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Abstract 
Heart failure (HF) is a condition in which the cardiac muscle can no longer efficiently circulate blood to 
meet the body’s needs. HF is a subset of cardiovascular disease (CVD), which accounts for 31% of the 
annual global death toll and costs the U.S. $200 billion annually in direct and indirect costs. Early detection 
of HF can lead to better outcomes and longitudinal quality of life, but there are currently minimal early 
detection techniques. Thus, this project aims to develop a novel diagnostic device for heart failure that is 
ergonomic, easy-to-use, and can be implemented for at-home screening. To develop this device, aortic 
waveform derivation and machine learning-assisted aortic waveform classification was conducted. We 
achieved a 49.96% waveform transformation accuracy as measured by augmentation index (AIx) accuracy 
and found statistically significant differences between mean AIx across all but one patient dataset. 
Additionally, we achieved a maximum classification accuracy of 77.8% using machine learning algorithms 
trained on native aortic waveforms. Future work should increase patient sample sizes to develop unique 
generalized transfer functions for the patient population of interest and to allow for more robust training of 
machine learning algorithms. The results shown here lay the framework for the application of the waveform 
transformation program and classification algorithm into a commercial diagnostic device that could lead to 
improved patient outcomes for millions of people each year. 
 
Keywords: Heart Failure, Diagnostics, Machine Learning, Medical Device

Introduction 
Cardiovascular Disease and Heart Failure 

Cardiovascular disease (CVD) is the leading cause 
of death globally, accounting for 31% of the annual global 
death toll. Over 65% of this burden falls upon middle- and 
low-income countries.1 Coronary artery disease (CAD) is a 
subset of CVD that accounts for over half of the annual U.S. 
death toll; it can also lead to heart failure (HF), which is a 
condition that occurs when the heart cannot efficiently 
pump blood throughout the body. The total costs due to 
cardiovascular diseases in the U.S. are reported to be over 
$200 billion annually - a figure resulting from both direct 
(hospitalization, medication, etc.) and indirect (lost 
productivity) costs.2 There are many comorbid conditions 
that can result in CVD, CAD, and subsequently HF; these 
include hypertension, diabetes, past heart attack, 
cardiomyopathy, and sleep apnea. Early detection and 
treatment, however, can improve patient outcomes and 
longitudinal quality of life.3 Diagnostic tools used to identify cardiovascular 

diseases currently include electrocardiograms, 

Fig. 1. The above figure displays findings from an echocardiogram study utilizing 
ultrasound to visualize the heart and its various chambers. Labelled in the above 
image are the left atrium (LA), the right atrium (RA), the left ventricle (LV), the 
right ventricle (RV), the tricuspid valve (TV), and the mitral valve (MV). 
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echocardiograms, exercise and nuclear stress tests, 
angiograms, cardiac CTs, and pulse wave velocity 
measures.4 These tools allow clinicians to quantify 
cardiovascular function by measuring or calculating various 
characteristics such as heart rate, cardiac output, ejection 
fraction, arterial elasticity, and many others. Figure 1 shows 
partial findings from an echocardiogram displaying various 
heart chambers and vessels from which physiological 
indicators of CVD and HF can be determined.5 Analysis of 
diagnostic findings in the context of the patient’s history 
and the results of any other tests performed then allow 
clinicians to determine whether or not a patient has 
developed a cardiovascular disease. However, there are 
currently minimal early detection techniques for HF, even 
fewer of which can be implemented for at-home screening.6 
Pulse Waveform Analysis 

Pulse waveform analysis (PWA) has the potential 
to address this gap of accessible early diagnostics for CVD 
and HF. PWA is the analysis of the pressure waveform 
created by blood of various pressures flowing through the 
vasculature and can be measured directly (catheterization) 
or indirectly (plethysmography). From the pulse waveform, 
many physiological characteristics can be measured; for 
example, Figure 2 shows measurements of systolic, 
diastolic, anacrotic notch, dicrotic notch, and mean arterial 
pressures. From these characteristics, compound 
measurements and prognostic information can be derived 
by clinicians and aid decision-making.7 
 A clinically relevant compound measurement is the 
Augmentation Index (AIx), which is derived from dividing 
the difference between the systolic pressure and the 
anacrotic notch pressure by the pulse pressure.8 
Physiologically, AIx is a measure of arterial stiffness as it 
offers a standardized measure of the location of the 
anacrotic notch relative to the systolic and diastolic 
pressures. More specifically, AIx indicates the interference 

