
Out-of-band Application Security Testing: Significance and Modern
Detection Approaches

CS4991 Capstone Report, 2024

Nicholas Tung
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
ddn9nb@virginia.edu

ABSTRACT
A software-as-a-service company’s product
security team decided to stand up its own
infrastructure for performing regular
out-of-band application security testing. I
brought this system from non-existent to a
validated prototype by hosting an instance of
Interact.sh, a beacon detection service, and
using it for various methods of security
testing. The first step was to work locally and
show that I could positively identify a
vulnerable service using Interact.sh. After
local validation, I performed similar steps and
configuration for an instance of Interact.sh
available on the Internet, a requirement for a
production instance. With a demonstrably
effective instance running, I moved on to
integrating Interact.sh with a variety of
security testing tools, both automated and
manual. I was able to use Interact.sh with
three different tools on production systems,
all while learning about the nuances and
significance of out-of-band vulnerabilities.
With this infrastructure in place, the team can
move toward more advanced security testing,
both automated and manual, and know that
any relevant data is under the company’s
control.

1. INTRODUCTION
On December 10, 2021, the vulnerability
known as “Log4Shell” was disclosed to the
public. A misconfiguration in the popular
Java logging library Log4j enabled

substitution of a template string with a Java
object when the template string was logged
by Log4j. Crucially, substitution of this
template string could, depending on the
particular template string, trigger the lookup
and execution of remotely-hosted code. At
the time of public disclosure, Log4Shell
affected numerous cloud services, as well as
popular applications like Minecraft (Goodin,
2021). Log4Shell shook the world as security
professionals rushed to determine if and how
they were affected and patch their systems.

Log4Shell was a vulnerability of unique
severity, but similar vulnerabilities are
discovered and disclosed every year.
Vulnerabilities that have similar
communication patterns as Log4Shell are
known as out-of-band vulnerabilities. The
importance of both accuracy and precision in
detection has led to various innovative
strategies being developed for out-of-band
vulnerabilities.

2. RELATEDWORKS
Tracking DNS lookups is a versatile method
for detecting out-of-band vulnerabilities.
DNS-based detection is effective for finding
so many types of communication that the
likelihood of a false negative for some kind of
vulnerability existing is limited (Out of Band
Exploitation (OOB) CheatSheet, 2018). The
tradeoff comes in precision. When a DNS
lookup comes in, the detecting party has no



information about what type of
communication is being initiated. It could
range from attempting and failing to send an
email (probably not a big deal) to
downloading and executing code (definitely a
big deal).

To address the precision constraints of tools
based solely on tracking DNS lookups,
detection tools implement additional
functionality. One example of a tool that
implements additional functionality is
BOAST. It is a “server built to receive and
report Out-of-Band Application Security
Testing interactions”. It integrates with ZAP,
an open source attack proxy used for
penetration testing, and implements receivers
for not only the DNS protocol, but also the
HTTP and HTTPS protocols (ZAP – BOAST,
n.d.). HTTP and HTTPS are incredibly
common protocols and are used for a
significant portion of web-based
communication, making their implementation
a very pragmatic choice. Using BOAST will
provide additional information about a
detected vulnerability, but only if that
vulnerability goes on to initiate HTTP or
HTTPS communication. Many variations of
Log4Shell use the LDAP protocol, so
communications triggered by Log4Shell will
stop at DNS lookups when using BOAST.
The information provided by BOAST is
useful, but even better tools exist.

3. PROJECT DESIGN
This project leverages Interact.sh, a
cutting-edge tool for detecting various types
of out-of-band vulnerabilities. To understand
the importance of Interact.sh features and
how this project leverages the tool, a
technical knowledge base must be
established.

3.1 Out-of-band vulnerability components
Multiple types of exploits can be used to
compromise networked applications. Many

follow a similar pattern: send an exploit
payload to a service (ex. submit a username
and password to a website’s login form) and
see if the service responds with something
interesting (ex. does the exploit enable
logging into someone else’s account?).

However, the communication involved with
Log4Shell followed a different pattern. The
first step stayed the same: send an exploit
payload to a service. However, there was not
typically any more significant communication
along that channel. In the service login
example, the result of username and password
submission is relatively inconsequential. The
real goal is getting the username or password
processed and logged by a vulnerable Log4J.
Causing remote code lookup via template
string substitution triggers outbound
communication from the vulnerable service to
some malicious host. Crucially, this
communication is on a different channel: it is
not related to the method of sending the
exploit payload and could occur far after the
exploit is sent. Vulnerabilities that involve
this pattern of multi-channel communication
are known as out-of-band vulnerabilities or
second order vulnerabilities.

Detecting out-of-band vulnerabilities and
gleaning useful information about their
presence is a tricky problem. There are
various scenarios where the location of the
vulnerability is unclear. It is not necessarily
the original target of the exploit payload, and
the consequence of the exploit may be
something unexpected. There is a tradeoff
when making additional assumptions about
what an exploit will do to the target system (if
anything). Assumptions can help guide the
detection strategy and provide precision when
reasonable, but they could also cause one to
narrow their search too far and miss an
important signal.

