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Abstract

We have developed a technique to fully characterize an arbitrary potential en-
ergy of an atom trap. The characterization allows one to measure the symmetry of
the trap, a determining factor in many trapped atom applications. Created through
a magneto-optical trap and evaporative cooling, a cold atom cloud is first loaded into
our weakly-confined time-orbiting potential (TOP) trap. The whole atom cloud is then
optically pumped into a dark state, an energy level that does not interact with the
probe laser light. A selected part of the atom cloud is reactivated by a repump light
which optically pump the atoms back into a state that can be probed. The repump
light is shaped into a light sheet 168 µm thick. The reactivated region interacts with
the probe laser light to create a fluorescence image. Since the light sheet is much thin-
ner than the atom cloud, which is roughly 2 mm wide, the fluorescence image obtained
is a cross-section of the atom cloud. A movable light sheet allows us to generate cross-
section images of the cloud at different positions. A composite image of all the cross-
section images shows the complete potential profile of our atom trap. This is similar
to tomographic imaging used in medical imaging. We have verified the technique with
two other methods: direct oscillation measurement at varying amplitude and numeri-
cal simulation of the atom trap. The technique is able to measure the potential up to
the fourth-order terms in spatial coordinates. A complete characterization of the atom
trap’s symmetry will allow us to develop an atomic Foucault pendulum, a novel appli-
cation for trapped atoms.
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1
Introduction

Since the discovery of the Bose-Einstein condensate (BEC), many re-

search applications have been proposed or studied [1]. In almost all appli-

cations, an atom trap is required to produce BEC. The potential created by an atom

trap is one of the major factors dictating how successful an application with BEC can

be. We propose a new application for trapped atoms, an atomic Foucault pendulum,

that requires a highly symmetric atom trap. Our group has constructed an atom trap

that can be adjusted to provide the symmetry. In order to so, a method to measure

symmetry is needed. Our work here aims to provide a technique able to completely

1



2 CHAPTER 1. INTRODUCTION

characterize an atom trapping potential in three dimensions up to the fourth-order

terms in spatial coordinates. The technique developed can also be used to improve

other future experiments that we plan to implement in our atom trap.

In this introductory chapter, we will briefly discuss Bose-Einstein condensation.

An analysis of the classical Foucault Pendulum and some of the obstacles in making

one will be given. We will explain the similarities and the differences between an atomic

Foucault pendulum and a classical Foucault pendulum, as well as our motivations in

developing an atomic Foucault pendulum. A conceptual explanation of how an atomic

Foucault pendulum works will be provided. To facilitate further discussion regarding

involved atomic transitions in our experiments, a set of notations referring to different

energy level of Rubidium atoms will be discussed. Lastly, the outline of the chapters in

this dissertation is given.

1.1 Bose-Einstein condensate

To set the stage, we first discuss the nature of BEC and how it is produced. For a clas-

sical ideal gas, statistical mechanics can describe a system using Maxwell-Boltzmann

statistics. When a system is at low temperature, the effects of quantum mechanics

start to arise. In quantum mechanics, all particles are either bosons, those with integer

spins, or fermions, those with half-integer spins. Fermions are forbidden from sharing a

quantum state by the Pauli’s exclusion principle. Bosons, on the other hand, are able

to share a quantum state.

Because of this fact, bosons are able to undergo a special type of phase transition

1.1. BOSE-EINSTEIN CONDENSATE



CHAPTER 1. INTRODUCTION 3

known as BEC. The transition from a bosonic gas to BEC occurs when the de Broglie

wavelength of the particles, λdB, becomes comparable to the inter-particle distance,

n−1/3, for atomic density n [2]. For a gas in equilibrium at temperature T , the thermal

de Broglie wavelength is

λdB =

√
2πℏ2
mkBT

(1.1)

where kB is the Boltzmann’s constant, ℏ is the reduced Planck constant. Since the

de Broglie wavelength depends on the temperature, we can recast the requirement for

BEC transition as

kBT (n) =
2πℏ2

m
n2/3 (1.2)

where the dependence on the cloud density of the transition temperature is explicitly

stated.

From Equation (1.2), we see that different experiments will have different transi-

tion temperature depending on the density of the atom cloud used. Another way to ex-

press the phase transition condition is through phase-space density. Phase space den-

sity is defined as the number of particles contained in a cubic volume with the sides

equal to the thermal De Broglie wavelength.

ρ = nλ3
dB = n

(
2πℏ2

mkBT

)3/2

(1.3)

The transition to BEC happens when ρ ≥ 2.612, where a significant portion of the

atoms occupy the ground state. In order to achieve the transition phase space density,

a combination of density increasing and temperature reducing techniques are used [3].

1.1. BOSE-EINSTEIN CONDENSATE



4 CHAPTER 1. INTRODUCTION

Since the discovery of BEC, many applications have been developed or proposed:

atomic clocks [4], gravimetry [5], Sagnac interferometer for rotation sensing [6], or, in

our group, electric polarizability of Rubidium-87 measurement using a condensate in-

terferometer [7]. For most of the applications, a trapping potential used to create a

BEC and support the atoms against gravity has significant effect on the outcome of a

measurement. An example is the dual Sagnac interferometer proposed by Horne [6].

In this interferometer, the atom cloud is split twice (see Figure 1.1). Each split pro-

duces two identical atom packets travelling in the opposite direction with the same mo-

mentum. The first split happens radially, which results in two atom packets travelling

along the diameter of the potential trap (Figure 1.1a). Once the packets reach their

turning points radially, the point at which their kinetic energy becomes zero, the atom

packets are split again tangentially, creating two pairs of atoms (Figure 1.1b). To make

a measurement, a recombination is needed for each of the pairs. In a symmetric poten-

tial, both atoms of a pair will return to their initial tangential split location after one

period of oscillation, resulting in a high contrast interference signal. In an asymmet-

ric trap, the two atoms will typically miss one another, rendering interference difficult,

if not impossible. Asymmetry of the atom trap has negative impacts on the quality

of the interferometer regardless of whether it is in the harmonic or anharmonic order.

Anharmonicity also manifests as a phase shift in an atomic interferometer, which can

mask the real phase shift caused by the phenomenon being studied [8].

We propose that an atom trap and a BEC can also be used to create an atomic

Foucault pendulum. Having an atom trap with high-quality symmetry is critical to the

construction of one. In order to fine tune the atom trap to achieve the required level

1.1. BOSE-EINSTEIN CONDENSATE



CHAPTER 1. INTRODUCTION 5

(a) Initial split (b) Tangential split (c) Trajectory for recombi-
nation

Figure 1.1: Diagrams showing the movement of atoms inside a dual Sagnac Interferometer. The large
dashed circle shows an equipotential surface at the turning point for the atoms. First, in Figure 1.1a, with
the atom cloud at the origin, a radial Bragg split is initiated. The split atoms move until they reach the
turning point radially, at which point two tangential splits are performed, as shown in Figure 1.1b. The
four atom packets move around the equipotential surface in a circular orbit in Figure 1.1c. If the atom
trap is symmetric, the location of each atom packets in the same pair will coincide at the tangential split
location, allowing us to recombine them and achieve an interferometer. On the other hand, if the atom
trap is not symmetric, the packets in a pair can miss one another.

of symmetry, a new technique has to be developed to study the potential energy of the

atom trap in 3D, as an atomic Foucault pendulum can be implemented for an arbitrary

rotation not limited to a plane, unlike its classical counterpart. The technique devel-

oped has to be capable of characterizing the atom trap up to at least the fourth-order

terms in spatial dependence. Our work here will show that we have developed a tech-

nique, fluorescence tomographic imaging, that satisfies both requirements.

Despite the importance of the trapping potential energy shape on the measure-

ment result, methods for a complete three-dimensional characterization of the potential

have received little attention. When a method is presented, it usually involves extra

laser and optics components which make the experiment more complicated. For exam-

ple, Brantut uses a probe beam at different detuning to develop a light shift tomogra-

phy of atoms trapped in a dipole potential trap [9]. Our technique requires minimal

extra laser and optics.

1.1. BOSE-EINSTEIN CONDENSATE



6 CHAPTER 1. INTRODUCTION

1.2 Classical Foucault pendulum

Since its first public appearance in Paris in 1851, the Foucault pendulum has capti-

vated the interests of the public [10]. The seemingly magical rotation of its oscilla-

tion plane was the first terrestrial-based experiment to irrefutably show that the Earth

spins around like a top [11]. While the motion of the Foucault pendulum relies entirely

on classical mechanics, there are various ways to explain the phenomenon [12, 13, 14,

15]. Even though the initial discovery and explanation were conceived in 1851, the

relevance of Foucault pendulum in various fields can still be seen to this day [16, 17].

While there are some efforts to expand the concept to different systems [18, 19], to our

best knowledge, the application of a Foucault pendulum in atomic regime is absent.

As Baker et al. elegantly put, all pendulums are Foucault pendulums. However,

the Foucault effect is often masked by other types of motion in the pendulums. The

masking renders common pendulums useless in demonstrating Earth’s rotation. To be

more specific, a Foucault pendulum is a pendulum that is well-designed and well-tuned

to show the rotation of the pendulum’s oscillating plane [11].

Qualitatively, the Foucault effect is easily understood. Imagine yourself floating in

space right above the North pole of the Earth, where your friend, Eddie, is located. On

the North pole, a large pendulum, properly sized so you can see it from your position

in space, is installed. The pendulum is set to swing back and forth in a line. Let’s call

the line of swinging the oscillation plane. Initially, the plane of oscillation will point

along one specific longtitude line. If the pendulum is so well-built such that it doesn’t

lose its motion through friction from its hanging point or air drag, it can be observed

1.2. CLASSICAL FOUCAULT PENDULUM



CHAPTER 1. INTRODUCTION 7

for a long period of time. For a long observation, the oscillation plane of the pendu-

lum appears stationary to you, an observer floating in space. However, the supporting

structure and the ground underneath the pendulum slowly rotates with Earth’s rota-

tion. To you, the phenomenon makes intuitive sense. You can clearly see the Earth’s

rotation and the initial longitude line slowly rotates away from the pendulum’s oscilla-

tion plane. On the other hand, Eddie, standing next to the pendulum, is rotating with

the Earth. To him, the pendulum’s support structure and the Earth are standing still,

while the Foucault pendulum slowly rotates away from its initial longitude. In fact, if

both observers wait long enough, it will take exactly 24 hours for the pendulum and

the Earth to revert back to their original conditions. The same experiment can also be

performed on the South pole with similar result. The same experiment performed on

the equator is null. The pendulum’s plane of oscillation moves with the Earth’s rota-

tion; there is no relative rotation between the pendulum and the ground underneath

(see Figure 1.2).

For other places between the equator and the two poles, the effect varies depend-

ing on the latitude of the pendulum location. For a Foucault pendulum situated at lat-

itude β, the Foucault pendulum’s oscillation plane will make a complete revolution in

time T,

T = (24 hours)/ sin β (1.4)

Readers who are interested in a more in-depth explanation of the effect can consult

many standard classical mechanics textbooks [21, 22, 23].

While Foucault pendulums are conceptually easy to understand, constructing one

1.2. CLASSICAL FOUCAULT PENDULUM



8 CHAPTER 1. INTRODUCTION

is anything but easy. Baker et al. provide an exhaustive list of the factors effecting the

quality of the Foucault effect in a pendulum [11]. A quick summary is provided here.

There are three major factors that determine the quality of a Foucault pendulum.

Figure 1.2: Diagram showing
Foucault pendulums at different
point on Earth. Diagram taken
from [20]

First, the initial velocity of the pendulum defines the

plane of oscillation. The direction of the initial velocity

dictates how well the Foucault effect can be observed.

Any amateur who has ever tried to imitate Rocky Balboa

punching a boxing speedbag learns quickly the importance

of pushing the speedbag strictly forward and backward.

The angle at which the fists hit the bag dictates the follow-

ing motion of the speedbag. For maximum satisfaction and

the most rapid bounces, the speedbag should travel only

in the direction facing the boxer. If the bag is punched at

an off angle, an undesirable effect in which the bag makes

a circular motion around its hanging point makes the boxer lose the rhythm. That

is, the motion of the bag needs to contain only velocity in the same line as the bag’s

displacement. Similarly, for a precise and well-defined plane of oscillation, a Foucault

pendulum has to be released without imparting a velocity in the direction perpendicu-

lar to the initial displacement. Failure to do so will result in the pendulum exhibiting

an elliptical orbit, instead of a line, even in the absence of Earth’s rotation. This non-

linear trajectory can mask the Foucault effect. The problem of releasing the pendulum

is important enough to be its own subject of study. Many pendulum-releasing methods

have been tried, including mechanical releases and magnetic releases. The method in-

1.2. CLASSICAL FOUCAULT PENDULUM



CHAPTER 1. INTRODUCTION 9

vented by Foucault, a candle burning through a light thread that holds the pendulum

bob in place at its maximum displacement, still remains one of the most elegant and

simplest methods [20]

Second, an asymmetry in the bob’s oscillation plane damages the quality of a Fou-

cault pendulum. An oscillation of an ideal Foucault pendulum has no preferred direc-

tion of motion. In other words, any initial release of the pendulum, as long as no per-

pendicular velocity component is present, results in an oscillation plane. Any oscilla-

tion planes can be expressed as a linear combination of two fundamental oscillations

that are mutually perpendicular. The two fundamental oscillation directions are called

the principal axes. The pendulum is cylindrically symemtric when both fundamental

oscillations have the same oscillation frequency. In reality, unless extreme care has

been taken or correcting devices have been installed, a pendulum exhibits oscillation

frequency differences between the two principal axes. An oscillation not aligned with a

principal axis becomes a linear superposition of two oscillations with the two different

fundamental frequencies. As a superposition of two oscillations, the trajectory contin-

uously changes from a line along the first principal axis, to an ellipse, to another line

along a different axis and back. The frequency of the shape change is proportional to

the difference in the fundamental oscillation frequencies.

Thus, a pendulum without radial symmetry cannot exhibit the Foucault effect.

The change in the trajectory shape in an asymmetric Foucault pendulum conceals the

much smaller Foucault motion. In fact, multiple anecdotes have been told about the

extreme measures used to achieve cylindrical symmetry or the ease at which the sym-

metry can be destroyed. For example, the wire for the Foucault pendulum hung in the

1.2. CLASSICAL FOUCAULT PENDULUM
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Griffith Observatory, Los Angeles, California, was made overseas. To prevent coiling

the wire and introducing an unbalanced bend, the wire was strung across a custom

built container while in shipment [20]. Foucault pendulums located in stairways of mu-

seums suffer from an imbalance of traffic going up or down the stairs. Doors and win-

dows have to be closed to prevent air draft on the pendulums [24]. Figure 1.3 shows

examples of trajectories in pendulums with various degrees of symmetry.

Third, the amplitude dependence of the oscillation period can create an effect that

masks or cancels the Foucault effect. In the lowest order of approximation, the period

of oscillation is independent of the oscillation amplitude. The next order of approxima-

tion, however, shows that the period of oscillation shifts proportionally to the square of

the amplitude, as

T ∼ T0

[
1 +

α2

16

]
(1.5)

where T0 is the small amplitude oscillation period and α is the amplitude of the oscilla-

tion, in radians. This effect is known as the anharmonicity of the pendulum. Since the

Foucault effect introduces a small velocity component in the direction perpendicular to

the pendulum plane of oscillation, even in a perfectly symmetric Foucault pendulum,

the trajectory is a small ellipse. Due to the amplitude dependence, the pendulum’s pe-

riod along the semi-major axis of the ellipse is longer than the semi-minor axis. The

anharmonicity causes the pendulum’s motion to start veering. The veering of the pen-

dulum created by anharmonicity can create systematic error in measuring the Foucault

effect. To reduce the anharmonicity effect, the oscillation amplitude should be kept

small.

