
The Assistive Chessboard

A Technical Report submitted to the Department of Electrical and Computer Engineering

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Ramie George Katan

Fall, 2022

Technical Project Team Members

Srikar Chittari

Iain Ramsey

James Weeden

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Harry C. Powell Jr., Department of Electrical and Computer Engineering

 1

Statement of work:

Ramie Katan:

My responsibilities primarily focused on designing an identification system for the chess pieces.
Specifically, I researched Hall Effect sensors that would be both cost effective and act as a switch. As the
Hall Effect sensors are digital sensors, being omni polar would create a more reliable system as we only
need to detect whether a magnet was placed on the tile or not. I also was in charge of making sure the
system was able to receive power as well as designing a way to power the system and control the sensor
board using a Raspberry Pi Pico. I created all the schematics and board layouts for the PCBs using the
capstone project. The voltage regulator board contains a step-down buck converter which converts 5V
to 3.3V. This allows a safe supply voltage level for the raspberry pi pico and sensor boards to operate. I
also was in charge of creating a power system for the LEDs so Srikar could interface with them.
Throughout the project, I made sure to work closely with Srikar so that the embedded programs would
work without significant modifications. I also helped debug issues with the sensor board, LEDs, and
voltage regulator board to ensure completion of the project.

Iain Ramsey:

My responsibilities were implementing the serial communication between the Raspberry Pi Pico
and PC, developing the finite state machine (FSM) game algorithm, and designing the physical board in
CAD and manufacturing and assembling the acrylic parts. For the serial communication, I wrote both
embedded C and python code to enable two-way communication between the Pico and PC. For the
FSM, I created an algorithm that processes signals sent from the Pico and determines if a legal chess
move has been made. The FSM also recognizes when illegal moves have been made, interfaces with the
Stockfish chess engine, and writes signals to the Pico to illuminate the LED’s. The FSM serves as the
bridge between many different subsystems because it interacts with the embedded software, GUI, and
chess AI simultaneously. For the mechanical design and manufacturing, I created CAD files in Solidworks
to model the chess board. Then, converting the CAD files into .dxf, I laser cut acrylic sheets using a
machine in the mechanical engineering building. Finally, I used acrylic weld-on and super glue to
assemble the acrylic pieces. I would like to acknowledge that a friend (Alexa Borden) in the mechanical
engineering department provided me access to their laser cutter and advised me on the design of my
CAD files. I would not have been able to build as pretty or robust of a chessboard without their help.

Srikar Chittari:

My main responsibilities were programming the firmware of the Raspberry Pi Pico and
developing the Graphical User Interface (GUI). I programmed the Pico to read the hall-effect sensor
network and send the chess board state to the PC over USB serial. I worked with Ramie to test and
debug the signals from hall-effect sensors and multiplexers on the sensor board. Using Progammable I/O
from the Pico’s SDK, I programmed the Pico to interface with WS2812b addressable LEDs and drive a
matrix of 64 LEDs under the chess board. I tested and debugged the protocol and LEDs, and I worked
with Ramie to test and debug the logic level translator. I wrote a library in Python to create format

 2

recommendations and errors that would be sent to the LED driver code. I also built off James’ initial
work on the GUI and integrated it with the FSM’s real-time updates. I implemented features that would
allow the user to start at the beginning of a chess game or in the middle of a game and configure their
move recommendations and Stockfish AI settings during the game. I developed James’ preliminary chess
clock to toggle the active player’s clock automatically and support several time limits options. I improved
the UI on the GUI to provide an intuitive and responsive experience during the game. As a secondary
role, I helped Iain come up with ideas for the FSM implementation and detecting the chess board state.

James Weeden:

For the project my central role revolved around the creation of a graphical user interface (GUI)
in Tkinter that allows for the user to configure settings of the stockfish chess AI in game. In completing
this role, I built out the main Python framework, setting up widget placement and working to prepare
the GUI so that Srikar and Iain could help get it working with the FSM in real time. Furthermore, I
designed a menu system to allow users to control sliders that tune parameters of the AI that Srikar
himself specifically connected the GUI to regardless of the side that they are playing. I created separate
functions to implement countdown timers that were later transferred to more readable clock displays in
standard time by Srikar. To give players a clear indicator of the connection between the board and the
GUI, I created a live time display of the board that moved pieces in the center of the GUI with respect to
actual movements on the board. This included design of a resizable chess set and implementation of
custom piece graphics to make the board display easier to modify.

 3

Table of Contents

Statement of work: .. 1

Table of Figures .. 4
Table of Tables ... 4

Background ... 5
Physical Constraints .. 7

Design Constraints .. 7
Cost Constraints .. 7
Tools Employed .. 7

Societal Impact Constraints .. 8
Environmental Impact and Sustainability ... 8
Health and Safety .. 8
Ethical, Social, and Economic Concerns .. 9

External Considerations .. 9
External Standards .. 9
Intellectual Property Issues ... 10

Detailed Technical Description of Project .. 11
What it is ... 11

How it works ... 12
Hardware ... 13

Software .. 22
FSM .. 22
GUI ... 24

Project Timeline .. 36

Test Plan .. 38
Final Results ... 40

Costs .. 42
Future Work .. 43

References ... 45

 4

Table of Figures
Figure 1: Block Diagram of the Full System .. 13
Figure 2: Top level of Sensor Board ... 13
Figure 3: Top level of Voltage Regulator Board .. 14
Figure 4:Voltage Regulator ... 14
Figure 5: 8 Hall Effect by 1 Mux schematic ... 16
Figure 6: 8 Muxes by 1 Central Mux schematic ... 17
Figure 7: Sensor Board Layout ... 18
Figure 8: Sensor Board Layout ... 19
Figure 9: Flowchart of Algorithm ... 23
Figure 10: FSM Diagram .. 23
Figure 11: GUI starting screen .. 24
Figure 12: Default Recommendation Mode ... 25
Figure 13: Grandmaster Recommendation Mode ... 25
Figure 14: Starting from custom, mid-game screen .. 26
Figure 15: Clock options ... 27
Figure 16: Chess Clock ... 27
Figure 17: CAD Assembly of Top Surface ... 28
Figure 18: CAD File of Front and Back of the Chess Board .. 29
Figure 19: CAD File of Input/Output Ports .. 29
Figure 20: Ring Around the Magnet ... 30
Figure 21: Laser Cutting Acrylic Sheets. The Machine can be found in the M.I.L.L of the
Mechanical Engineering Building. ... 31
Figure 22: Assembling the Chessboard Grid .. 32
Figure 23: Finalized Chess Top Surface ... 33
Figure 24: Finalized Chess Top Surface ... 33
Figure 25: Finalized Chess Board ... 34
Figure 26: Initial Proposed Timeline .. 36
Figure 27: Midterm Design Review Proposed Timeline .. 37
Figure 28: Finalized Timeline ... 38
Figure 29: Decision Tree for Test Plan ... 39

Table of Tables
Table 1: Current Consumption of Components .. 15
Table 2: Hall-effect sensor network multiplexing .. 20
Table 3: LED mapping .. 21
Table 4: Grading Rubric ... 41
Table 5: Letter Grade based on Rubric ... 42
Table 6: Cost of Parts .. 42

 5

Abstract

The Assistive LED Chess Board is an educational tool that promotes chess enthusiasts, beginners,
and advanced players alike, to improve their skills. The interactive chess board illuminates the chess
squares showing the user recommendations from a chess engine. Users can configure the
recommendations of the chess engine, from engine strength and frequency to the number of
recommendations in the graphical user interface. Each chess piece has a magnet at its base, and a
network of 64 hall-effect sensors determines the position of the chess pieces. Using a known chess
position, either the starting position or a mid-game position, the sensor network is scanned repeatedly
by the Raspberry Pi Pico, tracking the movements of chess pieces. This method allows the identities of
the pieces to be differentiated in software. Using the board position and the user’s recommendation
settings, chess move recommendations are generated using Stockfish [12] running on a personal
computer (PC). The Raspberry Pi Pico interfaces with light-emitting diodes (LEDs) to illuminate the chess
squares involved in the recommendations. This chess board integrates artificial intelligence and human-
computer interaction, allowing chess players to study the strategies of a reputable chess engine while
building their intuition and skills.