to the current pulse wave by the reflection wave from an 
earlier bolus of blood traversing the artery.9 Studies have 
shown AIx to be significantly correlated with clinical 
indicators of cardiovascular disease risk, indicating the 
index’s potential to provide clinically relevant diagnostic 
information.10 A follow-on study further supported the 
aforementioned findings and elaborated on the usefulness 
of AIx in predicting CVD in various contexts. Specifically, 
pulsatile arterial hemodynamics, which included measures 
of wave reflection, were found to be predictive of CVD in 
conditions of essential hypertension, renal failure, diabetes, 
and aging.11 
 In addition to AIx, characteristics of the anacrotic 
and dicrotic notches can also offer diagnostic insight. A 
clinical study of septic shock patients revealed that the 
dicrotic notch location could be used to determine the 
etiology of tachycardia in this patient population. 
Specifically, the distance between the dicrotic notch and the 
systolic peak could determine whether the tachycardia was 
compensatory or non-compensatory.12 A separate analysis 
of severe aortic stenosis showed the presence of a 
pronounced anacrotic notch could indicate stenosis severity. 
The study predicted that this waveform finding would be 
due to a drop in pressure due to turbulence in the aortic 
vessel indicative of the aforementioned pathology.13 The 
analysis of the aforementioned waveform features, 
including AIx, anacrotic notch, and dicrotic notch, would 
serve as essential components of a diagnostic device for 
CVD and HF. 
Central Waveform Derivation Techniques 
 Although catheterization is the most accurate 
approach to recording aortic pulse waveforms for analysis, 
prior work has shown that these central waveforms can be 
derived from peripheral (radial and brachial) waveforms 
that can be measured noninvasively. The seminal work in 
this area defined transfer functions to derive central pressure 
waveforms from measurements at both the brachial and 
radial arteries. They also demonstrated that these 
generalized transfer functions could be applied to human 
subjects under various circumstances with acceptable 
accuracy.14 Subsequent studies adopted this method and 
validated the accuracy of generalized transfer functions by 
comparing measured and derived values for features such as 
systolic and mean arterial pressures; specifically, 
researchers found a correlation between measured and 
derived values of r = 0.995 with p < 0.001.15 Though more 
involved modelling techniques have been proposed, such as 
the 4-element Windkessel model, the simplicity of a 
generalized transfer function still makes it the best 
candidate for application in a potential diagnostic device.16 

Fig. 2. The above figure displays a representative aortic pressure waveform with 
the pressure in mmHg along the y-axis and time along the x-axis. Labelled are 
physiologic features such as systolic blood pressure, diastolic blood pressure, 
anacrotic notch, and dicrotic notch. Additionally, compound measurements such 
as augmentation and pulse pressure are also shown. 



Matharoo et al., Group 4F, 07 05 2021 

3 

 In recent decades, diagnostic methods have been 
revolutionized by the application of artificial intelligence 
(AI). For example, implementation in reading X-rays, 
interpreting MRIs, identifying cancer cells, and stratifying 
the severity of diabetic retinopathy all display the benefits 
that artificial intelligence can provide.17 In cardiovascular 
medicine, AI has been used to assist in nuanced 
interpretation of echocardiography results and to enhance 
images in single-photon emission computed tomography 
(SPECT) myocardial perfusion imaging (MPI). In fact, 
there is currently an FDA-approved program that collects 
these MPI results and compares them to larger datasets in 
order to assist the physicians interpreting them.18 The 
application of AI in PWA could prove a robust diagnostic 
tool for the detection of CVD and HF. 
 There exists a gap in early detection and diagnosis 
of CVD and HF due to the invasiveness and economic 
inaccessibility of traditional diagnostic techniques to large 
segments of the population. Due to the high death and 
economic burden the aforementioned conditions place on 
the U.S. and the entire world, there is an urgent need for a 
diagnostic device capable of efficient and inexpensive 
diagnosis of CVD and HF. Currently, there is no FDA-
approved solution on the market, as competitors such as 
CareTaker Medical have not received approval for the 
predictive capabilities of their device.19 

