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Abstract

In the theory of quantum groups, Lusztig’s braid group symmetries, associated
to the Weyl group of the underlying Lie algebra, have played a fundamental role.
1Quantum groups, which are quantum algebras arising from the theory of quantum

symmetric pairs, can be viewed as generalizations of quantum groups.

In this dissertation, we initiate a general approach to the relative braid group
symmetries, associated to relative Weyl group of the underlying symmetric pair, on
(universal) :quantum groups and their modules. We construct such symmetries for
rquantum groups of arbitrary finite type and quasi-split Kac-Moody type. Our ap-
proach is built on new intertwining properties of quasi K-matrices which we develop
and braid group symmetries on (Drinfeld double) quantum groups. Explicit formulas

for these new symmetries on 1quantum groups are obtained.

We establish a number of fundamental properties for these symmetries on :quantum
groups, strikingly parallel to their well-known quantum group counterparts. We ap-
ply these symmetries to fully establish rank one factorizations of quasi K-matrices,
and this factorization property in turn helps to show that the new symmetries sat-
isfy relative braid relations. As a consequence, conjectures of Kolb-Pellegrini and

Dobson-Kolb are settled affirmatively.

Finally, the above approach allows us to construct compatible relative braid group
actions on modules over quantum groups for the first time. Explicit formula for the
relative braid group actions on modules are obtained, in terms of elements in :quantum

groups.
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1 Introduction

1.1 Background

Braid group symmetries have played an essential role in understanding the struc-
tures of Drinfeld-Jimbo quantum groups U and have found applications in geometric
representation theory and categorification among others. These symmetries were con-
structed by Lusztig and used in first constructions of PBW bases and canonical bases
in ADE type [Lus90a]. They have further been generalized to non-simply-laced types
and beyond [Lus90b, Lus93]. Another crucial property is that there exists a com-
patible braid group action on integrable U-modules. A systematic exposition on the
braid group actions on quantum groups and their modules forms a significant portion

of Lusztig’s book [Lus93, Ch. 5, Part VIJ.

Let U = (E;, F;, K;, K] | i € T) be the Drinfeld double quantum group, where
K;K! are central. The quantum group U = (E;, F;, K' | i € 1) is recovered from U
by a central reduction:

U=U/(K;K!—1|i€el).

The Drinfeld doubles naturally arise from the Hall algebra construction of Bridge-
land [Brl13], and it is shown in [LW22a] that reflection functors provide braid group
actions on the Drinfeld doubles; see Proposition 2.6. As a straightforward generaliza-
tion for Lusztig’s symmetries on U [Lus93, 37.2.4], there are 4 variants of braid group
operators iﬁe, i’fe on U, for e € {£1} and i € I, which are related to each other by

conjugations of certain (anti-) involutions [LW22a]; see (2.14):

T(—e =00 j:‘i/,/-l—e ca0, i/,,—e = Q/) o i/,,—i—e o wv i/,—i—e = ¢ o i/,—e © 1/} (11)
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Here v is the bar involution and ¢ is an anti-involution on fJ'; see Proposition 2.3.

Associated to any Satake diagram (I = I, U L,,7), a quantum symmetric pair
(U, U) was introduced by Gail Letzter in finite type [Let99, Let02] as a g-deformation
of the usual symmetric pair; here U is a coideal subalgebra of U depending on
parameters ¢ = (§;);er,. Letzter’s construction of quantum symmetric pairs was

generalized to Kac-Moody type by Kolb [Kol4].

Universal quantum symmetric pairs (INL INJZ) (of quasi-split type) were formulated
in [LW22b], where the parameters are replaced by suitable central elements in U,
and U is recovered from U by a central reduction. (UL, U* will be referred to as
wquantum groups, and they are called quasi-split if I, = () and split if in addition

T=1d.)

According to the iprogram proposed by Bao-Wang in [BW18a], various construc-
tions in the theory of quantum groups should admit generalizations to iquantum
groups. Remarkably, a number of fundamental constructions have been generalized
successfully to iquantum groups in recent years; see the ICM lecture [W22]. In fact,
a quantum group U can be regarded as the quantum symmetric pair of diagonal type
(U ® U, U), and hence quantum groups can be viewed as a vast generalization of
quantum groups. This simple observation has been applied successfully in various
1-generalizations. For instance, this view was instrumental in the development of
rcanonical bases in [BW18b, BW21] for quantum symmetric pairs, which generalize
canonical bases for quantum groups; it was also used in the construction of :Hall
algebras in [LW22b], generalizing the Hall algebra realization of quantum groups; see

also the recent development of ucrystal bases by Watanabe [W21b].

Quasi K-matrices were originally formulated in [BW18a] as an intertwiner be-



tween the embedding ¢ : UL — U and a bar-involution conjugated embedding (for
parameters ¢ satisfying strong constraints); a proof in greater generality was given
in [BK19] under a technical assumption (which was removed later in [BW21]). A
reformulation by Appel and Vlaar [AV22] (also see [KY20]) bypassed a direct use of

the bar involutions, allowing more general parameters .

Lusztig’s braid group actions on U do not preserve the subalgebra U, in general.
Kolb-Pellegrini [KP11] proposed that there should be relative braid group symmetries
on quantum groups corresponding to the relative (or restricted) Weyl groups for the
underlying symmetric pairs. For a class of iquantum groups of finite type (including
all quasi-split types and type AIl) with some specific parameters, formulas for such
braid group actions were found and verified loc. cit. via computer computation. The

relative braid group action for type Al appeared earlier in [Ch07] and [MROS|.

There has been some limited progress on relative braid group action on U{ in
the last decade; for type AIIl see Dobson [Dob20]. An :Hall algebra approach has
been developed to realize the universal quasi-split :quantum groups U [LW22b]. As
a generalization of Ringel’s construction [Rin96], reflection functors [LW21a, LW22a]
are used to construct relative braid group actions on U of quasi-split type, where the
braid group operators act on the central elements in U non-trivially. For U or U¢ in
general beyond quasi-split type, no conjectural formulas or conceptual explanations

for relative braid group actions were available.

There are braid group actions on U-modules which are compatible with braid
group actions on quantum groups; cf. [Lus93]. In contrast, no relative braid group
action on U{-modules has been known to date. The Hall algebra approach does not

help providing any clue on such action at the module level.



1.2 Goal

In this dissertation we develop a conceptual and general approach to relative braid
group actions on rquantum groups, arising from (universal) quantum symmetric pairs,
and on their modules for the first time. This in particular settles the longstanding

conjecture of Kolb and Pellegrini [KP11] in a constructive manner.

It is crucial for us to work with universal :quantum groups. We shall formulate
relative braid group symmetries ’AIV‘;,E, ’T‘;’ ,on U, for e € {+1} and i € L, ,, which are
related to each other via conjugations by a bar involution " and an anti-involution
o on U compare (1.1):

T, ,=c'oT/, 00, T/ :=¢'oT/ oy, T, =¢oT, oy

By central reductions and rescaling automorphisms, these symmetries descend to
relative braid group actions on iquantum groups with parameters U.. Moreover,
we are able to formulate compatible relative braid group actions on integrable Ug-
modules. We further establish a number of basic properties of these new symmetries
which are natural 2-counterparts of well-known properties for Lusztig’s braid group

symmetries.

This dissertation is largely based on two papers: [WZ22] which constructed the
relative braid group action for :quantum groups of arbitrary finite type, and [Z22a]
which generalized the constructions in the previous paper to zquantum groups of

arbitrary quasi-split Kac-Moody type.



1.3 The basic idea

Following the view that quantum groups are tquantum groups of diagonal type, a
starting point of this dissertation is to review the relation between braid group sym-
metries on a quantum group U and U ® U. Denote by L7 the rank 1 quasi R-matrix

associated to ¢ € I, and let L be its inverse. The following formula in [Lus93, 37.3.2]:
(Ti/,—l ® E,,—l)A(ﬂ/j+1u) = L;A(u)L; (1.2)

provides a relation between braid group actions on U and U ® U; a formula similar
to (1.2) via a different formulation of braid operators appeared in [LS90] and [KR90].
The quasi R-matrices for U, up to a suitable twist, can be identified with the quasi
K-matrices for (U ® U, U). A variant of the identity (1.2) holds in the setting of

universal quantum symmetric pairs of diagonal type (fj ® fj, fj), see §4.4.

Now, let (fJ, [NJZ) be a general universal quantum symmetric pair. We upgrade the
constructions of the quasi K-matrix to the universal level. Inspired by the relation
(1.2), we aim at formulating a relation between braid group action on the Drinfeld
double U and the desired relative braid group action on the universal :quantum group

U through conjugations of rank 1 quasi K-matrices.

Dobson and Kolb [DK19] proposed (conjectural) factorizations of quasi K-matrices
in finite types into products of rank 1 quasi K-matrices, analogous to factorizations
of quasi R-matrices [L.S90, KR90]. In their formulation, a certain scaling twist shows
up. In this dissertation, we upgrade the formulation of the factorization together with

the corresponding scaling twist to quasi K-matrices T in the universal setting.

Examples indicate that our basic idea of constructing the desired relative braid



group actions on U via quasi K-matrices and braid group actions on U (viewed as a
generalization of (1.2)) basically works — up to a simple twist: it is necessary to use
suitably rescaled braid group operators on U. Remarkably, this scaling turns out to
coincide with the aforementioned scaling which appears in the factorizations of a quasi
K-matrix T. We are able to explore this compatibility to draw strong consequences
on the seemingly unrelated topics: relative braid group actions and factorizations of

quasi K-matrices.

1.4 Main results for Part 1

In Part I, we formulate new intertwining properties of quasi K-matrices. We construct
symmetries T, T/, using quasi K-matrices, on the universal :quantum groups of

arbitrary finite type. We will show that these symmetries satisfy the braid relations

in the relative braid group in Part III. Part I is largely based on [WZ22, §2-§6].

New intertwining properties of quasi K-matrices

We formulate universal quantum symmetric pairs (ﬁ,ﬁl) associated to arbitrary
Satake diagrams and their basic properties in Section 2.6, following and generalizing
the quasi-split setting in [LW22b]. The algebra U* contains U and U, naturally as
subalgebras, where U, is the Drinfeld double associated to I, and U is a Cartan

subalgebra generated by ki = K;K!, for i € L.

We recall the more recent formulation of a quasi K-matrix Y¢ for (U, U.) from
[AV22] (cf. [BW18a, BK19, BW18b] for earlier constructions) in Theorem 3.1 and

upgrade it to a universal version Y for (U, U") in Theorem 3.2. It turns out that T

admits a more conceptual and simpler characterization in terms of the anti-involution



o on U as follows.

Theorem A (Theorem 3.6). The quasi K-matrix T = D eI T, for TH € INJ:[, is

uniquely characterized by T° =1 and the following intertwining relations:

BY =TB! (iel,), Y =Tz (z e UPU,).

This characterization of T plays a basic role in producing explicit formulas for
relative braid group actions on fJ’; see the proof of Theorem 5.5 in §5.4. There is a
similar simple characterization of T¢ for U{ in terms of the anti-involution o7 on U;

see Remark 3.16. (It is tempting to regard this as a new definition of Y.)

We use a distinguished scaling automorphism \ng* to define a rescaled bar invo-
lution v, on U (by twisting the bar involution v on fj) By exploring further inter-
twining properties via T as in [Ko21], we establish in the Kac-Moody generality a bar
involution " (see Proposition 3.4) and an anti-involution ¢" (see Proposition 3.12)
from 1, and o, respectively. These (anti-)involutions ¢* and ¢ were known in some

quasi-split cases; see [CLW23].

Denote by Ti, for v € I, the quasi K-matrix associated to the rank one Satake
subdiagram (I, U {7, 7i}, 7).

New symmetries T/, T/,

i,e)

Associated to a Satake diagram (I = I, UL, 7), one has the (absolute) Weyl group
W generated by the simple reflections s;, for ¢ € I, and a finite parabolic subgroup
W, = (s; | i € I,) with longest element w,. Given i € I, one has a rank 1 Satake

subdiagram (I,; = I, U {,7i}, 7). For each rank 1 Satake subdiagram I, ; of finite



type, one defines an element r; € W as in (2.21). The relative Weyl group W° is a
subgroup of W generated by r; for ¢ € L, ; (the set L, , parametrizes finite-type rank
1 Satake subdiagrams; see (2.20) for the definition). Abstractly, W° is a Weyl group

with r; (¢ € I, ;) as simple reflections [Lus76]; also see [OV90, Lus03, DK19].

Let i‘l,/+1 and i”_l, for i € I, be the braid group operators on U [LW22a]; sce
Proposition 2.6. Let ‘j:;’ 41 and ’3’1’-771 be the rescaled version of Ti’f 4+ and ﬁ.”fl via
conjugation by a scaling automorphism \AI}CQ; see (4.2)—(4.3). As 5'5-,_1, for j € 1,
satisfy the braid relations, we can make sense of ‘3’;1,7_1, for w € W, and in particular

‘i’rwl, for i € I,, as automorphisms of U.
Theorem B (Theorem 4.7, Proposition 4.11, Theorem 4.14, Theorem 5.5). Let (I =
I, UL, 7) be a symmetric pair of finite type and ¢ € I,,. There exists a unique

automorphism ’Ta_l of U* such that the following intertwining relation holds:

”Iv‘;’_l(x)Ti =17, (), for all z € U". (1.3)

More precisely, the action of T;,_l on U is given as follows:

1. ’T‘;_l(aj) = (Te;07)(z), and ’T‘;_l(%jyo) = Eriaj7<>, for all z € Uy, j € L.

2. ’I‘;,l(B,») = —q leaweer) T2 (B, )K]

We Te,iT"

3. The formulas for 'T‘;7_1(Bj) (it # j € L) are listed in Table 3.

See (2.22) and (4.12) for notation 7,; and EM. By definition, we have r; = r;,

T, =Y., and T27_1 = ’f’m_l; thus, we only need to consider ’AI/‘Q’_I, for i € I, ;.

In the same spirit of (1.3) in Theorem B, the identity (1.2) for the Drinfeld double
quantum group U can be reformulated as the intertwining relation (4.7) for quantum

symmetric pair (fj ® U, fj) of diagonal type.

8



Another symmetry ’I‘;’ 41 on U, for i € L, is formulated in Theorem 6.1 which

satisfies the following intertwining relation in (6.1), similar to (1.3):

T/ () T (7Y = T2 (Y7 T2 L (2),  forallz € U

We further define 2 more symmetries 'T‘; 41 and ’T‘;’ _,on U by conjugating ’T‘;rl
and Tg’ 41 via the involution ¢*; see (6.11). These symmetries are related to each
other as follows; compare [Lus93, Chap. 37].

Theorem C (Theorem 6.7). Let e = +1 and ¢ € I,. The symmetries ’T‘;e and ’f;’ .

are mutual inverses. Moreover, we have T, = o'o T/ __ oo

Actually, part of the proof of Theorem B (i.e., the invertibility of ’T;’_l) is com-
pleted only when it is established in Theorem C that Tg,,l and ’i‘;’ 41 are mutual
inverses. This is one main reason why we have formulated T;’ 41 separately in spite

of its many similarities with the properties for ’f‘;’fl which we already established.

Here is an outline of proofs of Theorems B-C. We first establish the existence of
an endomorphism Tg}_l on U* which satisfies the intertwining relation (1.3), by prov-
ing Properties (1)-(3) in Theorem B one-by-one. Properties (1)-(2) are established
uniformly in Proposition 4.11 and Theorem 4.14. We formulate a structural result in
Proposition 5.11 as a main step toward a uniform proof of the rank 2 formulas in (3)
(see Theorem 5.5); Proposition 5.11 is then verified by a type-by-type computation
in Appendix A. In order to prove the invertibility of ’T;v_l, we establish another endo-
morphism T;’ 41 01 U* which satisfies the intertwining relation (6.1) in Theorem 6.1;
the existence for 'i‘;’ 41 1s proved by a strategy similar to the one for ’AIV‘;_l. Finally,
we show in Theorem 6.7 that Tg,_l and ’T;’ 41 are mutual inverses by invoking the

uniqueness of elements satisfying an intertwining relation.



The formulas for actions of ’i‘;ﬁl and ’i‘;’ 41 on generators of U* are mostly new.
In quasi-split types, up to some twistings, we recover the formulas obtained by Hall
algebra computation in [LW21a/, and by central reductions to U?, we recover formulas

obtained by computer computation in [KP11].

1.5 Main results for Part 11

/
1,e

In Part II, we generalize the construction of symmetries T Tg’ . in Part I to a class
of Kac-Moody type, including all quasi-split Kac-Moody type. In the Kac-Moody
type, simple reflections in the relative Weyl group are parameterized by I, ., where
I, is the set of vertices ¢ such that the corresponding rank one Satake diagram is
of finite type; see (2.20). In Theorem 7.1, we construct symmetries T, ., T/, on U

i,e) e

associated to the following three type of vertices i € I, ,

(1) i = 7i = w,i,
(11) Ciri = O,Z = w.i,

(111) Ciri = —1,2 = w.i.

When the symmetric pair is of quasi-split type, every vertex i € I, belongs to
one of the three types (i)-(iii); then we have an action of the (whole) relative braid
group on rquantum groups, once the relative braid relations are verified in Part III.
As a byproduct, we construct root vectors in zquantum groups and show that those

symmetries send root vectors to root vectors. Part IT is largely based on [Z22a].

The major difficulty in such generalizations is to establish higher rank relative
7

braid group formulas of T;_l(Bj), Tu +1(B;j) for j # i, 7i. Those higher rank formulas

in Tables 3-4 for finite type were established by lengthy case-by-case computations,

10



using a complete list of finite type rank two Satake diagrams. We will provide a
uniform approach of the higher rank formulas in the Kac-Moody setting, independent

of the rank two Satake diagrams.

Higher rank formulas in the quasi-split Kac-Moody case

In [Lus93, 37.2.1], Lusztig introduced (rank two) elements including ; j1 m.e; T j.1 m e
Yijslim,e> Yi j.1.m.e i quantum groups. Alternatively, these root vectors are determined
by recursive relations, according to Lusztig; see Lemma 2.8. These root vectors are

used in rank two formulas for braid group symmetries 7/ ﬁ-’fe on U; see (2.17).

i,e)

We shall extend this picture from quantum groups to :quantum groups. Since r;
are not simple reflections in W when ¢ are of types (ii)-(iii), we will also need some
in ﬁ, e.g., elements ¥ ri jim, m, i

rank 3 root vectors to describe the action of ﬁfe

Definition 9.1 and elements ¥; 7i j.q.5 in Definition 10.1.

It turns out the recursive definitions for these (rank 2 or 3) root vectors in U
admit nontrivial generalizations to ﬁz, which allows us to define the following root

vectors

(1) bijims b jom € U* in Definition 8.1-8.2 when i = 7i = w,3,

(1) birijsmimas B rijomy.me € U' in Definition 9.6-9.7 when ¢; -, = 0,7 = w,,

(iii) bz’,rz‘,j;a,b,cab',n‘,j;a,b,c € U in Definition 10.6-10.7 when Ciri= —1,1 = Wel.

1

Our root vectors admit explicit closed formulas. For type (i), the :divided powers
(m) _ . . .
B; 5’ for p € Z/2Z were formulated in [BW18a, BeW18, CLW21] (see (7.7)), arising

from the theory of :canonical bases. Closed formulas of b; j., b; ;.,,, are given in terms
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of 2divided powers in Proposition 8.6; that is, the elements b; j.,, b coincide with

=,75mm

. _
elements ¥ ;.\ 5715 Y

1mpz1 introduced in [CLW21, §6.1].
For type (ii)-(iii), these root vectors in U* are constructed for the first time and
their closed formulas are given in terms of usual divided powers BZ-(m). The divided

power formulations for b; 7; j.m, ms, 0 are respectively

2i,11,5;m1,ma and bi,’ri,j;a,b,c;

Z—)i,Ti,j;a,b,c
provided in Proposition 9.11 and Theorem 10.16.

The desired higher rank formulas for ’fIv‘;_l (B;), ’f‘f/ +1(B;j) are given by root vectors

in fj’, as formulated below.

Theorem D. [Theorem 5.5| Let ¢ € L,,,j € L, such that j # 4, 7i. Write a =

—Cij, B = —Crij.

(i) If i = 7 = w,i, then ’TQ’_I(BJ») = b; ;.o and ’TZH(Bj) = b, ..., Explicitly,

l’]7a

T _1(By), ’f‘;f+1(Bj) are respectively given by formulas (7.8)-(7.9).

2y

(11) If Ciri = O,Z = w.i, then T;}il(Bj) = bi,Ti,j;a,B and T;/’JFI(B]) =9

21,71, ;0

B Ex-

plicitly, T} _,(B;), ’TZH(B]-) are respectively given by formulas (7.10)-(7.11).

1y

(i) If ¢;ri = —1,i = wai, then we have T (B;) = birijispraa and T/, (B;) =
i i ip pran Explicitly, Tgy_l(Bj), TZH(BJ‘) are respectively given by formulas
(5.9)-(7.13).

The conjectural formulas in [CLW21, Conjecture 6.5] and [CLW23, Conjecture 3.7]

for relative braid group actions are verified in full generality by Theorem D(i)-(ii).

The recursive definitions of root vectors play an indispensable role in the proof of

Theorem D. The situations are similar for all types (i)-(iii) and we explain for type

12



(ii). By definition, the root vectors b; ri jim, m, i U’ naturally split into halves

— h +
blﬂ'l»J%ml:mZ - bi,Ti,j;ml,mg + 1,T%,J;m1,ma)

and the halves satisfy the same recursions as b; ;; j.m,m, but have different initial

*

irijima.ma» We can establish

terms; see Definition 9.6-9.7. Thanks to the recursions for b

relations between b

i jomy g a0 (rank 3) 100t VeCtors i 74 jimy my» Tirijimy,my € U via

suitable intertwiners in Proposition 9.13-9.14. These new intertwining relations imply
that the element ”Jv_‘a_l(Bj) = biriji—cyj,—crs,; Satisfies the desired identity (1.3) and

then Theorem D(ii) is proved; see Theorem 9.17.

T’ _, and root vectors

The braid group symmetries 77 YN’i’fe on U send root vectors to root vectors; cf.

i,e)

[Lus93, Proposition 37.2.5]. We formulate the ranalog of this property for the relative

braid group symmetry ’FIV‘;_I and root vectors in INJ’, when the corresponding vertex ¢
is of type (i)-(ii).

Theorem E (Theorem 11.1, Theorem 11.3). Let i € L, ;, j € L, such that j # i, 7i.

(i) If i = 7@ = wsi,, then we have, for any m > 0,
T;,—l(l—)i,j;m) = biu‘;—cu—m' (1'4)
(ii) If ¢; s = 0,7 = wsi,, then we have, for any my, my > 0,

o~
Ti,—l ([—)i,Ti,j;ml,mg)  Y,T,)5—Cij — M1, —Cri,j —M2 "

(1.5)
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Theorem E(i) in the idivided power formulation was conjectured by Lu-Wang in
a private communication. We conjecture that the symmetry 'fIv‘;_l in type (iii) also

preserves root vectors.

1.6 Main results for Part I11

/
7,e?

In Part I1I, we establish several properties for the symmetries T T‘;’ . constructed in
Part I-I1, which are parallel to those for Lusztig’s braid group symmetries on quantum
groups. To that end, we show that our symmetries satisfy relative braid relations (i.e.,
braid relations in the relative Weyl group) and hence our symmetries lead to relative

braid group actions on :quantum groups. Part III is based on [WZ22, §7- §9].

A basic property of braid symmetries

The following theorem is a generalization of a well-known basic property of braid

group action on quantum groups; see [Lus93].

Theorem F (see Theorem 12.13). Suppose that wi € L, for w € W° and i € L.

Then we have TZ;,H(BZ’) = By,;.

The dependence in the formulation of Theorem 12.13 on reduced expressions w
of w can be removed, once Theorem H on braid relations for 'T‘;’ 41 is established.
We reduce the proof of Theorem F to the rank 2 cases. The proofs in rank 2 cases
are largely uniform (avoiding type-by-type computation), based on the counterpart
results in quantum group setting, the defining intertwining property of ’TZ) 41, and

some weight arguments.
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Factorization of a quasi K-matrix

It is well known that a quasi R-matrix of finite type admits a factorization into a
product of rank 1 R-matrices parametrized by positive roots; see [KR90, L.S90]; also
cf. [Ja95].

Dobson and Kolb [DK19] proposed a conjecture on an analogous factorization for
a quasi K-matrix of finite type into a product, denoted by Two, of rank 1 factors
parametrized by restricted positive roots; see (13.1) for notation. They established
a reduction from a general finite type to the rank 2 Satake diagrams. In addition,
they established the rank 2 cases of split types and type AII/AIIL, via a type-by-type

lengthy computation based on several explicit formulas for rank 1 quasi K-matrices

which they computed.

Exploring (the rank 2 cases of) Theorem F and some of its consequences, we
provide a uniform and concise proof that :fwo satisfies the same defining intertwining
relations for Y. Then the factorization property for arbitrary finite types follows by

the uniqueness of T.

Theorem G (Dobson-Kolb Conjecture, Theorem 13.1). The quasi K-matrix T for

U of finite type admits a factorization T = Two.

Relative braid group relations

Recall Lusztig’s symmetries 77 ., T}, on a quantum group U satisfy braid group rela-
tions associated to the (absolute) Weyl group W [Lus93]; see [LW22a] for analogous
statements on a Drinfeld double U. We have the following generalization in the

setting of :quantum groups. Denote by Br(1¥/°) the braid group associated to W°.

Theorem H (Theorem 14.1). Fix e € {£1}. The symmetries ’T‘;e (and respectively,

15



’f‘;’ ) of U, fori € I, -, satisfy the relative braid group relations in Br(W°).

With the help of the intertwining relation (1.3), the proof of Theorem H is built
on the braid group relations for i (¢ € I) and the factorization properties of quasi

K-matrices established in Theorem 13.1 (1).

It was shown in [BW18b] that Lusztig’s symmetries T}, and T}, on U, for i € I,
preserve the subalgebra Ul (under some constraints on ¢). We easily upgrade this
statement to the universal quantum symmetric pair (INJ, INJZ), providing a braid group
action of Br(W,) on IjTZ; see Proposition 4.5. Actually, we obtain 4 variants of actions

of Br(W,) on U generated by ‘j';e or T for j € I,, respectively.

]767

It is further established that the two (“black and white”) braid group actions on

U* combine neatly into an action of a semi-direct product Br(W,) x Br(W®) on U",

Theorem I (Theorem 14.3, Corollary 14.7). Let e = +1.

1. There exists a braid group action of Br(W,) x Br(W®) on U* as automorphisms

of algebras generated by %;e (7 € L) and T;e (i els,).

2. There exists a braid group action of Br(W,) x Br(W*°) on U* as automorphisms

of algebras generated by 5’;’ . (j €l,) and ’T‘;’ (el ).

Theorem I (or more precisely, its UL-counterpart in Theorem 14.10; see §1.6 be-
low) confirms an old conjecture of Kolb and Pellegrini [KP11, Conjecture 1.2] in
full generality, and moreover, we have provided precise formulas for the braid group

actions.
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Relative braid group symmetries on U

1"
1;7

By central reductions, the symmetries ’T‘;y_l, T 41 on the universal :quantum group

IN_T’, for i € I, descend naturally to the :quantum group U with the distinguished

/

i1 ’f‘;’ _, naturally descend to

parameter G,. On the other hand, the symmetries T
Ug ; see the commutative diagrams in §14.4. We then transport the relative braid
group symmetries from U and UL  to the :quantum groups U? (see Theorems 14.9-

14.10), for an arbitrary parameter ¢, thanks to the isomorphism Uy = U given in

Proposition 2.14.

1.7 Main results for Part IV

In Part IV, we construct relative braid group symmetries on modules, which are

compatible with symmetries on the iquantum group U’. Section 15 is based on

[WZ22, §10].

Relative braid group actions on finite-dimensional U-modules

Let ¢ be a balanced parameter, i € I, and e = 1. We show that the symmetries
T; ., T}, on the .quantum group U (defined by central reductions) satisfy natural in-
tertwining relations with the usual braid group symmetries on U. These intertwining
properties allow us to formulate automorphisms (denoted again by the same nota-
tions T}, T;,) on any integrable U-module M, whose weights are bounded above;

see (15.9). These operators on M admit favorable properties parallel to those satisfied

by Lusztig’s braid group actions on modules.

Theorem J (Theorem 15.4, Theorem 15.5). Let ¢ € I, and e = £1, and let M be
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any integrable U-module, whose weights are bounded above. The automorphisms

T; ., T}, on M are compatible with the corresponding automorphisms on U, i.e.,

T o(v) = Ti (2)Ti (v), T (wv) =T/ (2)T7 (v),

for any x € UL, v € M. Moreover, the operators T;  (respectively, T ) on M, for

i € L, satisfy the relative braid group relations in Br(W°).

Relative braid group actions on integrable U’-modules

/
i,e)

The operators T}, T/, formulated in Theorem J are constructed using the quasi
K-matrices and the compatibility is proved via the intertwining relation (1.3). As a
consequence, actions for these operators are given in terms of elements in quantum

groups, and for this reason, we need to restrict to certain U-modules instead of general

integrable U’-modules; see § 16.1 for the definition of integrable U*-modules.

To remove such a restriction, we rewrite the action of operators T}, T/, using

elements of U* in the split Kac-Moody case. We recall from [BeW18] the transition

matrix between the canonical basis and the canonical basis on U(sly) modules, and

compute its inverse matrix in Proposition 16.4. Using the inverse matrix, we ob-

’
i€

tain rank one formulas for operators T} ., T}, with arbitrary parameters, in terms of
wdivided powers of generators in U*; see § 16.3. The precise formulas are given as

follows (see (16.23))

T = Do) MBI T =30 ek B

Z’,E,C ’ lzk7§ ’
k>0 k>0
h=p k=p (1.6)
1 o k/2_—k/2 (k) / _ —k/2 (k)
Ti»+1v - Z<_1) / Si Bi,ECU’ Tiv+1v - Z(_gi) / Bi,E,cv’
k>0 k>0
k=p k=p
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where v is an wweight vector of wweight p € Z/27Z with respect to B;.

/
i,e)

Using this formula, we define linear operators T ,, T  on any integrable U’ mod-
ules; see (16.23). These operators coincide with those operators in Theorem J when
acting on U-modules. We show that these operators are compatible with correspond-

ing relative braid group symmetries on the :quantum groups in Theorem 16.9.

This construction of compatible relative braid group symmetries on integrable U’-
modules can be generalized beyond the split type and we will study all of these in a

forthcoming paper.

In this dissertation, we have assumed that a ground field F is the algebraic closure
of Q(q) partly due to uses of rescaling automorphisms, though often it suffices to work
with the field @(q%) if we choose the parameters ¢ suitably. There is a Q(g)-form
Qﬁ’ of U* such that U* = F ®a(q) Qﬁ’; see (5.16). The symmetries ’T‘;ve, ’f‘;’e indeed

preserve the Q(g)-subalgebra @INJZ; see Proposition 5.9. Theorems A—I remain valid
for Qﬁl.

1.8 Future works and applications

The formulations of the main results (Theorems A—J), up to some reasonable rephras-
ing, make sense for universal quantum symmetric pairs of arbitrary Kac-Moody type,
and we conjecture they are valid in this great generality. For example, the symmetries
T;,A? for ¢ € I, for U of Kac-Moody type can be constructed in a similar way once

Conjecture 5.13 is confirmed.

The relative braid group symmetries of affine type has been used crucially in the
Drinfeld type presentation of affine :quantum groups of quasi-split type; cf. [LW21b,

722b, LWZ22]. Tt is expected that they will continue to play a key role for Drinfeld
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type presentations of affine :«quantum groups in general.

One may hope that these new braid group symmetries preserve the integral
Z|q,q ']-form on (modified) 1quantum groups in [BW18b, BW21]. (This will be
highly nontrivial to verify, as the :divided powers are much more sophisticated than
the divided powers.) It will be interesting to develop further connections among rel-
ative braid group actions, PBW bases and ucanonical bases; compare [Lus93]. They
may help to stimulate further KLR type categorification of :quantum groups as well

as ¢Hall algebra realization of :quantum groups beyond quasi-split type.

Kolb and Yakimov [KY20] extended the construction of quantum symmetric pairs
to the setting of Nichols algebras of diagonal type. The new intertwining properties of
quasi K-matrices and the relative braid group actions established in this dissertation

seem well suited for generalizations in this direction.

The notion of relative Coexter groups, which is valid in a more general setting than
symmetric pairs, admits a geometric interpretation [Lus76, Lus03]. It will be exciting
to realize relative braid group action in geometric and categorical frameworks, and
develop possible connections to the representation theory of real groups (cf. [BV21]
and references therein). It will be very interesting to explore more general braid group

actions associated to relative Coxeter groups.

1.9 Notations

We list the notations which are often used throughout the dissertation.

>N, Z,Q, C — sets of nonnegative integers, integers, rational and complex numbers
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> R — systems of roots with simple systems II = {«;|i € I}

> RY — systems of coroots with simple systems ITY = {«'|i € T}

> W, £(-) — the Weyl group and its length function

> wp, Tp — the longest element in W and its associated diagram involution

> Ti’,e, T@'/,,e — braid group symmetries on U

> (I =1, UL, 7) — admissible pairs (aka Satake diagrams)

> ]1}534 — a fixed set of representatives for 7 orbits on L.

> I~ — the subset of I} defined in (2.20).

> We, Re — the Weyl group and root system associated to the subdiagram I,
> w, — the longest element in W,

> W, — the parabolic subgroup of W generated by si, for k € I, ; := I, U {7, 73}

> We i, Te; — the longest element of W, ; and its associated diagram involution

> W°, 0.(-) — the relative Weyl group generated by r; := w, ;w,, for i € L, -, and

its length function such that ¢,(r;) = 1
> w, — the longest element in W°
> U, U - quantum group and Drinfeld double
> 7,7 — involutions on U induced by the diagram involutions 7, 7y

> I~J’, U¢ — universal :quantum group and :quantum group with parameter ¢
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> T — quasi K-matrix for universal quantum symmetric pair (I~J, ﬁ’)

> Go, G, — two distinguished parameters; see (2.28) and (3.8)

> U, — a rescaling automorphism of U see (2.8)

> &, — a rescaling automorphism of U see (2.9)

> 7 — a central reduction from U to U; see (2.7)

> m¢ — a central reduction from U* to U¢; see Proposition 2.12

> 4" — a bar involution on U?; see (3.10)

> 0" — an anti-involution on U see (3.24)

> o, — an anti-involution on UY; see (3.26)

> ‘}2{76, ‘j'{’e ~ rescaled (via W,) braid group symmetries on U; see (4.2)—(4.3)

> T

i,e)

Tj, — braid group symmetries on U’
> T, T4, Ty, T, — shorthand notations for T T T, T

> Tl ., T’ —rescaled braid group symmetries on Uj see (15.1), (15.7)

2,687 T 1,656
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2 Preliminaries

In this section, we set up notations for quantum groups, Drinfeld doubles, and quan-
tum symmetric pairs in the Kac-Moody setting. We review the braid group ac-
tion, introduced by Lusztig, on quantum groups. We review the relative Weyl and
braid groups associated to Satake diagrams. Several basic properties of (universal)

quantum groups are presented.

2.1 Quantum groups and Drinfeld doubles

We set up notations for a quantum group U of Kac-Moody type and its Drinfeld
double U.

Let g be a symmetrizable Kac-Moody algebra over C with a generalised Cartan
matrix C' = (¢;j)ijer. Let D = diag(e; | ¢; € Z>1, ¢ € I) be a symmetrizer, i.e., DC
is symmetric, such that ged{¢; | i € I} = 1. Fix a simple system II = {«;]i € I} of
g and a set of simple coroots IV = {a)|i € I}. Let R and R" be the corresponding
root and coroot systems. Denote the root lattice by ZI := @®;c1Zc;. Let (-, ) be the
normalized Killing form on ZI so that the short roots have squared length 2. The
Weyl group W is generated by the simple reflections s; : ZI — ZI, for i € I, such that

si(aj) = aj — ¢j;a;. Set wy to be the longest element of W.

Let ¢ be an indeterminate and Q(q) be the field of rational functions in ¢ with
coefficients in @Q, the field of rational numbers. Set F to be the algebraic closure of

Q(q) and F* :=F \ {0}. We denote

g = q°, Vi e L
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Denote, for r,m € N,

[r]; = T = H[z’]t7 m [m]m — 1]t...[m—r—|—1]t‘

t—t-17’

We mainly take t = ¢, g;.

Let (Y, X, (-,),--+) be aroot datum of type (I,-); cf. [Lus93, §2.2]. By definition,

there are embeddings denoted by I — X,i +— ¢ and I — Y,i — 4. The relation

2(ag,05)
(Oli,ai) ’

between (-,-) and (-,-) is (7, ")

We define a partial order on the lattice X: for \, N € X,
A < ) if and only if X' — X € NIL. (2.1)

We always assume that the root datum (Y, X, (-,-),---) is Y-regular; that is, the

image of [ — Y is linearly independent in Y.

The Drinfeld double quantum group U = ﬁq(g) is defined to be the F-algebra
generated by E;, F;, K;, K[, i € I, where K;, K are invertible, subject to the following

relations: Kj;, K commute with each other, for all 7, j € 1,

K — Kz/ Cij —Cij
[Ei, Fj] = %W’ KiE; = q;" E;K;, KFj=q; "FiK;, (2.2)

K/E; =q; "E;K],  KF;=q"FK], (2.3)

and the quantum Serre relations, for ¢ # j € I,

= 1 - Cij 1—c;j—s
S (-1 ESE;E " =0, (2.4)
s=0 S

qi
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s 1 - Cij s l—c;j—s
(—1) FyFF; 7 " =0. (2.5)
s=0 S
gi

Note that K;K! are central in U, for all i € L.

For = ) ey € ZI, set K, = [[;o K" and set K], similarly. The Cartan
part U0 .= (K;, K[,i € II) is a commutative subalgebra and there is an isomorphism

Z16 71 — U, (u,v) — KK/,

Remark 2.1. A more standard version of the Drinfeld double quantum group Ustd =
(E;, F;, K, K;lz € I, u € Y) can be formulated where the Cartan part is parametrized
by Y’; this is a “double” version of the quantum group in [Lus93, §3.1.1]. The U de-

fined above is identified with a natural subalgebra of U™ via the following embedding
Eiw By, Fi— F, Ki— K, K~ (K)"

The difference between these two versions of Drinfeld doubles only lies on the Cartan
part. As shown in [Lus93, §37.1.3], actions of braid group symmetries on the Cartan
part is the same as the Weyl group action on the corresponding lattice. So there is
not much difference which versions to use for considering the braid group action, and

we choose to wrok with U for the sake of simplicity of notations.

The comultiplication A : U — U ® U is defined as follows:

AE)=E®1+K,®FE;, AF,)=1F+F;®K,
(2.6)
AK) =K, ®K;, AK]))=K,®K,.

Let U = U(g) be the Drinfeld-Jimbo quantum group associated to g over I with
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Chevalley generators {E;, F;, KX'li € I}, whose relations can be obtained from U
above by simply replacing K! by K; !, for all i; that is, one identifies U = I~J/(KZKZ’ —
1|4 el). Both U and U admit standard triangular decompositions, U = U~UU*

and U = U-UU*; we identify Ut = Ut = (E; |iel) and U~ = U".
For any scalars a = (a;);c; € F*!, one has an isomorphism

IR

through the central reduction

ﬂa:6—>U,

F,—F, EwJaE, K VoK, K — oK'
The canonical identification uses 7y, for 1 = {1};¢r.

Proposition 2.2. Let a = (a;)icr € (FX)L. We have an automorphism W, on the

F-algebra U such that
U, K;—a?K;, K/ a?K!, E;—a?E, F, — F, (2.8)
We have an automorphism ®, on the F-algebra U such that

O, K;—~ K;, E;—a’E;, F,—a;""F, (2.9)

1

We have
Ta =71 0 Uy (2.10)

A Q-linear operator on a [F-algebra is anti-linear if it sends ¢™ — ¢~™, for m € 7Z.
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Proposition 2.3.

1. There exists an anti-linear involution ¥ on INJ, which fizes E;, F; and swaps
K; & K|, fori €. There exists an anti-linear involution on U, also denoted

by v, which fives E;, Fy and swaps K; +» K;*, fori € I;

2. There exists an anti-involution ¢ on U which fixes E;, F; and swaps K; < K/,
for i € 1. There exists an anti-involution on U, also denoted by o, which fixes

E;, F; and swaps K; <> Ki_l, fori el

3. There exists a Chevalley involution w on U which swaps E; and F; and swaps
K; < K[, fori € 1. There exists a Chevalley involution on U, also denoted by

w, which swaps E; and F; and swaps K; <> K; ', fori € 1.

Let U = @VEZH ﬁ,, be the weight decomposition of U such that E; € fjai, F; €

ﬁ,ai, K, K| € U,. Write ij = U, NnU*.

2.2 Braid group action on quantum groups

Let Br(W) be the braid group associated to the Weyl group W. Lusztig introduced
braid group symmetries T}, T}, for i € I and e = £1, on a quantum group U
[Lus93, §37.1.3]. These symmetries lead to a braid group Br(WW)-action on U, which

is a quantization of the classical braid group Br(W)-action on the enveloping algebra

of g. We recall the formulation of T7',.

Proposition 2.4 ([Lus93, §37.1.3]). Set r = —¢;;. There exist an automorphism
T, T, foriel,e= =1, on U such that

i,e) e’

T (KG) =T (KG) = KGR ™, T (By) = —KiF, T 4 (F) = B,

7
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Ty (Ei) = —FiK7, T7 1 (F) = —K; °E;,

TI(E) =Y (-0 B VEEY, TL(E) =) (-1 E EE, j#i,
s=0 s=0

E,fe<ﬂ) _ Z(_l)sqfsﬂ(S)Fjﬂ(r_S)7 Tz',,e<Fj) _ Z(_1>sqi—esP1i(r—s)FjFi(s)7 j 7& i
5=0 s=0

Moreover, the automorphisms T! ,, T/, for i € I,e = +1, satisfy the braid relations.

i,e) Tier

It follows by their definitions that Tj ., 7}’ , are mutually inverses cf. [Lus93,

i,e)

§5.2.3]. Symmetries T}, T/, are related to each other via the following identities

i,e) T ie

/ o 1"
,1;,—1 =00 n,-&—l cJa,

7}’7/_6 = dj © T;/,,—i-e © 1/}’ T;/,—i-e = ,4/} © T;,,—e o ¢>
where ¢, o are the bar involution and anti-involution on U given in Proposition 2.2.

