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Statement of work: 
 

Ramie Katan: 

My responsibilities primarily focused on designing an identification system for the chess pieces. 
Specifically, I researched Hall Effect sensors that would be both cost effective and act as a switch. As the 
Hall Effect sensors are digital sensors, being omni polar would create a more reliable system as we only 
need to detect whether a magnet was placed on the tile or not. I also was in charge of making sure the 
system was able to receive power as well as designing a way to power the system and control the sensor 
board using a Raspberry Pi Pico. I created all the schematics and board layouts for the PCBs using the 
capstone project. The voltage regulator board contains a step-down buck converter which converts 5V 
to 3.3V. This allows a safe supply voltage level for the raspberry pi pico and sensor boards to operate. I 
also was in charge of creating a power system for the LEDs so Srikar could interface with them. 
Throughout the project, I made sure to work closely with Srikar so that the embedded programs would 
work without significant modifications. I also helped debug issues with the sensor board, LEDs, and 
voltage regulator board to ensure completion of the project. 

 

Iain Ramsey: 

My responsibilities were implementing the serial communication between the Raspberry Pi Pico 
and PC, developing the finite state machine (FSM) game algorithm, and designing the physical board in 
CAD and manufacturing and assembling the acrylic parts. For the serial communication, I wrote both 
embedded C and python code to enable two-way communication between the Pico and PC. For the 
FSM, I created an algorithm that processes signals sent from the Pico and determines if a legal chess 
move has been made. The FSM also recognizes when illegal moves have been made, interfaces with the 
Stockfish chess engine, and writes signals to the Pico to illuminate the LED’s. The FSM serves as the 
bridge between many different subsystems because it interacts with the embedded software, GUI, and 
chess AI simultaneously. For the mechanical design and manufacturing, I created CAD files in Solidworks 
to model the chess board. Then, converting the CAD files into .dxf, I laser cut acrylic sheets using a 
machine in the mechanical engineering building. Finally, I used acrylic weld-on and super glue to 
assemble the acrylic pieces. I would like to acknowledge that a friend (Alexa Borden) in the mechanical 
engineering department provided me access to their laser cutter and advised me on the design of my 
CAD files. I would not have been able to build as pretty or robust of a chessboard without their help. 

 

Srikar Chittari: 

My main responsibilities were programming the firmware of the Raspberry Pi Pico and 
developing the Graphical User Interface (GUI). I programmed the Pico to read the hall-effect sensor 
network and send the chess board state to the PC over USB serial. I worked with Ramie to test and 
debug the signals from hall-effect sensors and multiplexers on the sensor board. Using Progammable I/O 
from the Pico’s SDK, I programmed the Pico to interface with WS2812b addressable LEDs and drive a 
matrix of 64 LEDs under the chess board. I tested and debugged the protocol and LEDs, and I worked 
with Ramie to test and debug the logic level translator. I wrote a library in Python to create format 
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recommendations and errors that would be sent to the LED driver code. I also built off James’ initial 
work on the GUI and integrated it with the FSM’s real-time updates. I implemented features that would 
allow the user to start at the beginning of a chess game or in the middle of a game and configure their 
move recommendations and Stockfish AI settings during the game. I developed James’ preliminary chess 
clock to toggle the active player’s clock automatically and support several time limits options. I improved 
the UI on the GUI to provide an intuitive and responsive experience during the game. As a secondary 
role, I helped Iain come up with ideas for the FSM implementation and detecting the chess board state.  

 

James Weeden:  

For the project my central role revolved around the creation of a graphical user interface (GUI) 
in Tkinter that allows for the user to configure settings of the stockfish chess AI in game. In completing 
this role, I built out the main Python framework, setting up widget placement and working to prepare 
the GUI so that Srikar and Iain could help get it working with the FSM in real time. Furthermore, I 
designed a menu system to allow users to control sliders that tune parameters of the AI that Srikar 
himself specifically connected the GUI to regardless of the side that they are playing. I created separate 
functions to implement countdown timers that were later transferred to more readable clock displays in 
standard time by Srikar. To give players a clear indicator of the connection between the board and the 
GUI, I created a live time display of the board that moved pieces in the center of the GUI with respect to 
actual movements on the board. This included design of a resizable chess set and implementation of 
custom piece graphics to make the board display easier to modify.  
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Abstract  

The Assistive LED Chess Board is an educational tool that promotes chess enthusiasts, beginners, 
and advanced players alike, to improve their skills. The interactive chess board illuminates the chess 
squares showing the user recommendations from a chess engine. Users can configure the 
recommendations of the chess engine, from engine strength and frequency to the number of 
recommendations in the graphical user interface. Each chess piece has a magnet at its base, and a 
network of 64 hall-effect sensors determines the position of the chess pieces. Using a known chess 
position, either the starting position or a mid-game position, the sensor network is scanned repeatedly 
by the Raspberry Pi Pico, tracking the movements of chess pieces. This method allows the identities of 
the pieces to be differentiated in software. Using the board position and the user’s recommendation 
settings, chess move recommendations are generated using Stockfish [12] running on a personal 
computer (PC). The Raspberry Pi Pico interfaces with light-emitting diodes (LEDs) to illuminate the chess 
squares involved in the recommendations.  This chess board integrates artificial intelligence and human-
computer interaction, allowing chess players to study the strategies of a reputable chess engine while 
building their intuition and skills. 

 

Background  
 

Why we chose this project 

The intersection of artificial intelligence (AI) and human-computer interaction (HCI) is one that 
lends itself to game products. In many instances, AI is used to create an opponent for users, but AI can 
also help players improve at logic games such as chess. The AI in chess engines can be harnessed to help 
beginners learn chess and assist advanced players to sharpen their skills. In addition, standard online 
chess lacks the HCI that can help beginners improve. By letting users interact with physical chess pieces 
and displaying recommendations visually, beginners are more likely to retain chess strategies. On the 
other hand, advanced chess players would benefit from a physical chess set as it can emulate a 
tournament-like experience. An interactive chess board that improves AI and HCI will not only motivate 
players to improve their craft, but it has the potential to change the status quo for how players practice 
chess.  

The industry standard for assistive chess boards is ChessUp by Bryght Labs [2]. This board can 
interface with an AI, illuminate chess tiles using capacitive touch, and wirelessly track chess pieces on 
the board. The product can indicate the optimal move, a mediocre move, and a blunder based on the 
configured strength of the AI. ChessUp can also wirelessly interface with chess.com [22] to update a 
player’s rankings. However, the steep $370 price tag on ChessUp is a limitation that may cause amateurs 
to look for alternatives.  

Differentiating Factor 
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This assistive chess board is a popular concept and has been implemented several times in the 
literature. Specifically, piece detection is an active area of research. Muji et al. designed a chess board 
using linear hall effect sensors and differing magnets strengths for piece identification [9]. The 
chessboard was able to achieve a reliability of 80% on piece recognition. Kaufman, Patel, and Sun of the 
University of Illinois also designed a chess board using magnetic strength and analog hall-effect sensors 
to differentiate chess pieces [3]. Similar to the product by Bryght Labs, they used LEDs on the chess 
board to recommend chess moves. While their implementation was successful overall, they experienced 
unexpected behavior from hall-effect sensors. Another project by Coven of the Massachusetts Institute 
of Technology implemented piece detection using capacitive touch sensors and found the method to be 
highly susceptible to slight variations in piece alignment [11]. He found that the chess pieces needed to 
be placed exactly in the center of each chess square; placing a chess piece off center may cause the 
sensor to read the piece as if it was on the adjacent square. Existing implementations have used 
capacitive sensors or magnetic strength to differentiate chess pieces, but these methods often produce 
unreliable results and are easily influenced by the preciseness of the user’s chess pieces. 