1.2. CLASSICAL FOUCAULT PENDULUM
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In the lowest order of approximation, our atom trap for BEC creates a potential

that resembles that of a classical pendulum. Theoretically, we should be able to create

an atomic Foucault pendulum using oscillating trapped atoms and their plane of oscil-

lation. While we feel this observation would be interesting in its own right, an atomic

Foucault pendulum could also serve as a rotation sensor. The Foucault effect arises re-

gardless of the cause of the rotation. While a Sagnac interferometer can sense small

rotation very precisely, large rotation increases the phase difference to larger than 2π.

The measurement of phase difference beyond 2π for an interferometer is difficult to

interpret. On the other hand, an atomic Foucault pendulum provides a direct measure-

ment of rotation angle, which makes it an ideal measurement to track large rotation.

(a) Foucault pendulum
motion

(b) Bad pendulum release (c) Trajectory changes in
asymmetric pendulum

Figure 1.3: Figure 1.3a shows the trajectory of a Foucault pendulum, with the effect greatly exaggerated.
Figure 1.3b shows the trajectory of the pendulum when the initial velocity is not directed along the same
line as the displacement. The result trajectory is elliptical. Figure 1.3c shows the cyclical fattening and
thinning of an elliptical trajectory due to the asymmetry between the two principal axes. The elliptical orbit
gradually fattens until it becomes a circle, and then another ellipse. The cycle is then reversed. All figures
are from [11].

1.2. CLASSICAL FOUCAULT PENDULUM
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1.3 Atomic Foucault pendulum

In this section, we will explain the underlying principle of an atomic Foucault pendu-

lum. The similarities and differences between a classical Foucault pendulum and an

atomic Foucault pendulum will be shown. Selected reasons for developing an atomic

pendulum will be discussed.

While a classical Foucault pendulum is a marvelous measuring device, an atomic

Foucault pendulum has many advantages. First, a classical Foucault pendulum occu-

pies a large volume. Having a long pendulum arm allows the Foucault effect to be eas-

ily observed in a classical Foucault pendulum. A long pendulum arm also increases the

tolerance for asymmetry. The Foucault pendulum in the Pantheon, Paris, has a cable

that is 97 metres long [11]. On the other hand, an atomic Foucault pendulum has the

potential to be miniaturized. A miniaturized version can be installed in space-limited

experiments: space stations, airplanes, underwater vessels, etc. There are already mul-

tiple efforts to miniaturize an ultracold atom system [25, 26].

Second, an atomic Foucault pendulum can sense rotation in an arbitrary direction.

The potential for an atomic Foucault pendulum is provided by an atom trap that can

be designed to provide desired potential shapes. Consequently, an atom trap can be

designed to possess spherical symmetry. The increased symmetry allows such a trap

to sense rotation in an arbitrary direction. The classical Foucault pendulum can de-

tect the rotation in only one direction, along the straight line between the bob and the

hang point when the bob is at rest. Since the oscillation is not limited to a plane by

physical requirements, a spherically symmetric potential allows an arbitrary rotation

1.3. ATOMIC FOUCAULT PENDULUM
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vector to exhibit the Foucault effect. Note that an atom trap with spherical symmetry

has been reported in the past [27]. However, the degree of symmetry (about one per-

cent oscillation frequency fluctuation in all directions at 7.8 Hz) achieved was not suffi-

cient to implement an atomic Foucault pendulum. Our atom trap can achieve the same

level of accuracy at a smaller oscillation frequency of 1.3 Hz. While an atomic Fou-

cault pendulum with spherical symmetry is more desirable, for simplicity, we choose to

limit our proof-of-concept experiment to horizontal cylindrical symmetry.

Third, unlike the classical version which is plagued by multitude of unpredictable

problems and extraordinary precautions as described in Section 1.2, interactions of

atoms with the environment is better understood and more predictable. An atomic

pendulum will most likely be implemented in a vacuum cell, which help insulates it

from external interferences. Some of the external interferences for an atomic pendu-

lum are optical (stray laser light, background scattering), electromagnetic waves (back-

ground magnetic field, stray radio signals), and gravity. The interactions of the atoms

with the external interferences have been studied to a much greater extent than the

interferences that could effect a classical Foucault pendulum.

Not only does an atomic Foucault pendulum potentially have more advantages

than its clasical counterpart, the various requirements, especially the high-quality cylin-

drical symmetry, needed for a successful application help us understand and better de-

velop other cold atom applications in our atom trap. For example, a high-quality cylin-

drical symmetry will allow us to implement a better dual Sagnac Interferometer with

adjustable enclosed area.

1.3. ATOMIC FOUCAULT PENDULUM
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1.4 Conceptual explanation of an atomic Foucault pendulum

In this section, we will explain how an atomic Foucault pendulum works without men-

tioning specific implementations or apparatus design. The concepts introduced in this

section should be applicable to any kind of atom traps, as long as they possess the

right symmetry for a Foucault pendulum. Our implementation and apparatus design

will be covered in Chapter 2.

In order to have a pendulum, a restoring force is needed. In a classical pendulum,

the string’s tension and the gravity acting on the pendulum bob create an approximate

harmonic potential for small oscillations. For an atomic Foucault pendulum, an atom

trap can generate a trapping potential on the atoms. Analogous to rolling a marble in

a salad bowl, the trapped atoms, if displaced from the minimum potential point, will

oscillate in the bowl. The trajectory of the oscillation depends on the initial conditions

of the atoms and the shape of the bowl. The initial conditions of the atoms will be dis-

cussed later in this section. The potential created by the trap, the shape of the salad

bowl, is shaped through a careful design of the trap. The potential generated from the

trap can be designed to have the necessary qualities to make a Foucault pendulum:

cylindrically symmetric with negligible anharmonicity.

The motion of the bob in a classical pendulum defines the oscillation trajectory.

In an atomic pendulum case, we have two options for tracking the trajectory. One, the

entire trapped atom cloud can be made to oscillate in the trapping potential. A series

of time-based images can be taken and combined to extract the trajectory. The series

of images is equivalent to recording the position of the classical pendulum’s bob as a

1.4. CONCEPTUAL EXPLANATION OF AN ATOMIC FOUCAULT PENDULUM
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function of time. Two, the trapped atoms can be split into multiple packets: one sta-

tionary and the rest moving with the moving packets making up pairs. Each packet

in a pair is sent out with the same initial speed but in the opposite direction. The

stationary packet remains at the trap center at all times. Unless taken when all the

packets are aligned on top of one another while passing the center of the trap, a single

image can determine the plane of oscillation. A schematic diagram of this method is

shown in Figure 1.4. Both of these methods will be discussed further in Section 2.3.

ϴ

Figure 1.4: A diagram showing the Fou-
cault effect in an atomic pendulum in
which the atom cloud is split into multiple
packets. The length of the vectors indicate
packet’s velocity. The hollow circles rep-
resent initial line of oscillation, while the
filled circles show the position of the same
packets at a later time. The center packet
remains stationary at the trap’s potential
minima at all time. The Foucault effect
rotates the plane of oscillation by Θ.

To measure the Foucault effect, the plane of

oscillation is measured using one of the methods

described above. The initial plane of oscillation

is compared to the one from later measurement.

The Foucault effect manifests in the rotation of

the oscillation plane. Since the source of rotation

can come from Earth’s motion, or the rotation

of the atomic pendulum’s apparatus, the atomic

Foucault pendulum can be used as a rotation sen-

sor device.

1.5 Rubidium energy level notations

Our implementation of atomic Foucault pendulum

uses Rubidium atoms. Throughout this disserta-

tion, we will refer to selected energy levels of Rubidium atom, the transitions between

1.5. RUBIDIUM ENERGY LEVEL NOTATIONS
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the energy levels stimulated by the laser beams, and laser beams designed to perform

specific tasks. For brevity, we will define shorthand notations for these entities.

To describe the electronic configuration of an atom precisely to the hyperfine struc-

ture, spectroscopic notation is used. In general, a complete information about an elec-

tron can be expressed in the following form

n2s+1ℓJ F m (1.6)

where n is the principal quantum number. 2s + 1 is the spin multiplicity. ℓ is the total

orbital angular momentum. J is the total angular momentum from both the electron’s

orbit and spin. The F and m quantum numbers give the hyperfine state of the atom.

For example, an energy level of a Rubidium atom might be 52S1/2 F = 1, m = 2. The

hyperfine structure is caused by the coupling between the angular momentum of the

electron and the nucleus’s spin. F is the total angular momentum of the coupled elec-

tron and nucleus. m is the magnetic Zeeman quantum number for the total spin pro-

jected along a chosen axis. See Figure 1.5 for the diagram of the energy levels involved

in spectroscopic notation.

In our experiment, the electron makes transition between two states: 52S1/2 and

52P3/2. Since there are only two fine structure states used, we can shorten the spectro-

scopic notation further. Any primed hyperfine notations refer to the 52P3/2 state, while

the unprimed ones refer to the 52S1/2 state. For example, 52S1/2 F = 1 becomes F = 1

and 52P3/2 F′ = 3, m′ = 2 becomes F′ = 3, m′ = 2. Figure 1.5 also shows the transi-

tions involve in the experiment. The transitions shown are only the excitation transi-

1.5. RUBIDIUM ENERGY LEVEL NOTATIONS
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Figure 1.5: Diagram showing all the energy levels of Rubidium involved in the experiment, as well as the
wavelengths and corresponding transitions of the laser beams. In this dissertation, prime symbols always
refer to the 52P3/2. The unprimed symbols refer to the 52S1/2. The value of F and m will be specified
when relevant.

tions, an electron being excited into a higher energy level. The relaxation transitions

will be discussed in the sections where they become relevant.

1.6 Scope

The scope of the dissertation is to present a technique to measure the potential pro-

file of an atom trap created by Horne [6]. The fluorescence-based tomographic tech-

nique developed is able to measure the potential profile in three dimensions up to the

fourth-order terms in spatial coordinate dependence. In discussing the trapping poten-

tial profile, we will refer often to our goal to create an atomic Foucault pendulum. The

dissertation consists of five additional chapters beyond the current introductory chap-

ter.

Chapter 2: Atomic Foucault Pendulum: In this chapter, we discuss the im-
plementation of an atomic Foucault pendulum. The concept for an atomic Fou-
cault pendulum is discussed. The apparatus, including the science trap in our
experiment, is described. The detection of the trapped atoms and how to observe

1.6. SCOPE



18 CHAPTER 1. INTRODUCTION

the oscillatory behavior are presented. The different choices in creating oscilla-
tory motion in the trapped atoms and the conditions for using each of them are
discussed. The analysis of the atoms’ trajectory is provided.

Chapter 3: Measuring the potential: In addition to the trajectory analysis
presented in chapter 2, a tomographic technique to measure the trapping poten-
tial profile is shown. Tomography is a technique used to obtain cross-sectional
information from a 3D object. In our case, the 3D object is the atom cloud, from
which the potential can be obtained. The additional equipment needed for tomo-
graphic imaging is discussed. The analysis of tomographic slices is presented, as
well as its mathematical model. The temperature of the atom cloud is measured.

Chapter 4: Harmonic terms: In the lowest order approximations, the trapped
atoms’ behavior is governed by the harmonic terms, the terms in the potential
proportional to the square of the spatial coordinates. The importance of well-
balanced harmonic terms for a successful atomic Foucault pendulum is discussed.
The deviation from an off-balance harmonic terms and the consequences are dis-
cussed. The theoretical and empirical evidence showing balanced harmonic terms
are presented. The allowable level of harmonic asymmetry is discussed.

Chapter 5: Anharmonic terms: Beyond the harmonic terms, the trapping
potential has anharmonic terms, the terms in the potential that change more
rapidly than the square of the spatial coordinates. The effects of the anharmonic
terms on the atoms’ motion are discussed. The tomographic technique presented
in Chapter 3 is used to measure the trapping potential profiles. The result of
the tomographic measurement is verified by comparing it to similar values ob-
tained through oscillation measurement and numerical simulation. The 3D recon-
structed model of the trapping potential from the tomographic data is presented.

Chapter 6: Conclusion: We will summarize the tomographic technique we
have developed. While asymmetry in the anharmonic terms will be a challenge
for the development of an atomic Foucault pendulum, we will discuss some tech-
niques by which they could be controlled.

1.6. SCOPE
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Atomic Foucault Pendulum Apparatus

Our BEC apparatus is adapted to implement the atomic Foucault pen-

dulum. In this chapter, the specifics of our apparatus and how we aim to create an

atomic Foucault pendulum will be discussed. we will describe the techniques used to

induce atom oscillation, atom detection system, and the method we use to analyze

atom motion.
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2.1 Apparatus description

In this section, we will discuss the specifics of our apparatus and how we aim to cre-

ate an atomic Foucault pendulum. Our atomic “bob” is a Bose-Einstein condensate

(BEC). First constructed by Horne [6], our adjustable science trap, a type of a mag-

netic atom trap, provides the trapping potential. To make the entire cloud of trapped

atoms oscillate, we install a magnetic coil, the “kick coil”, capable of displacing the

center of the magnetic atom trap. To separate the trapped atoms into multiple pack-

ets, a laser is used to create a standing optical wave on the atoms causing the atoms

to split with predictable momentum, a phenomenon called Bragg scattering. We will

also mention how to create a cold atom cloud, which is hotter than the BEC. The cold

atom cloud is used in characterizing the trap’s potential energy, a topic that will be

discussed later in Chapter 3. The discussion here provides a brief overview of the appa-

ratus and the process of creating a cold atom cloud. The apparatus and the process are

discussed in more detail in Horne’s thesis [6]. In general, our procedure for creating a

Bose-Einstein condensate largely follows the methods described in [28].

As discussed in Section 1.1, to produce a cold atom cloud or a Bose-Einstein con-

densate (BEC), we have to decrease the temperature of the atom cloud.

2.1.1 Initial cooling of atoms

We use Rubidium (Rb) atoms in our experiment. Rubidium is an alkali-metal, a class

of elements that is suitable for atom trapping for various reasons: conveniently-accessible

transition frequency, simplicity of electronic configuration, and ease of sourcing [29].

2.1. APPARATUS DESCRIPTION
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We source our Rb atoms using four alkali metal dispensers (SAES, Rb/NF/3.4/12/FT

10+10). The dispensers are wired into two pairs, each with two dispensers connected

in series. We only run a single pair at a time. A single pair of dispensers typically lasts

about 1.5 - 2 years, depending on the amount of use. We install the second pair of dis-

pensers to lengthen the amount of time before we have to break the vacuum seal of the

system to replenish our Rb supply. The amount of Rb dispensed is a function of time

and temperature. Typical dispensing rate is about 1 µg per minute. The latter can be

controlled by adjusting the amount of current going through the dispenser.

Since our Rb source produces hot and fast-moving atoms, we need to significantly

cool the atoms down before we can load the atoms into our magnetic atom trap. With-

out pre-cooling, the atoms would be too hot to remain in the trap at all. There are

many methods to achieve this result. The two most common methods are the Zeeman

slower [30] and the magneto-optical trap (MOT). We employed the latter to initially

capture and cool down the atoms.