Background

Why we chose this project

The intersection of artificial intelligence (AI) and human-computer interaction (HCI) is one that
lends itself to game products. In many instances, AI is used to create an opponent for users, but AI can
also help players improve at logic games such as chess. The AI in chess engines can be harnessed to help
beginners learn chess and assist advanced players to sharpen their skills. In addition, standard online
chess lacks the HCI that can help beginners improve. By letting users interact with physical chess pieces
and displaying recommendations visually, beginners are more likely to retain chess strategies. On the
other hand, advanced chess players would benefit from a physical chess set as it can emulate a
tournament-like experience. An interactive chess board that improves AI and HCI will not only motivate
players to improve their craft, but it has the potential to change the status quo for how players practice
chess.

The industry standard for assistive chess boards is ChessUp by Bryght Labs [2]. This board can
interface with an AI, illuminate chess tiles using capacitive touch, and wirelessly track chess pieces on
the board. The product can indicate the optimal move, a mediocre move, and a blunder based on the
configured strength of the AI. ChessUp can also wirelessly interface with chess.com [22] to update a
player’s rankings. However, the steep $370 price tag on ChessUp is a limitation that may cause amateurs
to look for alternatives.

Differentiating Factor

 6

This assistive chess board is a popular concept and has been implemented several times in the
literature. Specifically, piece detection is an active area of research. Muji et al. designed a chess board
using linear hall effect sensors and differing magnets strengths for piece identification [9]. The
chessboard was able to achieve a reliability of 80% on piece recognition. Kaufman, Patel, and Sun of the
University of Illinois also designed a chess board using magnetic strength and analog hall-effect sensors
to differentiate chess pieces [3]. Similar to the product by Bryght Labs, they used LEDs on the chess
board to recommend chess moves. While their implementation was successful overall, they experienced
unexpected behavior from hall-effect sensors. Another project by Coven of the Massachusetts Institute
of Technology implemented piece detection using capacitive touch sensors and found the method to be
highly susceptible to slight variations in piece alignment [11]. He found that the chess pieces needed to
be placed exactly in the center of each chess square; placing a chess piece off center may cause the
sensor to read the piece as if it was on the adjacent square. Existing implementations have used
capacitive sensors or magnetic strength to differentiate chess pieces, but these methods often produce
unreliable results and are easily influenced by the preciseness of the user’s chess pieces.

This capstone project aims to improve on the aforementioned designs with respect to piece
detection. Digital hall effect sensors are found to be more reliable because they are dependent on the
presence of a sufficiently strong magnet and are not influenced by the strength of the magnet [23]. The
hardware will be responsible for detecting the presence of a piece on a chess square, and software will
handle differentiating chess pieces. Given a known chess position, either the starting position or a mid-
game position, the placement of chess pieces can be tracked in memory as the game progresses. The
software differentiating and tracking pieces will also check the validity of chess moves. This strategy will
simplify the hardware needed for piece detection and prevent a chess piece from being misidentified by
alignment issues between the piece and sensor. In addition, this project looks to improve on past
implementations by creating a high degree of configuration for chess recommendation including AI
engine strength, AI engine depth, and number of recommendations. This project pairs a simple but
elegant hardware design with robust software game logic to create an intuitive and responsive chess
board.

Previous Coursework

This project draws on knowledge gained in several engineering courses in the Electrical
Engineering and Computer Engineering curriculums. Ramie will design the power supply using concepts
taught in ECE Fundamentals I (ECE 2630), ECE Fundamentals II (ECE 2660), and ECE Fundamentals III (ECE
3750). He will also implement the hall-effect sensor network using magnets, logic level sensors, and
multiplexers, which is material covered in Digital Logic Design (ECE 2330) and Electromagnetic Fields
(ECE 3209). Embedded Systems (ECE 3501/3502) will play a crucial role in providing Iain and Srikar with
an understanding of how to design the game’s finite state machine (FSM) and Raspberry Pi Pico’s
firmware respectively. Srikar will also draw on concepts from Operating Systems (CS 4414) to
synchronize concurrent tasks on the Pico. The material covered in Advanced Software Development (CS

 7

3240) will help Iain integrate the Stockfish API and allow Srikar and James to develop the graphical user
interface (GUI). Iain and Srikar will also draw from other computer science courses such as Program and
Data Representation (CS 2150) and Algorithms (CS 4102) to integrate the software and firmware and
implement efficient data processing.

Physical Constraints

Design Constraints

 One of the biggest design constraints for our project is the computational power needed to run
Stockfish to recommend moves in a relatively quick timeframe. The more memory Stockfish has
allocated, the fast it will generate recommendations. We opted to use a PC over a Raspberry Pi to run
Stockfish due to more RAM and multithreading to yield a more responsive chess board. Furthermore,
our PCB would have benefitted from being slightly bigger as the LEDs on the LED light strip are spaced
1.1 inches apart, while the hall effect sensors are spaced 1 inch apart from each other. Unfortunately,
due to the manufacturing limitations from Advanced PCBs, a 60 square inch board is the maximum size
board. Due to the nature of that constraint, we needed to create two PCBs for this project.

Cost Constraints

One major constraint that we have identified midway through the design process was the
amount of money 3W would charge for soldering the components onto the boards. As we have a budget
of $500, if we were going to use our original design, it would cost us well over $500 just in soldering the
components. Thankfully, we downscaled to a much more reasonable scale. Due to the downscale, we
adjusted the number of parts needed for the project. Therefore, neither cost nor availability of parts
was a concern for the majority of the project.

Tools Employed

For hardware design, KiCad was used to create the schematics and the board layout [14].
WeBench allowed for an easy way to select the voltage regulator components tailored for our needs
[18]. Visual Studio Code was used for software development and debugging the embedded programs,
FSM, and GUI [16]. The Arm GCC compiler was used to compile the embedded programs on the
Raspberry Pi Pico [31]. CMake was used to manage the embedded build process and produce binaries

 8

for the Pico [32]. The embedded toolchain with Arm GCC compiler and CMake was a new workflow and
involved a learning curve early in the project. The embedded programming was done in C [17]. The
chess engine Stockfish was used to implement the game logic [12]. The FSM and GUI were programmed
in Python 3 due its integration with Stockfish API, serial modules, and GUI libraries [15]. Git was used for
software version control [33].

For the design and manufacturing of the acrylic board, Solidworks was used to design the CAD
files [34]. Acrylic weld-on and super glue were used to assemble the acrylic pieces. Finally, sandpaper
was used to polish the acrylic bases of the chess pieces. Since the light from the LED’s must be visible
through the chess board, we decided to use semitransparent acrylic for our physical manufacturing. The
mechanical engineering’s laser cutter will be used to machine acrylic sheets into squares that will
assemble to form the grid of the chess board. Acrylic panels will be used on the sides and bottom of the
PCB to provide housing for the electronics and produce an aesthetic project. Laser cutting was chosen
over other manufacturing options because it produces very smooth cuts and mitigates the risk of
fracturing which is possible when a blade is used [24].

Societal Impact Constraints

Environmental Impact and Sustainability

With the use of a personal computer to power the Stockfish artificial intelligence engine, it was
deemed not necessary to use batteries for the power supply, instead relying on power from the
computer of choice. This allows the team to avoid sustainability issues with water contamination and
low recycling rates associated with battery usage [20]. Furthermore, the Nippon Chemi-Con MVY-series
aluminum electrolytic capacitors are given an estimated lifespan of 5,000 hours [21], and, in general,
LEDs are given an estimated lifespan of 50,000 hours. Each of these components are RoHS compliant,
ensuring that restricted materials including “lead (Pb), mercury (Hg), cadmium (Cd), hexavalent
chromium (CrVI), polybrominated biphenyls (PBB), polybrominated diphenyl ethers (PBDE), and four
different phthalates (DEHP, BBP, BBP, DIBP)” [29].

 Some limitations of the board include the use of acrylic for the board surface and casing, which
is not easily recyclable. From an economic standpoint, increased production will allow for the cost of
PCBs replacements to decrease due to economies of scale. The use of 8 separate controllable LED strips
does allow for only one strip needing replacement in the case that a single LED on a row fails.