This capstone project aims to improve on the aforementioned designs with respect to piece 
detection. Digital hall effect sensors are found to be more reliable because they are dependent on the 
presence of a sufficiently strong magnet and are not influenced by the strength of the magnet [23]. The 
hardware will be responsible for detecting the presence of a piece on a chess square, and software will 
handle differentiating chess pieces. Given a known chess position, either the starting position or a mid-
game position, the placement of chess pieces can be tracked in memory as the game progresses. The 
software differentiating and tracking pieces will also check the validity of chess moves. This strategy will 
simplify the hardware needed for piece detection and prevent a chess piece from being misidentified by 
alignment issues between the piece and sensor. In addition, this project looks to improve on past 
implementations by creating a high degree of configuration for chess recommendation including AI 
engine strength, AI engine depth, and number of recommendations. This project pairs a simple but 
elegant hardware design with robust software game logic to create an intuitive and responsive chess 
board.  

 

Previous Coursework 

 

This project draws on knowledge gained in several engineering courses in the Electrical 
Engineering and Computer Engineering curriculums. Ramie will design the power supply using concepts 
taught in ECE Fundamentals I (ECE 2630), ECE Fundamentals II (ECE 2660), and ECE Fundamentals III (ECE 
3750). He will also implement the hall-effect sensor network using magnets, logic level sensors, and 
multiplexers, which is material covered in Digital Logic Design (ECE 2330) and Electromagnetic Fields 
(ECE 3209). Embedded Systems (ECE 3501/3502) will play a crucial role in providing Iain and Srikar with 
an understanding of how to design the game’s finite state machine (FSM) and Raspberry Pi Pico’s 
firmware respectively. Srikar will also draw on concepts from Operating Systems (CS 4414) to 
synchronize concurrent tasks on the Pico. The material covered in Advanced Software Development (CS 
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3240) will help Iain integrate the Stockfish API and allow Srikar and James to develop the graphical user 
interface (GUI). Iain and Srikar will also draw from other computer science courses such as Program and 
Data Representation (CS 2150) and Algorithms (CS 4102) to integrate the software and firmware and 
implement efficient data processing.  

 

 

Physical Constraints 

Design Constraints 
 

 One of the biggest design constraints for our project is the computational power needed to run 
Stockfish to recommend moves in a relatively quick timeframe. The more memory Stockfish has 
allocated, the fast it will generate recommendations. We opted to use a PC over a Raspberry Pi to run 
Stockfish due to more RAM and multithreading to yield a more responsive chess board. Furthermore, 
our PCB would have benefitted from being slightly bigger as the LEDs on the LED light strip are spaced 
1.1 inches apart, while the hall effect sensors are spaced 1 inch apart from each other. Unfortunately, 
due to the manufacturing limitations from Advanced PCBs, a 60 square inch board is the maximum size 
board. Due to the nature of that constraint, we needed to create two PCBs for this project. 

 

Cost Constraints 
 

One major constraint that we have identified midway through the design process was the 
amount of money 3W would charge for soldering the components onto the boards. As we have a budget 
of $500, if we were going to use our original design, it would cost us well over $500 just in soldering the 
components. Thankfully, we downscaled to a much more reasonable scale. Due to the downscale, we 
adjusted the number of parts needed for the project. Therefore, neither cost nor availability of parts 
was a concern for the majority of the project. 

 

 

Tools Employed 
 

For hardware design, KiCad was used to create the schematics and the board layout [14]. 
WeBench allowed for an easy way to select the voltage regulator components tailored for our needs 
[18].  Visual Studio Code was used for software development and debugging the embedded programs, 
FSM, and GUI [16]. The Arm GCC compiler was used to compile the embedded programs on the 
Raspberry Pi Pico [31]. CMake was used to manage the embedded build process and produce binaries 
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for the Pico [32]. The embedded toolchain with Arm GCC compiler and CMake was a new workflow and 
involved a learning curve early in the project. The embedded programming was done in C [17]. The 
chess engine Stockfish was used to implement the game logic [12]. The FSM and GUI were programmed 
in Python 3 due its integration with Stockfish API, serial modules, and GUI libraries [15]. Git was used for 
software version control [33].  

For the design and manufacturing of the acrylic board, Solidworks was used to design the CAD 
files [34]. Acrylic weld-on and super glue were used to assemble the acrylic pieces. Finally, sandpaper 
was used to polish the acrylic bases of the chess pieces. Since the light from the LED’s must be visible 
through the chess board, we decided to use semitransparent acrylic for our physical manufacturing. The 
mechanical engineering’s laser cutter will be used to machine acrylic sheets into squares that will 
assemble to form the grid of the chess board. Acrylic panels will be used on the sides and bottom of the 
PCB to provide housing for the electronics and produce an aesthetic project. Laser cutting was chosen 
over other manufacturing options because it produces very smooth cuts and mitigates the risk of 
fracturing which is possible when a blade is used [24]. 

 

Societal Impact Constraints 

Environmental Impact and Sustainability 
 

With the use of a personal computer to power the Stockfish artificial intelligence engine, it was 
deemed not necessary to use batteries for the power supply, instead relying on power from the 
computer of choice. This allows the team to avoid sustainability issues with water contamination and 
low recycling rates associated with battery usage [20]. Furthermore, the Nippon Chemi-Con MVY-series 
aluminum electrolytic capacitors are given an estimated lifespan of 5,000 hours [21], and, in general, 
LEDs are given an estimated lifespan of 50,000 hours. Each of these components are RoHS compliant, 
ensuring that restricted materials including “lead (Pb), mercury (Hg), cadmium (Cd), hexavalent 
chromium (CrVI), polybrominated biphenyls (PBB), polybrominated diphenyl ethers (PBDE), and four 
different phthalates (DEHP, BBP, BBP, DIBP)” [29]. 

 Some limitations of the board include the use of acrylic for the board surface and casing, which 
is not easily recyclable. From an economic standpoint, increased production will allow for the cost of 
PCBs replacements to decrease due to economies of scale. The use of 8 separate controllable LED strips 
does allow for only one strip needing replacement in the case that a single LED on a row fails.  

Health and Safety 
  

 Given the nature of the project revolving around a chessboard and ai engine running on a PC, 
consumer safety issues are relatively minimal and not a significant challenge posed to the project. 
However, choking hazards do exist for the integrated magnets within each of the chess pieces for the 
hall effect sensors to detect. To mitigate this issue, the magnets will be recessed within each of the 
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chess pieces and secured using a strong epoxy. The strength of this adherence will then be tested by 
attempting to pull the magnets from the chess pieces, modifying the magnet integration within the 
pieces as necessary either by changing the epoxy or piece design.  