Denote by EZ-(”), Fi(”) the divided powers %, % in U, for n € N. Let M be an
integrable U-module (of type 1); cf. [Lus93, §5]. By definition, E;, F; act locally
nilpotentlty on M and M has a weight space decomposition of M with respect to a
fixed i € 1

M=EM,  M,={veMKyv=qv}

neL

Following [Lus93, §5.2.1], we define linear operators T} ,,T/".,e = +1 on M by

i,e) T ie’

T.(w)= Y (-1)'¢OFYE %,  veM,, (2.11)
a,b,c>0;
a—b+c=m

Ti()= Y (V¢ B RV E v, veM,. (2.12)
a,b,c>0;

—a+b—c=m
Proposition 2.5 ([Lus93, 39.4.3]). Let M be an integrable U-module. Then, for any
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ueUwve M,e==+1, we have

Tie(uv) =T ()T (v),  Ti(uv) =T ()T}, (v). (2.13)

i,e

2.3 Braid group action on the Drinfeld double U

Analogous braid group symmetries T! T for i € I and e = +1, exist on the

i,e) " 1,e’

Drinfeld double U see [LW22a, Propositions 6.20-6.21]. (Our notations 77 i»’fe here

i,e)

’
2,69

correspond to T; ., T}, therein.) We recall the formulation of ﬁ” 11 below.

Proposition 2.6 ([LW22a, Proposition 6.21]). Set r = —¢;;. There ezist an auto-

morphism ﬁ’erl, foriel, onU such that

TV (K = KGK; 9, TV (K = KK,

i/,,+1(Ei) i AL Til,l—l—l(ﬂ) = —K;'E,

T/ (B) =Y (-17q BN EEY, 44,

s=0
T/ (F) =Y (1P GFORET, i
s=0

Moreover, the automorphisms ﬁ’erl, for v €1, satisfy the braid relations.

We sometimes use the following conventional short notations

7] T—1 . g L mn —1 . v
T=T',, T7':=T_, T:=T., T ' =T_,.

% i,

Hence, we can define



where w = s;, - - - s;, is any reduced expression of w € W. Similarly, one defines T,

for w e W.

The symmetries fi”e and T, for i € I, satisfy the following identities in U [LW22a]

i,e)

(analogous to [Lus93, 37.2.4] in U)

T o T
Ti,—l =0 OTz‘,+1 © 0,

N N N N (2.14)
Tle=v¢oTieot, Ti.=voT_ od.
The automorphism i” 1 descends to Lusztig’s automorphisms 7}’ on U:
moT), =T/ om. (2.15)
2.4 Braid group action and root vectors
Denote the divided power % by Fi(r). Define
r _er(m4c;;—1 s T
yivj;mve = Z (_1) qz ( e )E( )P}E( )’ yz,’,j;m,e = O-<yi,j§m,€)7
e (2.16)
l‘@j%m@ = Z (_1)Tq:T(*m*Cij+1)Ei(T)EjEi(S)’ x;,j;m,e = U(:Eid%m@)'
r+s=m

Note that Yijim,e = wa(xm;m’e) and Yijim,e = ¢(yi,j;m,—e)-
Remark 2.7. In Lusztig’s conventions [Lus93, §37.2.1], our ¥; j.m. is identified with

his Yij:l,m.e and Tijim,e is identified with his Tij:l,m,e-

Lemma 2.8 (cf. [Lus93, Lemma 7.1.2]). We have, fori# j €1,
(1) —q;cijizmyi,j;m,—lﬂ‘ + Filijim,—1 = M+ Ui jims1,-1,
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cii+2m
(2) —q;""" B jun, 1 + Tigjim, 1 B = [m A 1% jama, -1,

(3) —Yijm-1Ei + EiYijim.—1 = [—¢ij — m + 1y jom—1,-1 K],

(4) =Fi%ijim, 1+ Tijim, 1 Fy = [—cij — m + 1, KT jim—1,-1-

The recursive relations for ¥; j.m. 41, %i j.m,+1 are obtained by applying 1 to above

/

relations. The recursive relations for y; ;... ., 7} ., . are obtained by applying o to

above relations.

Recall that 7'

i,e)

ﬁ-’fe are the braid group symmetries on U formulated in [LW22a,
Propositions 6.20-6.21]. We recall the (rank two) actions of T/,, T/, on generators

i,e) i€

E;, Fjof Uforj#iel

T (F}) = Yigi—cyjer T; (Ej) = Tiji—cyj e

ﬁ/,/e (F J )

- (2.17)
T(E)) = &

/
- yi7j§_cij7_€’ 4,J;—¢ij,—e"

cf. [Lus93, Lemma 37.2.2].

2.5 Satake diagrams and relative Weyl/braid groups

Given a subset I, C I of finite type, denote by W, the parabolic subgroup of W
generated by s;,7 € I,. Set w, to be the longest element of W,. Let R, be the set of
roots which lie in the span of ay,i € I,. Similarly, R} is the set of coroots which lie
in the span of o, € I,. Let p, be the half sum of positive roots in the root system

R., and p! be the half sum of positive coroots in R .

An admissible pair (I = I UL, 7) (cf. [BBMR, Kol4]) consists of a partition I, UL,

of I, and a Dynkin diagram involution 7 of g (where 7 = Id is allowed) such that
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(1) I, is of finite type,
(2) we(eyj) = —aj for j €L,

(3) If j € I, and 7j = j, then a;(p)) € Z.

The diagrams associated to admissible pairs are known as (generalised) Satake dia-
grams. We shall use the terms between admissible pairs and Satake diagrams inter-
changeably. Throughout the dissertation, we shall always work with admissible pairs
(I =I,Ul, 7). A symmetric pair (g,0) (of Kac-Moody type) consists of a symmetriz-
able Kac-Moody algebra g and an involution 6 on g of the second kind; involutions
of the second kind on Kac-Moody algebras are classified by Satake diagrams [Kol4,
Theorem 2.7].

An admissible pair is called of finite type if the underlying Dynkin diagram is of
finite type. An admissible pair (I = I, UL, 7) is called quasi-split if I, = @, and split

if in addition 7 = Id.

Given an admissible pair (I = I, U L,, 7), the corresponding involution 6 (acting

on the weight lattice) is recovered as

0 =—weor. (2.18)

Set IEM to be a (fixed) set of representatives of 7-orbits in I,. The (real) rank of a
Satake diagram is the cardinality of I§M. We call a Satake diagram (I' = I UT!, ')
a subdiagram of another Satake diagram (I =1, UT,,7), if I' C I, I} = T' N 1T,, and

™= 7lh.

Given a Satake diagram (I = I, UL, 7), the rank one subdiagram associated to
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i € IE)M consists of vertices
L, := I, U {i, 7i}. (2.19)
Let I, . be the subset of I given by

L,={i€ H§M| L, ; is of finite type}. (2.20)

T

Then I, , parametrizes finite type rank one Satake subdiagrams of (I = I, U I, 7).
Let W, ; be the parabolic subgroup of W generated by s;,j € I,; for 7 € I, ;. Let w,;
the longest element of W, ;. The following constructions are a special case of those

by Lusztig [Lus76]; also cf. [Lus03, DK19]. Define r; € W, ; such that
We i = LW, (= Wel;), where £(w, ;) = £(r;) + {(w,). (2.21)

(It follows from the admissible pair requirement that w, ;, r;, and w, commute with

each other.) Then the subgroup of W,
WO = <I‘Z’Z € Hoﬂ-),

is a Weyl group by itself with its simple reflections identified with {r; | ¢« € L, ,}.
Denote by ¢, the length function of the Coxeter system (W° I, .) and by w, its

longest element.

Proposition 2.9 ([Lus76)). Let wy,wy € W°. Then {(wiws) = l(wy) + £(ws) if and

only if Lo(wiws) = Lo(wr) + Lo(ws).
Hence there is no ambiguity to refer to the Coxeter system W° or W when we

33



talk about reduced expressions of an element w € W° C W. By definition, we have
identifications I ; = lo i, We i = W ri, We; = We i, and r; = r ;. Denote by 7,; the

diagram involution on I, ; such that

w.’i(ozj) = —067—.71.]', Vj & H.J'. (222)

The relative Weyl group associated to the Satake diagram (I = I, UL, 7) can
be identified with W°. Let {a;|i € I} be the simple system of the relative (or

restricted) root system, where @; is identified with the following element (cf. [DK19,

§2.3])
wo=——"  (iel). (2.23)

Note that @; = a,;.

We introduce a subgroup of W:
Wo={weW|wd= 0w}
It is well known that (see, e.g., [DK19, §2.2])

W, x We =W,

We shall refer to the braid group associated to the relative Weyl group W¢ the
relative braid group and denote it by Br(1¥/°). Accordingly, we denote the braid group
associated to W, by Br(W,).
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2.6 Universal :quantum groups
We set up some basics for the universal quantum symmetric pair ([~J, [~JZ), following
and somewhat generalizing [LW22b].

Let (I = I, UL, 7) be a Satake diagram. Define U. to be the subalgebra of U

with the set of Chevalley generators
Gv. = {EJ7F’]7K]7K]/ ’ j S ]I'}

The universal :quantum group associated to the Satake diagram (I = I, UL, 7) is

defined to be the F-subalgebra of U
U' = (Bi,ki,g | i €1, g € Ga)
via the embedding 7 : U — INJ, u +— u', with
Bivs Fi+ T (E)K!, ki KK, g g, for i€l g€ G (2.24)

By definition, U* contains the Drinfeld double U, associated to L, as a subalgebra.

Let U™ denote the subalgebra of U generated by 7{;}, K;, K J’-, forv € I,,5 € I,.

The following lemma is clear.

Lemma 2.10. Ifi = 11,7 € I, then EZ is central in U". If i #1 €1, then %ZE” 18

central in U

Following [Let99] and [Ko14, §6.2], we formulate a monomial basis for U*. Denote
B; = Fj, for j € I,. For a multi-index J = (j1,j2, - ,Jn) € I", we define F; :=
Fy Fj, -+ Fj, and By := By, Bj, -+ Bj,. Let J be a fixed subset of |J,,, " such that

35



{F;|J € J} forms a basis of U as a UTU%module.

Proposition 2.11. (¢f. [Kolj, Proposition 6.2]) The set {B;|J € J} is a basis of
the left (or right) UFU™-modules U*.

2.7 1Quantum group U via central reduction

We recall some basics for quantum symmetric pairs (U, UL), cf. [Let99, Kol4], where
the parameter ¢ = (g;);c1, € F>*° is always assume to satisfy the following conditions

(cf. [Let99] [Kol4, Section 5.1])
S = Sri, if 73 # i and (ay, weary;) = 0. (2.25)

We call ¢ a balanced parameter, if ¢; = ¢,; for any ¢ € I,. For an arbitrary parameter

¢, we define an associated balanced parameter ¢¢ such that
G = S = VSisri- (2.26)
Define U, to be the subalgebra of U with the set of Chevalley generators
Go:={E;, F;, K" | j € LL}.

The 1quantum group associated to the Satake diagram (I = I, UL, 7) with parameter

¢ is defined to be the F-subalgebra of U

UZC = <Bi’kj7g ’ 7’ S ]Ioaj € H\]Io,ﬂg € go>
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via the embedding ¢ : U, — U with

B F; + 6Ty, (E,)K; Y, ki = KK, Viel,jel\L,. (2.27)

]

We sometimes write u* € U, for u € U". Note that U* contains U, as a subalgebra.
For i € I,,, we set k; = 1 if i = 7i and k; = k;' if i # 7i. Similarly, we denote by

U® the subalgebra of U* generated by k;, K, for i € I, j € L.

We have the following central reduction 7 : U — U, generalizing [LW22b,

Proposition 6.2] in the quasi-split setting.

Proposition 2.12. There exists a quotient morphism . : U — U sending
By By, Ky ooiky, ke ey, (i€l,jel,),
and 7¢|g, = milg,. The kernel of w is generated by
ki—g (i=T1ii€l), kkni—sss (i#1iiel), KK —1 (jel).

Remark 2.13. For a balanced parameter ¢, 7 coincides with the restriction of m¢ on

U However, this is not the case for an unbalanced parameter.

2.8 Distinguished parameter ¢, and Table 1

Recall from (2.23) that @; = (o; + wear;) /2. Define a distinguished balanced param-
eter 6o = (i0)ier, such that
7(ai:ai+wla7’i)/2 — _qf(ai’ai)7 for /l E ]IO' (228)

Sio = —(
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The parameter ¢, will play a basic role in this dissertation; also cf.

[DK19]. In

fact, only ¢, for i € fwltau matter in our later construction. We summarize the

parameter g, for finite-type rank one Satake diagrams in the table below.

Table 1: Rank one Satake diagrams of finite types and local datum

Type Satake diagram Sio r;
Al o Slo=—q " r = s
1
1
e G20 = —¢q Iy = S2132
ATl e—Oo—e :
1 2 3
—1
= - r|i = $18
AIlLy, S % S1o q 1 = 5182
1 2
A — _—1/2 o= Sy
AIV, n>2 o—0—---- —@—0 Slo q 1 1.-m---1
1 2 n
BILn>2 | o5 e | Slo=q T = Stomt
P = n
—1/3
CII, n>3 o0 —--—ei—o 2,0 = T2 Iy = $2..10.-212-m--2
- 1 2 n
"1 1 _
DII, n>4 oo - __ Slo = —q r =
12 I.l S1.n—2n—1nn—2-1
—1/2
FII *—8—e—20 S0 = Ty Iy = 5432312343231234
1 2 3 4

Watanabe [W21la, Lemma 2.5.1] showed that the :quantum groups for arbitrar-

ily different parameters are isomorphic, improving earlier partial results in [Let02]

and [Kol4, Proposition 9.2, Theorem 9.7]; Universal :quantum groups provide an

alternative proof for this fact.

Proposition 2.14 ([W2la, Lemma 2.5.1]). For any parameter s, there ezists an al-

gebra isomorphism ¢ : U — Ug.

Proof. Denote by a = (a;);er the scalars given by a; := g;olgi, aj:=1,foriel,,jel,.
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The corresponding scaling map @z in Proposition 2.2 acts on 1(U, ) by sending
B — (§z’,<>§fl)1/2 (E + \/%Cn’fw.<Eﬂ)Kfl)7 ki — ki. (229)

Hence, ®5 restricts to an isomorphism U — U.; see (2.26) for ¢°.

It remains to show that U is isomorphic to U{. Note that, by Proposition 2.12,

ker i = ker .. Hence, we have U, = U’/ ker 7l = U*/ ker 7l = UL.. O
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Part 1

Relative braid group symmetries

for finite type
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The goal of Part I is to construct symmetries ’AIV‘;’E, ’f;’ . on rquantum groups of

arbitrary finite type. We will show that these symmetries satisfy the relative braid

relations in Part II1.

Let (I =1, UL, 7) be a Satake diagram of finite type.

3 Quasi K-matrix and intertwining properties

In this section, we establish the quasi K-matrix T for the universal quantum sym-
metric pair (I~J, 6‘), and a new characterization of T in terms of an anti-involution
0. Then using suitable intertwining properties with the quasi K-matrix, we establish
an anti-involution ¢* and a bar involution " on U from the anti-involution ¢ and a
rescaled bar involution v, on U. We also establish an anti-involution o, on U for

an arbitrary parameter g.

3.1 Quasi K-matrix

The quasi K-matrix was introduced in [BW18a, §2.3] as the intertwiner between the
embedding ¢ : UL — U and its bar-conjugated embedding (where some constraints
on ¢ are imposed); this was expected to be valid for general quantum symmetric
pairs early on. A proof for the existence of the quasi K-matrix was given in [BK19]
in greater generality (modulo a technical assumption, which was later removed in
[BW21]). Appel-Vlaar [AV22, Theorem 7.4] reformulated the definition of quasi K-
matrix Y associated to (U, UL) without reference to the bar involution on U, and
this reformulation removes constraints on the parameter ¢ for quasi K-matrix. Recall

the bar involution ¢ on U.

41



Theorem 3.1 (cf. [AV22]). There exists a unique element T¢ = 37 YL, for

T4 € Uf, such that Y2 =1 and the following identities hold:

o

BT =T, <Fz + (_1)041'(210\./)q(ai7wo(a7i)+2p')g7_i’¢](Tw.ETi)Ki>, (31)

Y =T, (3.2)
fori €1, and x € UU,. Moreover, TH = 0 unless O(pn) = —p.

Recall the bar involution ¥ on U from Proposition 2.3. The quasi K-matrix T

associated to (U, U?) is defined in a similar way as Theorem 3.6.

Theorem 3.2. There exists a unique element T = Zuem Tr such that YO = 1, TH €

6: and the following identities hold:

BZT _ :f (Fz + (_1)a¢(2PY)q(a¢,w.aT¢+2po)¢(fw.Eﬂ.)Ki>’ (33)

2T = T, (3.4)

fori €1, and x € UYU,. Moreover, T = 0 unless 0(11) = —pu.

Proof. Follows by a rerun of the proof of Theorem 3.1 as in [AV22] or in [Ko021]. (The

strategy of the proof does not differ substantially from the one given in [BW18al.) O

Remark 3.3. Applying the central reduction 7 in (2.7) to (3.3) gives us

(-Fi‘f’\/ gigriTw.(ETi>Ki_1)7T§<T)
= 1o (T) (Fy + (—1)Cee)glaswelandt2e0) /oemon (T, (E.)) Ki),  (3.5)

xme(Y) = me(V)x, (3.6)
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for i € I,z € UYU,. Comparing (3.5) with (3.1), we obtain by the uniqueness of

the quasi K-matrix that (see (2.26) for ¢¢)

Te(T) = Tee. (3.7)

In particular, Wg(f) = T, if and only if ¢ is a balanced parameter.

3.2 A bar involution ¥"* on U*
Introduce a balanced parameter ¢, = (¢; 4 )er, by letting
Sim = (_1)&1(29Y)q(a17w.ari+2po)’ (i e L). (3.8)

Note that ¢, are exactly the scalars appearing on the RHS (3.3). We extend ¢,

trivially to an I-tuple, again denoted by ¢, by abuse of notation, by setting

§j7* = 1 (] € ]I.)

Recall the scaling automorphism \TJC* from (2.8) and the bar involution ¢ on U

from Proposition 2.3. The composition

Y =V, 01 (3.9)

is an anti-linear involutive automorphism of U.

Proposition 3.4. There exists a unique anti-linear involution " of U* such that

V'(B;) = By, V' (x) = i), fori €1,z € UU,. (3.10)

43



Moreover, " satisfies the following intertwining relation,
V'(2)T = T, (), for all z € U (3.11)
(" is called a bar involution on U".)

Proof. We follow the same strategy in [Ko21] who established a bar involution on UL

(for suitable ¢) without using a Serre presentation.

By definition of v, we have, for i € I,z € UPUL,,

¢*(Bi) =F, + (_1)ai(2p¥)q(ai,w.aﬂ+2po)¢(fw.Eﬁ)Ki,
(3.12)

¥ (z) € U,

The composition Adg o 1, is an anti-linear homomorphism from U toa completion

of U. Then the image of U* under Adsz o 1), is a subalgebra generated by
(Adz 0 9,)(B;), (Adsz o 1,)(x), for i € I,z € UU,.
By Theorem 3.2 and the identities (3.12), we have, for i € I,z € ﬁ’oﬁ.,
(Adg 0)(B) = Biy  (Adg 04:,)(x) = v (a). (3.13)

Since each element in (3.13) lies in U, Ads o 1), restricts to an anti-linear endomor-

phism on fﬁ, which we shall denote by " : U — U

By construction, ¢ satisfies (3.10)—(3.11). Finally, ¢* is unique and is an involu-

tive automorphism of U* since it satisfies (3.10). [
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Proposition 3.5. We have

(1)Y= 1. (3.14)

Proof. Applying ¥, to (3.11) results the identity 1, ()1, (T) = ¥, (T)y*(y), for y €

U'. We rewrite this identity as

G ()07 = () (). (3.15)
Using (3.12) and Proposition 3.4, the above identity (3.15) implies following relations

Biw*(:f)—l = b, (1) (E + (_1)0@(2%)q(oci,w.ozn'+2p.)w(ﬁu.E’ﬂ)[(i>7
(3.16)

2 (1) = (1) e,

for i € I,z € UYU,. Hence, 1,(T)"" satisfies (3.3)~(3.4) as well. Clearly, 1, (1)

has constant term 1. Thanks to the uniqueness of T in Theorem 3.2, we have

(1)1 =T, m

3.3 Quasi K-matrix and anti-involution o

We provide a new characterization for T in terms of the anti-involution o (see Propo-

sition 2.3), which turns out to be much cleaner than Theorem 3.2. Denote
Bia = U(Bz) = E + Kiji;.l (ETi)a (317)

where the second identity above follows by noting T = oT, w.0; see (2.14). The

following characterization of a quasi K-matrix T is valid for U of arbitrary Kac-
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Moody type.

Theorem 3.6. The quasi K-matriz T is uniquely characterized by TO =1 and the

following intertwining relations

BY=TBY?, (i e L),
o o (3.18)
¥ =Tz, (z € U"U,).

Moreover, T = 0 unless 0(j) = —pu.

Proof. We show that the identity (3.18) is equivalent to (3.3), for any fixed ¢ € L.

Since ¢( .(E;)) has weight wea;, the identity (3.3) is equivalent to
B = T(Fi+ (—1)™ @3¢ K (T, (Bri)) ) (3.19)
Moreover, by [BW18b, Lemma 4.17] and U+ = U+, we have

(1)) g (T () = T (B,

and hence, the identity (3.19) is equivalent to (3.18) as desired. O

Remark 3.7. By abuse of notation, we denote again by ¢ the anti-involution on U
which fixes E;, F; and sends K; — K, ! for i € I. For a balanced parameter g, we
obtain the intertwining relation for U, B,T¢ = T BY (i € L), by applying the central
reduction 7 to (3.18), thanks to (3.7). Here BY = o(B;) = F; + KT, (E-;).

On the other hand, for (not necessarily balanced) parameter g, we have
B/Y. = T.BT. (3.20)
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Let 2 € I,. The rank one quasi K-matrix

Y, € Uf (c UY)

,%

is defined to be the quasi K-matrix associated to the rank one Satake subdiagram

(I, U {i, i}, 7); cf. (2.19). Clearly, we have T; = T,;.

Proposition 3.8. We have a(:f) =Y and ?('Y“) = Y, In addition, fori € I, we

have

In addition, ?.Z(TZ) =7,

Proof. By applying the anti-involution ¢ to the identities in Theorem 3.6, we have

o(T)B? = Bio(T), (iel), (3.21)

o(T)y =yo(T),  (zeUPU,), (3.22)

where y = () € UU,. This means that o(T) satisfies the same characterization

in Theorem 3.6 as T, and hence by uniqueness, we have o(Y) = T.

Noting that 67 = 7o and 7 preserves U°U,, then the identity 7(T) = T follows

by the same type argument as above.

The identities o(T;) = T; and 7(T;) = T; are immediate by restricting o and 7

Hc,i)'

to the Drinfeld double associated to rank 1 Satake subdiagram (I, ;, I, 7

According to the rank one Table 1, 7,; = 1 except in type AIV when 7, ; coincides

with the restriction of 7 to the rank 1 Satake diagram. In either case, we have
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Tui(Ti) = T -

Remark 3.9. For balanced parameters ¢, by taking a central reduction 7., the prop-
erty 7(Y;¢) = T;¢ remains valid. However, for unbalanced parameters ¢, we do
not necessarily have 7(Y1;¢) = Y, ¢; instead, we have 7(Y;¢) = T, ¢, which can be
proved by Theorem 3.1. The property YT, = T,;¢ is true, regardless of balanced or

unbalanced parameters.

Remark 3.10. It follows by Theorem 3.2 that the rank one quasi K-matrix T, has the

form :fz = ZmZO Ti,m, for sz € ﬁm(aiw.aﬂ).

3.4 An anti-involution ¢ on U’

Define K; € U by

’Ci = KZK,

Welri)

for i € L. (3.23)

Lemma 3.11. Leti € I,. We have K; € U®.

Proof. By definition, the element K; is a product of ki = KK € U® and an element

in UY, and hence K, € U®. O

Recall the anti-involution o on U from Proposition 2.3.

Proposition 3.12. There exists a unique anti-involution o* of U* such that

c'(B;) = B, o'(z) =o(z), foriel,ze U°U,. (3.24)

48



Moreover, o' satisfies the following intertwining relation:
o' (2)T = To(z), for all z € U (3.25)

Proof. Given z € U*, an element 7 € U* (if it exists) such that T = To(z) must be

unique due to the invertibility of T.

Claim (x). Suppose that there exist Z,7 € U’ that 2T = To () and T = Yo (y),

for given x,y € U*. Then we have
72T = Yo (xy).

Indeed, the Claim holds since 2T = o (z) = To(y)o(z) = To(zy).

Observe that o preserves the subalgebra U*U, of U*. Hence by Theorem 3.6,
we have o(2)T = Yo (z), for all z € UYU,. By Theorem 3.6 again, we have B;T =
’Y”U(Bi), for all 7 € I,. Since the assumption for Claim (x) holds for a generating set
U"U, U {Bi|i € L,} of U, we conclude by Claim (x) that there exists a (unique)
7 € U* such that 2T = To(x), for any x € U*, and moreover, sending x — T defines

an anti-endmorphism of U’ (which will be denoted by o).

Clearly, by construction ¢* satisfies (3.24) and the identity (3.25). Finally, o is

an involutive anti-automorphism of U since it satisfies (3.24). [l

Remark 3.13. The strategy in establishing a bar involution on U without use of a
Serre presentations appeared first in [Ko21]. For quasi-split :quantum groups, i.e.,
I, = @, our 9" coincides with the bar involution in [CLW23, Lemma 2.4(a)] (see also
[LW22a, Lemma 6.9]). Unlike the proof loc. cit., our proofs of Proposition 3.4 and

Proposition 3.12 do not use a Serre presentation of U". Hence, the (anti-) involutions
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o and ¢" are valid for U* of arbitrary Kac-Moody type.

3.5 An anti-involution o, on U

The anti-involution ¢* on U* in Proposition 3.12 can descend to an :quantum group

U¢, only for any balanced parameter ¢. It turns out that the anti-involution o'r on

U' can descend to an iquantum group Uy, for an arbitrary parameter .

Proposition 3.14. Let ¢ be an arbitrary parameter. There exists a unique anti-

involution o, of UL such that
0.(B;) = By, o.(z) = or(x), foriel,re€ UU,. (3.26)
Moreover, o, satisfies the following intertwining relation:
o (2)Y. =Yor(x), for all x € UL. (3.27)

Proof. A proof similar to the one for Proposition 3.12 works here, and we outline it.

We claim that, for any « € UL, there exists z € UL such that
Y =Yor(z). (3.28)

As argued in the proof of Proposition 3.12, it suffices to show that (3.28) holds for =
in a generating set {B;]i € I} U U"U, of UL. Indeed, by (3.20), we have B,; T =
Y.o7(B;). For z € UYU,, note that o7(z) € UPU,, and then by Theorem 3.1, we

have o7(z)Y¢ = Ycor(z). This proves (3.28).

Now sending = — 7 defines an anti-endomorphism o, which satisfies (3.26) and
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(3.27) by construction above. Finally, o, is involutive since it satisfies (3.26). O

Remark 3.15. Our construction of o, generalizes the o, in [BW21, Proposition 3.13],

which is constructed via bar involutions under certain restrictions on parameters.

Remark 3.16. Thanks to Proposition 3.14, one can formulate a Ug-variant of Theo-

rem 3.6, which characterizes the quasi K-matrix Y. via the intertwining property

B, Y =Yor(B)), (i el,),

oY = Tz, (z € U"U,).

This can also be proved directly. This seems more conceptual than the formulation

of Theorem 3.1 (see [AV22]).

4 New symmetries T, ; on U’

In this section, we define explicitly certain rescaled braid group actions ;Jv'g»’_l on a
Drinfeld double U. We then formulate the new symmetries ’AI/‘;ﬁl on U, for i €
I,, via an intertwining property using the quasi K-matrix T and a rescaled braid
automorphism 5’;2_7_1; the proof will be completed in the coming sections. We show
that iwl on U preserves the subalgebra U"U,, and that the actions of ’T‘;ﬁl and
‘}/

ri—1 On UU, coincide. Explicit formulas for the action of T‘;rl on UPU, are

presented. Then we obtain a compact close rank one formula for ’i‘;ﬁl(Bi).
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4.1 Rescaled braid group action on U

Recall the distinguished parameter g, from (2.28). Extend g, trivially to an I-tuple

of scalars (¢, )ier by setting
Sjo = 1, for j € L. (41>

Then we have the scaling automorphism Cf’ on U by Proposition 2.2. We define
symmetries 5';’ 4, and 5’;_1 on U by rescaling T” ., and T _, in Proposition 2.6 and

(2.14) via the rescaling automorphism \Tlgo

‘.T”H = \If o T'Jrl oW, (4.2)

T =V 0T oW, (4.3)

Since T’ +1,T’ , are mutually inverses, 7@ +1,‘J” , are also mutually inverses. We

shall often use the shorthand notation
5T, T,

Remark 4.1. These rescaled symmetries ‘}i_ ! will play a central role in our construction
of symmetries on ﬁ’; see Theorem 4.7. Our rescaling twist using \Tf% is compatible

with the rescaling twist in [DK19, (3.45), Remark 3.16].

We write down the explicit actions for T; and ‘j'[ ! for later use.

Proposition 4.2. Set r = —c;;, fori,j € I. The automorphism T, € Aut( ) defined
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in (4.2) is given by

T(K;) = 9P KGR, TU(KD) = PR

Ti(E) = o BK Y Ti(F) = —K;'E;,

Ti(E) = Y (-1 BN VB EY, 4,
s=0

T(F) =Y (-1 ¢FYRF™, 4.

s=0

The inverse of T; (see (4.3)) is given by

— Ci'/2 —Ci4 ~ Ci'/2 —Cj4
J; 1(Kj) =S K;K; ™, Ji I(KJI') = %,oj K]/'Kz{ 7

TUE) = —ao K 'F,  T7Y(F)=-EK/ ",

(]

TUE) =P Y (-1 BOBET 4,
s=0

TUEF) =Y (F1)'GFE IREY, 4

s=0

Moreover, i, for i € 1, satisfy the braid group relations.

Hence, we obtain

To=T0 =Ty T, € Aut(U),  for we W, (4.4)

where w = s;, - - - 5;, is any reduced expression. Similarly, we have ‘};,,1 e Aut(U).

1 o r
Remark 4.3. Let © € I,. The rescaling for %;tl is trivial, thanks to ¢,; = 1; that is,

T, =T, In particular, T, = ﬁu.. Moreover, ﬁu.(Eﬂ) = ‘}w.(Eﬂ-) = Tw,(E;;) in
Ut = U*; cf. the formula for B; in (2.24).
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Let 79 be the diagram automorphism associated to the longest element wy of the
Weyl group W. The following fact is well known (up to the rescaling via g,); cf.; e.g.,
[Kol4, Lemma 3.4].

Lemma 4.4. We have, for j € 1,

Towo (P}) - _KT_O}ETOJ') Jwo (EJ) = _§j7<>FTOjK‘/FO_]'1’
T () = =Gl i P, Too (F}) = —Enj K,

11

[D for j €1,

4.2 Symmetries

It is known [BW18b] that Lusztig’s operators T ,,, T}, on U, for j € L, restrict to
automorphisms of UL (where the ¢ satisfies certain constraints); moreover, these op-
erators fix T. In this subsection, we formulate analogous statements for the universal

quantum symmetric pair (fj, sz) while skipping the identical proofs.

Recall the automorphisms i” 1 on the Drinfeld double fJ, for i € I, from Propo-

sition 2.6, and recall Remark 4.3.

Proposition 4.5 (cf. [BW18b, Theorem 4.2]). Let j € L,. The automorphism 5’}C+1 =

T7., on U restricts to an automorphism of U'. Moreover, the action of T7 ., on

B; (i € L) is given by

T

T/ a(B) =Y (-1)°gFYBF, forr = —cij. (4.5)

s=0

Proposition 4.6 (cf. [BW18b, Proposition 4.13]). Let j € I,. Then %;’H(T) =T,

and ‘j';’ﬂ(:fl) =7, foriel,.
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4.3 Characterization of ’i‘;_l

Let (INJ, INJZ) be the quantum symmetric pair associated to an arbitrary Satake diagram
(I =1, Ul,, 7). Recall that T,, for i € L, are the quasi K-matrix associated to the
rank one Satake subdiagram (I, U {7, 7i}, T|r,ugi3). Recall r; € W from (2.21) and
(};i,—l € Aut(U) from (4.4) whose definition uses (4.2). We now formulate our first

main result.

Theorem 4.7. Let i € 1.

1. For any x € U, there is a unique element 2 € U* such that 2/ T; = 'Y“j‘;_l(xl)

2. The map x +— x' is an automorphism of the algebra INJZ, denoted by T‘;’_l.

Therefore, we have

T ! 1 T2
i, —1 . — Lidyp, 1 ) . .
T, 1 (z)T; = 1,7, _4(z") forallz € U (4.6)

Proof. A complete proof of this theorem requires the developments in the coming

Sections 4—6. Let us outline the main steps below.

For a given = € U, 2/ € U" satisfying the identity in (1) is clearly unique (if it

exists) since T; is invertible.

The explicit formulas of 2’ associated to generators x of le, for each of (rank one
and two) Satake diagrams in the forthcoming Sections 4-5. The formulas therein
show manifestly that =’ € I~JZ; see Proposition 4.11 on szofj.? Theorem 4.14 for rank

1, and Theorem 5.5 for rank 2.

Assume that @',y € U satisfy (1), for z,y € U* that is, /T; = Tﬁ;h_l(x’), and

YT, = Tﬁ';fl(yz) Then it follows readily that z'y’ € U* satisfies the identity in
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(1) for ay; that is, 2/y'Y; = i‘j’]’ril((a:y)’) Hence we have obtained a well-defined

endomorphism T} _; on U* which sends =+ 2'.

To complete the proof of the theorem, it remains to show that ’AI/‘;ﬁl is surjective.
To this end, we introduce and study in depth a variant of ’T‘;_l, a second endomor-
phism 'f‘;’ 4 on U in Section 6. The bijectivity of T§7_1 follows by Theorem 6.7 which

A - : utual inv .
shows that T} _; and T}, are mutual inverses O

Remark 4.8. By Proposition 3.8 and the definition (2.21) of r;, we have T, = Tm

r; = r;, and hence ’i‘;_l = ':A[v‘/m_l. Thus, we may label ;Iv‘;,—1 by L, instead of L.

In this and later sections, we shall construct 4 variants of symmetries of U (de-

i,e)

noted by T/ ’T‘;’ .) via (4.6) and 3 additional intertwining relations and the rescaled

braid group symmetries T}, 4, N;’i’ﬂ of U*. We choose to start with the (simplest)

intertwining relation (4.6) for ‘i’%_l. From now on, we often write

-1 _ & T
Tl‘i - ‘J’l‘i,fl7 71'1’ - TI‘¢,+1'

4.4 (Quantum symmetric pairs of diagonal type

Recall from Proposition 2.3 the Chevalley involution w and the comultiplication A
(2.6) on U. Denote “LY = (w® 1)L for i € I, where L, i € I is the rank one quasi
R-matrix for U (same as for U); see [Lus93]. We regard U as a coideal subalgebra
of U® U via the embedding “A := (w ® 1)A and then (U ® U, U) is a universal
quantum symmetric pair of diagonal type; cf. [BW18b, Remark 4.10]. In this way,
the rank one quasi K-matrices for quantum symmetric pairs of diagonal type are

given by “LY.
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In this subsection, we shall reformulate the identity [Lus93, 37.3.2] or (1.2), as an

intertwining relation in the framework of quantum symmetric pairs similar to (4.6).

Proposition 4.9. For the quantum symmetric pair of diagonal type (fJ ® fJ, ﬁ), the

following intertuining relation holds:
AT} yu) LY =LY (T, @ T ,) “Aw),  VueU. (4.7)

Proof. Recall from [Lus93, 37.2.4] that w o i{_l ow = ﬁ’f_l. The identity (1.2) for U

admits an identical version for U. Applying w ® 1 to this identity, we obtain

AT ) L =L (T @ T ) “Aw),  YueT.

(2

To prove (4.7), it suffices to prove the following identity
((};‘/,—1 ® (};,—1) “Au) = (l-f]{,/—l ® fg{,—l) “Au), Vu e U. (4.8)

Clearly, it suffices to prove (4.8) when w is the generator of U. We have the following
formulas:
YAE) =F;@1+K;@FE;, “A(F)=1® F;j+ E;® K,

(4.9)
“AK;)=K;® K;, “A(K})=K;® K.

Recall ‘};7_1 = \T!;}lfjﬁ_llfl% from (4.3). By Lemma 14.5 and noting that ¢,, = ¢, in
our case, the twisting for 5‘;’771 is opposite to the one on ‘j’;ﬁl, ie., ‘}},,71 = \ngofjfffltfl;l.
By Proposition 2.2, we see that the RHS of each formula in (4.9) is fixed by \ngol ®(Iv/<o.
The formulas for ﬁ” 1 is given in Proposition 2.6, and the formulas for ﬁ/ﬁpi’/fﬂ

can be obtained from there by suitable twisting; using these formulas, we observe
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that (Tjﬂ’fl ® T;’fl) “A(u) is fixed by \AflgO ® \ngol for u = Ej, F, Kj, K. Hence, for
w=E; F;, K;, K, jel,

(T 0T ) “Au) = (Tg, @ VNIV, @ T (T @ T, )*Au)

= (fg{,/—l ® j;j{,—l) “A(u),

which implies the desired identity (4.8). O

4.5 Action of Tg,q on U"U,

We formulate ’f;ﬁl(:ﬂ), fori € I,,2 € UU, in this subsection. We will show that ‘i—i !

preserves both U and U,; hence, by Theorem 3.6, the element T;_l(x) = T 1(z)

r;

satisfies (4.6) for = € UU,.

Recall that the diagram involution associated to w, ; is denoted by 7, ;. By defini-

tion of admissible pairs, the diagram involution associated to w, is 7|7,. The involution

7 induces an involutive automorphism, denoted by 7, on U. Both To,i and 7 induce

(commuting) involutive automorphisms, denoted by 7, ; and 7, on U..

We first calculated ‘}r_i Y(x) for x € U.. By applying Lemma 4.4 twice, we obtain

ToI7() = Tpl 7aa(e) = T1T0 7 (2);

We = Iy

note that the second identity above holds since 5’;}2 = ‘};‘1‘}; by (2.21). Hence, we

have 7(z) = ‘i‘i 7..i(x), which implies that

T Hx) =7, 07(x) € U,, for all z € U, (4.10)
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We next formulate the actions of T;-* on U, for i € I,. Recall g, from (2.28) and

(4.1), and \quo from Proposition 2.2. Denote

kio =V (ki) = s KiK., € U, (4.11)

So

Note that 7{}70 = Ej = KK

T3

for j € I,. We shall denote

%,\,0 = HEZ"; € INJ”O, for A = Zmiai € 7ZI. (4.12)

i€l i€l

Lemma 4.10. Let w € W be such that wt = Tw. Then ;JV'T'M_I(EM) = kuwa,0, for

Jjel.

Proof. By Proposition 2.6, we have

leu,—l(%j) = leu,—l(KjK;j) = KwaijlluaTj = KwajK/ = Kuwa,-

TWQ j

By (4.11)-(4.12), we have ky, = W_!(ky), for A € ZI. By (4.2) and (4.4), we have

T G-l T
Tw1=Y oT, 0¥, and hence

T 1 (ko) = (U o Tl ) (Ky) = U (Bua,) = Ky o

The lemma is proved. O

In particular, setting w =r; (i € I,) in Lemma 4.10 gives us

Summarizing the above discussion, we have obtained the following.
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Proposition 4.11. Let i € I,. There exists element ’ﬁf‘gfl(az) = T Y(z), which

r;

satisfies the intertwining relation (4.6), for x € U*U,. More explicitly, we have

T, 4 (u) = (Fo; 0 7)(u), foru € U, (4.13)
T;,_l(%j7o) = Eria]',<>7 forj S ]Io' (414)

4.6 Integrality of 'I“g’_l

The formula (4.13) clearly preserves the Lusztig integral Z[g, ¢~*]-form on U,. We
shall explain below that our braid group action is also integral on the Cartan part,

even though the definition (4.11) of %jp may involve ¢'/2.

Lemma 4.12. We have

T;,71<7€/j> = e kriajy (415)

griajfozj,o

where §Eéj—aj,<> € Zlq,q Y, for alli,j € 1,.

Proof. Formula (4.15) follows from (4.14) by unraveling the notation Ej,o, Kria;o in
(4.11)~(4.12).

It remains to show that gr_zéj_aw € Z[q,q']. Recall from the definition (2.28), we

have g;, € —¢%/?, for all j € L.

For j =1, since r;(o;) = —; + a, for some a, € ZI,, we have

where ¢7, € q%. The integrality for T;_l(?%n) can be then obtained by applying 7 to
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the above formula.

For j # i4,7i, we only need to consider the case ¢, = —q¢ V2. In this case, by
(2.28), @; is a short root. Moreover, due to the classification of Satake diagrams
and the corresponding restricted root systems [Ar62], we have % =—2o0r0. It
remains to consider the nontrivial case % = —2. It follows that r;a; — o; = 2aq;,
which implies r;o; € o+ ka; +lay; +Zl,, for some k,1 > 0,k+1 = 2. Since ;o = Gri0,

the formula (4.15) is unraveled as the following integral formula ’f;_l(E]) = gi;QEriaj.

Therefore, the integrality of (4.15) holds in all cases. [

4.7 A uniform formula for ’f‘;,_l(Bi)

In this subsection, we introduce a uniform method to calculate T;,—1(Bz‘)- Note that
T, = T, and this takes care of ’f‘;ﬁl(BTi). To that end, without loss of generality,
we can restrict ourselves to a Satake diagram (I = I, UL, 7) of real rank one; that is,

for some i € I,

I, = {i,mi} if 7 #£1d, and I, = {i} if 7 =1d.

Recall the diagram involution 7, ; associated to the longest element w, ; in the Weyl
group Wi,ugi,-iy. By definition of admissible pairs, the diagram involution associated

to w, is 7. Observe that 7, ;77 € {4, 7i}, by Table 1 on rank one Satake diagrams.

Recall K;, Krs € U from (3.23).

