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Abstract

In [20], Prasad and Rapinchuk introduce and analyze a new relationship, called

‘weak commensurability,’ between (Zariski-dense) abstract subgroups of the groups of

K-rational points of connected semisimple algebraic groups. Numerous results have

been shown for algebraic groups defined over fields of characteristic zero, but not for

fields of positive characteristic. The main purpose of this work is to extend the notion

of weak commensurability to fields of positive characteristic, specifically to prove and

analyze characteristic p > 0 analogs of the results from [20].

We develop several characteristic p > 0 results showing that weakly commen-

surable Zariski-dense subgroups must share structural properties. Specifically, we

show that the Zariski-closure of two weakly commensurable Zariski-dense subgroups

of absolutely almost simple groups must have the same Killing-Cartan type. The

trace field of a subgroup is the field generated by 1 and the traces of elements in the

Zariski-dense subgroup. We show that a pth power of the trace field of one Zariski-

dense subgroup contained in the trace field of a weakly commensurable subgroup.

We also prove a similar statement when we replace the trace field with the minimal

Galois extension of the trace field such that the Zariski-closure of the subgroup is an

inner form over this field. We also show that discreteness is a property that is shared

by weakly commensurable subgroups.
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Chapter 1

Introduction

1.1 Weak commensurability in positive character-

istic

In [20], Prasad and Rapinchuk introduce and analyze a new relationship between

(Zariski-dense) abstract subgroups of the groups of K-rational points of connected

semisimple algebraic groups defined over a field K called ‘weak commensurability.’

This relationship is defined in term of the eigenvalues of the individual elements of

the abstract subgroups and does not involve any structural connections between the

subgroups. The results demonstrated in [20] show that for fields K of characteristic

zero, the weak commensurability of (Zariski-dense) subgroups impose strong restric-

tions on the ambient semisimple algebraic groups over K, as well as the minimal

fields of definition of the subgroups. The main goal of this paper is to prove anal-

ogous results for weakly commensurable (Zariski-dense) subgroups of the groups of

K-rational points of connected absolutely almost simple groups defined over a field
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K of positive characteristic.

We begin with the definition of weak commensurability. Let K be an infinite

field of arbitrary characteristic, K be a fixed algebraic closure, and let Ksep be the

separable closure of K in K.

Definition. Let γ1 ∈ GLn1(K) and γ2 ∈ GLn2(K) be semisimple elements of infinite

order (for some positive integers n1 and n2). Let λ1, ..., λn1 be the eigenvalues of γ1

and let µ1, ..., µn2 be the eigenvalues of γ2 (taken in a separable closure Ksep of K).

1. The elements γ1 and γ2 are weakly commensurable elements if there exist

integers a1, ..., an1 ∈ Z and b1, ..., bn2 ∈ Z such that

λa11 ...λ
an1
n1 = µb11 ...µ

bn2
n2 6= 1.

2. If Gi ⊆ GLni
is a reductive algebraic group defined over K and Γi ⊆ Gi(K)

is a Zariski-dense subgroup of Gi(K) for i = 1, 2, the subgroups Γ1 and Γ2

are weakly commensurable subgroups if every semisimple element of Γ1

of infinite order is weakly commensurable to some semisimple element of Γ2 of

infinite order and vice-versa.

The study of weak commensurability is useful to the study of a novel form of

rigidity called eigenvalue rigidity, discussed in [22]. Classically, the rigidity of lattices

Γ ⊆ G(K) of algebraic groups refers the property that under appropriate assumptions,
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a homomorphism of lattices Γ1 → Γ2 (virtually) extends to a homomorphism of the

semisimple Lie groups G1 → G2 containing Γ1 and Γ2. As a consequence, sufficiently

large (e.g. higher rank arithmetic) Zariski-dense subgroups Γ ⊂ G(K) of a semisimple

Lie group G determine the field of definition up to isomorphism and the ambient

algebraic group G. The motivation behind eigenvalue rigidity is that rather than the

structural information obtained from the Zariski-dense subgroup Γ, one should be

able to determine the field of definition as a subfield of K and the ambient algebraic

group G from Γ if one uses information about the eigenvalues of Γ. This allows one

to examine rigidity in the context of any Zariski-dense subgroup of G, not just higher

rank arithmetic groups. The study of weak commensurability is and important step

towards making this relationship explicit.

The following theorems provide three basic results about weakly commensurable

Zariski-dense subgroups of the groups ofK-rational points of two connected absolutely

almost simple groups defined over a field K of positive characteristic.

Theorem A. Let K be an infinite finitely generated field of characteristic p > 0.