3.2 Out-of-band vulnerability detection



Traditionally, out-of-band vulnerabilities are
detected by tracking DNS lookups. To
provide a brief overview of networked
communication, computers are addressed on a
network by their Internet Protocol (IP)
address. A computer’s IP address is just a
number; network infrastructure can identify a
computer and direct traffic to that computer
by its IP address. However, IP addresses are
not very ergonomic; it would not be ideal to
only use the IP address 172.253.115.113 to
direct traffic to Google. On top of carrying
minimal semantic information, IP addresses
for a computer or a network can change. To
work around these constraints, the Domain
Name System (DNS) is used. This system
effectively maps domains that many people
are today familiar with (ex. google.com) to
useful information for networked
communication (IP addresses, among other
things). For a computer to find the IP address
(useful to the computer) mapped to a given
domain, it must perform a DNS lookup. To
over-simplify things a bit, this can be thought
of as asking the DNS (a collection of servers)
the following: “what is the IP address of this
domain?”. A computer somewhere is
responding to this DNS lookup, with a
process similar to other common
request-response communication.

The noteworthy insight is that since DNS
lookups are served by a program running on a
computer somewhere, having a program that
both serves DNS lookups and logs the lookup
event is useful. A DNS lookup is needed to
initiate a wide swath of communication
archetypes. Whether it is loading a website,
sending an email, or transferring a file, the
networked communication for that action
probably starts with a DNS lookup.

Differentiating between communication
archetypes is difficult to do with just DNS
lookup tracking. Tools like BOAST can
recognize one popular protocol, HTTP(S), but

fall short when other types of communication
are initiated. Interact.sh is unique in this
respect, because it can detect DNS, HTTP(S),
SMTP(S), and LDAP interaction
(projectdiscovery/interactsh, n.d.). It also
integrates easily with ZAP and provides
additional useful functionality. Detection
tools built on top of Interact.sh are versatile,
informative, and easy to work with.

3.3 Additional requirements
To build useful detection tools, additional
criteria must be met. Interact.sh is a server
program that other tools can point to, so it
must be hosted somewhere. Freely available
instances exist, but using a public instance
means vulnerability data will be sent to an
unknown third party. Thus, it is necessary to
host a private instance on controlled and
trusted infrastructure.

Detection tools can be useful in isolation, but
leveraging new tools as components in a
greater system can be more efficient. This
company has pre-existing security
automation, so a detection tool that also
integrates with this system is required.

Finally, an easily-forgotten requirement of
detection tools is proof that the tool works.
There is extraneous technical setup and
programming work required to prove that the
detection tool performs as expected.
Successfully detecting a known vulnerability
in a realistic but controlled environment
provides a reasonable level of confidence in
the tool’s ability to detect a real vulnerability.

4. RESULTS
The first half of the internship was spent
developing a strong foundation for a
production detection tool. After gaining a
strong understanding of detection mechanics
and the unique affordances of Interact.sh, a
local prototype was developed. Once the local
prototype successfully detected a



vulnerability in a controlled environment,
Interact.sh was deployed to cloud
infrastructure and the test was repeated.

The second half of the internship expanded
on this work, prototyping various tools that
leveraged Interact.sh. Manual ZAP scans of
production Internet-facing services were
performed with new Interact.sh access. An
additional stage of automated security testing
was developed, using Interact.sh and
integrating with existing execution and data
systems. Finally, a new security testing
program was prototyped, enabling
programmatic detection of thousands of
variations of a particular vulnerability instead
of manual testing of individual variations.

5. CONCLUSION
Out-of-band vulnerabilities remain a
noteworthy problem in the cybersecurity
world. They are not trivial to detect, and they
may grow more relevant as new software
communication patterns emerge. This project
demonstrated an effective approach for
creating an out-of-band application security
testing basis. Understanding the shape of the
problem enabled evaluation of solutions.
After performing incremental testing on the
Interact.sh setup to ensure efficacy, various
practical prototypes were developed that
strengthened detection capabilities.

6. FUTUREWORK
There is always more that can be done to
increase detection capabilities with this
project. Prototypes developed during the
internship primarily relied on manual
activation; further work could integrate
Interact.sh into regular automated scans. The
deployment of an Interact.sh instance was
also relatively brittle, so greater automation
and process surrounding deployment could be
developed.

REFERENCES

Goodin, D. (2021, December 12). The
Log4Shell 0-day, four days on: What is it, and
how bad is it really? Ars Technica.
https://arstechnica.com/information-technolo
gy/2021/12/the-log4shell-zeroday-4-days-on-
what-is-it-and-how-bad-is-it-really/

Out of Band Exploitation (OOB) CheatSheet.
(2018, August 30). NotSoSecure. Retrieved
February 23, 2024, from
https://notsosecure.com/out-band-exploitation
-oob-cheatsheet

projectdiscovery/interactsh: An OOB
interaction gathering server and client
library. (n.d.). GitHub. Retrieved March 22,
2024, from
https://github.com/projectdiscovery/interactsh

ZAP – BOAST. (n.d.). ZAP. Retrieved
February 23, 2024, from
https://www.zaproxy.org/docs/desktop/addons
/oast-support/services/boast/

https://arstechnica.com/information-technology/2021/12/the-log4shell-zeroday-4-days-on-what-is-it-and-how-bad-is-it-really/
https://arstechnica.com/information-technology/2021/12/the-log4shell-zeroday-4-days-on-what-is-it-and-how-bad-is-it-really/
https://arstechnica.com/information-technology/2021/12/the-log4shell-zeroday-4-days-on-what-is-it-and-how-bad-is-it-really/
https://notsosecure.com/out-band-exploitation-oob-cheatsheet
https://notsosecure.com/out-band-exploitation-oob-cheatsheet