The MOT has become the one of the most widely-used tools in cold atom physics.

It was invented in 1991 by Chu et al. [31]. The most common geometry of a MOT con-

sists of three pairs of counter-propagating laser beams and a quadrupole magnetic field.

In our case, we use a field with the gradient of 10 G/cm along the z-direction [6]. All

the laser pairs are mutually orthogonal. All three pairs intersect at the zero location of

the quadrupole field [32]. The use of carefully selected polarization and detuning im-

parts spatially dependent forces on the atoms, directing them towards the zero field

location and creating an atom trap.

As shown in Figure 2.1, our experiment uses two vacuum chambers: the MOT

2.1. APPARATUS DESCRIPTION
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own ion gauge and ion pump as well as a set of titanium sublimation pump filaments.

 
 
 
 
 
 
 
 

Ion 
Pump 
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Electromagnets 

Bellows Science Cell 
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Figure 2.1: Vacuum System Schematic. The vacuum system consists of two sections
separated by a long, narrow tube allowing for a di↵erential pressure to develop between
the two sections. Each section has it’s own ion pump and pressure gauge. The rubidium is
sourced in the MOT cell.

Before installing the vacuum chamber into the optical setup, the entire system was

baked in a home-built oven to 250 �C. This serves the purpose of reducing the ultimate

pressure attainable in the chamber by essentially boiling contaminants (mostly water) o↵

of the internal surfaces of the vacuum chamber while being pumped out by an external

pumping station. Before allowing the chamber to cool it was sealed o↵ to prevent di↵usion

of contaminants back into the chamber. Additionally, baking the chamber allows for the

ultimate pressure to be reached in a shorter time. After the vacuum cell was installed onto

the optical table, the typical operating pressures in the two regions are approximately 10�9

torr in the MOT cell and 5 ⇥ 10�11 torr in the science cell.

2.1.2 Laser Setup

With the vacuum chamber in place we need a way to manipulate the atoms for our purposes.

As with many atomic physics experiments, we utilize lasers for this task. The relevant energy

levels of 87Rb are shown in figure 2.2.

To establish a Magneto-Optical Trap (MOT) it is necessary to have a cycling transition.

In other words, a transition that when atoms absorb a photon the atoms will spontaneously

decay back to the initial state they were in before the photon absorption. The cooling beam

Figure 2.1: Schematic diagram of the experiment. Diagram taken from [6].

cell and the science cell. The vacuum in both cells is maintained by ion pumps and a

Titanium sublimation pump. A tiny fraction of the atoms released by the dispensers

are captured using a magneto-optical trap in the MOT cell. We typically capture 109

atoms at roughly 150 µK [6].

For an ideal two-level atom, only a single laser is needed to create a MOT. Since

Rubidium has multiple energy levels, two lasers are needed. Figure 1.5 shows the rel-

evant energy levels and laser transitions. See Figure 2.2 for possible transitions and

their probabilities. The first laser, called the cooling laser, is tuned to the transition

that is calibrated for magneto-optical trap effect. When the atoms interact with the

cooling laser, the majority of them are excited to the F′ = 3 level. However, an appre-

ciable fraction of atoms can also populate an alternate state F′ = 2. While all of the

atoms populating the F′ = 3 state decay down to the ground state F = 2, atoms in the

F′ = 2 state can decay to either the F = 2 or F = 1 state. Those atoms decaying back

into the F = 2 state go through the MOT process again. Atoms decaying into the F =

1 state no longer interact with the cooling laser and go dark. With no remedy, even-

tually, all the atoms will be “pumped” to the dark F = 1 state. The second laser, the

repump, is tuned to the F = 1 → F′ = 2 transition. The repump laser take atoms out

2.1. APPARATUS DESCRIPTION
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of the dark state and put them back into the F = 2 to F′ = 3.

The achievable atomic density is limited to about 1011/cm2 in a MOT [29], be-

cause the atom cloud becomes optically dense and the cooling light cannot reach the

center of the cloud. Some examples and further details on MOT limitations can be

found in [34, 35]. To increase the density of the atom cloud beyond this limit, a com-

pressed magneto-optical trap (CMOT) is used to increase the density of the cloud.

Two modifications are needed.

First, the frequency of the cooling laser is changed. During the regular MOT, the

cooling laser is tuned 20MHz red of the cooling transition. Deliberately tuning the

laser frequency slightly away from an atomic transition is known as detuning. For the

CMOT, the cooling laser is detuned further, to 60MHz red of the cooling transition.

The rate at which an atom scattering a laser light depends on this detuning. In gen-

eral, the scattering rate of an atom illuminated by a laser light with intensity I and

detuning ∆ is

Rs =
Γ

2

(
I/Is

1 + I/Is + 4∆2/Γ2

)
, (2.1)

where Rs is the scattering rate, Γ is the natural linewidth of the transition, and Is is

the saturation intensity of the transition. As detuning increases, atoms scatter fewer

photons. The greater detuning during the CMOT allows the cooling photons to pene-

trate deeper into the dense atom cloud. The penetration increases the chance that the

interior of the cloud receives the benefit of the cooling effect.

Second, the repump beam power is reduced by roughly 50%. With less repump

light, when an atom falls into the F = 1 dark state, it will take longer for the atom to

2.1. APPARATUS DESCRIPTION
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Figure A.1: Coupling constants for 87Rb.

Figure 2.2: Coupling constants of various transitions of 87Rb relevant to the experiment. Figure and data
taken from [33]
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receive a repump photon. Spending more time in the dark state, an atom interacts less

with the cooling light. This further reduces the optical density of the cloud. Since the

atoms are already cold, the corresponding reduction in the cooling force is not impor-

tant.

2.1.2 Optical pumping and magnetic trap

After the CMOT, the lasers are turned off and the atoms return to the F = 2 state.

The next step is to load the atoms into a magnetic trap. An atom in a magnetic field

experiences an energy shift due to the Zeeman effect, which is proportional to the inner

product of the atom’s magnetic monent and the magnetic field:

U = −µ⃗ · B⃗ (2.2)

where µ is the magnetic moment of the atom. In a particular Zeeman state mF , the

angle between µ⃗ and B⃗ is fixed. In this case, the potential energy becomes

U = gFmFµBB (2.3)

where gF is the Landé g factor of the hyperfine level F , m is the magnetic quantum

number, and µB is the Bohr magneton. Atoms can be trapped in a magnetic field with

either a maximum or a minimum, depending on the signs of the g-factor and mF . For

a positive gFmF , the potential is minimized at a field minimum. Such atoms are called

low-field seeking. On the contrary, a negative gFmF results in high-field seeking atoms.

2.1. APPARATUS DESCRIPTION
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The g-factor can be found in the literature [36]. Since a local magnetic field maximum

is not possible in free space [37], only low-field seeking atoms are trappable.

The same anti-Helmholtz coil used for MOT is used to generate a spherical quadrupole

field with field zero at the trap center. The magnetic field generated by the coils is

B⃗ = B′
[
1

2
(xx̂+ yŷ)− zẑ

]
(2.4)

|B⃗| =
B′

2

√
x2 + y2 + 4z2 (2.5)

which has the zero-field location and a global minimum at the origin, where the low-

field seeking atoms are trapped. The field gradient B′ used in the spherical quadrupole

trap is 388 G/cm at maximum coil current of approximately 750 A [6]. The coordinate

axes are defined as shown in Figure 2.3. The spherical quadrupole field produced has a

gradient that changes linearly in all x, y, and z-directions, but the z-direction gradient’s

rate of change is doubled.
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Figure 2.3: Apparatus diagram with the science trap’s location and axes labeled. The diagram was modi-
fied from [6]. The Z-axis points out of the plane at the reader.

For the F = 2 state, gF = 1/2. Because of the positive g-factor, the potential for
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the atoms is minimized at the field minimum location for the substates with positive

mF . Consequently, Rb atoms in F = 2 mF = +1,+2 states are trappable at the field

minimum point. The trapping force on the atoms is proportional to the negative gradi-

ent of the potential.

F⃗ = −gFmµB∇⃗B (2.6)

We see that the trapping force is linearly proportional to the magnetic quantum num-

ber of the atom. Since the atoms distribute themselves in all substates after the CMOT,

with no further modification, we stand to lose a large portion of atoms. To gather as

many atoms as we can, we want to transfer all the atoms to a trappable substate. We

use a process called optical pumping, which steps the atoms through each substate

with progressively increasing spin until all the atoms has the maximum spin possible

(mF = 2).

The optical pumping process is shown in Figure 2.4. After the CMOT, the MOT

magnetic field is turned off. A small uniform “bias” magnetic field is then turned on

to establish a spin quantization axis for the atom. To understand the pumping mech-

anism, consider an atom that is in the F = 2, m = 0 state. A laser pump beam tuned

25 MHz red of the F = 2 → F′ = 2 transition illuminates the atoms. The pump beam

has σ+ with respect to the small “bias” magnetic field. The polarization of the pump

beam induces only transitions that increase m. Since the pump beam always increase

the magnetic quantum number by one, the atom is excited to the m′ = 1 state. Once

excited, it can either decay down to the F = 2 or F = 1 state. If it decays to the F =

1 state, it is transferred back to the F = 2 state by the repump light. Once in F = 2,

2.1. APPARATUS DESCRIPTION
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it interacts with the pump beam again and gain an additional magnetic quantum num-

ber. During the emission process, the magnetic quantum number m can change by −1,

0, or +1, giving zero effect on average. Since the contribution from the pumping tran-

sition is always positive, the atom steps through the m-levels of the ground state with

increasing magnetic quantum number until it reaches the m = 2. In this state, the

atom becomes transparent to the pump beam as it cannot be excited up to the non-

existent m′ = 3 substate. We can transfer about 75% of the atoms to the m = 2 state

by this process.

2.1.2.1 Atom transportation and final cooling

After optical pumping, the spherical quadrupole field is turned on quickly to capture

the atoms. The spherical quadrupole trap is turned on by running the maximum cur-

rent of 750 A through the quadrupole coil pair. Once loaded into the spherical quadrupole

trap, the atoms are transferred from the MOT vacuum cell to the science vacuum cell.

Without transferring the atoms to the science cell, background collision in the MOT

cell reduces the lifetime of the atoms in the spherical quadrupole trap to roughly 10

seconds, a duration too short for our measurement. Due to the high rate of background

loss, obtaining a BEC in the MOT cell is not possible.

The science cell has a better vacuum due to the pressure gradient established by

a thin vacuum tube connecting the two vacuum cells. The tube between the MOT cell

and the science cell allows a pressure gradient between the two cells, with the pressure

in the science cell an order of magnitude less than the MOT cell. The vacuum in both

cells is maintained by two ion pumps, and in the science cell an additional Titanium

2.1. APPARATUS DESCRIPTION



CHAPTER 2. ATOMIC FOUCAULT PENDULUM APPARATUS 29

52S1/2

52P3/2
F′ = 3
F′ = 2

F = 2
F = 1

m′
-3 -2 -1 0 1 2 3

m 
-2 -1 0 1 2

Pumping

m′
-3 -2 -1 0 1 2 3

m
-2 -1 0 1 2

Relaxing to ground

52S1/2

52P3/2
F′ = 3
F′ = 2

F = 2
F = 1

m′
-3 -2 -1 0 1 2 3

m
-2 -1 0 1 2

Relaxing to 
dark state

m′
-3 -2 -1 0 1 2 3

m
-2 -1 0 1 2

Repumping

Figure 2.4: A diagram showing all the transitions involved in optical pumping. There are four possible
transition types. Optical pumping is done by the pump laser beam. The pump beam is adjusted to have a
σ+ polarization at about 25 MHz red of the F = 2 to F′ = 2 transition. Due to the selected polarization’s
orientation with respected to the small bias magnetic field, the pump beam causes an atom to transition
from the ground state to the pumped state with m′ = m + 1. When excited up to the pumped state,
the atoms can relax to either the F = 2 or F = 1 state. The atoms can relax to the F = 2 state with
m = m′ ± 1 or with m = m′. Once in the ground state, the atoms continue interact with the pump
beam. On the other hand, the atoms can also relax to the F = 1 state and be repumped by the repump
transition similar to the process in MOT. Since all the transitions except the pumping transition randomly
change the magnetic quantum number by ±1 or leave it unaltered, while the pumping transition always
increases the magnetic quantum number, after multiple cycles of transitions, most of the atoms arrive at
the m = 2 substate of the ground state. Since the pumped state does not have an m′ = 3 substate, once
the atoms reach m = 2 substate after cycles of pumping, the atoms stop interacting with the pump beam.
Except the atoms loss through background collsion, most atoms end up in this substate, depicted as an
oval in the pumping diagram.
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sublimation pump. The pressure in the MOT and science cell are typically in the mid

10−10 and 10−11 Torr respectively. The lower pressure in the science cell allows fur-

ther reduction of the temperature of the atoms. The science cell contains the science

trap that we use for our experiment. The science trap will be discussed in section Sec-

tion 2.1.3. The science cell has six optical access ports, all of which are coated with

anti-reflective coating to prevent unwanted scattered laser light. See Figure 2.1 for the

diagram of the apparatus.

The atom cloud is moved to the science cell by a mechanical track upon which the

spherical quadrupole coils are mounted. The track movement takes about 2 seconds to

complete. The atoms are moved slowly enough for the process to be adiabatic.

Once the atoms have arrived in the science cell, we cool the atoms further using

evaporative cooling. The depth of the trapping potential is reduced in steps. Each re-

duction allows the most energetic atoms to leave the trap. Between each reduction, the

remaining atoms are allowed to rethermalize through elastic collisions. Since the atoms

leaving the trap have energy higher than the average atoms, each depth reduction and

rethermalization results in the atom cloud having lower average energy.

Eventually, the remaining atoms are cold enough that a significant portion of

them can be ejected from the trap through a process called Majorana loss or a spin-

flip loss [38]. Majorana loss happens when an atom passes through a region with no

magnetic field. The atom losses its quantization axis allowing its magnetic moment to

be misaligned with the magnetic field. In some cases, the misalignment puts the atom

in an anti-trapping magnetic state. When the atom moves away from the field zero, it

will be ejected from the trap. Thus, a trap with a field zero effectively has a hole for

2.1. APPARATUS DESCRIPTION



CHAPTER 2. ATOMIC FOUCAULT PENDULUM APPARATUS 31

atoms to escape through. There are multiple solutions to the problem [39]. We use a

time-orbiting potential (TOP) trap. The basic principle of a TOP trap is the applica-

tion of a rotating bias field that moves the zero-field position around the atoms. If the

field rotates faster than the oscillatory frequency of the atoms in the trap, the atoms

will experience an effectively static time-averaged potential from the rotating field.

Since the atoms are in the low-field seeking state, they are trapped where the time-

averaged field is minimum, which is at the center of the trap where the field is never

zero. We assume that the frequency of the field rotation is much smaller than the Lar-

mor frequency of the atoms, so that the spin of the atoms remains aligned with the

magnetic field. A benefit of the TOP trap method is that the rotating atomic spins

tend to cancel effects from extraneous stray magnetic fields that are not oscillating at

the same frequency as the bias field [38].

Once the atoms are in the TOP trap, the nature of the measurement dictates the

next steps. For some measurements, such as those in Section 3.2, we want the atom

cloud to be as warm as possible, so that the atoms fill a large volume of the trap. We

therefore cool the atoms to the highest temperature compatible with the final atom

trap used. The right evaporation level is determined empirically to provide the greatest

expanse in cloud size, while still giving a detectable signal.