Lemma 4.13. We have

T, (Bi) = —q~nmeer)T2 (B2, K

r; Te,iTl’

(4.16)
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where BY is given in (3.17).

Proof. Recall from (2.28) and (4.1) that ¢, = —q (@@itweard/2 for § € I,, and

o = 1, for j € I,. By (2.21), we have T, , = ‘j}i‘}w_. By Lemma 4.4, we compute

‘i—il(Bi) = i_,l (E + :j:w(Em)Kz/)

= T Tol (B + T (B KY)

We We ;5

= T2 (T 10,1 (F) + Tl (BT, 10,0 (KD)

3

= ‘}121;.( - ﬁ;.l (ET.

KN — gl LR TN )
= _54120. (ﬁ.l(Er.,n)Kr.,m + qi(ai’w.a”)Fn,ﬂi) K;l % (K/ )71

.77;7'1' We T.yii

= —g s T2 (K TN B ) + Fro i) K

We Te,iTh

= B (B K]

T.yiTi) Te,iTl"

This proves the lemma. O

Theorem 4.14. Let i € 1,. There exists a unique element "1’“;7,1(32») e U which

satisfies the following intertwining relation (see (4.6))

More explicitly, we have

T;,fl(Bi) = _qi(ahw.aﬂ)ﬁfy. (BT.,iTi)]Cil

Te,iTt"

(4.17)

Proof. Recall 7,;7i € {i,7i}; see Table 1. By Theorem 3.6, we have fiB‘T’. i =

BT.’Z.TZ-TZ-‘ By Proposition 4.6, we have T,,(Y;) = T;, and hence Tﬁ?ﬂ.(B‘T’.‘m) =

‘j'fv.(BT.ﬂi)Ti. By Lemma 3.11, we have K, .-; € I~JZO, and hence K, .-, commutes
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with T;. Putting these together with (4.16), we have

—q w2 (B KL T = T,TN(BY). (4.18)

Te,iTi L

It follows by Proposition 4.5 that —q_(o‘iﬂw'(o‘”))?”fv (BTM.TZ-)ICf1

. Te,iTt

e U Hence, setting

’ff‘gv_l(Bl.) = _q—(aivw-aﬂﬁfm(BTM_”.)IC_l we have proved the theorem. O

Te,iTl)

5 Rank two formulas for ’T‘;)_l(Bj)

Let (I = I, UL, 7) be a rank two irreducible Satake diagram. Fix i,j € I, such
that ¢ # j, such that I, = {i,7¢,7,7j}. A complete list of formulas for ’T‘;7_1(Bj) is
formulated in Table 3. We show that the formulas for 'T;’_I(Bj) in Table 3 satisfy
the intertwining relation (4.6); see Theorem 5.5. Together with the formulas in the
previous section, we have established the existence of an endomorphism ’T‘;_l on U

satisfying (4.6).

5.1 Some commutator relations with T

For w € W, let UT[w] be the well-known subalgebra of U spanned by PBW basis
elements generated by certain g-root vectors so that Ut[wy] = U™; see [Ja95, 8.24].
As we identify Ut = U™, we denote by U*[w] the subalgebra of U* corresponding

to Ut[w]. The next lemma is valid for all Satake diagrams.

Lemma 5.1. Fori # j € 1, ., we have



Proof. Write Tz = ZmZO Ti,m, where :flm € fﬁ(

m(o;+weri)”

By [BW18b, Proposi-
tion 4.5], we have :fzm € Ut[r;], for m > 0. Since the simple reflection s; does not
appear in any reduced expression of r;, F; commutes with any element in U+ [r;]; in

particular, F; commutes with Y. This proves the identity (5.1).

By Proposition 3.8, T is fixed by Te,i (which is equal to either Id or 7). Hence, by

Lemma 4.4 and the fact that :fzm S ﬁg(aﬁw.aﬂ), we have
Twi,i (Tz,m) = Tw%i?'vi(rivm) < U:m(ai-f-w.aTi)Ké;’Twoarﬂ

or equivalently,

Foi= Ty, (Tin) KT eU-

it Welrj —m(o;+we

wy CU . (5.3)

Since the simple reflection s,; does not appear in any reduced expression of r;, £;;
commutes with any element in U~ [r;]; in particular, we have by (5.3) that (B, Fl =

0. For each m, we compute

[ETj:JViwo (Kj/)> ‘}w.,i (Ti,m)}

=[BT, (K}), FK/ ™ ]

a;t+we (Gf‘ri)

_ q(w.aj,ai+w.ari)Eij§’w. (KJI)K;_LTW.OQ _ q(OéTj,Oli'i"w.OéTi)fETj;j;w. (K;)K;:—Tw.az
_ q(a.,j,ai+w.aq—i)[ETj, J’-'] . :j:w. (K]/')K;:Tw.ai = 0.

Hence we obtain an identity

ETj‘:Tw. (K]/) ’ Twc,i (Tl) = ‘J’w.,74<:f/[/) ’ ETj‘:Tw. (K]/) (54>
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The desired identity (5.2) follows by applying i: 1T, to (5.4). O

5.2 Motivating examples: types BI, DI, DIII,

We provide examples in this subsection to motivate how we obtain the general rank
two formulas ’T;,_l(Bj) in Theorem 5.5 below. The three examples are of types BIL,

(n > 3), DI,, (n > 5), DIIl,, and they will be treated uniformly.

The Satake diagrams of these types are listed below. For each type, we define
elements t; € W, for j € I, following each diiagram; these notations ¢; allow a

uniform proof of Lemma 5.2.

DI,,n>5

ta = Sam—251—15nSn—2...a, B<a<n-2), the1 =ty = Sp_15n.

—
[\

DIII,

t3 = t4 — S354.
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Note that, for each of the three types, we always have
ry = 52t352, Z(I'Q) = g(t:g) + 2, B1 = F1 + ElKi

Recall the notation BY from (3.17).

Lemma 5.2. We have

T ) = [Tuu(BY), [BS, Fily), — ¢2F1 T, (K2) K, (5.5)

q2

Proof. By Lemma 1.1, [BY, Fil,, = [F, F1],,, and RHS (5.5) is simplified as follows:

[i'w-(Bg)v [Bg7 Fl]qz}(p = [i'w-(Bg)v [F27 Fl]Qz}QQ

= [(‘Tw.(F2>’ [FQv Fl]qz},p + [E2('Tw-(K2)’ [F27 Fl]lh}

q2

= [Tuu(F2), [Fo, Filg,] | + 62 F1 T, (o) K3, (5.6)
On the other hand, by a direct computation using Proposition 4.2, we have

T (F) = T3 T, ([P, Filg,)

= [‘}51§£1(F2)7[F2,F1]q2}

q2

= [T0(F2), [Fo, Fil] - (5.7)

The desired formula (5.5) follows from (5.6)~(5.7) by noting that T, (Fy) = Ty, (F2).
O

Note that ¢; = ¢ in all three types.
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Lemma 5.3. We have

T BK) = [T, (Ba), (B, ErKly,] = 2 E1 K| T, (Ko) K3, (5.8)

Proof. We shall establish the identity (5.8) by applying the operator D := Ty, T, to
(5.5) as follows.

Recall K; € U from (3.23). By the formula (4.17) in Theorem 4.14 and noting
(g, weatz2) = 0 in each of the three types, we have ‘3';21(85) = —5’5,.(33)/651, or

equivalently,

T, (ByKs = —T2(BS). (5.9)

By Lemma 4.4, we have ‘j'wO(Bg) = Tu..(B7). Hence, applying T,, to both sides of

(5.9) we obtain

Bgfrz (’CZ2) - _Tw-Tw.,2 (Bg> - _Tw-j'wo (Bg) (5-10)

Moreover, by Lemma 4.4, we have D(Fy) = —K;'E, = —¢s 2B, K!k;". Note also
that D commutes with both T, and ‘AJ:m. Hence, by applying D to (5.5) and then

using (5.10), we have

T BK) Ty (5) = [T (Be) T (0C), [BoTo (), By ]

— B K1k ' T, D(K). (5.11)

For weight reason, (5.11) is simplified as

T (B1K7) Ty (k1) = @2° [Twa (Bz), [Bay By K1 g ] Tuwe o (Ko) Tey (Ka)ky!

qo " We.2
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— B K kT Ty (ko) Koy (5.12)

By definition (3.23), we have Ky = ks K, ; in addition, by (4.10), K] is

We X2 —Q2? We X2 — (X2

fixed by iQ. We also have ‘J'w_g(ng) = ¢, 2K;'. Hence, (5.12) is further simplified

as

7;1(E1K1>§r2 (flgl_l) = [ﬁwo(BQL [B27 ElKi]%] 7{;2_1(311‘2 (%2)7;1_1

— BV K Ko (o) Kk Ty (R ) ey L (5.13)
Finally, by Lemma 4.10, we have 5}2 (k7Y) = ki 112 (k2)k; ", and then the identity
(5.13) can be transformed into an equivalent form (5.8). O

Proposition 5.4. The following element
T}, _(B1) = [Tu.(B2), [Bs, Bilgy] , — 2B1T0, (K2) € U' (5.14)

satisfies the intertwining relation Té,il(Bl)Tg TQT Y(BY) (i.e., (4.6), fori =2,z =
By).

Proof. The intertwining relation follows by the following computation:

1.7 (B)T5!
_Tz(ir (F) + T (EVK)) T3t
TN, + T EBKY)

5.5)

- TQ([(j/’w.(Bg)v [Bga Fl]qz] @ - QQFI(}w. (KQ)K5>T2_1 + 5’1;1<E1K1)

—

—

;) [§w. (BQ) [BQJ Fl](m} - QZFlrIw.<K2)K/ + rI (ElKi)

(5.8)

= [Tuu(Ba), [Bz,Fl]qz] — 1T, (Ko) K
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+ ﬁw.(BQ)y B, ElKi]qQ]qZ - Q2E1Ki‘}w.(K2)K§

= [Tuu(B2), [B2, Bilg,] , — @ B1Tu, (K2) K} = Ty (By),

where the equality (*) follows from Theorem 3.6 and Lemma 5.1. O

5.3 Formulation for ’i‘;,_l(Bj)

Table 2: Rank two Satake diagrams

SP Satake diagrams RS SP Satake diagrams RS
2 2 ? v SIS ?
CI o9 C CII P —cu—-y ) C
2 1 2 2 4 1 2 3 4 2
GQ ofE——o G2 EIV 1 2 6 3 4 5 A2
1 2
Bl, | o o e  e—e | By | Alll & 7 Cy
1 2 3 n 1 2 3
A
DI, o B, || AIIL, ey BC
T 2 3 ’<: : R S ?
DIIL, C, | DIII, 4} - BC,
1 2 1 2 3
5
AIL — o e o e A, | EII L T o BC,
T2 %3413 12 345

(SP=symmetric pair, RS=relative root system)

Theorem 5.5. The elements T;,_I(Bj) € U listed in Table 3 satisfy the following

intertwining relation (see (4.6)):

T;,fl(Bj)Ti = Tij’;i,A(Bj)- (515)

We clarify a few points regarding Table 3 in the following remarks.
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Remark 5.6. Recall that T, (s € I,) restrict to automorphisms on U by Proposi-
tion 4.5; hence, the use of T, (s € I,) in the formulas of ’T‘§7_1(Bj) is legitimate; see

(4.5).

Remark 5.7. Let p be a diagram involution on the underlying Dynkin diagram (p
is not necessarily equal to 7). By the intertwining relation (4.6), the formula of
T/

hi—1(By;) can be obtained from ’T‘;_l(Bj) via

’i"pi7_1 (By;) = P(Tg,—l(Bj)) :

In particular, when p = 7, we have 'ﬁf‘;’fl(BTj) = ?('ﬁf‘;ﬁl(Bj)) by Remark 4.8. Ac-
cordingly, only one formula of T;i7_1(Bpj) and r’Iﬁ;,_I(Bj) is included in the table; see
types Alls, EIV, and all types with 7 # Id.

Remark 5.8. The formulas of T;7_1(Bj) only depends on the subdiagram generated
by vertices i, 7, j and the component of black nodes which is connected to either i
or 7¢. For example, the formula for ’i"27_1(B4) in type DIII; is formally identical to

the formula for 'T’Q,_I(B4) in type All;. (Note that such a subdiagram may not be a

Satake subdiagram as the vertex 75 is not included.)

Recall U* is defined over an extension field F of Q(q). Denote
QINJZ .= Q(q)-subalgebra of U’ generated by By, ki, x for i € I,,z € G,.  (5.16)

Proposition 5.9. The symmetries Ta_l (i € I,) preserve the Q(q)-algebra QINJ”.

Proof. This follows by the formula for ’i‘;_l acting on the Cartan part in Proposi-
tion 4.11 (see Lemma 4.12), the rank one formulas in (4.17), and the rank 2 formulas

in Table 3. []
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Remark 5.10. It would cause no difficulty if we have replaced U (over F) by Qﬁ"
over Q(q) throughout the dissertation. We need to work with U over Q(q2) in several
places. The results for U will be valid over Q(gq), while some results over U, for ¢

over Q(q), are valid over Q(q?).

5.4 Proof of Theorem 5.5

Proposition 5.11. Let i # j € L., be such that j & {i,7i}. Then there exists a

non-commutative polynomial R;j(x;, Tri, Yi, Yri, 2; gN.), which 1s linear in z, such that

1. TN(Fy) = Ry;(BY, B, Ki, Kriy Fi; Ga);

r; T1)

2. :j:r_il(%w. (ETJ)K,) = RU<B“ BTi7 ]Ci, ICTi’ :j:w. (ET])K;, g.)

J

Remark 5.12. In case 7¢ = ¢, the polynomials R;; depend only on x;,y;, 2 and G.. In
this case, it is understood in Proposition 5.11 that R;;(x;, T+, ¥i, Yri, 2; Gv.) is replaced

by Rij(zi,yi, 2; 5.) (which is linear in z), and R;;(BY, BZ;, KCi, K+, Fj; g~.) is replaced

)

by Ri;j(BY, Ky, Fj; G.), and so on.
The proof of Proposition 5.11 will be carried out through type-by-type computa-
tion in Appendix A.

We define

N Rij(Bi,’Ci,Bj;g.>, le :Ti,
T} _1(B)) = - (5.17)
Rij(Bi, Bri, Ki, Kyi, Bj; Ga)  if @ # 7.
Clearly, we have T;’_I(Bj) € U*; see Table 3.

The polynomials R;; in all types can be read off from Table 3. For instance, in
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type All; it reads as follows:
Rij(z,y.2Gs) = [[=, By, 2] .

In order to read R;; off from Table 3, one first needs to unravel ‘j'w, for w € W,,

appearing in those formulas in terms of Fj, F}, K;, K7, j € L.

Proof of Theorem 5.5. We start with a general comment. Originally, we computed
the explicit formulas in Table 3 type by type; see §5.2 for examples in types BI,
DI, and DIIl;. In the process, we observed that parts of the arguments can be
streamlined a uniform formulation in Proposition 5.11, even though its proof requires
quite some computations. We hope this uniform formulation helps to conceptualize

the structures of the formulas for 5';1_ L(B;).

We now prove Theorem 5.5 using Proposition 5.11. Recall by Theorem 3.6 that
'Y’Z-Bf:f;l = B, and Tix:f;l = 7 for x € UYU,.

For definiteness, let us assume that ¢ # 7i. (The case when i = 74 is similar using
the interpretation of notation in Remark 5.12.) By Lemma 5.1, Proposition 5.11 and
definition of Tg,—l(Bj) in (5.17), we have

YT NE) + 1T (Tw (B) KD

i

1,7, (B))

I
=l

T () + T T (B ) Y,

Y, Ri;(BY, B2, Ki, Kri, Fy; é.) + Rij(By, B, Ki, Kr, (}w.(Erj)KJI-; §o>fl

T

Rij(By, Bri, Ki, Kri, Fyi Go)Yi + Rij(Biy Briy K, Kty T (Brj) K Ga) T

Rij (B”M Bn’; K:i7 ’CTiJ B]a ,gvo>:fz = Tg},l(Bj)Ti,

where the second last step follows form the linearity of R;; in its fifth component.
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This proves the desired identity (5.15), whence the theorem. O

Conjecture 5.13. For U of Kac-Moody type, Proposition 5.11 remains valid.

Assume Conjecture 5.13 holds. Then 'AI/‘;,fl(Bj) € U* defined in (5.17) satisfies
the intertwining relation (5.15), and hence, ’AIV‘;_l is a symmetry of U* of Kac-Moody

type.

5.5 A comparison with earlier results

We compare our formulas with some special cases obtained in the literature.

By choosing a reduced expression of w,, we can write out the formula (4.17)
explicitly for rank one Satake diagrams in Table 1. We list some explicit formu-
las of 'T;y_l(Bi) and compare them with braid group actions obtained earlier in
[LW21a],[Dob20],[KP11]. (The index i is specified in each case.) In some rank 2
cases, our formulas differ from those in [LW21a] and they can be matched by some
twisting. As noted in [LW21a, Remark 7.4], the formulas for braid operators in [KP11]

may involve /v and are related to those in [LW21a] by some other twisting.

Type Al

We shall label the single white node in rank 1 type Al by 1. In this case, the formula
(4.17) reads as follows:

T, \(B1) =—q Bk = —¢ *Bik; - (5.18)

2

Note also that ¢, = —¢°. Applying the central reduction 7 to (5.18), we have

Ty o(B1) = By € U.. Our formula (5.18) of 'AIV"Lfl(BI) coincides with the formula

73



T;'(B;) in [LW2la, Lemma 5.1]. Our formulation of Ty (Bi) coincides with the

(2

formula 7,7 !(B;) given in [KP11, (3.1)] for (U, U, ).

Type Allg

The rank 1 Satake diagram of type All is given by

o —O——0

1 2 3

By Table 1, ry = s9132, and the formula (4.17) reads as follows

T/2,71<BQ) = _q72<q - qil)z [[327 F3]qa Fl] qESEl/]%/;l

+ (¢ — ¢ ") ([B2, F3]gK1 B3 + [Ba, Fi K3 B ) ky ' — ¢ Boa K Kok

Type AIIl;

The AIIl;; Satake diagram is given by

In this case, the formula (4.17) reads as ’AIJ"L_l(Bl) = —B,K; ' = —Byky .

Type AIIIH

The rank 1 AIV Satake diagram is given by

T
1 2 n—1 n
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In this case, the formula (4.17) reads as ’AIV"LA(BI) = —q‘izu.(Bl)lel [T.. K7

j€ls J
Remark 5.14. For type AIV, Dobson [Dob20, Theorem 3.4] obtained a different au-
tomorphism 7; on UL such that T, YB)) = ¢B1kn Ky, | —w,. Here w; are the funda-

mental weights and k; is denoted by L; loc. cit.

Split type

The formulas of ’T‘;7_1(Bj) in the split types Al,, CI; and G, are identical to the braid

group operators obtained using the ¢Hall algebra approach, cf. [LW21la, Lemma 5.1].

Formulas on UZQ

Applying central reductions and isomorphisms ¢¢ : Uy = U (see §14.4 below) to
our formulas, we recover various formulas obtained for UL in [KP11] in split types

and type AIl.

6 New symmetries T/, on U’

In this section, we introduce new symmetries ’T‘;’ 41 on [NJ’, for i € I,, via a new
intertwining property using the quasi K-matrix, and establish explicit formulas of
’I‘;’ 41 acting on the generators of U*. Then we show that 'f‘;ﬁl and ’I‘;’ 41 are mutual
inverses. (This in particular completes the proof of Theorem 4.7 that ’AIV‘§7_1 is an

automorphism.)
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6.1 Characterization of TZH

We formulate T;’ 41 below, as a variant of Tg_l introduced in Theorem 4.7.

Theorem 6.1. Let i € 1.

1. For any x € U, there is a unique element ' € U" such that x”ii(:f;l) =

T, (Y7 T ().

(2

2. The map x — " defines an automorphism of the algebra U, denoted by ’T;’H

The strategy of proving Theorem 6.1 is largely parallel to that of Theorem 4.7
given in the previous sections. We shall prove Theorem 6.1(1) and a weaker version of
Part (2) that « — 2" defines an endomorphism 'f‘;’  of the algebra U, by combining
Proposition 6.2, Proposition 6.3, and Theorem 6.6. Finally, we show that 'f‘;’ 4118 an

automorphism of U' in Theorem 6.7.

Hence ’T‘f 4 satisfies the following intertwining relation:

’T‘;’+1(x)‘j'r(f_1) = ‘E]V'ri(T-_lﬁ}i (), forallxe U (6.1)

7

6.2 Action of T/, on UU,

Just as for Proposition 4.11, we can prove the following.

Proposition 6.2. Let « € [,. For each x € ﬁloﬁ., there exists a unique el-

ement T;'H(x) e U™U, such that the intertwining relation Tg’+1(x)§rl(fl—1) =

‘AJ:I.Z,(T?I)‘J}Z.(JJ) holds; see (6.1). More explicitly,

(2

T/ () = Fogo7)(w), T/ (kjo) = Kriay o forue U, and j € L.
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It follows by Proposition 4.11 and Proposition 6.2 that T, ,, T/

T+l
i1, Ti4q, and T co-

incide on UU,. In particular, we have

’T‘;’+1(x) = (c'o T;,—1 oc')(x), for z € UU,,. (6.2)

6.3 Rank one formula for N;’ 1(By)

We shall establish a uniform formula for T;’ 11(By), for i € I, a counterpart of Theo-

rem 4.14. Recall the anti-involution o of U* from Proposition 3.12.

Proposition 6.3. Let i € I,. There exists a unique element T;/+1(BZ) e U which

satisfies the following intertwining relation (see (6.1))

T/ 1 (B) Tei(T0) ™ = T (T2) 7 T (By). (6.3)

More explicitly, we have

T/ (B) = —¢ T 2By, )T, (K2L0). (6.4)

In particular, we have ’f‘;’+1(Bl) =(o'o Tg,l)(BZ)

Proof. By Theorem 3.6, we have BT = TBf , which can be rewritten as

ﬁdrz(TZ)‘j:rz(BzU) = 5'“(31)5}1(?2) (65)
Hence, by comparing (6.3) and (6.5) and then applying (2.14), we obtain that

T/ ,1(By) = T0,(BY) = (00T, )(B)). (6.6)
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We now convert the formula (6.6) to the desired formula (6.4) for Tg’ +1(By),
which particularly shows that ’T‘;’ (By) € U'. To that end, note that o(Kr, i) =
‘}w. (K.i), by Proposition 2.3 and definition (3.23) of KC;. Applying ¢ to the identity

‘i‘il(Bi) = —q_(‘”’wﬂﬂ)ﬂﬁ}.(B;’.ym)lC;.li in (4.16) and using (6.6), we have estab-

T

lished the formula (6.4) for T‘;’H(Bz)

It remains to show that T;’+1(Bl) = (0'o Tgfl)(Bz) Since 0" satisfies (3.24), we

have, for i € I,

It follows by definition (3.23) of C; that UZ(IC:W») = ‘J'w,(IC:ii).

Moreover, by Proposition 4.6, Ady commutes with (}j for j € I,. By (3.25),

o' = AdT o o and hence we have
J"j:w. =Adgooo ‘j'w. = %;1 oAdjoo = ‘AJ:;.IUZ.

Using the formula (4.17) for 'AIV‘afl(Bi) and the formula (6.4) for 'f‘;’ +1(B;), we compute

(0" o T}

1,—

1)(31) — _q—(ai,w.an‘)o.z(lc—l )0'“}3,.(37-.,1-71')

Te,iTt

= _q_(ai’ai)§_2(BT.,iTi>Tw. (IC—l ) — ’T;,,—l—l(Bl)

We T.‘ii

This completes the proof of the proposition. O

6.4 Rank two formulas for N;’ +1(Bj)

The next lemma is a reformulation of Lemma 5.1.
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Lemma 6.4. We have
(1) ﬁ'rz(]?]) commutes with Ty, (;).
(2) ‘j'w.(ETj)K} commutes with Ty, (Y;).
Introduce a shorthand notation
By = T, (T, _y(By)). (6.7)
We reformulate the intertwining relation (5.15) as
B;-7,,(T;) = T7,,(T:) - B. (6.8)

Proposition 6.5. Let i # j € L, be such that j & {i,7i}. Then there exists a

non-commutative polynomial Pij(z;, T+, Yi, Yri, 2 §.), which is linear in z, such that

1. T,,(F}) = P(Bi, By, ki, kri, Fy; G,

,((-Tw.(ET])KJI) - P(B\iaéﬂakivk’ria(‘Tw.(ETj)KJ/‘;go)-

e
“

The proof of Proposition 6.5 is carried out through a type-by-type computation

similar to Appendix A and will be postponed to Appendix B.

We set
~;/:+1(Bj) = P(Bz,BTw%la/];TlaBﬁg') (69)

Clearly, we have ’f‘;:+1(Bj) e U
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Theorem 6.6. Leti # j € I, ;. The elements ’f;ﬁ+1(Bj) listed in Table 4 satisfy the

following intertwining relation (see (6.1))

T/ 1 (B) T (Yo) ™' = 70, (T) 71T (By). (6.10)

k3

Proof. Recall B; = F; + ‘j'w.(ETj)KJ’~. By Lemma 6.4, (6.8) and (6.9), we have

gl"i(:fi)_l ’ :JV‘I'Z(BJ') ’ %rl(:fl)

(T (Tea(B) + T, (T () ) ) T, (T)

I
S

= T (1)) T, (F) T (Ti) + T () 7T, (Tuwa (B ) K) T, (1)
:P(B’L'vBThEZ')ETZ) go)_l'P(B B‘rzak kTH‘I ( ])KJI7§0)
= P(BiaBTh%i)%Tth;fg:)

= T;/—‘rl (Bj)>

the linearity of the polynomial P with respect to the fifth variable is used in the last
step. This proves the desired intertwining property (6.10) and whence the theorem.
O

6.5 T, 6 and T/ __ as inverses

Recall the automorphisms ’f‘;ﬁl € Aut(U") by Theorem 4.7. Recalling the bar involu-
tion ¢* on U* from Proposition 3.4, we define two more automorphisms ’T‘;’ LT 1 €

Aut(U") via

T/ =¢'oT/ oy, T, :=¢'oT, oy (6.11)
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Recall that Lusztig’s symmetries Ti’ﬁ and ,Tvi’ffe are mutually inverses, fori € I, e =
+1; see [Lus93, 37.1.2]. They in addition satisfy the relation i‘/,—1 =00 i‘/,/+1 o0; see

(2.14). We shall prove the following z-analog.

. are mutually inverse automorphisms on U, for e =

Theorem 6.7. 'T‘;e and ’f‘fL’_

+1,7 € I,. Moreover, we have
'i‘;e =og'o T;’ﬁe oo (6.12)

Proof. By definition (6.11), 'f‘;’ﬁl = W'TZHW, and 'AI/‘;’H = W'AI/‘;’AW. Hence, it

suffices to show that ’T‘;’_l and ’T‘;’ 41 are mutually inverses.

We already knew that ’f‘;_l : U — Utis an injective endomorphism. Let us now

prove that this endomorphism Tg,,l is surjective. More precisely, we shall show that
Claim. For any z € U, set y := T;’H(z) Then we have z = T;,—1(y)~

Let us prove the Claim. The identity (6.1) reads in our setting as y"* 5}(?; h =
T, (Y71 Te,(2). Applying i‘il to both sides of this identity, we obtain ﬁal(y’)flfl =

T;lz, which can be rewritten as zT; = Tﬁ';zl(yl) By (4.6) and the uniqueness in

Theorem 4.7(1), we conclude that z = 'f‘;fl(y)

By an entirely similar argument as above (switching the role of 'T‘;,_l and T;/ +1)
and using the uniqueness in Theorem 6.1(1), we show that, for any y; € fj’, we have

Yy = ’T‘;:+1(z1), where z; := T;,_1(y1)-

Hence T _; and T}, are mutually inverses. As T;_; is an endomorphism, we

see that both Tg,,l and 'f‘;’ 41 are automorphisms of U

Recall the anti-involuton ¢* on U* from Proposition 3.12. It remains to prove that

T‘ZH =o'o T§7_1 o ¢". This follows from the identity (6.2), the identity T;’+1(BZ) =
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(004 _,)(B;) from Proposition 6.3, and T, (B;) = (¢"0T,_,)(B), fori # j € L,
the last identity follows by comparing the rank 2 formulas for ’T‘;’_l(Bj) in Table 3
and for ’f;erl(Bj) in Table 4. O

In particular, Theorem 6.7 above completes the proof of Theorem 4.7 that ’i‘;ﬁl

are automorphisms of U*. From now on, thanks to Theorem 6.7, we shall denote

o -1 . v
T,:=T/, T':=T,_,.
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Table 3: Rank two formulas for ’i‘g’_l(Bj) (i#j5€el,)

Rank two Satake diagrams

Formulas for T;,q (B;)

Al o—0

T/l,fl(BQ) = [Bla BQ]q

1 2
Cl, g3 T, 1(By) = g [B1, [B1, Balyg] — ¢t BoK
T _ 1 .
G, oE=—=g T2 (B) = g | B, (BB Bl |

— g (a(L + BBy, Bols + ¢*[3][By, Bl ) b

o—0—0— - --—e—0
12 3B, n>3"

T) _1(B1) = [Tu.(B2). [Ba, Bilg,), — 42B1T 0, (K2)

q2

T2 3
DL, n>5

Ty _1(B1) = [Tu(B2), B, Bily], — aBi T, (K2)

DITI,

Ty _1(B1) = [Tu(Ba), [Bo. Bily], — aBi T, (K2)

*e—0O0—e—O0O—@
Al 5% 98

T, _(Bs) = [T3(By), Bal,

e O o O e --—
Y S T S
CIL,,n>5

Ty 1(B2) = [[To.n5(B1), To(Ba)las, Bo]
—q2T5 % (Ba)Tscp5(Ka)

q2

N T, 1(Ba) = [[Bs, By Bo]
T, _,(By) = [T3(Bs), [T3(Ba), 34}3.3]
— (g3 — g3 ")[F3, Ba] g Br T3 (Ko ) K17

EV T2 B 13 T} _1(Bs) = [T TsT2(B1), Bs),
e TN -
Alll; % 2 3 T, (By) = [337 (B, Bﬂq]q — qB2K3
//Lx T, _(By) = By, B,
T 9 3 77220 0| To (B1) = [Tu(Baa), [Bs, Bﬂq]q — BTy, (Kn1)
Alll,,n >4
DH%], o 457 T)_,(B1) = [T3(B2), Bdl,
5 Til.fl(B2) = [B4> [‘I5(B5)a BQ]Q}q - 73_2(B2)IC4
RS T, 1(B)) = [Tos(Bs), Bil,
EIIT ~ ~ -
12 B 45 T} _1(Bs) = [Tu(Bs), [732~(B1),Be]q}q
6 —Tis03(Bs) T4(Ks)
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Table 4: Rank two formulas for ’TZH(BJ-) (i#j5€el,)

Rank two Satake diagrams

Formulas for ’T‘ZH(BJ-)

Al o—o0

TY,H(BZ) = [B27 Bl}q

- Q%B2}C1

T/ ..(Bs) = g [[B2, Bilg, Bi]

T 1(B2) = g | (1B, Bilyg Bl]ql,Bl}q,l
—gr(@ (L + [3]1)[Ba, Bilgg + ¢i[311[Ba, Bil 1) ka

o—0—@ -

Tg,+1(Bl):[[BlvBQ] T, (32)] — @Bk,

1 2 3B1nn>3n 27 Y we
I B T\ (B1) = [[B, Baly, Tpl(Ba)], — aBiKs
3 o~
DHL 93, T4 ,\(B)) = [[By, Boly. ToM(By)], — 4Bk
e O e O e = =
All, 5% 93 T} 1(Bs) = [B2, T35 (Ba)lg
- S e T} 1(B) = [Bo. (T3 (Ba), T3 L5 (B,
CIL,,n>5 BT3(Bs)T5(K4)
" TZ,Jrl(BQ) [B27 [F3a B4]q4]
CIL, o T4 1 (By) = [[B1, 5" (B2)) 2. T3 (Bz)]
—(g3 — a3 1)[347 By p Ao KT
BV T B s T (Bs) = [B5. T4 ' T3 195 (BY)],,
m
Al 97787§ T} 1(B) = [[Bz, Bily, B], — aBaK
//% T/ ,1(B2) = [Bs, Bil,
1 2 3 ~ n-1n T5 ., (By) = [[B, By, Tyl (Bn—l)]q — K2By
AIIL, n > 4
DIII, I—§—§<§§ T N T/2/+1(B4) [B4,‘T Y(By)], B
s T ,1(Ba) = [[Bza%_ (BB)}q7B4]q — qT3(By)T5(Ks)
T ~ ~ e
BIIT — Tg,+1(Bl) = [B1,7, 173 1(B6)L1
12,34 5 T{ 1(Bs) = [[Be, T3 T3 (B1)lg, T1 ' (Bs)],,

—qT 32393 (BG)TSW. (/C1)
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Part 11

Relative braid group symmetries

for Kac-Moody type
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: . T T/
7 Construction of symmetries T; |, T}

We construct relative braid group symmetries on :quantum groups U of Kac-Moody
type in Theorem 7.1, generalizing the finite-type construction in Part I. The higher
rank formulas of these symmetries are presented in § 7.2, whose proofs occupy the

coming sections.

7.1 Main Theorem

Let (I = I, UL,, 7) be a symmetric pair of Kac-Moody type. We shall construct relative

braid group symmetries associated to the following three types vertices ¢ € L, ,

(i) i =7i = wai,
(11) Ciri = O,Z = w.z’,

(111) Ciri = —1,’L = U}.Z'.

Let 6o = (S.)ier, be the distinguished parameters such that

ot = _q*(ai,aﬂrw.aﬂ)/?. (71)

)

We extend ¢, to an I-tuple of scalars by setting ¢, ; = 1 for j € I,.

The definition (4.3) of rescaled braid group symmetries ‘i” 1 Ji o on U can be
easily generalized to the Kac-Moody type. We still use the short notations ‘}Z for

an T-1 _
Ji 41, and hence T, =T, ;.

The rank one quasi K-matrices T, fori € I, ; are defined to be the quasi K-matrix

associated to the (finite-type) rank one subdiagram (I,; = {i,7i} UL, 7|r, ).
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Theorem 7.1. Let i € I, . be a vertex of type (i)-(iii).

(1) For any x € U, there exists an element 2’ € U* such that

Moreover, the map x +— 2’ is an automorphism of fj’, denoted by T;ﬁl.

(2) For any = € U, there exists an element 2 € U* such that

T (X)) ™ = T (T) 7' T7 44 (2). (7.3)

Moreover, the map x — x” is an automorphism of U, denoted by T‘;’H
(8) Automorphisms ;Iv‘;_l and ’I’ZH are mutually inverses and they satisfy ’i‘;_l =
o'o 'f‘;fH oo
Remark 7.2. 1t is worth noting that, when the symmetric pair is of quasi-split type

(i.e., I, = @), every vertex i € I, . belongs to one of the three types (i)-(iii).

Using the bar involution ¢* on U* (see Proposition 3.4), we define other two
variants of the symmetries

'AIV‘;H =10 'ﬁf‘;’fl o1’ TZ& =1'o TZH o). (7.4)

In order to prove Theorem 7.1, it suffices to construct elements ’i‘;ﬁl(x), 'T;’ 11(2)

satisfying (7.2)-(7.3) for each generator x of U'. For z € U"U,, the elements

'AI/‘;_I(x), 'f"/ 41(2) are obtained in the same way as the finite-type case in Proposi-

tion 4.11. For x = B;, B,;, the rank one formulas and their proofs in Theorem 4.14
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remain valid in the Kac-Moody setting. We will provide the construction of elements

T _4(By), ’T;f+1(Bj) € U for j # 1,71 in the next subsection.

2,

7.2 Higher rank formulas for new symmetries

We sketch the proof of the existence of 2/, 2" in Theorem 7.1 for x = B;,j #i,7i,j €

I, in this subsection. We need to find elements T;7_1(Bj), ’TZH(BJ’) € U such that

T, (B)Y; = T.T%. _,(B;), (7.5)

T/ (B) T, (Y) ™ = T0 (T) 7' TL 1 (By). (7.6)

7

The proofs depend on which of types (i)-(iii) the vertex i € L, belongs to. We will

construct root vectors in U for each of these three types in Sections 8-10:

(i) For i = 7i = w,i, we define root vectors b; j.m,, b e U for m > 0 in Defini-

tion 8.1-8.2.

(ii) For ¢iry = 0,4 = wsi, we define root vectors birijim,my»0irijumym, € U’ i
Definition 9.6-9.7.

(iii) For ¢; -y = —1,i = w.i, we define root vectors birijabe birijape € U’ in

Definition 10.6-10.7.

It turns out that the desired elements T;_I(Bj), TZJFI(Bj) are given by these root

vectors, as formulated in the Theorem 7.3 below.

For type (i), the :divided powers were formulated in [CLW21], generalizing [BW18a,

BeW18]. We recall definitions loc. cit. of idivided powers BZ-(g) e U for m >0,p e
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727 as follows

,
o _ LB 15, (B? — gikil2r]?),  if m =2k +1,
0 Im),! ~
il 15—y (B? — qiki[2r — 212),  if m = 2k;
; (7.7)
pon _ 1 JBID(BE—aklr =1, ifm=2k+1
s [m)y! -
il Hﬁ:l(BiQ — qiki[2r — 1]?), if m = 2k.
\

For type (ii)-(iii), the «divided powers are the same as usual divided powers

B — B
' [m];!

These 1divided powers have appeared in conjectural formulas for relative braid group
actions cf. [CLW21, Conjecture 6.5] for type (i) and in [CLW23, Conjecture 3.7
for type (ii). These conjectures were confirmed via Hall algebras in [LW22a] under
assumptions that I, = @ and ¢;.; are even for all j € I. We shall prove these

conjectures in full generality in Theorem 7.3(i)(ii) respectively.

Theorem 7.3. Leti €L, .,j € L, such that j # i,7i. Write o = —c¢;j, 8 = —crij.

(i) If i = Ti = w.i, then the element ’AIV‘;ﬁl(Bj) = bij.a satisfies (7.5) and the

element TZH(Bj) :=b, .., satisfies (7.6). Explicitly, we have

T (B)=)_ >, (V"B BBk (78)

u>0 T+S+2”LL @

T;/Jrl 2 : } : r+u r+2uB(r)B Bz(i)Jrak;L‘ (7.9)
u>0 r+s+2u=a
T=p

(i1) If ¢;-i = 0,1 = wei, then the element 'AI/‘;’fl(Bj) = bjrijiap Satisfies (7.5) and
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the element ’AIV‘;’,H(BJ') =0, 1 i.0p Satisfies (7.6). Explicitly, we have

=1,7%,7;%,

N min(a,B) a—u B—u ) 1
T (B = (—ay g
u=0 r=0 s=0
v BZ.(C“”"“)B(@’S*”)BjB(§)B(T)%?, (7.10)
min(a,B) a—u B—u Dt
~ rdsdtu r(—u+1l)+s(u
T/ (B) = D YDyt
u=0 r=0 s=0
x kB B B; B~ glar—u) (7.11)

(11i) If ¢;ri = —1,1 = wei, then the element 'AIV‘;-ﬁl(Bj) = bi i j:B.A+aa Satisfies (7.5)

and the element Tz+1(B ) = bi1ijp.5raa Satisfies (7.6). Explicitly, we have

—v f+a—v—u a—u
T/ t+v+r+s+u t(—2v+1)+r(ut+1)+s(v—2ut+1)+uv
i, 71 4;
u,v>0 t=0 s=0 r= 0
_u(u=Dtv(v=1)

X q; = ot glathvmums) glacu=r g g glepu gy,

(7.12)

B—v ft+a—v—u a—u
T” = _])ttotrtstu t(—2v+1)+r(u+1)+s(v—2u+1)+uv
i +1 = Z ) a4
u,v>0 t=0 s=0 r= 0
wfv
X g; k°. B(t e B Bi(r) B Bi(a—u—T) Bf_?-l-ﬁ—v—u—s) Bi(ﬁ_v_t)-
(7.13)

Proof. We only outline the proof here; details will be included in later Sections 8-
10. The first statements in (i)-(iii) are respectively proved in Theorem 8.11, Theo-
rem 9.17, and Theorem 10.14. The explicit formulas in (i) are obtained by special-
izing 1divided power formulations for b; ;.,, b, ... in Proposition 8.6 at m = a. The

2,75 Z1,95m

explicit formulas in (ii) are obtained by specializing tdivided power formulations for

b

i gimamas Ui ri jomy m, 10 PTOpOSition 9.11 at my = a, my = . The explicit formulas
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in (iii) are obtained by specializing «divided power formulations for b; i jiab.c; 0; ri .abe

in Theorem 10.16 at a = 8, b=a + 3,¢c = a. O

Remark 7.4. In [LW22a, Theorem 6.10-6.11], Lu-Wang formulated four (relative)

/
i,e)

braid group symmetries T; , T}, on U for ¢iri = 0. In fact, our symmetries can be

related to theirs via a rescaling automorphism ® on f)’l, which sends

O : B'L — _qnghB‘ri — BTi? 7€/z = _qflki7 E‘ri — _q;lkTiv

and fixes Bj,%j if j #4,71.

One can then show that T} | = (I>”Iv‘;7_1<l>*1 and T} ,, = <I>"IV‘;”+1®*1.

8 Higher rank formulas for 7i =i = w,i

We fix an ¢ € I, such that 7¢ = ¢ = w,¢ in this section. In this case, B, =

-Fi + EZKZ/,%Z = KzKZ/, and r, =s;.

We define root vectors b; j.m, b; ;.. € U for j € I,,j # i in Definitions 8.1-8.2 via

recursive relations. The idivided power formulations for these elements are obtained
in Proposition 8.6. We show that b; ;. b provide the higher rank formulas for

—Cijr 24,J5—Cij

T‘;7_1(Bj), ’T‘;:Jrl(Bj) in Theorem 8.11 and complete the proof for Theorem 7.3(i).

8.1 Definitions of root vectors

Note that, in this case, ¢;; = ¢; ;.