Furthermore, the acrylic top to the chessboard containing the PCB and sensors will be fastened 
using screws to ensure that users are not able to easily access the underlying electronics. Protection 
against electrical issues including but not restricted to shorts and ground faults will also be taken into 
consideration in the design of the PCB, additionally following the RoHS, NEMA, and IP safety standards 
detailed in the standards section of the proposal. The PCB will be designed using nontoxic materials to 
further ensure safety of the board users 

 

 

Ethical, Social, and Economic Concerns 
 

While chess AI can do lots of good when used as a training tool, the technology has potential for 
harm when used to cheat. In particular, cheating in online chess has increased dramatically in the past 
decade, with chess.com banning on average 500 accounts per day for cheating [10]. Although our chess 
engine will run locally and not interface with any online API’s, the assistive chess board could still be 
used to cheat if a player had two chess games going simultaneously, one physical game on the assistive 
chess board and one online game. The player could wait for the squares to light up on our assistive 
chess board and then make the same move in an online game. However, the typical method that players 
use to cheat online is by having a chess engine running on a separate monitor, and this method is both 
faster and more accurate than if a cheater used our product. With this in mind, we reason that while our 
product could potentially be used to cheat in chess, it would be less effective than conventional cheating 
methods, and therefore would not lead to a significant increase in cheating. In addition, mining silica can 
have negative effects on the environment [25], and since hall effect sensors use semiconductors with 
silicon the ethical constraints on the environment must be considered, especially because our project 
will use 64 hall effect sensors. On the economical side of things, this device costs around $300 to 
manufacture. This means that economically disadvantaged people will be unable to purchase this 
device.  

 

External Considerations 

External Standards 
 Given the use of a PCB and additional electrical equipment, an enclosure following the 

IEC type 1 standard will need to be implemented. This will be designed to protect the user from 
hazards such as electric shock and protect the devices from outside particulates and light [4]. 
Regarding the IP safety standards, the product will need to meet the designated IP11 rating, 
which will “provide a degree of protection to personnel against incidental contact with the 
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enclosed equipment and to provide a degree of protection against falling dirt” [5]. Regarding the 
use of a PCB, the IPC-2221 standard will be followed. This standard outlines the proper 
implementation of features such as impedance control, PDN bus layouts, and conductor 
clearance [6].  

With the use of two programming languages, C for embedded design and Python for the 
implementation of the AI algorithm, certain coding standards are to be held in order to provide 
cleaner and more reliable code. For C development, the Barr coding standard will be adhered to 
[7], while the PEP 8 coding standard will be observed for Python development [8]. 

 

 

Intellectual Property Issues 
 

Several patents exist which overlap with the underlying technologies used in our project. These 
include chess piece detection, on board lighting of the chessboard tiles, and artificial intelligence to 
dictate potential moves. With the existence of these patents, it is assumed that the assistive chess board 
does not have potential to be patented. As detailed under patent law in The U.S. Patent Act, “the 
invention must be statutory, novel, useful, and non-obvious” in order to be patentable [35]. While the 
piece detection approach may satisfy the requirements of being “statutory, novel, and non-obvious”, it 
is unclear whether it provides “useful” advantages over boards such as one patented by Bryght Labs that 
achieves the same effect [27]. Described below are three patents that cover material relevant to our 
chessboard.  

One patent granted to Bryght Labs, Inc. details an “apparatus, system, and method for an 
electronically assisted chessboard”. Under this patent there are several significant overlaps in 
chessboard goals, including “determining a current location on the chessboard of each chess piece”, 
displaying “the set of valid moves available for the selected chess piece” through an “illumination 
system to display on the chessboard” the three first most valid moves for the current player. Each of 
these closely match the intentions of our board, giving a very similar purpose for piece detection and tile 
illumination for recommending the three most valid moves determined by an artificial intelligence actor. 
Player recommendations are done through, “selecting a plurality of moves for inclusion in a group of 
moves based, at least in part, on the skill level of the human player”. While this same action is achieved 
by our project, it is done through the integration of Python StockFish, which is already listed as open 
source.  

Piece detection in the Bryght Labs patent is described as “a capacitive sensing system” that “can 
include a capacitive sensing array in contact with the playing surface”. While our system differs with the 
use of single hall effect sensors and saved game states to remember piece locations, it is unclear 
whether this implementation serves as a “useful” improvement to the capacitive sensing system in 
terms of energy consumption, ease of use, and piece detection interference, since “the capacitive 
sensing system can include sensing by row and column at an 8x8 resolution or higher resolution grid if 
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desired”. In addition, “the lighting array includes color RGB LEDs”, mitigating any benefits that our use of 
driven RGB LED strips may provide. This patent by Bryght Labs depends on work developed in capacitive 
sensors and tile illumination set out in other patents and is thus a dependent claim on previous patents. 

An additional patent reviewed is one for an “electronic chess game” designed such that “each 
playing piece is encoded in accordance with its identity, and each playing position automatically 
responds to the encoding when it is occupied by a playing piece” [28]. The means of response is “an 
electrical circuit associated with the playing position causes other positions to which the playing piece is 
capable of moving to be illuminated with an appropriate color”. Not relying on an AI engine to 
determine the best move, this circuit is designed to simply show all possible moves a piece can make on 
the board, not necessarily the most optimal one as determined by an algorithm. This implementation 
requires a four-bit signal to be sent from the piece, resulting in more complex circuitry. This patent is a 
dependent claim building off of cited patents in digital encoding and piece detection. Our 
implementation has the advantage of using a single bit sensor for detecting whether a piece is present 
or not on a tile and then referring to previous board state as a means for discriminating pieces, 
providing a “statutory, novel, useful, and non-obvious” improvement to this patent.  

Another patent reviewed is a chess game board in which “each of the playing pieces has 
different codes which can be detected by sensors”. These sensors have outputs that “are connected to a 
signal processing device via which the course of the game is stored and/or evaluated” [26]. The purpose 
of this board is to “detect which figure is in which place” in a game of chess. Similar to our project, the 
board uses Hall effect sensors, but instead opts for an analog sensor and an analog to digital converter. 
The “output of the analog / digital converter is” connected via “a bus with the input of a 
microprocessor” to decode which piece is at a given location. To discriminate between pieces, “all black 
pieces or all white pieces are given differently long bar magnets, so that there is a different coding for all 
figures.” This patent is a dependent claim building off of cited patents in magnetic piece detection and 
chess boards that continuously monitor piece positions. Our team’s novel use of digital hall effect 
sensors allows for a lack of need for different strength magnets and shielding to prevent other sensors 
from picking up incorrect strengths from magnets on adjacent pieces, only relying on an ON/OFF signal.  

 

Detailed Technical Description of Project 

What it is 
 

The assistive LED chess board is an educational tool for chess enthusiasts, from 
beginners to advanced players. Users can employ this chess board in several ways. One player 
can play chess against an AI engine of varying difficulties and choose to receive no 
recommended moves, a recommendation on every move, or recommendations upon request. 
Alternatively, two users can also play against each other, configuring the frequency of 
recommendations and AI difficulty to their desire. Due to the varying levels of AI assistance, this 
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chess board can be used to improve the skills of beginners and professionals alike. This chess 
board integrates AI and human-computer interaction, allowing chess players to interact with 
physical pieces while learning how to improve their skills. 