Other measurements benefit from using a Bose-Einstein condensate, such as those

in Section 2.3.2. In this case, we apply a second stage of evaporative cooling to reduce

the temperature of the atoms further and to increase the phase space density, until

reaching the transition to Bose-Einstein condensate (BEC).
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1 mm

(a) Cold atom cloud

1 mm

(b) Bose-Einstein Condensate

Figure 2.5: Images showing a cold atom cloud and a Bose-Einstein condensate. Both images were cap-
tured using absorption imaging (see section 2.2.1 for the explanation of the technique). Both images were
taken with the atoms in the science atom trap described in section 2.1.3

2.1.3 Science atom trap

While a tightly-confined spherical quadrupole trap was easily generated by two anti-

Helmholtz coils, making some types of measurements in a tightly confined trap is counter-

productive. For instance, in interferometry measurements, the further we can separate

different atom packets, the easier and more accurate the measurement becomes. Fur-

thermore, a tightly-confined trap results in greater interaction between the trapped

atoms. Interatomic interactions destroy the coherence of the atomic wavefunctions and

limits their interference. Implementing an atomic Foucault pendulum in a tight trap

is also counter-productive. A weak trap permits larger oscillation amplitudes of the

atoms, which facilitates detection of minute rotation of the oscillation plane. A weakly-

confined atom trap, with gravity cancellation, is preferred for our measurements. For

this purpose, we load the atoms into a “science trap”.

The science trap uses a variation of the time-orbiting potential (TOP) method.
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The trap’s fields are generated by six coil chips, grouped as three pairs. Each coil con-

sists of a strip of copper arranged in a spiral pattern on an Aluminum Nitride sub-

strate. The chips were made using a photolithography technique. The chips are aligned

to form a cube, with the two chips of a pair on the opposite sides. A CAD drawing of

a chip can be seen in Figure 2.6. Each chip’s current can be controlled independently.

Drive circuits and control signal generation can be found in [6]. We denote the direc-

tion along the vacuum cell to be x, the other horizontal direction y, and the vertical di-

rection z (see Figure 2.3). The x and y pairs are wired in series, while the two z chips

are controlled independently.

21 mm

(a) A chip coil of the
magnetic atom trap

X Y

Z

(b) Magnetic atom trap cube

Figure 2.6: Diagrams showing a single chip coil. Six chip coils make up our magnetic atom trap. Dia-
grams from [6]

The currents fed to the coils generate two time-dependent magnetic fields: the

bias field and the quadrupole field. The atoms are confined by the time-average of the
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two fields. The two fields can be described, in lowest order, by

B⃗quad = B′
1 cosΩ1t


x/2

y/2

−z

 (2.7)

B⃗bias = B0


sinΩ1t cosΩ2t

sinΩ1t sinΩ2t

cosΩ1t

 (2.8)

where B′
1 is the quadrupole field amplitude, the value which will be determined to can-

cel gravitation potential energy (discussed later in this section), B0 is the adjustable

bias field amplitude, Ω1 (2π × 10 kHz) is the angular frequency of the quadrupole field,

and Ω2 (2π × 1 kHz) is the angular freqency of the bias field.

The movement of the bias field can be understood as a superposition of two move-

ments. First, it rotates around the origin in a circular motion on a plane containing

the z-axis at frequency Ω1. The second motion can be understood if we hold the Ω1t

term constant and consider only the x and y terms. Here the field rotates about the

z-axis at frequency Ω2. For a diagram of the combined movement, see Figure 2.7.

Since both Ω1 and Ω2 are much faster than the oscillatory motion of the atoms

in the trap (~1 Hz), but slower than the atom’s Larmor precession rate (~10 MHz),

the TOP trap as described successfully traps the atoms and avoids Majorana loss. The

atoms only see the time-average potential caused by the time-average of the magnitude

of the rotating field. In the lowest (harmonic) order, the time-average magnitude of the
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Figure 2.7: A diagram shows the movement of the bias field as a superposition of two motions. In the
first motion, the bias field circles about the origin in the plane containing the z-axis. The second motion
consists of the plane rotating about the z-axis. Diagram taken from [6].

rotating field can be found analytically:

|B⃗| = |B⃗bias + B⃗quad| (2.9)

= B0

[
1 +

B′
1

B0

sinΩ1t cosΩ1t(x cosΩ2t+ y sinΩ2t) (2.10)

− 2
B′

1

B0

z cos2Ω1t+

(
B′

1

B0

)2

cos2Ω1t

(
x2 + y2

4
+ z2

)]1/2
⟨|B⃗|⟩ ≃ B0

(
1− 1

2

B′
1

B0

z +
1

128

(
B′

1

B0

)2 (
7x2 + 7y2 + 8z2

))
(2.11)

In the last step, we have expanded all the terms using Taylor expansions, kept only the

second order terms, and performed a time-average of the magnetic field.

Knowing the time-average magnetic field, the potential seen by the atoms in mF =

2 state can be described, together with the gravitational potential, as

Utot = µBB0 +mgz − 1

2
µBB

′
1z +

1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2 (2.12)
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With B′
1 = 2mg/µB, the gravitational potential can be cancelled by the term linear

in z. Additionally, the constant first term can be ignored as it has no physical effects

on the motion of the atoms. The time-average potential is then expressed as a 3D har-

monic oscillator,

Utot =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2 (2.13)

with

ωx = ωy =

[
2µB

m

(
7

128

B′2
1

B0

)]1/2
(2.14)

ωz =

[
2µB

m

(
1

16

B′2
1

B0

)]1/2
. (2.15)

Evidently, at the lowest order of approximation, the magnetic atom trap does ex-

hibit cylindrical symmetry, one of the necessary conditions for a high-quality Foucault

pendulum. However, even in this order, an accurate analysis should include the curva-

ture of the bias field. Since our study measures these terms explicitly, and since any

calculation with the curvature terms included is, at best, an approximation, we omit

the treatment with curvature terms here. The readers who are interested in the deriva-

tion of the potential with curvature terms can consult [6]. The resulting potential with

the curvature terms resembles Section 2.1.3, but the oscillating frequencies become

ωx = ωy =

[
2µB

m

(
7

128

B′2
1

B0

− γ

16
B0

)]1/2
(2.16)

ωz =

[
2µB

m

(
1

16

B′2
1

B0

+
γ

8
B0

)]1/2
. (2.17)
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2.2 Detecting the atoms

In this section, we will discuss the methods used to detect the trapped atoms. We use

two detection techniques: absorption imaging and fluorescence imaging.

2.2.1 Absorption imaging

Absorption imaging provides a dark absorption profile on a bright, exposed background.

A probe beam tuned to the transition as shown in Figure 1.5 illuminates the atoms

and the surrounding area. The photons in the region around the atoms move through

the space unobstructed. The photons in the region intercepted by the atoms are ab-

sorbed. The amount and the area of absorption depends on the density and the size of

the atom cloud respectively. The shadow caused by the absorption can be analyzed to

obtain the column density and the size of the atom cloud.

Once the probe beam has passed through the vacuum cell and the atoms, the

photons impinging on CCD get converted linearly to a number of counts in each pixel

based on the quantum efficiency of the camera. A system of lenses is used to image the

atom plane onto the CCD (see Figure 2.8). Two cameras are used to provide 3D infor-

mation. The system of lenses also magnifies the image. The lenses used for imaging are

either achromatic lenses, which help in reducing spherical aberration, or microscope ob-

jective lenses. The magnification of the cameras (shown in Table 2.1) can be measured

by deliberately moving the atoms in the spherical quadrupole trap a known distance

by adjusting the mechanical track location, and correlating the physical shift with the

shift in the image.

2.2. DETECTING THE ATOMS



38 CHAPTER 2. ATOMIC FOUCAULT PENDULUM APPARATUS

Camera Magnification
Side Camera 1.58± 0.18
Top Camera 4.42± 0.01

Table 2.1: Table showing the magnification of the CCD cameras used in the experiment.

Side camera

Top camera

Vertical probe 
Horizontal probe

Translation stage 
75

100

200 100

μ-Obj

200

75 50 100

xxx    focal length (mm)
μ-Obj Microscope Objective

Figure 2.8: A schematic diagram showing laser and optics involved in absorption imaging. To get the best
Gaussian profile, the probe beams are optical fiber launched. The two-sided arrows denote the lenses that
are mounted on translation stages. The translation stages allow us to focus the atom cloud onto the cam-
eras’ CCDs. Two cameras allow us to study arbitrary motion in three-dimensional space. The CCD plane
of the side camera runs parallel to the mechanical track and the length of the vacuum cells. The numbers
next to the lenses indicate focal lengths. All the lenses are achromaic lenses, except the one microscope
objective, Mitotuya M plan Apo 2x, which is marked accordingly on the diagram.

To understand absorption imaging quantitatively, the Beer-Lambert law can be

used. When a probe light of intensity I0 travels through atoms with absorption coeffi-

cient α, the intensity of the output light is

Iout = I0e
−

∫
α(z)dz (2.18)

where z is the direction along the probe beam, α(z) is the probability of a photon be-

ing absorbed per unit length at z. The probability of being absorbed is also related

to the light scattering cross-section and the density of the absorbing atoms, α = σn

[40], where σ is the light scattering cross-section and n is the atomic density. Equa-

tion (2.18) and the relation between the cross-section and the probability of being ab-
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sorbed are used to explain the absorption in our experiment:

Iout(x, y) = I0(x, y) exp

[
−
∫

σ(z)n(x, y, z)dz

]
(2.19)

where (x, y) is the coordinate on the CCD camera, i.e. in the plane perpendicular to

the probe beam’s direction of travel.

The density distribution and the location of the trapped atoms can described by

a mathematical model. Various models can be used for fitting. For most of our mea-

surements, the use of a Gaussian density model works well. Since the potential is ap-

proximately harmonic, as shown in Equation (2.13), the Gaussian model is suitable for

a cold atom cloud. For a BEC, the Thomas-Fermi approximation predicting an inverse

parabola model is more accurate [41]. However, we find that using a Gaussian model

for BEC is adequate in most cases. The 3D Gaussian model used is

n(x, y, z) = exp
[
−a1(x− x0)

2 − a2(y − y0)
2 − az(z − z0)

2
]

(2.20)

where (x0, y0, z0) is the location of the atom cloud’s center. The a coefficients are the

model parameters. In Chapter 3 when we try to measure the cloud profile to higher

precisions, multiple higher-order terms will be added to the model.

Given the Gaussian model, the density distribution of the trapped atoms is a

product of three independent density functions, each of which depends only on a sin-

gle coordinate.

n(x, y, z) = nx(x)ny(y)nz(z) (2.21)
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With the separation of variables, we can simplify Equation (2.19) by noting that the

integration along z-direction can be evaluated independent of the x and y coordinates.

Defining B ≡
∫
σ(z)nz(z)dz, we have

Iout(x, y) = I0(x, y) exp [−Bnxy(x, y)] (2.22)

where nxy =
∫
n(x, y, z)dz is the column density through the location (x, y) in the xy

plane. Since the number of counts on an image corresponds lineary to the intensity of

the imaged photons, the intensity in the above equation can be replaced by the photon

counts on the CCD without loss of generality.

Three images are taken for each absorption imaging measurement: the “atom”

image, the “no-atom” image, and the “background” image. Each image has 80 µs ex-

posure time. First, the background image is taken with the probe light off. Even when

the best optical isolation techniques are used, completely eliminating unwanted scat-

tered background laser light from being captured by the cameras is impossible. Since

the unwanted background light is independent of the atom trap operation, images meant

for measurements are corrected by subtracting the background image. Next, the “atom”

image, an image of the atoms in the science trap is taken. The pixel counts of the atom

image after background subtraction is represented by Equation (2.22). Lastly, the “no-

atom” image is taken with the same optics and beam sequencing as the “atom” image

but without the trapped atoms. Without any absorption from trapped atoms, the “no-

atom” image provides a measurement of I0.

After all three images are taken, the divided image can be calculated. For a pho-
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ton count of P (x, y) at the pixel (x, y) on the CCD, the same pixel value in the divided

image is

Pdivided(x, y) =
Patoms(x, y)− Pbg(x, y)

Pno atoms(x, y)− Pbg(x, y)

= exp [−A−Bn(x, y)] (2.23)

where A accounts for small differences in overall probe intensity between the two im-

ages. The equation above shows that the pixel value in the divided image ranges from

1 to 0, depending on the column density of the atom being projected onto the pixel.

An image representing the location-dependent density of the atom cloud can have an

excellent contrast, as can be seen in Figure 2.5.

2.2.2 Fluorescence imaging

Fluorescence imaging provides an alternative way to detect the atoms. In contrary to

the absorption images, fluorescence images provides a bright profile of atoms on a dark

background. The same laser light we used for absorption imaging is also used for fluo-

rescence imaging, but the beam is directed onto the atoms from the side, rather than

into the camera. The illuminated atoms make a transition to the excited state upon

photon absorption. When an atom decays through spontaneous emission to the ground

state, it emits a photon in a random direction. When all the scattered photons are

taken collectively, the atom cloud emit photons in all direction. The lens system im-

ages the atoms onto the camera’s CCD. Since the photons are emitted in all directions,

we can only collect the photons that are emitted in the direction of the first collecting
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lens.

The number of photons generated at location (x, y) with is collected by the cam-

era for an exposure interval t is

Np(x, y) =

∫
n(r⃗)dz × Apixel ×RstE (2.24)

where n(r⃗) is the density of the trapped atom at r⃗, Apixel is the area in the object plane

corresponding to one pixel on the camera’s CCD sensor, Rs is the scattering rate as de-

scribed in Equation (3.5), and E is the probability of an emitted photon to be collected

by the lenses and detected by the CCD. Note that the photon count, not only depends

on the atom density, but also depends on the duration of exposure, a property that is

absent from absorption imaging.

1 mm

Figure 2.9: Fluorescence im-
age of a cold atom cloud. The
image is taken using the top
camera exposed for 2 ms.

Note that the photon count in fluorescence imaging

not only depends on the atom density, but also depends

on the duration of exposure, a property that is absent from

absorption imaging. Since the transition used for prob-

ing is not a closed transition, some atoms eventually find

themselves in the F = 1 state. To avoid this, we apply re-

pump light along with the probe. Two images are taken for

a fluorescence measurement. An “atom” image is captured

with trapped atoms present. A “no-atom” image is captured in the same condition but

without the atoms. The difference between the two images yields the photon counts

caused by the atoms.
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2.2.3 When to use absorption or fluorescence imaging

In this section, we will discuss when and why we prefer one imaging technique over the

other.

In general, absorption imaging provides a better image because it is independent

of the probe beam intensity. This causes the absorption image to be more accurate.

However, in some situations, fluorescence imaging is needed. The most obvious one

is when the atom density is too small to produce enough absorption. For small ab-

sorption, absorption images are sensitive to noise in the background, which is always

present at about 5% of fluctuation in the signal. Absorption imaging is not suitable for

measurements that require a better sensitivity. On the other hand, since the photon

count in fluorescence images is proportional to the product of atom density and expo-

sure time, we can expose a fluorescence image longer to collect more photons when the

atom density is insufficient for absorption imaging. Obtaining accurate photon counts

for a given atomic density is difficult since it is hard to calibrate for variations in E and

the probe beam density. However, for many purposes, relative measurements of density

variation are adequate.

