out in LM medium (0.02% (W/V) yeast extract, 0.01% (W/V) peptone, 10 mM HEPES 

(pH 7.4), 10 mM NaHCO3) with a lactate concentration of 0.5 mM.132  

 

Raw Data Processing 

Raw 3D stacks were deskewed and rotated as described previously90, but the deconvolution 

step was omitted. If necessary, background subtraction can be applied to reduce background signal. 

3D images were rendered using the 3D Viewer plugin in Fiji97 or ChimeraX133. Sample drift over 

the course of a time-lapse imaging experiment was corrected by Correct 3D Drift33, a Fiji plug-in 

that performs registration by phase correlation, a computationally efficient method to determine 

translational shifts between images at two different time points.  

 

Generation of simulated biofilm images 

Data for CNNs training was computationally generated as described previously108. Briefly, 

CellModeller91, an individual-based computational model of biofilm growth, was used to simulate 
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growth and division of individual rod-shaped cells in a population (Figure 3.3.6a). A minimum 

distance criterion between cells is imposed at each time point to alleviate cellular collisions that 

are due to cell growth. We chose cell diameter and cell length (d, l) parameters consistent with the 

bacterial species under investigation, namely (1 μm, 3 μm) for E. coli92, and (0.6 μm, 2 μm) for S. 

oneidensis134. Training data should closely represent the experimental data to ensure optimal 

segmentation results. Unrepresentative cell diameter and cell length parameters can result in over- 

or under-segmentation errors and the predictions of non-physiological cell shapes (Figure 3.3.7). 

3D fluorescence intensity images (Figure 3.3.6b) were generated by convolving randomly 

positioned fluorophores in the cytoplasm or the membranes of simulated cells (Figure 3.3.6cd) 

with experimentally measured point spread functions (PSFs), and then adding experimentally 

measured background and noise (Poisson detection noise, based on the summed background and 

signal intensities, as well as Gaussian read noise, experimentally calibrated for our detector at 3.04 

photons per pixel on average)95. 

The fluorescence signal intensity in the simulated images was adjusted to match the signal 

to background ratios (SBRs) of experimentally acquired data. To estimate the SBRs of both 

simulated and experimental images, we manually selected 10 ‘signal’ and 10 ‘background’ regions 

in the images using the Oval tool in Fiji and calculated their means respectively. A ‘signal’ region 

is defined to be any region that contains only pixels within a cell (foreground) and a ‘background’ 

region contains only pixels outside cells, but in regions that are close to the cells. These regions 

are judged by the researchers rather than by any computer algorithm to ensure accuracy. The SBR 

was then calculated by dividing the mean signal intensity by the mean background intensity. 

Consistent with our previous results (Zhang et al, Nature Communications, 2020), the SBR is a 

good metric quantifying “difficulty to segment” in simulated data, which has homogeneous cells 



Chapter 3: 4D bacterial biofilm image segmentation using deep learning    

 

93 

densities and the exact same biofilm architectures (i.e. cell positions). For heterogeneous cell 

densities in experimental biofilms, the SBR can vary considerably through space. We therefore 

quantify the SBR in experimental images locally at regions of highest cell density, but we note 

that this metric should only be used qualitatively and we refrain from making any direct, 

quantitative comparison of segmentation performance between biofilms of different architectures. 

To estimate the local density of a biofilm, the image was partitioned into several 3D tiles 64 by 64 

by 8 voxels in size and the total cell volume contained in each tile was divided by the tile volume. 

The reported cell density was computed as the average of the 10 densest tiles for each dataset.   
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Figure 3.3.6. Simulation of fluorescent biofilms images and intermediate image 

representations.  (a) Cell arrangements obtained by CellModeller.  (b) Simulated 3D fluorescence 

image based on the cell arrangements in a.  (c) Ground truth information of a 2D slice. Different 

cells are shown in different colors and intercellular spaces (background voxels) are displayed in 

black. (d) 2D slices of the simulated fluorescence image corresponding to the ground truth shown 

in c. The upper panel shows cells containing cytosolic fluorophores, the lower panel shows cells 

with fluorescently stained membranes. (e and f) Intermediate image representations generated 

from the ground truth information shown in c. See text for details.   
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Figure 3.3.7. Segmentation results on Zhang et al. 2020 t = 600 min data using different 

training data simulation parameters.108 (a) Same 2D cross section shown in Zhang et al. 2020 

Figure 4 t = 600 min. Noted the images have been rotated 90 degrees and flipped horizontally in 

this figure.  (b) Manual annotation result. (c) Segmentation result produced by BCM3D 2.0 using 

cell diameter and cell length (d, l) parameters (0.6 μm, 2 μm) in simulation.  (d) Segmentation 

result produced by BCM3D 2.0 using cell diameter and cell length (d, l) parameters (1 μm, 3μm) 

in simulation. 

 

Generation of intermediate image representations 
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To generate ‘distance to nearest cell exterior’ images (Figure 3.3.6e, Figure 3.3.8) from 

ground truth data, the Euclidean distance of each voxel inside a cell to the nearest voxel not 

belonging to that cell was calculated. The so-obtained distances were then normalized to the 

maximum value of that cell (Figure 3.3.8c). In order to obtain a steeper gradient in distance values, 

the distance values were additionally raised to the third power (Figure 3.3.8d), so that the resulting 

images show highly peaked intensity near the cell center. In a final step, the ‘distance to nearest 

cell exterior’ images were smoothed by Gaussian blurring (kernel size = 5 voxels in each 

dimension) (Figure 3.3.8e). 

To help distinguish touching cells, we calculated a second image representation, the 

‘proximity enhanced cell boundary’ image (Figure 3.3.8). First, we subtracted the normalized 

distances to the nearest voxel not belonging to this cell (Figure 3.3.8c) from the binary map 

(Figure 3.3.8f). Second, we calculated the inverse of the Euclidean distance of each voxel inside 

a cell to the nearest voxel belonging to another cell, an intermediate image representation that has 

been proven useful to prevent objects merging in 2D121 (Figure 3.3.8g). These two intermediate 

images were then multiplied together (Figure 3.3.8h) and small holes in the resulting images 

(Figure 3.3.8h inset) were filled using grayscale closing (Figure 3.3.8i inset). The resulting 

intermediate images provides a complete boundary of an object but also highlights whether the 

boundary is in close proximity to any other objects. Compared to previous methods that only 

provide a complete boundary or only provide boundary areas that are close to any other objects, 

this new intermediate image representation provides a more informative boundary representation. 