Health and Safety

 Given the nature of the project revolving around a chessboard and ai engine running on a PC,
consumer safety issues are relatively minimal and not a significant challenge posed to the project.
However, choking hazards do exist for the integrated magnets within each of the chess pieces for the
hall effect sensors to detect. To mitigate this issue, the magnets will be recessed within each of the

 9

chess pieces and secured using a strong epoxy. The strength of this adherence will then be tested by
attempting to pull the magnets from the chess pieces, modifying the magnet integration within the
pieces as necessary either by changing the epoxy or piece design.

Furthermore, the acrylic top to the chessboard containing the PCB and sensors will be fastened
using screws to ensure that users are not able to easily access the underlying electronics. Protection
against electrical issues including but not restricted to shorts and ground faults will also be taken into
consideration in the design of the PCB, additionally following the RoHS, NEMA, and IP safety standards
detailed in the standards section of the proposal. The PCB will be designed using nontoxic materials to
further ensure safety of the board users

Ethical, Social, and Economic Concerns

While chess AI can do lots of good when used as a training tool, the technology has potential for
harm when used to cheat. In particular, cheating in online chess has increased dramatically in the past
decade, with chess.com banning on average 500 accounts per day for cheating [10]. Although our chess
engine will run locally and not interface with any online API’s, the assistive chess board could still be
used to cheat if a player had two chess games going simultaneously, one physical game on the assistive
chess board and one online game. The player could wait for the squares to light up on our assistive
chess board and then make the same move in an online game. However, the typical method that players
use to cheat online is by having a chess engine running on a separate monitor, and this method is both
faster and more accurate than if a cheater used our product. With this in mind, we reason that while our
product could potentially be used to cheat in chess, it would be less effective than conventional cheating
methods, and therefore would not lead to a significant increase in cheating. In addition, mining silica can
have negative effects on the environment [25], and since hall effect sensors use semiconductors with
silicon the ethical constraints on the environment must be considered, especially because our project
will use 64 hall effect sensors. On the economical side of things, this device costs around $300 to
manufacture. This means that economically disadvantaged people will be unable to purchase this
device.

External Considerations

External Standards
 Given the use of a PCB and additional electrical equipment, an enclosure following the

IEC type 1 standard will need to be implemented. This will be designed to protect the user from
hazards such as electric shock and protect the devices from outside particulates and light [4].
Regarding the IP safety standards, the product will need to meet the designated IP11 rating,
which will “provide a degree of protection to personnel against incidental contact with the

 10

enclosed equipment and to provide a degree of protection against falling dirt” [5]. Regarding the
use of a PCB, the IPC-2221 standard will be followed. This standard outlines the proper
implementation of features such as impedance control, PDN bus layouts, and conductor
clearance [6].

With the use of two programming languages, C for embedded design and Python for the
implementation of the AI algorithm, certain coding standards are to be held in order to provide
cleaner and more reliable code. For C development, the Barr coding standard will be adhered to
[7], while the PEP 8 coding standard will be observed for Python development [8].

Intellectual Property Issues

Several patents exist which overlap with the underlying technologies used in our project. These
include chess piece detection, on board lighting of the chessboard tiles, and artificial intelligence to
dictate potential moves. With the existence of these patents, it is assumed that the assistive chess board
does not have potential to be patented. As detailed under patent law in The U.S. Patent Act, “the
invention must be statutory, novel, useful, and non-obvious” in order to be patentable [35]. While the
piece detection approach may satisfy the requirements of being “statutory, novel, and non-obvious”, it
is unclear whether it provides “useful” advantages over boards such as one patented by Bryght Labs that
achieves the same effect [27]. Described below are three patents that cover material relevant to our
chessboard.

One patent granted to Bryght Labs, Inc. details an “apparatus, system, and method for an
electronically assisted chessboard”. Under this patent there are several significant overlaps in
chessboard goals, including “determining a current location on the chessboard of each chess piece”,
displaying “the set of valid moves available for the selected chess piece” through an “illumination
system to display on the chessboard” the three first most valid moves for the current player. Each of
these closely match the intentions of our board, giving a very similar purpose for piece detection and tile
illumination for recommending the three most valid moves determined by an artificial intelligence actor.
Player recommendations are done through, “selecting a plurality of moves for inclusion in a group of
moves based, at least in part, on the skill level of the human player”. While this same action is achieved
by our project, it is done through the integration of Python StockFish, which is already listed as open
source.

Piece detection in the Bryght Labs patent is described as “a capacitive sensing system” that “can
include a capacitive sensing array in contact with the playing surface”. While our system differs with the
use of single hall effect sensors and saved game states to remember piece locations, it is unclear
whether this implementation serves as a “useful” improvement to the capacitive sensing system in
terms of energy consumption, ease of use, and piece detection interference, since “the capacitive
sensing system can include sensing by row and column at an 8x8 resolution or higher resolution grid if

 11

desired”. In addition, “the lighting array includes color RGB LEDs”, mitigating any benefits that our use of
driven RGB LED strips may provide. This patent by Bryght Labs depends on work developed in capacitive
sensors and tile illumination set out in other patents and is thus a dependent claim on previous patents.

An additional patent reviewed is one for an “electronic chess game” designed such that “each
playing piece is encoded in accordance with its identity, and each playing position automatically
responds to the encoding when it is occupied by a playing piece” [28]. The means of response is “an
electrical circuit associated with the playing position causes other positions to which the playing piece is
capable of moving to be illuminated with an appropriate color”. Not relying on an AI engine to
determine the best move, this circuit is designed to simply show all possible moves a piece can make on
the board, not necessarily the most optimal one as determined by an algorithm. This implementation
requires a four-bit signal to be sent from the piece, resulting in more complex circuitry. This patent is a
dependent claim building off of cited patents in digital encoding and piece detection. Our
implementation has the advantage of using a single bit sensor for detecting whether a piece is present
or not on a tile and then referring to previous board state as a means for discriminating pieces,
providing a “statutory, novel, useful, and non-obvious” improvement to this patent.

Another patent reviewed is a chess game board in which “each of the playing pieces has
different codes which can be detected by sensors”. These sensors have outputs that “are connected to a
signal processing device via which the course of the game is stored and/or evaluated” [26]. The purpose
of this board is to “detect which figure is in which place” in a game of chess. Similar to our project, the
board uses Hall effect sensors, but instead opts for an analog sensor and an analog to digital converter.
The “output of the analog / digital converter is” connected via “a bus with the input of a
microprocessor” to decode which piece is at a given location. To discriminate between pieces, “all black
pieces or all white pieces are given differently long bar magnets, so that there is a different coding for all
figures.” This patent is a dependent claim building off of cited patents in magnetic piece detection and
chess boards that continuously monitor piece positions. Our team’s novel use of digital hall effect
sensors allows for a lack of need for different strength magnets and shielding to prevent other sensors
from picking up incorrect strengths from magnets on adjacent pieces, only relying on an ON/OFF signal.

Detailed Technical Description of Project

What it is

The assistive LED chess board is an educational tool for chess enthusiasts, from
beginners to advanced players. Users can employ this chess board in several ways. One player
can play chess against an AI engine of varying difficulties and choose to receive no
recommended moves, a recommendation on every move, or recommendations upon request.
Alternatively, two users can also play against each other, configuring the frequency of
recommendations and AI difficulty to their desire. Due to the varying levels of AI assistance, this

 12

chess board can be used to improve the skills of beginners and professionals alike. This chess
board integrates AI and human-computer interaction, allowing chess players to interact with
physical pieces while learning how to improve their skills.

How it works

The positions of chess pieces are tracked by magnets and hall-effect sensors. Each chess
piece has one magnet at its base. Under each chess square, there is a hall-effect sensor that senses
the presence of a magnet. With a network of 64 hall-effect sensors, each square on the chess
board can be monitored on whether or not a chess piece is at that location. The sensor network is
scanned around 20 times a second, which allows it to recognize positional movement. For
example, if a chess piece is lifted up and placed in a different position, the sensor network would
recognize where the piece was lifted and where it ended up. By continuously scanning the
sensors, the chess pieces can be tracked as they move around the chess board. Once the
Raspberry Pi Pico determines the current position of the chess board, this data is sent to the PC
over serial USB, where the validity of the position is determined. Using the GUI, the user will
select their recommendation settings and the PC interfaces with Stockfish API to produce the
recommended chess move for the current position. The recommendation will be converted into a
matrix that indicates which LEDs need to be illuminated. The matrix will be sent to the Pico via
serial USB, illuminating the LEDs of the squares involved in the recommended move. The user
can make the suggested move or disregard the recommendation, at which point a new board
position is detected causing the process to repeat. This process is more clearly shown in Figure 1,
as we can see the 5V input source powering the LEDs and the voltage regulator powering the
sensor network.