How it works 
 

The positions of chess pieces are tracked by magnets and hall-effect sensors. Each chess 
piece has one magnet at its base. Under each chess square, there is a hall-effect sensor that senses 
the presence of a magnet. With a network of 64 hall-effect sensors, each square on the chess 
board can be monitored on whether or not a chess piece is at that location. The sensor network is 
scanned around 20 times a second, which allows it to recognize positional movement. For 
example, if a chess piece is lifted up and placed in a different position, the sensor network would 
recognize where the piece was lifted and where it ended up. By continuously scanning the 
sensors, the chess pieces can be tracked as they move around the chess board. Once the 
Raspberry Pi Pico determines the current position of the chess board, this data is sent to the PC 
over serial USB, where the validity of the position is determined. Using the GUI, the user will 
select their recommendation settings and the PC interfaces with Stockfish API to produce the 
recommended chess move for the current position.  The recommendation will be converted into a 
matrix that indicates which LEDs need to be illuminated. The matrix will be sent to the Pico via 
serial USB, illuminating the LEDs of the squares involved in the recommended move. The user 
can make the suggested move or disregard the recommendation, at which point a new board 
position is detected causing the process to repeat. This process is more clearly shown in Figure 1, 
as we can see the 5V input source powering the LEDs and the voltage regulator powering the 
sensor network.  
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Figure 1: Block Diagram of the Full System 

Hardware 
 

 The hardware system consists of two PCBs. Of the two PCBs, one acts as a sensor board, and the 
other one acts as a voltage regulation board which contains a Raspberry Pi Pico microcontroller. The 
Raspberry Pi Pico is crucial for controlling the logic for the entire system. We chose to split the boards 
into two distinct sections because freedfm, the manufacturers of the PCB, did not allow a PCB greater 
than 60 square inches. As the sensor board reached 58 square inches, it was deemed necessary to create a 
secondary board for the additional functionality.  Figures 2 and 3 show the overall schematic of the sensor 
board and the voltage regulator board respectively.  
 

 
Figure 2: Top level of Sensor Board 
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Figure 3: Top level of Voltage Regulator Board 

 

 

Voltage Regulation and Microcontroller 
 

 The assistive chessboard system is powered by a wall transformer that connects to a barrel jack 
connector on the voltage regulator PCB. Figure 4 shows the components used in the voltage regulator 
system. 

 
Figure 4: Voltage Regulator 

Our board uses this voltage regulator to power the sensor board. It converts a 5V source 
into a 3.3V source required for use to power the sensor board. Furthermore, the 5V input will 
also be used to power the LED light strips, as they require quite a significant amount of current 
to power on. Table 1 will show a list of components our circuit needs to be able to supply power 
too. 

Our board uses this voltage regulator to power the sensor board. It converts a 5V source 
into a 3.3V source required for use to power the sensor board. Furthermore, the 5V input will 
also be used to power the LED light strips, as they require quite a significant amount of current 
to power on. Table 1 will show a list of components our circuit needs to be able to supply power 
too. 

Component Current (A) 

Hall Effect Sensors (64) 0.1024 

Muxes (9) 0.01024 

LEDs (64) 3.84 
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Total Consumption 3.953 

Table 1: Current Consumption of Components 

 

The voltage regulator, designed to take in an input of 5V and output 3.3V, can supply a 
maximum current of 0.200A. The maximum current consumption of the sensor board is 0.11A. 
This means that the sensor power requires 0.363W. The voltage regulator is operating at 61% 
load. The LEDs, on the other hand, will require 19.2W of power while they are on full 
brightness.  
 

 The microcontroller will always be connected to a computer for this project to function as 
intended. Therefore, the microcontroller will be powered by the computer the chess board is 
connected with using a Micro-B USB to USB-A cable. 
 

Sensor Board 
 The hall effect sensors were used to detect if a chess piece was on the given tile.  These 
sensors contained three pins: VCC, Vout, and Ground. The TCS40DPR,LF hall effect sensors we 
chose were omnipolar, digital hall effect sensors since we only needed to verify whether a 
magnet was on the tile or not. The hall effect sensors allowed for a voltage of 3.3V, which 
allowed the hall effect sensors to output into a mux without needing to step the voltage down or 
step the voltage up. This hall effect sensor worked well with our project, as knowing the polarity 
of the magnet was not a necessity. Furthermore, as the hall effect sensors are digital, we do not 
need to worry about the strength of the magnet. As long as the magnet is close to the sensor, the 
hall effect sensor would work as intended. One major concern about the hall effect sensors was 
the ability to sense the magnets of their nearby neighbor. To prevent this issue from occurring, 
we spaced each hall effect sensor 1 inch apart from each other. We also chose smaller, weaker 
magnets as an extra precaution.  
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Figure 5: 8 Hall Effect by 1 Mux schematic 

In figure 5, we can see that the hall effect sensors used would send their signal straight 
into a CD74HCT251E multiplexor. This multiplexor is able to handle the 3.3V signal given by the hall 
effect sensors and safely pass the signal onto the Raspberry Pi Pico. We chose an 8 by 1 digital 
multiplexor because it was cost effective and allowed us to sense several tiles with one component. As the 
hall effect sensors and multiplexors used in the project are digital, Furthermore, the signal that was passed 
through to the multiplexor is a digital signal, which would make the use of an analog multiplexor a 
wasted effort. Using the circuit from figure 5, we can copy that circuit and use the output of eight 
multiplexors as an input to a central multiplexor. This central multiplexor’s output would subsequently be 
used as an input to a raspberry pi pico for sensor data collection. This dynamic is more closely seen in 
figure 6. 
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Figure 6: 8 Muxes by 1 Central Mux schematic 

Board Layout: 
 
 As mentioned previously, we needed to design two boards for our project. Figure 7 
showcases the sensor board layout. One major concern, while creating the traces of the board, 
was to allow the power rails to have many connections with each other. Allowing several 
connections between the power rail and the ground rail will allow current to flow in all directions 
and reduce inductance in the wire. An important factor in our design was to reduce inductance in 
the wire so that the hall effect sensors would not pick up on that magnetic field. The hall effect 
sensors are spaced 1 inch apart from each other. Every 8 hall effect sensors will be connected to 
a multiplexor, which in turn will be connected to a central multiplexor. This helped reduce the 
number of pins needed for input sensing, while allowing the GPIO pins for the Raspberry Pi Pico 
to be used for other components in the system. As it was important to make sure that the LEDs 
and the hall effect sensors are under each tile, we needed to make sure that the test points were 
soldered on the bottom side of the board so that they do not interfere with the pathing of the 
LEDs. 
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Figure 7: Sensor Board Layout 

The next board that needed to be created was the voltage regulator. The layout of the 
voltage regulator board is shown in figure 8. There are multiple critical components in this board 
that ensure the functionality of the device. Specifically, this portion of the project is very 
important as it is the power supply for the sensor board and the LED strips. The voltage regulator 
board also contains the housing for the microcontroller, which will send signals to the LED light 
strips and the sensor board.  
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Figure 8: Sensor Board Layout 

In the voltage regulator board, we made the traces large enough to handle 4A of current at 5 
volts. Specifically, these 100 mil traces are designed to support all the LEDs at full brightness as 
well as convert the input of 5V to a safe supply voltage that the sensor board can use. 
 

Voltage Level Translator 
  
 One critical aspect of the project was understanding how to implement the LEDs. 
Through countless concept designs, we arrived at the idea of using LED light strips. Each LED 
contains a mini controller called “WS2812B”. This controller would allow us to easily interface 
between the LEDs and the Raspberry Pi Pico. Unfortunately, one major problem arises if we use 
that specific LED controller. The LEDs and the WS2812B controller require the use of a 5V 
VCC and a 5V data line. Unfortunately, the Raspberry Pi Pico is only capable of supplying a 
maximum voltage of 3.3V. This means that we will need to use a voltage level translator that 
will boost the 3.3V signal coming from the Raspberry Pi Pico and convert it into a signal of 5V 
that is usable for the WS2812B. 
 