In a final step, the ‘proximity enhanced cell boundary’ images were smoothed by Gaussian blurring 

(kernel size = 5 voxels in each dimension) (Figure 3.3.8i).  
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Figure 3.3.8. Schematic of generating intermediate image representations. (a) Ground truth 

cell positions. (b) Binary maps based on the ground truth. (c) Images of distance to the nearest 

voxel not belonging to this cell. (d)  A steeper gradient in distance values is obtained by raising 

each voxel value in panel c to the third power. (e) Smooth images to get ‘distance to nearest cell 

exterior’ image representation. (f) Obtain cell boundary by subtracting (c) from (b). (g) Highlight 

boundary areas that are close to other cells by calculating reciprocal of distance to the nearest cell. 

(h) Multiply (f) and (g). The inset shows small holes between two cells’ boundary. (i) Small holes 

(inset) are removed in the ‘proximity enhanced cell boundary’ image by morphological closing 

and Gaussian blurring.    

 

Training the convolutional neural network  

To generate the above-mentioned intermediate image representations from experimental 

data, we trained 3D U-Net-based CNNs with residual blocks using the CSBDeep Python 

package21. Residual blocks allow the model to internally predict the residual with regard to inputs 

for each layer during training. This strategy provides better performance, because solvers are more 

efficient in solving residual functions than unreferenced functions, and it helps alleviate vanishing 

or exploding gradients problems for deep neural networks135. We employed a network architecture 

depth of 2, a convolution kernel size of 3, 32 initial feature maps, and a linear activation function 

in the last layer. Increasing U-Net depth or numbers of initial features didn’t produce superior 

results for our test cases (Figure 3.3.9). To achieve robust performance, we trained this network 

using ten to twenty simulated biofilm images with randomly selected cell densities and signal-to-

background ratio. To ensure the broad applicability of these networks, half of these images were 

biofilms containing cells expressing cytosolic fluorescence and the other half were biofilms 

containing membrane-stained cells (see Figure 3.3.6d). The loss function was taken as the mean 

absolute error (MAE) between the generated and the target images. The networks were trained for 

100 epochs with 100 parameter update steps per epoch and an initial learning rate 0.0004 (Figure 

3.3.10). The learning rate is reduced by half if the validation loss is not decreasing over 10 epochs. 

We selected the best weights based on performances on validation set for all the processing steps 
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described below. Using these parameters, it took approximately 1 hour to train the CNNs on a 

NVIDIA Tesla V100 GPU with 32 GB memory. 

 

 

Figure 3.3.9. Comparison of segmentation accuracies achieved by BCM3D 2.0 using different 

hyperparameter combinations. The networks were trained with U-Net backbone depth 3, 32 

initial features, U-Net depth 3, 64 initial features, and U-Net depth 2, 32 initial features 

respectively. Segmentation accuracy is parameterized in terms of cell counting accuracy (y axis) 

and IoU matching threshold (x axis). Each data point is the average of N=10 independent biofilm 

images. Data are presented as mean values ± one standard deviation. 
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Figure 3.3.10. Validation loss over number of epochs in training. A U-Net network architecture 

depth of 2, a convolution kernel size of 3, 32 initial feature maps was trained for 100 epochs. 

Twenty simulated biofilm images with randomly selected cell densities and signal-to-background 

ratio were used to train the model. 

 

To obtain instance segmentation results from intermediate image representations predicted 

by trained CNNs, we applied single- and multilevel Otsu thresholding123, 136, and seeded 

watershed122  (scikit-image Python library137, Figure 3.3.11 and 3.3.12).  
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Figure 3.3.11. Post-processing step 1: Thresholding of CNN-produced ‘distance to nearest 

cell exterior’ image. (a) CNN-produced ‘distance to the nearest cell exterior’ image. (b) Apply 

Otsu-threshold to obtain binary images. (c) To split clusters that are only connected by one or two 

voxels, the boundary voxels of each object were set to zero (binary erosion). (d) Identify individual 

cell objects by labeling connected regions and then add back boundary voxels that were erased in 

panel c. 
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Figure 3.3.12. Post-processing step 2: Combining of intermediate image representations. (a) 

CNN-produced ‘distance to nearest cell exterior’ image. (b) CNN-produced ‘proximity enhanced 

cell boundary’ image. (c) Generate difference map by subtracting (b) from (a) and set negative 

values to zero. (d) Segmentation results from the process describe in Figure S3.3.11. (e) Identify 

objects that need further processing using volume and solidity filters (see Methods). Identified 

objects are outlined in a binary mask. (f) Mask image in panel c by multiplying it with image in 

panel e. (g) To split under-segmented clusters, apply seeded-watershed to image in panel f. Seeds 

are obtained by applying Otsu-thresholding to the image in panel f. (h) If there still are under-

segmented clusters in the image in panel g, additional seeds are obtained by applying multi-level 

Otsu-thresholding the image in panel f. (i) Combine segmented objects from images in panels g 

and h. (j) Combine (i) and (d) to get final segmentation results. 

 

To test whether segmentation objects have physiologically reasonable cell shapes, we 

separately trained a 3D CNNs based classification model using tensorflow 2.0. We adapted a 

network architecture from Zunair et.al.,138; mainly includes three 3D convolutional layers, one 

global average pooling layer and a sigmoid activation function in the last layer. To achieve robust 

performance, we trained this network using 733 manually confirmed segmentation objects from 

experimental data (411 reasonable shaped objects, 322 oddly shaped objects). Training data were 

augmented by rotation and flip. The loss function was taken as the binary cross entropy between 

the model output and the corresponding target value. The networks were trained for 100 epochs 

with a batch size of 5 and an initial learning rate 0.0002. The learning rate is reduced by a half if 

the validation loss is not decreasing over 15 epochs. Using these parameters, it took approximately 

17 mins to train the CNNs on a NVIDIA Tesla V100 GPU with 32 GB memory. 
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Performance evaluation 

Segmentation accuracy was quantified as cell counting accuracy and cell shape estimation 

accuracy. The cell counting accuracy (CA) was calculated as previously described108:  

𝐶𝐴 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

where, TP is the number of true positives, FP is the number of false positives, and FN is the number 

of false negatives.  Cell shape estimation is evaluated by two separate measures. Single-cell 

segmentation accuracy (SSA) takes the mean Intersection-over-Union (IoU) value (aka the Jaccard 

index139) over segments that have a matching ground truth/manual annotation object: 

𝑆𝑆𝐴 =  
1

𝑁𝑚𝑎𝑡𝑐ℎ
∑

|𝑆𝑒𝑔𝑖 ∩ 𝐺𝑇𝑖|

|𝑆𝑒𝑔𝑖 ∪ 𝐺𝑇𝑖|

𝑁𝑚𝑎𝑡𝑐ℎ

𝑖

 

where, |𝑆𝑒𝑔𝑖 ∩ 𝐺𝑇𝑖| is volume of overlap between the predicted object and the ground truth object, 

and |𝑆𝑒𝑔𝑖 ∪ 𝐺𝑇𝑖| is the volume enclosed by both the predicted object and the ground-truth object. 