The ability to compensate for small atom density by increasing exposure is the

main reason we have to use fluorescence imaging when we measure the potential pro-

file’s anharmonicity, the procedure which will be explained further in Chapter 3.

Regardless of the method used for detection, the trapping potential needs to be

turned off. This is because atoms in a magnetic atom trap experience a significant Zee-

man shift. For a large enough cloud, different parts of the cloud have different amounts

2.2. DETECTING THE ATOMS



44 CHAPTER 2. ATOMIC FOUCAULT PENDULUM APPARATUS

of energy shift. Since the scattering rate and the absorption rate depends on the de-

tuning of the probe beam, the shape of the cloud is distorted by the difference in en-

ergy shift. It takes about 100 µs to turn off the trap, during which time the atoms

move a negligible distance.

2.3 Inducing oscillation in the atom trap

In the last two sections, we have described the atoms that act as a bob for the atomic

Foucault pendulum and the magnetic atom trap that provides the restoring force for

the pendulum swing. First, we discuss how we set the pendulum in motion.

2.3.1 Kick coil

In classical Foucault pendulum, the pendulum motion is initiated by moving the bob

away from the equilibrium, and then releasing it. We can achieve a similar effect in the

atom trap by temporarily shifting the center of the trap adiabatically, to let the atoms

be localized around the new center. The temporarily shift is achieved using an external

magnetic coil, called the kick coil. Turning the kick coil abruptly off moves the trap

center back to its original location. The displaced atoms then start to oscillate in the

unshifted potential, analogous to the way a pendulum bob swings back and forth.

The amount and the direction of the trap shift depend on the orientation and the

strength of the field generated by the kick coil. We can shift the center of oscillation by

adding a field that is synchronized to the quadrupole field.

B⃗kick = Bk sinΩ1t(axx̂+ ayŷ + az ẑ), (2.25)
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where Bk is the strength of the kick field and the ai’s are the direction cosines of the

field, determined by the physical orientation of the coil. When the kick coil is active,

the kick field adds simply to the quadrupole field:

B⃗quad+kick =
B′

1 cosΩ1t

2

[
x− Bkax

B′
1

, y − Bkay
B′

1

,−2

(
z − Bkaz

2B′
1

)]
. (2.26)

Evidently, this is equivalent to the same quadrupole field, with the center now being

shifted to (
Bk

B′
1

ax,
Bk

B′
1

ay,
Bk

2B′
1

az

)
. (2.27)

The larger kick field we are able to produce, the larger the kick amplitude we can give

to the atoms.

Figure 2.10: Kick coil and its mounting post.

A coil was wound with 22 AWG wire

on a wooden frame. See Figure 2.10 for

the assembled coil. The complete spec-

ifications of the kick coil is shown in

table 2.2. The coil can be mounted to

a standard 1/2” post. To easily align

the coil in 3D and changing the direc-

tion cosines of the kick field, a swivel

post clamp with 360◦ continuous-adjustability is used (Thorlabs, SWC). The whole

structure is then mounted onto a post on the optics table using a C clamp on 1” post

(Thorlabs, RM1C).
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Properties Values Units
Number of turns (N) 25 turns
Diameter 15 cm
Inductance (L) 180 µH
Wire Gauge 22 AWG
Wire power rating 7 A
Maximum running current 5.7 Arms

Table 2.2: Table showing specifications of the kick coil.

To run the coil, the signal used to drive the science trap’s quadrupole field is split.

One output is still fed to the audio amplifier for the science atom trap. The second

output is connected to a phase shifter and an audio amplifier circuit in bridge-mono

configuration (QSC audio products, LLC, RMX850). As stated earlier, we want the

kick coil’s current and the quadrupole field current to be in phase; the phase shifter al-

lows us to correct for the electrical phase from the coil inductance and other elements.

A current sense transformer (Triad Magnetics, CST306-2A) has also been installed in-

line to the kick coil to monitor the current through the coil. We choose the sense resis-

tor to give a calibration of 1 V/A. The kick coil is turned on at the same time that the

atom cloud is loaded into the science trap from the quadrupole trap. Once the atom

cloud has situated in the science trap, the kick coil is turned off abruptly to induce an

oscillation motion. An example oscillatory motion induced by the kick coil can be seen

in Figure 2.12.

2.3.2 Bragg splitting

Rather than causing the atom cloud to oscillate as a whole, we can also split the cloud

into multiple packets. In an ideal symmetric trap, if each packet is imparted with mo-

menta that are different in magnitudes, but colinear in directions, their locations dur-
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Phase
Shifter

Science trap
Drive signal

Current sense
Level V

Kick coil

Figure 2.11: Circuit diagram of the kick coil
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(b) Oscillation along the z-direction

Figure 2.12: Oscillation curves of the atoms in the science trap. The oscillation is induced by the kick
coil. The atoms clearly show oscillatory motion in both directions shown. The second camera also takes
pictures of the same motion from an orthogonal image plane. The images from both cameras allow us to
map out the motion in three-dimensional space. The sinusoidal fits are provided as a guide to the eye. The
period along the x-direction is about 900 ms, while that along the z-direction is about 500 ms.

ing oscillation will form a line. The line of oscillation is analogous to the line drawn in

the sand by the bob in a classical Foucault pendulum. The orientation of the line will

rotate due to the Foucault effect.

We use the optical Bragg scattering process to split the atom cloud. Two off-

resonant laser beams create a standing wave at the atom location. In our case, one

laser beam is retro-reflected. The presence of the standing wave creates a periodic

2.3. INDUCING OSCILLATION IN THE ATOM TRAP
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dipole potential for the atom [36]. The atoms scatter from this potential receive mo-

mentum transfer in discrete units of 2ℏk, where k is the wave number of the Bragg

light. This optical Bragg scattering is complementary to crystalline Bragg scattering.

In crystalline Bragg scattering, a periodic crystal forms a grating made of matter, from

which light scatters. In optical Bragg scattering, atoms (matter) are scattered from an

optical standing wave (light). In both cases, the amount of scattered momentum de-

pends on the spatial period of the grating [42].

1 mm

Figure 2.13: Bragg splitting of an atom packet

A Bragg scattering process also can be understood as a stimulated Raman tran-

sition. An atom absorbs a photon from one of the Bragg beam and makes a transition

to an excited state. The absorption of the photon causes the atom to gain ℏk of mo-

mentum in the direction of the absorbed beam. The atom is then stimulated to emit a

photon into the other Bragg beam, which travels in the opposite direction. This causes

the atom to gain another ℏk of momentum. Overall, the entire process imparts 2ℏk of

momentum to the atom. By symmetry, the process is equally likely to occur with the

stimulating beam and the absorbed beams’ order reversed. In this way, the cloud of
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atoms is split into two packets with 2ℏk momentum gain but travelling in the opposite

direction. A diagram depicting the process can be seen in Figure 2.14.

Excited

Ground
1 2

ℏk0

3

2ℏkAtom's 
velocity

Figure 2.14: Diagram showing the process involved in Bragg splitting of an atom cloud in an ideal two-
level system. The atoms starts at rest with light beams illuminating from both sides (Step 1). The atoms
absorb the left-going photon and transitions to the excited state. Because of the absorption, the atoms
gain ℏk momentum in the direction of the absorbed beam (Step 2). The atoms relax down to the ground
state through stimulated emission by the other beam. Due to the emission, the atoms gain additional mo-
mentum, which brings the total momentum of the atoms to 2ℏk (Step 3). By symmetry, the atoms is
equally likely to start by absorbing the photon from the right-going beam. In the end, a single atom cloud
is split into two identical clouds going in the opposite direction at the same speed.

As noted in Section 1.2, one of the difficulties for a classical pendulum is in the

initial release of the pendulum. The initial velocity’s problem in the classical Foucault

pendulum becomes trivial to solve with Bragg scattering. If the potential profile is

cylindrically symmetric, a Bragg scattering process in any direction in the horizontal

plane guarantees a line of oscillation. No momentum is imparted on the atoms in the

direction perpendicular to the Bragg beams.

Observing the oscillating atoms using Bragg scattering is easy to achieve, but it

does have a siginificant constraint. Since the process imparts, at the minimum, a mo-

mentum of 2ℏk on the atoms, it is impossible to study oscillation amplitudes smaller

than 2ℏk/mω, where ω is the oscillation frequency on the same axis as the atom’s ve-

locity. When we need to vary the oscillation amplitude, we use the kick coil method

instead.

2.3. INDUCING OSCILLATION IN THE ATOM TRAP
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Note that Bragg scattering is a widely-used phenomenon. In fact, many of our

published results make use of the process [43, 44]. The Bragg splitting process dis-

cussed so far is limited to the first-order process. Higher order process are possible. In

general, an nth-order Bragg splitting results in two atom packets moving in the oppo-

site direction, each with a momentum of 2nℏk. A modification also can be made such

that asymmetrical splitting of atom clouds is possible [45, 46].

2.4 Trajectory analysis

We will discuss how we analyze the trajectory of the atoms in our atomic Foucault

pendulum in this section. A suitable mathematical model is fit to the center position

of the atom cloud. We use the same coordinate axes in analyzing the trajectory as the

one we defined for the magnetic atom trap’s notation (Figure 2.3). The motion along

the x,y, or z axes are analyzed indepently. Since the leading order of the science trap’s

potential is a harmonic oscillator, each axis’s motion is modeled by a simple sinusoidal

function. The model for the j-axis is

j(t) = Aj cos

(
2π

T
(t+ t0)

)
+ j0 (2.28)

where j(t) is the location of the atom along the j-axis at time t, Aj is the amplitude

of oscillation along the axis, T is the period of oscillation, t0 is the phase offset of the

motion, and j0 is the center of the oscillation, generally representing the center of the

trap.

2.4. TRAJECTORY ANALYSIS



CHAPTER 2. ATOMIC FOUCAULT PENDULUM APPARATUS 51

2.5 Conclusions

In this chapter, our apparatus and techniques used are mentioned. How we plan on

implementing a Foucault pendulum in the science trap was discussed. The analytical

techniques used to study the atomic Foucault pendulum were described. In the next

chapter, we will show the early results of our atomic Foucault pendulum. The early

results show approximated cylindrical symmetry in our science trap. We will also dis-

cuss how the shape of the potential energy of the science trap can be studied in more

details through the use of tomographic imaging.

2.5. CONCLUSIONS





3
Measuring the potential

The level of attention paid to the details in making a classical Fou-

cault pendulum is a good example of how carefully tuned a Foucault

pendulum has to be. In the last chapter, we presented our apparatus and discussed

the techniques involved in analyzing the result. In this chapter, we will show that the

science trap possesses approximate cylindrical symmetry. We will discuss why we need

better symmetry to achieve a working atomic Foucault pendulum. The level of symme-

try needed, as well as the effects from anharmonic terms will be discussed. Due to the

level of accuracy needed for an atomic Foucault pendulum, we will implement a new
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imaging technique allowing us to map out the shape of the potential energy in 3D up

to the fourth-order dependence in spatial coordinates. The technique will be used in

several measurements in this dissertation.

3.1 Initial results

In an ideally symmetric atom trap, both methods of oscillation inducing discussed in

Section 2.3 should create a straight line trajectory for small duration observation. As

the oscillation is observed for longer duration, the Foucault effect will come into play.

Using Equation (1.4) and the location of our laboratory’s longtitude location (38° 2’

16”N = 38.04◦), we can estimate the rotation of the oscillation line, as a function of

time, to be

TFoucault = (24 hours)/ sin (38.04◦) = 38.95 hours (3.1)

In one minute, the line of oscillation will have rotated roughly 2.6 mrad. The Bragg

kick amplitude is roughly 1 mm, so the rotation of the oscillation line corresponds to

about 3 µm shift in the direction perpendicular to the trajectory. To detect such a

small shift in distance, we increase the magnification of top camera to 12.3x from the

normal value, as shown in Table 2.1, of 4.42x. This is equivalent to 512 pixels/mm.

The increase in magnification can be trivially done by swapping out the microscope ob-

jective lens for another one with more magnification (See Figure 2.8 for optics elements

involved in imaging). A 3 µm displacement in the science trap is equivalent to 1.5 px

shift at the increased magnification. Our Bragg splitting operation has a standard de-

viation at roughly 0.7 px. For trapping durations longer than one minute, the loss due

3.1. INITIAL RESULTS
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to collisions with background gas causes a loss in atom signal. The lifetime of the atom

cloud in the science trap is about 66 seconds.

Figure 3.1: Robert Horne’s oscillation frequency measurement. Diagram taken from [6]

Both Horne and I have independently verified the trap symmetry at the lowest

order of approximation. In Horne’s case, a Bragg-split atom cloud is made to oscillate

in the magnetic atom trap. The frequencies of the oscillation were measured and shown

in Figure 3.1. The oscillation frequencies in the x and y directions are identical, except

at the higher limit of the bias field able to be generated by the magnetic atom trap.

Horne actually measured one period of oscillation, the amount of time typically

need for an atom interferometry measurement. However, for an atomic Foucault pen-

dulum, the oscillation lasts tens of seconds. To further investigate the cylindrical sym-

metry of the magnetic atom trap with more accuracy, the kick coil was used to set the

atoms in motion. The bias field used corresponds to Horne’s 4.5 V of bias voltage. The

3.1. INITIAL RESULTS
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Figure 3.2: Initial measurement of oscillation frequency at long duration

trajectory data were taken after a set amount of time has elapsed since the atoms are

kicked. The frequency of oscillation between the two horizontal directions agree within

error for times up to 20 seconds (Figure 3.2). As can be seen, the average frequency

does change slightly over time. This is due to thermal expansion of the trap structure

as it heats up while operating. Fluctuations due to this effect eventually cause the

atom oscillations to decohere, making the trajectory measurements impossible. This

limits our observation time to about 20 seconds.

The effect of the thermal drift on an atomic Foucault pendulum is yet to be de-

termined. However, if all the horizontal coils have the same thermal characteristics, a

sensible assumption due to their identical construction and power load, the oscillation

frequencies in the two horizontal directions should change together, thus preserving the

symmetry needed for a Foucault pendulum. The technique developed in this disserta-

tion will shed further light on this question.

3.1. INITIAL RESULTS
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3.2 Tomographic imaging

The result presented in the previous section is done by examining oscillations in the x

and y directions. Since each data point takes roughly 3 minutes to measure, and each

oscillation needs 8-10 data points, to measure the symmetry of a particular atom trap’s

setting takes about 1 - 1.5 hours. Analyzing trajectories for higher order components

beyond the harmonic terms is also considerably more complicated, particularly in 2D

or 3D. In this section, we will discuss tomographic imaging, a faster and more precise

way to measure the potential profile of the atom trap.

Tomographic imaging refers to imaging in sections. The term was coined to de-

scribe medical imaging techniques, such as CAT scans, MRIs, and PET scans. Using

methods that can image slices of the sample without actually cutting it, sections of

the sample are obtained. The multiple sections can be compiled together to produce a

three dimensional model of the sample, including internal structure, without ever hav-

ing to cut the sample open [47].

A trapped atom cloud is the tomographic sample in our measurements. The den-

sity distribution of the cloud is related to the trapping potential through the equation

n(r⃗) = n0e
−U(r⃗)

kBT , (3.2)

where kB is the Boltzmann constant, T is the temperature of the cloud, and n0 is the

peak density of the cloud. Both absorption and fluorescence imaging (Section 2.2) pro-

vide two 2D projections images per measurement. While, in theory, a 3D reconstruc-

3.2. TOMOGRAPHIC IMAGING
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tion of the atom cloud is possible from two 2D projections, a tomographic method can

provide a more accurate and efficient way to measure the 3D distribution of the atoms,

a quantity needed to fully characterize the magnetic atom trap. With a complete 3D

reconstruction of the atom cloud and the relation of Equation (3.2), we can determine

U(r⃗). In order to create tomographic images, we need to be able to selectively detect,

i.e. sectioning, only a certain part of the atom cloud.