Firmware 
 

 The Raspberry Pi Pico was the microcontroller used for this project. It was selected due 
its ability to run on FreeRTOS, interfacing with GPIO pins, integration with the WS2812B LED 
strip, and built-in serial module. The microcontroller was programmed in C. The FreeRTOS 
kernel was used to configure interrupts and run tasks concurrently. Three tasks were used: sensor 
network processing, LED interfacing, and serial communication.  
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Sensor Network Processing 
 

 One FreeRTOS task was used to scan the hall-effect sensors repeatedly (around 20 times 
a second) and write the board state to the PC using serial USB communication. The sensor 
network board had 64 hall-effect sensors that multiplexed to one GPIO using nine 8:1 digital 
multiplexors. There are 8 lower-level multiplexers, and each multiplexer reads the sensors of 8 
chess tiles. The outputs of the 8 lower-level multiplexers are inputs to one higher level 
multiplexer. This allows us to multiplex 64 hall-effect sensors to one GPIO pin that will be used 
to read sensor data. Table 2 shows the mapping of multiplexers to physical chess squares.  
 

 
Table 2: Hall-effect sensor network multiplexing 

In each chess square, the numbers indicate the input of the multiplexers that allow the 
square to be selected. The format is as follows: <Higher level mux input number>. <Lower-level 
input mux number>.  For example: to read sensor D6, the higher-level mux input 2 must be 
selected and the lower-level mux input 5 must be selected. A function sets the select bits to read 
the desired input number from the multiplexer. 
 

 The sensor network is read by iterating through all 64 sensors and storing the values in a 
buffer of 64 chars. Since the hall-effect sensors are active low, the GPIO pin reads the voltage 
and determines if a magnet is present on that square. A “1” or “0” is stored if a magnet is present 
or not present respectively. The “0” or “1” character is written to a specified location in the 
buffer relative to the physical chess square location. In the buffer, each consecutive group of 8 
characters represent one row of the chess board.  The first 8 characters correspond to row 8 of 
the chess board (from column A to column H). The next 8 characters correspond to row 7 of the 
chess board (from column A to column H) and so on. The second to last 8 characters correspond 
to row 2 of the chess board (from column A to column H). The last 8 characters correspond to 
row 1 of the chess board (from column A to column H). Once the buffer is full of sensor data, it 
is sent to the PC via serial USB for further processing by the FSM.  
 

LED Interfacing 
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The Raspberry Pi Pico interfaced with the WS2812B RGB LED strips using the Pico 
SDK’s Programmable I/O (PIO). The PIO protocol was chosen due to its straightforward 
integration with the WS2812B controller and the Pico’s GPIO pins. It is also valuable because it 
uses direct memory access to send data to the LED strips, reducing CPU computation and 
overhead. Eight LED strips were used, one for each column on the chess board, and each strip 
has eight LEDs. Eight channels were set up using PIO to set the LED colors. The colors were set 
by inputting a series of hexcodes to the GPIO pins. The hexcodes would get sent as a pulse-width 
modulation (PWM) signal. For example, a long high followed by a short low would be a logical 
1 and a short high followed by a long low would be a logical 0. The hexcode, which has 24 bits, 
would get sent as PWM through the strip, setting the string of LEDs to the desired color 
combination.  

Several helper functions were used to scale the LED driving code. Ultimately, the LED 
interfacing was abstracted to a function that would receive a string of length 64 and drive the 
LED based on the color that was at the particular index. Table 3 shows the mapping of the string 
input and the corresponding LEDs. The number in each chess square shows the index in the 
string that sets the particular LED. The char value at the particular index in the input string 
would determine which hexcode to display on the LED.  
 

 
Table 3: LED mapping 

For more abstraction, a Python library was created to product the format needed to drive 
LEDs. For example, a function would receive a recommended move from stock and convert that 
to a format that would illuminate the appropriate LEDs. A similar function was implemented for 
displaying an illegal move. In addition, an LED start up sequence was created to run through 
RGB colors through every LED to debug the LED matrix and check for fault connections.  
 

Serial Communication 
 

Serial over USB was used to communicate between the Raspberry Pi Pico and the PC. 
The Pico SDK can configure standard output (stdout) to be set to serial USB, sending print 
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statements to the PC. A Python serial module was used on the PC to read and write to the serial 
session. The sensor network data was sent from the microcontroller to the PC. The LED 
configuration was sent from the PC to the microcontroller. Since the LED configuration is a 
buffer that the PC writes to and the LED driving function reads from concurrently, a mutex and 
condition variable were used to synchronize these concurrent tasks. The FreeRTOS 
synchronization primitives were used to implement this.  
 

Software 

FSM 
The software is composed of three files: FSM.py, LED.py, and ChessInterface.py. 

FSM.py is responsible for interfacing with the Raspberry Pi Pico through USB serial connection, 
executing algorithms to keep track of the state of the chess game, and interfacing with the 
graphical user interface. Figure 9 shows this algorithmic flow. FSM.py has two primary 
functions: next State Function and outputFunction. NextStateFunction contains logic that tells 
the finite state machine when it should transition between possible states. For example, when the 
Stockfish AI detects that a legal chess move has been made, the checkValid state transitions into 
the showRecommendation state. The outputFunction contains distinct outputs for each possible 
FSM state. In the transition state, the output is reading data from the Pico, in the checkValid 
state, the output is determining if a legal chess move has been made, in the 
showRecommendation state, the output is writing a signal to the Pico to illuminate LED’s, in the 
error state, an error signal is sent to the Pico, and finally in the end state the game is determined 
to be either checkmate or stalemate. Figure 10 shows a high-level diagram of the FSM. LED.py 
contains helper functions that convert chess moves in algebraic notation into a signal that can be 
interpreted by the Pi Pico. For example, if the Stockfish AI recommends the move “e2e4”, the 
function in LED.py takes that string as input and returns a string of length 64 indicating which 
LEDs on the chess board should be illuminated.  
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Figure 9: Flowchart of Algorithm 

 
Figure 10: FSM Diagram 
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GUI 
The FSM and embedded device are controlled by the GUI. The ChessInterface.py file 

contains all of the software for the graphical user interface. The GUI was programmed in Python 
3 with the Tkinter library and the CustomTkinter library to improve the user interface (UI). The 
GUI gives the user the ability to modify a range of settings including AI strength, AI depth, 
number of recommendations, clock time, and starting position. All these parameters modify 
objects running in FSM.py in real time such as Stockfish engine parameters, board state, and 
LED recommendations. Figure 11 shows the starting screen of the GUI where users can 
configure these settings. On this frame, the user can begin the game using the starting chess 
position. When clicking the “Start” button the program will verify that the chess board is set up 
correctly. If a piece is out of place, an error message will be displayed alerting the user to fix it.  
 

 

Figure 11: GUI starting screen 

There are two modes for recommendations. The default mode is shown in Figure 12. It 
allows the user to configure the Stockfish AI strength, AI depth, and turn on or turn off a 
recommendation. In default mode, the user can receive at most one recommendation, but it can 
be in any AI strength.  
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 Figure 12: Default Recommendation Mode 

The other recommendation mode is Grandmaster mode, which essentially shows the 
recommendations that a grandmaster would suggest at this point in the game. In this mode, the 
Stockfish AI strength is fixed at the highest level, but the AI depth and number of 
recommendations are configurable. This mode is shown in Figure 13. 
 