We note that the SSA metric can take on high values even if the shape of a segmented object does 

not accurately represent the shape of the corresponding ground truth object. For example, a 

predicted round object with a diameter of 20 covered by a ground truth square object with a length 

of 20 gives a 0.8 IoU value, which could be interpreted as good performance. From a biological 

perspective however, this would signify a substantial inaccuracy in shape estimation. To measure 

differences in cell shape in a more discriminating way, we additionally computed a single-cell 

boundary F1 score (SBF1)127. The SBF1 of the abovementioned square vs circular object example 

is 0.67. The SBF1 score is computed as   

𝑆𝐵𝐹1 =
1

𝑁𝑚𝑎𝑡𝑐ℎ
∑

2 ∙ 𝑝𝑟𝑐𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙𝑖

𝑝𝑟𝑐𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑖

𝑁𝑚𝑎𝑡𝑐ℎ

𝑖
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where precision is the ratio of matching boundary points in a matched segmentation object to the 

total points of its boundary. Similarly, recall is the ratio of the matching boundary points to the 

total points of ground truth boundary. According to the definition of boundary F1 score140, a 

distance error tolerance is used to decide whether a point on the predicted boundary has a match 

on the ground truth boundary. For our 3D data, we use √3 voxels. 
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4.1 Overview 

Multi-object (multi-cell) tracking in biology involves the detection, identification, and 

tracking of multiple objects, such as cells, organisms, or particles, over time in biological systems. 

It plays a crucial role in various research areas, including cell biology, neuroscience, microbiology, 

and ecology. By accurately tracking and analyzing the movements and interactions of multiple 

objects, researchers can gain valuable insights into dynamic biological processes and phenomena. 

Multi-object tracking in biology often involves the integration of various technologies, 

including imaging systems, computer vision algorithms, and computational modeling. High-

resolution microscopy such as LLSM allows researchers to capture time-lapse images of biological 

systems, providing the data necessary for tracking analysis. Computer vision algorithms and 

machine learning techniques are employed to detect and track objects of interest, distinguishing 

them from the background and other objects in the field of view. Computational modeling and data 

analysis techniques help interpret the tracked object trajectories, quantify their movements, and 

extract relevant features or parameters for further analysis. 

One of the primary goals of multi-object tracking in bacterial biofilms is to understand the 

behavior and characteristics of individual cells within a complex, heterogeneous structure. This 

includes studying cell migration, cell-cell interactions, and lineage tracing as well as other 

processes that occur within living bacterial biofilms. By tracking multiple cells simultaneously, 

researchers can uncover patterns, trajectories, and correlations that provide insights into underlying 

biofilm formation mechanisms. 
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4.2 Simultaneous multi-cell tracking and lineage tracing using a nearest neighbor approach 

4.2.1 Tracking accuracy is linearly correlated with segmentation accuracy 

A nearest neighbor tracking algorithm is a simple yet effective tracking algorithm that is 

based on minimizing the distance travelled globally by all cells.  A nearest neighbor approach falls 

into the tracking-by-detection paradigm, in which tracking relies on detection of the objects first. 

For such method, it is important to understand the relationship between tracking accuracy and 

detection(segmentation) accuracy.  Intuitively, tracking accuracy should depend on segmentation 

accuracy. More specifically, it is hypothesized that the number of edge operations in the AOGM 

metric is linearly correlated with the number of missing objects or falsely detected objects. The 

edge deletion (ED), addition (EA) terms are closely related to oversegmentation and 

undersegmentation respectively: an oversegmentation mistake is likely to result in an edge 

deletion, while an undersegmentation mistake will add one or more edge additions. To test such a 

hypothesis, I tracked individual cells in simulated biofilm images with different cell densities and 

SBRs. If only the Euclidean center-of-mass distance between two cells is considered in the tracking 

algorithm, then tracking accuracy improves linearly with cell counting accuracy (Figure 4.2.1). 

By including additional terms such as cell morphology, it is hypothesized that improved tracking 

accuracies can be obtained even if segmentation errors occur frequently or low frame acquisition 

rates are employed.  
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Figure 4.2.1.  Tracking accuracy (TRA) over cell counting accuracy on simulated biofilms.  

 

4.2.2 Accurate BCM3D 2.0 segmentation enables multi-cell tracking in biofilms.  

Simultaneous multi-cell tracking and lineage tracing is critical for analyzing single-cell 

behaviors in bacterial biofilms. We asked whether the cell segmentation performance of BCM3D 

2.0 was sufficient to enable accurate tracking of individual cells in biofilms. To address this 

question, we employed a tracking-by-detection approach using simulated biofilm images of 

different SBRs (Figure 4.2.2a). We evaluated tracking accuracy as a function of SBR using the 

widely used TRA metrics based on Acyclic Oriented Graph Matching (AOGM)142. In acyclic 

oriented graphs, cells in different time frame are represented as vertices and linkages between cells 

from frame-to-frame are represented as edges. When the cells (vertices) are placed at their actual 

spatial coordinates, then the cell linkages (edges) represent the branches of a spatially resolved 

lineage tree (Figure 4.2.2b). The TRA metrics quantify the minimum number of elementary graph 

operations that are needed to transform an estimated graph into a ground truth graph. TRA_edge 

considers three edge operations only, while TRA_full considers all six graph operations142. 
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To link the same cells across two different time points, we used a nearest neighbor 

algorithm143. When using spatial distance as the sole metric for cell linking, the AOGM tracking 

accuracy has a positive correlation with SBR (Figure 4.2.2c), which highlights the importance of 

accurate cell segmentation in multi-object tracking-by-detection60. BCM3D 2.0 enables a tracking 

accuracy that is similar to the ground truth tracking accuracy (same nearest neighbor tracking 

algorithm applied to the ground truth segmentation masks) for SBRs of 1.65 and higher. We note 

that, given the high cell density in this test dataset, the ground truth tracking accuracy does not 

reach the optimum (100%) even with error-free segmentation. This is due to inherent limitations 

in how parent-daughter relationships are assigned. At SBR’s less than 1.65, tracking accuracy 

decreases rapidly due to the lack of consistent segmentation results. The importance of accurate 

segmentation is clearly evident from the linear dependence of TRA as a function of cell counting 

accuracy (Figure 4.2.2d).   