Let Gi be a connected absolutely almost simple algebraic group defined over K for

i = 1, 2. Let Γi ⊆ Gi(K) be a finitely generated Zariski-dense subgroup for i = 1, 2,

and suppose that Γ1 and Γ2 are weakly commensurable. Then G1 and G2 have the

same Killing-Cartan type, or one is of type Bn and the other is of type Cn.

To state the next result, we need to introduce the notion of the minimal field



4

of definition of a Zariski-dense subgroup. Let K be as above, let G be a connected

absolutely almost simple algebraic group defined over K, let Γ ⊆ G(K) be a Zariski-

dense subgroup, and let Ad: G → GL(Lie(G)) be the adjoint representation of G.

The minimal field of definition of Γ is the smallest subfield of Γ such that there exists

a basis of the Lie algebra Lie(G) such that Ad Γ may be conjugated to a subgroup

of a linear group with matrix coefficients in KΓ. See Ch. 2, Section 2.1 for more

information on minimal fields of definition.

For fields K of characteristic zero, the minimal field of definition of Γ is the same

as the field generated by 1 and the set of all traces, tr(Ad(γ)) for γ ∈ Γ (due to [30,

Cor. to Thm. 1]). Let Γ1 and Γ2 be two finitely generated Zariski-dense subgroups

of G1(K) and G2(K) respectively (where Gi is a connected absolutely almost simple

algebraic group defined over a field K of characteristic zero for i = 1, 2). If Γ1 is

weakly commensurable to Γ2, then [20, Thm. 2] shows that their minimal fields of

definition must be equal, i.e. KΓ1 = KΓ2 .

In the case where the field K has characteristic p > 0, we have to modify the

definition of the trace field due to the fact that the adjoint representation is not

necessarily irreducible over fields of characteristic p for some small primes p (see [11]

for a precise exposition of this fact). Therefore, we have a more complicated definition

of the trace field, explicitly given by Definition 2.2.8. Let G be a connected semisimple

group defined over K of (absolute) rank n, and let Γ ⊆ G(K) be a Zariski-dense

subgroup. Except for the cases where p = 2, 3, or p|(n + 1), our given definition is
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precisely the subfield of K generated by 1 and the traces of elements of Ad Γ, as in

the characteristic zero case. In the positive characteristic case, we continue to denote

the trace field of a Zariski-dense subgroup Γ ⊆ G(K) by KΓ.

Frobenius isogenies have a significant effect on our results. For example, let G

be an adjoint algebraic group defined over a field K and let Γ ⊆ G(K) be a finitely

generated Zariski-dense subgroup. Let Fr : G→ Fr(G) be the Frobenius isogeny and

consider the group Fr(Γ). We observe that the following are true.

• The group Fr(Γ) is a finitely generated Zariski-dense subgroup of Fr(G)(K).

• Let γ ∈ Γ be a semisimple element. If the eigenvalues of γ are λ1, ..., λn,

then the eigenvalues of γp = Fr(γ) are λp1, ..., λ
p
n, hence γ and Fr(γ) are weakly

commensurable elements.

• Therefore, Γ is weakly commensurable to Fr(Γ). Since tr(γp) = tr(γ)p, we know

that KFr(Γ) = Kp
Γ (except possibly in the cases where the adjoint representation

is not irreducible).

Therefore, Γ is always weakly commensurable to Fr(Γ) but the fields of definition for

these two groups will typically not coincide. However, they will coincide “up to a

power of Frobenius,” which is made evident by the following results.

Theorem B. Let K be an infinite finitely generated field of characteristic p > 0.

Let Gi be a connected absolutely almost simple algebraic group defined over K for

i = 1, 2. Let Γi ⊆ Gi(K) be a finitely generated Zariski-dense subgroup for i = 1, 2,
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and suppose that Γ1 and Γ2 are weakly commensurable. Let Ki be the trace field of Γi

for i = 1, 2. Then there exist integers k1, k2 such that

(K1)p
k1 ⊆ K2 and (K2)p

k2 ⊆ K1.

We also prove a similar result to Theorem B concerning the minimal Galois ex-

tensions of the minimal fields of definition of Γ1 and Γ2 over which the groups G1

and G2 become inner forms respectively. We refer to Chapter 2, Section 2.1 for the

definition of an inner form.

Theorem C. Let K, Gi, and Γi ⊆ Gi(K) for i = 1, 2 be defined in the same way

as in Theorem B above. For i = 1, 2, let Ki be the trace field of Γi and let Li be the

minimal Galois extension of Ki such that Gi becomes an inner form of a split group

over Li. Then there exist integers k1, k2 such that

(L1)p
k1 ⊆ L2 and (L2)p

k2 ⊆ L1.