There are three major steps in acquiring tomographic images of the cloud. We

provide a brief overview in this paragraph, with a detailed explanation to follow. First,

the atoms are released from the science trap. Then, we make all the atoms transpar-

ent to the probe beam by transfering them into the F = 1 state by applying a pumping

beam. Next, a two-dimensional slice of the cloud is reactivated by repumping the de-

sired slice back up into the F = 2 state using the repump laser with modified beam

shape. In our case, we shape the repump light into a light sheet using a cylindrical

lens. Lastly, the probe light illuminates the entire cloud. Since most of the atoms are

not reactivated, the fluorescence photons come solely from the active region of the

cloud. Moving the repump sheet around allows us to image different slices of the cloud.

A combined image can then be created from all the slices to present a three-dimensional

picture.

While absorption imaging has been our main method in detecting Bose-Einstein

condensate clouds, it is inadequate here. Only a small portion of the atom cloud is

used to create tomographic images. As discussed in Section 2.2.3, absorption imag-

ing does not work quite as well as fluorescence imaging for detecting low density atom

clouds, especially in the regime in which the amount of photon absorption by the atoms

3.2. TOMOGRAPHIC IMAGING
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is on the same level as the probe background noise. A thin slice of an atom cloud ab-

sorbs too few photons to be of any practical value in tomographic imaging. At the

thickness used in our tomography, the contrast in an absorption image would be re-

duced by 95%. For this reason, fluorescence imaging is preferred.

As mentioned in the previous chapters, the trapped atoms are in the F = 2, m =

2 state. To initiate the tomographic process, the science trap is turned off. At the same

time, pump light tuned to the F = 2 to F′ = 2 transition is applied to the atoms (Fig-

ure 1.5). Since no repump light is applied during this stage, after sufficient amount of

time, all of the atoms in the cloud will decay into the F = 1 state after a few absorp-

tion/emission cycles. Note that the pump light used in this step is the same light that

was used to prepare the atoms for magnetic trapping (Section 2.1.2). The intensity of

the pump light is 3.3 mW/cm2, and we apply it for 30 µs. We can verify that all the

atoms are in the dark state by looking at fluorescence images with and without the

pump beam. With the pump beam applied, the fluorescence image is indistinguishable

from the no-atom (background) image.

After all the atoms are in the dark state, we reactivate a slice of the atom cloud

by shining repump light onto the region. The repump light used in this stage is tuned

to the same F = 1 to F′ = 2 transition used for the MOT. The atoms illuminated by

the repump beam are optically pumped back to the F = 2 state.

Since 2D slices of the cloud are desired, we have to shape the repump beam to

suit our purposes. First, we launch the beam through a single-mode optical fiber to

clean up the spatial mode of the beam. The resulting beam has a clean Gaussian pro-

file. The repump beam then goes through a set of optics to reshape it into a light sheet.

3.2. TOMOGRAPHIC IMAGING
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Figure 3.3: Schematic diagram of fluorescence imaging optics. Pump light is omitted from the diagram.
Both of the laser beams can be triggered on/off through a combination of an acousto-optic modulator and
a shutter. Both lasers were fiber launched to clean up the beam profile. Various λ/2-plates are installed to
adjust the direction of the beams through the polarizing beamsplitters. The repump light has a cylindrical
lens to shape the beam into a light sheet. The focal length of the cylindrical lens is selected such that the
focal point of the light sheet is on the atoms. The probe beam is split into two beams to create optical
molasses on the atoms to preserve the shape of the cloud during imaging.

The most crucial element is a cylindrical lens with a one-meter focal length. The cylin-

drical lens focuses the beam in only one dimension. This produces a sheet-like, 168 µm

thick laser beam that is sent to the atoms. By rotating the cylindrical lens, the orien-

tation of the sheet can also be changed. We normally run the sheet horizontally due to

the fact that our Foucault pendulum will oscillate in a horizontal plane.

After the repump beam has been shaped, it is merged with the probe beam through

a polarizing beamsplitting cube. The repump intensity at the atom is about 8 mW/mm2.

To obtain a fluorescence image, both the probe beam and the repump beam simultane-

ously illuminate and reactivate a selected horizontal slice of the whole atom cloud. The

emitted fluorescence photons from the reactivated atoms are collected by an Apogee
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(b) Repump light sheet profile

Figure 3.4: The profile of the repump light sheet as seen on the side camera and the Gaussian fit of the
cross-sectional profile. The Gaussian model of the blade beam is seen in Figure 3.4b. The model can be
described by 229 exp− (x−1.18)2

0.0842 + 9.2. This gives the 1/e2 diameter of the light sheet along the thin direc-
tion as 168 µm.

U6 camera located right above the science trap. A single fluorescence image consists of

about 30000 collected photons.

It is important to ensure that the measurement process does not alter the density

distribution. The probe light exerts radiation pressure on the atoms, which causes the

atoms to move, and could lead to an inaccurate result. We take several measures to

avoid this effect, which are presented here.

First, two counter-propagating probe beams create an optical molasses on the

atoms. If we only probe the atoms from one direction, the whole cloud will be pushed

along the direction of the probe beam. Since our probe intensity is well over the sat-

uration intensity, the acceleration on an atom due to radiation pressure of one probe

beam is

a =
F

m
=

ℏk
m

Γ

2
=

vr
2τ

, (3.3)
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where τ is the lifetime of the excited state, 26.2 ns and vr is the recoil velocity, 5.8845

mm/s [48]. Using these known values, we calculate the displacement of the atoms ex-

periencing only one probe beam to be 1.26 mm for a probe beam duration of 150 µs.

Considering that a typical cloud’s diameter is about 1 mm, without a method to pre-

vent this effect, the image would show a distorted superposition of the cloud locations

over the probe time. Moreover, as the atoms are pushed, they gain velocity, which

leads to a significant doppler shift and corresponding change in scattering rate.

Instead, we split the probe beam into two counter-propagating beams as shown in

Figure 3.3. The two beams are slightly red-detuned by 3.9 MHz from the transition.

The resulting optical cooling effect prevents the atom velocity from growing too large.

Note that the smaller the detuning, the more photons we can collect, if the atoms still

remain in the probing area. The optimal value for the detuning was determined em-

pirically by maximizing the fluorescence signal after 2 ms of exposure time. This test

duration is arbitrarily picked to be much longer than the actual probe duration. Any

failures in arranging for effective optical molasses are amplified at longer time scale.

The fact that the detuned light generates a larger signal than resonant light confirms

the effectiveness of the optical molasses. In a similar manner, we optimize the power

balance between the two beams. Figure 3.5 show profiles of the atom cloud at the opti-

mized detuning, but various beam-power balance. A well-balanced beam power should

maintain the Gaussian shape of the atom cloud due to equal radiation pressures from

both sides.

Second, even with a well-balanced probe beams and carefully-adjusted detun-

ing, the shape of the cloud still changes slightly if the probe beams are applied long
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Figure 3.5: Atom cloud’s profiles at various probe beam balance. When the power between the two probe
beams is not balanced, exposing the atom cloud for 2 ms results in the cloud skewing in the propagating
direction of the stronger beam. With well-balanced power, the atom cloud’s cross section profile regains its
symmetric shape. The images had a Gaussian filter with a radius comparable to that of the repump sheet
width applied to smooth out the noise in the probe beam intensity.

enough. The choice of exposure time involves a tradeoff between increasing the signal

to noise ratio of the image and disturbing the shape of the atom cloud. The longer the

exposure time, the more counts we can get from the same atom cloud. However, longer

exposure time leads to increase in radiation pressure effects. In order to find the opti-

mal exposure time, we expose the atom cloud at various durations. The width of the

atom cloud along the direction of the probe beams can be plotted as a function of the

exposure time. From Figure 3.6, we can see that the cloud waist increases due to ra-

diation pressure. The size of the cloud between 75 µs and 250 µs is the same within

one standard deviation. The increase in the cloud size becomes statistically significance

around 300 µs. To ensure minimum disturbance on the cloud’s shape, we choose to ex-

pose our images at 150 µs. This gives as large a signal as possible, while still retaining

the shape of the cloud.

A third issue is that the atom cloud, after being released from the trap but before
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Figure 3.6: We chose to expose our images at 150 ms. At this exposure duration, the atom cloud’s waist
has not expanded significantly from its original value. The data was taken at the typical detuning of the
probe beam of -3.9 MHz.

being probed, expands due to its non-negligible temperature. This leads to distortion

of the cloud shape. To minimize this effect, we use the shortest possible delay between

the releasing of the atom cloud and the probing of it. We can estimate the amount of

expansion undergone by the atom cloud by using the temperature measured in Sec-

tion 3.4 and the delay duration as shown in Table 3.1. From equipartition theorem, an

ideal gas cloud at temperature T will have the mean squared velocity in one dimension

[49]
1

2
kBT =

1

2
m⟨v2⟩, (3.4)

where kB is the Boltzmann constant and m is the mass of a Rubidium atom. Substi-

tuting the values for the constants, we find that, given the calculated root-mean-square

velocity, the atoms travel about 2 µm during the delay. Given the typical width of the

atom cloud of 2 mm, the increase of 2 µm to the atom’s width is negligible.

A fourth issue is that, with our minimally perturbative probe, the fluorescence sig-
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Accumulated time (µs) Step duration (µs) Actions
0 110 Waveguide turned off
110 30 Pump beam applied
140 5 Shutters operation
145 150 Probe and repump beam applied

Table 3.1: Table showing the duration of each step in probing the atom cloud for fluorescence imaging

nal is weak. The amount of estimated photons hitting a single pixel from a slice of the

atom cloud is roughly 50 counts. Compared to the background noise of approximately

30 counts, the signal is barely larger than the noise. We address this by grouping pixels

of the camera together to obtain better signal. When a photon emitted by the atoms

strike a pixel on the camera’s CCD, there is a probability, which is determined by the

quantum efficiency of the camera that a count is registered on the image. We can in-

crease the camera’s sensitivity by grouping multiple pixels together. For all of our im-

ages, the pixels are either grouped in 6x6 arrays or 8x8 arrays. The photon counts in

any of the pixels in the same array are summed together to provide a brighter compos-

ite pixel. This reduces the resolution of the image. An individual pixel is 5.4 µm x 5.4

µm at the object plane. For a 6x6 and 8x8 grouping, the pixel becomes a square with

the side length of 32.4 µm and 43.2 µm at the object plane, respectively. However, the

overall shape is unaltered by the binning. We can bin up the pixels of the CCD to the

limit imposed by the cameras. The binned pixels are still much smaller than the atom

cloud’s extent.

Due to a low signal-to-noise ratio of a single fluorescence image, for a particular

trap configuration, we typically take multiple images and use the average image to ob-

tain the fit parameters of the atom cloud. A single image has a signal-to-noise ratio of

3.2. TOMOGRAPHIC IMAGING



66 CHAPTER 3. MEASURING THE POTENTIAL

around 2, whereas an average of 100 images can provide a signal-to-noise ratio of about

60.

A final source of error is spatial variation in the probe beam intensity, which could

appear as atom density variation. While the number of photons scattered by the atoms

has the same profile as the density profile of the atom cloud, it also depends on the

intensity and the detuning of the probe beam according to the equation [29]

Rs =
Γ

2

(
I/Is

1 + I/Is + 4∆2/Γ2

)
, (3.5)

where Rs is the scattering rate, ∆ is the detuning, Γ is the natural linewidth of the

transition, I and Is are the intensity of the probe beam and the saturation intensity

of the transition respectively. If the scattering rate is lower at some location because

of the lower intensity, then the region will appear to have fewer atoms. At our probe

detuning and probe beam intensity, I/Is is 8.83, while 4∆2/Γ2 = 1. the term depend-

ing on the detuning is negligible compared to the I/Is term. For light intensity much

larger than the saturation intensity, the scattering rate becomes a constant, Γ/2. The

probe beam power is made much brighter than the saturation intensity of the probe

transition because of the constant scattering rate. With both probe beams together,

the combined intensity is 31.6 mW/cm2, compared to the saturation intensity of 3.58

mW/cm2. Due to the constant scattering rate, any variations in the probe light power

over the region of the atom cloud has no detectable effects on the cloud’s shape.

We have also verified this empirically by intentionally lowering the overall probe

beam intensity and comparing the resulting images. The range intensity variation found
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in our probe beam is about 10%. The range of the overall intensity variation in this

test is 30%. We find no statistical difference between the images taken with varying

probe beam power.

1 mm
X

Z

(a) Absorption image of the full cloud on
the side camera

1 mm
X

Z

(b) Image using light sheet

Figure 3.7: Figures showing an application of the tomographic imaging method. Absorption images from
the side camera are shown to illustrate the profile of the sectioned cloud. For density measurement, we use
fluorescence imaging on the top camera. The distorted shape seen in Figure 3.7a is due to the anharmonic-
ity of the trap. A full treatment of the topic will be discussed in Chapter 5.

3.3 Analyzing the atom cloud

To investigate the harmonic and higher-order terms of the potential, we describe the

atom cloud profile in a power series according to the following equation

n(r⃗) = n0 exp[−P (x, y, z)] (3.6)
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where P (x, y, z) is a polynomial describing the density distribution of the atom cloud.

Since our slice is always performed at a fixed vertical height, fixed z, and since a con-

stant term in the exponent is reflected in the constant coefficient, we can simplify the

polynomial to have only x and y dependence.

P (x, y) =axxx
2 + ayyy

2 + axyxy

+ bxxxx
3 + byyyy

3 + bxyyxy
2 + bxxyx

2y

+ cxxxxx
4 + cyyyyy

4 + cxxyyx
2y2 + cxyyyxy

3 + cxxxyx
3y

(3.7)

1 mm

(a) Fluorescence aver-
age image of an atom
cloud
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(b) Cross section along x-axis
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(c) Cross section along y-axis

Figure 3.8: The atom cloud shown in Figure 3.8a is fitted to the model described in Equation (3.7). The
model provided a good description of the atom cloud as can be seen in the comparison of the cloud’s pro-
file and the fitted function. One hundred single images were averaged together to provide one average im-
age. The atom cloud was taken at z = 0. The fit results and errors are shown in Table 5.1.

Due to thermal motion of the trap structure, the cloud location can shift from

shot to shot. To obtain an accurate average image, we fit each individual image to a

simple Gaussian to find the center of the cloud. Each image from a measurement set is

then shifted to have their centers aligned before the average. With the average images,

we can create a statistically more accurate profile of the waveguide.

The atom cloud images are fit using the least-square method. The error from the
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fit is estimated by varying each fit parameter such that the χ2 is doubled. χ2 is defined

as

χ2 =

Np∑
i=1

(f(i)− c(i))2

σ2
=

Np∑
i=1

Navg
(f(i)− c(i))2

c(i)
(3.8)

where Np is the total number of pixels, f(i) is the photon counts for the i-th pixel ac-

cording to the mathematical fit, c(i) is the actual photon counts for the same pixel,

Navg is the number of single images used to create one average image. The noise in the

image is assumed to follow a Poisson distribution, i.e. σ2(i) =
∑

c(i)/Navg. The re-

duced χ2 determines how good the fit is and is defined as χ2/(Np − j), where j is the

total number of parameters used in fitting. Reduced χ2 having its value close to one

signifies a good fit of the model [50]. An example of an image fit can be seen in Fig-

ure 3.8. For the image showed, the fit results and corresponding errors can be found in

Table 5.1. The reduced χ2 of the fit is 0.74.