Definition 8.1. Let j € I,,j # i. Define b, be the elements in U defined recur-

,7;,m
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sively for m > —1 as follows

b;j'O = Fja bjg 0 — Tw.(ETj)KJ/‘a bj,[] 1 =0,
—4q; | (corzm) b;t]mB +Bb?:jm
=[m 4+ 10bE 0 + ey —m+ g "0k, m >0, (8.1)

+ b,

Set b jim = b; . + b7, Since b; 50 = Bj € U, one can recursively show that

bijim € U for any m > —1.
Definition 8.2. Let j € I, 5 # i. Define bjt] ., be the elements in U defined recur-

sively for m > —1 as follows

o= Fj, b

=75 0 _Zvj;o

=T (B )KL, b5, =0,

— g TP ppE L pE B

i Zi,5;m Z4,5;m

2m— c13+2bi
~Z1,7;m—1

=[m + 1]ib; ji1 + [—cij — m + 1]iq; ks, m > 0. (8.2)

Set b jom = bijm + b3 e U for any

bijom + b - One can recursively show that b,

2] 51

m > —1.
Recall the anti-involution o* on U* from Proposition 3.12.

Proposition 8.3. Let j € L,,j #i. Then b, .., = 0"(bi jym) for m > 0.

Zi,5;m

Proof. The recursive relation (8.1) implies that o*(b; j.,) satisfies the same rela-
tion (8.2) as b, ;.,. Since b; ;o = Bj = 0'(bijo), this proposition follows by in-

duction. O
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Lemma 8.4. We have, form >0,,j € I,,j # 1,

b = o (170, ). (8.3)

Zi,5;m i i,gm
Proof. Consider the subalgebra U of U generated by B;, kz, F;. Tt is clear from the
above definitions that b; ;... b; ., € U ;- By Theorem 3.6 and Lemma 5.1, there is

a well-defined anti-automorphism o;; on U[;,j], which is given by
Ojj + X +— U(T;IZETZ').

Moreover, o;; fixes B;, F],E Applying o;; to (8.1), it is clear that o;;(b satisfies

z]m)

the same recursive relation as b;;.,,. Then the desired identity follows by induction.

[]

Remark 8.5. One can also formulate the relation between b;;.,., b;..,,. However, it is
much more complicated than (8.3) and hard to prove directly. We do not need the
relation between b b in this dissertation. The situation is similar when the

Zi,7;m> Yi,5;m

vertex 1 is of type (ii)-(iii).

8.2 An divided power formulation

In [CLW21, §6.1], elements ¥; ;.. mpies ¥, immpie I U* were defined via tdivided
powers. Comparing Definition 8.1 and [CLW21, Theorem 6.2], it is clear that our
bijsm (resp. b; ) and their i - 5 (resp. Ui j1mpr1) satisfy the same recursive
relations, which implies that

b =1 b =T (m>0,5,7€Z/2Z).  (84)

yzvj;l,m,pvtyl’ =%,J;m Yiji1,mpt1
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We thus obtained :divided power formulations for b; j.m, b; ;.,, in the next proposition,

by specializing idivided power formulas of y; ;., ;57 yl] mmpie M= l,e=1.

Proposition 8.6. Let i € I, ;,j € I, such that 7i =i = w,i, j # i.

(1) The element b; j.,, in Definition 8.1 admits an idivided power formulation: for

m —+ Cij Odd,
m—l—cij—l
T \u r —(m4cij)(r+u)+r 2 s r
bijim :Z(Ch’k‘i) { Z (—=1)"g, ’ Bi(,p)BjBi(’p)Tcij
u>0 r+s+2u=m U
F=p+1 e
m+tc;;—1
—(m+tcij—2)(r+u)—r 2 (s) (r)
+ Z J Bz’,ﬁ BjBi,p—i—cij },
r4+s+2u=m u
T=p ¢
and for m + ¢;; even,
m+cij
T \u r_—(m+cij—1)(r+u) 2 s r
bijom = Y _(qiks) { > (=g B BjBi(,,,)JrCij
u>0 r+s+2u=m u
F=p+1 ¢
m+tc;;—2
f(m+cl —1)(r+u) 2 OF 1)
+ > : BY BB }
r+s+2u=m u
T=p P

(2) The element b, ;.,, in Definition 8.2 admits an 1divided power formulation: for

m+ ¢;; odd,
m—+tc;;—1
_ T\u 1\, —(mtci) (rtu)+r 2 (") p ps)
b; jom ;(qzkl) { . ; (—1)"g ’ y B3 BJBMHCU
u> r S_pjilm 2
m+cij—1
—(mci;—2)(r+u)—r 2 (r) (s)
+ > j By BB - }
r+s+2u=m u
T=p qi2
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and for m + ¢;; even,

m+cij
~\u r —(m+ci;—1)(r+u) 2 T s
bi jim :Z(Qiki) { Z (—=1)"g, ’ Bi(,ﬁ)Bsz‘(,p)Tcij
u>0 r+s+2u=m u
F=p+1 q?
m-+c;;—2
r_—(m4cij—1)(r+u 2 r s
bOY (g B8O, )
r+s+2u=m u
T=p 7

8.3 Intertwining properties

We write i jum, Ti jim fOT Ui jom,—1, @i j:m,—1 TESpectively.

Proposition 8.7. We have for any m > 0,5 € I,,j # 1,

bi,j;m

:fi = :fiyﬁj;m (85)

Proof. We use an induction on m. The base cases m = 0 is a consequence of

Lemma 5.1.

Suppose that (8.5) is true for 1,2,--- ;m. Note that BY = F, + K;F;. We have,

by induction hypothesis and Theorem 3.6,

B; + Bib7,, )Y

i,5;m

-1 —(cij+2m), —
T (=g " bi,j;m
—(cij+2m o o
6 Ty s BY + B Yijim

== Q;(Cij+2m)yi,j;mFi + FiYi jim — qi_(Cij+2m)yi,j;mKiEi + KiEiYi jom

— Z+2m
—q; (eis )yi,j;mFi + Fiyijom + Ki(—Yijim Ei + Eii jom)-
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Using Lemma 2.8 to simplify the RHS of above formula, we obtain

RHS =[m + 1]y jim+1 + [—cij — m + Uiy jn—1 K

=[m + Uy jimr1 + [—cij — m+ g, "2y o G K.

Combining the above two computations, we have the following identity

—(Ci]‘-i-Qm) _
-4 bz‘,j;m

B; + B;b;

2,J5m

=Ti([m + Uit + [—cij — m+ 1ig; " 2y KK T (8.6)

On the other hand, by definition (8.1), we have

7(Cij +2m) b_
( 4,5;m

Bi + B;b;. (8.7)

2,75

72mfcij +2 b_

:[m + l]ib;j;m+1 + [_Cij —m—+ 1]1% z,j;mflfl;;i’

Comparing (8.6) with (8.7) and then using the induction hypothesis, we deduce that

8.5) is true for m + 1 as desired. O]
(8.5)

Proposition 8.8. We have for any m > 0,5 € I,,j # 1,

—2m(c;i+m—1)F
b = (1) T () KGR (8.8)
Proof. We use an induction on m. The base cases m = 0,1 are verified by straight-

forward computations.

We denote ‘j'w.(:v,-77j;m) by %;werjym in the proof. Let R,, denote the RHS (8.8),
ie., R, = (—1)mq._2m(c“+m_1)xi’w.7j;mKJ’-(K{)m. It suffices to show that R,, satisfies

7

the same recursive relation as b;;.,,,.
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Let @), denote the element Q,, = T wyrjim K j’(Kl’)m We first obtain the recursive

relation for @,, as follows

_ qi—(cij+2m)QmBi + BiQm
= — g T g g (K™ (Fy 4 B + (Fy 4 EiK) e g K ()™
= - (:Ei,w.Tj;mE - Exi,w.‘rj;m) K]/(Kl/)m

—9(e;i42 ii+2m
(ciatem) (mi,w.rj;mEi - q(':” Eixi,wofj;m)KJ/'(Kl{)erl'

7 i

Recall that ¢; ;; = ¢;; in this case. Using Lemma 2.8 to simplify the RHS of the above

formula, we have

RHS = — [_Cij —m+ l]iKil’z',w.rj;m—lKJ,‘(KQm
— qi_2(6ij+2m) [m + 155 wer; m+1K/(Kz)m+l

=—[—c;—m+ 1]iqicij+2m_2$i,w.rj;m—1K;(Kg)m_lgi

_ q._Q(Cij+2m) [m + 1]11'1 WeTJ; m+1K/ (K )m+1

)

Combining the above two formulas, we have

—q; QB+ BiQm = — [—ci; — m+ 10,77 Qe ks

— ;™ i 4 1],Qua (8.9)
Note that R, = (—1)mqi_2m(c“+m_1)Qm. Then, by (8.9), we have
_Qi_(Cij—i_Qm)RmBi + Bsz :[m + 1]iRm+1 + [_Cm m+ 1] (utme Q)Rm 1k

(8.10)
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Comparing (8.10) with (8.1), it is clear that R,, satisfies the same recursive relation

+
as b ;.-

Therefore, b.. = R,, for m > 0. O

/

We next formulate the relations between b7, and Yi jims Th jom-

=1,7;m

Proposition 8.9. We have, for m > 0,7 € 1,,j # 1,

b;j;m - y;,j;m' (811)

Proof. This proposition is a consequence of Proposition 8.7 and Lemma 8.4. O]

Set BL = —q;2§'i(Bi%;1) = ¢ °FK;K/"' + E;K!, and then we have E,%Z(Tl) =

T;(Y,;)B;, following [WZ22, §6.4]. .

Proposition 8.10. We have, for m > 0,5 € 1,,j # 1,

+  F /-1 m, —2m(cij+m—1)F A2\ 17 m
l—)i,j;m(‘Ti(Ti) =(-1) 4; Ti(T4) Two(x;,Tj;m)K;(K;) . (8.12)
Proof. We denote ‘j"w.(x;ﬂ;m) bY Z} yerjim 0 the proof. Let R, denote RHS (8.12)

ie.,

i—2m(01j+m—1)"fi<ffi)*1x’ KJ’(KZ’)m‘i(Tz)

1, WeT]J;m

Ry = (=1)"q

S
1,550 7

We use an induction on m. By definition, b ‘Afw.(ETj)K]’- = Ry and l_);fj;fl =0=

R_;. Hence, it suffices to show that R,, satisfies the same recursive relation as b; . ..

The recursive relation for z/

i,Tjim

is obtained by applying ¢ to Lemma 2.8(2)(4).

Since wei = 1, both FE;, F; are fixed by ‘}w. and hence 2!

twerjim Satisfy the same
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recursive relation as z/ Thus, we have

i,Time
cii+2m
_Qz ! .Z’; WeTJ; mE + E .731 ,MWeTJim — [TTI, + 1] 'L ,WeTj;m—~+19 (8 13)
xl’u}.T] mF +F‘rzw Tim [_CU m+1] Liwerjsm— 1K/'
Let Qu = T3(T5) " 1a! weri: mK’(K’)m‘I (T;). We first formulate the recursive rela-

tion for @), as follows

:j:z(;fz)( - qi_(CijJrzm)BiQm + QmBz)‘j{‘z(Tz)il

—(cij+2m) 5
7 Bl 1 WeTJ;M

K (KD + 2 s K (KD)™ B

1, WeTJ;m

_ qf(cij+2m)( 72FKK/ 1y EKZ/)

)

K (K™

Ly ,WeTJ;m

+ Kj(K)™ (¢ *F KK + EK))

1, WeTJ;m

o c,-j+2m—2
=—gq (—Fx!

+ 2 P KK (K

1,We T J;m 1, WeTJ;mM

B q—QCzj—4m(E / B qczg+2m$/ E)K]/<Kl/>m+1

1 il 1, WeTJ;M 1 1, WeTJ;M

Now applying (8.13) to the RHS, we obtain

RHS = —qfij+2m_2[—cw m + 1]z K (K)™ ks

1w.7—]m 1

+ =g, m o+ i KG(E)™

i, WeTJ;m—~+1

Combining the above two formulas, we conclude that @),, satisfies

~¢; T BiQu + QuBi = — g7 ey = m 4 1[iQum ik

o q;2cz‘j*4m [m + ]-]iQm-i-l- (814)
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Hence, by definition, R,, satisfies recursive relation

_qi_(Cz-jJr?m)BiRm + RnB; = q._”j_zm+2[—0ij = m A UiRpiki 4 [m 4 iR,

(]

(8.15)

which is the same as the defining recursive relation for b}, .. Therefore, b}, . = Ry,

for m > 0. ]

8.4 Proof of Theorem 7.3(i)

By (2.17), the actions for i',_l are given by

Til,—l(Fj) = Yiji—cij» T;/,—I(ETJ') = Ti,rj3—cyj Ti/,e<Kjl') = K‘;<K’Z)_C” (816)

Recall the rescaled symmetries ‘5’1’-7_1 from (4.2). In this case, since 71 = i = w,i,

Sio = —q; 2. Then we have

(J';,—l (FJ> = Yi,ji—cij>

(8.17)
T e Cii 72Cij~ —Cij
Tg,—l(Tw-(ETj)KJ/‘) = (_1) vq; (‘Two (xi,Tj%—Cij)Kj/'(Kz{) o
where the second formula follows from that T, 5’;_1 = :Jv';’_l(}w.'
We also have analogous formulas for ?F{’ 41
(}2/ (F> = y; j5—Ci 0
T T (8.18)

T/ 1 (Tun (Be) K7) = ()00, T (@], VI (KD .

J 7

Recall elements bi,j;m,Q-J;m defined in Definitions 8.1-8.2.

1
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Theorem 8.11. Let j #1 € L.

(1) The element b; j,_.,, € U satisfies

bijiey Ti = 1T _1(B). (8.19)

(2) The element b, ;, ., € U satisfies

T(T) ™ = T(T) ' T7(By). (8.20)

(3) biji—ci; = 0" (bigi—ci;)-

In other word, the element 'f‘g,_l(Bj) := b;j,—,, satisfies (7.5) and T;{+1(Bj) =

b; .._... satisfies (7.6). Hence, we have proved the first statement in Theorem 7.3(i).

1,13~ Cij

Proof. We prove (1). By Lemma 5.1 and (8.17), we have

YT, 1 (By) =T,y (Fy) + 1T,y (B;K))
:TJZ{,A(FJ) + 7;,71(EjKJI')Ti

:Tiyi,j;fcij + <_1)Cijqi26ij§'w. (mi,‘rj%cq;j)K]/'(Kz{)icijfi-

7

On the other hand, setting m = —c¢;; in Proposition 8.7-8.8, we have

bijiei, Yi = Yilfiieiys by

1,J5—Cij ~ ¢ 1,J;—Cij

= (_ 1>Cij qZ’_QCij (j:w. ('Ii,Tﬁ*Cz‘j )Kj/ (K{)icij .

)

Therefore, by the above two formulas, we have

YT _(By) =by o Ti+ bt Ti=bije, i

T g 4,J;—cij v
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(2) is proved by similar arguments above, using intertwining relations in Proposi-

tion 8.9-8.10 and (8.18).

(3) is a consequence of Proposition 8.3. O

9 Higher rank formulas for ¢;;; = 0, wet = ¢

Fix i € L, ; such that ¢; ;; = 0, we? = ¢ throughout this section. Since 7 commutes with

W,, we also have weTi = Ti. In this case, we have ¢; = ¢, B; = Fi+ E; K/, v; = 5;S.

We define higher rank root vectors b; ri jimyma» Ui ri jimy my € U in Definitions 9.6-
9.7 via recursive relations. The divided power formulations for these elements are
obtained in Proposition 9.11. We show that b; i j;—c;,—c.+ 0 ri ji—e;,—e,, , Provide the

higher rank formulas for ’TQ_I(B ), T;’ +1(B;) in Theorem 9.17 and complete the proof
for Theorem 7.3(ii).

9.1 Definitions of root vectors

Definition 9.1. Define elements y; i j:mi mas i rijimi,me fOr mi,mg > 0,7 #1,74,] €

I, as follows

mi  m2

Yi,ri,jimyme = Z Z T+s - m1+clj_1)q;S(m2+CTi,j—1)F1i(m1fT) F‘émgfs)EjpT(ZS) F;(T)
r=0 s=0
mi me

Tirijimy,me — ZZ r+s r(m1+c” )qumZJrC”J DE(T)E( )E E(m2 S)E(m1 r)‘
r=0 s=0
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Remark 9.2. Recall the elements y; j.m, Z; j.m in Section 8. We have

. r —r(mitci;—1) (mi—r) (r)
Yiyrigima,me = E (—=1)"g, E, Yrijima L
m2
_ s —s(mg—i—cﬂ’j—l) (WLQ—S) (S)
= E (=1)°g F; Yijsma F7i -
s=0
In particular, ¥; i jim,o0 = Yijim and Yirij0m = Yrijim. Similarly, we have x; 1; jm.o =

Tijom A0 i rij:0m = Trijim.-

/

‘ps , C
Definition 9.3. Define elements y; -; ;.1 mo» i rijimyms 10T M1, ma > 0,7 #4,7i,j €
I, as follows
/ . / .
yi,ri,j;ml,mz - U(yi77i7j§m17m2)7 xi,n',j;ml,mg - U(xi,‘ri,j;ml,mg)'
Set Yirijimime — 0 and T rijimi,me = 0, if m;y < 0 or mg < 0. Similar for

! :L"
y%T%J;ml,m2 7T, m,me "

Lemma 9.4. We have, for j #i,7i,7 € I,,my1,my € Z

—(C"'+2m1)
(1) —q; e yi,ﬂ‘,j;ml,mgﬂ + Eyi,fi,j;ml,mg = [ml + 1]1 Yi,rijimi+1,mo -

—(c i,j+2m2)
(2) —q.; Yirijima,mori + Frilli ri jimyme = [ma + 1] Yiri jsmi,matl-
— lA
(3) —Yizigimims Bi + Eii i jimyms = [—Cij — M1+ i Yiri jimy —1,my K-

— IA
(4) —Yirigomimo Bri + ErilYizijimyms = [—Crig — Ma + Uri Yirijima,ma—1 K7

Proof. Clearly, [Fy;, E;| = [Fi, E-;] = 0. Since ¢; - = 0, we have [F}, F;] = 0. Then

these four identities are immediate consequences of Lemma 2.8 and Remark 9.2. [

Lemma 9.5. We have, for j #i,7i,7 € I,,my,ms € Z
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cij+2my _
(1) —q B v jimy ma + Tirigmy,me i = M1+ i i jimy 41,ms -
2 Cri,j+2m2E E _ 1
( ) _qn' Tixi,T’i,j;ml,MQ + xi,‘ri,j;ml,mg T — [mZ + ]Tixi,‘ri,j;ml,m2+l-
(3) =Fi%irigumyms + Tizigimyme i = [—Cij — ma1 + i KiZizi jomy—1,mo -

(4) —Fri%irigimims + Tigrigimims Fri = [—Crij — ma + i Kri®irijang ma—1-

Proof. By definition ; ;i jimyms = WU (Yirijimim,). These four identities are ob-
tained by applying cwi to those four identities in Lemma 9.4. O]
Definition 9.6. Let j # i,7¢,j € L,. Define bfTi’hmhm for my,my > —1 to be the

elements in U determined by the following two recursive relations,

—(cijt2ma); + +
— 4 Vi ri joma ma Bi &+ Bibi 2 iy o
_ + —(cij+2ma) + 7
=[m1+1]; b jomit1me + @ [=Crij = ma2 + i b jamy o1 Ky (91)
—(Cri,j+2m2) ;4 +
— 4 Oi v jima ms Bri + Bribi 1 jomy mo
_ + —(cri,j+2ma) + 7
_[mQ + 1]1 bi,'ri,j;ml,mg—i—l + 4q; [_CiJ —mi + 1]1 bi,‘ri,j;ml—l,mgkﬂ'a (92)
where we set
b = b =0, b = F, b =T (B )K!. (9.3)
©,71,5;m1,—1 — Yi,Te,5;—1me T Y 1,71,7;0,0 — > 4,71,7;0,0 T Y We T) 7 :
o — b + ; . B. U
Set vaT17J§m17m2 - bi,Ti,j;m1,m2 + bi,Ti,j;m1,m2' Since blsza.jaO?O - BJ € U7 one can

inductively show that b; +; jim, .m. € U* for mq, mo > 0.

Definition 9.7. Let j # i,7i,j € I,. Define b for my,my > —1 to be the

4,T%,§5M1,1M2

elements in U determined by the following two recursive relations,

— q~_(Cij+2m1)Bib:-t + b:t Bz

? =4,T1,J;m1,m2 =04,T%,J5mM1,m2
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- + —(¢ri,j+2m2—2) + 7
=[my + 1], bi,ﬂ',j;m1+1,m2 + g [_Cﬂ‘,j —my +1]; bi,ri,j;ml,mg—lkﬂ'ia (9.4)
—(cri,j+2ma) + +
—Yq; BTil—)i,Ti,j;ml,mg + Q’i,‘ri,j;ml,mg Ti
_ + —(cij+2m1—-2) + T
_[mQ + 1]1 Qi,fi,j;ml,m2+l + 4; [_Ci,j —my + 1]2 bi,fi,j;mlfl,mg ki? (95)
where we set
b = bF =0 by = F, b = To (E-)K!. (9.6)
~4,78,5;m1,—1 T Zi,Tig;—1mg T D ~Z,71,7;0,0 — > ~4,71,7;0,0 7 Y We T) 7" .
_ — + . .
Set Ui rijomims = irijimyms T Virijimymy- One can also inductively show that

b

Z4,74,J;m1,m2

c U for my, mg > 0.

Recall the anti-involution o* on U* from Proposition 3.12.

Proposition 9.8. Let j € Iy, j # i, 7i. Then b, ;.. my = ' (Vi jimy,my) formy,my > 0.

Proof. By Definition 9.6-9.7, it is clear that o*(b; j.m, m,) satisfies the same recursive

relations as b,

i iomymy- SincCe by 00 = Bj = 0'(bij00), this proposition follows by

induction. O

Lemma 9.9. Let j € 1,7 #i,7i. We have, for my, mo > 0,

b;. =o(Y;'; T,).

=4,T%,J3m1,m2 7 ,78,J;m1,m2

Proof. Consider the subalgebra ﬁ[;j] of U generated by B;, B, E, %Tz, F;. Tt is clear

from the above definitions that b, b, cU. .. By Theorem 3.6 and

1,74,J;m1,ma ) Z4,7%,5;m1,m2 [4:]

Lemma 5.1, there is a well-defined anti-automorphism o;; on ﬁ[;,j], which is given by
Oij = X +— U(Tflei).
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Moreover, o;; fixes B;, B.;, F; and sends EZ > Eﬂ. Applying o;; to (9.1)-(9.2), it is

irijimy.m,) Satisfies the same recursive relations as b; ; ;. m,- Then

clear that o;;(b;.

the desired identity follows by induction. O]

9.2 A divided power formulation

In this subsection, we derive the formulas of root vectors b rijimymas i rijomy mys 11

terms of divided powers of generators of ﬁ’, from their recursive Definitions 9.6-9.7.

Denote

Ei(lf - E’T‘iqi_ ¢

[ki;a] == —
4 — 4q;

Lemma 9.10. We have for any m > 0,

B..B™ — B™B. = B™ V[ki1—m].

(2

Proof. For ¢; ;; =0, B;, B;; satisfy the following relation

Using this relation, one can then prove this lemma by induction on m c.f. [Ja95,

§1.3]. ]

Proposition 9.11. Let j € L, j # i, 7i. The elements b; r; jm, mo, b

=4,T%,J5m1,m2

defined

in Definitions 9.6-9.7 admit following formulas

min m1,m2 mi—uma—u

b o r+s+u r(a mi—u+1)+s(B—ma+tut+l)+u(a—mi+1)
1,T1,j;m1,ma

r=0 s=0

106



B—mas+u o L N
x ? B§m1 ru glme=s—u) g p(e) g (9.7)
u

min m1,m2 mi1—umo—u

b . r+s+u r(a—mi—u+1)+s(B—ma+tu+1)+u(a—mi+1)
Z1,T1,J;m1,me

r=0 s=0

5 —Mmg+ul ~ r s mo—s—u mi—r—u
x S| kB BY BBl B, (9.8)

u
)

Proof. The second formula (9.8) is obtained by applying o, to the first formula. Hence,
it suffices to show that the elements b; +; j.m, m, defined by (9.7) satisfy the recursive

relations (9.1)-(9.2).

(1) Indeed, we have

LHS (9.1) — RHS (9.1)

a— 2m1b

—q; i rigyma,ma Bi T Bibiri jima ma

9 ~
[ml + 1]2 @, 71,7;m1+1,mo T a m [5 mo + 1] bi,n’,j;ml,mg—lki

min(mi,mz) mi—u mo—u
_ 2 :(_1)r+s+uqr(a7m17u+1)+s(ﬁfm2+u+1)+u(afm1+1)€

i r,8,U

u=0 r=0 s=0

B—mo+u o L -
[P gl gt O

where the scalar ¢, 5, is given by

Ersu :[T]iqi—Qu—(a—ml—u+1)+a—2m1 + [ml —r—u+ 1]2 o [ml + 1]1ql—r—u

+ [U]iqi_(a_m1+1)+r

=0.
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Hence, we have proved that b; ;i j.m, m, defined by (9.7) satisfy (9.1).

(2) We next show that b; +; j.m, m, satisfy (9.2). By Lemma 9.10, we have

LHS (9.2) — RHS (9.2)

_ B—2ma2
- q@ bi,Ti,j;ml,mgB‘ri + BTibi,Ti,j;ml,mQ
1]; b f—2ms 1; b Ko
— [me +1]; i, ri,gima me+1 — G [ —my + 1], i, 7,5 —1,me Kori

mi1—umo+l—u

Z Z Z r+s+u r(a mi1—u+1)+s(B—matut+l)tu(a— m1+1£
= 7,8,u

u>0 r=0 s=0

B—mo+u o o ~
o R B
u .
mi1—1l—umo—u

+Z Z Z T+s+u r(a mi1—u+1)+s(B—matu+l)tula— m1+1)£Tsu

u>0 r=0 s=0

6—777, +u mi—l—r—u mo—s—u s 77,
x ’ plm—ior—w) plma=s—u) pp(s) g0

u
)

where the scalars &, 5., &, are given by

T,8,U

—(B—ma+u+1)+2u+L—2ma —s [B - mQ]i
rsu —(5)iq; +m+1_3_uz_z m+1z—
N qlﬂ-l—u 2mo—s—1 qi—,B—u—l—ng—s—l-l [u]z
4 —q; " (B —mq + ul;
_ s Mo + 1 —u);[8 — mg + ul; — [ma + 1];[f — mo); + [ + u — 2my — 1];[ul;
' (B —mqy + ul;
:0,
q5+a+r+u mi1—2mo+1 qﬁ a+r4+u+mi—2mo—1
fé,su - qZB 2m2+1”+u[a —my + 1]1 + : !
qi — qi
—0.
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Hence, we have proved that b; ;i j.m, m, defined by (9.7) satisfy (9.2). O

Remark 9.12. By Remark 9.2 and Propositions 9.13-9.14,9.15-9.16, we have
bi,Ti,j;ml,mg = O, éi77i1j§m17m2 = O, if mi > —Cij, O Mg > —Cryj.

Furthermore, according to the divided power formulations, the Serre relations in U

are given by

biriji-eir10 =05 bigigo, e =0, JF LT (9.9)

9.3 Intertwining properties
We establish precise intertwining relations between those elements bfﬂ,j;mhm (resp.

+ / /
Z—)i,Ti,j;m1,m2) and elements yi77i>j§m1:m27 xini7j§m1,m2 (resp. y’i,Ti,j;ml,m27 ‘ri,‘ri,j;mhmg)' These

relations will be the key for the construction of relative braid group action on U

Proposition 9.13. Let j € I, such that j # i,7i. We have, for my, mq > 0,

b, Ti = YilYirijimimo- (9.10)

4,7%,53m1,m2

Proof. Let R,,, m, denote Tiywi,j;mhmi_l. By Lemma 5.1, Rop = F; = b;.

4,71,7;0,0°
Moreover, by definition, v; ri jim,,—1 = Yiriji—1,ms = 0 = R -1 = R_1,m,. Hence, it

suffices to prove that Ry, m, satisfies the same recursive relations as b; ; ;.. .-

Recall that BY = F; + K, E,; . We have, by Theorem 3.6,

T;1< _ qf(Cij+2m1)Rm1’m2Bi + Bile,m2>Ti

1

—(cij+2ma) o o
=—gq Yisrigsma,me B + B Yiri jima ma
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—(cii+2m
= —q; (et l)yi,ri,j;ml,mQ(Fi + K,E) + (Fi + KiETi)yi,Ti,j;m1,m2

_ qz— (cij+2my1)

+ qz— (Cij +2m1)

Yirijsmamo s + Filli ri jimy mo

(—Yirrigjsmrmo Eri + Erilfizi jimy mo ) K.
Now using Lemma 9.4 to simplify the RHS of above formula, we have

RHS :[ml + 1]1 Yi,ri,jimi+1,me

—(cij+2m1)

!
+q; [—Crij — M2 + Uri Yirigimy me 1 G K.

Combining the above two formulas, we have

- qi(Cij+2ml)Rm1,mgBi + Bile,mg

)

=[m1 + i Ronysrms + 6 " [ =iy — ma + )i Rony iyt KiK.

The following variant of (9.11) can be obtained by a similar strategy

_ qf(C‘ri,j+2m2)Rm17m2 Bn’ + BTiRm17m2

7

=[ms + )i Runymgs1 + ;9 iy — ma + Ui Ry, K1

(9.11)

(9.12)

Comparing (9.11)-(9.12) with (9.1)-(9.2), it is clear that R,,, ,,, satisfies the same

recursive relations as b, Therefore, we have proved (9.10).

7/7Ti7j;ml ,ma”

Proposition 9.14. Let j € I, such that j # i, 7i. We have, for mi,mqo > 0,

+ o mi+me —(mi1+ma)(cij+cri j+mi+ma—1)
(-1 q

1,T,75;1M1,1M2 7

X T, (Iﬂ,iﬁj;ml,mz)KgI’ (B (K,)™.
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(Note the shift of indices on the right-hand side.)

Proof. Let Py, m, denote the RHS (9.13) and '+ werjimy,m, denote ‘}w.(:cﬂ,i,fj;mhm?).
By definition (9.3), bZTi,j;O,O = %w.(ETj)Ké = Triiwerj00K; = Foo. Moreover, by

; = b} = 0. Thus, it

definition, @7 rji-1.my = Tridrjmi,—1 = 0 and b7, 5y ) = bl s, 1

suffices to show that P, ., satisfies the same recursive relations as b, .. ...

Let Qumym, denote Trijwarjimymy (K7™ (K7,;)™2. We first formulate the recur-

sive relations for @y, m,. We have

—(C,' +2m1)
—q; Y le,szi + Bilemm
o —(cij+2ma) K/ K/ mi K/ mo F. E K/
= =g LrijiweTjimi,ma j( D)™ (F + ErKD)
/ / nmi 1 \ma
+ (F; + ETiKi)xTi7i7wo7—j§mlym2Kj (K5)™ (K7)
_ / nmi 1 \ma
- _(xTi,i,w.Tj;mhszi - ExTi,i,w.Tj;mth)Kj(Kz‘> (Kn)
—(cij+crij+2m1+2ma) / nymi+1 I ym
—q 7 [xfi,i,w.m’;ml,mz» Em‘} q?z‘,ﬁ?lej(Ki) ' (Kn') .
1
Since wet = ¢, both F;, E;; are fixed by T, . Then the recursion involving @ +; ; werj:my ,ms
and F; (resp. E.;) is the same as the recursion involving ;;; rj:m,.m, and F; (resp.
E.;). By Lemma 9.5, one can obtain those recursions for ,; ; werjims.m, and then the

RHS of the above formula is simplified as below

RHS = —[—crijj — Mo + iKiTriiwerjma,me—1 I (K™ (K7 ;)™

—(cijt+crij+2mi1+2mo) 11N mL+1 [ 7ol \me
-4 [my + 1]i$7i,i7w.7j;m1+1,m2Kj(Kz‘) (K7;)

2mo—2 i g o~
= —q; ma—2+cCri [_Cn‘,j — My + l]ixTi,i,w.Tj;ml,m2_1Kj/- (Kl/)ml (K;'z)mQ lki

—(cij+crij+2m1+2ma) 11\ mL+1 [ 7ol \me
i [ml + 1]i$7i,i7w.7j;m1+1,m2Kj(Ki) (Kn) :
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Combining the above two formulas, we have

—(cij+2m
- q'L ( ! I)le,mgBi _'_ Bile,mg

—(cij+crij+2m1+2ma) 2ma—2+cri j 7
=—q; 7 [my + 1);Qumy+1,ms + G Merig +ma — 1]:Qumy ma—1Ki-

Hence, P, m, satisfies the following recursive relation,

- q;(Cij+2m1)Pm1,m2 Bz + BiPml,mg

:[ml + 1]2'Pm1+1,m2 + q;(Cij+2ml)[_CTiJ —ma + 1]iPm1,m2—1%i' (914)

Comparing (9.14) and (9.1), it is clear that P,,, ,,, satisfies the defining recursive rela-

tion (9.1) for b}

i i mymee USING & similar strategy, one can show that P, ., satisfies

Therefore, b =

the other defining recursive relation (9.2) for b;. i jmama

%,71,7;mM1,m2 "

P, m, for any mq, my > 0. ]

We next formulate the relation between y; ;.. .2} ;5. .. in Definition 9.3

and bt in Definition 9.7.

_ZvTi7j;m1 ;12

Proposition 9.15. Let j € I, such that j # i, 7i. We have, for mi,mq > 0,

[—)'Z‘ri,j;ml,mg = y;,ﬂ‘,j;ml,mg' (915>
Proof. This proposition is a consequence of Proposition 9.13 and Lemma 9.9. O
Proposition 9.16. Let j € I, such that j # i,7i. We have, for mi,ms > 0,
+ - mi+mg —(mit+m2)(cij+erij+mi+ma—1)
0; i jim1,mo =(—1)me g R e T
X T (00 T (W, ) K D)™ (K) ™ T (X). - (9.16)
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Proof. Let P, m, denote the RHS (9.16) and «/ denote T, (

’ )
T1,1,WeTJ;M1,M2 xTi,i,Tj;mLmz .

By Lemma 5.1, Fyy = ‘j’w.(ETj)KJ’. = b

b; i j00- Moreover, by definition, we have

P, =PF,_1=0and b =b' _; = 0. Hence, it suffices to show that

=4,7%,5;—1,m2 =4,78,j;m1,

. . . . +
Prny m, satisfies the defining recursive relations for b, ; ;... .-

Applying o to Lemma 9.5(1)(4) and then shifting the indices i,j to 7i,7j, we

obtain the recursions for z’

idrjimyme- Since Fi B are fixed by T,,, recursions for

/
Tiy8,TJime,me

/

Ti i WeT jmA M2 Thus, we have

T are the same as recursions for x

/ ’ _ / /
B xTi,i,w-Tj%ml,mQE + Fix'ri,i,w.rj;ml,mg - [_cTi,j —ma + 1]i xTi,i,w.Tj;ml,MQ—lKi7

cij+2my g / o /

i Ti,i,w.‘rj;ml,szTi + ETini,i,w.Tj;ml,mg - [ml + 1]ix7i,i,w.7'j;m1+1,m2'

(9.17)
T (VN1 1renNmL( B! \me T (Y.
Let Qumym, denote To, (Vi)™ 0, i oriomy mo B (FG) ™ (KT) ™2 T, (15). We first for-
mulate the recursive relation for @, m,-
In the case ¢; - = 0, set
5 e 7.-1 1—1 /

Then, due to [WZ22, §6.4], B; satisfies B;Ty, (Y;) = T, (Y;)B;.

We compute

gri (T’L)< - qi_(Cij+2ml)BiQm1,m2 _I_ thszi)%ri (;\fi)_l

—C¢j+2m mi ma
= — g, ™ Bia K ()™ (K7

i T1,1,WeTJ;M1,M2
+ x;i,i,w.'rj;mhmg K]/ (Kz/)ml (K;'z)mz BZ
=g (E ] ERGK)™ (K)o

? T,0,We T J;M1,M2 T1,1,We TJ;1M1,M2
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_cTi,j_2m2( —Cij—leE 2
i [ TV T4,0,WeTJ;M1,M2

-~ Eri) K (K1) (1)

T1,8,WeTJ;1M1,M2

— @M ey — My + 1) 2 K (K™ (KL)™ ke

i Ti,l,WeTJ;m1,ma—1

- Qi_Cij_CTi’j_le_Qnm [m + 1]ix;i,i,w.Tj§m1+1,m2KJI' (Kz{)m1+1 (K;'z)m27

where the last equality follows by applying (9.17).

The above computation shows that (), m, satisfies the following recursive relation

— 4 ™ BiQuny s + Qunyma By (9.19)
cii+2m 7 —Cijj—Cri j—2m1—2m
- _qi it 1[_CTi,j — My + 1]1’Qm1,m271k~ri - qz' ! 7 ! 2[m + 1]1’Qm1+1,m2-

" —(mat+ma)(cij+eri j+mi+ma—1
By definition, Py, m, = (—1)™172¢, (matma)(eigtersjtmatms )le,mg. Hence, P, m,

satisfies the following relation

_ qf(Cij+2m1)BiPm1’m2 + Py my Bi (920)

)

(cri,j+2ma—2)
o [_C‘Fi,j —mg + 1]2'Pm1,m2—1km"

= [m + 1]iPm1+17m2 + QZ_

Comparing (9.20) with (9.4), it is clear that P, ., satisfies the defining recursive

relation (9.4) for b . .. . Using a similar strategy, one can show that P,,, ,,, sat-
1,T1,7;M1,1M2 g gy 1,12

isfies the other defining recursive relation (9.5) for b ; ;..\ 1, Therefore, we conclude

that b, = Py, m, for my,me > 0. O

=4,T1,J;m1,m2

9.4 Proof of Theorem 7.3(ii)

In the case ¢; ;; =0, r; = ;5. It follows by [Lus93, §37.2] that, for j # i, 74,

U U

Tri,—1<Fj) = Yi,rigi—cij,—criyyo Tri,—l(ET') = Trii,mji—cij,—Crijo (9'21)
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TIZ,‘F].(F]) = yg,‘ri,j;fcij,fcﬂ,ﬁ TII'ZWF]. (ET]) = a:;"i,i,Tj;ch‘j,fcq—i’j‘ (922>
Recall the rescaled symmetries ‘};7717 ‘i’-fﬂ from (4.2). Inthe case ¢; ;s = 0, 6o = —q; .

By (9.21), we have

ri,—l(Fj) = Yirigi—ciji—crijo

7;1,—1(TWQ(ETj)K;) = <_Qi)_6ij_6ﬂ’j7w- (I’Fiyi,’fj;_cija_cri,j)K§<Kg)_0ij (K;i)_07i7j7
(9.23)
where the second formula follows from ‘}1’%71’}% =T ‘}1’%71.
By (9.22), we have analogous formulas for the symmetry T 41
TLIZ',-i-l (F]) = yZ{,Ti,j;—Cij,—Cn‘,]"
‘J‘;'Ii;i»l (TWQ (ET])K;) = (_Qi)icijicTi,j‘J’U)o (x:'i,i,Tj;fcij,chiyj)K]/'<KZ{>7CM (K;"L')icﬂ;’j'
(9.24)
Recall elements b ri jimy ma» O ri jimy m, defined in Definitions 9.6-9.7.
Theorem 9.17. Let j € 1,7 # i, Ti.
(1) The element b; i j,—c;j —c..,; € U satisfies
bivTi»j§—Cija—CTi,j :fl = TiT;i,fl(Bj)‘ (925>
(2) The element b; ;. e . € U satisfies
Z—)i,T’i7j;—Cij,—Cri,jTYi(Ti>71 = ‘J‘rz(T1>71‘J';'/Z,+1<B]) (926>
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(3) Z—)i,T’i,j;—Cij,—C-,-i,j = O-’L(biaTivj;*Cij»*CTi,j)'
In other word, the element i‘;,,l(Bj) = Diriji—ci;—ci,; Satisfies (7.5) and the
element TZH(Bj) 1= b rijimcy;,—cni, Sotisfies (7.6). Hence, we have proved the first

statement in Theorem 7.3(ii).

Proof. We prove (1). By Lemma 5.1 and (9.23), we have

TiTLi,—l(Bj) :TiT;i,—l(ij) + Tz‘{xi,q (Tw.(Ej)Kg/‘)

YT (F) + T (T (B KT,

=Y iYirigi—cij—cri s

+ (_Qi)_cij_cﬂ’j 5'w. (x7i7i77j§—cijv_cri,j )KJI (Kz{)_qj (Kéi)_cﬂ'j Tz

On the other hand, setting m; = —c¢;j, me = —c¢-;; in Proposition 9.13-9.14, we have

bivTi’j§7cij s Cri,j TZ - Tiyi’Ti’j;icij »—Cri,5)

szi,j;—Cij,—Cri,j = (_Qi>70ijicﬂ’jj’w. (xri,i,Tj%cij,fC-ri,j)K]/'(Kz()icij (K:'i)icﬂv’j'

Therefore, by the above formulas, we obtain the desired identity

YT, _\(B)) =b;. T + b Y Y

- i,Ti,j;—Cij,—CTi’j Z,Ti,j;—cij,—cfi,j T YT Cij,—Cri,j 1

We prove (2). By Lemma 5.1 and (9.24), we have

T (1) T, 1 (BT, (1)

:;j:l‘i (Ti)ila}i (Fj)a}z (Tl) + ‘j:l'i (Ti)ila:l‘i (%w. (E])Kj/)a:rz (TZ>

:(‘Tl‘i (F}) + (‘Tl‘i (T”L)_l%m’ (Tw. (EJ)K/)aﬂl‘z (TZ>

J
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/
—yiii,jﬁcijﬁcri,j

+ <_Q7j>70ijicq—i7j ﬁlri (f’fi)il§’w. (xfri,'i,‘rj;fcij,fcﬂ,j )K; (K{)fcij (K;'i)icTi‘j 511‘2‘ (Y’L> :

On the other hand, setting m; = —¢;j, me = —c;;; in Proposition 9.15-9.16, we have
— o
Yiriji—cij—criy — Jimigi—cij,—crij
+

—’i,Ti,j;*Cij s Cri,j

:(_q’i>_6ij_cﬂ’j (}ri (Ti)_l(}w. ( )KJ/ (Kz‘,)_% (K;i)_cﬂ’j (}ri (TZ>

/
odomio o
T48,T);—Cij,—Cri,j

Therefore, by above two formulas, we obtain the desired identity

v -l T - +
(‘Trz<T1) T;/Z,+1(B]>Trz(TZ) = l—)i,Ti,j;—Cij,—CTi,]' + l—)i,Ti,j;—Cij,—CTiy]' = —i,Ti,jgfcl'j,chi,j'
The statement (3) is a consequence of Proposition 9.8. [
10 Higher rank formulas for ¢; ;; = —1, wet = ¢
Fix ¢ € I, » such that ¢; -, = —1, wei = ¢ throughout this section. Since w, commutes

with 7, weri = 7i. In this case, we have B; = F; + E; K| and r; = $;5,iS; = $+i5;S+i-

We define higher rank root vectors b; ;i j.q.p.c, b ¢ U*in Definitions 10.6-10.7

Z4,71,55a,b,¢

via recursive relations. We show that the higher rank formulas ’T‘§7_1(Bj), ’TfL’ 1(B;j)

are given by these root vectors in Theorem 10.14 and complete the proof for Theo-

rem 7.3(iii). The divided power formulations for b; +; j.ap.c, b are obtained in

24,74,5;a,b,c

Theorem 10.16.
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10.1 Definitions of root vectors

Let Ad be the adjoint action on ﬁ, explicitly given by

Ad(F)u = (Fu — uF) K™,

Set “YAd := wip o Ad o wyp and “Ad := 0 o Ad o o, where w, 1, o are the Chevalley
involution, the bar involution, and the anti-involution on U.