After proving the above theorems, we examine the case where K is a local field of

characteristic p > 0 in Chapter 3, Section 3.3. Note that for a connected absolutely

simple adjoint algebraic group defined over K, the group of rational points G(K)

becomes a locally compact topological group, so we can examine the induced topology

on any abstract subgroup Γ ⊆ G(K). The following theorem tells us that for local
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fields K, weak commensurability imposes a strong restriction on the induced topology

of the Zariski-dense subgroups of the group of K-points of a connected absolutely

almost simple algebraic group defined over K.

Theorem D (Analog of [20, Prop. 5.6]). Suppose that K is a local field of character-

istic p > 0, and suppose that for i = 1, 2, Gi is a connected absolutely simple adjoint

algebraic group defined over K. For i = 1, 2, suppose that Γi ⊆ Gi(K) is a Zariski-

dense finitely generated subgroup, and suppose that Γ1 is weakly commensurable to

Γ2. Then Γ2 is discrete if and only if Γ1 is discrete.

The proofs of these theorems use a variety of algebraic and number-theoretic

techniques. First and foremost, we make extensive use of Pink’s results found in [16]

and [17] concerning strong approximation of Zariski-dense subgroups of connected

semisimple algebraic groups defined over fields of arbitrary characteristic. This work

serves are a generalization of the strong approximation property for Zariski-dense

subgroups in the characteristic zero case, which is used extensively in the proofs

of the characteristic zero analogs of our results. In characteristic zero, the strong

approximation property of Zariski-dense subgroups can be traced back to Platonov’s

proof of the strong approximation property for connected semisimple algebraic groups

defined over number fields [18]. Platonov’s proof relies in an essential way on the

following theorem originally due to Cartan: a closed subgroup of a Lie group is a

Lie group [4, pg. 340]. Unfortunately, Cartan’s theorem is no longer true in positive
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characteristic, so the work of Pink is essential to our work. We provide the precise

statements of these strong approximation results in Chapter 2, Section 2.2.

1.2 Generic elements in positive characteristic

Furthermore, one of the key ingredients in the proofs of the above results is the

existence of generic elements in Zariski-dense subgroups of the group of K-rational

points of a connected absolutely almost simple algebraic group defined over a field

of positive characteristic. We start with the definition of generic tori and generic

elements.

Let K be an infinite field, fix an algebraic closure K of K, and let Ksep be the

separable closure of K in K. Let G be a connected absolutely almost simple algebraic

group defined over K, and fix a maximal K-torus T of G. Let Φ := Φ(G, T ) and

W :=W(G, T ) be the root system and Weyl group of G respectively. Let KT denote

the (minimal) splitting field of T over K. Note that KT/K is a Galois extension.

The Galois group Gal(KT/K) naturally acts on the character group of T , X(T ).

This action takes Φ(G, T ) to Φ(G, T ), so it induces an injective homomorphism

θT : Gal(KT/K) −→ AutΦ(G, T ). (1.2.1)
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Definition. We say that the torus T is a generic over K if

θT (Gal(KT/K)) ⊇ W(G, T ).

A regular semisimple element g ∈ G(K) is said to be generic over K if the torus

T = ZG(g)◦ is a generic torus over K.

In [19], Prasad and Rapinchuk prove that a Zariski-dense subgroup Γ ⊆ G(K)

of a connected absolutely almost simple algebraic group G defined over a finitely

generated field K of characteristic zero must contain a K-generic element.

Generally, we can specify a finite number of local conditions and show that a

maximal K-torus that satisfies these local conditions must be generic. Using this

method, we prove the existence of these elements in the positive characteristic case

in Chapter 3, Section 3.1.

Theorem E (Analog of [19, Theorem 3(i)]). Let K be an infinite field of characteristic

p > 0. Let r be the number of nontrivial conjugacy classes in W and let S be a set

of nontrivial non-archimedean valuations on K such that Kv is locally compact and

G is Kv-split. For each v ∈ S, we can choose a maximal Kv-torus Tv of G such that

any K-torus T that is G(Kv)-conjugate to Tv for all v ∈ S is a generic torus over K.

The main result concerning generic elements shows the existence of generic ele-

ments in Zariski-dense subgroups.



10

Theorem F (Analog of [19, Theorem 1]). Let G be a connected absolutely almost

simple algebraic group defined over an infinite finitely generated field K of character-

istic p > 0 and let Γ ⊆ G(K) be a finitely generated Zariski-dense subgroup. Then Γ

contains a generic K-element (of infinite order).