3.4 Temperature measurement

While most of the interesting quantitites can be measured through the tomographic

images, from Equation (3.2), we need to know the temperature of the atom cloud in

order to make any meaningful comparison and calculate the potential of the trap. As

described in Section 3.3, the potential of the trap can be expanded as a power series

in x and y, where the two axes are defined as in Figure 2.3. A small enough kick along

one of the principal axes should significantly reduce the effect of the higher-order terms

on the oscillation frequency.
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Figure 3.9: A plot showing the angular frequency
of the oscillation induced by the kick coil. Oscilla-
tion smaller than 0.4 mm amplitude has large error
bars due to atom trap loading fluctuation. We omit
those data points from the plot. A parabolic fit of
the data is provided. At small amplitude, the angular
frequency asymptotically approaches 9.74 s−1.

To find the cloud’s temperature,

we separately measure the angular fre-

quency at small amplitude. We need to

be able to control the oscillation’s am-

plitude to lessen the effect of the higher

order terms. Since the error in measur-

ing the anharmonic terms is about 5%,

it is reasonable to minimize the effect of

the higher order terms to be less than the

error. Given the magnitude of the an-

harmonic terms, an oscillation smaller than about 0.5 mm is adequate. To isolate the

harmonic term in the potential, we use the kick coil, as described in Section 2.3.1, for a

continuously-adjustable amplitude of the oscillation. With the kick coil, the amplitude

can be made arbitrarily small. We measure the oscillation frequency along a particular

direction that is convenient for the kick coil installation, the x = y line, as a function of

the oscillation amplitude. The results are shown in Figure 3.9.

The change in the oscillation frequency is minimal for the two smallest ampli-

tudes, in agreement with our earlier estimation that an oscillation with an amplitude

smaller than 0.56 mm should see no observable effect from anharmonicity. A parabolic

fit is used to extrapolate to infinitesimally small amplitude. The oscillation frequency

asymptotically approaches ω = 1.55(0.06) s−1 as the oscillation amplitude decreases.

From the atom cloud profile equation used in fitting the atom cloud images (see

Section 3.3), we can find the harmonic term along the same axis and compare it to the
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oscillation period measured here. With the atom trap at the harmonically symmetri-

cal setting (see Section 4.2), we measure the harmonic term along the same axis as the

kick axis to be a1 = 1.6(1) mm−2. Comparing the atom cloud profile equation Equa-

tion (3.6) to the Equation (4.1), we can calculate the temperature of the atom cloud

using

a1 =
1
2
mω2

kBT
(3.9)

Substituting the measured numbers and constants into the equation above results in

the temperature of the cloud T = 300.51± 24.2 nK.

3.5 Conclusions

We have shown the early results of approximated cylindrical symmetry obtained through

oscillation measurement. We have described the need for tomographic imaging in mea-

suring the symmetry of the trapping potential, and how the technique will be an im-

provement over oscillation measurement. The apparatus and methods for tomographic

imaging were discussed. The mathematical model used to describe the trapping poten-

tial up to the anharmonic terms is proposed. In the next chapter, armed with tools to

perform tomographic imaging, we will explain how the harmonic terms are measured

and adjusted for symmetry.

3.5. CONCLUSIONS





4
Harmonic terms

Chapter 3 showed that our trap provides a reasonable degree of sym-

metry, but we focus now on this question in detail. In particular, we consider the re-

quirements for the harmonic terms in the potential. While the potential of the mag-

netic atom trap shown in Equation (2.13) exhibits cylindrical symmetry, our measure-

ments indicate that there is residual asymmetry in the actual potential. Further fine-

tuning is needed to make the trap more perfectly symmetric. We will show theoreti-

cally that the science trap can be tuned to achieve cylindrical symmetry, at least in the

harmonic terms. Empirical evidence supporting the claim will be presented. Lastly, we
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will discuss the maximum-acceptable level of harmonic asymmetry allowed for atomic

Foucault pendulum.

4.1 Asymmetry in harmonic terms

While the potential of the magnetic atom trap shown in Equation (2.13) suggests cylin-

drical symmetry, the real potential is different and might not be cylindrically symmet-

ric. There are many possible clauses including imperfection in the coil chip fabrication

and assembling, extraneous magnetic fields from current leads, or inaccuracy in the

drive currents. We can describe the potential more precisely by examining its Taylor’s

expansion. For a fixed vertical height z, if we expand the potential up to terms of sec-

ond order in the coordinates, we have

U(x, y) =kBT (axxx
2 + ayyy

2 + axyxy), at fixed z (4.1)

=kBT

(
x y

) axx axy/2

axy/2 ayy


 x

y

 (4.2)

where kB is the Boltzmann constant and T is the temperature of the atom cloud. The

coefficient kBT is introduced to be consistent with Equation (3.7). The assumption of

fixed vertical height reflects fact that proposed motion will be mainly in the xy plane.

To analyze the potential, the matrix form of the potential as used in Equation (4.2)

is the most convenient. We can classify the terms in the potential into two categories:

the diagonal terms (axx and ayy), and the cross terms (axy/2). For a perfect Foucault

pendulum, the diagonal terms are equal, and the cross terms are zero. The resulting
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potential is clearly cylindrically symmetric. Additionally, two out of three major fac-

tors (asymmetry and initial velocity problem) affecting the quality of a Foucault pen-

dulum outlined in Section 1.2 are immediately optimized. There is no asymmetry be-

cause x and y are interchangable without changing the trapping potential. If we can

always impart either an initial displacement or initial momentum to the atoms in the

radial direction, the initial velocity problem is overcome because, by symmetry, there

is no preferred directions for the principal axes. Assuming that the atoms start at the

center of the trap, a reasonable assumption for our experiment, the initial velocity vec-

tor problem is solved because the Bragg splitting method always induces the initial

motion in the radial direction.

Linear algebra techniques can be used to find the principal axes and the funda-

mental frequencies. The equation of motion of system in a potential described by Equa-

tion (4.2) is  ẍ

ÿ

 = −2kBT

m

 axx axy/2

axy/2 ayy


 x

y

 (4.3)

Seeking oscillating solutions of the form

qj(t) = aje
i(ωt−δ) (4.4)

where aj are real amplitudes, δ is the phase offset, and qj is a generalized coordinate

representing x or y, we can find the oscillation frequency ω of the system by solving for

the eigenvalues of the coefficient matrix in Equation (4.3). The principal axes are the

eigenvectors of the same matrix. Solving for the eigenvalues and eigenvectors, we find
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the oscillating frequencies and the principal axes to be

ω2
± =

kBT

m

(
axx + ayy ±

√
(axx − ayy)2 + a2xy

)
(4.5)

λ± =

(axx − ayy)

axy
±

√
(axx − ayy)2 + a2xy

axy
, 1

 (4.6)

where ω± denotes the eigenvalues, and λ± denotes the eigenvectors. For the ideal case,

axx = ayy ≡ a and axy = 0, the eigenvalues become degenerate with the oscillating fre-

quency ω = 2kBT
m

a in all directions. The principal axes are undefined for the ideal case

because any two orthogonal axes are principal axes. Asymmetry occurs when either

axx ̸= ayy or axy ̸= 0.

In an asymmetric trap, we can expect observable behaviors that deviate from

the behaviors found in an ideal symmetric trap. In addition to the trajectory’s shape

constantly changing for oscillation not aligned along a principal axis (as shown in Fig-

ure 1.3c), one can also observe beat patterns. As we can see from the fundamental os-

cillation frequencies described by Equation 4.5, in an asymmetric trap, the two funda-

mental oscillation frequencies are not degenerate. An oscillation along either principal

axis results in the motion maintaining its shape, similar to how a pure state remains

in the same state throughout its motion. An oscillation not parallel to a principal axis

is expressed in terms of a superposition of two oscillations at the two fundamental fre-

quencies. The superposition of the two frequencies results in an observable beat fre-

quency. The beat pattern can be observed in our apparatus, see Figure 4.1, indicating

that our science trap has asymmetric at the harmonic level.
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(a) Beat pattern along x axis
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(b) Beat pattern along y axis

Figure 4.1: Two diagrams showing beat pattern found when the trajectory of the trap was measured. The
presence of the beat pattern suggests non-vanishing crossterms in the potential. The periods of oscillation
in the x and y direction are 642.7 ms and 588.7 ms respectively. Fitting the beat pattern also allows us to
determine the principal axes. When look down along the z-axis, one principal axis is found at 47 degrees
counter-clockwise from the +x-axis. The other principal axis is orthogonal to the first one.

4.2 Achieving harmonic symmetry

For an atomic Foucault pendulum to work, We need the potential matrix in Equa-

tion (4.2) to be diagonal. The solution is to find some trap parameters which can be

adjusted to make a1 = a2 and a3 = 0. Instead of running the science trap with the

nominal fields described in Section 2.1.3, we can easily make two modifications. First,

we can use different amounts of bias current in different pairs of coils. Second, we can

change the phase difference between the x and y bias fields. With these two modifica-

tions, the magnetic fields generated by the coil are

B⃗quad = B′
1 cosΩ1t


x/2

y/2

−z

 (4.7)
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B⃗bias = B0


(1− ∆

2
) sinΩ1t cos (Ω2t+ δ)

(1 + ∆
2
) sinΩ1t sinΩ2t

cosΩ1t

 (4.8)

where B0 is now the average bias field for the x and y coils, ∆ gives the two horizontal

coils different bias current, and δ imparts a phase offset to the x-coil.

With these modifications and the assumption that the modifications are small in

magnitude, the time-averaged magnitude of the combined quad and bias field, which is

proportional to the potential experienced by the atoms through Equation (2.3), is

⟨|B⃗|⟩ = B0

[
1 +

(
B′

1

B0

)2(
7 + ∆

128
x2 +

7−∆

128
y2 − δ

64
xy

)]
(4.9)

Notice that we can adjust the diagonal terms using ∆. The off-diagonal term can be

adjusted using δ.

To verify this effort, the atom cloud inside the magnetic atom trap is measured

using tomographic fluorescence imaging as described in Chapter 3 as the relative bias

current and phase between the x and y coils (∆ and δ respectively) are changed.

First, we adjust the current difference between the x and y coil pairs. The bias

current through the y-coils is held constant, while that through the x-coils is varied.

Fifty tomographic fluorescence images of the cloud at the height at z = 0 are obtained

for each bias current setting. The images were analyzed according to the method de-

scribed in Section 3.3. We find that the diagonal terms axx and ayy are identical when

the x-coils’ current is 95% of that in the y-coils. We conclude that we can make the di-
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(a) The bias current along the x-direction is varied, while that along the
y-direction is kept constant. When the current in the two directions differ
greatly, such as on either end of the plot, clear asymmetry is observed. The
two diagonal terms of the potential converges when the x-bias current is
around 94.5% that of the y-current. Maximum current corresponds to 1.38
A in amplitude. The lines show the change in the harmonic terms as pre-
dicted by Equation (4.9).
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(b) The phase offset of the X-bias is varied while we measure about the axy
coefficient in the trapping potential. The coefficient vanishes at 0.8 degrees
phase offset. The linear model fit is justified through Equation (4.9). The
linear fit to the measured data is 0.15(1)δ − 0.12(5). The linear equation for
the theoretical prediction is derived from Equation (4.9) and adjusting the
offset to accommodate symmetry point happening away from zero degree
phase offset. The theoretically predicted slope is 0.044, about a third of the
measured value.

Figure 4.2: Two figures showing empirical evidence supporting Equation (4.9). In Figure 4.2a, the axx and
ayy coefficients of the potential can be made identical by changing the relative bias current between the
two horizontal coil pairs. In Figure 4.2b, we can eradicate the axy term by a careful selection of the phase
offset when the bias drive current signal is generated
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agonal terms of the trapping potential equal by adjusting the difference between the

bias current along the two horizontal directions.

Second, the phase offset of the y-bias current is adjusted. Since the x-coils and

y-coils are being supplied by two function generators that are phase locked to one an-

other, shifting the phase offset of the x-coils is done by simply adjusting the offset of

the phase lock. A hundred tomographic images are obtained at each phase offset set-

ting. Using linear model fit, we find that the cross term axy vanishes when the phase

offset is 0.8 degrees. While qualitatively agreeing with our theoretical prediction, the

rate of change in the cross terms daxy/dϕ is about three times larger than the rate pre-

dicted by Equation (4.9). We have no explanation for this difference beyond recogniz-

ing that our approximated model does not fully describe the science trap.

4.3 Acceptable level of harmonic asymmetry

In this section, we will calculate the maximum level of harmonic asymmetry allowed

for implementation of an atomic Foucault pendulum. A trajectory initiated by a Bragg

kick along the line making an angle θ0 to the x-axis can be described as

x(t) = a cos θ0 sin (ω+t)

y(t) = a sin θ0 sin (ω−t)

(4.10)

where a is the maximum distance of from the origin, ω± = ω ± ∆ω
2

are the funda-

mental frequencies, ω is the average frequency. We assume that the motion has the

principal axes along the x and y-axis and has no Foucault effect. We associate ω+ with
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the x-axis. In an asymmetric trap, the trajectory of the atoms is a precessing ellipse.

If we always measure a trajectory, which starts at arbitrary time T , over a duration

of one average oscillation period 2π/ω, we can simplify the equation above by defining

∆ωT/2 ≡ ϕ/2 ≈ constant.

x(t) = a cos θ0 sin

(
ωt+

ϕ

2

)
y(t) = a sin θ0 sin

(
ωt− ϕ

2

) (4.11)

Since the trajectory is an ellipse, we can describe it using a general ellipse equation

x2

(cos θ0)2
+

y2

(sin θ0)2
− 2xy cosϕ

sin θ0 cos θ0
= a2 sinϕ (4.12)

which only describes one period oscillation starting at time T . The semi-major axis,

the semi-minor axis, the eccentricity, and the rotation of the ellipse can be found from

the above equation. Of particular interest is the angle that the semi-major axis makes

with the +x-axis. In case of a small ϕ, this angle θ , expanded into a series up to the

fourth order in ϕ, is

∆θ = θ − θ0 = −1

8
sin (4θ0)ϕ

2 − 1

96
sin 2θ(cos 2θ − 3 cos 6θ)ϕ4 (4.13)

Note that the left hand side of the equation represents the rotation of the line of os-

cillation caused by asymmetry in the atom trap. This rotation can mask the rotation

induced by the Foucault effect. For a single measurement of angle, the rotation is pro-

portional to (∆ω)2.
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We can decrease the sensitivity to ∆ω by launching the atoms at two different

angles that are 45◦ apart. If the rotation angles measured with the two launch angles

are averaged, we get
1

2
[∆θθ0 +∆θθ0+45◦ ] =

1

64
sin (8θ0)ϕ

4 (4.14)

With two launch angle averaging, the rotation of the line of oscillation is proprotional

to the next order in ϕ2. The rotation is now proportional to (∆ω)4.

θ0
θ

Figure 4.3: A diagram shows how
angles are measured for trajectory
analysis. The initial launch angle is
θ0, the angle of the elliptical trajec-
tory at the time of measurement is
θ.