 13

Figure 1: Block Diagram of the Full System

Hardware

 The hardware system consists of two PCBs. Of the two PCBs, one acts as a sensor board, and the
other one acts as a voltage regulation board which contains a Raspberry Pi Pico microcontroller. The
Raspberry Pi Pico is crucial for controlling the logic for the entire system. We chose to split the boards
into two distinct sections because freedfm, the manufacturers of the PCB, did not allow a PCB greater
than 60 square inches. As the sensor board reached 58 square inches, it was deemed necessary to create a
secondary board for the additional functionality. Figures 2 and 3 show the overall schematic of the sensor
board and the voltage regulator board respectively.

Figure 2: Top level of Sensor Board

 14

Figure 3: Top level of Voltage Regulator Board

Voltage Regulation and Microcontroller

 The assistive chessboard system is powered by a wall transformer that connects to a barrel jack
connector on the voltage regulator PCB. Figure 4 shows the components used in the voltage regulator
system.

Figure 4: Voltage Regulator

Our board uses this voltage regulator to power the sensor board. It converts a 5V source
into a 3.3V source required for use to power the sensor board. Furthermore, the 5V input will
also be used to power the LED light strips, as they require quite a significant amount of current
to power on. Table 1 will show a list of components our circuit needs to be able to supply power
too.

Our board uses this voltage regulator to power the sensor board. It converts a 5V source
into a 3.3V source required for use to power the sensor board. Furthermore, the 5V input will
also be used to power the LED light strips, as they require quite a significant amount of current
to power on. Table 1 will show a list of components our circuit needs to be able to supply power
too.

Component Current (A)

Hall Effect Sensors (64) 0.1024

Muxes (9) 0.01024

LEDs (64) 3.84

 15

Total Consumption 3.953

Table 1: Current Consumption of Components

The voltage regulator, designed to take in an input of 5V and output 3.3V, can supply a
maximum current of 0.200A. The maximum current consumption of the sensor board is 0.11A.
This means that the sensor power requires 0.363W. The voltage regulator is operating at 61%
load. The LEDs, on the other hand, will require 19.2W of power while they are on full
brightness.

 The microcontroller will always be connected to a computer for this project to function as
intended. Therefore, the microcontroller will be powered by the computer the chess board is
connected with using a Micro-B USB to USB-A cable.

Sensor Board
 The hall effect sensors were used to detect if a chess piece was on the given tile. These
sensors contained three pins: VCC, Vout, and Ground. The TCS40DPR,LF hall effect sensors we
chose were omnipolar, digital hall effect sensors since we only needed to verify whether a
magnet was on the tile or not. The hall effect sensors allowed for a voltage of 3.3V, which
allowed the hall effect sensors to output into a mux without needing to step the voltage down or
step the voltage up. This hall effect sensor worked well with our project, as knowing the polarity
of the magnet was not a necessity. Furthermore, as the hall effect sensors are digital, we do not
need to worry about the strength of the magnet. As long as the magnet is close to the sensor, the
hall effect sensor would work as intended. One major concern about the hall effect sensors was
the ability to sense the magnets of their nearby neighbor. To prevent this issue from occurring,
we spaced each hall effect sensor 1 inch apart from each other. We also chose smaller, weaker
magnets as an extra precaution.

 16

Figure 5: 8 Hall Effect by 1 Mux schematic

In figure 5, we can see that the hall effect sensors used would send their signal straight
into a CD74HCT251E multiplexor. This multiplexor is able to handle the 3.3V signal given by the hall
effect sensors and safely pass the signal onto the Raspberry Pi Pico. We chose an 8 by 1 digital
multiplexor because it was cost effective and allowed us to sense several tiles with one component. As the
hall effect sensors and multiplexors used in the project are digital, Furthermore, the signal that was passed
through to the multiplexor is a digital signal, which would make the use of an analog multiplexor a
wasted effort. Using the circuit from figure 5, we can copy that circuit and use the output of eight
multiplexors as an input to a central multiplexor. This central multiplexor’s output would subsequently be
used as an input to a raspberry pi pico for sensor data collection. This dynamic is more closely seen in
figure 6.

 17

Figure 6: 8 Muxes by 1 Central Mux schematic

Board Layout:

 As mentioned previously, we needed to design two boards for our project. Figure 7
showcases the sensor board layout. One major concern, while creating the traces of the board,
was to allow the power rails to have many connections with each other. Allowing several
connections between the power rail and the ground rail will allow current to flow in all directions
and reduce inductance in the wire. An important factor in our design was to reduce inductance in
the wire so that the hall effect sensors would not pick up on that magnetic field. The hall effect
sensors are spaced 1 inch apart from each other. Every 8 hall effect sensors will be connected to
a multiplexor, which in turn will be connected to a central multiplexor. This helped reduce the
number of pins needed for input sensing, while allowing the GPIO pins for the Raspberry Pi Pico
to be used for other components in the system. As it was important to make sure that the LEDs
and the hall effect sensors are under each tile, we needed to make sure that the test points were
soldered on the bottom side of the board so that they do not interfere with the pathing of the
LEDs.

 18

Figure 7: Sensor Board Layout

The next board that needed to be created was the voltage regulator. The layout of the
voltage regulator board is shown in figure 8. There are multiple critical components in this board
that ensure the functionality of the device. Specifically, this portion of the project is very
important as it is the power supply for the sensor board and the LED strips. The voltage regulator
board also contains the housing for the microcontroller, which will send signals to the LED light
strips and the sensor board.

 19

Figure 8: Sensor Board Layout

In the voltage regulator board, we made the traces large enough to handle 4A of current at 5
volts. Specifically, these 100 mil traces are designed to support all the LEDs at full brightness as
well as convert the input of 5V to a safe supply voltage that the sensor board can use.

Voltage Level Translator

 One critical aspect of the project was understanding how to implement the LEDs.
Through countless concept designs, we arrived at the idea of using LED light strips. Each LED
contains a mini controller called “WS2812B”. This controller would allow us to easily interface
between the LEDs and the Raspberry Pi Pico. Unfortunately, one major problem arises if we use
that specific LED controller. The LEDs and the WS2812B controller require the use of a 5V
VCC and a 5V data line. Unfortunately, the Raspberry Pi Pico is only capable of supplying a
maximum voltage of 3.3V. This means that we will need to use a voltage level translator that
will boost the 3.3V signal coming from the Raspberry Pi Pico and convert it into a signal of 5V
that is usable for the WS2812B.

Firmware

 The Raspberry Pi Pico was the microcontroller used for this project. It was selected due
its ability to run on FreeRTOS, interfacing with GPIO pins, integration with the WS2812B LED
strip, and built-in serial module. The microcontroller was programmed in C. The FreeRTOS
kernel was used to configure interrupts and run tasks concurrently. Three tasks were used: sensor
network processing, LED interfacing, and serial communication.

 20

Sensor Network Processing

 One FreeRTOS task was used to scan the hall-effect sensors repeatedly (around 20 times
a second) and write the board state to the PC using serial USB communication. The sensor
network board had 64 hall-effect sensors that multiplexed to one GPIO using nine 8:1 digital
multiplexors. There are 8 lower-level multiplexers, and each multiplexer reads the sensors of 8
chess tiles. The outputs of the 8 lower-level multiplexers are inputs to one higher level
multiplexer. This allows us to multiplex 64 hall-effect sensors to one GPIO pin that will be used
to read sensor data. Table 2 shows the mapping of multiplexers to physical chess squares.

Table 2: Hall-effect sensor network multiplexing

In each chess square, the numbers indicate the input of the multiplexers that allow the
square to be selected. The format is as follows: <Higher level mux input number>. <Lower-level
input mux number>. For example: to read sensor D6, the higher-level mux input 2 must be
selected and the lower-level mux input 5 must be selected. A function sets the select bits to read
the desired input number from the multiplexer.