The proof of this fact relies on both Theorem E and the strong approximation

results introduced in Chapter 2, Section 2.2. The existence of generic elements is

invaluable to our examination of weak commensurability and we use this concept in

the proofs of many of the theorems in the subsequent sections.
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1.3 Notation

G An algebraic group

GR An algebraic group considered as a group over the algebra R

GA The algebraic group scheme with Hopf algebra A

Ared The reduced ring of A

G(R) The R-points of an algebraic group

G The adjoint group of the algebraic group G

G̃ The simply connected cover of the algebraic group G

G◦ The connected component of the identity of the algebraic group G

Z(G) The center of G

ZG(H) The centralizer of the subgroup H in the algebraic group G

ZG(x) The centralizer of x ∈ G(K) in the algebraic group G

NG(H) The normalizer of the subgroup H in the algebraic group G

R(G) The radical of the algebraic group G

Ru(G) The unipotent radical of the algebraic group G

Greg The open subvariety of regular elements of the algebraic group G

K[G] The ring of regular functions of the group G

Ksep The separable closure of the field K

K The algebraic closure of the field K

Kv The completion of the field K with respect to the v-adic norm
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Ov The local ring of integers in Kv

Kur
v The maximal unramified extension of Kv in Ksep

v

V K The set of all pairwise inequivalent absolute values on K

V K
f The subset of V K consisting of non-archimedean absolute values

KT The splitting field of the torus T over the field K

X(T ) The set of (absolute) characters of the group T

Ad The adjoint representation

KΓ The minimal field for a Zariski-dense subgroup Γ ⊆ G(K)

Fr The Frobenius morphism

(F,G,Γ) Standard triple consisting of the semisimple ring F , the group

scheme G over F , and the Zariski-dense subgroup Γ ⊆ G(F )

Lie(G) The Lie algebra of the algebraic group G

df The derivative at the identity of the group scheme morphism

f : G→ H

Φ(G, T ), Φ(G) The root system of the reductive group G (with respect to the

maximal torus T if specified)

∆(G, T ), ∆(G) A set of simple roots for the reductive group G (with respect to

the maximal torus T if specified)

W(G, T ), W(G) The Weyl group of the reductive group G (with respect to the

maximal torus T if specified)

Dyn(G) The Dynkin diagram of the reductive group G
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Chapter 2

Background information

In this chapter we summarize a number of mostly well-known facts concerning linear

algebraic groups over an arbitrary field K. For this summary, we assume a basic

understanding of algebraic geometry and commutative algebra.

2.1 Algebraic groups

Group schemes

Let K be a field of arbitrary characteristic. Let A be a commutative (unital, associa-

tive) K-algebra with multiplication m : A ⊗K A → A and unit e : K → A. Assume

that we have K-algebra homomorphisms

∆: A→ A⊗K A (comultiplicaton)

ι : A→ A (co-inverse)

ε : A→ K (co-unit)

which satisfy that following conditions.
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(a) The diagram

A A⊗K A

A⊗K A A⊗K A⊗K A

∆

∆

∆⊗ 1A

1A ⊗∆

commutes.

(b) The map

A
∆−→ A⊗K A

ε⊗1A−→ K ⊗K A = A,

coincides with the identity map 1A : A −→ A.

(c) The composite maps

A
∆−→ A⊗K A

ι⊗1A−→ A⊗K A
m−→ A

and

A
ε−→ K

e−→ A

coincide.

An K-algebra A with the above maps is called a (commutative) Hopf algebra

over K.
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Let A be a commutative Hopf algebra over K. An ideal J of A such that

∆(J) ⊆ J ⊗K A+ A⊗K J, ι(J) ⊆ J, and ε(J) = 0

is called a Hopf ideal of A. If J is a Hopf ideal of A, then A/J has a natural Hopf

algebra structure.

Let AlgK denote the category of commutative (unital, associative) K-algebras

with morphisms given by K-algebra homomorphisms. Let A be a Hopf algebra over

K. For any object R in AlgK , one defines a product on the set

GA(R) = HomAlgK (A,R)

by the formula fg = mR(f ⊗ g) ◦∆ for f, g ∈ GA(R), where mR : R ⊗K R −→ R is

multiplication in R. The defining properties of a Hopf algebra imply that this product

is associative and with a (left) identity given by the composition A
ε−→ K

eR−→ R and

(left) inverse given by f−1 := f ◦ ι. It is straightforward to verify that GA(R) is an

abstract group with multiplication and inversion given by these operations.

For any K-algebra homomorphism f : R→ S, there is a group homomorphism

GA(f) : GA(S) −→ GA(R), g 7→ f ◦ g,
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which implies that we have a representable covariant functor

GA : AlgK −→ Grps.