Another key factor for simultaneous multi-object tracking is the time resolution60. The 

relative movement (RM) of objects from frame to frame is therefore a useful metric to quantify 

the level of difficulty for cell tracking. The relative movement (RMi,j) in time frame i, for a given 

cell j is defined as the ratio between the distance of cell j to itself between frame i and i+1 and the 

distance of cell j in frame i to its closest neighbor at frame i + 1. The <RM> metric is then the 

average RMi,j of all cells for each frame144.  A dataset with <RM> values of 1 or more means that 

any tracking method that considers only distance (and distance related features) is likely to fail, 

whereas a dataset with a <RM> value of less than 0.5 is considered challenging144. For the 

simulated biofilm images here, RM~0.2, which indicates that the time resolution may be good 

enough for single cell tracking using a nearest neighbor algorithm. Indeed, under these conditions, 

many cells can be tracked for several generations (Figure 4.2.2b). However, even at RM~0.2, 
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some cell division events are missed, so that a few branches of the lineage tree are not successfully 

traced. Even so, the subset of correctly detected cell division events allows for the estimation 

single-cell doubling cycles in the biofilm (Figure 4.2.2e). To quantify these trends, we tested how 

time resolution affects tracking accuracy. When the time resolution is decreased by a factor of two 

and three, the TRA_edge metrics decrease from 91% to 87% and 81%, respectively. The percentage 

of the parent-daughter misassignment error, quantified as the edge-correction (EC) error over the 

number of total errors, increases from 1.4% to 3.6 and to 5.2 % (Figure 4.2.2f). Taken together, 

these results show that segmentation based multi-object tracking accuracy is highly dependent on 

segmentation accuracy (which depends on image SBR and cell density108), as well as time 

resolution. It is critical to consider these parameters, when single-cell resolved observables, such 

as cell trajectories, single cell volume increases, and single-cell doubling times, need to be 

measured.   
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Figure 4.2.2.  Multi-cell tracking in simulated biofilms. (a) Simulated fluorescence time-lapse 

images of growing E. coli-like biofilm. The SBRs of these images are ~1.65. Contours are color-

coded based on segmentation and tracking results. (b)  An example of 3D tracking and lineage 

tracing for simulated biofilm images. For clarity, spatial trajectories and lineages originating from 

only a single ancestor cell is displayed. The estimated graph is shown in blue and the corresponding 

ground truth graph is shown in red. The entire biofilm contains over sixty graphs of this type. (c) 

Two AOGM metrics calculated as TRA_edge and TRA_full are plotted against image SBR. The 

grey dashed line indicates tracking of the GT segmentation using the same tracking algorithm.  (d) 

Same data as in panel c plotted as a function of cell counting accuracy at IoU = 0.5, a segmentation 

accuracy metric that increases for increasing SBR in the raw images108. (e) Doubling cycle 

distribution of simulated data and corresponding tracking results. A completed cell cycle is defined 

as a track in which the parent cell is able to split twice. This threshold results in a lower count 

numbers of estimated cell division, but does not alter the shape of the distribution. (f) TRA_edge 

(left axis) and edge correction (EC) percentage (right axis) for different temporal sampling rates. 

EC percentage indicates how many parent-daughter relationships are misassigned based on the 

tracking results.  
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4.2.3 Multi-cell tracking in the initial phase of S. oneidensis biofilm 

Cell segmentation and subsequent multi-cell tracking in experimentally acquired 3D 

images presents additional challenges that were not modeled in the computationally simulated 

data. These challenges include optical aberrations in the imaging system, broader cell shape 

distributions in experimental biofilms, cell motility, and association and dissociation dynamics of 

individual cells to and from the biofilm. To determine whether the BCM3D 2.0 segmentation 

results enable improved multi-cell tracking using a nearest neighbor algorithm, we manually traced 

a subset of ancestor cells over the course of a 15-minute 3D biofilm movie acquired with a time 

resolution of 30 seconds (Figure 4.2.2ab). Manual determination of cell-to-cell correspondences 

in consecutive image volumes generated 583 cell-cell and 3 parent-daughter linkages. Taking this 

manual annotation as the reference graph, the RM metric was determined to be ~0.2 and the 

TRA_edge metric was determined to be 93.5%. Steadily increasing single cell volumes for four 

selected cells allowed us to measure growth rates of 7.4×10⁻3, 3.8×10⁻3, 3.4×10⁻3, and 0.6×10⁻3 

µm3/min (Figure 4.2.2c). Cell division events are also readily detected by the algorithm as a 

sudden decrease in cell volume. In two of the four selected cases, cell division led to the dispersal 

of the daughter cell. We found a high number of cell dispersion events resulting in the termination 

of trajectories, most often right after cell division (Figure 4.2.2c).   

Although BCM3D 2.0 in combination with high-frame rate imaging enables accurate cell 

tracking, it may not be feasible to maintain high-frame rate volumetric imaging for extended 

periods of time due to phototoxicity and photobleaching concerns. To further test the limits of 

nearest neighbor tracking, we tracked S. oneidensis biofilm growth for five hours at a time with a 

resolution of 5 minutes (Figure 4.2.2de). During this time period, the number of cells increases 

from ~300 to ~1400 cells. The relative cell motion in this dataset, estimated by the distances 
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between manually tracked cell centroids, is 0.5 ± 0.2 µm (mean ± standard deviation, N = 5). The 

average spacing of the biofilm, as calculated by the average distance of each cell to the nearest 

neighbor, changes over time. The average spacing for the first frame, estimated by the average 

distance to the nearest neighbor for each cell, is 1.2 ± 0.6 µm (mean ± standard deviation, N ~ 

300), and is 1.1 ± 0.2 µm (mean ± standard deviation, N ~ 1400) for the last frame. We manually 

traced a subset of founder cells over the course of the experiment, generating 262 cell-cell and 17 

parent-daughter linkages. For this manually selected subset, the RM metric was ~0.4 and 

TRA_edge metric was determined to be 80.0%. While the nearest neighbor tracking algorithm is 

capable of making overall accurate cell-cell linkages for a few consecutive frames, automated 

nearest-neighbor tracking of the same cells for long time periods and correctly detecting all cell-

division events is not readily possible (Figure 4.2.2f). It is, however, possible for human 

annotators to track individual cells from the segmentation results under such imaging conditions. 