Thus, this project seeks to develop a non-invasive, 
easy-to-use diagnostic device that utilizes pulse wave 
analysis and machine learning to allow patients the ability 
to screen for and monitor cardiovascular conditions from 
the comfort of their own homes. More specifically, this 
project explored three major aims: 1) to develop an accurate 
central waveform derivation system, 2) to develop an 
accurate central waveform classification machine learning 
algorithm, and 3) to confirm congruent results for 
classification of both native and derived aortic waveforms 
for ultimate implementation into a novel diagnostic device. 
Results 
Waveform Transformation 

This project aimed to develop an accurate central 
waveform derivation system using generalized transfer 
functions. After peripheral waveform collection, accuracy 

was measured in comparison to the native aortic waveforms 
recorded during cardiac catheterization. Augmentation 
index (AIx) congruence was used as the basis of the 
accuracy calculation as AIx is a compound measure that 
incorporates various different pulse waveform 
characteristics and is a relative rather than discrete measure. 
Analysis of the derived and native aortic pulse waveforms 
from three different patients was conducted and, as shown 
in Table 1, there was on average a 49.96% accuracy in AIx 
as measured from the derived versus native waveform. 
Statistical analyses were performed for each patient and 
across all patients, and revealed statistically significant 
differences in mean AIx values between derived and native 
waveforms in all comparisons except that for Patient 5. This 
leads to the rejection of the null hypothesis that there is not 
a difference in the mean AIx of the derived versus the native 
aortic waveform for all patients (individually and 
collectively) except Patient 5. These analyses were 
conducted using Student’s T-tests with unpaired tests run 
for each individual patient and a paired test comparing 
means across all patients. Results for these tests are 
elaborated in Table S1 and graphically represented in Figure 
3. 

Fig. 3. The above figure displays a graphical representation of average 
augmentation indices of native and derived waveforms for patients 5, 6, and 
7. Statistically significant differences between means are indicated with an 
asterisk. Overall trends showed lower derived versus native average 
augmentation indices. 

Table 1. The above table displays results for derivation accuracy of waveform 
transformation as measured by augmentation index accuracy. It was found that 
the waveform transformation method used resulted in an average augmentation 
index accuracy of 49.96%. 

Table 2. The above table displays results from machine learning algorithm 
classification accuracy testing. The greatest accuracy was achieved by Support 
Vector Machine and Gaussian Naïve Bayes algorithms (77.8%). This accuracy 
was also achieved using logistic regression, the non-machine learning control 
algorithm. 
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Machine Learning Algorithm Performance 
 This project aimed to develop a central waveform 
classification system using machine learning with at least a 
90% accuracy, as this is an acceptable value for clinical 
relevance in other AI applications in healthcare.20 Native 
aortic pressure waveforms collected from patients during 
cardiac catheterization procedures were procured post-hoc 
and utilized as training and testing sets for various machine 
learning algorithms. Ten waveforms were used to train the 
algorithms and nine waveforms were used to test classifying 
them as heart failure or non-heart failure waveforms. Of the 
four algorithms tested – namely K-Nearest Neighbors, 
Decision Tree, Gaussian Naïve Bayes, and Support Vector 
Machine (SMV) – the Gaussian Naïve Bayes and SVM 
algorithms yielded the best performance with an accuracy 
of 77.8% as shown in Table 2. Additionally, a simple 
logistic regression was built and tested as a non-machine 
learning control and also yielded a 77.8% accuracy in 
classification. 
Congruence Testing 
 Finally, this project aimed to verify congruent 
classification results for both derived and native aortic 
waveforms using the machine learning algorithm developed 
in Aim 2. Due to the sequential nature of Aims 2 and 3, this 
testing was not conducted because the machine learning 
algorithm was not yet displaying a classification accuracy 
of greater than 90%. 
Discussion 
 Of the three major aims declared at the beginning 
of this project, Aim 1’s results saw an average derived AIx 