.t , ,
Definition 10.1. Define elements ¥; i j.a.b.c Ti rijiab.cs Yi rijiaber Tirigiabe for a,b,c >

0,7 # i, 7i as follows

Yiri,j;a,b,c = w¢Ad<Ez(a)E7(-IZ)Ez(C))}WJ7 yz,’,Ti,j;a,b,c = waAd(Ei(a)E‘f('lz)')Ei(C))Fja
T i jia,b,c = JAd(Ez(a)ES)Ez(C))Ejv x;,ﬂ',j;a,b,c = Ad(Ez(a)Eﬂ('lz)Ez(C))E]

AT __ -1 _—x
Denote Ei?b’c) = EZ-(a)Eg.’)E-(C) and [K;; x| == L il S

L qi—q;

Lemma 10.2. We have, for a,b,c > 0,

T ?

EiEizl'z,b,c) _ [a + 1]E(q+1,b,c)
(10.1)

ETiEf—Cil,b,C) — [b —a + 1]E(a,b+1,6) + [C + 1]E(a71,b+1,c+1)'

T Ti

Proof. The first identity is obvious. The second identity follows from a standard

though lengthy induction. O
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Lemma 10.3. We have, for a,b,c > 0,

[F, BY") = —BY YK 0 — b+ 20— 1) — B9V [K e — 1],

i

(10.2)
(Fri, Ei?’b’c)] = —plab-1o (K ;0 —c—1].

i

Proof. The first identity follows from the following relations

[FiEx] =0,  [FLE™] = —mE" V[Kim—1],  [Kim|E = E[Kim+2],

cf. [Ja95, 1.3,1.6]. One can prove the second identity via similar relations. ]

We write [A, B|, := AB — xBA for scalars z.

Lemma 10.4. We have, for a,b,c > 0,

(1) [Fz', yi,‘ri,j;a,b,c] LR = la + 1]iyi,‘ri,j;a+1,b,c-
K

(2) [Fn', yi,‘ri,j;a,b,c} oetereriy = b—a+1¥Yirijiabiie + €+ iYirija—1b1,041-
1

(3) [Ei,Yirijiapel = [—Cij —a+b—2¢c+1];yi rijia—1p.c 5]+ [—Cij — c+1]iYi i jiap,e—1 K.

(4) [En'v yi,n’,j;a,b,c} = [_C'ri,j —b +c+ 1]iyi,'ri,j;a,b—1,cK7/—i~

Proof. We give a detailed proof for (2). On one hand, for any v € U, we have
“WAd(E,)u = Fyu — K uK ' Fy;, which implies that

“CAA(Eri)Yirigiabe = [Fris Yirigiapel SBHeteerig

(3

On the other hand, by definition of ¥; ;; j.a5 and Lemma 10.2, we have

wwAd(ETz’)yi,Ti,j;a,b,c
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=<V Ad(Er)** Ad(B" BS BL)F,

:[b —a+ 1]lw¢Ad(EZ(a)E7(};+1)EZ(C))F} + [C + 1]iwwAd(E(afl)E£b+l)EZ(c+l))ij

% )

=b—a+ 1]iyi,7i,j;a,b+1,c +[c+ 1]iyi,ri,j;a71,b+1,c+1-

The identity (2) follows by above two formulas.

The identity (1) is obtained by considering the action of “YAd(E;) on Y; i j.ab.c
via similar arguments. Identities (3)-(4) are obtained by respectively considering the
action of “YAd(F;),*VAd(Fy;) on ¥irijape and using Lemma 10.3. We omit details

for them. O

Lemma 10.5. We have, for a,b,c > 0,

—b+2a+20+cij
(1) Tirijapeli — q; EiZizigape = [0+ 1i%irijatipe

(2) [xi,‘ri,j;a,b,m E‘ri]q?b*“*0+cn’,j = [b —a-+ 1]i$i,ri,j;a,b+1,c + [C + 1]ixi,7i,j;a71,b+l,c+1-
1
(3) [%irijape Fil = [—cij—a+b—2c+1]; Ki%; ri jia—1,pe+ [—Cij — ¢+ 1 KiTi ri jiape—1-

(4) [xi,ﬂ',j;a,b,m F.= [—Cm',j —b+c+ 1]iKTixi,Tz',j;a,b—1,c-

Proof. By definition, we have

Tizigiabe = OWY(Yirijab.e)-

Then these four identities are obtained by applying cw to those four identities in

Lemma 10.4. ]

Definition 10.6. Let j € I, such that j # i, 7i. Define b= to be elements in

1,71,5;a,b,C
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U determined by the following recursive relations

+ b—2a—2c—c;j; 4
Bi i,Ti,5;a,b,c q; i,’ri,j;a,b,CBi
o + b—2a—2c—c;j—1 + T
—[CL + 1]ibi,7i,j;a+1,b,c + 4; [_C’Fi:j —b+c+ 1]ibi,’ri,j;a,b—1,cki7 (103>
and
B.. + __—2btatc—crijp+ .
TYq,11,55a,b,c % 1,71,7;a,b,c7" T
—[p— HE bt
- [b a+ 1]Zbi,7i,j;a,b—|—1,c + [C + 1]Zbi,~ri,j;a—1,b+1,c+l (104)
—2b+cta—crq j—1 + + ~
+q; ([_Cij —a+b—2c+ 1]ibi,7i,j;a71,b,c + [_Cij —Cc+ 1]ibi,7i,j;a,b,c71)k7'i7

where we set b = 0 if either one of a, b, ¢ is negative, and set

1,71,5;a,b,c
_ o + o ~
bi,n‘,j;o,o,o = I, bi,‘ri,j;0,0,0 - (Iw.(ETj)KJ/‘- (10.5)
Definition 10.7. Let j € L, such that j # ¢, 7i. Define Z_)fﬂ’j;a,b,c to be elements in
U determined by the following recursive relations
+ b—2a—2c—c;; +
[—)i,‘ri,j;a,b,cBi Y JBil—)i,Ti,j;a,b,c
+ b—2a—2c—c;i—1 T o4+
=la + 10 jat1pe T G T ey bt ek Vikribizi jiap—1,0 (10.6)
and
+ —2b+a+c—cr; +
Yiriga,b,c 0Tt T Y4 ]BTil—)i,Ti,j;a,b,c
+ +
=b—a+ 1]il—)i,ri,j;a,b+1,c + [e+ 1]il—)i,n‘,j;a71,b+1,c+1 (10.7)
—2b+cta—crqj—17 + +
+q Tk ([_Cij —a+b—2c+ 1]il—)i,ri,j;a—1,b,c + [y —c+ 1]il_7i,ri,j;a,b,c—1)>
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where we set b

bi i jape = 0 1f either one of a, b, ¢ is negative, and set

_ . + T /
(—)ivTi,j;(),O,U - Fj’ l—)i,‘ri,j;0,0,0 - Tw. (ETj)Kj- (108)
T + mi i
Define b; ri jiabe = Ui rijape T Virijuape Similarly, define b; -, ..., .. Since
— — ~Z
bi,Ti,j;0,0,0 - l_)i,‘;-i7j;070,0 - Bj € U )
it follows from the above recursive definitions that b; 7 j.apb.c, ;i jape. € U' for any

a,b,c.
Recall the anti-involution ¢* on U* from Proposition 3.12.

Proposition 10.8. Let j € 1,,j #i,7i. Then b, = 0"(b; jiapc) for a,b,c > 0.

’.];CL?b?C

Proof. By Definition 10.6-10.7, 0*(b; j.ap.c) satisfies the same recursive relations as

. g : i
b; b Since b; 5000 = Bj = (s j:0,00), this proposition follows. O

Lemma 10.9. We have, for a,b,c > 0,5 #i,7i,7 € I,

b, = o (17}, ).

24,74,5;a,b,c o i,71,7;a,b,c

Proof. Consider the subalgebra INJ[ ] of U generated by B;, B, Ei, %Ti, F;. It is clear

4

from the above definitions that b b e U By Theorem 3.6 and

Z7Tivj;a7bac’ —Z,T’LJ;G,I),C [ZJ]

Lemma 5.1, there is a well-defined anti-automorphism o;; on ﬁ[zﬂ, which is given by
Oij + T — O’(:fi_l.ilj:fi).

Moreover, o;; fixes B;, B;;, F; and sends %1 > %ﬂ. Applying o;; to (10.3)-(10.4), it is
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irigabe) Satisfies the same recursive relations as b; ;. ;.. Then the

clear that o;;(b

desired identity follows by induction. ]

10.2 Intertwining properties

We formulate the intertwining relations between elements bfﬂ’ iabe A0 Yirijiaber Trijirjiabe-

Proposition 10.10. We have, for a,b,c > 0,5 # 1,7i,5 € L,

b;Ti,j;a,b,cTi = Tiy’i,Ti,j;(l,b,C' (10'9)
~ ~ 1 B o

Proof. Let Ryp. denote Yy rijapel; - By Lemma 5.1, Rooo = F; = b; ;5000

Moreover, by definition, if either one of a, b, ¢ is negative, then v; +i j.a.p.c = Virijiabe =

0. Hence, it suffices to prove that R,;. satisfies the same recursive relations as

1,71,5;a,b,c”

Recall that By = F; + K, E;;. We have, by Theorem 3.6,

:fi_l (BiRa,b,c - ql')72a72676ij Ra,b,cBi) Tz

)

:Biayi,ﬂ',j;a,b,c - q;ﬁzaiZCiCijyi,Ti,j;a,b,chq
:Eyi,7i7j;a,b,c - qf_2a_20_6ijyi,Ti,j;a7b,cE
+ qf_Qa_%_Cij_l(E-,—iyi,ri,j;a,b,c — yiJi,j;a,b,CE‘I‘i)Ki
=la + 1]i¥irijat1be + q?_2a_2c_6ij_1[_CTi,j —b+c+ 1]iyi,ri,j;a,b71,c/];ia

where the last step follow from Lemma 10.4(1)(4). This computation shows that the

element R, . satisfies (10.3).

123



For B?, = F;; + K;;E;, by Theorem 3.6, we similarly have

~—1 —2b4-ct+a—cr; VS
Ti (Bﬂ'Ra,b,c —q; ' JRa,b,cBTi)Ti

1

—2b+cta—crij

. g o
= BliYirijiabe — 4 Yi,rijiab,eBr;
—2b+cta—cr,j
= L'7iYiri5a,b,c — 4; yi,Tz',j;a,b,cFTi
cta—2b—cqij—1
+q; (ElYirijiape — Yirijiabeli) Kri

=[b—a+1i¥Yirijapite+ [+ iYirija—1b41,c41

g ([=cij —a+b=2c+ Uithirijia—1pe + [—cij — ¢+ 1]iyi,7i,j;a,b,c—1)%ri-

This computation shows that the element R, . satisfies (10.4). Therefore, we have

proved (10.9) for any a,b,c > 0. ]

Proposition 10.11. We have, for a,b,c > 0,j #i,7i,j € L,

+ . 1 at+b+c —%(a+b+c)(a+b+c—1+2cij+20m-,j)g,
i i, jiab,e (=1) 4; w

(% rii,m 0,00 B (KT (KL) .
(10.10)

Proof. Let P, denote RHS (10.10) and 2 werjiap,c denote ﬁi'w.(xTi,i’Tj;a’b’c). It is

7 T s . . . .
clear that Py 00 = Tw, (Erj) K} = b/, ;.00 Moreover, if either one of a, b, ¢ is negative,

then Py, = 0 = b

irijabe Hence, it suffices to show that F,p. also satisfies the

defining recursive relations (10.3)-(10.4) for B;"

4,71,5;a,b,c"

Let Qape denote 2riw,rjianc K (K])* (K7;)". Applying 7 to Lemma 10.5(1)(4),
we obtain two recursions for x,;; rj.apc. Since Fj, E; are fixed by ;Jv'w., Triiwerjiab.c

also satisfies the same recursions. To this end, we have

—b+2a+2c+c;
xTi,i,w.Tj;a,b,cETi —q; EriiUTi,z',w.rj;a,b,c = [a + 1]i$i,77;,w.Tj;a+1,b,c,

(10.11)

Trigweriabes Fil = [—Crij — b4 ¢+ 1iKi%rijwerjiab—1,c-
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We formulate the recursive relation for Q4. as follows

b—2a—2c—c;;
BiQa,b,c - q; Y Qa,b,cBi
o / na+-c 7 \b
— (E$Ti,i,w.7j;a,b,c - xri,i,w.Tj;a,b,cE)Kj (Kz) (Kn)
—a—c—b—cr; j—Cij ; 2a+2c—b+c;j / 1\a+c+1 ! \b
+q; g Y Eritrijwariabe — Trigwerjabeloni) KG(KG) (K7)

—a—c+2b—24cr; ; -17
= _[_Cn‘,j —b+c+ 1]1‘%‘ et i ’iji,i,w.Tj;a,b—l,cKyl'(KDM—C(K;i)b lki

—a—Cc—b—Crj,j—Cij
—q, T a4 15 weri a1 be Brd) K (K] TN (KT)Y,

)

where we used (10.11) in the last step.

The above computation implies that (), satisfies the following recursive relation

BiQape— 6 " QupeBi (10.12)

—a—c—b—cqi j—C;; —a—c+2b—2+cri ;

4q; la +1];Qat16c — G [—Cn',j —b+c+ 1]2’Qa,b—1,c%i-

Similarly, one can show that (), . also satisfies the following recursive relation

—2b+a+tc—cqi,j
BTz'Qa,b,c —q; " Qa,b,cBTi

=— qgaHCiQiH% ([_Cij —a+b—2c+1]iQa-1pc+ [—Cij —c+ 1]1‘Qa,b,c—1)7€jﬁ
(10.13)
— qi_b_a_c_cij_cﬂ’j ([b —a+ 1}iQapt1,c + [c+ 1]i@a—1,b+1,c+1)-

1
. — 5 (a+b+c)(a+b+c—142¢;j+2¢r; 5
Since P,p. = (—1)*T*q, 3 : o)

Qape, We obtain that P,

satisfy the following two relations

b—2a—2c—c;;
BiPa,b,c — g; Y Pa,b,cBi

(3
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—la 4 1iPagipe + ¢ 2 —ri; — b+ ¢+ 1) Papy ok, (10.14)

and

(2

—2b+a+c—cri,j
BTiPa,b,c — q; ! Pa,b,cBTi

:[b —a-+ 1]iPa,b+1,c + [C + 1]iPa71,b+1,c+1 (1015)

-+ qi_2b+c+a_0ﬂ’j_1 ([_Cij —a+ b — 20 + 1]iPa—1,b,c -+ [_Cij —c+ 1]iPa,b,c—1)7€/7—z"

These two relations tell that P, . satisfy the recursive relations (10.3)-(10.4). There-

S
fore, Pa,b,c - bi,Ti,Tj;a,b,c

for any a, b,c > 0. O]

. .. . + ’
We next formulate intertwining relations between elements b, .., . and y; . . .,
/
x‘ri,i,‘rj;a,b,c’
Proposition 10.12. We have, for a,b,c > 0,j #i,7i,j € Lo,
— o
bizijabe = Yirijabe (10.16)
+ . 1 a+b+c 7%(a+b+c)(a+b+cfl+2cij+20.,-i7j)
9 i jiabe — (=1) 4q; X

X T (L) T (@i KL (KL T (T). - (10.17)

Proof. The firs identity is obtained by applying Lemma 10.9 to Proposition 10.10.

We prove the second identity.

Let P,p. denote the RHS (10.17) and 2, , . .., . denote ﬁ'w,(xﬂ,iﬁj;a,bﬁ). By
Lemma 5.1, Pyop = ‘j'w_(ETj)Kg = b 000 Moreover, Pope = 0 = b0 if

either one of a, b, c is negative. Hence, it suffices to show that P, . satisfies the same

. . +
recursive relations for b, .., ¢ .
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Applying o to Lemma 10.5(1)(4) and then shifting the indices 4,5 to 7i,7j, we
have two recursions for z’ Since F;, E,; are fixed by ‘j'w., x satisfies

Ti,4,7j;a,b,c* Ti,i,WeTJ;a,b,C

the same recursions. To this end, we obtain

/ / o ’ /
- xTi,i,’UJ.Tj;CL,b,CE + Fimri,i,w.m’;a,b,c = [_CTZ'J —b+c+1] Triiwerjiab—1,ctyis
(10.18)
—b+2a+2c+cij g / _ /
— g Ti,i,w.rj;a,b,cETi + ETiITi,i,w.Tj;a,b,c = [a+ 1]ix7i,i,w.7j;a+1,b,c'
In the case ¢; ,; = —1, set
B; = —q;T.(Bik ") = ¢, F, K K-' + EK!
AR QZri(zi)_QZZTz ‘ri+ Ti LY.
It follows from [WZ22, §6.4] that B; T, (1) = T, (1) B;.
T N1 1 1eNa+e! 17 \bT (Y.
Let Qup. denote T, (T5) 7 2, 4 yorjian e B G (KG)T(KT,) T, (1) We first formulate
the recursive relations for Q),,, m, as follows
—~ :f B b—2a—2C—CijB e T —1
Tri( z) (Qa,b,c i — 4q; iQa,b,c)Tri( z)
o / Na+c/ 1! \b D
- wTi,i,w.Tj;a,b,cKj(Ki) (Kn) Bl
b—2a—26—0ij§' ! K (Koete( Kb
—4; lei,i,w.‘rj;a,b,c j( z) ( Ti)
_ 2a+2c—b+tcii+1 / / / Na+c—1 1 \b—17.
=g ('rTi,i,w.Tj;a,b,cE - Exri,i,w.Tj;a,b,c) KJ(K’L) (K‘m> kTi
—a—b—c—cij—crij ( 2a+2c—btci; / / na+c+1 1 \b
+q; (Qz xfi,i,w.rj;a,b,cETi - ETixTi,i,w.Tj;a,b,c) Kj (Kz) (K‘m)

q,2a+20_b+cij+1[—cﬂ'7j — b +c+ 1]1 l’/ KJ/ (Kz{)aJrc(K;.Z-)bilETi

% Ti,i,weTJ;a,b—1,c

—a—b—c—cCji—Cri 5
g T 1] 0 KD (KL,

where the last step follows by applying (10.18).
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The above computation shows that (), . satisfies the next recursive relation

b—2a—2c—c;;
Qa,b,cBi —q; Y BiQa,b,a

2a+2c—b+ z+1 T —a—b—c— ii—Cri i
=q T iy — b+ e+ 1iQap-1.ckri —q; T T a4+ 1iQav1be-

Similarly, one can show that (), . also satisfies

—2b+a+c—cri
Qa,b,cBTi —q; e BTiQa,b,c

o —a—b—c—c;ij—cri,j

= —¢q; ([b —a+ 1]iQa,b+1,c + [C + 1]iQa—1,b+1,c+1)

b 27
—q; Hact e Qki([_cij —a+b—2c+1};Qirijia-1pc+ [—Cij —C+ 1]1‘Qi,n‘,j;a,b,c—1).

L. —La+bte a+b+c—142¢;i+2¢; 5
By definition, P, ;. = (—1)"*<q, 2 4 ! ’J)QGJLC. Then P, sat-

isfies the following recursive relations

Pa,b,cBi - Qi‘)_Qa—Qc_Cij BiPa,b,c (1019)
=la + 1]; Pot1pc — q;lJrC_Qb_cTi’jJrQ[—Cri,j —b+c+ l]iPa,b—l,c%Ti-

and

Pa,b,cBTi - q;26+a+cfcn',j BTiPa,b,c
=[b—a+ 1P rijapiiec + ¢+ 1iPacipricst (10.20)
g T ([~ — a+ b — 20+ 1 Pacrpe + [~y — ¢+ Ui Pape-t)-

These two relations (10.19)-(10.20) indicate that P, . also satisfies the defining recur-

sive relations (10.6)-(10.7) for b,

_
i b Therefore, we have proved P, ;. = b

1,71,5;a,b,¢c

for arbitrary a, b,c > 0. O
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10.3 Proof of Theorem 7.3(iii)

Recall r; = s;5:8; = S745;5;; when ¢; ;;, = —1. We first formulate the relation between
elements v; ri j.ab.c; Lirijape i Definition 10.1 and (unrescaled) Lusztig symmetries
,Tvi’ﬁ1 on U.

For a subset J C I, denote 6] to be the subalgebra of U generated by Ej, I, Kj, K,

jed.

Lemma 10.13. Let w € W with a reduced expression w = s; ---s; . For any

J & {i1 i}, we have

T, _1(Ej) = “Ad(ES™ - ES)E; (10.21)
where as = _<Sik8ikf1 S Sin (a;/s)’ aj) fO’f’ 1<s< k.

Proof. We prove this lemma by induction on k& = I[(w). For k = 1, this result is
well-known; see [Ja95, 8.14(6)].

and z = "Ad(El-(;l2)-~~E(a’“))Ej. By

k 1k

Suppose that & > 1. Set w' = s;,---s;

induction hypothesis, we have T w1 (E;) = x. It remains to show that

T (z) = "Ad(E{)a, (10.22)

We consider the ﬁi17...7ik—module UAd(ﬁih...,ik)Ej and denote its irreducible sub-
module containing E; by M;. Since j & {i; - - - i}, we have “Ad(F;,)E; = 0 and then

E; is the lowest weight vector for the M;. Note that both = and "Ad(Ei(fl))x are
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extremal weight vectors in M;. Then we must have

“Ad(F))z =0, “AdE“ )z =0. (10.23)

1

On the other hand, for any integrable U-module V', recall that

T, = Z (_1)becfbﬂ(1a)Ei(f)Fi(f)v, Vv € Vj,

2
a—b+c=m

where m = (o), A). Using similar arguments in [Ja95, 8.9-8.10] and (10.23), we obtain

T/, 1(av) = “Ad(E)aT],  (v)

11,

for any vector v in any integrable U-module. Therefore, we have proved this lemma

by induction. |

Write a, 8 for —c¢;;, —c;;; respectively. By Lemma 10.13, we have

Troo1(F)) = Yirigpatpar  Te1(Brj) = Triirjigato- (10.24)
1/'2,+1(Fj) = yg,n’,j;ﬁ,a+ﬂ,a7 TI/'Q,+1<ETj) = xlﬂ,i,rj;ﬁ,a+,3,a- (10.25)
Since ¢;r = —1, Go = —qi_lm. By (10.24), the action of (rescaled) symmetries

§£i7_1 is given by

T, 1(F}) = YirigipotBa
(10.26)

Tt (T (B K) = 67 T @i s.a) K5 (KIKL) P,
where the second formula follows from §;i7*1§w' = ‘j'w. 5’1’%71.
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By (10.25), we obtain analogous formulas for 5’;’ +1 below

§¥ (F) = y;‘l’l ;3,04 8,0
T rbens (10.27)
{'T;‘/i,+1 (Two<ETj)K_;) - Q’?+BT”LU0 (x;i,i,Tj;,B,a+ﬁ,a)K‘;’(K’L{K;'i)a—‘rﬂ?
Recall elements b; i j.ab.c; b; i .0 b defined in Definitions 10.6-10.7.

Theorem 10.14. Let j € 1,,j # i, Tt.
(1) The element b; +; j.3.0+8,a Satisfies

birigipatsa i = TiTl _1(By). (10.28)
(2) The element b; ,; ;.50 5,0 Satisfies

birijipatsade(Ti) ™ = T (Ti) 7' TY, 41 (B)): (10.29)

(3) I—)i,Ti,j;B,a,B,a - O-Z(bi17i;j§57aﬂ7a)'

In other word, the element T‘;’_I(Bj) := b rij:3,08,a Satisfies (7.5) and the element
T (B) = b

b; 1ij.p.0p.o Satisties (7.6). Hence, we have proved Theorem 7.3(iii).

Proof. We prove (1). By Lemma 5.1 and (10.26), we have

Tiﬁ’;i,fl(Bj) :f1§;,71(5> + Tz‘};ﬂ(Eng/)
:Yz‘};fl(ﬂ> + 5-(:‘271<E]K;):fl

=Y iYirijipran + 6 Twu(Trii s prae) K (K KL)TPY,
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On the other hand, setting a = 5,b = 6 + a,c¢ = « in Proposition 10.10-10.11, we

have

bi7Ti’j;ﬁ,ﬂ+a7aTi = T’Lyl77'1/7]7ﬁ”8+o¢7a )

+ __otBF / 171 \a+
b iispran =G Twe(Triigis ran) K (KK ) .

Therefore, by the above formulas, we have

v T - T + —
TiTr1(Bj) =bi i s praaTi T Virijig grava Ti = birijig graa Vi

Similarly, one can obtain (2) using Proposition 10.12 and (10.27).

The statement (3) is a consequence of Proposition 10.8. O

10.4 A divided power formulation

In this subsection, we derive divided power formulations for root vectors b ri j.ap.c) b; i jiap.e

from their recursive Definitions 10.6-10.7.

Lemma 10.15. We have for any a > 0,

bi,Ti,j;a,0,0 = bi,Ti,j;0,0,a .

Proof. It suffices to show that b b: By Definition 10.1, we have

i,74,5;0,0,0 — Y%i,74,5;0,0,a"
Yi ri,5:a,0,0 = Yi,7i,5,0,0,a Li 7ri,5:a,0,0 = Li7i,50,0,a
Then the desired identities follow from Proposition 10.10-10.11. ]
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Theorem 10.16. The elements b; 7i j.ap,.c, b

,Cr Zi,71,7;a,b,¢

fora,b,c > 0 admit the following

divided power formulations

a—v b—v—u c—u

t+v+r+s+u
z ,T1,7;a,b,c — E § E E

u,v>0 t=0 s=0 r=0

t(b—2c+a—a—2v+1)+v(b—
%

) LY 4r(a—ctu+1)+s(c+B—b+v—2u+1)+u(c+B—btv— “T_l)

% ﬁ —bt+cto a—ctu B(a—v—t)B(l?—v—u—s)B(c u— r)B B B S)ku B(t)kfv

(10.30)

t+v+r+s+u
—z ,T1,5;a,b,c T

t(b—2ct+a—a—2v+1)4v(b—2c+a—

q ) +r(a—ctut1)+s(c+B—b+v—2u+1)u(c+B—btv—251)
i

b—b+c+v| |la—cHu
« k,v B(t)kuB S)B(T)B B(C u= 7")B(b v—U— S)B(@ v— t)‘

(% u

(10.31)

Proof. Recall from Proposition 10.8 that b = 0"(birijape). The second for-

24,74,5;a,b,c

mula is obtained by applying ¢* to the first one.

The first formula for b; ;; j.qp. is derived from recursive relations (10.3)-(10.4) in

Definition 10.6 via three steps.

1. Recall that b; ;000 = Bj. Setting b = ¢ = 0 in (10.3), we have a recursive
relation for b; ;; j.a,0,0. Using this relation and an induction on a, we obtain the

formula of b; +; j.a.00 as follows
a

birigao0 = O (—1)7q/ VBT BB,

) 7
r=0

133



By Lemma 10.15, b; 7i j:0,0,a = bi,rijia,00 1S given by the same formula.

2. Setting @ = 0 in (10.4), we have a recursive relation for b; ;; j.0p.. Using this
relation and an induction on b, we can write b; ;i j.0p.c in terms of b; 7; .0.0.c—u

for 0 < u < min(b, c) as follows

min(b,c) b—u

b s+u sc+,3 b—2u+1)+u(c+p—b— )
,71,5;0,b,c — E E

u=0 s=0
a—c+t+u >
(b—u—s) (8)7u
X Bri ™ " birig0.0.e—uBri K
u

3. Using (10.3) and an induction on a, we can write b; - j.q.p.c i terms of b; 7; .0 p—v,c

for 0 < v < min(a, b) as follows

min(a,b) a—v

t+v t(b 2c+a—a—2v+1)+v(b— 21)
Z Ti,J;a,b,c — E g X

v=0 t=0

B—b+c+wv o ~
X Bz( g bi,Ti,j;O,bfv,cBi(t) kf

v

Now the desired formula (10.30) is obtained by combining formulas in steps (1)-
(3). O
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11 Symmetry Té,—1 and root vectors

The braid group symmetries 77 ﬁ’fe on U send root vectors to root vectors

i,e)

L (] o) = i L (@igime) =
Tz‘,e Lijime) = Liji—m—cij.er Ti,—e Ligime) = Liji—m—cij e

(11.1)

Tz‘/,e (yg,j;m,e) = Yiji—m—cije E,f—e(yivj%mve) - ygvﬁ_m_cij’e'
cf. [Lus93, Proposition 37.2.5].

We will show that our symmetry ’ﬁf‘;_l analogously sends root vectors in U to
root vectors in U". Precisely, when ¢ = 70 = w,t, the actions of T ;7_1 on root vectors

b

b; . are formulated in Theorem 11.1; when ¢; -; = 0,7 = wsi, the actions of T; ; on

root vectors b are formulated in Theorem 11.3.

Z4,T%,J5m1,m2

11.1 Case 1 = 71 = Wet

Note that ¢;; = ¢; -; when ¢ = 7i. Recall that i",-1 = \Tf;lic_l\ﬁffgo and ¢, = —¢; 2in

7

this case. Then we have

Té,—l(yz{,j;m) = Yigi—cij—m;

N N B (11.2)
T’;,—l <Tw. (x’IL,T],m)K]/(KZ/)m> = <£Z+2m‘3'w. (xi,Tj;*Cijfm)K]/'(Kz{)icijim7
where the second identity uses the commutativity of 5’;7_1, ‘:Tv'w..
Theorem 11.1. We have, form > 0,5 #i € L,
T;,—l([—)i,j;m) = bi,j;—cl-j—m- (11-3)
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Proof. By Proposition 8.10 and (11.2), we have

:fi%;,fl (l—):_j,m):f;1

_ (_1>mqi—2m(cij+m—l);j:£’71 ((}w. (Ié,rj;m)Kg/‘ (Kz/)m)

= (_1)6”+mqi_2(8ij+m)(m+1):j:w. (xi,fj;*cijfm)K;'(Kz()icijim' (114)
By the definition of ’AIV‘Z-y_l, we have

T;,fl((—)i,j;m) = TZ (;j:z{,fl(l—);,rj;m) + "j:z/',fl(l—)ii,j;m))fiil
T

o) &% (& ~
= Tl (Tg,fla—)z_j;m) + ‘th,fl(y;,j;m»

—

;) (_1)cu+mqi—2(cz‘j+m)(m+1)xi’7j;7cu 7ij/ (Kz{)fmj -m

+ Tiyi,j;—cij—mTZI

@ s

] Cig—m 45— Cig—m

1,J;=Cij—m>

where the equality (x) follows from Proposition 8.9; the equality (f) follows from

(11.4) and (11.2); the equality (1) follows form Propositions 8.7-8.8. O

11.2 Case ¢ ;; =0, wet =1

Recall the root vectors Y .; i mas Triirjimy mp 10 Definition 9.3. We first show that
the symmetry ‘};h—l on U sends these root vectors to root vectors, as a generalization
of [Lus93, Proposition 37.2.5]. We then formulate the sanalog of this property for the

’i‘;ﬁl—action on U’ in Theorem 11.3.
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Proposition 11.2. Leti,5 € 1,5 # i,7i. We have

/ / o
('Trl',fl(yi,T’L',j;mhmz) = Yi,rigi—cij—mi,—cri j—ma> (11'5>
r / _ (cijterig)/2+ma+me
(‘Tri,fl( Tz',i,rj;ml,m2> = Sio T8, TJ;—Cij—M1,—Cri j—M2) (116>

Ty (KGR ™ (B)™) = o or I (R oo (K7 ) ~ersa e (11.7)
Proof. All three formulas are proved by similar computations; we only give the proof
for the first formula here. Recall that, since ¢;; = 0, we have r; = s;5,; and ¢;, =

—q; . The element Yi rijimy.m, @dmits a reformulation similar to Remark 9.2
m2

s —s(mao+tcrij—1 s ma—s
y’;,’?’i,j;’n’Lth = Z(_l) 4q; (2 ! )Fji)yz{,j;ml,—lFﬂgi 2= (118)
s=0

By [Lus93, Proposition 37.2.5], we have ‘3'2771(y§7j;m1771) = Yiji—cij—m1,—1- By (11.8),

we have
\- ( 1) a(s) ( )
T s —s(ma+tcrij— 3) - mo—s
Tt Wi gim ma) = Z(_l) R S (7 F ) i
s=0
ma
= 30 Dy Y
s=0
—Cij—m1
r r(mi+1 —Cijj—mi—r r
- Z (=1) qz‘( o )Fz'( o )ylfi,j;mz,—le‘( )
r=0

Now applying (}/77;,4 to the above formula and using [Lus93, Proposition 37.2.5] again,

we obtain
—Cij—m1
~ r r(mi+1 —Cij—m1—T) & r
T:‘iﬁl@z/',Ti,j;MLmz) = Z (_1) qi( ' )Fz‘( ! ' Tri,—l(y/ri,j;mg,—l)ﬂ()
r=0
—Cij—m1
= (_1)qu'r(ml+1)F’i(70ijimlir) Ti,j;—cri,j—m27—1ﬂ(r)
r=0
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= yi,Ti,j;fcijfml,767—7;7j*m27
where the last equality follows by Remark 9.2. O

Using ﬁi,qgw. =T ﬁi,q and Proposition 11.2, we have the following formula

el
‘J’ri,fl

(T (] )G ()™ (K7,)™)

Ti7i77j;m1 ;M2

_ Cijtcrijt2mi+2ma
_gi7<> Two

(‘xTi,i,Tj%cij*ml,fcn‘,j*mz)K]/'(Kz()icijiml (K;'i)icﬂ’jim? (119>
Theorem 11.3. Leti,j € 1,5 #i,7i. We have
T;,fl(l—)i,‘ri,j;ml,mz) = biﬂ—i,j?_cij_mh_c‘ri,j_mZ' (11'10)

Proof. Recall that Tg,l(x) = Tﬁ'{rfl(m)i—l for any z € U*. By Proposition 9.16

and (11.9), we have

Tij‘;,fl(b:ﬂ,j;mhmg) ;1
:<_1)m1+m2qi—(m1+m2)(cij+c7i,j+m1+m2—1)§«;i’71 (ﬁ«w. (m;i,i,rj;ml,m2>KJ/'(Kz{)ml (K;ng)

—(—1\mtmateijter s~ (matmetl)(cijter j+mitms)
<_ ) q; X

X (Iw. (ITi,i,T,jZ—Cij_ml,—Cq—i,]'_m2)K; (K()icij o (K‘/ri)icﬁ'j o

)

=pt
2,T2,7;—Cij =M1, —Cri,j—M2)

where the last step follows from Proposition 9.14.

On the other hand, by Proposition 9.15, (11.5) and Proposition 9.13, we have

T, 7. (b Y

-1
r;,—1 (—z,Ti,j;m1,m2)Ti
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A A / ~~—1
_Tij‘ri,fl (yi,‘f'i,j;m1,m2)Ti

—~ . . .. 71
_szl»‘”ﬁ];*ci]’*ml »y—Cri,j—mM2 Tz

—b-

4,T%,J;—Cij —M1,—Cri j—M2"

Using the above two formulas, we have

T/ AT — + -1
T’L',fl b ) _Tigil‘i,fl(l—)i,‘ri,j;ml,mz + —i,Ti,j;ml,mg)Ti

<_i7Ti7j;m1 12

=b; + b

T ,T,J5—Cij — M, —Crg j — M2 70,05 Cij =M1, —Crq,j =2

_biﬁi:j?—cij —M1,—Cri, M2

as desired.
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Part 111

Properties for relative braid group

symmetries
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12 A basic property of new symmetries

In this section, we establish a basic property that 'f‘g, for w € W°, sends B; to B;,
if wa; = o5 see Theorem 12.13. This is a generalization of a well-known property of

braid group action on Chevalley generators in the setting of quantum groups.

We shall first study the rank 2 cases separately, depending on whether ¢, (w,) = 3,

4, or 6. Then we deal with the general cases.

12.1 Rank 2 cases with /,(w,) =3

Assume that I, , = {7, j} such that {,(w,) = 3; in this case, according to Table 2, we

must have 7 = Id and hence we identify I, = {i,j} as well.

Lemma 12.1. We have ‘}riij(Bi) = B,;.

Proof. Noting that ((r;r;) = ¢(r;) + {(r;), we have ‘j}ﬁr]. = Trr,- Noting that
r;rj(a;) = a;, we have that %rirj (X;) = X, for X = F, FE or K'; cf. [Lus93, 39.2] or
[Ja95, Proposition 8.20].

Recall 7 = Id, and B; = F; + ‘j“w.(Ei)KZ(. Thanks to (2.21), %w. commutes with

both (}ri and ‘}rj. Therefore, we have

The lemma is proved. O

Proposition 12.2. We have T;ITJI(Bi) = B;; ot equivalently, 'Tji‘i(Bj) = B;.

Proof. Since ’f‘;l and 'f‘;l are automorphism of U?, we have ’f‘;l’f‘gl(Bi) —Bj € U
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Then we can write this element in terms of monomial basis of U’ (see Proposi-

tion 2.11):

’f;l'i‘fl(Bi) —B; = Z A;Bj, for some A; € ﬁfﬁm.
JeJg

On the other hand, using the intertwining relation (4.6) twice, we have

T 'T;H(B) = T30 (X)) - T4 91 (By) - T (0 )Y

K3 J r; J 7

By Lemma 12.1, we rewrite the above identity as

By the equality (12.2), we rewrite (12.1) in the following form

YT (5) By T (Y)Y — By =Y AsBy.
JeJ

(12.1)

(12.2)

(12.3)

Now we claim A;B; = 0, for each J € J, by comparing the weights in ZI. Recall

from Remark 3.10 that T; = > om0 T™ where wt(T7) = m(a; + weary;) and then

weights of ;Jv';l('AfJ) lie in N(r;o; + r;wea-;). Hence, the weights appearing on LHS

(12.3) must belong to the set @);;, where

Qi = Q;; U Q7
Qi = —aj + N(a; + wearr;) + N(rja; + riweorr;),

Q= we() + N(a; + wetrs) + N(ri0 + rawear;).
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On the other hand, note that the weight of the lowest weight component of A;B;
lies in @y := —wt(J) + NI,. Then A;B; # 0 only if Q; N Q;; # @. It immediately
follows that A;B; = 0 unless wt(J) € «; + NI,. Moreover, when wt(.J) € a; + NI,

the only possible element in the intersection ;N Q;; is —a;.

However, since T,{]v’; 1(“}]-) has constant term 1, the weight (—c;) component for
LHS (12.3) is 0. This implies that A;B; = 0, for each J € 7, and then the desired

identity follows by (12.1). O

Corollary 12.3. We have
TN, B; = BT (Y). (12.4)

Proof. One reads off from the proof of Proposition 12.2 that A;B; = 0, for J € 7,

and hence the corollary follows from the relation (12.3). [

Corollary 12.4. We have

Blfjﬁirl(;fj) — TjTri(Tj)Bip (125)

BIT,,(T)T; = T (Y)Y BS. (12.6)

Y, 7.1 (0B = B ;7. HY)). (12.7)

By Proposition 13.3, we have ‘};]1(”?2) = T,,(Y;). Hence, (12.7) implies the desired

identity (12.5).

Recall from Proposition 3.8 that Ti, :fj are both fixed by the anti-involution o.

Recall also that a’}r_i lg = T,,. Applying the anti-involution o to the identity (12.4),
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we have proved (12.6). O

12.2 Rank 2 cases with /,(w,) = 4

In this subsection, we assume that I, . = {i, 7} such that ¢, (w,) = 4. Let {i, 7} and

{j, 77} be the corresponding two distinct T-orbits of L.

Lemma 12.5. Denote the diagram involution o := 197, ;. Then we have

I'jI'ﬂ'j(Oéi) = Oy, and TroriTrj (Bl) = Bgi'

(Moreover, a nontrivial o can occur only in type AIIl, and in this case, o = T.)

Proof. As before, set wy to be the longest element of the Weyl group W and w,; =
r;we; set 7y and 7,; to be the diagram automorphisms corresponding to wy and
W, 4, Tespectively. In this case, wy satisfies the relation wy = wow, = r;r;r;r,w, =

r;r;,r;w, ;. Then we have

T()(Q{i) = —w()(O{Z‘) = —rjrirjw.yi(a,-) = I'jI'iI'jT.’Z‘(OZi).

Setting p := 7¢T.;, we have obtained r;r;rj(c;) = . (We thank Stefan Kolb for
providing the above conceptual argument which replaces our earlier case-by-case proof

of the existence of p; moreover, his argument produces a precise formula for p.)

In particular, we observe that a nontrivial ¢ occurs only in type AIII (for some

particular 7), and in this case, o = 7.
Recalling r; = r,;, we also have r;r;r;(a.;) = qpr.
We have ((r;r;r;) = {(r;) + {(r;) + {(r;), by Proposition 2.9. Therefore, it follows
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from r;r;rj(0;) = a, that ‘j’rjiﬁrj (X;) = Xy, for X = F, K’; cf. [Lus93, 39.2] or

[Ja95, Proposition 8.20]. Similarly, we have T, Ty, Tp (Eri) = Eyri.

Recall B, = F; + ‘}w.(Eﬂ-)K{. Thanks to (2.21), ‘}w. commutes with both ‘}ri and

‘j’rj. Therefore, we have

T, T0, T2, (Bi) = Trjrirj (£ + ‘Iw.<ETi>K() = Foi +Tw, (E@ﬂ')K, = By;.