 
Figure 13: Grandmaster Recommendation Mode 
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The GUI also allows users to start from a custom, mid-game position. In addition, the user’s 
have the option of starting a game from the starting position of their last game or the ending 
position of their last game. Figure 14 shows this screen, which shows these two positions. If the 
user wants to pick up where they left off, they can simply copy and paste the position into the 
textbox and start the game. The player can also press the “View position” button to see if the 
supplied position matches where they wish to start.  
 

 
Figure 14: Starting from custom, mid-game screen 

Users can select the time limit they wish. The time selected represents the time allocated from 
each player, not the total time. Figure 15 shows the clock options.  
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Figure 15: Clock options 

The chess clock automatically toggles and counts down the player that needs to make the 
move. Instead of implementing a timer that the users must manually press, this chess clock 
interacts with the FSM to read the active player and makes the experience seamless. When a 
player’s clock is active, it turns green and when it is inactive it turns gray. There is also a pause 
button which the players use to pause and resume the game, stopping and starting the 
timers. Figure 16 shows this feature.  

 

 

Figure 16: Chess Clock 
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Mechanical: 
 

CAD Design 
 

The CAD files for the acrylic chess board were designed using a software program called 
Solidworks. Initially, the design started off by creating the CAD of the top surface of the chess 
board box. The dimensions of the top surface of the chess board are 10 inches x 10 inches.  The 
top surface includes a grid of squares with circles extruded in the center, as well as the alignment 
of text on the border to indicate the rows and columns. To ensure the letters are visible on the 
outside of the box when manufacturing, we will be using laser cutting to slightly etch the letters 
onto the board. Figure 17 shows the CAD Assembly of the top of the surface with the letters on 
the top surface as well as the circles extruded in the center. This will allow us to set the pieces 
perfectly in the center and let the hall effect sensors pick up the magnetic field emitted by the 
magnetic. 
 

 
Figure 17: CAD Assembly of Top Surface 

After the top surface was designed, the side panels and base were created to fit around the 
top. The front and the back of the chess board shows where each piece should be placed on the 
chess board. For example, on the left and right side of Figure 18, we can see the icon of the rook. 
This gives us an easy way to orient the pieces for those who are new to chess.  
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Figure 18: CAD File of Front and Back of the Chess Board 

In Figure 19, we can see the left of the board with two holes. The square hole allows us to 
plug the micro-USB cable from the PC to the Raspberry Pi Pico. On the other hand, the circular 
hole will allow a passthrough for the power supply barrel jack and seamlessly connect power 
into the box. 

 
Figure 19: CAD File of Input/Output Ports 

 

The last CAD file is similar to the previous figure, however there are no cutouts in the 
design. This will act as the final wall in the encasing for the PCBs and wiring. 
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Assembly 
 

Acrylic sheets were utilized when manufacturing the board. During the process of 
manufacturing, a laser cutter was used to create fine cuts on the pieces. The laser cutter was 
strong enough to cut through the entirety of the acrylic. As shown in the CAD, we have circular 
cutouts for the surface of the chess board. This will allow the chess pieces to smoothly fit within 
the circular cutout. This ensured that the hall effect sensors would be able to read the pieces 
everytime the piece was put back down. We needed to create a hole large enough to fit the 
magnet and hold it in place, so the magnet does not fall off in the middle of the game as shown in 
Figure 20. 
 

 
Figure 20: Ring Around the Magnet 

 
Most of the laser cuts went all the way through the material, but the numbers and letters 

around the border were engraved instead. We wanted to use the laser to etch the letters onto the 
board to give a seamless look to the surface design of the chess board. Figure 21 shows a more 
detailed look into how the acrylic sheet was cut for gluing in the later steps. 

 



 31 

 
Figure 21: Laser Cutting Acrylic Sheets. The Machine can be found in the M.I.L.L of the 

Mechanical Engineering Building. 

 

Once all the pieces were cut, acrylic weld-on and super glue was used to assemble the 
pieces together. Each cutout needed to be glued together on the surface. Figure 22 shows the 
assembly of the chessboard grid. After all the pieces are glued together, we needed to create a 
second layer of acrylic for the chess pieces to lay on the surface.  
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Figure 22: Assembling the Chessboard Grid 

 

Figure 23 shows the finalized surface of the chess board. As mentioned before, there is an 
extra layer of acrylic underneath the surface that the chess pieces are on top of. To give it a clean 
look, we decided to make the bottom of the layer of the surface in white, as the LEDs can visibly 
shine through very clearly.  Since the top layer was finished, it was not time to move onto 
creating the other sides of the chess board.  
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Figure 23: Finalized Chess Top Surface 

 Figure 24 allows us to see a much clearer picture of a finalized version of the chess 
board. Now that the encasing has been assembled, it was very important to test the system to 
make sure that both the LEDs are shining through clearly, and that the hall effect sensors have 
been able to sense the magnetic field from the magnets we chose previously. 
 

 
Figure 24: Finalized Chess Top Surface 

 

Once we were ready to start testing, we plugged in all the cables needed to start the 
boards and input the code into the Raspberry Pi Pico. Figure 25 shows us a clean look of the 
LED chess board working in the finalized state. 
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Figure 25: Finalized Chess Board 

Hardware Design Modifications 
  

In our initial hardware design, we were planning to have four hall-effect sensors per 
chess square and use binary encoding to detect check pieces. This would allow us to identify 
each chess piece using hall effect sensors alone and not rely on the previous position. However, 
due to budgetary constraints, the amount of money needed to manufacture the PCBs and 
soldering the parts would cost more than the entirety of the $500 budget. Fortunately, we were 
able to downscale the size of the project to include one hall effect sensor per square. This not 
only reduced the number of components needed, but it also reduced the number of PCBs needed 
for manufacturing.  

One other hardware modification we needed to change was the power supply and voltage 
regulator levels. Initially, we were planning to use a 12V power supply and a 12V-3.3V step 
down switching node regulator. The 12V power rail was used initially because the LED 
controllers needed a 12V supply voltage. However, we quickly realized that the 12V LED strip 
was not suitable for the project since we realized the LED strip was only addressable by every 
three LEDs. We decided to use the 5V LED light strip since it was individually addressable 
which worked correctly. This required us to change the voltage regulator to accommodate a 5V 
power supply rail rather than the 12V power rail. Due to the changes in the amount of current 
required for the sensor boards, the amount of current supplied by the voltage regulator was 
reduced by a factor of four. This meant that we needed to change the inductor in the circuit as 
well as the voltage regulator.  

Lastly, one hardware modification we included on the voltage regulator board was an 
addition of a logic level translator. The Raspberry Pi Pico supplied 3.3V logic and the LED strip 
takes 5V logic. In our initial testing, the Pico was able to supply the data line of the LED strips 
without a logic level translator, but we noticed the LEDs flicker at times, especially on the first 
LED of each strip. We modified the second revision voltage regulator board to include a logic 
level translator that converted the 3.3V being supplied by the Raspberry Pi Pico into a 5V data 
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signal into the LED controller for the LED light strip. Once the chip was added, the LED 
flickering issues were mitigated.  
 