 The sensor network is read by iterating through all 64 sensors and storing the values in a
buffer of 64 chars. Since the hall-effect sensors are active low, the GPIO pin reads the voltage
and determines if a magnet is present on that square. A “1” or “0” is stored if a magnet is present
or not present respectively. The “0” or “1” character is written to a specified location in the
buffer relative to the physical chess square location. In the buffer, each consecutive group of 8
characters represent one row of the chess board. The first 8 characters correspond to row 8 of
the chess board (from column A to column H). The next 8 characters correspond to row 7 of the
chess board (from column A to column H) and so on. The second to last 8 characters correspond
to row 2 of the chess board (from column A to column H). The last 8 characters correspond to
row 1 of the chess board (from column A to column H). Once the buffer is full of sensor data, it
is sent to the PC via serial USB for further processing by the FSM.

LED Interfacing

 21

The Raspberry Pi Pico interfaced with the WS2812B RGB LED strips using the Pico
SDK’s Programmable I/O (PIO). The PIO protocol was chosen due to its straightforward
integration with the WS2812B controller and the Pico’s GPIO pins. It is also valuable because it
uses direct memory access to send data to the LED strips, reducing CPU computation and
overhead. Eight LED strips were used, one for each column on the chess board, and each strip
has eight LEDs. Eight channels were set up using PIO to set the LED colors. The colors were set
by inputting a series of hexcodes to the GPIO pins. The hexcodes would get sent as a pulse-width
modulation (PWM) signal. For example, a long high followed by a short low would be a logical
1 and a short high followed by a long low would be a logical 0. The hexcode, which has 24 bits,
would get sent as PWM through the strip, setting the string of LEDs to the desired color
combination.

Several helper functions were used to scale the LED driving code. Ultimately, the LED
interfacing was abstracted to a function that would receive a string of length 64 and drive the
LED based on the color that was at the particular index. Table 3 shows the mapping of the string
input and the corresponding LEDs. The number in each chess square shows the index in the
string that sets the particular LED. The char value at the particular index in the input string
would determine which hexcode to display on the LED.

Table 3: LED mapping

For more abstraction, a Python library was created to product the format needed to drive
LEDs. For example, a function would receive a recommended move from stock and convert that
to a format that would illuminate the appropriate LEDs. A similar function was implemented for
displaying an illegal move. In addition, an LED start up sequence was created to run through
RGB colors through every LED to debug the LED matrix and check for fault connections.

Serial Communication

Serial over USB was used to communicate between the Raspberry Pi Pico and the PC.
The Pico SDK can configure standard output (stdout) to be set to serial USB, sending print

 22

statements to the PC. A Python serial module was used on the PC to read and write to the serial
session. The sensor network data was sent from the microcontroller to the PC. The LED
configuration was sent from the PC to the microcontroller. Since the LED configuration is a
buffer that the PC writes to and the LED driving function reads from concurrently, a mutex and
condition variable were used to synchronize these concurrent tasks. The FreeRTOS
synchronization primitives were used to implement this.

Software

FSM
The software is composed of three files: FSM.py, LED.py, and ChessInterface.py.

FSM.py is responsible for interfacing with the Raspberry Pi Pico through USB serial connection,
executing algorithms to keep track of the state of the chess game, and interfacing with the
graphical user interface. Figure 9 shows this algorithmic flow. FSM.py has two primary
functions: next State Function and outputFunction. NextStateFunction contains logic that tells
the finite state machine when it should transition between possible states. For example, when the
Stockfish AI detects that a legal chess move has been made, the checkValid state transitions into
the showRecommendation state. The outputFunction contains distinct outputs for each possible
FSM state. In the transition state, the output is reading data from the Pico, in the checkValid
state, the output is determining if a legal chess move has been made, in the
showRecommendation state, the output is writing a signal to the Pico to illuminate LED’s, in the
error state, an error signal is sent to the Pico, and finally in the end state the game is determined
to be either checkmate or stalemate. Figure 10 shows a high-level diagram of the FSM. LED.py
contains helper functions that convert chess moves in algebraic notation into a signal that can be
interpreted by the Pi Pico. For example, if the Stockfish AI recommends the move “e2e4”, the
function in LED.py takes that string as input and returns a string of length 64 indicating which
LEDs on the chess board should be illuminated.

 23

Figure 9: Flowchart of Algorithm

Figure 10: FSM Diagram

 24

GUI
The FSM and embedded device are controlled by the GUI. The ChessInterface.py file

contains all of the software for the graphical user interface. The GUI was programmed in Python
3 with the Tkinter library and the CustomTkinter library to improve the user interface (UI). The
GUI gives the user the ability to modify a range of settings including AI strength, AI depth,
number of recommendations, clock time, and starting position. All these parameters modify
objects running in FSM.py in real time such as Stockfish engine parameters, board state, and
LED recommendations. Figure 11 shows the starting screen of the GUI where users can
configure these settings. On this frame, the user can begin the game using the starting chess
position. When clicking the “Start” button the program will verify that the chess board is set up
correctly. If a piece is out of place, an error message will be displayed alerting the user to fix it.

Figure 11: GUI starting screen

There are two modes for recommendations. The default mode is shown in Figure 12. It
allows the user to configure the Stockfish AI strength, AI depth, and turn on or turn off a
recommendation. In default mode, the user can receive at most one recommendation, but it can
be in any AI strength.

 25

 Figure 12: Default Recommendation Mode

The other recommendation mode is Grandmaster mode, which essentially shows the
recommendations that a grandmaster would suggest at this point in the game. In this mode, the
Stockfish AI strength is fixed at the highest level, but the AI depth and number of
recommendations are configurable. This mode is shown in Figure 13.

Figure 13: Grandmaster Recommendation Mode

 26

The GUI also allows users to start from a custom, mid-game position. In addition, the user’s
have the option of starting a game from the starting position of their last game or the ending
position of their last game. Figure 14 shows this screen, which shows these two positions. If the
user wants to pick up where they left off, they can simply copy and paste the position into the
textbox and start the game. The player can also press the “View position” button to see if the
supplied position matches where they wish to start.

Figure 14: Starting from custom, mid-game screen

Users can select the time limit they wish. The time selected represents the time allocated from
each player, not the total time. Figure 15 shows the clock options.

 27

Figure 15: Clock options

The chess clock automatically toggles and counts down the player that needs to make the
move. Instead of implementing a timer that the users must manually press, this chess clock
interacts with the FSM to read the active player and makes the experience seamless. When a
player’s clock is active, it turns green and when it is inactive it turns gray. There is also a pause
button which the players use to pause and resume the game, stopping and starting the
timers. Figure 16 shows this feature.

Figure 16: Chess Clock

 28

Mechanical:

CAD Design

The CAD files for the acrylic chess board were designed using a software program called
Solidworks. Initially, the design started off by creating the CAD of the top surface of the chess
board box. The dimensions of the top surface of the chess board are 10 inches x 10 inches. The
top surface includes a grid of squares with circles extruded in the center, as well as the alignment
of text on the border to indicate the rows and columns. To ensure the letters are visible on the
outside of the box when manufacturing, we will be using laser cutting to slightly etch the letters
onto the board. Figure 17 shows the CAD Assembly of the top of the surface with the letters on
the top surface as well as the circles extruded in the center. This will allow us to set the pieces
perfectly in the center and let the hall effect sensors pick up the magnetic field emitted by the
magnetic.

Figure 17: CAD Assembly of Top Surface

After the top surface was designed, the side panels and base were created to fit around the
top. The front and the back of the chess board shows where each piece should be placed on the
chess board. For example, on the left and right side of Figure 18, we can see the icon of the rook.
This gives us an easy way to orient the pieces for those who are new to chess.

 29

Figure 18: CAD File of Front and Back of the Chess Board

In Figure 19, we can see the left of the board with two holes. The square hole allows us to
plug the micro-USB cable from the PC to the Raspberry Pi Pico. On the other hand, the circular
hole will allow a passthrough for the power supply barrel jack and seamlessly connect power
into the box.

Figure 19: CAD File of Input/Output Ports

The last CAD file is similar to the previous figure, however there are no cutouts in the
design. This will act as the final wall in the encasing for the PCBs and wiring.