To launch the atoms at 45◦ apart, we need two

Bragg beams. Without loss of generality, we will label

the two directions the 0◦ and 45◦ split. For a 0◦ split,

a Bragg beam is retro-reflected back onto itself to cre-

ate a standing off-resonant wave for Bragg scattering.

For a 45◦ split, the reflected beam is blocked, and an

extra beam illuminates the atoms in the direction per-

pendicular to the original Bragg beam. The two laser

beams impose periodic potential on the atoms in the

same direction as the sum of the two k-vectors of the two light beams, which is at 45◦

to the 0◦ split direction.

Requiring that the rotation caused by asymmetry be less than the amount of ro-

tation caused by the Foucault effect at 60 seconds, our proposed duration for atomic

Foucault pendulum, we can use Equation (4.13) and Equation (4.14) to calculate the

maximally acceptable asymmetry. The calculated values do not depend on the princi-

pal angular frequencies, but only on the difference between them. For a single launch
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angle measurement, the upper bound for harmonic asymmetry is ∆ω = 0.0024 s−1 at

the worst possible launch angle of θ0 = π/8. For two launch angle averaging, the ac-

ceptable level of angular frequency difference is ∆ω = 0.0107 s−1 at the worst possible

launch angle of θ0 = π/16. Given its better performance, the two launch angle aver-

aging method is the only technique we will discuss going forward. We also solve the

problem numerically to verify our result. The plot of acceptable difference in the two

fundamental oscillating period can be seen in Figure 4.4.

For our typical trap frequency of 2 Hz, we can convert the acceptable values pre-

sented in Figure 4.4 to get the acceptable upper bound for the harmonic terms’ coeffi-

cients as

|axx − ayy| ≤ 0.0047 mm−2

|axy| ≤ 0.0094 mm−2

(4.15)

which agree well with the limits calculated analytically. From the limits presented

above, we can estimate the precisions we need to adjust the current and phase offset

using the measurements presented in Figure 4.2. For the current offset, assuming the

typical maximum current of 1.38 A in amplitude, we need to be able to control our

current to within 700 µA of the symmetry point. We need to control our phase offset

to within 0.06 degrees. Both of the precision requirements are challenging but certainly

achievable with carefully designed circuits.
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4.4 Conclusions

In this chapter, we have shown that our ideal model of the trapping potential, which

predicts cylindrical symmetry, does not describe the magnetic atom trap. The asym-

metry in the trap causes multiple observable phenomena: beat patterns and the ex-

istence of definite principal axes of motion. We can obtain the cylindrical symmetry

in the harmonic terms by changing the relative bias currents and phase offset between

the two horizontal coil pairs. We also established the minimum amount of symmetry

needed for successful implementation of atomic Foucault pendulum.

In the next chapter, we will investigate higher order terms, the anharmonic terms,

that hinder us from achieving an atomic Foucault pendulum. We will show that tomo-

graphic imaging technique can fully describe the higher order terms. We will verify the

values obtained tomographically with oscillation measurement and numerical simula-

tion of the trapping potential.
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(a) Different in oscillation period between the two principal axes
such that the change in angle is less than the rotation caused by
the Foucault effect.
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(b) ∆θ average of two launch angles as a function of ∆ω

Figure 4.4: Two diagrams showing good agreement between the numerical result and and the analysis
presented in this section. The coriolis force causing the Foucault effect is ignored. Figure 4.4a shows the
maximally acceptable period difference for successful implementation of atomic Foucault pendulum. “Ac-
ceptable” is defined as the angle change at the time of measurement being less than the rotation that the
Foucault effect would have caused. The line shows the calculated result using Equation (4.14). Figure 4.4b
shows the line of oscillation rotation at 60 s oscillation time at various angular frequency. The rotation is
proportional to the fourth-power of ∆ω as suggested by Equation (4.14)

4.4. CONCLUSIONS





5
Anharmonic Terms

In the last chapter, we have discussed how we can approach cylindri-

cal symmetry in the atom trap, up to the harmonic terms. In this chap-

ter, we will discuss the effects of the higher-order, anharmonic terms on the motion.

The cause of anharmonicity will be discussed. A simple example in 1D will be given to

help explain the concept. The negative effects of anharmonicity on an atomic Foucault

pendulum experiment will be shown. We will estimate the upper bound for the anhar-

monicity for a successful atomic Foucault pendulum implementation. Ultimately, the

presence of a measurable anharmonicity currently prevents us from a successful imple-
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mentation of an atomic Foucault pendulum. The tomographic method introduced in

Chapter 3 allows us to measure all the terms in the trapping potential. We will inves-

tigate the anharmonicity of the magnetic atom trap using tomographic imaging. The

measurement result will be presented. The result will be compared with other methods

used to establish the values of the anharmonicity terms. The comparison will verify

that the tomographic imaging technique is accurate, quick to implement, and reliable.

5.1 Anharmonicity

A potential affecting a motion can always be expanded into its Taylor’s expansion. For

small oscillation amplitude, it is generally adequate to keep only the first non-vanishing

terms. These are usually the second-order terms (harmonic). The equation of motion

for a harmonic potential is easily solved, well known and widely used [22, 21, 51]. More

generally, the harmonic expansion cannot fully describe the motion, and higher order

terms are needed. The higher order terms beyond the second-order are called the an-

harmonic terms.

To understand the effect of anharmonicity better, consider motion in one dimen-

sion. To reflect the polynomial described in Equation (3.7) and facilitate later compari-

son with our measurement results, we describe the potential as

U(x) = kBT (ax
2 + bx3 + cx4) (5.1)

where T is the temperature of the atom cloud and kB is the Boltzmann’s constant.

The ax2 term is harmonic, while the bx3 and cx4 terms are anharmonic. The Lagrangian
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of this potential is

L =
1

2
mẋ2 − kBT (ax

2 + bx3 + cx4) (5.2)

The equation of motion is

mẍ+ 2kBTax = −3kBTbx
2 − 4kBTcx

3 (5.3)

We present here the result demonstrated by Landau, but with our notation [21].

We seek a series solution of the form

x =x(1) + x(2) + x(3)

ω =ω0 + ω(1) + ω(2)

ω0 =

√
2kBTa

m

x(1) =A cosωt

(5.4)

where A is the oscillation amplitude. With a properly selected origin for time, we can

ignore the phase offset for x(1) without any loss of generality. For a series solution up

to the third term in the series, we have

ω =

√
2kBTa

m
+ A2

√
kBT

2am

(
3

2
c− 15

8

b2

a

)
+O

(
A3
)

(5.5)

For small enough oscillation, the angular frequency ω remains constant. As the am-

plitude A is increased, the oscillation frequency is altered. Measuring the oscillation

frequency change as a function of oscillation amplitude allows one to estimate the an-
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harmonicity. This relationship could be used to characterize an atom trap.

While this calculation is straight forward in 1D, the situation in 2D or 3D is more

complicated due to many factors including possible coupling between motion along dif-

ferent axes. Similarly obtaining the potential from an observed trajectory is generally

difficult. For this reason, we use tomographic imaging technique as described in Sec-

tion 3.2 for our study.

We hypothesize multiple factors that can lead to anharmonicity in the magnetic

atom trap. First, even in the ideal case, the fields of Equation 2.7 and 2.8 do produce

an anharmonic potential. We confirm this through numerical simulation. The result

will be discussed later in Section 5.2. Second, the leads supplying the coils do con-

tribute extra magnetic fields that can make the trapping potential asymmetric. Fi-

nally, environmental fields and gradients could countribute to the anharmonic terms

as well.

5.2 Result and analysis

To measure the anharmonic terms, we follow the procedure outlined in Chapter 3.

Knowing the temperature (measured in Section 3.4) and the atom cloud’s profile mea-

sured from tomographic slices, we can relate the potential profile of the trap to the

atom cloud through Equation (3.2). For example, the potential at a fixed height can

be expressed by Equations (3.6) and (3.7). we obtain 100 tomographic slices at a fixed

height z = 0 and calculate the coefficients a’s, b’s, and c’s. The results are shown in the

table below.

5.2. RESULT AND ANALYSIS
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Coefficients Values Units
axx 1.73(6) mm−2

ayy 1.52(4) mm−2

axy -0.04(3) mm−2

bxxx 0.072(5) mm−3

byyy 0.025(3) mm−3

bxyy -0.046(2) mm−3

bxxy -0.091(6) mm−3

cxxxx 0.096(9) mm−4

cyyyy 0.06(2) mm−4

cxxyy 0.008(7) mm−4

cxyyy -0.31(8) mm−4

cxxxy -0.03(8) mm−4

Table 5.1: Table showing the coefficients in the potential measured through fluorescence tomographic
imaging. The principal axes are aligned as shown in Figure 2.3

.

We check the validity of our measurement by comparing it to our results for how

the oscillation frequency depends on the amplitude in a 1D case, first shown in Sec-

tion 3.4. We also compare to a numerical simulation of the trapping potential.

We first verify our measurement of anharmonic terms by comparing the change

in measured oscillation frequency to the change predicted based on Equation (5.5) and

the coefficients obtained through measurements as shown in Table 5.1. The principal

axis of the motion is along the y = x line, with the axes defined as in Figure 2.3. The

oscillation is induced by the kick coil. Since the oscillation is along the principal axis,

the motion is approximately 1D. Consequently, the anharmonic terms affect the oscil-

lation frequency in a predictable way, as shown in Equation (5.5). The potential coef-

ficients shown in Table 5.1 are rotated to have one of the principal axes aligned with

the y = x line. The change in oscillation frequency can then be calculated. Figure 5.1

shows the comparison between the measured oscillation frequency and the predicted

values. Given the reasonable agreement between the measurement and the calculated

5.2. RESULT AND ANALYSIS
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values, we are confident in the accuracy of our tomographic techniques.
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Figure 5.1: The plot shows the comparison between the directly measured and the tomographically de-
termined values of the oscillation frequency at various oscillation amplitudes. The data points shown the
values obtained empirically. The line shows the values derived from the potential terms shown in Table 5.1.
The model agrees well with the measurement result, with χ2 of 0.415.

The measured anharmonic terms are also comparable to the the similar terms ob-

tained by numerical analysis of the magnetic atom trap’s potential. A numerical anal-

ysis of the trap was performed by modeling each coil as fourteen concentric loops of

varying sizes. While the actual coil has two spirals on each side of the base, the model

still provides a good approximation [6]. The magnetic field created by each loop is cal-

culated using elliptic integrals, derived from Biot-Savart law [52]. We have seen already

[6] that the model is not very accurate in regards to the harmonic terms. To make a

fair comparison, we adjust the model bias field to provide harmonic terms that match

the experimental results (with an oscillation frequency of 1.6 Hz). The comparisons

are presented in Table 5.2. The numerical model indicates negligible contribution from

the third order terms and the non-symmetric anharmonic terms. The model results do

not agree well, but do give the same order of magnitude, and show Cxxyy considerably
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smaller than Cxxxx and Cyyyy.

Potential Terms Tomography Numerical result
cxxxx 9.6(9) 4.1
cyyyy 6(2) 4.1
cxxyy 0.8(7) −7.7

Table 5.2: Table showing the comparison of the anharmonic terms obtained by tomography and numerical
simulation. The small amplitude oscillation frequency, instead of the running current in the science trap,
between the measured result and the model are matched. All values are in (×10−2 mm−4) unit.

Rather than creating a tomographic slice at a fixed z, we can also obtain tomo-

graphic slices at varying heights. Various quantities can then be plotted as a function

of z. The results are shown in Figure 5.2. Note the linear relationship between the har-

monic axx and ayy term as a function of height. The linear model suggests a coupling

of x2 and y2 with z, which is expected since gravity breaks the potential symmetry

along the z-axis. This evidence would be hard to obtain through oscillation trajectory

analysis alone.

5.3 Acceptable level of anharmonicity

We can estimate the upper bound of the acceptable level of anharmonicity. There are

methods for analytical estimation. For example, Synge and Griffith’s treatment of a

sperical pendulum [53] and a series approximation as demonstrated by Landau [21] can

be combined to present a series solution of the trajectory in 3D. We use a numerical

method. By numerically solving the equations of motion from a potential similar to

that in Equations (4.1) and (4.2) with the addition of anharmonic terms, we can find

the maximum value allowed for the anharmonic coefficients for successful implemen-

tation of an atomic Foucault pendulum. Similar to the harmonic terms limitation, an

5.3. ACCEPTABLE LEVEL OF ANHARMONICITY
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(b) axx at various heights with linear fit
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(c) ayy at various heights with linear fit

Figure 5.2: Figures showing various quantities at various heights as measured tomographically.
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average of two launch angles separated by 45 degrees yields a better result than a sin-

gle launch angle. Using the potential of which the harmonic terms have complete sym-

metry and the interested term is the only non-vanishing term, the limits on the anhar-

monic terms are found to be

|b| < 0.055 mm−3

|c| < 0.0013 mm−4

(5.6)

where b represents the terms proportional to the cubic terms in spatial dependence

and c represents the terms proportional to the fourth-order terms. In general, we have

found little variation between the different terms in the same order. The values above

represents the most stringent condition needed. The measured coefficients shown in

Table 5.1 exceed the presented limits. It is therefore clear that a method to adjust the

anharmonic terms will be required if the Foucault experiment is to succeed.

5.4 Conclusions

In this chapter, we have shown that anharmonic terms are present in our trapping po-

tential. We have presented an effective and accurate way to measure the terms through

tomographic imaging techniques. The measurement results were verified by another

measurement and a numerical simulation of the science trap. The acceptable limits on

the anharmonic terms were established through numerical simulation. With the pres-

ence of the anharmonic terms, we conclude that, unless further modifications are made,

implementing an atomic Foucault pendulum in the magnetic atom trap is unlikely.

5.4. CONCLUSIONS





6
Conclusion

While we were not able to implement an atomic Foucault pendulum,

our effort in developing a tomographic imaging system will help us quantitatively char-

acterize the science trap in the future. Having developed the technique, we have found

some invaluable information that would not have been possible to obtain without great

difficulty.

One, we have confirmed that the trap can be made harmonically cylindrically

symmetric through adjusting the relative bias current and phase between the x and

y-coils. The tomographic technique can also help determine the orientation of the prin-
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cipal axes in the science trap.

Two, the tomographic technique allows us to quantitatively measure the anhar-

monicity of the trapping potential. Additionally, the anharmonic terms can be mea-

sured as a function of vertical height, which provides extra information unobtainable

through other methods we have developed in the past. The coupling between the hor-

izontal and vertical directions is crucial for successful implementation of the improved

Gravimeter proposed by Horne [6].

Three, knowing the anharmonicity allows us to better predict the period of oscilla-

tion of atom clouds in the science trap as a function of oscillating amplitude. Knowing

the period more precisely is crucial for high-precision measurements intended to be im-

plemented in the trap, such as the improved Sagnac interferometer proposed by Horne

[6].

A few methods have been proposed for reducing the amount of asymmetry in the

science trap. External induction coils can be installed to produce the proper bias field

to cancel out the asymmetry. A major drawback of installing external coils is the phys-

ical space required by the coils. The extra coils also limit optical access to the atoms.

The most likely method that we are actively pursuing is using arbitrary waveform to

drive the science trap coils. Rather than using simple sinusoidal signals, a specially

designed waveform with higher harmonic terms can be used for each of the coil pair.

With phase locking to the current bias current, the arbitrary waveform can provide

varying current along different axes of the trap to reduce the magnitude of the asym-

metric terms.
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