accuracy of 50% compared to native aortic waveforms, Aim 
2’s results displayed a maximum classification accuracy of 
77.8% with Gaussian Naïve Bayes and Support Vector 
Machine algorithms, and Aim 3 was unable to be realized. 
 The aortic waveform derivation portion of the 
project yielded an average derived AIx accuracy of 50% 
compared to native aortic waveforms and showed 
statistically significant differences between mean AIx 
measures for derived and native waveforms for all 
comparisons except for Patient 5 independently. It is 
possible that the AIx measurement was more accurate for 
Patient 5’s derived waveforms, as they displayed more 
pronounced anacrotic notches than those of Patients 6 and 7 
as seen in Figure 4. Additionally, the generalized transfer 
function utilized was referenced from literature as COVID-
19 restrictions prevented the collection of enough derived 
and native waveforms to develop novel generalized transfer 
functions; thus, the transfer function used was not derived 
from the unique patient population being observed. Studies 
have also shown the inefficacy of generalized transfer 
functions on large sample sets, and this taken in conjunction 
with the previously mentioned limitations could have 
resulted in the low accuracy of the central waveform 
derivation system.21 Future studies should develop novel 
generalized transfer functions specific to the patient 
population of interest, as this would increase accuracy of the 
waveform transformation process for future implementation 
into a diagnostic device. 
 The machine learning algorithm portion of the 
project showed a maximum classification accuracy of 
77.8%, which was achieved by Gaussian Naïve Bayes and 

Fig. 4. The above figure displays representative derived aortic waveforms from patient 5 (left) and patient 6 (right), with normalized pressure along both y-axes and time 
along both x-axes. Circled in both images is the anacrotic notch of the waveform, which is visibly more defined and identifiable in patient 5’s waveform compared to 
that in patient 6’s waveform. 
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Support Vector Machine algorithms as well as the non-
machine learning logistic regression control. This result is 
probably due to the small sample set used to train the 
algorithms, as machine learning algorithm performance is 
directly related to training set size.22 A major limitation to 
training dataset size was stringent conditions for acceptable 
patients; data collection required left heart catheterization 
or coronary angiography procedures to have been 
performed and for those patients to have been previously 
phenotyped by resident physicians. Future studies should 
implement methods to counteract small datasets; for 
example, crude estimation of parameters could increase 
accuracy without losing precision due to an increase in 
degrees of freedom.23 Additionally, fewer parameters could 
be used to decrease the degrees of freedom for preliminary 
algorithm development until more training data can be 
obtained. 
 The congruence testing portion of this project could 
not be completed because the desired accuracy of the 
classification system was not reached. Future studies should 
prioritize the successful development of the machine 
learning algorithm using aforementioned techniques of 
overcoming small training dataset size. This portion of the 
project is essential to apply the machine learning algorithm 
to a diagnostic device, as the device would input peripheral 
waveforms whereas the algorithm is trained on native aortic 
waveforms. 
 General limitations faced by this project included 
difficulties with patient recruitment, device failures, and 
COVID-19 restrictions suspending patient research. First 
off, patient recruitment was difficult due to the general 
condition of the patient population of interest; patients with 
heart failure often suffer from comorbid conditions and are 
not in good health, which in our experience makes them 
wary to agreeing to participate in the study. Additionally, 
the prospect of their catheterization procedure was very 
anxiety-inducing, further deterring the patients from 
participating in the study. 
 Finally, COVID-19 restrictions imposed by the 
UVA Health system limited access to patients as 
undergraduate researchers were not permitted in research 
and clinical areas for most of the year. The IRB protocol 
was adjusted to accommodate for minimal patient access, 
but the reduced patient sample tested amplified the 
aforementioned errors of declining participation and device 
failure. 
 As mentioned above, future studies should aim to 
test a larger cohort of patients and utilize a subset of these 
to develop novel generalized transfer functions to achieve 