 30

Assembly

Acrylic sheets were utilized when manufacturing the board. During the process of
manufacturing, a laser cutter was used to create fine cuts on the pieces. The laser cutter was
strong enough to cut through the entirety of the acrylic. As shown in the CAD, we have circular
cutouts for the surface of the chess board. This will allow the chess pieces to smoothly fit within
the circular cutout. This ensured that the hall effect sensors would be able to read the pieces
everytime the piece was put back down. We needed to create a hole large enough to fit the
magnet and hold it in place, so the magnet does not fall off in the middle of the game as shown in
Figure 20.

Figure 20: Ring Around the Magnet

Most of the laser cuts went all the way through the material, but the numbers and letters

around the border were engraved instead. We wanted to use the laser to etch the letters onto the
board to give a seamless look to the surface design of the chess board. Figure 21 shows a more
detailed look into how the acrylic sheet was cut for gluing in the later steps.

 31

Figure 21: Laser Cutting Acrylic Sheets. The Machine can be found in the M.I.L.L of the

Mechanical Engineering Building.

Once all the pieces were cut, acrylic weld-on and super glue was used to assemble the
pieces together. Each cutout needed to be glued together on the surface. Figure 22 shows the
assembly of the chessboard grid. After all the pieces are glued together, we needed to create a
second layer of acrylic for the chess pieces to lay on the surface.

 32

Figure 22: Assembling the Chessboard Grid

Figure 23 shows the finalized surface of the chess board. As mentioned before, there is an
extra layer of acrylic underneath the surface that the chess pieces are on top of. To give it a clean
look, we decided to make the bottom of the layer of the surface in white, as the LEDs can visibly
shine through very clearly. Since the top layer was finished, it was not time to move onto
creating the other sides of the chess board.

 33

Figure 23: Finalized Chess Top Surface

 Figure 24 allows us to see a much clearer picture of a finalized version of the chess
board. Now that the encasing has been assembled, it was very important to test the system to
make sure that both the LEDs are shining through clearly, and that the hall effect sensors have
been able to sense the magnetic field from the magnets we chose previously.

Figure 24: Finalized Chess Top Surface

Once we were ready to start testing, we plugged in all the cables needed to start the
boards and input the code into the Raspberry Pi Pico. Figure 25 shows us a clean look of the
LED chess board working in the finalized state.

 34

Figure 25: Finalized Chess Board

Hardware Design Modifications

In our initial hardware design, we were planning to have four hall-effect sensors per
chess square and use binary encoding to detect check pieces. This would allow us to identify
each chess piece using hall effect sensors alone and not rely on the previous position. However,
due to budgetary constraints, the amount of money needed to manufacture the PCBs and
soldering the parts would cost more than the entirety of the $500 budget. Fortunately, we were
able to downscale the size of the project to include one hall effect sensor per square. This not
only reduced the number of components needed, but it also reduced the number of PCBs needed
for manufacturing.

One other hardware modification we needed to change was the power supply and voltage
regulator levels. Initially, we were planning to use a 12V power supply and a 12V-3.3V step
down switching node regulator. The 12V power rail was used initially because the LED
controllers needed a 12V supply voltage. However, we quickly realized that the 12V LED strip
was not suitable for the project since we realized the LED strip was only addressable by every
three LEDs. We decided to use the 5V LED light strip since it was individually addressable
which worked correctly. This required us to change the voltage regulator to accommodate a 5V
power supply rail rather than the 12V power rail. Due to the changes in the amount of current
required for the sensor boards, the amount of current supplied by the voltage regulator was
reduced by a factor of four. This meant that we needed to change the inductor in the circuit as
well as the voltage regulator.

Lastly, one hardware modification we included on the voltage regulator board was an
addition of a logic level translator. The Raspberry Pi Pico supplied 3.3V logic and the LED strip
takes 5V logic. In our initial testing, the Pico was able to supply the data line of the LED strips
without a logic level translator, but we noticed the LEDs flicker at times, especially on the first
LED of each strip. We modified the second revision voltage regulator board to include a logic
level translator that converted the 3.3V being supplied by the Raspberry Pi Pico into a 5V data

 35

signal into the LED controller for the LED light strip. Once the chip was added, the LED
flickering issues were mitigated.

Firmware and Software Design Modifications

In our initial plan to implement the firmware and software, we were planning on having
the Raspberry Pi Pico run the FSM and keep track of the board state while having the PC run the
GUI and make calls to the Stockfish API. In this approach, the bulk of the game logic would run
on the embedded device. However, since the GUI would gather the user’s recommendation
settings and relay that information to the FSM, it would be more difficult to integrate those
subsystems if the FSM is running on the embedded device. Considerably more data on the game
state would have to be sent via serial between the PC and Raspberry Pi Pico, increasing latency
that could otherwise be used to do computation. To work around this, we decided to use the
Raspberry Pi Pico to read the sensor network and interface with the LEDs and use the PC to run
the FSM and GUI. This way the FSM, implemented in Python, would act as an intermediary
between the GUI and embedded device, sending information about recommendation settings and
LED display back and forth. This implementation also allowed for easier debugging since the
FSM script on the PC was inspected as opposed to the Raspberry Pi Pico.

We were also challenged by integrating the GUI and FSM. We were planning on having
the GUI run within the framework of the FSM. However, around late November we were
running into problems having the GUI and FSM run and update in real time. To resolve this
issue, we decided to implement the output and next state functions as functions that are
continuously executed within the GUI. This enabled the two subsystems to run concurrently.

Additionally, we were originally planning on allowing players to configure AI strength
and number of recommended moves independently from one another. However, by testing the
Stockfish engine by having it play against itself, we discovered that when multiple recommended
moves are enabled, the AI always plays at the highest strength. This means that the AI is unable
to recommend multiple amateur or beginner level moves at once. Due to this limitation, we
added additional logic in the GUI so that when multiple recommendations are enabled - the
“grandmaster mode” option - the AI strength is fixed at the highest level. This means that the two
settings are dependent on each other, and when grandmaster mode is enabled, the slider for AI
strength is fixed in place.

Since we were initially planning on having up to four magnets per piece and using binary
encoding to detect the pieces and we redesigned the product to use one magnet per piece, the
game algorithm in the software needed to be redesigned to track the chess positions in memory.
To make the algorithm work for one magnet per piece, we decided to keep track of the previous
state of the chess board and compare it to the new state. If a change is made that reflects a legal
chess move being made, the AI updates the position, and the FSM continues executing.

 36

Project Timeline

 A free Gantt Chart tool was used to create a timeline of the project. The initial timeline
was modified both during the midterm design review and in November. The initial proposed
timeline, shown in Figure 26, was not very detailed in the aspects of the project, as we were not
very much acquainted with the intricacies of the assistive chess board. We proposed a large
timeline for the PCB Design, PCB Testing, and PCB Revision. We also did not specify a
timeline for the interactive GUI or interfacing with the LED light strips.

Figure 26: Initial Proposed Timeline

During our midterm design review, we had a much clearer understanding of how the
project was going to be implemented. We added a section to interface with the LEDs, revise the
boards if necessary, and read data from both the Pico. In Figure 27, we can see a more detailed
midterm design review.

 37

Figure 27: Midterm Design Review Proposed Timeline

In our finalized timeline, as seen in Figure 28, we include all the details needed to
complete the project in time. We designated more accurate timing for PCB design and revisions,
added more detail into the design of software, and finalized the design process to assemble the
capstone project.

 38

Figure 28: Finalized Timeline

The tasks of all the group members have been split to suit our strengths amongst the four
group members. Ramie’s primary focus was designing the sensor and voltage regulation board.
Srikar’s primary focus was programming the Raspberry Pi Pico to interface with the LEDs and
read the sensor network and developing the GUI. James' responsibility was working on the GUI.
Lastly, Iain’s primary responsibility was working on the finite state machine, interfacing between
the Raspberry Pi Pico and manufacturing the acrylic chess board. Overall, using the Gantt chart,
we were able to make sure we were able to make sure we are on track to finish.