Single-cell growth rates and single-cell division times can then be readily extracted (Figure 4.2.2f, 

Figure 4.2.3,). The measured growth rates are in excellent agreement with the values obtained 

with high time resolution imaging (Figure 4.2.2c). A small number of segmentation errors can be 

detected by manual tracking, as indicated by the boxes in Figure 4.2.2f, but these errors don’t 

preclude estimations of single-cell observables. These results indicate that quantitate information 

about single-cell behaviors is contained even in low time resolution 3D movies of bacterial 

biofilms. Future work will need to focus on extracting the information as accurately as, but faster 

than, a human annotator.  
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Figure 4.2.2. (a) Experimentally acquired fluorescence time-lapse images of a growing S. 

oneidensis biofilm with overlaid single-cell segmentation contours. Images were acquired every 

30 seconds for 15 minutes. Corresponding cells in different frames are displayed in the same color. 

(b) Individual cell trajectories in the biofilm shown in panel a. Cells move very little during the 

short 15-minute imaging time.  (c) Cell volumes over time for four example cells. Cell division 

and dispersion events are indicated for each trajectory. Single-cell growth rate was measured by 

calculating the slope of linearly fitted line for each curve (d) Experimentally acquired fluorescence 
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time-lapse images of a growing S. oneidensis biofilm with overlaid single-cell segmentation 

contours.  Images were acquired every five minutes for five hours. Corresponding cells in different 

frames are displayed in the same color. (e) Individual cell trajectories in the biofilm shown in panel 

a. Cell displacements are more pronounced over the 5-hour imaging time. (f) Evolution of cell 

volumes over time for a single selected cell. The solid line represents a manually annotated 

trajectory, and the dashed line represents the nearest neighbor tracking trajectory of the same initial 

cell. Cell division and dispersion events are indicated on each trajectory. The single-cell growth 

rate was measured by calculating the slope of the trajectory segment between consecutive cell 

division events. The red arrow and the boxes indicate periodic underestimation of the cell volume 

due to oversegmentation. 
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Figure 4.2.3.  (a-f) Cell volumes over time for four additional cells. The solid line represents a 

manually annotated trajectory where cell division and dispersion events are detected manually and 

indicated on the trajectories. Single-cell growth rate was measured by calculating the slope of a 

line that connects both the beginning and end points for each trajectory. (e) Box plot of cell division 
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time for the selected fives cell (four in this figure plus one in Figure 4.2.2). (f) Box plot of single-

cell growth rate for the selected five cells. 

 

4.2.4 New time-dependent single-cell observables for biofilm studies  

We have demonstrated that single-cell trajectories and lineage information are contained 

in the time-lapse data in the previous section. Although it currently remains challenging to 

automatically obtain complete, error-free trajectories as well as lineage information over several 

generations, there is quantitative information about single-cell behaviors that can answer 

biological questions and can be accurately measured even with the nearest neighbor tracking 

results. Time-dependent features such as cellular movement and growth rate don’t require 

complete trajectories over hundreds of frames and therefore can be extracted with acceptable 

accuracy from tracking just a few frames.  

Such single-cell observables open a door for studying biofilm heterogeneity on the single-

cell level. To demonstrate this, I hypothesized that the cells on the surface have different cellular 

behaviors compared to interior cells because they are in a different physical and chemical 

environment with different levels of nutrient concentration, oxygen concentration, and shear rate, 

etc.  

In order to test whether there is a spatial heterogeneity in the biofilm, I analyzed the S. 

oneidensis biofilm discussed in the previous section, which represents an early stage of biofilm 

development, including initial surface attachment of hundreds of cells as well as two to three 

generations of cell divisions. I divided the biofilm into the surface cells and the interior cells based 

on their locations in the biofilms, and measured features of individual cells. (Figure 4.2.4ab). 

However, I didn’t observe any statistically different distributions in terms of either cellular 
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movement or cellular growth (Figure 4.2.4cd). This is also consistent with the manually-traced 

single-cell trajectory data in which randomly chosen cells grow and divide at similar rates (Figure 

4.2.3ef). 

 For future experiments, the Gahlmann lab plans to carry out similar experiments in a 

more physically relevant environment for much longer periods of time (e.g., a dual-channel 

experiment to study the biofilm morphology at the host-pathogen interface). It is interesting to 

see whether the surface cells and the interior cells behave differently and at what point during the 

course of biofilm development does this heterogeneity occur. 
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Figure 4.2.4.  Time-dependent single-cell observables in a biofilm. (a) 3D rendering of the last 

panel in Figure 4.2.2d at t = 300 mins. (b) Convex hulls are used to differentiate biofilm surfaces 

and interiors. Surface cells are cells that have centroids inside the blue convex hull but outside the 

red convex hull, while interior cells are cells that have centroids inside the red convex hull. (c) 

Squared displacement distributions of the cells on the biofilm surface or interior. (d) Growth rate 

distributions of the cells on the biofilm surface or interior. 

 

4.2.5 Methods 

Tracking 

Simpletracker in MATLAB was used to build tracking graphs and spatially resolved 

lineage trees143. Simpletracker implements the Hungarian algorithm and nearest neighbor trackers 

for particle tracking that links particles between frames in 2D or 3D. We used 1 µm and 1.5 µm as 

the maximum distance threshold for cell linking for simulated and experimental data, respectively. 

We used the nearest neighbor algorithm to associate the centroids of segmented objects in 

subsequent frames, such that the closer pairs of centroids are linked first. In order to determine a 

cell division event, a distance threshold of 1 µm and 1.5 µm for simulated and experimental data, 

respectively, a cell volume threshold of 1.5 (parent cell should be 1.5 times larger than the daughter 

cell), and a cell length threshold of 1.5 (parent cell should be 1.5 times longer than the daughter 

cell), were used to determine parent-daughter relationships between cell pairs on consecutive 

frames.  