an accuracy of at least 90% as measured by augmentation 
index between the derived and native aortic waveforms. 
Future work should also utilize this larger patient sample to 
optimize machine learning algorithms until a candidate 
algorithm achieving at least 90% classification accuracy is 
identified for device implementation. Then, congruence 
testing should be conducted as detailed below in Materials 
and Methods. Finally, the current device should be 
consolidated into a more ergonomic, easy-to-use device that 
has an interactive user interface. 
 Once device development is complete, the novel 
diagnostic device can follow the 510(k) de novo pathway 
for FDA approval and eventual commercialization. 
Through the aforementioned future directions, this device 
will serve to offer patients early detection and monitoring 
of CVD and HF from their own homes, offering potentially 
better outcomes and cost savings for both patients and 
hospitals. 
Materials and Methods 
 This project involved various processes being 
conducted in parallel to achieve the overall goal of 
developing a novel diagnostic device for heart failure and 
also to complete the three specific aims introduced 
previously. In addition to descriptions of each step in 
following subsections, Figure 5 displays a block diagram of 
the project and interactions between each step. 

Patient Recruitment 
 IRB approval for the previous year’s project was 
extended to this project with slight protocol alterations due 
to COVID-19. Specifically, the original 6-minute walk test 
and EKG measurements at various seated positions were 

Fig. 5. The above figure displays a block diagram flowchart of the methods 
undertaken during this project. Notably, the waveform transformation methods 
(left half) and the machine learning algorithm development methods (right half) 
occurred concurrently. 



Matharoo et al., 05/07/2021 
 

6 

foregone in favor of a single pulse oximeter measurement 
in triplicate during the catheterization procedure. This was 
chosen because many of the physiologic characteristics of 
the patients were already recorded in the EPIC system and 
phenotyping by resident physicians, and because this 
method would limit patient contact and promote COVID-19 
safety for both patients and researchers. 
Catheterization Procedure 
 The peripheral waveform collection was performed 
during a catheterization procedure performed by one of the 
UVA Cardiology attending physicians. Specifically, left 
heart catheterizations and coronary angiography procedures 
were attended by researchers because these procedures 
gather pressures at the aorta, whereas right heart 
catheterizations do not reach the left side of the heart. These 
procedures were generally conducted as exploratory 
catheterizations to determine pressures across the heart and 
to identify any blockages in the vasculature feeding the 
cardiac muscle. During the procedure, a Swan Ganz catheter 
is thread up either the patient’s radial or femoral artery up 
to the aorta, after which various hemodynamic 
measurements and pressure recordings are taken throughout 
the left side of the heart. 
Peripheral Waveform Collection 
 During the catheterization procedure detailed 
above, peripheral waveform recordings were conducted by 
researchers. More specifically, a pulse oximeter was 
connected to the patient’s left index finger (as the physician 
was working on the patient’s right side) and attached to an 
Arduino board with plethysmography shield (ProtoCentral 
AFE4490 Pulse Oximeter Shield). The plethysmography 
shield, shown in Figure S1, was constructed by the previous 
year’s group and repurposed for this project; namely, the 
EKG electrodes were no longer utilized and the code was 
reworked. 
 The program developed for this code integrated 
Arduino files in C++ and MATLAB code to first gather data 
from the pulse oximeter for eight seconds. Then, the input 
was fed to an Arduino program that parsed the data and 
exported relevant measures of Red and IR light to the 
MATLAB program that displayed the waveform. The data 
collection and exporting were done through a consolidated 
function created by the previous year’s group, but the 
parsing of relevant values and displaying of waveforms was 
developed this year. 
Waveform Transformation 
 Once the relevant patient data were exported to 
MATLAB and the peripheral waveforms were displayed, a 
Fourier transform was applied to the data to convert it into 

the frequency domain. After this, a transfer function was 
applied to the data to transform the peripheral waveform to 
a derived aortic waveform. As stated in limitations above, 
due to small sample sizes this project was unable to 
determine novel generalized transfer functions and thus 
referenced generalized transfer functions from literature 
that utilized a similar method of aortic waveform 
derivation.14 This transfer function’s parameters can be 
found in Figure S2. 
 To confirm the validity of the methods used, 
peripheral and derived aortic waveforms were visually 
compared by this project’s clinical advisor (himself a 
cardiology attending physician) to determine whether 
expected trends were discernable. Specifically, it was 
observed that the systolic peak in the derived waveforms 
was lower and that the slope to the systolic peak in the 
derived waveforms was also lower. Differences in features 
used to validate transformation methods can be seen in 
Figure 6. 
Native Waveform Collection 
 Native aortic waveforms were collected after 
catheterization procedures from recruited patients. To 
accomplish this, researchers accessed electronic records 

from the UVA Cath Lab’s MacLab program. Timestamps 
surrounding aortic pressure recordings were selected and 
data were exported to a USB drive. These waveforms were 
then transferred to a secure server on the UVA Health 
network and copies of anonymized waveforms were used 
by researchers for machine learning algorithm 