7 ot

The lemma is proved. O

Proposition 12.6. Retain the notation in Lemma 12.5. Then ’f‘;l’fjl’f;l(Bi) =

By;i; or equivalently, ’T‘J’T‘Z’TJ(Bl) = B,.

Proof. Since 'f‘;l and ’f‘;l are automorphism of U?, we have T‘;l’fflfjl(Bi) — By €
U". Then we can write this element in terms of monomial basis of U (see Proposi-

tion 2.11):

T, T (B) — By =y AsBy;,  forsome A, € UJUY.  (128)
JeJg

On the other hand, using the intertwining relation (4.6) of Ti_ ! we have
=T, TN T TN - T T T (B - T T () T () Y5

Since i; 1‘5’;1_ 15’;3 Y(B;) = B,; by Lemma 12.5, we rewrite the above identity as

T; T, T (B;) = T; T, (T) T T, () - By - T T () T () Y57

J

(12.9)
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By the identity (12.9), we rewrite (12.8) in the following form

T () T M (T)) By T T (L) T (G ) Y = B = > AsBy.
JeJ
(12.10)

By a weight argument entirely similar to the proof of Proposition 12.2, we obtain

> ey AsBy = 0. Thus, the proposition follows by (12.8). ]

Corollary 12.7. We have
Bu ¥ T ) T AT HY,) =1, T 4) 72191 () By (12.11)
Proof. Since ZJEJ A;Bj; = 0, as shown in the proof of Proposition 12.6, the corollary

follows from the relation (12.10). O

Corollary 12.8. We have

BY,; T M) T (X)) = 15 T, 1Y) T (T) B, (12.12)

BIT N Ty (1) i = T (X0) T () TS (12.13)

Proof. We prove (12.12). Noting that ¢ equals either Id or 7, we have by Remark 4.8
that o commutes with ‘j'ri,‘j}j, and by Proposition 3.8 that o fixes Ti, T]-. Hence,

applying o to both sides of (12.11), we have

B, TN T AT () =0 T4 T4 7,4 5) By (12.14)

By Proposition 13.3, we have i‘jl‘};l(fj) = T,,(Y;). Hence, the desired relation
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(12.12) follows by (12.14).

We next show (12.13). Recall from Proposition 3.8 that T;, :fj are both fixed by
the anti-involution 0. Recall also that 0‘};10 = T,,. Switching 4, in (12.12) and

then applying o to it, we obtain (12.13). ]

12.3 Rank 2 case with /,(w,) =6

The rank 2 case with ¢,(w,) = 6 occurs only in split G type. Let (I = I,,1d) be a
Sakate diagram of split type Gs. In this case, the relative Weyl group W° is identified
with W and r, = s, for a € I =1, = {i,j}. We do not specify which root ¢ or j is

long.

Lemma 12.9. We have ‘};il(BZ-) = B,.

Proof. Follows by [Lus93, 39.2] and the same type of arguments as for Lemma 12.1
and Lemma 12.5. O

Proposition 12.10. We have T;}(BZ) = B;; or equivalently, Tﬂ(Bi) = B;.

Proof. Since 'T‘; 'and 'i‘;l are automorphism of U?, we have 'T;}(B,) —B; € U". Then

we can write this element in terms of monomial basis of U’ (see Proposition 2.11):

T, (Bi) - B; = Z AsBy, for some A; € UFUY. (12.15)
Jeg

On the other hand, using the intertwining relation (4.6) of ’T; ! we have

(12.16)



where

Q=T T71(0) TT1(T) T 97 T4 T T T N(Y). (12.17)

J i
By Lemma 12.9, we rewrite the identity (12.16) as

T, (B;) = OB (12.18)

By the identity (12.18), we rewrite (12.15) in the following form

B —Bi=> AB,. (12.19)
JeJg

By a weight argument entirely similar to the proof of Proposition 12.2, we obtain

> ey AsBy = 0. Thus, the proposition follows by (12.15). O

Corollary 12.11. Let €; be as in (12.17). We have
BiQ: = QB;. (12.20)

Proof. Since ;. , A;jB; = 0, as shown in the proof of Proposition 12.10, the corol-

lary follows from the formula (12.19). O

Corollary 12.12. We have the following intertwining relations:

BiTJ"ISiSjSiSj (Ti)TsiSjsi (TJ)TL%S]' (TZ)‘L(TJ)

= TjTSiSjsiSj (Ti)TSisti (Tj)TSisj (T1>Tl<T])Bl> (1221>

B;'T:J:Sisjsisj (Ti>§sisjsi (Tj>§sisj (f’fl)‘}l(:‘f])fl

= Torsyo0; (L) Tarsso0 (L)) Tors, (Ti) T (T,) T, B2 (12.22)
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Proof. By Proposition 13.3, we have ‘j'sjsisjsisj(Ti) = T, and ‘}Sisjsisjsi(Tj) =T,

Then we have

Hence, the desired identity (12.21) follows by (12.20).

We next prove (12.22). Switching i, j in (12.20), we have
B;Q; = OB, (12.23)

where 2; is defined by switching 4, j in (12.17).

Recall from Proposition 3.8 that TZ-, Tj are both fixed by o. Then by the definition

of €2;, we have

Hence, applying o to (12.23) and then using this formula of o(£2;), we obtain (12.22).
]

12.4 The general identity ’f‘w(Bi) = By

Let w € W°. Given a reduced expression w = r;r;,...r; for w, we shall denote

T, =T,T,...T;.

Theorem 12.13. Suppose that wi € I, forw € W° andi € I,. Then ’T‘Q(Bi) = Bui,

for some reduced expression w of w.

(Once Theorem 14.1 on braid relation for ’f‘z is proved, we can replace 'f‘ﬂ in
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Theorem 12.13 by 'f‘w, which depends only on w, not on a reduced expression w of

w.)

Proof. The strategy of the proof is modified from a well-known quantum group coun-
terpart, cf. [Ja95, Lemma 8.20]. We shall reduce the proof to the rank 2 cases which

were established earlier and finish the proof by induction on ¢, (w).

The statement holds for arbitrary rank 2 Satake (sub-)diagrams (I,U{4, 7, j, 75}, 7).
Indeed in the case when ¢(w,) = 2, the claim is trivial. In the case when ¢(w,) = 3,4
or 6, the claim has been established in Proposition 12.2, Proposition 12.6, and Propo-
sition 12.10 respectively. In the case when f(w,) = oo, there do not exist elements

w € W° i €1, such that wi € I, and then the claim is trivial.

In general, we use an induction on [,(w), for w € W®, where [, is the length
function for the relative Weyl group W°. Recall the simple system {@;|i € I, } for
the relative root system from (2.23). Since wf = 6w and wi € I, by assumption,
we have w(@;) = @y;. We denote a positive (and negative) root in the relative root

system by 8 > 0 (and respectively, 8 < 0).

Suppose that I,(w) > 0. Then there exists j € I, such that w(a;) < 0; clearly
J # 4,71 since w(@;) > 0. Consider the minimal length representatives of W° with
respect to the rank 2 parabolic subgroup (r;,r;). We have a decomposition w = w'w”
in W* such that w'(a;) > 0,w'(@;) > 0 and w” lies in the subgroup (r;, r;); moreover,
lo(w) = lo(w') + I (w"). Now w(@;) > 0 and w(@;) < 0 implies that w”(a;) > 0 and
w”(@;) < 0 (since w’ preserves the signs of the roots w”(@;) and w”(@;)). It follows

that

w” (o) > 0, w’(aj) <0, w'(ay) > 0, w'(a) > 0.
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(The positive system of the restricted root system is compatible with the positive
system of R.) Moreover since ry, for any s € L, -, acts on I, as the involution 7, 47,

we must have w'(ay,) > 0, for any a € I,; see also Proposition 4.11.

We show that w"i € I,. Since w”(e;) > 0 and w”(o;) € RN (Zey; + Zoy; + Z1,),

we can write w”(a;) € R in the following form
w'(e;) = ra; + sa; + .
for some r,s > 0, e € NI,. We consider the following cases:

1. At least two of r, s, ae are nonzero. Then w'w” (o) = rw'(cy) + sw' (o) +w' ()
cannot be simple for w'(a;) > 0,w'(a;) > 0,w'(a) > 0; this contradicts that

w(oy;) = w'w"(a;) is simple.

2.7 =0, =0and s > 0. Then s = 1 and w"(c;) = «; is simple. A similar
argument applying to the case s = 0, = 0 and r > 0 shows that w”(«;) = «;

is simple.

3.7m =5 =0,a, # 0. We show that this case cannot occur. Indeed, we have
w" (a;) = O(ae) = ae = w" (). Since w"f = Hw”, the above identity implies

that «; is fixed by 6, which is impossible for ¢ € .

Therefore, we have shown w”i € I, and w”(«;) = ayr;. By the rank two results
in Proposition 12.2 and Proposition 12.6, we have TL" (B;) = By, for any reduced
expression w” of w”. Now using the induction hypothesis, there exists a reduced

expression w’ such that w = w’ - w” is a reduced expression for w and



The theorem is proved. O

13 Factorization of quasi K-matrices

It is conjectured by Dobson and Kolb [DK19] that quasi K-matrices admit factoriza-
tion into products of rank 1 quasi K-matrices analogous to the factorization prop-
erties of quasi R-matrices. They showed that the factorization of quasi K-matrices
for arbitrary finite types reduces to the rank two cases. In this section, using (the
rank 2 cases of) Theorem 12.13 we provide a uniform proof of the factorization of
quasi K-matrices for all rank two Satake diagrams, hence completing the proof of

Dobson-Kolb conjecture in all finite types.

13.1 Factorization of T

Let (I =1, UL, 7) be a Satake diagram of arbitrary Kac-Moody type. Let w be any

element in the relative Weyl group W° with a reduced expression
W =T iy - Ly

here m = {,(w), the length of w € W° (not to be confused as the length ¢(w) in W).

Following [DK19] (who worked in the setting of U%), we define, for 1 <k < m,

Yk = ‘Tril ('Trig o Trik 1 (Tzk)’
: (13.1)
Tw _ T[m]f’f[m—l] . ’T[l]

(In the notation k] above, we have suppressed the dependence on w.)
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The goal of this section is to establish Theorem 13.1, which is a U'-variant of (and
implies) [DK19, Conjecture 3.22] for UL with general parameters . The restriction on
parameters ¢ in [DK19] can be removed in light of the development in [AV22, KY20]

which allows more general parameters in quasi K-matrices.

Theorem 13.1.

(1) For any w € W°, the partial quasi K-matriz Tg is independent of the choice of

reduced expressions of w (and hence can be denoted by Tw)

(2) The quasi K-matriz T for U of any finite type admits a factorization T = Tew.,

where w, is the longest element in the relative Weyl group W°.

13.2 Reduction to rank 2

Let us recall some partial results from [DK19] in this direction (which can be adapted

from UL to U* without difficulties).

Theorem 13.2 (cf. [DK19, Theorems 3.17 and 3.20]). (a) Theorem 13.1 (1) holds
for U of a given Kac-Moody type if it holds for all its finite-type rank 2 Satake

subdiagrams.
(b) Theorem 13.1 (2) holds for U of a given finite type if it holds for all its rank 2

Satake subdiagrams.

The proof for Theorem 13.2 (a) is essentially the same as [DK19, Theorem 3.17]
(Even though only finite type Satake diagrams are considered in that paper, the proof

therein can be adopted for our proposition with no difficulty).
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The arguments for Theorem 13.2 (b) are largely formal once the following crucial
result (see [DK19, Proposition 3.18)) is in place. We provide a short new proof below.
Recall w, is the longest element in W°. Recall also the diagram involution 7y such
that wo(qy) = —arya,, for all 4, where wy is the longest element in W.

Proposition 13.3 (cf. [DK19, Proposition 3.18]). Let w, = r; 1, - - - 15, be a reduced

expression of w.. Then we have iil ‘j}iz . "j:rim,l (sz) = :fmm.
Proof. We have wy = w,w,, and hence, ﬁwo = {]V'wogw.. It follows by Lemma 4.4 that

F—1= _ -1 = ) . =
TuoT0 = T, .. Teji,, When acting on Uy, , . Thus,

Tol5 () = Tol 7ua (Yo) = Tol (T4),

We,im, We,im

since the quasi K-matrix T;  lies in a completion of ﬁi and 7o, (Y5,) = Ty, (see

m

Proposition 3.8). Then we obtain

Tﬁl(fr-,-oim) == ‘T*;?O(T,-m) = ‘Iﬁl (sz) — Til 771<Tim) = ‘Iil (Tim),

w We,im

Hence, (.T ‘Irlé e Trimfl (sz) = ‘.T (.T_l (sz) = ‘I T_l (TToim) = TToim‘ D

iy Wo Y ry,, Wo “ wo

Remark 13.4. It was verified in [DK19] that Theorem 13.1 holds in all type A rank
2 and all split rank 2 cases. The long computational proof therein is carried out

case-by-case based on several explicit rank 1 formulas which they also computed.

We note that in the finite-type rank 2 setting the first statement in Theorem 13.1
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is nontrivial only when w = w,, the longest element in W°. Hence, in the remainder

of this section, to prove Theorem 13.1 we can and shall assume that
(I =1, UL, 7) is any rank two Satake diagram of finite type, and w = w..

Moreover, we denote I, = {i, 74, j,7j}.
Let w, = r;r;,---1;, be a reduced expression. Theorem 13.1 in the case for

lo(w,) = 2, ie., w, = r;rj = r;r;, trivially holds. The next proposition reduces the

proof of Theorem 13.1 in the remaining nontrivial cases into verifying its assumption.

Proposition 13.5. Assume that Bp:fwo = TWOB]‘)’, for p =1,7. Then we have T =

T, , for any reduced expression of w,.

Proof. The identity xTwo = Twox, for x € szoﬂ-” holds by (3.4), Proposition 4.11,
and (13.1). Together with the assumption that Bp'Y”wo = TwOBI‘,’ (p = i,7), we
conclude that Two satisfies the same intertwining relations in Theorem 3.6 as for T.
Note also that clearly we have the constant term (Two)o = 1. Therefore, the desired

identity T = Two follows by the uniqueness in Theorem 3.6. O]

13.3 Factorizations in rank 2

The verification that Bpfwo = TU,OB;’ in the three cases ¢,(w,) = 3,4, or 6, is based
on the same idea, though the notations are a little different. In the subsections below,

we shall consider the three cases separately.
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Factorization for /,(w,) =3

In this subsection, we deal with the rank 2 cases for /,(w,) = 3, with the help of

Proposition 12.2 and Corollary 12.4.

Assume that I, , = {7, j} such that {,(w,) = 3; in this case only 7 = Id and hence

we identify I, = {i,j} as well. The longest element w, of the relative Weyl group

has a reduced expression

W, = I;I';I;.

By definition (13.1) of T and Two, we have

T, = YRETEYL

where by Proposition 13.3, ‘iﬁ})('i) =7, and ‘J}J.‘J'rl.(fj) — 7T;, and hence,

W=7, TE=7,T) TW=T7.

Js

By Corollary 12.4, we have

BABYE — YBTRp,

BITEITN — TEITU pe.

It follows by Theorem 3.6 that, for p = 1, j,

(13.2)

(13.3)

(13.4)

(13.5)

(13.6)

(13.7)



Now we show that Two satisfies the following intertwining relations

BT, = To,B° (p=1,j).

Wo—pr

Indeed, BTy, = BYBTETN — YEITER B YN — YEYEYURT by (13.3), (13.5)
and (13.7). Also, B;T,,, = ByYBITRETN = YBIpeYRIYN = YRIYRYNB?, by
(13.4), (13.7), and (13.6).

It follows by Proposition 13.5 (whose assumption is verified above), we have T=
Two. Using the other reduced expression for w, amounts to switching notations ¢, j

above. Hence, T = Two is independent of the choice of a reduced expression for w,.

Factorization for (,(w,) =4

In this subsection, we deal with the rank 2 cases for /,(w,) = 4, with the help of

Proposition 12.6 and Corollary 12.8.

Assume that I, , = {7, j} such that {,(w,) = 4. Let {i,7i} and {j,7j} be the
corresponding two distinct 7-orbits of I,. The longest element w, of the relative Weyl

group has a reduced expression
W, = I';IT;T;. (13.8)
By definition (13.1) of T and T,,,, we have

%, — TUTETEF (13.9)

o
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where by Proposition 13.3, ‘iﬁ}}. i(fj) =T; and T, T, T, (1s) = Ti, and hence

4 J

T =7, THO=7.7(T)=T-1(T), Y&=T,T,), THW=", (13.10)

By Corollary 12.8, we have

BXUTHTE _ FuFugep, (13.11)

BIYBIYRYN = YEYRYlpe. (13.12)

Just as in §13.3, using the identities (13.11)—(13.12) we can show that T, satisfies

the following intertwining relations Bp:fwo = T, B2, for p = i,7. It follows by

Wo~p>
Proposition 13.5 (which assumption is verified above), we have T = Two, which is

independent of the choice of a reduced expression for w,.

Factorization for /,(w,) =6

The case for /,(w,) = 6 occurs only in split G type. We shall prove this using
Proposition 12.10 and Corollary 12.12.

Let (I =1I,,7 = Id) be the Satake diagram of split type G5. In this case, W° =W
and r, = s,. Assume that I = {4, j} such that ¢,(w,) = 6. The longest element w,

of the relative Weyl group has a reduced expression

W, = 5;5j5i5;5iS5;. (13.13)
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By definition (13.1) of T and T,,,, we have

%, — TOTEITOFETRT (13.14)

where by Proposition 13.3, ’J'sisjsisjsi(fj) = Tj, and hence

:f[ﬁ] = ij Tm — {Isisjsisj (Tz)> ?[4] - Tsisjsi(Tj)u

TE =T, (T, TP =T,(T,), TW=T. (13.15)

(3

By Corollary 12.12, we have

BAGTETUTETE — FOFETUFETE g, (13.16)

B;T[5}T[4]T[3]T[Q]’f[1} — Yl BRIy By (13.17)

Just as in §13.3, using the identities (13.16)—(13.17) we can show that T.,, satisfies

the following intertwining relations Bpfwo = Ty, By, for p = i,j. It follows by

Proposition 13.5 (which assumption is verified above), we have T = :fwo, which is

independent of the choice of a reduced expression for w,.

Remark 13.6. A different and more computational proof of the factorization of the

quasi K-matrix in split type Gy was given earlier in Dobson’s thesis [Dob19].

14 Relative braid group actions on :quantum groups

Let (I = I,UL,) be a symmetric pair of arbitrary finite type or quasi-split Kac-Moody

type. In this section, we show that T, T” , where e = +1 and i € L, -, satisfy the

i,e) -i.e)
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relative braid group relations in Br(W°). An action of Br(W,) x Br(W°) on U is then
established. Moreover we show that, by central reductions and isomorphisms among
rquantum groups with different parameters, the symmetries T ’f‘;’ . on U' descend

i,e)

to TV

i,e)

T}, on the :quantum groups Uy, inducing relative braid group actions on Ug,

for an arbitrary parameter g.

14.1 Braid group relations among 'Tl

Let Ad, be the operator such that Ad,(u) := yuy ™" for y invertible. For i # j € L, ,,
let m;; be the order of r;r; in W°, with m;; € {2,3,4,6,00}. Then the following braid

relation is satisfied in Br(W°):

rr;r;--- =r;rr;---. (141)
—_—— ~—

Theorem 14.1. Fori # j € I, ;,e = £1, we have

T o o o

T, 17,1, =T, 7.7,

A > A o
Vv Vv

(14.2)

) J,€

A I A A e
Ti,eTj,eTi,e = Tj,eTl eT' AR
A 7 N

J/

~~ ~~
mij mij

Proof. By Theorem 6.7, 'T;’ 41 is the inverse of Tgﬁl. Moreover, by definition (6.11),
’T‘; D 'T‘;’ _, are conjugations of ’Tgv_l, T;’ 1 respectively. When m,; = oo, the identity
(14.2) is trivial. Hence, it suffices to prove the identity (14.2) for ’i‘;ﬁl and m;; < oo.

We shall write ’T‘;l for ’T;_l in the proof.
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Set m = m,;. Following Theorem 4.7, when acting on ﬁ, we have

T;'=Ads 0T,  T;'=Adg o7, (14.3)

In addition, we have
T, o Ady = Adg_1, 0 T, (14.4)
Ad,, 0 Ady, = Ady,,,. (14.5)

Let w, = r;rr; - - - be a reduced expression. Define wy, for 1 < k& < m, to be
——

m

w1 =1y, Wy = I;l'y, W3 = I;r';I';, ceey wy;, = W,.

Write w?, for the other reduced expression r;r;---, and define wj, for 1 < k < m,
~—

m
accordingly. Let r denote the last index in the reduced expression of w,; that is,

r=1if m=2,4,6 and r = j if m = 3. Similarly, we define " for w?,.

We rewrite LHS (14.2) as follows:

T 2 (Ads 0T o (Adg 0T, 1)+

4 J/

4
29

) O+++0 Ad§;1 ('YT)) o (5‘;1%;1 . )
J m—1
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Similarly, RHS (14.2) can be rewritten as

TP—1lp—1mq-1 =15
T, T, T; = (Adfj.t?—}(ﬁ)..-i?—} (TT,)) © (Trj T o).
N =~ 7 wi Win—1 N——

By Proposition 4.2, T; satisfies braid relations. As l(rirjr;- ) =l(wo) = l(rjrir; - ),

we have

TT T =TT T (14.6)

T T () Tl () =T, T T, (T, (14.7)

By definition (13.1), Ty, = :Jv'wmfl(TT) - ;Jv'wl(Tj)T, Applying o to this identity

and then using Proposition 3.8, we obtain

0(Tw.) = Ti- Tyt (T5) - Tt (1), (14.8)

We have a similar formula for J(ng) as well. It follows by Theorem 13.1 that
0(Tw,) = 0(Ty). The identity (14.7) now follows by the formula (14.8) and its

/
o

w! -counterpart. O

For w € W°, take a reduced expression w = r;,r;, - - -r;, and define

T, =T T, T T, =T, T} T (14.9)

i1,e —i2,e ig,e) i1,e —ig,e ig,e

By Theorem 14.1, these are independent of the choice of reduced expressions for w.
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14.2 Action of the braid group Br(W,) x Br(W°) on U’

We first establish a commutator relation between ’Tg}_l (1 € I,) and :Jv’]_l = 5’;7_1

(7 €L).

Lemma 14.2. We have 52;1711;71(:6) =T, T (), forie I, j €L, andz € U*.

1,—1% 7e 7]

Proof. Note that 7(j), 7e,i(J), Te:7(j) € L, for j € L,. Since wes; = s.;w,, for j € L,
and w, ;55 = S74.:jWe i for ¢ € I, we have

-1 -1
I'iSj = We ;We Sj = sT.ﬂiTjw.viw, = 87—.71.77‘1'2‘. (1410)

Since {(r;s;) = £(r;) + 1, it follows by (14.10) that

Tre i) T 7. (14.11)

Il
b

By Proposition 4.6, TZ is fixed by "JE‘ ! Hence, applying ‘j:J_ ! to the intertwining

relation (4.6) in Theorem 4.7 and then using (14.11), we obtain, for z € U,

TT, ()T = 1,377, («)

=T, 307, @) =TT ()T, (14.12)

r; Te,iTJ

where the last step uses Theorem 4.7 and the fact that T-' _(z) € U" by Proposi-

To,iTj

tion 4.5. The identity (14.12) clearly implies the identity in the lemma. O

Let Br(W,) and Br(1W°) be the braid groups associated to W, and W° respectively.

Theorem 14.3. There ezists a braid group action of Br(W,) x Br(W®) on U* as

automorphisms of algebras generated by ‘}}’,1 (j €L,) and 'AIJ‘Q’fl (iel,).
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Proof. By Remark 4.8, Tgﬁl is independent of the choice of representatives in a
7-orbit. The defining relations of Br(W,) x Br(W°) consist of braid relations for
Br(W,), the braid relations for Br(W?°), and relations (14.10). The braid relations
for ‘T _1,J € 1, is verified in Proposition 4.2. The braid relations for Tl _ptel,,is
verified in Theorem 14.1. The commutator relation for 7},—17 T;_l corresponding to

(14.10) is verified in Lemma 14.2. O

Remark 14.4. Since Tg,,l,T” 41 are mutually inverses and ‘J" 1,7” 41 are mutually
inverses, there also exists a braid group action of Br(W,) x Br(W®°) on U* as auto-

morphisms of algebras generated by ‘.T;’ 41 (j€l,) and ’f‘;’ b (tels).

Recall the remaining two symmetries TZ 1 T;’ _, from (6.11). We shall establish

a variant of Theorem 14.3 for T;6 and ‘J';-’e (and respectively, ’f;’ . and ‘};’ o)

Let j € I. Recall ‘J'”Jrl and ‘J' | from (4.2)-(4.3). Recalling 1, = ¥, o1 from
(3.9), we define

T =0T o, T =1, 0T o, (14.13)

Let Guo = (j+Sjo)jer, be the parameter obtained as the componentwise product

of parameters ¢, and ¢, from (2.28) and (3.8).

Lemma 14.5. The {]v';-"_l, :Jv';ﬂ are related to T” 1 T]’Jrl via a rescaling automorphism:

T =0, T U T =, Tl Vo

Sxo Sxo? Sxo T 7,1 F Gy

Proof. Recall :Jv'§f+1 = {17;3 o T;{H o \’IVJQ> and 5’}7_1 = \Tl;} o @7_1 o {Ivf% from (4.2)—(4.3).

Recall from (2.14) that T” , =¢oT/ ot and Tz'/,+1 =1o T;’ﬁl o 1. Then we
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have

7;/,71 =1, 0 THH o 9,

=V, o U T/ U, oW =T, T/ U}

Sxo 7 7,—1 T Gy
where we used 9 o \T/;Ol = ‘1}% o . The proof for the other formula is similar. [

By Proposition 4.5, the automorphisms ‘J’;’ 1) ’J" | for j €I, restrict to automor-

phisms on U

Lemma 14.6. The automorphisms ‘J';’e, er for g € Iy and e = £1, restrict to

automorphisms on U Moreover, the following identities hold:

T =T ol Th =T, oyt (14.14)

75

Proof. As ‘J' T restricts to an automorphism on U by Proposition 4.5, it suffices

Ji+1

to prove (14.14).

By Proposition 3.4, we have ¢, = Ads_, o 9" when acting on U By Proposi-
tion 4.6, Ads_, commutes with ;Jv'j. By Proposition 3.5, we have 1),0Ads_, = Adgo,.

Using these properties and (14.13), we have, for z € U,

(I;/,—l( T) =1y o TH+1 ou(z) =Py 0 T/H o Adg_, o' ()

:¢*0Adf—107,/+10¢< ) = Adg o, 0 ‘I”Jrlol/’() ¢ZOT~+1O¢()

where the last equality uses (3.18).

The proof of the other formula for ‘j'; 41 1s similar and hence skipped. O
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The next result follows from (6.11), Theorem 14.3, Remark 14.4, and Lemma 14.6.

Corollary 14.7. Let e = +1.

1. There exists a braid group action of Br(W,) x Br(W®) on U" as automorphisms

of algebras generated by ‘};6 (j €L,) and ’T‘;e (i el,).

2. There exists a braid group action of Br(W,) x Br(W®) on Ut as automorphisms

of algebras generated by ‘5'3/6 (j €L,) and ’T‘;’e (tel,).

14.3 Intertwining properties of T}, T/ ,

The automorphisms ’T‘; 1) ’T;’ _, on U* also satisfy intertwining relations similar to
those satisfied by 'I“;,_l in (4.6) and TZH in (6.1). These relations on U* will de-
scend to UL (see Proposition 15.2) and will then be used to define the relative braid

operators on module level (see Definition 15.3).

Proposition 14.8. The automorphisms 'T‘;,+1, ’T;’,_l satisfy the following intertwining

relations

T, ()T (Y7 = Th (T7HTL (@), (14.15)

2

T/ ()T, = T.T0 _\(2). (14.16)

Proof. We prove the first identity (14.15); the second identity (14.16) can be derived

: S T : T T :
from the first one by noting that T} ,,, T , are inverses and T, ,, T}, ; are inverses.

We claim the following identity holds:

T} 1 (@) - Yo (YT, 0 (Y7 = T (XT)T;, (T - T, (@), (14.17)
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Let us prove (14.17). Recall from (6.11) that ’AIV‘;H = z/ﬂ’ﬁf‘;ﬁlwz and from (3.11)
that T~1¢"(u)T = 1, (u). Hence,

T'T ()Y = T (T (') T = (T} (¥'2)).

By (4.6), T;'T,_,(¢'2)Y; = T%, _,(¢'x). Hence

Gu(T0) YT (2) Tou(T) = (T, 1 (' (2)).
This allows us to write (14.17) as an equivalent identity
V(T (@) T, (07 = Th  (T)T 4 (2). (14.18)

Recalling by (14.13) that "Jv';i’H = w*"i’”ﬁlw*, we reduce the proof of (14.18) to
verifying that @Zﬂ(m)w*(:f)*l = @/J*(T)*lvﬁ*(x), which by Proposition 3.5 is equivalent

to ()T = Yep,(z). This last identity holds by (3.11). Therefore, (14.17) is proved.

Observe that if we define T[w] by replacing ‘3’ = ‘i’r’ 1 in the definition (13.1) of
Tw by ~{,i’ 41, then we still have a factorization T = :f[wo], for any reduced expression

of w,. Below we shall use this version of factorization.

Let w! be a reduced expression of w, starting with r;, and w” (= wow’wy) be a

reduced expression of w, ending with r, ;. It follows by definition that
T =Ty =Tt 1 (Vi) T (14.19)

Since wor,; = r;wy and wy = wow,., we have w,r,; = r;w,. By definition and
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Proposition 13.3, we obtain

T = Ty} = TiThwerr = Ti T (14.20)

Now, using (14.19)-(14.20), we can simplify a key component appearing in (14.17)

as follows:
To (YT, (T = TET, (1)
= rJ’;i,-i-l (T[riwo}Til) = T;i,+1(T;1)-
Hence, the identity (14.15) follows from (14.17). O

14.4 Braid group action on U

Recall from (2.27) the :quantum group UL with parameter ¢ satisfying (2.25) (a la

Letzter), and recall a central reduction 7. : U — U from Proposition 2.12.

We first construct the braid group action on U for the distinguished parameter
So (2.28). By the definition (4.11) of Ej,o and Proposition 2.12, the kernel ker 7 is

generated by

kjo—1 (1j=j€L), kijokrjo—1 (1j#jel), KK -1 (jel).
In addition, by Proposition 4.11, we have ’T‘;’ +1(Ejyo) = Eriaj,o. Hence, the kernel of

e, is preserved by T7 ;. Therefore, T, induces a automorphism T} ;. on Ut

such that the following diagram commutes:
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U > U
'
T/
" 1,+1;60 2
UCo > U§<>

It follows from Theorem 14.1 that T} ;.. satisfy the braid relations. By definition,
‘j'j (j € L) descends to Lusztig’s automorphism 7; under the central reduction 77 .
It then follows by Theorem 14.3 and Remark 14.4 that there exists an action of the

braid group Br(W,) x Br(W®) on U?_ generated by T}, T7 .., for j € L,,i € L, .

We now consider the symmetries on U, for an arbitrary parameter ¢ satisfying

(2.25).

Via the isomorphism ¢ : Uy — U constructed in Proposition 2.14, we transport
the relative braid group action on Ug_ to a relative braid group action on U;. More
precisely, there exist automorphisms T}, ;.. on U such that the following diagram

commutes:

. 4, +160 .
U§<> > U§<>
|+ |«
T/
U 1,41 , U

Our convention here and below is that we suppress the dependence on
a general parameter ¢ for the symmetries T}, (and T; , T/ , and T; ,

below) on U..

In addition, T; commutes with ¢¢ for j € I,. Summarizing we have obtained

the following braid group action on U, (from Theorem 14.1, Theorem 14.3 and Re-
mark 14.4).
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Theorem 14.9. For an arbitrary parameter § satisfying (2.25), there ezists a braid
group action of Br(W,) x Br(W®) on UL as automorphisms of algebras generated by
T (jel) and T ) (i € Lo 7).

We next construct T} ,, on Ug for general parameters ¢. By a similar argument

/

as in §4.5, we have 'fl

q1= ~;i,+1 on U™ and both are given by

gjv*ij = griaj,*okriaj- (14.21)

Denote the parameter S, := (Sj)jer,- Then by (14.21), ’T‘; 41 preserves the
kernel of 7z and hence it induces an automorphism T; ., ~on Ug  such that the

following diagram commutes:

!

~ Ti,+1 ~

U » U
1 A
lﬂ-g*o J/WC*O
T
. 1,4+ 1;Cx0 .
U@o Uf*o

On the other hand, by Lemma 14.5, 5’; 41 descends to Lusztig’s automorphism 77
under the central reduction 7z, . Hence, by Corollary 14.7, there exits an action of the
braid group Br(W,) x Br(W*°) on Ut generated by T}, (j € I,) and T; ., (i €

Lo.+).

Now, for an arbitrary parameter ¢, we can use the isomorphism ¢ ¢, 1 to translate
*<O
this action on UL to an action on U, i.e., there exists automorphisms T} ,, on Uy

such that

1 1
T;,+1 o g = ¢ oT;

Sxo Sxo 4, +156x0 "
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In addition, 5’; 41 commutes with Qﬁg(bgi}.

/

Similarly, we can formulate the automorphisms T

1, T{_; on Ug, which are
inverses to Ty, |, T} ;; the detail is skipped. Summarizing, we have established the

following theorem, which was conjectured in [KP11, Conjecture 1.2].

Theorem 14.10. Let e = +1, and § be an arbitrary parameter satisfying (2.25).

1. There exists a braid group action of Br(W,) x Br(W®) on UL as automorphisms

of algebras generated by T} _ (j € I,) and T}, (i € L, ;).

2. There exists a braid group action of Br(W,) x Br(W?) on UL as automorphisms

of algebras generated by T7, (j € I,) and T, (i € L, ;).
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Part 1V

Relative braid group symmetries

on modules
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15 Relative braid group actions on U-modules

Let (I = I, UL, 7) be a Satake diagram of arbitrary finite type or quasi-split Kac-
Moody type, and (U, U.) be the associated quantum symmetric pair. We set ¢ to be
a balanced parameter throughout this section. Based on the intertwining properties

of TV

i,e)

T3, on Ug, we formulate the compatible action of corresponding operators on
any integrable U-module M, whose weights are bounded above. We then show that

these operators on M satisfy relative braid group relations.

15.1 Intertwining relations on U

Recall that the symmetries T}, and T}, on Uy, for e = £1, were defined in §14.4. In

this subsection we formulate the intertwining properties of these symmetries.

Recall ¢ from Proposition 2.14. Since ¢ is a balanced parameter, ¢, is the restric-
tion of ®¢ ¢, where §,¢ is defined by componentwise multiplication with S, = (50) jer.;
see the proof of Proposition 2.14. Define

T

L 1" —1 /
i+1e T (I)fOCTZH-l(IL J

SoS? 1,—1;¢

= c1>m7;’7_1<1>gj<. (15.1)

Proposition 15.1. Let ¢ be a balanced parameter. The automorphisms T} _; and

T3 on UL satisfy the following intertwining relations:

Tg,—l(w)’ri,c = Ti,c(I;-i’_l;g(x), (152)
T;t-&-l (l‘) T;,i,+1;c(T;$) = T;/¢,+1;<(Ti_,s‘1) T;'/i,—i-l;g (‘T)v (15'3)

for x € UL.
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Proof. By Theorem 4.7 and Theorem 6.1, we have, for any x € ﬁz,

T;,fl(x) ?z = T% ‘j‘;i,fl(l’)a
(15.4)

T/ () T (071) = Te(471) 77 ().

2 ri,+1

Let T}, T}", be Lusztig’s automorphisms on U. Recall the central reduction 7, :

i,e)

U — U from (2.7). By (2.10) (with a = ¢,) and (2.15), we have

e a// - 7
g, © ‘Iz‘,+1 = Ti,+1 O Tgys T, © 71‘,—1 = Ti,—1 O Ty -
2 T ? : : v
Hence, m¢ o T, = T}, om . Since the parameter ¢, is balanced, 7 is the

restriction of 7, to U . Applying 7, to the intertwining relations (15.4), we obtain,
for any x € U__,

T

1,—1;6o

T 1, (0) T 1 (T5g,) = T (T ,) T ().

(:C) Ti:Co = Ti&o Tll'i,fl(x%
(15.5)

Recall ¢ from Proposition 2.14. As we have seen in §14.4, we have ¢;oT7 .. =

T} 0, and ¢ o T = T; _,0¢. Therefore, applying ¢ to the identities (15.5)

i,—1;Go

gives us the desired intertwining relations in the proposition. O]

We next formulate intertwining relations for the other two automorphisms T} ,,

7z
and T7 _;.

Recall the central reductions g : U — U from (2.7) and 7 : U — U from

.. o~ 7 1 T _
Proposition 2.12. By Lemma 14.5, we have 7¢, o7, 1 =T} ,;omg, and ¢ oT; | =

/

. . . . .
T, 11<,, © g, - Since the parameter S, is balanced, 7 is the restriction of 7¢,, to
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U". Applying 7z, to (14.15)-(14.16), we have, for any z € UL

Sxo’

T;,Jrl;f*o (x) T;i,+1(Ti,E*Q) = T;i,ﬂ(Tz‘,@Q) Trfi,Jrl(x)v (15.6)
T'/i/vflf*o <x>Ti§*o = Tif*oTI/‘;,fl(‘r)'

Since ¢ is a balanced parameter, by the proof of Proposition 2.14, qbggbg*lo is the

restriction of &1 = & . Define

7/

l,*l;(

= (I)c*ocTil,/—lq)_l 71/;,+1;g = (I)c*ocTi/,Hq)_l (15.7)

SxoS? SxoS”

Applying gbgqbg*{} to (15.6), we have established the following.

Proposition 15.2. Let ¢ be a balanced parameter. The automorphisms T} ;.. and

T/

i _1.c on Ug satisfy the following intertwining relations, for all x € U:

T;,—H (x) ‘Illri,—kl;c(T;cl) = ‘J’:"i,-l-l;c(fri_,cl) T;¢7+1;c(x)>

T;/,—l(x)frz’,c = Tivcj;/i:_l;g(x>'

15.2 Compatible actions of T; , T, on U-modules

1,e?
Recall from Proposition 2.5 that Lusztig’s symmetries T}, T}, admit compatible ac-

tions on an integrable U-module M. Symmetries T7 ., T7..., defined in (15.1) and

1,€567 ¥ 1,€;67

(15.7), are merely rescalings of T}, T/.. Applying exactly the same rescalings to

the operators on modules (2.11)—(2.12), we obtain operators T/ ., T”__ on M which

1,567 Y 1,€;6

satisfy

Tl (uwv) =T: . (w)T: . (v), T oc(uw) =T (w) T . (v). (15.8)

2,658 2,658 2,656 2,68 2,658 2,656
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for any v € U,v € M.

Recall from (2.1) the partial order on the weight lattice X. We assume that
weights of the U-module M are bounded above, and then the quasi K-matrix admits

a well-defined action on M. We regard M as an U’-module by restriction.

Definition 15.3. Define linear operators T} ., T}, on M, for i € I, and e = &1, by

i,e)

T;ﬁl(v) = Ti,g‘TQi’fl;c(v),
T;/Hrl(U) = 7;/¢,+1;§<T;§1)T;‘/i,+1;c(U)7
T;,Jrl(U) = TL¢,+1;c(T;§1)T;‘¢,+1;§(U)7

T;,,—1<U) = Ti,CT;'Ii,—l;c(U)7

(15.9)

for any v € M.

(In these notations, we have suppressed the dependence on ¢ on these operators.)

’
2,e)

The automorphisms T, T/, on M in (15.9) are compatible with the correspond-

. . Y
ing automorphisms on U¢.

Theorem 15.4. Let M be an integrable U-module, whose weights are bounded above.

Fiziel, and e = £1. Then we have

T o(rv) = Ti (2)Ti (v), T (xv) = Ti (2)T,(v), (15.10)

ie
for any x € U ,v € M.

Proof. We prove the identity for T; _; ; the proofs for the remaining ones are similar.

In the proof, we omit the subindex ¢ for T;¢ and T}, ;. as there is no confusion.
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Since T, (zv) =T, 1 (2)T;, _;(v), we have

YTy, 1 (20) = (Tijﬂéi,fl(m)frfl)TiT;i,fl(U)a (15.11)

By Proposition 15.1, we have Y; Ty, _1(2)Y; " = T} _; (). Hence, using the definition
(15.9), the identity (15.11) implies that T} ;(zv) = T; _;(2)T; _,(v) as desired. [

15.3 Relative braid relations on U-modules

Let m;; denotes the order of r;r; in W°.

Theorem 15.5. Let M be an integrable U-module, whose weights are bounded above.
The relative braid relations hold for the linear operators T; . (and respectively, T} )

on M; that is, for any i # j € I, ; and for any v € M, we have

/ / / / / /
TleTj i (v) =T TzeTje--/( v). (15.12)
" ! /! ! /! "
T T T, 1( v) = T T (v). (15.13)
Proof. We prove the first identity for e = —1 ; the proofs for the remaining ones are

similar and skipped.

Set m = m;;. We keep the notations w,, w,, wy, w), for 1 < k < m from the proof
of Theorem 14.1. We shall write T for T} _, - and omit the subindex ¢ for Y; in

the proof, since there is no confusion.
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By definition (15.9), for any v € M, we have

T T T () = (LTI ) T T () (15.14)
~~ - —_—

By taking a central to (14.8), the first factor on RHS (15.14) is 0(Y,,,). Hence, we

have

T, T T y-(v) = 0(Tw,) T5 T3 75 -+ (v). (15.15)
~ ~~ - ~—_————

Similarly, by switching 4, 7 in (15.15), we obtain

T T Ty (v) = 0(Tur) T T T (). (15.16)
N - 4 ~—_—————

Applying a central reduction to Theorem 13.1, we have Y,,, = T,,. Since J; are

defined by rescaling 77", ; in (15.1), they satisfy the braid relations. Hence, we have

T T T () = T T T (v). (15.17)
Combining (15.15)—(15.17), we have proved the first identity for e = —1. O

16 Relative braid group symmetries on U’-modules:

split type

In this section, we consider a quantum symmetric pair (U, U?) of split Kac-Moody

type with an arbitrary parameter ¢. We introduce the notation of integrable U-
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modules. We reformulate the linear operators T; ,, T, introduced in Definition 15.3,

in terms of elements in UL. This reformulation allows us to define compatible relative

braid group symmetries on any integrable UZ-modules; see Theorem 16.9.