Test Plan

Hardware

The hardware section of the project requires multiple steps to follow through to ensure
that the devices are working properly. Due to the use of two PCBs, each one needs to be
thoroughly tested. For the testing of the sensor board, we needed to make sure that the hall effect
sensors are outputting the correct values to the multiplexors. Figure 29 shows the steps we took
to verify the correctness of the sensor network board. The sensor board is working on a 3.3V
supply rail. This means that the multiplexors and the hall effect sensors both will output either
3.3V or 0V due to the digital nature of the sensor board. The hall effect sensors are active low.
This means that when the hall effect sensors are sensing a magnetic field, it will output 0V.
When the magnetic is not present, the hall effect sensor will output the supply voltage. This
digital nature of the hall effect sensor allows for a very easy way to debug the sensors.
Furthermore, the multiplexors will act in a similar way. We will output a signal from the hall
effect sensors into the multiplexor. By controlling the select bits on the multiplexor, we can
sense the output of a specified hall effect sensor. With this knowledge, we can use a multimeter
to measure the signals coming from and towards the multiplexor.

 39

Figure 29: Decision Tree for Test Plan

Once the multiplexor has been verified to be working properly, and the enable bits, select
bits, and output bits are being sent properly, we can begin to verify if the Raspberry Pi Pico is
reading the signals correctly. The Raspberry Pi Pico needs to be able to sense a 3.3V level
coming from the output of the central multiplexor and into a specified GPIO pin on the
Raspberry Pi Pico.

For the testing of the voltage regulator board, we need to ensure that the power supply
rails are 5V for the LEDs and the data signals are being read as 5V for the data line. Using the
test points on the voltage regulator board, we can easily check if the voltage regulator is sending
power to the LEDs. If it is not sending power to the LEDs, we know that the device is not
plugged in as the 5V rail is directly connected to the LEDs. Once that is verified, we can move
towards the voltage regulator aspect of the board where we can verify whether the switching
node is outputting 3.3V onto the voltage rail. Due to simulations done by the Texas Instruments’
WeBench and using the Virtual Bench, we have been able to verify the max load current the
regulator circuit is able to provide to the sensor board.

In the beginning, there was flickering on most of the LEDs which was realized because
the power adapter we were using for testing was not supplying enough current. We then tested
the LEDs using an adapter rated for 15A and noticed most of the flickering go away. However, a
few LEDs consistently flickered: the LED at the beginning of each strip. The first LED in a
WS2812B strip boosts the data line from 3.3V logic to 5V logic. We realized the WS2812B
controller was delayed in boosting the logic signal, causing flickering in particular LEDs. This
problem made us pursue a logic-level translator so that the signal didn’t need to be boosted by
the WS2812B strip itself. This chip solved the problem, making the LEDs work as expected.

 40

Software

 The sensor processing in the embedded program was tested using the sensor network
board. Magnets were placed over sensors and the raw data readings were observed in the serial
monitor. We encountered issues with mismatching the select bits of the multiplexers which
produced wrong readings. We debugged this using a multimeter and fixed the connections at
which point the sensor processing worked as expected. We also experimented with the distance
between the hall effect sensor and the magnet during sensor processing and we found the
distance to be within the tolerance of our design. The LED matrix was tested using several start-
up sequences to debug color mismatches. When we noticed flickering in the LEDs, we had to
identify if it was caused by incorrect PWM signals from the PIO or the LED hardware itself. We
used an oscilloscope to debug the issue and found the PWM to be what we expected: it matched
the hex code of the LED. We then concluded the flickering in the LED was due to a hardware
problem at which point we implemented the logic-level translator to solve the issue.

 The FSM was initially tested using hard-code board states to check if the correct states
would be satisfied. The debugging tool on VS Code was used to step through the FSM and
observe states. Later, the FSM was integrated with the GUI to test the AI settings and
recommendations. This is where the bulk of system-wide testing occurred. The chess board
display in the GUI allowed for easier debugging on the FSM. At times, the FSM would move to
an unexpected state and the chess board on the GUI would show that a chess move was not
recognized. The GUI feature to start mid-game was also a valuable debugging tool as it meant
we could find a sequence of moves that caused erroneous behavior and try to reproduce the bug.

Final Results

Overall, the capstone project functioned successfully. The hall-effect sensor PCB, voltage
regulator PCB, embedded program running on the Raspberry Pi Pico, and GUI all functioned as
expected. The sensor network was consistently able to detect the presence of chess pieces on the
board. Each chess piece was properly recognized, and movements were also detected regularly.
The sensor data was processed on the PC and Stockfish API was incorporated into the game
logic to always suggest the engine’s best move(s). The recommended moves were displayed on
the LED matrix, and all the LED colors for a given recommendation were accurate and
responsive. Lastly, the GUI allowed the user to configure a multitude of settings, including the
AI strength, AI depth, and number of recommendations. The GUI also automatically alternated
the user’s clock time upon completed moves and had several time options for the clock. The
acrylic chess board allows users to move chess pieces and view recommendations easily, making
the design intuitive and responsive.

 41

The rubric submitted in our proposal is shown in Table 4. Due to the functionality
described previously, all four criteria are satisfied in the 3-point range. According to Table 5, this
produces a total score of 12 points, which corresponds to an A grade.

Points

Criteria 1:
Piece

Detection

Criteria 2:
LED Output

Criteria 3:
Chess Engine

Utility

Criteria 4:
User Interface

3 Every Piece is
detected
properly.

All squares on the
chessboard light up
corresponding to the
input from the LED
driver.

The chess engine
always recommends
the (subjectively)
best move based on
the board position.

The players can
configure a
multitude of settings
for the chess engine,
utilize a chess clock,
and the board is
easy to play on.

2 Some pieces
are detected
properly.(ie.
pawns, queens
but not rook)

Some of the squares
on the chessboard
light up based on the
input from the LED
driver.

The engine
sometimes
recommends the best
move based on the
board position.

The players can
configure some
settings, use a chess
clock, and the board
is easy to play on.

1 Very few of
the pieces are
being detected.

Some of the squares
on the chessboard
light up.

The engine
recommends any
move based on the
board position.

The players can’t
configure any
settings, they can
use a chess clock,
and the board is
easy to play on.

0 No piece is
being detected

None of the LEDs
are functional.

The engine does not
recommend a move.

The players can’t
configure any
settings, there’s no
chess clock, and the
board is difficult to
use.

Table 4: Grading Rubric

Grade Total Points

A 10-12

B 7-9

 42

C 4-6

D 0-3

Table 5: Letter Grade based on Rubric

The project also contains several additional features that were not part of the proposed
requirements. The LED functionality exceeded the aims described in our proposal. It was not
only able to illustrate recommendations, but it was also able to display red on the squares that
were involved in an illegal move, showing the user which piece to revert. Similarly, additional
features in the GUI exceeded our initial requirements. The GUI had a feature that allowed the
user to begin a game from the starting position or from a custom, mid-game position. It also
displayed a chess board, which corresponds with the latest moves on the physical board. This
visualization lets the user know what position to revert to in case an error arises.

Costs
The cost of one assistive chessboard system was designed with the budget of $500 in

mind. A detailed breakdown of the costs is shown in Table 6. The total amount of money one
assistive chessboard costs is $296.53, which is within the budget provided to us. However, the
detailed list does not include the amount of time spent laser cutting the acrylic used in the
assistive chessboard. The most expensive portion of our project is the charge for soldering the
boards.

Table 6: Cost of Parts

If 10,000 units were manufactured, there would be massive discounts on the PCB
components prices for buying them in large quantities. The price of the PCB’s would drop from
$66 down to $7, as per Advanced Circuits Custom Quote. One massive expense in our project is
the voltage regulator used in the circuit. One voltage regulator would cost around $9.24.
However, at the scale of 10,000 units, this price would reduce to $4.67. Lastly, since our sensor
board has nearly 100 components, using a machine to solder the components would dramatically
reduce the amount of money being spent on soldering. Currently, at the student rate, 3W charges
$10 per board + $0.50 per component. Lastly, to reduce costs, we can print out the sensor board

 43

and the voltage regulator board in the same board. Furthermore, if that is not an option, we can
solder the voltage regulator board directly to the sensor board and avoid an unnecessary ribbon
cable, reducing $19,500 of costs. Lastly, if we can reduce the price of acrylic by buying in large
quantities, we will be able to reduce the amount of expenditure drastically and increase profits if
this product were to go on sale.

Future Work

While this capstone project was successful in detecting chess pieces and recommending
moves, there are a few limitations that can be improved on. The Assistive LED chess board can
be improved in the following ways.