 

Tracking evaluation  
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To quantify tracking accuracy, we used the acyclic oriented graph metric (AOGM)142. The 

AOGM value is calculated as the weighted sum of the number of graph operations required to 

convert the estimated graph to the ground truth graph, i.e.: 

𝐴𝑂𝐺𝑀 = 𝑤𝑁𝑆𝑁𝑆 + 𝑤𝐹𝑁𝐹𝑁 + 𝑤𝐹𝑃𝐹𝑃 + 𝑤𝐸𝐷𝐸𝐷 + 𝑤𝐸𝐴𝐸𝐴 + 𝑤𝐸𝐶𝐸𝐶 

The tracking accuracy can then be computed using a normalized AOGM value, where AOGM0 is 

the number of operations to build the ground truth graph from an empty graph: 

𝑇𝑅𝐴 =  1 −  𝑚𝑖𝑛(𝐴𝑂𝐺𝑀, 𝐴𝑂𝐺𝑀0)/𝐴𝑂𝐺𝑀0 

There are three types of graph operations that are associated with detection errors: the number of 

false negatives (FN), the number of false positives (FP), and the number of missed splits (NS: 

m reference cells (m > 1) are assigned to a single segmented cell). There are also three types of 

graph operations that are associated with object linking: edge deletion (ED), addition (EA), and 

alteration of the semantics of an edge (EC: The semantics of an edge can either represent the same 

cells over time or represent a parent-daughter relationship). To focus on object matching over time 

(i.e. the association performance of the algorithm), we used an equally weighted sum of the lowest 

number of graph operations on edges only (TRA_edge). To give a more comprehensive view, we 

used an equally weighted sum of the number of graph operations on all six operations (TRA_full).  

To estimate tracking accuracy for experimental data, we manually traced a small subset (n 

= 25) ancestor cells over time based on BCM3D 2.0 segmentation masks. Two researchers 

performed tracking independently, manually determining parent-daughter relationships within the 

lineages originating from the ancestor cells. This lineage information was then used to compute 

TRA_edge. 

 



Chapter 4: Simultaneous multi-cell tracking and lineage tracing in bacterial biofilms    

 

122 

4.3 Simultaneous multi-cell tracking and lineage tracing using machine learning  

4.3.1 Results 

The nearest neighbor approach shows promising results in tracking bacterial biofilms at an 

early stage for both simulated images and real experimental images. However, the limitations are 

evident, such that it fails for high Relative Movement (RM) datasets, which are common for many 

biofilm species using imaging protocols that are optimized for image quality over time. It is 

therefore necessary to seek for a more robust tracking algorithm that can work with high RM 

datasets. Initially, our lab tried to engineer a cost function that takes into consideration multiple 

cellular parameters, such as cell shapes and sizes to match cells between frames, which fit 

seamlessly into the Hungarian algorithm framework. However, the number of parameters in the 

cost function adds up too quickly to optimize, and it is observed that such optimization needs to 

be done on every single new dataset.  

A machining learning-based approach is superior because it resembles much more to how 

a human annotator makes tracking decisions of linking bacterial cells. Humans are not only good 

at judging distances, but can also intuitively evaluate and rank the similarities based on shapes, 

fluorescence intensities and volume, etc., between candidate cells, thereby making much more 

reliable decisions when the biofilms are dense and the cells have significant movement between 

frames.  In order to mimic how a human annotator make a series of decisions on distance, shapes, 

and sizes, I therefore developed a machine leaning-based approach to explicitly consider all the 

single-cell features that a human may consider when making informed decisions on tracking.  ML-

based models are much better than nearest-neighbor or Hungarian tracking algorithms because it 

is completely data-driven, and therefore there is no need to determine feature importance 

beforehand. We also argue that a machine learning approach may have the potential to outperform 
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human annotators because a human relies on feelings rather than accurate quantitative 

measurements of the cells. The machine learning approach can also readily detect cell dispersion 

events and parent-daughter relationships if enough representative, high-quality data is provided. 

More specifically, the machine learning framework for tracking bacterial cells is illustrated 

in Figure 4.3.1. Single-cell parameters (features) from the segmentation masks are collected for 

each frame. Pairwise feature similarities scores are calculated and reorganized into a design matrix. 

The design matrix is then fed into a classical machine learning algorithm to make multiclass 

classification, in which there are three classes: ‘Same cell’, ‘Not same cell’, and ‘Parent-daughter 

relationship’ respectively (Figure 4.3.2). I have tested several algorithms including logistic 

regression, XGboost145 and the Random Forest algorithm146. The Random Forest algorithm is 

determined to consistently yield better results (comparisons not shown). Finally, the classification 

results can be easily transformed to trajectories as well as the format that complies with the 

literature142. More details of this approach can be found in the Methods section.  
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Figure 4.3.1. A schematic of simultaneous multi-cell tracking and lineage tracing using 

machine learning. 
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Figure 4.3.2. Confusion matrix of the test subset. ‘0’ class denotes a different cell pair between 

two consecutive frames, ‘1’ class denotes the same cell pair between two consecutive frames, and 

‘2’ class denotes parent-daughter relationship between two consecutive frames 

 

For the simulated biofilm images tested in Zhang et al. 2021 (RM ~ 0.2), vast majority of 

the trajectories as well as lineage information can be correctly traced for several generations 

(Figure 4.3.3a). At RM ~ 0.2, almost all cell division events are captured. As a result, the detected 

cell division events allow for accurate estimation of single-cell doubling cycles of the entire 

population in the biofilm (Figure 4.3.3b). 
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Figure 4.3.3. (a)  An example of 3D tracking and lineage tracing for simulated biofilm images 

using machine learning. For clarity, spatial trajectories and lineages originating from only a single 

ancestor cell is displayed. The estimated graph is shown in blue and the corresponding ground 

truth graph is shown in red. The entire biofilm contains over sixty graphs of this type. (b) Doubling 

cycle distribution of simulated data and corresponding tracking results. A completed cell cycle is 

defined as a track in which the parent cell is able to split twice. This threshold results in a lower 

count numbers of estimated cell division, but does not alter the shape of the distribution.  

 

4.3.2 Discussion 

Machine learning-based tracking algorithms, which utilize single-cell parameters to 

compute similarity scores, are more robust and less prone to the accumulation of tracking errors 

than conventional tracking approaches. A segmentation result that produces a linkage with low 

pair-wise similarity score can be flagged for requiring increased scrutiny and possible re-

evaluation of human-annotated data. Critical events such as cell divisions and cell dispersions are 

naturally detectable by the design of the machine learning approaches, and thus can be 

quantitatively assessed by the researchers.  
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Although we argue that the machine learning-based algorithm closely mimics how a human 

annotator makes the linkages, there is still more sophisticated information that human annotators 

use that our approaches cannot leverage. For example, human annotators can go back and forth in 

time to not only check pairwise similarities between frames, but also confirm the trajectories over 

multiple frames when making decisions. Human annotators can intuitively leverage time-

dependent information that is contained in the data. However, the current version of the method 

does not consider any time-dependent features, which likely will further improve tracking 

accuracy. Although the incorporation of time-dependent features might not be as straightforward, 

it is still plausible to add features such as velocity, change in shape, etc.  