An affine group scheme G over K is a functor G : AlgK −→ Grps that is

isomorphic to GA for some Hopf algebra A. By Yoneda’s lemma, the Hopf algebra

A is uniquely determined by G up to isomorphism, which we denote by A = K[G].

We call the algebra K[G] the ring of regular functions on G. For any object R

in AlgK , the group G(R) is called the group of R-points of G.

A group scheme homomorphism f : G −→ H is a natural transformation of

functors. By Yoneda’s lemma, this is completely determined by a unique Hopf algebra

homomorphism f ∗ : K[H] −→ K[G].

Suppose that G is a group scheme represented by the Hopf algebra A, and H is

a group scheme represented by the Hopf algebra A/J for some Hopf ideal J of A.

Then consider the group scheme homomorphism ρ : H → G induced by A → A/J .

For each object R of AlgK , ρR : H(R) → G(R) is injective, hence we can naturally

identify H(R) with a subgroup of G(R). When this is the case, the group scheme H

is called a (closed) subgroup of G. The subgroup H is said to be normal in G if

H(R) is normal in G(R) for all objects R of AlgK .
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Let f : G −→ H be a group scheme homomorphism. The subgroup ker(f) of G is

defined to be the functor

ker(f)(R) = {g ∈ G(R) | fR(g) = 1}.

It is not hard to show that this is the subgroup of G associated to the Hopf algebra

K[G]/(f ∗(I)K[G]), where I = ker(ε : K[H] → K), i.e. the augmentation ideal of

K[H].

We say that an affine group scheme G over K is an algebraic group scheme

over K if the K-algebra K[G] is finitely generated. We will work exclusively with

algebraic group schemes.
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Example 2.1.1.

1. Let A = K with a trivial Hopf structure. Then GA = 1, the trivial group

scheme, i.e. GA(R) = {e} for all objects R in AlgK .

2. Consider the K-algebra, A = K[Xij (i, j = 1, ..., n), det(X11, ..., Xnn)−1]. We

can endow A with the following Hopf algebra structure. We define the homo-

morphisms ∆, ε, and ι on generators as follows:

∆(Xij) =
n∑
k=1

Xik ⊗Xkj, ε(Xij) = δij,

ι(Xij) = (−1)i+j det(X11, ..., Xnn)−1 det(Mij),

where δij is the Dirac delta function and Mij is the (n− 1)× (n− 1) minor of

the matrix (Xij) formed by removing the ith row and jth column.

Note that the above values imply the following.

∆(det(X11, ..., Xnn)) = det(X11, ..., Xnn)⊗ det(X11, ..., Xnn),

ε(det(X11, ..., Xnn)) = 1, and ι(det(X11, ..., Xnn)) = det(X11, ..., Xnn)−1.

The definition of A as a Hopf algebra implies that GA(R) = GLn(R) for all

commutative K-algebras R (see for example [13, §20.A, pg. 326]). The algebraic
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group scheme GA is denoted GLn,K or GLn if the field K is clear from the

context.

3. Consider A = K[GLn]/(det(X) − 1), where X = (Xij). It is not difficult to

show that (det(X) − 1) is a Hopf ideal, so the Hopf algebra structure on A

comes from the Hopf algebra structure on K[GLn]. Then GA(R) = SLn(R) for

all commutative K-algebras R, and we denote the algebraic group scheme GA

by SLn,K or just SLn if the field K is clear from the context.

4. Let A = K[x] and B = K[x, x−1]. The Hopf algebra structure on A is defined

on the generator x by

∆A(x) = x⊗ 1 + 1⊗ x, εA(x) = 0, ιA(x) = −x.

On the algebra B, it is defined on the generator x by

∆B(x) = x⊗ x, εB(x) = 1, ιB(x) = x−1.

The algebraic group scheme GA is denoted by Ga and called the additive group

scheme. The algebraic group scheme GB is denoted by Gm and called the

multiplicative group scheme. As functors, GA(R) = R and GB(R) = R× for all

objects R in AlgK .

5. Let V be a finite dimensional K-vector space and let R be an object in AlgK .
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Define the group scheme GL(V ) by GL(V )(R) = GL(V ⊗K R), where GL(V )

is the classical group of invertible linear transformations of the vector space V .

The group scheme GL(V ) is represented by A = EndK(V ).

Let A be a Hopf algebra over K and let Ared = A/nil(A), where nil(A) is the

nilradical of A. We say that GA is connected if and only if Ared is a domain. In

other words, GA is connected if and only if Spec(A) is connected as an affine scheme.

