
Information and Cyber Security: Automating the Quality Assurance Process

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Jack Warner

Fall, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Briana Morrison, Department of Computer Science



Information and Cyber Security: Automating the Quality
Assurance Process

CS4991 Capstone Report, 2022
Jack Warner

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

Abstract
A Fortune 50 bank familiarizes its interns
with the code base of their product in the
field of Information and Cyber Security by
giving them the time consuming,
monotonous work of Quality Assurance. By
effectively understanding how the product
works and the expected results, the process
can be automated using a Python script and
two Shell scripts. The product in question is
utilized in Shell and produces an output
based on the user inputs. All possible
combinations of possible inputs must be
tested, but by utilizing the script, the time
required for QA can be decreased
dramatically. The more comprehensive
testing of input combinations results in
better test coverage, leading to more
bug-finding. A possible future
implementation would be altering the script
to be more user-friendly.

1. Introduction
Back in 2015, the new top-of-the-line tablet
called Innotab, designed by VTech, was all
the rage among parents. These kid-friendly
smart devices have the ability to take
pictures, store information, connect to the
internet, and send messages to parents’
phones.

A hacker decided to tinker with the tablet, as
there are many active online communities
that dedicate themselves to hacking Internet

of Things devices. As he familiarized
himself with the device, he noticed one of
the VTech websites was vulnerable to SQL
injection. With that knowledge, he received
root access in almost no time. Since the
hacker now has obtained the highest level of
authorization privilege, he is able to find
databases containing millions of pictures,
messages, and personal data of children.

With the poor implementation of quality
assurance, newly-created devices and
applications will have significantly more
vulnerabilities once launched. This begs the
question regarding quality assurance, an
integral part of the software development
process: What are the ethical implications of
automating the QA process? Is it even
practical?

2. Background
Software can be simply defined as a set of
instructions able to accomplish a certain
task. Software quality assurance, as defined
by the Institute of Electrical and Electronics
Engineers is: “A set of activities that define
and assess the adequacy of software
processes to provide evidence that
establishes confidence that the software
processes are appropriate for and produce
software products of suitable quality for
their intended purposes” (Laporte, 2018).

Many aspects go into software quality



assurance. Aspects such as security
vulnerabilities, test coverage, expected
results, and many more, depend on the
application that is being tested. SQA focuses
on the maintenance and evolution of the
software. Software maintenance is one of
the most important if not the most costly
part of any software’s life cycle.

With software, maintenance come updates
and improvements to the software. Keeping
the software updated reduces possible
vulnerabilities, and creates a better product
immediately, not to mention the
performance improvements that increase
customer satisfaction in the long run.

Another important element of quality
assurance is the protection of vulnerabilities
and possible breaches. If an application
experiences a breach due to an unforeseen
vulnerability, the company that produced the
software will lose the customer’s trust, as
well as have to allocate resources to make
sure the problem is fixed and never happens
again. It is a lot more costly to fix a problem
than to prevent one.

3. Related Works
Today software is becoming more and more
prevalent and the turnaround time for
product development is shrinking. Dustin,
et. al (1999) found that more than 90% of
developers have missed ship dates, and
missing deadlines is a routine occurrence for
67% of developers.

On top of expenses, businesses must find a
way to keep costs down as well as
streamline the development process in order
to meet deadlines. This is where the
possibility of automating software testing
comes into play. Reusable scripts may be
run as many times as needed, offering

significant payback.

The main challenge regarding testing
software is that customers as well as
companies want more software functionality
to be delivered faster as well as cheaper;
however, the quality of the software must be
on par with modern capabilities. A higher
functionality software means each part of
the software becomes extraordinarily more
complex, requiring developers to run more
test cases for each delivery. Faster deliveries
mean less time to test and develop. Because
one often cannot control and automate the
development process, the time has to be cut
from the testing portion of the production.
As Dustin, et. al., (2009) point out, the more
functionality provided the more tests are
required and the longer it takes to deploy.

4. Process Design
After initial onboarding, the team I worked
with decided the best way to introduce
interns to the code base is to have us fully
understand the functionality of the
application (QA). Working with our mentor
we were able to understand the application
fully from a black-box testing perspective.
We worked in an agile workflow
environment, meaning every day we would
have standup meetings discussing what we
had accomplished the day prior and what we
expected to accomplish later that day or that
week.