Gamification

 Our game logic has a few limitations that can be addressed for a more comprehensive
experience. One such limitation is the current software does not allow the user to under promote
their pawn. A feature can be added in the GUI that allows the player to select the piece to which
they wish to promote. In addition, in our current design, a player who makes a blunder is forced
to either proceed with the game or begin a new game starting from a mid-game position. If they
choose to start mid-game, they can copy the ending position of the last game and modify it to
revert the blundered move. This would be inconvenient if it happens several times. Therefore, an
undo button would be valuable to revert a poor move and create a seamless playing experience.

Recommendations

 Although the Stockfish API was comprehensive, there was one limitation we did not
anticipate. When recommending multiple chess moves, the strength of the AI engine is
automatically set to the maximum. If the user wants recommendations from a lower AI setting, a
maximum of one recommendation can be generated. To improve the configurability of chess
recommendations, the Stockfish source code can be modified to use the current AI strength to
retrieve multiple recommendations.

Piece Detection

 The approach of using hardware to solely detect the presence of pieces and relying on
software to identify pieces has limitations. In some instances, especially in between moves, two
chess pieces can be swapped. In this case, the hardware would detect that the same chess squares
are occupied, and since a move hasn’t been made, the software would continue waiting for a
move as if nothing happened. Since this implementation doesn’t differentiate between pieces in
hardware, this is an area for improvement. Bipolar magnets can be used such that, for example,
all white pieces have positive polarity and black pieces have negative polarity. This would
account for swapping pieces of different color but would still have a blind spot for swapping

 44

pieces of the same color. Computer vision and image processing are promising methods to
identify pieces and have the potential to mitigate the limitations found in hardware-based piece
recognition.

Wi-Fi Module

 The current chess board is aimed to be used in-person by one or two players. A user may
want to play another user remotely if they both have the same chess board. A Wi-Fi module can
be incorporated into the chess board that allows users to play other online users. A server can be
implemented that contains networks with various categories of skill level. Players can request to
play other online users of similar skill level with agreed recommendation settings. This feature
would expand the possible use cases for the product and build an online community for
interactive chess boards.

 45

References
[1] Pretorius, Roline. “Why Buy an Electronic Chessboard.” House of Chess, House of
 Chess, 17 Apr. 2018, https://houseofchess.co.za/blogs/the-house-of-chess-b
 log/why-buy-an-electronic-chessboard (accessed Dec. 13, 2022).

[2] “ChessUp - Level Up Your Chess Game.” Bryght Labs, https://bryghtlabs.com/.
 (Accessed Sept. 10, 2022).

[3] Kaufman, Robert, et al. Assistive Chessboard. 2017,
 https://courses.engr.illinois.edu/ece445/getfile.asp?id=12121 (accessed Dec. 13, 2022).

[4] NEMA, 23 Jan. 2019, https://www.nema.org/ (accessed Dec. 13, 2022).

[5] “NEMA Ratings and IP Equivalency Chart.” Siemon, https://Siemon.com/ (accessed 12
 Sept. 2022).

[6] “Generic Standard on Printed Board Design.” IPC, Feb. 1998 (accessed Dec. 13, 2022).

[7] M. Barr, Embedded c coding standard. Germantown, MD: Barr Group, 2018 (accessed
 Dec. 13, 2022).

[8] Van Rossum, Guido, PEP 8 - Style Guide for Python Code. 11 May 2022 (accessed Dec.
 13, 2022).

[9] S. Z. M. Muji, M. H. A. Wahab, R. Ambar and W. K. Loo, "Design and implementation
 of electronic chess set," 2016 International Conference on Advances in Electrical,
 Electronic and Systems Engineering (ICAEES), 2016, pp. 451-456, doi:
 10.1109/ICAEES.2016.7888087.

[10] (chess.com), C., 2022. About Online Chess Cheating. [online] Chess.com. Available at:
 <https://www.chess.com/article/view/online-chess-cheating> (Accessed Sep. 27, 2022).

[11] Fab.cba.mit.edu. 2022. Final Project Tracking. [online] Available at:
 <http://fab.cba.mit.edu/classes/863.17/Harvard/people/joshuacoven/week14_final.html>
 (Accessed Sep. 27, 2022).

[12] “Stockfish 15.” Stockfish, https://stockfishchess.org/ (accessed Dec. 13, 2022).

[13] “Forsyth-Edwards Notation.” Forsyth-Edwards Notation - Chessprogramming Wiki,
 https://www.chessprogramming.org/Forsyth-Edwards_Notation (accessed Dec. 13,
 2022).

[14] “KiCad Eda.” Schematic Capture & PCB Design Software, https://www.kicad.org/
 (accessed Dec. 13, 2022).

[15] “Welcome to Python.org.” Python.org, https://www.python.org/ (accessed Dec. 13,
 2022).

[16] Microsoft. “Visual Studio Code - Code Editing. Redefined.” RSS, Microsoft, 3 Nov.
 2021, https://code.visualstudio.com/ (accessed Dec. 13, 2022).

[17] “C Language.” Cppreference.com, https://en.cppreference.com/w/c/language (accessed
 Dec. 13, 2022).

 46

[18] “WEBENCH® Power Designer | Overview | Design Resources | TI.com.”
 https://www.ti.com/design-resources/design-tools-simulation/webench-power-
 designer.html (accessed Dec. 13, 2022).

[19] Quality Guidelines - Toshiba-Semicon-Storage.com. https://toshiba-semicon-
 storage.com/content/dam/toshiba-ss
 v3/master/en/semiconductor/knowledge/reliability/quality-guidelines-tdsc-en.pdf
 (accessed Dec. 13, 2022).

[20] J. Whiteaker and R. Gardham, Opinion: Let's be honest, batteries are bad for the environment,
 Investment Monitor, 2021 (accessed Dec. 13, 2022).

[21] Mouser, “Surface Mount Aluminum Electrolytic Capacitors,” E1001V, 2021.
 MVYRA_e-2509074; Mouser: El Cajon, CA, US, 2021 (accessed Dec. 13, 2022).

[22] “Play Chess Online - Free Games.” Chess.com, https://www.chess.com/ (accessed Dec.
 13, 2022).

[23] “Tecnotion.” 2022. What is commutation? | Tecnotion. [online] Available at:
<https://www.tecnotion.com/faq/what-is-
 commutation/#:~:text=Analog%20hall%2Dsensors%20measure%20the,negative
 %20(South)%20magnet%20pole.> (Accessed Sep. 27, 2022).

[24] “Weetect.” 2022. [online] Available at: <https://www.weetect.com/laser-cutting-acrylic/>
 (Accessed 27 September 2022).

[25] Academicjournals.org. 2022. [online] Available at:
 <https://academicjournals.org/journal/JGRP/article-full-text-pdf/915EC0C53587>
 (Accessed 27 September 2022).

[26] A. B. Pagel, “Game,” DE3309817A1, Sep. 27, 1984 Accessed: Dec. 13, 2022. [Online].
 Available: https://patents.google.com/patent/DE3309817A1/en

[27] Wigh, J. B. (2022). Apparatus, system, and method for an electronically assisted
 chessboard (United States Patent No. US11217117B1).
 https://patents.google.com/patent/US11217117B1/en?oq=11%2c217%2c117 (accessed
 Dec. 13, 2022).

[28] R. Dudley, “Electronic chess game,” US4391447A, Jul. 05, 1983 Accessed: Dec. 13,
 2022. [Online]. Available: https://patents.google.com/patent/US4391447A/en?
 oq=11%2c217%2c117

[29] “RoHS Compliant Definition | What is RoHS Compliant? | Find RoHS Compliant
 Companies on Thomasnet.com® Certification Search.”
 https://certifications.thomasnet.com/certifications/glossary/other-
 certification_registration/european-commission/rohs-compliant/ (accessed Dec. 13,
 2022).

[30] R. P. Ltd, “Raspberry Pi Pico series,” Raspberry Pi.
 https://www.raspberrypi.com/products/raspberry-pi-pico/ (accessed Dec. 13, 2022).

 47

[31] “CMake.” https://cmake.org/ (accessed Dec. 13, 2022).

[32] “Git.” https://git-scm.com/ (accessed Dec. 13, 2022).

[33] “Solidworks.” https://www.solidworks.com/ (accessed Dec. 13, 2022).

[34] “Patentability Requirements,” Justia, Jun. 05, 2019. https://www.justia.com/intellectual-
 property/patents/patentability-requirements/ (accessed Dec. 13, 2022).