Recall that a finite dimensional K-algebra E is called étale if it is a product of

separable field extensions of K. Let π0(A) denote the maximal étale K-subalgebra of

A. It is also a Hopf algebra, and the inclusion π0(A) ⊆ A induces a surjective group

scheme homomorphism GA −→ Gπ0(A). The kernel of this map, denoted G◦, is called

the connected component of the identity of G. The connected component G◦

is a connected group scheme [31, §6.7, pg. 51].

The Lie algebra of a group scheme

Let G be an algebraic group scheme over K and let A = K[G]. A derivation D ∈

Der(A,A) is said to be left-invariant if ∆ ◦ D = (1A ⊗ D) ◦ ∆. The set of left-

invariant derivations forms an K-vector subspace of Der(A,A), and it is denoted

Lie(G). It takes some work to show that Lie(G) is a Lie subalgebra of Der(A,A) with

the bracket operation given by [D1, D2] = D1 ◦ D2 − D2 ◦ D1 for all left-invariant

derivations D1, D2 ∈ Lie(G). We call the Lie algebra Lie(G) the Lie algebra of

G [31, §12.1, pg. 93].
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Remark 2.1.2. If G is an algebraic group scheme, then dimK(Lie(G)) <∞. See [13,

Cor. 21.2, pg. 334] for details.

Example 2.1.3.

• If G = GLn,K , then Lie(G) = Mn(K) with the Lie bracket given by [A,B] =

AB −BA. (See [31, §12.3(a), pg. 95].)

• If G = SLn,K , then Lie(G) = {X ∈ Mn(K) | tr(X) = 0}, with the same Lie

bracket as Mn(K), namely [A,B] = AB −BA. (See [31, §12.3(b), pg. 95].)

Note that this construction is functorial. Given an K-morphism of algebraic

groups f : G −→ H, it induces a homomorphism of Lie algebras over K, denoted

df : Lie(G) −→ Lie(H). The homomorphism df is called the derivative of f (at

the identity) [31, §12.2, pg. 94].

Let R be an object in AlgK . Let g ∈ G(R), and let ψg : G(R) −→ G(R) be the

automorphism of G defined by conjugation by g, i.e. ψg(h) = g−1hg for h ∈ G(R).

Note that this defines an automorphism of the algebraic group G as a group scheme

over R. Thus, we may take the derivative of ψg to get the R-linear isomorphism

dψg : Lie(G)⊗K R −→ Lie(G)⊗K R,

taking for granted that the Lie algebra of G as a group scheme over R is the same as
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the tensor product of the Lie algebra of the group scheme G over K and the algebra

R. For any g ∈ G(R), define AdR(g) : = dψg ∈ GL(Lie(G)⊗K R).

Definition 2.1.4. The group scheme homomorphism Ad: G −→ GL(Lie(G)) that

we have defined above is called the adjoint representation of G.

Smoothness

Let G be a connected algebraic group scheme over K and let A = K[G]. Then Ared is

a domain. The dimension of G, denoted dim(G), is the transcendence degree of the

field of fractions of Ared over K. If G is not connected, then define dim(G) = dim(G◦).

Example 2.1.5.

• dim(GLn,K) = n.

• dim(SLn,K) = n− 1.

• dim(Ga) = dim(Gm) = 1.

Let I = ker(A
ε−→ K). As stated above, this is a maximal Hopf ideal called the

augmentation ideal of A. If we localize A with respect to the ideal I, denoted AI ,

the resulting ring AI is a local ring with maximal ideal M = IAI and residue field

K = AI/M . Then M/M2 has a natural K-vector space structure. We say that local

ring AI is regular if dimK(M/M2) = dimKrull(A).
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Lemma 2.1.6 ([13, Lemma 21.8, pg. 337]). If G is an algebraic group scheme over

the field K, then dimK(Lie(G)) ≥ dim(G). Equality holds if and only if the local ring

AI is regular.

Definition 2.1.7. If an algebraic group G satisfies dimK(Lie(G)) = dim(G), we say

that G is smooth. A smooth algebraic group scheme is called an algebraic group.

It is not difficult to show that G is smooth if and only if A ⊗K L is reduced for

any field extension L/K. When G is smooth and connected, then K[G] is a domain

and we define K(G) := Frac(K[G]), called the field of rational functions on G.

Example 2.1.8.

1. The group schemes Ga and Gm are smooth over any field K since dim(Ga) =

dim(Gm) = 1 and Lie(Ga) = K and Lie(Gm) = K.

2. Let K be a field of characteristic p > 0. Let A = K[x]/(xn − 1) with the Hopf

structure on A given by ∆(x) = x ⊗ x, ι(x) = x−1, and ε(x) = 1 and consider

the group scheme GA. When (n, p) = 1, this is a smooth group scheme since

the polynomial xn−1 is separable over K. When n|p, then this is a non-smooth

group scheme since A is not reduced.