Agile workflow provides the team with a
“story” point system, in which all tasks are
assigned a certain value depending on how
long they would take to accomplish. The
workflow is almost always development,
code review, quality assurance (test
generating), and quality assurance (test
execution). In general, both parts of quality
assurance would generate three story points,
meaning it would take between 2-3 days to



accomplish the task. If at any stage after
development a bug is found, the ticket would
have to be renewed and would have to go
back to the development phase, starting the
process in its entirety all over again. For all
tests executed and generated in the quality
assurance process, if it goes back to
development, all tests must be rerun; no old
tests can be carried over.

The application we tested had to deal with
registering and deregistering hosts, which
presents many flags, such as hostname, IP,
verbosity, template, OS, etc. All the possible
combinations have to be tested. Some flags
are required, while others are optional. The
way we designed the automation is to have a
python script capable of reading text
document input, containing tests to be run.
The script parses the document line by line
and generates a shell script able to call the
application to register or deregister.

Along with the script, there are two shell
scripts. One shell script registers dummy
hosts in order to test the deregisters
function; the other shell script deregisters all
the hosts that have been registered so it is a
clean-up file after testing the register
function. There are still many edge cases to
be tested manually. For example, the IP flag
could take either an IPv4 address or an IPv6
address, so those also need to be taken into
consideration.

5. Results
Utilizing the automation script described
above, the team saw a significant impact on
total bugs caught as well as a decrease in
total time spent for each QA ticket. Instead
of finishing one QA ticket every 2-3 days,
the efficiency has increased to 2-3 tickets
every day. The speed at which we were
finishing the tickets caught the attention of
our managers, who thought it was

impossible to finish these tickets at such
speed. Once we explained the script we had
developed, our manager was extremely
happy with the result. The script, which now
belongs to the company, is now being
utilized in the day-to-day QA process, as
well as onboarding new team members.

6. Conclusion
The quality assurance process is an essential
part of the software development life cycle.
QA ensures a product or service meets the
proper standards, expectations, and
requirements of the users. It ensures a higher
level of product quality by preventing
product defects before the product is
released to the users.

However, the process also has potentially
detrimental outcomes. For instance, it is
tedious and time-consuming, as one
unexpected result can restart the entire
software development life cycle for that
aspect. It is not an unreasonable choice to
automate the process but many factors need
to be taken into consideration as automation
is theoretically a product itself.

The benefit of automating this process is a
faster software development life cycle, in
addition to better-vetted code. However, the
automation ultimately comes down to the
QA engineer’s fundamental knowledge and
experience with the application and it is
essential during the design phase of the
automation that all aspects of the software
are considered.

7. Future Work
In terms of the future development of the
script, my personal impact has come to an
end. The script we created is in no way
perfect or polished. The script can be better
implemented to include an automatic



screenshot process to increase the
documentation process of QA. The script
along with its two shell script counterparts
can be merged into a single script. The
manual deregistering and registering dummy
node process can be automated, as well. Of
course, as the application continues to grow,
the automation needs to be able to pivot or it
will become completely obsolete.
Automating the QA process should be
further discussed in any software
development life cycle. The benefits of
automation outweigh the cons; however,
there needs to be a proper regulation where
the automation needs to be kept in check so
it does not hinder the overall software
development life cycle.

References
Laporte, C. Y., April, A., Wiley Online
Library UBCM Engineering, Wiley Online
Library UBCM Math & Statistics, Wiley
Online Library UBCM German Language,
O'Reilly Online Learning: Academic/Public
Library Edition, & Wiley Online Library
UBCM All Obooks (2018). Software
Quality Assurance (1 ed.). Hoboken, NJ:
Wiley-IEEE Computer Society, Inc.

Dustin, E., Rashka, J., Paul, J., & O'Reilly
Online Learning: Academic/Public Library
Edition (1999). Automated Software
Testing: Introduction, Management, and
Performance. Boston: Addison Wesley
Professional.

Jena, A. K., Das, H., Mohapatra, D. P., &
Springer Intelligent Technologies and
Robotics eBooks English/International
(2020). Automated Software Testing
Foundations, Applications and Challenges.
S.l.: Springer Singapore.

Dustin, E., Garrett, T., Gauf, B., & O'Reilly

Online Learning: Academic/Public Library
Edition (2009). Implementing Automated
Software Testing: How to Save Time and
Lower Costs While Raising Quality. Upper
Saddle River, NJ: Addison-Wesley.