Our construction of compatible relative braid group symmetries on integrable U*-
modules can be generalized beyond the split type and we will study all of these in a

forthcoming paper.

16.1 Integrable U -modules

Recall the lattice X from the root datum (Y, X, (-,-),---); see § 2.1. We assume that
T extends to an involution on X and an involution on Y such that the bilinear pairing

(+,-) is invariant under 7. Then 0 acts on X, Y via (2.18).

Following [BW18b], we define

X, =X/X, where X ={\A—0()\)|\e X}. (16.1)

We shall call X, the i-weight lattice (even though X, is not a lattice). For any

A € X, write A to be its image in X,. In the split rank one case, X, = 7Z/27Z.

We define an X,-grading on U’ by setting deg B; = —# following [BW21, §3.5].
A Ui-module M is called an X,-weight module if it is X,-graded. By definition, M
is equipped with a decomposition M = @, x, M5 such that B; My C Ms— for any

¢ € [ Elements in My are called 1weight vectors.

Let M be an X,-weight modules and write M = My @ My with respect to B; for
a fixed ¢ € I. We say B; acts locally nilpotently on M if the following two conditions

are both satisfied:
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1. for any vector v € Mj, BZ.(%)U = 0 for n sufficiently large;

(?)v = 0 for n sufficiently large.

Z'7

2. for any vector v € M5, B

Here Bi(%), BZ.(T%) are 1divided powers formulated in (7.7) descending to UL by central

reductions.

Definition 16.1. An X,-weight Ul-module M is called integrable if and only if B;

acts locally nilpotently on M for any i € I.

For example, any integrable U-module is an integrable U*-module via restriction.

16.2 Transition matrices between canonical and :canonical

bases

Consider the Satake diagram of type Al;. Set I = I, = {i}. We then omit the first

subindex ¢ for notations T;, T} ,,T/., ;¢ in this subsection. We also write ¢ for g.

Denote by w the fundamental weight for sly. Let L(n) be the irreducible highest

weight U(sly)-module with highest weight nw and highest weight vector 7. Set vy, =

F(k)nifl§k§nandvk:01fl€<00rk>n. We have

[k + 1ogyr, if k<n, 0, if k=0,
Fuy, = Euj, = (16.2)

0, if k =n, n+1—klug_q, ifk>0.
By induction, we have for m > 0, (cf. [Ja95, Section 8.3])

m+k n+m-—=k
F(m)Uk = Vk+m> E(m)’uk = Vk—m- (163)

m m
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Lemma 16.2 ([Lus93, Proposition 5.2.2]). We have for 0 < k < n,e = +1,

T/<Uk) _ (—1)kqek(n7k+1)vn7k, Te//(vk) _ (_1)nfkqe(nfk)(k+1)vnik.

1

Set the parameter ¢ = ¢~*. Then there exists a bar involution * on U, which

fixes B. Explicitly,

B=F+q'EK™"

The U-module L(n) is equipped with the anti-linear involution ¢ which fixes vgn
for 0 < k < n. Then v, for 0 < k < n, is the canonical basis for L(n). Following
[BW18b, Proposition 5.1], (L(n),9") is an involutive Ul-module where ¢* acts by
' := Y. - 1. The rcanonical basis for L(n) is B%m)n, for 0 < m < n. (see [BeW18,
Theorem 2.10,3.6][BW18b, Theorem 5.7])

We first recall the formulas for the vcanonical basis elements from [BeW18]. Note

m—A—c
that a notation was used in those formulas in [BeW18], which is re-
c

placed here by a standard notation thanks to

m-—A\—c :q2(m7)\)c c+A—m

C C

q2

Lemma 16.3 ([BeW18, (2.16)-(2.17),(3.8)-(3.9)]). (1) For n = 2\ € 2N and 0 <
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m < X\, we have

B£2m)

0

BEmel)

0

m

n= Z q—252+c+2(m—>\)c
c=0
m—1

n= q—202—0+2(m—)\)c
c=0

(2) Forn =2 \+1€2N+1 and 0 <m < X, we have

(2m)
BT

2m+1)

— 62—() m— C
n = Zq 2 +2(m—2X\)

c=0

Z quC +et+2(m—A)c

c+A—m F(2m_2‘:)n,
c
L - q2
c+A—m
F(2m—1 20)17
c
- - q2
c+A—m
F(2m—20),’,’7
c
L - q2
c+A—m
F(2m+1720)7,].
c
2

We obtain the inverse formulas to those in Lemma 16.3 below.

Proposition 16.4. (1) Forn =2\ € 2N and 0 < m < X, we have

F(2m)77 _ Z(_l)cqfc+2(mf)\)c
c=0
m—1
Z c —30+2 (m=X)c
c=0

(2) Forn=2\+1€2N+1 and 0 <m < X, we have

ey

182

c 730+2m Ae

¢ + )\ -m 2m—2c
Bé n,
c
q2
ctA—m (2m—1-2¢)
0 -
c
q2
c+A—m
(2m—2c)
B; ,
c

(16.4)

(16.5)

(16.6)

(16.7)

(16.8)



2m+1 Z c —c+2 (m—2X)c ctA—m B£2m+1_20)77' (169)

i
c

q

Proof. The proofs of all 4 formulas (16.6)-(16.9) are entirely similar, and we shall

only provide the details for the proof of (16.6). Recall a standard g-binomial identity

[Lus93, 1.3.1(e)], for k € N,

T Y r+y
> e = . (16.10)

a+tc=k C a k
Thanks to to (16.4), the 2 sets
CB:= {F®n0 <m < A}, 1ICB = {Bézm)n|0 <m <A}

are bases for the same subspace of L(2)); moreover, the transition matrix from CB
to «CB is uni-triangular. We shall show that (16.6) provides the inverse transition

matrix from «CB to CB. To that end, plugging the formula (16.6) into RHS(16.4), we

obtain
m m-—c c+A—m
RHS 16. 4 — Z q72c +c+2(m—A)c
c=0 a=0 C
q?
at+c+A—m
% (_1>aq—a+2(m—)\—c)a B£2m—2c—2a),'7

a

(%) - atc —2c*+c—a m—A\)c m—A—c)a
Z (—1)+q22+ +2(m=A)ct2(m—A—c)
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k=0 a+c=k
% ( Q)a(m—/\—l)—c(k+)\—m) m—A—1 k+X—m (2m—2k)
0
c a
7 7>
Hok “ k—1 m—
k=0 k
q2

= BP™y = LHS(16.4),

c+A—m m—-A—1|

where we used =(-1)° in (*), and (**) follows by (16.10).
c c

Therefore, (16.6) indeed provides the inverse transition matrix from «CB to CB,

and hence the identity (16.6) holds. O

Remark 16.5. The formulas in Proposition 16.4 can be reformulated uniformly, re-

gardless of the parity of n € N: for £ € N,

-/

—

L3

l+c
F(nf2€)?7 _ (_1>cq7(25+1)c Bén—2€—2c)n’
c=0 Cc
q?
L5t )¢ i
—-1- c — c +c n—1-20—2c
Fn—1 26)77: Z (_1) q (20+3) B% 1-2 2)77'
c=0 C

q2
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Similarly, the formulas in Lemma 16.3 can be reformulated uniformly: for £ € N,

l+c
B%n—%)n _ q—2c2—(2€—1)c F(n—2€—2c)7],
c=0 Cc
q2
I.nT_lJ_g E
+c
n—1-2¢ —2c2— c n—1-20—2c
B% 1 2)77: g2 Fln-1-26-2¢) )
c=0 c

16.3 Rank one formulas

Set U; to be the subalgebra of U generated by F;, F;, K iﬂ. We consider an irreducible
U;-modules L(n) for fixed n > 0,4 € I in this subsection, and the goal is to find the

formula of the braid group operator T; ; on L(n), in terms of s-divided powers

B® pez)2.

i,p
Special parameter case

We set the parameter ¢; = q; ! for i € I in this subsection, unless otherwise specified.

Write by, for Bi(f%)n and vy, for E(k)n. Explicitly, the action of T} _, is given by

72,_1(1%) _ (_1)k(_qi)(2kfn)/2q;k(nfk+1)vnik’

T/ 2 (00) = (=1)"H(—g)) P 2y,

Define for p € Z/2Z

fo(Bi) =Y (=a)**BY, Tp(B) = (—a)*BY. (16.11)
k=0 k>0
k=p k=p
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Proposition 16.6. For the parameter ¢; = q; ', the actions of operators T 1, T

on L(n) are given by

T, = fa(B), T, =(1)"falB),

T;/,+1 = ?ﬁ(Bi)7 T;,+1 = <_1)n7ﬁ(Bi)’

(16.12)

Proof. The formulas of T; ,,, T/ ;| are obtained by applying the bar involution "
to formulas of T; |, Ty, respectively. Hence, we only need to show (16.12) for

T

i,—1)

1
Tiv"l‘l'

We claim that it suffices to show (16.12) on the vector 5. Suppose that Tj ;7 =
fa(Bi)n. Since T;ﬁl(B.(kf)) = B%

i\n wn

we have for any 0 < k <n

T, by =T, _(BYn) =T, (BT, _1n= B fa( By = fa(Bi)by.

in

This implies that T} ;| = fz(B;) on L(n) since {by|0 < k < n} is a basis for L(n).

Similar arguments work for the symmetry Ty, ;.

Let A = (ag¢) be the transition matrix of the canonical and +-canonical bases and

denote its inverse by A~ = (a},), i.e., for 0 < £,k < n, we have

by, = Zakw@, v = Z ) pbe. (16.13)
<k <k

We shall often write @ for ¢(v),v € L(n). Since by are fixed by 9", we have

Y by = by, (0 <k <n). (16.14)

We first formulate the action of T} _; on 7. A primary computation of the t-action
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on by = vg = 1 gives the following equality,

(=g0)""* T _yn =(=4:)""*Tig - T7 _1(v0) (16.15)
=T, v, =T Z ay by = Zawag = Z@B;fﬁ)n.
¢ ¢ ¢
Note the formulas (16.6) and (16.9) for m = A give the following uniform formula:
15]
F"n = (=1)°q Bl .
c=0

i.e., al, equals (—1)°q; if £ = n — 2¢, and equals 0 otherwise. Therefore, by (16.15),

the action of T} _; on 7 is given by the formula below,

5]
—n c ¢ p(n—2c _k Sk
T, 0= (-q)""*) (-1) g By = S (- 235577. (16.16)

c=0 k=n,0<k<n
Since Bi(j%)n = 0 for k > n, we obtain that T; 1 = fz(B;)n as desired.
We next formulate the action of T} ; on . By (16.14), T}, acts on the vector

bo = Vo by

Tg’,+1(vo) :T;:+1(T;§lvo) = TZ+1(UO) = (—Qi)n/2vn

=(=g)""*> " alybe = ()" aly Bl
l /

Recall that a;,, equals (—1)°g;  if £ = n — 2c. Hence, the action of T} ,, on L(n)
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is given by

L3]
n ¢, —cpn—2c E Sk
Ti 1 = (—a) 2 Z(_l) % Bz‘(,ﬁ ) = Z <_Qi)QBz'(,E)77' (16.17)

c=0 k=m,0<k<n

Since Bi(k)n = 0 for k > n, we obtain that T, n = f;(B;)n as desired.

K

[
Remark 16.7. The relation between formulas of T}, |, T ; on L(n) is given by
Ti = (=1)"(T; ).
General parameter case
For (U, U.) with a general parameter ¢ = (g;);e1, define
fos(BD) =) (—aia) B (16.18)
k20
k=p
Foa(Bi) =Y (=DM 2B (16.19)
k>0 ”
k=p
Proposition 16.8. The actions of operators T}, T, on L(n) are given by
T/i,fl - fﬁ,C(Bi)v T;/,—l - <_1)nfﬁ,<(Bi)a (16'20)
T;/,Jrl = 7ﬁ,c<B’i>' T;,+1 - <_1)n7ﬁ,c(Bi)7 (16'21)

Proof. These formulas are proved by applying scaling automorphisms to (16.12). O

Note that, for the distinguished parameter ¢, = (—q; ?)ic1, the formula (16.18)
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takes the simplest form

S B ifn =2

T, | = (16.22)

S B =20 4+ 1.

p=0 "i,1,60

16.4 Compatible actions of T; , T, on U'-modules

i,e)

Consider an quantum symmetric pair (U, U") of arbitrary split type. We show that
rank one formulas defined in Proposition 16.8 give rise to compatible relative braid

symmetries on integrable U’-modules.

Let M be an integrable U’-module and v € M be an iweight vector of iweight

P € Z/2Z with respect to B;,i € 1. Define linear operators T; , T/, on M by

i,e)

T =fpe(Bo. Ty = (-1 fe(Boe,
(16.23)
T v =Tpe(Blo,  Tv= (-1

where f;¢(B;), f5.(B;) defined in (16.18)-(16.19) are summations of «divided powers.

Since B; acts locally nilpotently on M, these linear operators are well-defined.

/
i,e’

As shown in Propositions 16.6,16.8, these new operators T}, T}, coincide with

operators introduced in Definition 15.3, when acting on finite dimensional U-modules.

Theorem 16.9. Fiz ¢ € I,e = £1. Let M be an integrable U'-module. For any

r e Uve M, we have
Tic(zv) = Tio(z) Ti(v),  Ti.(zv) =T (2) T (v). (16.24)

Proof. We prove Theorem 16.9 in the remaining part of this subsection. We shall
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prove (16.24) for the operator T _; and the proof for other operators can be obtained

similarly.

An integrable module M is spanned by weight vectors and hence we assume v to

be a iweight vector.

If 2,y € U* both satisfy (16.24), then zy also satisfy (16.24). Hence, it suffices to
check (16.24) when x are generators of U’. For x = B;, it is clear from the definition
that the actions of B;, T; _; on M commutes with each other, and then (16.24) follows
since T} ,(B;) = B;.

It remains to check (16.24) for x = B;, j # i. Recall that b; j0 = B; and b; ;.o =

T, _,(B;). Then the desired relation (16.24) in this case is proved in Proposition 16.11

2,

below, and the proof uses Proposition 16.10. O

Write o for —¢;; in the rest of this section.

Proposition 16.10. For arbitrary c;; and the parameter g; = —qi_Q, we have the

following formulas

o a2 -
() (k) (a—2) 2252 —1—ate) || TN hw—ay)
bW?O‘Bz‘,E :Zqi Z (=D%q " ° Bi,k—i—aij " | bija—a
2=0 y=0 y p
(16.25)
B (o) | o~ ay((55%—ata) | L5 | a2y
o —z)(a—=z Y —aTT 2 —x—2y
=0 y=0 Yy ,
4q;
(16.26)

where [a| means the smallest integer bigger or equal than a and |a| means the biggest

integer smaller or equal than a.
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The proof for Proposition 16.10 will be given in Appendix C.

Proposition 16.11. We have the following identity for j #i,p € Z/27
biji—ciy f5s(Bi) = foraze(Bi)bigo- (16.27)

Proof. We shall prove (16.27) for the parameter ¢; = —q; 2. The general parameter

case follows by applying the rescaling automorphism.

Recall from Definition 8.1 that the element b, ;.,, € U* for that special parameter

is defined by the following recursive relation

- q_(Cij—’—Qm)bi,j;mBi + Bibi jim

i

(16.28)
:[m + ].]zsz sm1 + [C”LJ +m — 1] e Cl]bz] m—1-
It is known that T} ;| = b; ., and b; j,m = 0 if m > —c;; or m < 0.
Recall from (16.22) that, for the parameter ¢; = —¢q; 2 we have
(2k (2k+1)
Z o =Y B
=0 k=0
By Proposition 16.10, we have
bigalp(Bi) = ) bawpBija (16.29)
x>0
where
—z)(a—z)+2y([ 55 ] —1—a+x) ’V%—I (k—z—2y)
aap = Y Z BEZH - (16.30)
k:k=p y=0 Yy
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Setting d = k — x — 2y above, we can rewrite the g;-power in (16.30) as

(k — 2) (o — ) +2y([%} —1-a+a) :d(a—x)+2y([¥1 —1).

Hence, the coefficient of BZ.(L

‘;Jrcw in &, .5 for any integer d > 0, can be computed as
1j

follows:

0 if r <a,

Og—p—a i T=a,

where the last equality follows by a standard v-binomial identity (with v = ¢; ?); cf.
[Lus93, 1.3.4].

Summarizing, we can now rewrite (16.30) as

0 if r < a,
ga,z,ﬁ -
Y dd-p—a B ifr=a

1

Therefore, (16.29) becomes

bijiaf5(Bi) = Z Bf%'Bz‘,j,o- (16.31)

d:a:m
Hence, we have proved (16.27) as desired. O
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Appendix A

Proofs of Proposition 5.11 and
Table 3

In this Appendix, we shall provide constructive proofs for Proposition 5.11 and verify
the rank 2 formulas for Tg},l(Bj) in Table 3. The proofs are based on type-by-type
computations in U for each rank two Satake diagram. Along the way, we will also

specify a reduced expression for r; in W.

1 Some preparatory lemmas

Denote the t-commutator

[C,D), = CD —tDC,

for various g-powers t. Let (I = I, Ul,,7) be an arbitrary Satake diagram. Recall

that B; = F; + T, (E:) K] and BY = F; + KT, 1(E,;).
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Lemma 1.1. Suppose that i,5 € 1, such that j & {i,7i}. Then we have

[qu? F}]q*(aivﬁj) = [E7 }?j]q*(aiﬂj)’ (11>

[Bi, Tura (Brj) K] ~oiapy = 40Ty ([Briy Brj) ~(oi0p) ) KK (1.2)

Proof. Follows by a simple computation and using the identity [Ej, F;] = 0, for

k. 0

Introduce the following operator (see Lemma 4.4 for some of the notations)
D = Ty Twa T0T- (1.3)

We shall formulate several basic properties for D below. A systematic use of D
throughout Appendices A and B will allow us to reduce the proofs of many challenging

identities to easier ones.

Lemma 1.2. We have

D(B7) = —q~**) BT, (K}, (1.4)

1

D(F)) = —4; T s (Brj) K[ T (K7}). (1.5)

Tj

Proof. We rewrite the identity (4.16) as follows:

BzTrz <,C7_.,i7—i) = _q_(ai,w.aTi)(fj:wo%wo,i (BJ )

Te,iTl

_ _q—(ai,w-ari){]v'w. §w0 (Bff

TOTE

) = —¢ e ID(B). (L.6)

Since ‘i.z.(ICT_’iTi) = T Twe, (Kroiri) = 2T, (K7'), the formula (1.4) follows from
(1.6).
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By Lemma 4.4, we have D(F;) = —K;.l(Tj)‘Tw.(ETj) = —q;2‘3'w.(ETj)K§‘J'w. (IC;jl).
This proves (1.5). O
Lemma 1.3. The operator D commutes with ‘j}i, ‘}j, foriel,, jel,.

: _ TF -1 _ 0 _ _ -1
Proof. Since wysy = S rWo, for k € I, we have Ty, T, " = Tups, = ‘J'Smkwo =Tk

T oo
Hence, %wof‘j'k = 5_70k§w0 for any k € 1. Therefore, (}wo?o commutes with :Jv'k (k €1

and thus commutes with ‘}ri, ’}j, foriel,,j€l,.

Similarly, one can show that ‘j'w,? commutes with ‘j’j, for j € I,. Hence, by

definition (1.3), the operator D commutes with ‘}j for j € I,.

On the other hand, by definition (2.21), ‘j’ri, for i € I,, commutes with both %w,

and 7. Hence, D also commutes with Ty, . O

2 Split types of rank 2

Consider rank 2 split Satake diagrams (I = I, = {4,;},Id). In this case, we have
r; = S, Bf = E + KzEz

The case ¢;; = —1

In this case, according to the first line of Table 3, Proposition 5.11 is reformulated

and proved as follows.

Lemma 2.1. We have

TF) =B Fly,  TNEK) = (B EjK, (2.1)

Proof. Follows immediately by Lemma 1.1 and the definition of T,. m
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The case ¢;; = —2

In this case, the rank 2 Satake diagram is given by

O<:O
i J

and according to Table 3, Proposition 5.11 can be reformulated and proved as follows.

Lemma 2.2. We have

aT— 1 g el
T ) = g (BB Flg] = LK (22)
~_ 1

Proof. We prove the formula (2.2). By Lemma 1.1, we have [B;’,Fj]qiz = [E,E]qg~
By Proposition 4.2, we have ‘3‘;1(]5}) = ﬁ [FZ», [F, Fj]q?]. Now we compute the first

term on RHS (2.2) using Lemma 1.1 as follows:

[BY, [BY, Filgz] = [BY, [Fis Filge]

= [F [F Fylg] + KB [, Fyl ]
~ K, — K]
= 21771 (F)) + Kil——— Filg

= 20,771 (F)) + ¢ [2Li F G K.

(2

Hence the formula (2.2) holds.

We next prove the formula (2.3). In this case, we read (1.3) as D = T, and note

that IC; = EZ By Lemma 1.3, D commutes with ‘j'i_ ! Applying this operator D to
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the formula (2.2) and then using (1.4)-(1.5), we obtain

20, [Bigfl7 [Bigfl,EjKégfl]qg} — qunggfla'wo (Ez) (2.4)

~ ~ ~ q,_4
T UEE)T (k) = £

J

Recall our symmetries ‘j:j are defined in §4.1 by normalizing a variant of Lusztig’s

symmetries 5';’+1 In this case, we have T, (k;) = ¢ *k; " and 5’;1(75;1) = q[%j%ﬁ.

Hence, since Ei, Ej are central, (2.4) is simplified as the following formula

- -~ 1 o~
T (B Kk E 2 = <[2]1~ [Bi, By Bi) ] — GE KGR, (25)
which clearly implies the formula (2.3). O

The case ¢;; = -3

Consider the Satake diagram of split type Gy
ofF=———=o
i J
In this case, we have ¢; = ¢ and ¢; = ¢°.
Lemma 2.3. We have
[KiEu [Fn Fj]qS]q = q3[3]P}'KiKz{7 (2-6)
KB (B IR Flp),] | = a0+ B)IBL Bl KK 27)
q
Proof. The first identity (2.6) is derived as follows:

K — K;!

LHS(2.6) = K[ Eu [ Filp] = Kil= —

il = ¢*[3| KiK/F; = RHS(2.6).
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We next compute

LHS(2.7) = K; [E [E;, [F Fj]qs]q]

= K; [Wa [F5, Fj]qiﬁ}q + K; [Fi» [ma Fj]tﬁ]q
= K K{[F;, Fjlgs + q3[3]Ki [E, Kz{Fj}q
= (¢ +qBIIE, Flp KiK;
= (¢ +qBNIBY, Filp KK,
where the last equality follows from Lemma 1.1. This proves (2.7). O

According to Table 3, Proposition 5.11 can be reformulated and proved as follows.

Lemma 2.4. We have
~ 1
3]

_ ﬁ (a1 + BB, Bl + ¢ BIIBE, s ) e 2.8

By, [B7. 187 F)g]

qfl

Proof. By Proposition 4.2, we have ‘j'i_l(Fj) = ﬁ [E [F,-, [F, Fj]q:a}q] L By Lemma 1.1,

q
we have [BY, Fj| s = [F}, Fj];s. Then we have

[B;’, [B;’,[B;’,Fj}qs}q] lz[Bf, [E,[F%,Fj]qs}q} 1+[Bf, [Kz-Ei7[E,P}]q3LL

. q
(2.9)
Using Lemma 2.3, we rewrite RHS (2.9) as
B [Fo [P Filo], | L KE;, [F (B Fil], | BB Bl KK
= BT (Ey) + (1 + B)IBY, Bl KK+ ¢°[3][B, Fyly KiK. (2.10)
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Now the desired formula (2.8) follows from (2.9)-(2.10). O

Lemma 2.5. We have

ﬁfl(EjKJ/-) = ﬁ |:Bi7 [Bi, [Bi, E]‘K_;']qg}q}

_ ﬁ(q(l + B)IBi, B;K ] — ¢*[3][Bi, B K]y ) . (2.11)

qfl

Proof. In this case, K; = k; and K; = %j are central. By (1.4)—(1.5), we have

D(F)) = —¢;*E;Kik;Y,  D(BY) = —q *Bik; . (2.12)
Recall from Lemma 1.3 that D commutes with T;. Applying D to (2.8) and then

using (2.12), we have

TN E KD T (kY

J

1 o
= —q 6@ |:B’L7 [Blu [BZ7 E]K;]q3:|q:| q—lkj 1ki 3 (213)
+ q”@(q(l +BDIBY, B Kl — ¢ BI[BY, EjIlg- ) D(ki)ky k.

Since s;(a;) = a; + 3a;, by Proposition 4.2, we have ‘j:;l(k’;l) = —q‘%f%ﬁ.

Note also that D(k;) = ¢~*k; . Hence, (2.13) implies the desired formula (2.11). O

3 Type AIl

Consider the rank 2 Satake diagram of type All;



ry = 5453S5554.

In this case, Proposition 5.11 is reformulated and proved as follows.

Lemma 3.1. We have

T (F) = [T5(B9). Fqs

‘f’lﬁw,(Ez)Ké) = [%3(34%%11;

rq

(Ey) Ks)q.

Proof. The first formula follows by ‘i‘j = 5’4&)4, Proposition 4.2, and the formula
(1.1).

We prove the second formula. By (1.4)—(1.5), we have
D(Fy) = =4 " Tua(B) K3 T, (K31),  D(B) = —¢*BaTu, (K1), (3.1)

Recall from Lemma 1.3 that the operator D in (1.3) commutes with ‘}3, 5}4. Applying
the operator D to both sides of the first formula and then using (3.1), we have

Ty (T (B2) K3) T, (K5 ) = —a 2 (T3 (BO)T5 (K5 Y), T (B2) KT (K3 Dl (3.2)

r4

For a weight reason, we have

Ts(Kr )T (B2) Ky = qT 0, (B2) K3T5 (K1),

Tua (K2 ) T3(B1) = qT5(Ba) T (K3,

Using these two identities, we simplify (3.2) as

T (Tun (Bo) K) Tpa s (5 Y) = —¢ 7 [Ta(Ba), Tuna (Ba) K3 T5 (K )T (151 (3.3)

r , .
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Finally, by Proposition 4.2, we have ‘j'w.A(ng) = —qT5(K4)Tw. (Ks). Hence, (3.3)

implies the second desired formula. ]

4 Type CII,, n>5

Consider the rank 2 Satake diagram of type CII,,, for n > 5:

e O e O e ---—ei—e
1 2 3 4 5 n-1 n
1 -1/2
Q20 = —(qy 4,0 = —Qy

ry = S4..n...45384..nn...4-

Note that g = ¢4 = ¢. The notation 4---n---4 (with the local minima/maxima
indicated) denotes a sequence 4 5---n—1nmn—1---54, and we denote s4...,,..s =

84...871‘.-84_
In this case, Proposition 5.11 is reformulated and proved as Lemmas 4.1-4.2 below.

Lemma 4.1. We have
T (F) = [[Tsns(BY), Ta(BY)], o], — 4T3 (Fo)To(K)Tsns(Ka). (41)

Proof. Since s..n..58455.m.5(ca) = au, we have T;'Tot  (Fy) = Ts5ons(Fy). Then

Tei (F2) = Tl B, Folg = T3 T5 05 ([Fa, F3o), o],

— [[‘}5.-%---5(174)7 [F47F3]‘1]q’F2} '

q
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On the other hand, we compute RHS (4.1) as follows. First, note that

[K4§:1;,1(E4)7 Fyl, = qfl‘}gln---5(E4)K3K4v

and hence

Thus, we have

([T5.n5(BY), Ts(B))o» Fo],

[T (B9 (BT Bl ] )

q

— :[‘5'5..%...5(32)’ [F4, F3]q]q’ FQ} a

:[?ra..n...g,(a), Fi, Fil,)., FQ} + [[‘}5...“...5(K4):?§1( Ey). [Py By, FQ] q

— TRy + q[[frgl( Ey), [Fy, Fsl,], FQ] q§5...n...5(K4)
—FUR) +q [[?:?3—1( Fy), By, FQ} q2%3(Kg)i?5...n...5(K4)

= T (F) + ¢T3 2 (Fo) Ta (KD T (K),

as desired. This proves the formula (4.1). O

Lemma 4.2. We have

r4

T (Tua(B2)K3) = [[T5.m5(Ba), Ts(Ba)lg, Tu (B2) K3]

— 4T3 (Tua (B2) K5) T3 (K)Ts..0.5(K). (4.2)
Proof. By Lemma 1.3, the operator D in (1.3) commutes with 5'3,‘5'5...,1...5,‘14. Ap-
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plying D to (4.1) and then using (1.4)-(1.5), we obtain

Tl (Tun (B2) K) T, 4 (K5 )

= ¢ [Toemos (B T35 ), T3 (Ba) Tsomeos (K gy T (B2) K5 Ty (K3 1)) .

— 4T3 (T e (B2) K) T (K3 YD (T3 (K3) T 5 (K4)). (4.3)
Recalling ck; from (3.23), we have

KiBy = ¢ °BsKy,
T oo (K2)Ts5mes(Ba)T3(Ba) = Tsoms(Ba) T3 (Ba) T, (Ka),

D(T3(KD)Tsoms(Ka)) = ¢ Toones (K7 D T3 (K7 ) T3 (KL T ().

Using these formulas, we simplify (4.3) as

T (Tua (B2) )T, (KC5)

rq

= ¢ {[T5m-5(Ba), Ta(Ba)lgs T (B2) K] To (K Tsm5 (K ) T (K5

— T2 (T (B2) K5 T3 (K Tsm (K Tson s (KT D Ts (K7 D T (K31). (44)

Finally, by (3.23) we have ‘}w.A(ICg) = q‘}g(lC4)§'5...n...5(lC4)§’w, (K2). Therefore, the
formula (4.2) follows from (4.4). O

5 Type CII,

Consider the rank 2 Satake diagram of type CIly:
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—O —e&Z——=O0
1 2 3 4
ry = 545354, o = 595153S59.

In this case, Proposition 5.11 is reformulated and proved as Lemmas 5.1-5.2 below.

Lemma 5.1. We have

‘};41(172) - [[Bza F3]q4’ FQ] (5'1)

q3’

T (Fi) = [T5(B), [T5(B3), Filg] — (a5 — a5 ") [F, Fil g By Ko K3 K. (5.2)

Proof. The first formula (5.1) follows by a direct computation.

We prove (5.2). We have
T () = [T1(F), [T, (Fs), Fil o] = [Ts(F2), [Ta(F), Fil ).

Hence, recalling that B = F; + KQ%I_;(Eg), we have

[T3(BS), [Ta(BS), Fil] = [Ta(B), [Ts(F2), Filgg]
= [T5(F), [Ts(Fy), Filg] + [KaKsT (By), [Ta(Fy), Fil]
= T () + (77 (B2), To(Fy)), Fu] p Ko

= ‘j:r_;(F4) + (Q3 - q;l)[F;g, F4]q§E1K2KéK3.

Thus, (5.2) is proved. O

Lemma 5.2. We have

To (Tua (B2) K3) = [[Ba, Fly,, T (B2) K3

rq

(5.3)

qs3’

T (Twa (1) KY)

r2

[T5(Bo), [T5(Ba), T (Ea) K 2]
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- (Q3 - QI;l)[F?)? 5’w.(E4)I(All]q§Ell(QI(é[(& (54>

Proof. We shall prove the formula (5.4) only, and skip a similar proof for (5.3).

By Lemma 1.3, the operator D defined in (1.3) commutes with :j:g, %m. Applying

D to the identity (5.2) and then using (1.4)-(1.5), we have

T (Tuu(B)K}) Tua (KT

= ¢3* [T5(Bo) Tu(K3 ), [Ta(B2)Tu (K31, (}w.(EDKiiNTw.(’CZl)]qg}

— (g5 — 43 )65 (BB K5 Ty (B) KiT 0y (K] BLK T K D(K K EKy). (5.5)
For a weight reason, we have

T1 (K5 )T (Ba) = 2T, (E)T1(KC5Y),
Twa (K1 1) T5(Bs) = ¢2T4(Ba)Tna (K1 1),
T1 (K5 V) T5(Bo) T (Bs) = Ta(Ba) T (E)T1 (K5 1),

T1(K5 )T (KT T3(Ba) = T(Ba)Ta (K5 ) T (K1),

We also have D(Ky K, K3) = g5 T, (Ko K}) " K3, Hence, (5.5) is simplified as

T (Tuwu(B)KY) T, (K7

r2

= 452 [Ta(Ba), [Ts(Ba), Tus (Ba) K4l 2] T (K1) T1 (K5 )

— (g3 — 45 )3 *[F5, ‘j'w.(E4)Kﬂq§E1K2K§K3‘}w. (K HTuk; )2, (5.6)

By the definition of K; in (3.23), we have ‘j'w_,Z(lC;l) = 45 2T, (KT (K52, Thus,
(5.6) implies the desired formula (5.4). O
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6 Type EIV

Consider the rank 2 Satake diagram of type EIV:

Iy — 51525354565352S51.

In this case, Proposition 5.11 is reformulated and proved as Lemma 6.1 below.

Lemma 6.1.

:j:;ll<F5) — [524‘}35:2(35), F5]q’

To (Tua (Bs)K3) = [T4T5Ta(B1), T (Bs) K]

Proof. We prove the formula (6.1). Indeed, we have

T H(Fy) = T3 05 Y E, By = [T7195 175 4 (R, F,

= [T To(F), Fs], = [T.T3T2(BY), F),.

We next prove the formula (6.2). Recall from Lemma 1.3 that ‘}j, for j € L,
commutes with D in (1.3). Applying D to the formula (6.1) and then using (1.4)-

(1.5), we have

= —q 2 [Tus2(B1) T2 (K1), Tuns (B5) K1 T (K5 )] » (6.3)
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By a weight consideration, we have

T (K5 )T a32(B1) = ¢Taz2(B1) T (51,

Tos2 (K1) T (Bs) = qT o (Bs) Teaa (K1),
Hence, using these two identities, (6.3) is simplified as

T (T (B5) K5) T, (K5

=~ [Tusa(By), iNTw.(E5)Ké}qiNTG32(’C1_1)7w. (K5). (6.4)

Finally, by the definition (3.23) of iC;, "Jv'w.yl(ngl) = —q*1§632(le1)§'w.(ngl). Then
(6.4) implies the desired formula (6.2). O

7 Type AIll;

Consider the rank 2 Satake diagram of type Alll;:

T
R
o—0—-oO0
1 2 3
_ _ —1 _ —2
Slo = S3,0 = —(q 7, 2,0 = —(
ry = 5183, o = So.

In this case, Proposition 5.11 is reformulated and proved as the following lemma.

Lemma 7.1. We have

ToN(Fy) = [BS, [BY, By), — aFaks K, (7.1)

T;l(EQKé> = [B3, [Bl, EQKé]q]q — qEQKéKg,Ki (72)

207



Proof. By Lemma 1.1, we have [BY, F5|, = [F}, F5],. Then the first term on the RHS

of (7.1) is computed as follows:

B3, [BY, Faly] = [IGEL [y Bly] + [Fs [, B2y,

= q[[Ela Fl],Fg}qu + |:F37 [FlyFZ]q:Iq
K, - K}

q—qt’
= qFIG K + [Fy [Fy B,

—q Byl Ks + [Fy, [y, )y,

= T (F) + qF K5 K.

This proves the formula (7.1).

We next prove (7.2). In this case, 79 = 7 # Id, 7.1 = Id, and we simplify D
in (1.3) as D = ‘AJ:wO. We also have K; = k; for i = 1,2,3. Applying the operator

D= %wo to the identity (7.1) and then using (1.4)-(1.5), we have
T (B k)T, (k) = ¢ [Bsky ', [Biks ', Bx Kk ',) | — qEaKjky 'D(K3KY). (7.3)

We have D(K3K) = q—ZEflféglKgK{. Note also that Eg is central and 753, %1 commute

with E,. Hence, (7.3) can be rewritten as

T BaK )T (h) = 072 [ Bo, 1By, Bakll,) i By

— ¢ By Kk ke Yy VKK (7.4)

Finally, since ri(as) = as + a1 + a3, we have ‘/JV'I.1 (k') = q*2E51Ef1E51. Therefore

the desired formula (7.2) follows from (7.4). O
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8 Type AIIL,,n >4

Consider the rank 2 Satake diagram of type AIIl,,n > 4:

O—O0———@------ &0 —— 0
1 2 3 n—2 n—1 n
_ _ -1 _ _ -1/2
Slo =Sno=—0 "  S20=0Sn-10=—q 7%
s = S15n, o =582+ 8p-1""*S52.

We first have a simple observation.

Lemma 8.1. For any 3 <s<n—2, ‘}2..%_2(]7”_1) is fixed by ‘}s.

Proof. Recall from Proposition 4.2 that T, satisfies the braid relation. Then we have

(ISTQWn—Q(Fn—l) - r-].’2-~~s—2;j:s§:s—1rj:sais—&—lmn—Q(F1YL—1)
= ('T2-~~s—2§s—1§s§s—1%s+1~~-n—2(Fn—l)
= 72'~~8—2§S—1%S§S+1"'n—2§5—1(F’n,—l)

= 72-~~s—2§5—1§85'5+1'~~n—2(Fn—l) = §2~--n—2(Fn—1)‘

Hence, 5'2...n_2(Fn_1) is fixed by i for3<s<n-—2. O

In this case, Proposition 5.11 is reformulated and proved as Lemmas 8.2-8.3 below.

Lemma 8.2. We have

T (F2) = [BY, Falg, (8.1)

T () = [T (B, [BS. Fil,), — FiK Koo, . (8.2)
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Proof. The formula (8.1) follows from Lemma 1.1.

We prove (8.2). By a direct computation, we have

where the last equality follows by applying Lemma 8.1 and noting that we(a,_1) =
S3..n—2(n—1). Recalling that B | = F,,_1 + Kn_lﬁ';}(Eg), we compute the RHS of
(8.2) as follows:

[T (B 1), 15 FU], = [Tua(BL ). [P FiL)

= [Tu. (Fnmn), [F2, Fig], + [T s (K1) B, (B, F1]q],

YEY) + (B, [Fo, Filg] T, (K1)

U
T ) + FIKS K o )-

This proves the formula (8.2). O

Lemma 8.3. We have

T (Tua (Bae1) K3) = [By, Ty (Bn1) K3, (8.3)

T (BaK?) = [Tua(Buor). [Bo BKA)] — BaKiK3 K ey (84)
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Proof. Note that il = %1‘3’:” commutes with %er,. Hence, we have

To (Tus (B ) KS) = 612" T T (B ) K3 K
= §i§§w. ([En—lEn]q‘l)KéKi
= TuuBny, Bn1] KL K

- [Bh (}w.<En—1>Ké]q

where the last step follows from Lemma 1.1. Hence, we have proved (8.3).
We next prove (8.4). In this case, 79 = T, ‘j'w. (Ky) =K, = %n, and we simplify D
in (1.3) as D = ﬁw.§w0. Applying D to (8.2) and then using (1.4)-(1.5), we have

T (B KT, (k)

n

= 0 [T (Bae )5 (BT (061, B KT,

- EnKik;lD(KéKw.(anq))' (8'5)
For a weight reason, we have

:j:w. (]C;il)En = qEngw. (Eg—ll%
' By = qBok; ",
K3'ByE, = ¢* By E, K5,

krjhfw. (’szil)g‘w. (Bn71> = q2§w. (anl>%;1§w. (/C;El)

In addition, by (3.23), we have D(K}Ky,a, ) = ¢ Tu, (K2 1)Ky ' K, Koo, Using
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these formulas, we rewrite (8.5) as

‘J’;gl(EnKi)Tw.,g (%71) = qil [‘j:w.(anl)u [B27 EnKﬂq} qgﬁl‘}w. (lcil

n n—1

Kt

— B K T (K K K K - (8.6)

Finally, we have T, , (k') = ¢ 'k, Ty (K1) L. Then the formula (8.4) follows

n—1

from (8.6). O

9 Type DIII;

Consider the rank 2 Satake diagram of type DIII;:

4>T
1 2 3
5

Q0 = —q_l, C4,0 = Sp0 = _q_1/27

o9 = S25153S9, ry = 54555354Ss5.

In this case, Proposition 5.11 is reformulated and proved as Lemmas 9.1-9.2 below.

Lemma 9.1. We have

TN (Fy) = [T5(B3), Fil,, (9.1)

T (F) = [BY, [Ta(BY), Fly], — T3 (Fo) Ku KL K, (9.2)

Proof. The proof for (9.1) is similar to that of Lemma 3.1, and thus omitted.

We prove (9.2). By a direct computation, we have

ToU(Fy) = [[F4, [F5,F3]q]q,F2]q = [Fu. [Ta(Fs), ),
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Note that BS = Fy 4+ KT '(Ey). Since [T3(Ks)Ey, Fy), = q[Ey, Fo)K3Ks = 0, we
have [T3(B29), F), = [‘5'3(F5), F3),. We now compute the first term of RHS (9.2) as

[BZ’ [%3(3?), FQ]q]q = [BZ’ [‘}3(}7’5)7 F2]¢1:|q
=[P4 [Ta(Fy), o], + [KaT3 (B2, [To(F), Faly),

T (Fe) + Ka[T5(Ey), [T5(Fs), Falg)

Te (Fy) — q ' [[Es, Fy] e, FQLKJ{Q

rq

J

rq

YFy) + T52(Fy) K. KL K,

This proves (9.2). O

Lemma 9.2. We have

T (Tuna (B5) K3) = [T3(Ba), T (Es) Ky, (9.3)

ra

T (s (B2) K3) = [Bu, [T5(Bs), T (B2) K3l — T3 (T (o) K3) Ku KK, (9.4)

rq

Proof. We prove (9.4). The proof for (9.3) is easier and hence omitted.