Remark 2.1.9. Classically, affine algebraic groups over an algebraically closed field

can be realized as an affine variety Spec(A) endowed with a group structure. These
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conditions imply that A must be a reduced finitely generated Hopf algebras A, which

corresponds to the notion of a smooth algebraic group scheme that we have defined

above. This is the reason why we call smooth algebraic group schemes algebraic

groups.

Rational points of algebraic groups

Definition 2.1.10. Let g ∈ G(K). Let Pg(t) be the characteristic polynomial of

AdK(g) ∈ GL(Lie(G))(K). We say that g is K-regular if the multiplicity of (t− 1)

in Pg(t) is minimal.

Proposition 2.1.11. The set of regular elements is Zariski-open in G(K).

Proof. See [3, Thm. 12.3, pg. 161]

Let V be a finite dimensional K-vector space. Recall that an element a ∈ End(V )

is semisimple if there is an K-basis of V ⊗K K consisting of eigenvectors of a, so a

is a diagonal matrix with respect to this basis. We say a ∈ End(V ) is nilpotent if

an = 0 for some integer n ≥ 0 and we say that a is unipotent if a − 1 is nilpotent.

Notice that if char(K) = p > 0, then a is unipotent if and only if ap
s

= 1 for some

s ≥ 1.

Definition 2.1.12. Let G be a linear algebraic group. We say that an element

x ∈ G(K) is semisimple (resp. unipotent) if the image of x via an embedding of

G(K) into GLn(K) is a semisimple (resp. unipotent) operator in GLn(K).
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Unipotent radicals and radicals

For this section, we assume that F is an algebraically closed field. Let G be a

connected algebraic group defined over F .

Definition 2.1.13. A unipotent linear algebraic group is an algebraic group U

defined over F such that the elements of U(F ) are all unipotent. A solvable linear

algebraic group is an algebraic group W defined over F such that W (F ) is a solvable

abstract group.

Definition 2.1.14.

(a) Let Ru(G) be the unique maximal connected unipotent normal F -subgroup of G,

called the geometric unipotent radical of G.

(b) Let R(G) be the unique maximal connected solvable normal F -subgroup of G,

called the geometric radical of G.

(c) The group G is reductive if Ru(G)(F ) = 1.

(d) The group G is semisimple if R(G)(F ) = 1.

Since Ru(G) ⊆ R(G), all semisimple groups are reductive.

Example 2.1.15.
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• The algebraic group of upper triangular matrices Tn is not reductive because

the subgroup of upper triangular unipotent matrices is normal in Tn.

• A torus is reductive but not semisimple.

• The algebraic group GLn,F is reductive, but not semisimple. The algebraic

group SLn,F is semisimple.

Proposition 2.1.16. The algebraic F -group G/Ru(G) is reductive and the algebraic

F -group G/R(G) is semisimple.

Proof. See [3, §11.21, pg. 157].

Note that for imperfect subfields F ′ ⊂ F , the geometric unipotent radical Ru(G)

may fail to descend to an algebraic F ′-group. If G′ is a connected algebraic group

over F ′, then it is clear that Ru(G
′)F ′ ⊆ Ru(G

′
F ′

) and R(G′)F ′ ⊆ R(G′
F ′

), but they

need not be equal (see [7] for numerous examples).

However, when G′
F ′

is reductive (resp. semisimple) then Ru(G
′) is trivial (resp.

R(G′) is trivial). In this case, we say that the F ′-group G′ is reductive (resp. semisim-

ple).

Algebraic tori

Definition 2.1.17. An n-dimensional K-torus is an algebraic K-group that is

K-isomorphic to (Gm)n for some n > 0.
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Let T be an n-dimensional torus defined over a field K. A character of T ,

χ ∈ Ksep[T ], is a regular function with the property that for all t1, t2 ∈ T (Ksep),

χ(t1t2) = χ(t1)χ(t2).

The set of all characters is denoted by X(T ). We can also identify X(T ) with the set

of group scheme morphisms Hom(T,GL1).

Let G = Gal(Ksep/K). Note that G naturally acts on X(T ) as follows. For all

σ ∈ G , χ ∈ X(T ), and t ∈ T (Ksep), let

σ · χ(t) = σ(χ(σ−1(t)).

We define the K-characters of T , XK(T ) to be the characters fixed by this action,

XK(T ) := X(T )G . In other words, XK(T ) is the set of characters of T that are

defined over the field K. It is clear that XKsep(T ) = X(T ). Note that we often write

the group of characters X(T ) with additive notation.