Firmware and Software Design Modifications 
 

In our initial plan to implement the firmware and software, we were planning on having 
the Raspberry Pi Pico run the FSM and keep track of the board state while having the PC run the 
GUI and make calls to the Stockfish API. In this approach, the bulk of the game logic would run 
on the embedded device. However, since the GUI would gather the user’s recommendation 
settings and relay that information to the FSM, it would be more difficult to integrate those 
subsystems if the FSM is running on the embedded device. Considerably more data on the game 
state would have to be sent via serial between the PC and Raspberry Pi Pico, increasing latency 
that could otherwise be used to do computation. To work around this, we decided to use the 
Raspberry Pi Pico to read the sensor network and interface with the LEDs and use the PC to run 
the FSM and GUI. This way the FSM, implemented in Python, would act as an intermediary 
between the GUI and embedded device, sending information about recommendation settings and 
LED display back and forth. This implementation also allowed for easier debugging since the 
FSM script on the PC was inspected as opposed to the Raspberry Pi Pico.  

We were also challenged by integrating the GUI and FSM. We were planning on having 
the GUI run within the framework of the FSM. However, around late November we were 
running into problems having the GUI and FSM run and update in real time. To resolve this 
issue, we decided to implement the output and next state functions as functions that are 
continuously executed within the GUI. This enabled the two subsystems to run concurrently.  

Additionally, we were originally planning on allowing players to configure AI strength 
and number of recommended moves independently from one another. However, by testing the 
Stockfish engine by having it play against itself, we discovered that when multiple recommended 
moves are enabled, the AI always plays at the highest strength. This means that the AI is unable 
to recommend multiple amateur or beginner level moves at once. Due to this limitation, we 
added additional logic in the GUI so that when multiple recommendations are enabled - the 
“grandmaster mode” option - the AI strength is fixed at the highest level. This means that the two 
settings are dependent on each other, and when grandmaster mode is enabled, the slider for AI 
strength is fixed in place.  

Since we were initially planning on having up to four magnets per piece and using binary 
encoding to detect the pieces and we redesigned the product to use one magnet per piece, the 
game algorithm in the software needed to be redesigned to track the chess positions in memory. 
To make the algorithm work for one magnet per piece, we decided to keep track of the previous 
state of the chess board and compare it to the new state. If a change is made that reflects a legal 
chess move being made, the AI updates the position, and the FSM continues executing.  
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Project Timeline 
 

 A free Gantt Chart tool was used to create a timeline of the project. The initial timeline 
was modified both during the midterm design review and in November. The initial proposed 
timeline, shown in Figure 26, was not very detailed in the aspects of the project, as we were not 
very much acquainted with the intricacies of the assistive chess board. We proposed a large 
timeline for the PCB Design, PCB Testing, and PCB Revision. We also did not specify a 
timeline for the interactive GUI or interfacing with the LED light strips. 
 

 
Figure 26: Initial Proposed Timeline 

 

During our midterm design review, we had a much clearer understanding of how the 
project was going to be implemented. We added a section to interface with the LEDs, revise the 
boards if necessary, and read data from both the Pico. In Figure 27, we can see a more detailed 
midterm design review. 
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Figure 27: Midterm Design Review Proposed Timeline 

In our finalized timeline, as seen in Figure 28, we include all the details needed to 
complete the project in time. We designated more accurate timing for PCB design and revisions, 
added more detail into the design of software, and finalized the design process to assemble the 
capstone project. 
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Figure 28: Finalized Timeline 

The tasks of all the group members have been split to suit our strengths amongst the four 
group members. Ramie’s primary focus was designing the sensor and voltage regulation board. 
Srikar’s primary focus was programming the Raspberry Pi Pico to interface with the LEDs and 
read the sensor network and developing the GUI. James' responsibility was working on the GUI. 
Lastly, Iain’s primary responsibility was working on the finite state machine, interfacing between 
the Raspberry Pi Pico and manufacturing the acrylic chess board. Overall, using the Gantt chart, 
we were able to make sure we were able to make sure we are on track to finish. 

 

Test Plan 
 

Hardware 

The hardware section of the project requires multiple steps to follow through to ensure 
that the devices are working properly. Due to the use of two PCBs, each one needs to be 
thoroughly tested. For the testing of the sensor board, we needed to make sure that the hall effect 
sensors are outputting the correct values to the multiplexors.  Figure 29 shows the steps we took 
to verify the correctness of the sensor network board. The sensor board is working on a 3.3V 
supply rail. This means that the multiplexors and the hall effect sensors both will output either 
3.3V or 0V due to the digital nature of the sensor board. The hall effect sensors are active low. 
This means that when the hall effect sensors are sensing a magnetic field, it will output 0V. 
When the magnetic is not present, the hall effect sensor will output the supply voltage. This 
digital nature of the hall effect sensor allows for a very easy way to debug the sensors. 
Furthermore, the multiplexors will act in a similar way. We will output a signal from the hall 
effect sensors into the multiplexor. By controlling the select bits on the multiplexor, we can 
sense the output of a specified hall effect sensor. With this knowledge, we can use a multimeter 
to measure the signals coming from and towards the multiplexor.  
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Figure 29: Decision Tree for Test Plan 

Once the multiplexor has been verified to be working properly, and the enable bits, select 
bits, and output bits are being sent properly, we can begin to verify if the Raspberry Pi Pico is 
reading the signals correctly. The Raspberry Pi Pico needs to be able to sense a 3.3V level 
coming from the output of the central multiplexor and into a specified GPIO pin on the 
Raspberry Pi Pico. 

For the testing of the voltage regulator board, we need to ensure that the power supply 
rails are 5V for the LEDs and the data signals are being read as 5V for the data line. Using the 
test points on the voltage regulator board, we can easily check if the voltage regulator is sending 
power to the LEDs. If it is not sending power to the LEDs, we know that the device is not 
plugged in as the 5V rail is directly connected to the LEDs.  Once that is verified, we can move 
towards the voltage regulator aspect of the board where we can verify whether the switching 
node is outputting 3.3V onto the voltage rail. Due to simulations done by the Texas Instruments’ 
WeBench and using the Virtual Bench, we have been able to verify the max load current the 
regulator circuit is able to provide to the sensor board.  

 

In the beginning, there was flickering on most of the LEDs which was realized because 
the power adapter we were using for testing was not supplying enough current. We then tested 
the LEDs using an adapter rated for 15A and noticed most of the flickering go away. However, a 
few LEDs consistently flickered: the LED at the beginning of each strip. The first LED in a 
WS2812B strip boosts the data line from 3.3V logic to 5V logic. We realized the WS2812B 
controller was delayed in boosting the logic signal, causing flickering in particular LEDs. This 
problem made us pursue a logic-level translator so that the signal didn’t need to be boosted by 
the WS2812B strip itself. This chip solved the problem, making the LEDs work as expected.  
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Software 

 The sensor processing in the embedded program was tested using the sensor network 
board. Magnets were placed over sensors and the raw data readings were observed in the serial 
monitor. We encountered issues with mismatching the select bits of the multiplexers which 
produced wrong readings. We debugged this using a multimeter and fixed the connections at 
which point the sensor processing worked as expected. We also experimented with the distance 
between the hall effect sensor and the magnet during sensor processing and we found the 
distance to be within the tolerance of our design. The LED matrix was tested using several start-
up sequences to debug color mismatches. When we noticed flickering in the LEDs, we had to 
identify if it was caused by incorrect PWM signals from the PIO or the LED hardware itself. We 
used an oscilloscope to debug the issue and found the PWM to be what we expected: it matched 
the hex code of the LED. We then concluded the flickering in the LED was due to a hardware 
problem at which point we implemented the logic-level translator to solve the issue.  