Fig. 6. The above figure displays a graphical representation of representative native 
peripheral (blue) and derived aortic (red) waveforms from patient 5. Pressure in 
mmHg is along the y-axis and time is along the x-axis. Notable differences include 
a higher systolic peak and slope leading up to the systolic peak in the peripheral 
versus the aortic waveform. 
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development. All patient data was handled in a HIPAA-
compliant fashion throughout the collection and analysis 
processes. 
Machine Learning Algorithm Development 
 Native aortic waveforms gathered during 
catheterization procedures were first parsed through a 
MATLAB program that isolated the relevant data channels 
and displayed the raw native waveform for each patient. 
Then, a representative waveform was manually selected 
from each recording. Next, features were manually 
measured on each representative waveform; these included 
systolic, diastolic, anacrotic notch, dicrotic notch, and mean 
arterial pressures, as well as time to rise, time to fall, and 
area under the curve measurements. 
 After characteristics were extracted from 
representative waveforms, these data were sent to 
collaborators from the UVA Department of Computer 
Science. The collaborators then created feature arrays for 
each waveform and gathered phenotype data for each 
patient that had been procured by resident physicians 
previously. Through the phenotype data, they were able to 
determine which patients had HF and which ones did not; 
this assisted them in training various machine learning 
algorithms. The collaborators then used 10 of the 19 
collected waveforms to train four machine learning 
algorithms – K-Nearest Neighbors, Decision Tree, 
Gaussian Naïve Bayes, and Support Vector Machine – to be 
tested for classification accuracy. 
Accuracy and Congruence Testing 
 To determine the accuracy of both the waveform 
transformation and the machine learning classification 
methods described above, accuracy and congruence of 
results were tested. 
 For the waveform transformation, the 
Augmentation Index (AIx) for both the derived and native 
aortic waveforms was calculated manually for five 
representative waveforms from three distinct patients. 
Then, percent accuracy was calculated and Student’s T-tests 
were run to determine whether there was a difference in 
mean AIx values; these statistical tests were conducted both 
inter- and intra-patient. 
 For the machine learning classification, the four 
machine learning algorithms introduced above were used to 
classify nine native waveforms. Additionally, a non-
machine learning logistical regression was used as a control. 
The classification accuracy was calculated for each of the 
five algorithms to determine the most effective candidate to 
move forward with. 

 To determine whether the machine learning 
algorithm selected produced consistent classification results 
when evaluating both native and derived aortic waveforms 
from the same patient, congruence testing was planned to 
be conducted. However, this step was not completed due to 
incomplete algorithm performance optimization. 
Novel Diagnostic Device Development 
 After testing the accuracy and congruence of the 
waveform transformation and machine learning 
classification methods detailed above, the machine learning 
algorithm was to be incorporated into the peripheral 
waveform collection device. Then, the scaffold of this 
device was to be reconstructed to include a user interface 
and more ergonomic design. However, this step was not 
completed due to incomplete waveform transformation and 
algorithm performance optimization. 
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Supplemental Information 
 Table S1. The above table displays results of statistical analysis conducted on 

the average augmentation indices of native and derived waveforms from 
Patients 5, 6, and 7. Statistically significant differences in mean augmentation 
index were found within patients 6 and 7 as well as across all patients (alpha = 
0.05). 

Fig. S1. The above figure displays the device utilized to collect native peripheral 
waveforms from recruited patients during catheterization procedures. Shown is 
the pulse oximeter extension connected to a researcher’s finger to demonstrate 
the patient data collection process. 

Fig. S2. The above figure displays the amplification and phase parameters for 
the generalized transfer function used for aortic waveform derivation in the 
waveform transformation program. The parameters (y-axis) vary with frequency 
(x-axis). These values were referenced from literature.14 