Another extension that I have not implemented is the use of deep learning models to extract 

deep single-cell features that can be used to calculate pairwise similarity scores. The reason why I 

didn’t start using deep learning is because that all bacterial cells are small and their shapes are of 

simple geometries carrying little information to extract deep features. As a result, the use of deep 

learning may greatly reduce the speed for a tracking algorithm. However, this assumption may not 

hold if we want to incorporate time-dependent features. The use of deep learning models such as 

Long short-term memory (LSTM) or Transformers are well-suited to extract time-dependent 

information, similar to what a human annotator would do, and are expected to outperform classical 

models that consider only single time frames147, 148.  

Upon successful experimental validation and the inclusion of time-dependent features, we 

will make the developed machine learning-based multi-cell tracking algorithms and any associated 

documentation and test data freely available to the research community.  
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4.3.3 Methods 

Feature extraction from segmentation masks 

Single-cell features are extracted from each frame using regionprops function in Python137. 

For this chapter, only 'area', 'centroid', 'extent', 'major_axis_length', 'max_intensity', 

'mean_intensity' 'min_intensity', 'minor_axis_length', 'solidity', 'weighted_moments_normalized' 

were considered for comparing pairwise feature similarity score. For detailed explanations of all 

supported features, please refer to scikit-image137.  It is possible that more sophisticated features 

used in the literature could potentially improve tracking performances, but it is beyond the scope 

of this chapter. 

 

Calculate pairwise feature similarity using vectorization 

Pairwise feature similarity score, Sim(p,q) was defined as the Euclidian distance between 

each object between consecutive frames. Where p denotes an object at any frame tx and q denotes 

an object at tx+1, and n is the number of dimensions for each feature.  

𝑆𝑖𝑚(𝑝, 𝑞) =  √∑(𝑞𝑖  −  𝑝𝑖)2

𝑛

𝑖=𝑛

 

The naïve approach to calculate pairwise feature similarities require nested loops, which has 

complexity of O(P*Q), where P is the number of cells detected at frame tx and Q is the number of 

cells at tx+1. This approach typically takes hours if not days for tracking large biofilms. 

Vectorization is a much more efficient way to calculate this in Python. There are overall two steps 

associated with vectorization in order to calculate pairwise feature similarities. The first step is to 
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expand two matrices with shape (P, N) and (Q, N) with broadcasting to produce an expanded array 

with shape (P, Q, N), where N denotes the dimension of the features.  The second step is to reduce 

the added dimension using an aggregate operation, creating the desire matrix with shape (P, Q). A 

similar approach can also be used to calculate and evaluate intersection over union (IoU) between 

ground truth and segmentation results.  

 

Generate Ground truth 

Ground truth tracks were generated by two researchers linking objects from BCM3D 2.0 

segmentation masks. The pairwise class was thus defined as ‘0’ or ‘not same cell’, ‘1’ or ‘same 

cell’, and ‘2’ or ‘have parent-daughter relationship’. The ‘not same cell’ class was also limited by 

a ‘close_n’ parameter, in which only the closest n objects (n = 10 in this chapter) were selected to 

be included in the training data to reduce computational time and alleviate the class imbalance 

problem. 

 

Random forest classifier 

The data frame was scaled to have a zero mean and unit variance. Then the data was 

randomly split into 80/20 for training and validation. A random forest146 classifier with maximum 

depth of 5, and a balanced class weight was used to train the model. Feature importance in a 

random forest algorithm can be measured by mean decrease in impurity (MDI). MDI measures 

how many times a given feature is used to split a node within a decision tree (Figure 4.3.2). 

Therefore, a higher MDI for a given feature indicates that it is more important to form the trained 
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random forest decision trees. The error bars (standard deviations) of MDI showcase the variability 

of feature importance among decision trees.  

 

Figure 4.3.2. An example of feature selection process using mean decrease in impurity (MDI) 

and ranking of feature importance. Feature importance of the trained model is measured in mean 

decrease in impurity. The error bar indicates plus or minus one standard deviation.  
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5.1 Conclusion  1 

Bacterial biofilms have evolved to form complex heterogeneous structures, but there is still 2 

much to learn about the life cycle in various species, as well as their relationships to different biotic 3 

or abiotic surfaces. Bacterial biofilms have both positive and negative impacts on our daily lives, 4 

making them a subject of great interest for researchers across various fields. This thesis aims to 5 

provide a detailed, comprehensive guide on instrumentation as well as computational solutions for 6 

investigating bacterial biofilms at the single-cell level in a physiologically relevant environment. 7 

 Due to the dynamic nature of bacterial biofilms, the lattice light sheet microscope (LLSM) 8 

offers the best balance between spatial and temporal resolution for 3D imaging, enabling single-9 

cell resolution for hours or even days. While LLSM provides superior imaging capability for 10 

bacterial biofilms over other commercially available microscopes, implementing a microfluidic 11 

channel is not as straightforward due to constricted space in the microscope basin. This thesis 12 

outlines best practices for using microfluidic channels as well as associated challenges and 13 

corresponding solutions. Two of the major challenges discussed are maintaining a steady refractive 14 

index in the basin and significant sample drift caused by the 3D printable resin. The thesis 15 

introduces computational solutions as well as LLSM implementation and demonstration of the 16 

code for real-time sample drift correction. 17 

 LLSM can generate terabytes of time-lapse data, but extracting quantitative information 18 

at the single-cell level is not a trivial task. Image segmentation, specifically instance segmentation, 19 

poses a key challenge in accurately and efficiently obtaining information of single cells, such as 20 

cell size, morphology, and locations. Deep learning approaches have shown to outperform 21 

conventional image processing techniques. Our research group was among the first to adopt 3D 22 

convolutional neural networks (CNN), named BCM3D 1.0, to successfully segment biofilm image 23 
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data. We demonstrated that training a CNN with carefully simulated data is not only a viable 24 

approach but also outperforms the one trained with manually annotated data for 3D biofilm 25 