 The FSM was initially tested using hard-code board states to check if the correct states 
would be satisfied. The debugging tool on VS Code was used to step through the FSM and 
observe states. Later, the FSM was integrated with the GUI to test the AI settings and 
recommendations. This is where the bulk of system-wide testing occurred. The chess board 
display in the GUI allowed for easier debugging on the FSM. At times, the FSM would move to 
an unexpected state and the chess board on the GUI would show that a chess move was not 
recognized. The GUI feature to start mid-game was also a valuable debugging tool as it meant 
we could find a sequence of moves that caused erroneous behavior and try to reproduce the bug.  

 

Final Results 
 

Overall, the capstone project functioned successfully. The hall-effect sensor PCB, voltage 
regulator PCB, embedded program running on the Raspberry Pi Pico, and GUI all functioned as 
expected. The sensor network was consistently able to detect the presence of chess pieces on the 
board. Each chess piece was properly recognized, and movements were also detected regularly. 
The sensor data was processed on the PC and Stockfish API was incorporated into the game 
logic to always suggest the engine’s best move(s). The recommended moves were displayed on 
the LED matrix, and all the LED colors for a given recommendation were accurate and 
responsive. Lastly, the GUI allowed the user to configure a multitude of settings, including the 
AI strength, AI depth, and number of recommendations. The GUI also automatically alternated 
the user’s clock time upon completed moves and had several time options for the clock. The 
acrylic chess board allows users to move chess pieces and view recommendations easily, making 
the design intuitive and responsive.  
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The rubric submitted in our proposal is shown in Table 4. Due to the functionality 
described previously, all four criteria are satisfied in the 3-point range. According to Table 5, this 
produces a total score of 12 points, which corresponds to an A grade.  

 

 

Points 

Criteria 1: 
Piece 

Detection 

Criteria 2: 
LED Output 

Criteria 3: 
Chess Engine 

Utility 

Criteria 4: 
User Interface 

 

3 Every Piece is 
detected 
properly. 

All squares on the 
chessboard light up 
corresponding to the 
input from the LED 
driver. 

The chess engine 
always recommends 
the (subjectively) 
best move based on 
the board position. 

The players can 
configure a 
multitude of settings 
for the chess engine, 
utilize a chess clock, 
and the board is 
easy to play on. 

 

2 Some pieces 
are detected 
properly.( ie. 
pawns, queens 
but not rook) 

Some of the squares 
on the chessboard 
light up based on the 
input from the LED 
driver. 

The engine 
sometimes 
recommends the best 
move based on the 
board position. 

The players can 
configure some 
settings, use a chess 
clock, and the board 
is easy to play on. 

 

1 Very few of 
the pieces are 
being detected. 

Some of the squares 
on the chessboard 
light up. 

The engine 
recommends any 
move based on the 
board position. 

The players can’t 
configure any 
settings, they can 
use a chess clock, 
and the board is 
easy to play on. 

 

0 No piece is 
being detected 

None of the LEDs 
are functional. 

The engine does not 
recommend a move. 

The players can’t 
configure any 
settings, there’s no 
chess clock, and the 
board is difficult to 
use.  

 

Table 4: Grading Rubric 

 

Grade Total Points 

A 10-12 

B 7-9 
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C 4-6 

D 0-3 

Table 5: Letter Grade based on Rubric 

 

The project also contains several additional features that were not part of the proposed 
requirements. The LED functionality exceeded the aims described in our proposal. It was not 
only able to illustrate recommendations, but it was also able to display red on the squares that 
were involved in an illegal move, showing the user which piece to revert. Similarly, additional 
features in the GUI exceeded our initial requirements. The GUI had a feature that allowed the 
user to begin a game from the starting position or from a custom, mid-game position. It also 
displayed a chess board, which corresponds with the latest moves on the physical board. This 
visualization lets the user know what position to revert to in case an error arises.  

Costs 
The cost of one assistive chessboard system was designed with the budget of $500 in 

mind. A detailed breakdown of the costs is shown in Table 6. The total amount of money one 
assistive chessboard costs is $296.53, which is within the budget provided to us. However, the 
detailed list does not include the amount of time spent laser cutting the acrylic used in the 
assistive chessboard. The most expensive portion of our project is the charge for soldering the 
boards.  

 

Table 6: Cost of Parts 

If 10,000 units were manufactured, there would be massive discounts on the PCB 
components prices for buying them in large quantities. The price of the PCB’s would drop from 
$66 down to $7, as per Advanced Circuits Custom Quote. One massive expense in our project is 
the voltage regulator used in the circuit. One voltage regulator would cost around $9.24. 
However, at the scale of 10,000 units, this price would reduce to $4.67. Lastly, since our sensor 
board has nearly 100 components, using a machine to solder the components would dramatically 
reduce the amount of money being spent on soldering. Currently, at the student rate, 3W charges 
$10 per board + $0.50 per component. Lastly, to reduce costs, we can print out the sensor board 
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and the voltage regulator board in the same board. Furthermore, if that is not an option, we can 
solder the voltage regulator board directly to the sensor board and avoid an unnecessary ribbon 
cable, reducing $19,500 of costs. Lastly, if we can reduce the price of acrylic by buying in large 
quantities, we will be able to reduce the amount of expenditure drastically and increase profits if 
this product were to go on sale. 

 

Future Work 
 

While this capstone project was successful in detecting chess pieces and recommending 
moves, there are a few limitations that can be improved on. The Assistive LED chess board can 
be improved in the following ways.  

Gamification 

 Our game logic has a few limitations that can be addressed for a more comprehensive 
experience. One such limitation is the current software does not allow the user to under promote 
their pawn. A feature can be added in the GUI that allows the player to select the piece to which 
they wish to promote. In addition, in our current design, a player who makes a blunder is forced 
to either proceed with the game or begin a new game starting from a mid-game position. If they 
choose to start mid-game, they can copy the ending position of the last game and modify it to 
revert the blundered move. This would be inconvenient if it happens several times. Therefore, an 
undo button would be valuable to revert a poor move and create a seamless playing experience.  

Recommendations 

 Although the Stockfish API was comprehensive, there was one limitation we did not 
anticipate. When recommending multiple chess moves, the strength of the AI engine is 
automatically set to the maximum. If the user wants recommendations from a lower AI setting, a 
maximum of one recommendation can be generated. To improve the configurability of chess 
recommendations, the Stockfish source code can be modified to use the current AI strength to 
retrieve multiple recommendations.  

Piece Detection 

 The approach of using hardware to solely detect the presence of pieces and relying on 
software to identify pieces has limitations. In some instances, especially in between moves, two 
chess pieces can be swapped. In this case, the hardware would detect that the same chess squares 
are occupied, and since a move hasn’t been made, the software would continue waiting for a 
move as if nothing happened. Since this implementation doesn’t differentiate between pieces in 
hardware, this is an area for improvement. Bipolar magnets can be used such that, for example, 
all white pieces have positive polarity and black pieces have negative polarity. This would 
account for swapping pieces of different color but would still have a blind spot for swapping 
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pieces of the same color. Computer vision and image processing are promising methods to 
identify pieces and have the potential to mitigate the limitations found in hardware-based piece 
recognition. 

Wi-Fi Module 

 The current chess board is aimed to be used in-person by one or two players. A user may 
want to play another user remotely if they both have the same chess board. A Wi-Fi module can 
be incorporated into the chess board that allows users to play other online users. A server can be 
implemented that contains networks with various categories of skill level. Players can request to 
play other online users of similar skill level with agreed recommendation settings. This feature 
would expand the possible use cases for the product and build an online community for 
interactive chess boards.  
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