By Lemma 1.3, the operator D defined in (1.3) commutes with 5“3, iu. Applying
D to (9.2) and using (1.4)-(1.5), we have

To (T (B2) K3) T, (K51

= ¢ [BaTs(K5"), [Ta(Bs)K s T (Bo) K5 T, (K5 )g)

= T3 (Tua (B) K3) T, (K3 DKL KLES). (9.5)
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For a weight reason, we have

Ki'Tw.(Ba) = qTu. (B2)K7Y,
Tue (K3 1) T5(Bs) = qTa(B5) T (151,
Ta(K5 ) T3(Bs) T (B2) = ¢*T5(B5) T (B2)Ta(K5 1),

Ky 1T (K3 ) Ba = ¢ BaKy ' T (K5,
We also have D(K4KLK}) = qil‘j'g(ngl)lCZIKlegKé. Hence (9.5) is written as

To (T (B2) K3) T, (K5 )

= ¢ [Ba, [T5(Bs), Tun (B2) K3y T (K3 ) T5 (K5

— ¢T3 (T (B2) K) KKK T, (K5 ) Ts (K5 K (9.6)

Finally, by definition of K; (3.23), we have T, ,(K;') = qilgw.(/Cgl)‘}g(ngl)lCZl.
Thus, (9.6) implies (9.4). O

10 Type EIII

Consider the rank 2 Satake diagram of type EIII:

6
_ _ -1/2 _ -1
Sl,0 = S50 — —(q / ) S6,0 = —(
ry =581---85+ 51, I'e = 565352545356

We — 835254535254 — $254535254S53.
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In this case, Proposition 5.11 is reformulated and proved as Lemmas 10.1-10.2 below.
Lemma 10.1. We have

i_ﬁl(Fl) = [To5(BY), Fil,, (10.1)

T (Fo) = [Ta(BY), [Toa(BY), Fuly] , — Tafyan(Fo) K| K3 K Ky K (10.2)
Proof. We have
T (1) = Teh(F1) = [T (F), Flg = [Tas(Fo), Filg = [Tas(BY), Filg.

Hence, (10.1) follows.

We next prove (10.2). We have

= [Tu(F5), (T35 (Fy), Fily] , = [Ta(Fs), [Taa(F), Fily) - (10.3)

Recall that By = F; + KT, !(Es5). Hence,

[Ta2(BY), Fslg = [Taa(F1), Flg + [K193T5T i34 (Es), Fl,g

= [Ts(F1), Folq + K123[T7 1 (Bs), Fo) = [Taa(F), Fy, (10.4)

On the other hand, we have

Tins23(Fo) = T[T (F3), Folg = Tis[T5(F), Fol,
= —[T5 (Ba Ky, Taga(Fo)],

= —q (T3 (Ba), Tyy (Fo)] 2 Ky Ky
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= _qil [Tgl(E2>7 [‘I;l(F?))? Fﬁ]q] q2KéilKI/371

= —¢ (1751 (o), T (B, Fo) K5 'K (10.5)
We now rewrite RHS (10.2) as follows:

[§4(Bg),[§32(3f)= Fﬁ]q}q

(10.4)

= [3(B7), Tl R), Fild,

= [Ta(F5), [Toa( 1), Felg] , + [KaKsTo (Br), [Taa(F), Fily)

(1&3)‘};11(}76) + Ky K5 [T (B, [Taa(FL), Fily)

= ;J:r_ll(Fﬁ) — q_l [[;j:?:l(Eg), ;j:g(Fg)]QZ, F6j| qK{K4K5

10.5)~_ ~_
( = )7 1(FG) + 7321323(F6)K{KQK§K4K5-

ry

Therefore, the formula (10.2) follows. O

Lemma 10.2. We have

To (Tua (Bs)KY) = [To3(Bs), Tu (Bs) K1, (10.6)

gt (‘Tw,(Eg)Ké) = [‘}4(35), [§32(Bl)>§‘w.(E6)K€/5]q}q

ry

— Toohos (T (Bo) K§) K| K5 K5 K4 K. (10.7)

Proof. Recall from Lemma 1.3 that the operator D defined in (1.3) commutes with

each of the automorphisms §4, 5'32, :j:gg, Trrs Tre-

We first prove the formula (10.6). Applying D to (10.1) and then using (1.4)-(1.5),

we obtain

Te (Tuu (B5) K1) T o (K5 )

r'e
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= —q*Q [§23(B6)‘}432(K81)7 ‘}w-(ES)Ki‘iU-(’Cgl)]q

= —q" ' [To3(Bs), T (B5) K1) Tas2 (K5 ) Ta (K5), (10.8)

where the last equality follows by a weight consideration. On the other hand, we have

Tues(Ks') = —q_1‘5'432(IC6_1)‘5'w_ (IC51). Thus the formula (10.6) follows from (10.8).

We next prove the formula (10.7). Applying D in the identity (1.3) to (10.2) and

using (1.4)-(1.5), we obtain

T (Tuu (Bo) K§) T, (K )

= ¢ [Ta(Bs) T T s (K1), [Taa(B1)T52T s (K5, Tune (Eig) K4 T, (Ksldl,

— Tatas (T (B6) K§) Tus (g DK Ky KK, K5). (10.9)

Note that T,T,, (K1) = Tao( K7 HT4(KL) ™ and Tau T, (Ks1) = Ta(Kz )T (K]) 7
We also note that K!K,K,K,K5; = T5(K})T4(K5) and then D(K| KKK, K5) =

q*1§'4(Kg)*1:Jv'32(K1_1). Hence, (10.9) can be rewritten as

T (T (Bo) Kg) T, (K5 )

= ¢ [Tu(Bs) Too (K, ) Ta(K3) ™ [Tan(B)Ta (K5 )T (K7) ™, T (Bo) KT (K )l

— 4 Taogos (Twe (B6) Kg) Tupy (K 1) Ta(K5) ™ Tao (K ). (10.10)
For a weight reason, we have

Ta(K3 ) Ts2(K7) 7 Toa (Bo) = qT s (Bo)Ta(K5 ") Tz (K1)

T (K5 1) Ta2(B1) = qTa0(B1) T (K5 )

Tso (K1) Ta(K2) [Ts2(B1), T (Bo) K¢l = 42 Tsa(B1), T (o) Kg)yTs2 (K1) Ta(K3),
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To(K5 )T ( K1) T (Kg 1) Ta(Bs) = ¢*Ta(Bs)Ta(K5 ) Taa (K1) 71T (K5 ).

Using the above four identities, we rewrite (10.10) as

?J:r? (Tw. (EG)Ké)Tw.,1 (’Cg1>

= ¢ [Ta(Bs), [Ts2(B1), T (Eo) K¢l ﬁw. (K ") Tsa (B K7) T T4 (K K ™!

— ¢ T (T (Bo) K§) K KKK K5 T, (Kg ) T2 (KK T Ta(KsK5) ™' (10.11)

Moreover, we have T, , (Kg') = ¢ T, (Kg ) Tsa (K1 K) " Ta(K5K%)~". Thus, (10.11)

implies the desired formula (10.7). O
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Appendix B

Proofs of Proposition 6.5 and

Table 4

In this appendix, we shall provide constructive proofs for Proposition 6.5 and ver-
ify the formulas for T;’ 4+1(B;) in Table 4. The proofs in various types bear much
similarity, and they are made a little easier by taking advantage of the results in

Appendix A.

1 Preparatory identities

We prepare some identities which are valid in all types. Recall that wy denote the
longest element of the Weyl group W and 7y is the diagram automorphism associated

to wo. Recall the operator D = T, Ty, 707 from definition (1.3).

Lemma 1.1. Fori # j € I, ., we have

D(F)) = =45 *Tua (Br) K} T, (K, (1.1)

TJ
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D(B;) = —¢; *BTu.(K;). (1.2)

Proof. The formula (1.1) is copied from the identity (1.5), for convenience of citation

in this appendix. By the formula (4.17) and the definition of B, (6.7), we have

Ei - ‘J’I‘i (T;—l(B’L)Z) = _q_(ai’w.aTi)‘J’onwc,i(BTo,iTi)‘J’wc‘J’w.,i (’C_l )

Te,i Tl

= —q DT, T (Bro i) T (1), (1.3)

By Lemma 4.4, ‘E]V'w.yf.J(Bi) = TwoT0(B;). Hence, the identity (1.2) follows by a

reformulation of (1.3). O

2 Split types of rank 2

Consider a rank two Satake diagram (I = I,,1d) of split type. In this case, we have

The case ¢;; = —1

According to Table 4, Proposition 6.5 can be reformulated as the following lemma,

which can be proved by the definition of ‘j'j.
Lemma 2.1. We have

T(F)) = [F}. By, TE;K)) = |E;K], B, (2.1)
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The case ¢;; = —2

In this case, the rank two Satake diagram is given by

O<:O
i J

According to Table 4, Proposition 6.5 can be reformulated and proved as follows.

Lemma 2.2. We have
~ 1

TAEK) = o

[[F‘j?Bi]q??Bi} — ¢ Fi KK, (2.2)

Proof. The firs formula (2.2) is obtained by applying ¢ to the formula of 5’; Y(F;) in
Lemma 2.2.
We prove the second formula (2.3) next. Recall from Lemma 1.3 that D commutes

with T;. By (1.1)—(1.2), we have

D(F)) = —q; *E;Kjk; ', D(B;) = —q *Bik; " (2.4)

777 0 ?

Applying D to (2.2) and then using (2.4), we have

~ o~ ~ o~ ~

TE; Kk ") = ——q; *[[B;Kjk; ", Bik; V)2, Bik; '] — 2B Kk "DGK]). (2.5)

In this case D(K;K!) = ¢ *K;K/k; 2. Since k; are central, (2.5) is simplified as

~ ~ o~ 1 ~ ~ o~
T = o (g B Bl B) ~ B 0)
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Finally, by Proposition 4.2, we have %Z(E;l) =yq; 4%{%{ . Hence, (2.6) implies the

desired identity (2.3). O

The case ¢;; = —3

Consider the Satake diagram of split type Go
of=—=o
1 J

In this case, we have ¢; = ¢ and ¢; = ¢*. According to Table 4, Proposition 6.5

can be reformulated and proved as follows.

Lemma 2.3. We have

TiE) = ﬁ (7. BB, B
- (o0 B Bl s B R e
Ti(E;Kj) = ﬁ [[[EjK;,Bi]qs, Bl ,gz] .
- (a0 + B Bl + €818, Bl )R o)

Proof. The first formula (2.7) is obtained by applying o to (2.8). We prove the second

formula (2.8).

By (1.1)-(1.2), we have

D(F)) = —q; *E;K'k;Y,  D(B) = —q *Bik; . (2.9)

77 0

Note that Ei,Ej are central. Recall from Lemma 1.3 that D commutes with ‘},
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Applying D to (2.7) and then using (2.9), we have

§Z<EJK;)§z<%;1) = —QGﬁ [HEJKJ/» Bilys, Ez‘}q, R} qilﬂlg‘;lﬂkv?f?’ (2.10)
w7 g (L + B Bl — 3. By )R DR,

In this case D = %wo, and then we have D(E) = q‘%{l. Hence, we simplify (2.10) as

~ - 1 P
BTG = g [[1BK. Bl B, B

-17.-3
- Bl 'k (2.11)

PR
g1

|
7 (U + B Bl = 3. By ) KRR

Finally, since s;(c;j) = a; + 3, we have 5}(7{:/]’1) = —q‘%}%]? Thus, (2.11) implies

the desired formula (2.8). O

3 Type BI, DI, DIIIL,

Consider the rank two Satake diagrams of type BI,, for n > 3:

o—o e ——-——- —e——e
1 2 3 n-1 n
ta = 5Sa " Sn""" Sa, 3<a<n).

According to Table 4, Proposition 6.5 is reformulated and proved as Lemma 3.1.

Lemma 3.1. We have

Teo(F) = [[F1, Baleys Tl (B2)], — 2 Fi T (K3) K. (3.1)
Too(B1 K1) = [[E1 KT, Boleay Tul(B)], — By K (T, (K5) Ko, (3.2)
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Proof. The first formula (3.1) is obtained from Lemma 5.2 by applying 0. We shall

derive the second formula (3.2) from (3.1) as follows.

By (1.1)—(1.2), we have

D(F) = - *E\KIKTY,  D(By) = —3 3BT, (K ). (3.3)

Recall from Lemma 1.3 that D commutes with T, , ‘}m. Applying D to (3.1) and

then using (3.3), we obtain

Teo (BL KTy (KT = 65 [[EVK KT, BoT s (K3 lass Tud (Ba) K5 ]

427 Y we

— Q2E1K1KI1D(§w.(K§>K2)~ (3.4)

In this case, K; = 751 is central and both &Cs, ‘j:w.(ng) commute with F;. For the

weight reason, we have IC2§2 = q_2§21C2. Note also that
D(‘fj:wo (Ké)K2> = QE2§:1U- (Ké>K2IC271:j:’UJ. (’C;l)

Then, using these formulas, we rewrite (3.4) as

Te(BAK) Ty (K7Y) = 432 [[BVKY, Balgy, Tl (Bo)], K 'K ' T (K5 )

427 ¥ we

— g3 "By KG T, (K KoKy K5 T, (157, (3.5)

Since ra(a) = ay4as+we(aw), by Proposition 4.2 we have Ty, (K1) = ¢2K1 K2 T, (Ks).

Hence, (3.5) implies the desired formula (3.2). O

Remark 3.2. Similar formulas can be derived for types DI,, (n > 5) and DIIly, since

the formulas of Tg,,l(Bj) for these two types and type BI are unified; compare §5.2.
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4 Type All

Consider the Satake diagram of type Al

*—O0O—0—0—0
1 2 3 4 5
ry =— 54535554.

In this case, according to Table 4, Proposition 6.5 is reformulated and proved as

Lemma 4.1 below.

Lemma 4.1. We have

Teu(F2) = [F5, T3 (By)] (4.1)

T, (Tua (B2) K3) = [Tuu (B2) K3, T3 (By)] (4.2)

¢

Proof. The first formula (4.1) is obtained by applying o to Lemma 3.1. We shall

derive the second formula (4.2) from (4.1).

By (1.1)—(1.2), we have

D(Fy) = =4 Tua(B)K3Tu (K3 1), D(Ba) = —¢ *BaTu, (K7 "), (4.3)

Recall from Lemma 1.3 that D commutes with Ty, T5. Applying D to (4.1) and

then using (4.3), we have

Tos (T (B2) K3) T, (K3) = =072 [T (B2) K4 T, (K3), T3 (B)T5 (K], (4.4)
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For the weight consideration, we have the following two commutator relations

Tue (K3 1) T3 (By) = T3 (Ba) T (K3 Y),

Ts (K1) T (Bs) = qTu (E2)T5 (K1),

Using these two formulas, we rewrite (4.4) as

Tr, ((Iw. (E2)K§)(‘Tw.,4 (IC2_1) = _q_l [(}w. (E2)Kéa 73_1(3\4)} qu. (K2_1>(}5(]C4_1)' (4~5)
Finally, since w, 4(a2) = we(a2) + s5(ay), by Proposition 4.2, we have
e (KC2) = =qT, (K2) T5(KCs).

Hence, (4.5) implies the desired formula (4.2). O

5 Type CIL,, n >5

Consider the Satake diagram of type CII,,, for n > 5:

e O e O e ---—ei——6
1 2 3 4 5 n-1 n

Yy = S4..0...45354...n-..4 -
Note that ¢o = ¢4 = ¢ in this case. According to Table 4, Proposition 6.5 is
reformulated and proved as Lemma 5.1 below.

Lemma 5.1. We have

Tes(F2) = [, [T5 1 (Ba), T51, 5(B)l]

q
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— T3 (F)T5(K), (5.1)

:j:r4 (tfj:w. (EQ)K;) = [:j:’w.<E2>Ké7 [‘}51(@4)7 :j:glnE)(B\‘l)]q] q

- q2§§‘}w.(E2)K§§3(K4)- (5.2)

Proof. The first formula (5.1) is obtained by applying ¢ to Lemma 4.1. We shall

derive the second formula (5.2) from (5.1) as follows.

By (1.1)—(1.2), we have

D(By) = —¢ *BiTu (K7, D(F3) = —q T (E2) K57, (K5 ). (5.3)

Recall from Lemma 1.3 that D commutes with 5'3,5'5...”...5 and :Jv'r4. Note that

D(§3(1C4)) = ¢ ' T5.ms(K3Y). Applying D to (5.1), by (5.3), we have

Tea (T (E2) K5) T (K5 )
= ¢ [Tua (Bo) K3T0s (K5 ), (751 (B) Tseones(Ki ), T3 L (B T3 (K], .

F qT2T 0 (B2) KT s (K ) T 5 (K3 1). (5.4)
For weight reason, we have the following commutator relations:

Ki'Bs = ¢*B.Cy Y,
Toa (K3 T3 1 (Ba) = ¢T3 (Ba) T (IG5
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Using these formulas, we rewrite (5.4) as

Teo (Tuoe (B2) ) T, (K1)
= ¢ [Tua (B2 K3, [T51(Ba), T s (Ba)ly) T (K3 Tsnos (K T3(KT)

+ qT3T w0 (E2) K5 T3(K) Ty (K3 Tsomes (K7 ) T5 (K1), (5.5)

In addition, by Proposition 4.2, we have ‘}w.A(ng) = T (2) T () T3 (KCa).
Hence (5.5) implies the desired formula (5.2). O

6 Type CII,

Consider the Satake diagram of type CII,

o—O—e&Z——=o0
1 2 3 4

ry = 545354, o = §95153S89.

In this case, Proposition 6.5 is reformulated and proved as Lemma 6.1 below.

Lemma 6.1. We have

Teo(Fy) = [[F1, T3 (Ba)) 2, T5 ' (B2)]
- (q:a—qgl)[F4,F3]ng1K2K§K§, (6.1)

Ty (Tun(B)KS) = [[Tura (Ba) K T3 (B2)) g2, T3 1 (Ba)]

_ (q3 — qgl)[j'w. (E4)KZ1, Fg]nglKgKéKé (62)

Proof. The first formula (6.1) is obtained by applying ¢ to Lemma 5.1. We derive
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the second formula (6.2) from (6.1) as follows. By (1.1)—(1.2), we have
D(F) = 4 Tu (E)K( T, D(B) = =" BT (5. (63)

Recall from Lemma 1.3 that D commutes with Ty, T5. Applying D to (6.1) and then

using (6.3), we have

‘}rz (‘}w. (E4)Ki)§r2§3 (Kzl_l)
= 43 [[Twa (B0) K1 T5(K ), T3 (Bo) To (K3 )]z, T3 H(B2) Ta (K3 )]

+ (g3 — @3 )[Tua (B K1 T3(K "), D(F3)] s DBy Ko KL KY). (6.4)
By Lemma 4.4, we have D(F3) = F3K3K5 ' and D(E;) = E;K; 'K!. We then have
D(E\ LK KS) = g3 * By K K KT (K ) T, (K5 ™).
Hence, we rewrite (6.4) as

§r2 ((}w. <E4>Kz/1) 5}2 (}3(1621)

= g3 [[Tua (B K, T3(K7), T3 (B)T1 (K3 )] g2, T3 1 (Ba)T1 (K5 )] (6.5)

2
q3?

+a32(gs — 43 ) [Tus (B K T5(K7Y), F3K3K§_1}q§E1K2K§K§(-Tl(’Cz_l)‘Tw.(’CEI)-
For a weight reason, we have the following identities:

T (K3 )T (B) = 2T (E)T1 (K5 ),
T3 ) T3 (Ba) = 275 (Bo)Ts(KCi ),

‘}1(IC2_1)§3(§2) = QE2§3<§2)§1(K%)7
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(To(Ky ™), F] = 0 = [KaKy ", T ().
Using the above identities, we rewrite (6.5) as

?fm (ﬁw. (E4)Ki)‘}rﬁ3(’ql)
= 0, [[Tua (B K}, T3 (Ba)] 2. T3 (Ba)] To (K )T (K5)

+ 03 2(g5 — 43 ) [Twa (B) K}, il g By K Ky RT3 (K7D T1(K5). (6.6)

Finally, note that T, T5(K3) = @T3(K4)T1(K2), and thus (6.6) implies the desired
identity (6.2). O

7 Type EIV

Consider the Satake diagram of type EIV

Iy — 51525354565352S51.

Denote 5“4’ 1‘3}: 1%{ ' by ‘3'4312 According to Table 4, Proposition 6.5 is reformulated

and proved as Lemma 7.1 below.

Lemma 7.1. We have

Tou (F5) = [F5, Ty (By)]g, (7.1)

Te (Tua (B5)K2) = [T (B5) K8, Tih(By)],. (7.2)
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Proof. The first formula (7.1) is obtained by applying ¢ to ‘j'r_l 1(F5), which is calcu-

lated in §6. We shall derive the second formula (7.2) from (7.1) as follows.

Recall from Lemma 1.3 that D commutes with each of T, ‘.~T4_312 By (1.1), we have
D(F5) = —q 2T, (E5) KT, (K1), Applying D to (7.1) and using (1.2), we have

‘}1‘1 ((Iw. (E5)Ké)7wo,1 (Kgl)

= —q 2 [Tuu (B5) K1 T (K5 ), Tagh (B1) T (K], (7.3)
Moreover, we have

Tue (K5 )T (B1) = aTi(B1) T, (K5 1),

T2 (K7 )T (B5) K = qT o0, (B5) K T (K1),
Hence, using these two identities, we rewrite (7.3) as

5i]r-l (‘}w. (ES)Ké)ﬁw.,l (’CS_I)

= [T (B5) K4, T (B1)] g T (KK ) T (7). (7.4)

Finally, note that "Jv'w.yl(ngl) = —qilfj'w.(ngl)‘va'f;gg(lCi’_l), and hence (7.4) implies
(7.2). O

8 Type AIll;

Consider the following Satake diagram of type Alll3



Slo =6 =—q !, G0 =—q 2

r; = 5183, Iy = S2.

In this case, Proposition 6.5 is reformulated and proved as Lemma 8.1 below.

Lemma 8.1. We have

Tr1<F2) = [[F%Bl]anB}q —C]F2K:/3K17 (81)

T (B2 K3) = [[E2KS, Bilg, Bs] | — B2 K3 KK (8.2)

Proof. The first identity (8.1) is obtained from (7.1) by applying o.

We prove the second identity next. By (1.1), we have D(Fy) = —q 2E, KL,

Applying D to (8.1) and then using (1.2), we have
Tey (Bs K5I Y) = ¢ Y [[Ba KO K5, BikCy Y, Ze}zc;l]q — By KK 'D(KLK,).  (8.3)
In this case, Ky is central and [K;, Es] = 0 for i = 1,3. Hence, (8.3) is rewritten as
Tey (Es K5I 1Y) = ¢ 4 [[EaKY, By, Ky G5 Y, E}/C;l]q — By KK, 'D(KLK,).  (8.4)
For the weight reason, we have commutator relations

K35 By = ¢?BsKy UGy Y,

ICl_l[EQKéa /Bl]q = QQ[E2K£7 El]qlcl_l-

Note also that D(K}K,) = ¢ 2K5K, K3 Kt Thus, using the above two commutator
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relations, we rewrite (8.4) as

T (B2 BT, (K65") = a2 ([[B K5, Bilys B, — aBa KGRG K ) Ka Iy

Finally, since T, (K2) = ¢2K1K2Ks, clearly (8.5) implies (8.2).

9 Type AIlIL,,n >4

Consider the Satake diagram of type AIll,,n > 4:

1 2 3 n—2 n—1 n
_ _ -1 _ _ —1/2
Slo = Sno=—0 Y S20=Gno10=—q V/
Iy = S15n, o = 8281 *S52.

In this case, Proposition 6.5 is reformulated and proved as Lemma 9.1-9.2 below.

Lemma 9.1. We have

(-Trl (FQ) - [F27 Bl]qa

T (F1) = HFl, By 7_1(Bn—1)]q — ¢\ KK, )

97 Y we wo(anfl

Proof. This two formulas are obtained from Lemma 8.2 by applying o.

Lemma 9.2. We have

‘Irl (Tw. (Enfl)Ké) = [F27 é1](]7

Ty (B KY) = [[EnKY, Boly, Tyl (Bah)], — 4EL K KK,

97 Y we
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(9.1)

(9.2)

(9.3)

(9.4)



Proof. We prove the second formula (9.4). The first one can be obtained relatively

easily by a similar strategy.

By (1.1), we have D(F}) = —¢ 2E, KK, '. Recall from Lemmal.3 that D com-
mutes with ‘5}4, ‘j'w.. Applying the operator D to (9.2) and using (1.2), we have
Teo (B K(K) = ¢ (B KK, BoTua (K1) Tud (Bu)K5 '], (95)

- qEnK{’Cﬁlp(K2Kfy.(an_l))~

For the weight reason, we have

’Cﬁlﬁz = qﬁle;l,
T K VB K = qBL KT (K1),

ICEI[EnK{a §2]q = q2[EnKi7 §2]q’C2_17

KnTwe K )T (Boit) = T (B ) KT (K1),

We

Kz_lﬁ'w.(lC_l ). Hence, using the

n—1

Note also that D(K>K], (. ) = ¢ KK

(an-1)

above relations, we can rewrite (9.5) as

Too (B K1) Ty (K1) = a7 [[Ba KT, Baloy Tul (Boo1)] G K T (K1) (9:6)

n

— B K FKo K, o K K T (K1),

An—1

Finally, by Proposition 4.2, we have ‘?fm(lcn) = qlCnICQ‘}w,(ICn_I). Then clearly (9.6)

implies the desired formula (9.4). O
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10 Type DIII;

Consider the Satake diagram of type DIII;

457
1 2 3

5
1

Q0 =—q , S4,0 = S50 = _q_1/2

Iy = 52515359, ry = 54555354S5.

In this case, according to Table 4, Proposition 6.5 is reformulated and proved as

Lemma 10.1-10.2 below.

Lemma 10.1. We have

Trs (F4) = [F4v ‘J'B_l(BQ)]tp (10'1)
Tei(F2) = [[Fo, T3 (Bs)lg, Ba] , — ¢T3 (Fa) K{ K5 K. (10.2)
Proof. These two identities follow by applying o to Lemma 9.1. n

Lemma 10.2. We have

oo (T (B5) K3) = [T (B5) K3, T3 (Ba)l,, (10.3)

~

T (Tua(B2) K3) = [[Fo, T3 (Bs)lg, Ba], — 4T3 (Fa) K{ K5 K. (10.4)

Proof. We prove the second identity (10.4), while omitting a similar (and easier) proof

for the first identity. By (1.1) and (1.2), we have

D(Fy) = —q 2T (B2) K4T, (K5Y),  D(By) = —¢°ByT,, (K51, (10.5)
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Recall from Lemma 1.3 that D commutes with ‘j'm, ‘3'3. Applying the operator D to

(10.2) and then using (10.5), we have

Tes (Tua (B) K T s (651 = ¢ [T (B) K5 T (K5 1), T (Bs)Ky gy BaTa (15 )]

q

- C]‘}g‘}w.(Ez)Ké%w. (K3 )D(K K5K3). (10.6)

For the weight reason, we have

Tue (K3 ) T3 (Bs) = ¢T3 (Bs) T (K51,

’szl%w. (E2)Ké = qa’w. (E2)K§’szl,

To(K5 ) [T (B2) K3, T3 (Bs)]g = ¢ [Tua (B2) K3, T3 (Bs)]y Ta (K5 ),

T (K3 KT By = ¢* BT, (K3 VKT

Note also that D(K,KsKs3) = ¢ K} K5 K3K; 'T5(K51). Hence, using the above for-

mulas, we rewrite (10.6) as

T (Tua (Bo) K5) T, (K3 1) = ¢ [T (B2) K5, T3 (B )], Ba] T (K5 KT Ta(K5 )

— T2, (B KK K KT, (I DK T5(]G ). (10.7)

Finally, by Proposition 4.2, the common factor T, (K; ) T5(K5") on the RHS

equals (‘J/‘Jv'w.’4 (IC;1). Hence, the identity (10.7) implies (10.4) as desired. O

11 Type EIII

Consider the Satake diagram of type EIII
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6
_ _ —1/2 _ -1
Sle=60=—¢ "%  Go=—q
ry=5y--+58--+51, e = 565352545356

We =— 535954535254 — 5954535254S53.

According to Table 4, Proposition 6.5 is reformulated and proved as Lemma 11.1-11.2

below.

Lemma 11.1. We have

Teo(F1) = [F1, To5' (Bo)lo (11.1)

Toi (Fs) = [[Fs, Tig (B1)]g, 1 (Bs)], — qTsnso (Fo) K1 Ko K K K (11.2)

Proof. These two identities follow by applying ¢ to the identities in Lemma 10.1. [J

Lemma 11.2. We have

Teo(Tuu (B5)K7) = [Tua (B5) K1, T3 (Bs)]os (11.3)

Ty (Tua (Bo)K§) = [T (Bo) K4, T35 (B, T 1(Bs)]

- q(-NT32323((}w.(EG)Ké)KlK2K3Kf;Ké (11~4)

Proof. We prove (11.4) here, while skipping the similar (and easier) proof for the
other formula (11.3). By (1.1), we have D(Fy) = —q 2Ty, (Es) K} Tw. (K5'). Recall
from Lemma 1.3 that D commutes with ;Jv'rl and Tsoz03. Applying D to (11.2) and

then using (1.2), we have

§r1 ((‘Tw. (EG)Ké>Tw-,1 (’C6_1>
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= ¢ [T (Bo) KT (K5 ), T (B1) T (K5 )]y i (Bs) Tasas (K1)

q

— qTa003 (:j:w. (Eﬁ)Ké)‘}w. (Kg)D(K 1 K2 K3 K4 KY) (11.5)

Note that %4323(/C51) = %4([(571)%32(}(171) and %23243(]C171) = 5132(}'(171)5’4(}'(%71). For

the weight reason, we have

§4323(/C§1)§'w.(E6) = qa’w.(E6)§4323(’C5_1)7
:j:w. (K51)§32(31) = 95‘32(31)‘}% (Kf;l),
Tog2a3 (K1) [T (B6) Kb, T (B1)]g = [T (Eo) K, Tt (B)](Tanoan (KTY),

~ o~ ~

‘}4323(K§1)Tw.(K§1)§21(35) = q2§;1(§5)§4323(K5*1)‘3‘w.(ICgl).
Note that

DK\ K> K3 KiKE) = g7 Ta(K5 ) Too (K7

= K1 Ko Ko K KTy (KK " Too (KiK. (11.6)
Hence, using (11.6) and the previous four identities, we rewrite (11.5) as

Ter (Tuoa (B6) K§) T, (K5 )
= ¢ [T (Bs) Kb, T3 (B1)]g Ty (Bs)] T (K ) Ta (K5 KL) ™ Tn (K0 K) !

— T3 (T (E6) K§) Ky Ko Ky K KL T, (Kg VT4 (K5 K5) T (K1 K7™ (11.7)

Finally, by Proposition 4.2, we have f‘j’w.,l(lCG) = T, (K6)§4(K5Ké)§'32(K1K{). Then

(11.7) implies the desired formula (11.4). O

238



Appendix C

Proof of Proposition 16.10

1 (16.26), = (16.25),,

Recall that o denotes —c¢;;.

Lemma 1.1. We have, for any a,b € N,

a a—1
[20] = [2d]
b b—1

Lemma 1.2. We have for any m > 0,

2m-+-c;; b

bijmBi = @™ Bibi jim — [m + 1]

i i,jsm+1 T [Cij +m— 1]bz‘,j;m71-

We show that (16.26), = (16.25),,, for fixed a. We often omit the index i for a

quantum integer [a);.
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On one hand, we have

k k+1
bijia Bl Br = [k + by Bt (1.1)

On the other hand, using Lemma 1.2 and (16.26),, we compute LHS as follows

o 252 -
® N\ (k-2 a—a) 252 —ata) | LT a2y
bija B Bi = ) ) > (g B ire, | %
=0 y=0 Yy )

9

X (qg_QxBibi,j;a x = qza 2 [O{ — T+ 1]bi,j;a—x+1 + [-T" + 1]bi,j;a—x—1)

= C:r;bi,j;a—za (12)
=0

where the coefficient ¢, of b; j.—, is given by

_ a—2z (k z)(a—z) |_a L | —a+x) L%J (k—z—2y) .
=4 Z B kitre, B
Yy P
[*=5— § 1J vl 1J N Lafzflj
—k—1 k z)(a—x) == | —ata+ 2 (k—z—2y—1)
o qz [a o Z (3 k+1+ci]-
y=0 Yy
5
LO"TMJ - +1j 3 Lafx+1J
k—z4+1)(a—z+1 QT _odxr— 2 k—x—2y+1
+ [a]gft ooy (—1)¥g" paces i
y=0 Yy

We simplify this formula in two cases:

(1) @« — x is even. Then k — x — 2y and k + 1 + « have different parities, which
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(k—x—2y) o o (k—z—2y+1)
implies B! N e Bi=lk—x—-2y+ 1]Bi7m . By Lemma 1.1, we have

a1 2 1 o
[a — ] = [a — 2] = [2y]
y-1 a; y-1 a; Y a;
Hence, we have
=N a—z
a—2x (k—z)(a—=x a+x k—x
co = q¢ g TNy (g Tk —a -2y 1] | | B
y=0 Yy )
a;
T a—z
—k—1 (k—z)(a—z) 1\, D(—atz) 2 (k—z—2y+1)
+4q; " 4 Z( 1)Yq; [2y] Bi,m
y=1 Yy ,
a;
2 a—2x
(k—z+1)(a—z+1) 2y(a £-1- T2 (k—z—2y+1)
+ [x)gf Z B, ey
y 2
a;
T a—z
k+1—z)(a— —a+x—2 2 k—xz—2y+1
— 4 k41 (- 1)rgl e e
y=0 Y

@

This formula, together with (1.1)-(1.2), verified the coefficient of b; j.o . in (16.25), ,

for any o — x even.

(2) a — x is odd. Then k — x — 2y and k + 1 + a have the same parity, which

implies

(k—2z—2y) (k—z—2y+1) -1 (k—z—2y—1)
Bi,k+1+ci]~ Bi=[k—x—2y+ 1]Bz i, G k-2~ 2y]Bz’,k+1+Cij '
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Hence, we have

a—xr—1

2 a—z—1
_ (k+1—z)(a—z)—2 1y y(a=1tz)rg 2 (k—z—2y+1)
Cr = (—1)Yq; [k —x—2y+1] e
y=0 Y )
a;
%M a—zr—1
(k+1—z)(a—z)—z—1 vy =D (ma=14x) g, 2 (k—z—2y+1)
+q; Z (—1)q; [k —z — 2y +2] i ey
y=1 y—1 ,
a;
o= ;+1 a—z—1
Ha T e —a) 30 (e VT B
y=1 y—1 ,
a;
a7§+1 a—z+1
(k—z+1)(a—z+1) _1\y, y(—a—1+z) 2 (k—x—2y+1)
+ [x]g; (—1)%q; s
y=0 Yy

Applying the following ¢-binomial identity to the first line of the above formula,

a—z—1 a—z+1 a—z—1
2 2y 2 a—z+1 2
qz qz' ’
Yy Y y—1
q? q? q?
we obtain
a— z+1 a1
a—z— k k z)(a—z) z : —1)(—a+1+x) 2 (k—xz—2y+1)
qZ i,k+1+ci]-
y—1
5
o= §+1 a—z—1
—k—1_ (k—z)(a—z)[ z : y 1)(—a+1+x) 2 (k—z—2y+1)
+ q7’ q O[ x Bi,k+1+ci]‘
y=1 y—1
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a—z+1
— 3 a—x+1
k—z+1)(a—z —a+1+z 2 k—z—2y+1
g N ()T k- 2y 1] By
y=0 ) )
L ql
a7;+1 _ozfxfl
k—x —z)—k -1 (—a+1+zx 2 k—xz—2y+1
SR 1] 3~ ) Blietur
y=1 y—1 ,
L ql
a72z+1 a—x+1
k—z+1)(a—zx —a+1+x 2 k—z—2y+1
gt TET N (—1yrgt Mk =2y +1] B(ﬁ )
y=0 ) )
L qZ
Using Lemma 1.1, we further simplify the formula for ¢, as follows
a%m a—x+1
k—x a—zx)—k—1 —a+1+x 2 k—x—2y+1
o =gV ST (g gy Birey, |
y=0 Yy N
q;
Q_§+1 a—zr+1
+ qi(k—x-i-l)(a—:c) (_1)ng(—oz+1+x) [kﬁ N 2y + 1] 2 Bl(l;;—:i——'—iy—&-l)
) 17
y=0 ) )
q;
OHTHI a—z+1
k—z+1)(a—z —a—1+z 2 k—xz—2y+1
R R IO DG A B,
y=0 Yy

q

This formula, together with (1.1)-(1.2), verified the coefficient of b; j.o . in (16.25),

for any o — = odd.

Therefore, combining above two cases, we have proved (16.26), = (16.25), ;.

2 (16.25), + (16.26),_, = (16.26), ,,

In this subsection, we show that (16.25), + (16.26),_, = (16.26),,, for fixed a.
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On one hand, we have

bijia B By + 47 (kb jia BV = [k + 1bi 0 B, (2.1)

i

On the other hand, using Lemma 1.2 and (16.25), + (16.26), ,, we compute LHS as

follows

bijia B\ Bi + g7 (kb jia B Y

- (k—z)(a—z) & 2y([*5*5 - 1—a+2) (%W (k—z—2y)
—x)(a—x Y| 5 |—Ll—aTT —xr—
:Zqi Z (=1)%q; " Bz’,k+cij X
=0 y=0 )
a;

X (¢f 7 Bibi ja—a — ¢ [0 — @ + Ubi jia—ot1 + [& + Ubijia—o-1)

a 125*] a—z
be1—2)(a—z)—1 2y(| 252 | —a+x) LTJ k—1—z—2
+ [k] Z q@( wlee) (_1)yQ7,y : Bi(,kJrcij:C v bi,j;a—r
=0 y=0 Y 2
=" dubijias, (2.2)
=0
where the coefficient d, of b; j.o—, is given by
[#z%1 a—x
§ — ga-2o (k-a)a—a) i: (L1 T -1ake) ] gt g
= q; 4 4; it i
y=0 () 2
e 2((2=2=1] —ata) | 55|
—k— k—z)(a—2x y([—5—]—atz 2 k—z—2y—1
—g o=l Y (g Bires
y=0 Y 2
[Q’TIJFW o[ +1] 2 [aferl“
(k—z+1)(a—z+1) y([ == —atz— 2 (k—z—2y+1)
+ [z]g; - (—=1)%q; ’ y Bi’kﬂ”
y:
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%57 a—z
k—1— —z)— 2y(| &45E | —atx L J k—l—z—
+[k]q¢( 1-z)(a—z)—1 (_1)yqiyt 5] ) i(,kJrlcij 2y)
y=0 Y

We simplify this formula in two cases:

(1) @« — x is odd. In this case, k — z — 2y and k + « has different parities, which

implies B*=*=*'p

Z,k)-‘rcij

L o (k—x— 2y+1)
i =k —2—2y+1]B Fen

We simplify d, as

a—x+1
B} a—z+1
d:r: _ qlgk—x-i-l)(a—x)—x (_1)yq§/(—1—a+x) [k’ oy 2y + 1] 2 B(l;;x—2y+1)
i,k+cij
y=0 Yy 2
a—z+1
B} a—x—1
—k—1 k z)(a—x) (y 1)(—1—a+z) 2 (k—x—2y+1)
+ C_Il [Ol - x Z Bi,k+cij
y=1 y—1 ,
a;
a_;H_l a—x+1
(k—z+1)(a—a+1) _ 1\y, Y(—atz—3) 2 (k—z—2y+1)
+ [l’]ql ( 1) qz Bi,k-‘rcij
y=0 Y 2
a—z+1
— 9 a—xr—1
(k—1—z)(a—x)—1 (y 1) (-1—a+z) 2 (k—x—2y+1)
[k]q Z Bi,k-l—cij
y=1 y—1 ,
q;
= z+1 a—x+1
(k z+1)(a—2x) —l-a+tz)ry, 2 (k—x—2y+1)
Y 2
q;
a721+1 a—x—1
—k— k—x+1)(a—z)+1 —1l—a+x 2 k—x—2y+1
A G A DR o Vi Bl
y=1 Yy — )
a;
a—z+1
2 a—z—1
. (k—1—z)(a—z)—1 1\, (y=)(=1-a+tz) 2 (k—z—2y+1)
[Klg; Z (=1)g; Bi,k+c” )
y=1 y—1
a;
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Rewrite the first line using [k —2y+1] = ¢; *Y[k+1] —¢; *~[2y] and apply Lemma 1.1.

Then we obtain

a—x+1
2 a—x+1
k—z+1)(a—=z —3—a+z 2 k—x—2y+1
dy =g 1) YT (-1l B
y=0 Yy 2
= §+1 a—z—1
. (k 1-z)(a—z)+z—a—1 y y( 1—a+z) 2 (k—x— 2y+1)
k+ Z Bz Jk4-cij
y=1 y—

a;

Finally, applying the following ¢-binomial identity to this formula of d,

a—z+1 a—z—1 a—x—1
2 2y 2 r—a+2y—1 2
= q; + q; )
Yy 2 Yy 2 y= 1 2
q; 4; 4q;

it is clear that d,/[k 4 1] equals the coefficient of b; j.o—, in (16.26),, for any o —
odd.

(2) a — x is even. In this case, k — x — 2y and k + a has the same parity, which

implies

k—x—2 k—x—2y+1 - k—x—2y—1
Bl,(’kﬂij VB, = [k —x—2y+ 1]Bf’k+% ) _ g 'k —x— 2y]BZ,(7k+Cij y=1),

We simplify d, as

=N a—z
d _ qa qul(k :L‘)(Ol x) (_1>yq,iy(—2—a+$) [k: —r— 2y + 1] 2 BZ(I;;::;_QyJ’_l)
5 05
y=0 Yy )
- ql
agz_i_l B a—z
a—2x— 1 k z)(a—x) y D(=2-a+z)r;, . 2 (k—x—2y+1)
+ ¢ Z [k —x—2y+2] Bi’ o
y=1 y—1 ,
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A LR D DR O
7, Cij
y=1 Yy —
a;
k—z+1 —z+1 —2—a-+tx 2 k—z—2y+1
+ [alg " TOTEN (g s
y=0 Yy 2
agz+1 a—x
k—1—x)(a—xz)—1 —1)(—a+=x 2 k—x—2y+1
. [k]qf )(a—z) (_1)yqi(y )( ) Bi(JH% Yy ).
y=1 Y- 2

U | a—x a—z
R N e A
Yy 2 Yy 2 y—1 2
we obtain
(+12)(ams) (cata) |72 | plk—a-2yt)
- +1—z)(a—x y(—a+x) g —x—2y+
de = (=1)%q; dyy Bi,kJrcij
y=0 Yy 2
where
[2y]

dy,=q " Pk—a—2y+1]+¢ "] +

T,y (2

[ —x — 2y + 2]
< (@ k — e =2y + 2 g o - a] 4 g ] - g K]

— [k +1].

This formula shows that d, equals the coefficient of b; j.q—, in (16.25), 4 for any a—z

even.

Therefore, combining above two cases, we have proved (16.25), + (16.26), , =

247



(16.26),., ;-
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