segmentation, which was considered the gold standard in image segmentation. Once segmentation 26 

masks are obtained, we can get single-cell level information and perform morphology 27 

classification, enabling more sophisticated experiments that involve different species and cell 28 

morphologies without the need for multiple fluorophores or laser lines.  29 

Building upon the concept of BCM3D 1.0, BCM3D 2.0 represents an improved version 30 

with a carefully designed workflow to enhance segmentation accuracy, even for low signal-to-31 

background images and dense microbial communities. BCM3D 2.0 uses the concept of image 32 

translation in deep learning and is integrated with downstream image analysis pipelines to 33 

precisely find the cell boundaries and segment individual cells. Being able to segment individual 34 

cells accurately is an important requirement to link the same cell over time and track its trajectories 35 

and behaviors. This task is called multi-object tracking (multi-cell tracking) in the field of image 36 

processing and computer vision.  37 

While there are multiple tracking algorithms available in the field of biology research, they 38 

are primarily designed for tracking eukaryotic cells, which are distinct from one another and also 39 

normally larger than the diffraction limit, resulting in clear cellular boundaries in the images. As a 40 

result, they tend to fail for dense biofilm images. In order to track individual cells in biofilms, we 41 

first attempted to use a most basic tracking algorithm assuming minimal cell movement between 42 

frames with sufficient temporal resolution. However, the vanilla solution for tracking bacterial 43 

biofilms is shown to be linearly correlated with segmentation accuracy, and only performed well 44 

for high-temporal resolution data with slow cellular motion. In contrast, a machine learning-based 45 

tracker leverages cellular information beyond just distance, leading to more accurate linking even 46 
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for low-temporal resolution data. Such a tracker can also effectively trace cell trajectories based 47 

on cellular features contained in the training data without relying on any hardcoded thresholds.  48 

Individual trajectories of single bacterial cells as well as lineage information open the door 49 

to novel experiments on bacterial biofilms. The new information enhances our understanding for 50 

biofilm formation of each species and how they interact with different surfaces. It therefore can be 51 

useful for informing a biofilm formation model and calibrating agent-based simulations. 52 

Preliminary results already indicate significant differences from different species from the 53 

hypothesized mechanism of a generic biofilm formation model. The tools developed in this thesis 54 

can also enhance our understanding of how coordinated behaviors among biofilm-dwelling 55 

contribute to the macroscopic properties of bacterial biofilms. The tracking results can shed light 56 

on persister cell formation and potentially improve our understanding of antibiotic resistance 57 

attributed to bacterial biofilms149. 58 

In summary, the ability to accurately identify and track individual cells in dense 3D 59 

biofilms over long periods of time requires the combination of non-invasive fluorescence 60 

microscopy approaches for long-term time-lapse imaging and sophisticated image analysis and 61 

multi-object tracking tools that yield robust results. Each component discussed in the thesis is 62 

essential for obtaining optimal results. Any improvements in imaging, segmentation or tracking 63 

will have a positive impact on all other aspects of biofilm research (Figure 5.1). 64 

 65 
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 66 

Figure 5.1. Illustrative summary for bacterial biofilm imaging and image processing. 67 

 68 

5.2 Future directions 69 

As the field of artificial intelligence advances rapidly, unprecedented opportunities arise 70 

for researchers in biology and biochemistry to leverage these advancements and investigate 71 

biological systems that were previously considered too complex to probe. As I finish writing this 72 

thesis, new candidates of deep learning-based models have emerged, holding the potential to yield 73 

improved biofilm image segmentation and tracking results. For instance, diffusion models have 74 

recently exhibited promising outcomes in modeling natural images that can perform various image 75 

processing tasks. Diffusion models are a class of generative models that approximate the 76 
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distribution of real images from a simple parametric distribution, and it is shown that they can be 77 

repurposed for image segmentation with high efficiency150. 78 

Moreover, in the context of multi-object tracking, deep neural networks may outperform 79 

classical machine learning algorithms, which were tested in this thesis and rely on human-specified 80 

features. Specifically, a transformer model, renowned for its success across diverse fields, can be 81 

employed not only to extract simple cellular features but also to capture time-dependent features 82 

or "fingerprints" of a cell148. This approach has the potential to identify cells and discriminate their 83 

neighboring cells in 3D and time, mimicking how a human annotator traces the movement of a 84 

cell in a crowded biofilm environment over time. However, a deep learning approach inevitably 85 

demands a large amount of high-quality training data, and the current methods of obtaining training 86 

data, relying on simple biofilm simulation procedures or human annotation, may not suffice in 87 

terms of quantity and quality. Two avenues can be pursued to address this challenge: firstly, 88 

enhancing the current simulation procedures by calibrating them using real biofilm formation data, 89 

and secondly, adopting the popular human-in-the-loop approach, which can significantly 90 

accelerate human annotation. 91 

Furthermore, the innovation of microscopes and microfluidic systems is an ongoing 92 

process. Improvements in the stability of microfluidic systems will enhance image quality over 93 

time, thereby improving both segmentation and tracking accuracy. While automated long-term 94 

imaging of bacterial biofilms has been achieved, the precision of the stage remains a limiting 95 

factor. Employing a more stable piezo nanopositioning system that offers a wider range of 96 

movement will greatly aid in data acquisition. Additionally, incorporating fiducials such as 97 

fluorescent beads into the workflow may increase the accuracy of drift correction algorithms. 98 
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Lastly, the Gahlmann lab aims to study bacterial biofilms not only on simple surfaces but 99 

also on sophisticated engineered surfaces and eukaryotic host tissues, such as human organoid-100 

derived epithelia. The current imaging system and image processing modules can be adapted and 101 

applied to investigate the host-pathogen interface with high spatial and temporal resolution. It is 102 

possible to miniaturize a dual-channel tissue chip designed to support intestinal segment-specific 103 

cell differentiation and epithelial tissue functionality151. Making these chips optically accessible 104 

and compatible with lattice light sheet microscopy would enable the study of gut-colonizing 105 

bacteria, such as Shigella flexneri, and their survival strategies in different intestinal niches prior 106 

to causing acute gastrointestinal disease by infecting the colonic epithelia. 107 

In conclusion, by harnessing the potential of artificial intelligence, advancements in 108 

microscopy and microfluidic systems, researchers in the field of bacterial biofilm will gain in-109 

depth understanding of such complex and heterogeneous biological systems and their interactions 110 

in various contexts. 111 
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