Note that every character X(GL1) has the form χ(x) = xm for x ∈ (Ksep)×

and some m ∈ Z. Therefore, X(GL1) ∼= Z. Furthermore, for a rank n torus T ,

X(T ) = (X(Gm))n = Zn (see [3, §8.5, pg. 114]).

Definition 2.1.18. We say that the K-torus T is split over K if XK(T ) = X(T ).

We say that T is anisotropic over K if XK(T ) = {1}.
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Note that saying an n-dimensional torus is split over K is equivalent to saying

that the isomorphism T → (Gm)n is defined over K.

Proposition 2.1.19. Every K-torus is split over some finite separable extension of

K.

Proof. See [3, Prop. 8.11, pg. 117]

Consider a rational representation T −→ GL(V ). If α ∈ X(T ), define

Vα = {v ∈ V ⊗K K | t · v = α(t)v for all t ∈ T (K)}.

Since T is split over K, we have the decomposition V ⊗K K =
⊕

α∈X(T ) Vα. We say

that α is a weight of T in V if Vα 6= 0.

Remark 2.1.20. Let T be an n-dimensional torus and let t ∈ T (K). Let V be the

representation space given the representation coming from the diagonal embedding,

T (K) ∼= (K
×

)n ↪→ GLn(K), and let α ∈ X(T ) be a weight of this representation.

Note that in this case, α(t) ∈ K× is an eigenvalue of t with eigenvector v ∈ Vα. Since

the product of characters is also a character, χ(t) is contained in the multiplicative

subgroup of K
×

generated by the eigenvalues of t for all χ ∈ X(T ).
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Example 2.1.21. Consider the algebraic torus T over R,

T (R) =


 a b

−b a

 ∈ M2(R)

∣∣∣∣∣∣∣∣ a
2 + b2 = 1

 .

This is a 1-dimensional torus over R. The eigenvalues of every element in T (R) are

of the form a+ ib and a− ib, so by Remark 2.1.20, the only possible character is the

trivial character. Thus, XR(T ) = {1}, and T is R-anisotropic.

If we consider the complex points of T , T (C) is isomorphic to the group T ′ =

{diag(z, z−1) | x ∈ C}, hence T is C-split.

Let G be a semisimple group defined over the field K.

Definition 2.1.22. A maximal K-torus of G is an K-subgroup of G that is a torus

and not strictly contained in any other K-torus.

Proposition 2.1.23. Let T ⊆ G be a maximal K-torus of the semisimple K-group

G.

(i) If T ′ is another maximal K-torus of G, then T and T ′ are conjugate in G(Ksep).

(ii) When K is not an algebraic extension of a finite field, there exists an element

t ∈ T (K) that generates a Zariski-dense subgroup of T .

(iii) Assume that K is infinite. Then every semisimple element of G(K) lies in the

K-points of some maximal torus.
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(iv) A semisimple element x ∈ G(K) is regular if and only if ZG(x)◦ is a maximal

torus.

(v) The torus T is maximal if and only if T = ZG(T )◦.

Proof. For (i), see [7, Prop. A.2.10, pg. 401].

For (ii), see [3, §8, Prop. 8.8].

For (iii), see [27, Cor. 13.3.8, pg. 231].

For (iv), see [3, Prop. 12.1 pg. 160].

For (v), if C := ZG(T )◦ = T , then T is maximal since every torus containing T is

contained in C.

If T is maximal, then since C is reductive its radical R(C) is a torus. Clearly,

T ⊆ R(C), and so T = R(C) since T is maximal. Thus C/T is semisimple and

rank(C/T ) = 0 since a nontrivial torus of C/T would correspond to a torus in C

properly containing T . But C is smooth and connected, hence C/T is trivial and

C = T .

Definition 2.1.24. We say that the group G is K-split if it contains an K-split

maximal torus, and that the group is K-anisotropic if every maximal torus in G is

K-anisotropic. We say that G is K-isotropic if it is not K-anisotropic.
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Semisimple algebraic groups

We would like to first classify all split semisimple groups. We first recall the basic

theory of root systems.

Let E be a Euclidean space with positive definite symmetric bilinear form (·, ·). A

root system in E is a finite set Φ ⊆ E of non-zero vectors that satisfy the following

conditions:

(RS1) The roots span E.

(RS2) The only scalar multiples of α ∈ Φ are α and −α.

(RS3) For any two roots α, β ∈ Φ,

sα(β) := α− 2
(α, β)

(β, β)
β ∈ Φ.

(RS4) For any two roots α, β ∈ Φ,

2
(α, β)

(β, β)
∈ Z.

We call sα : Φ→ Φ the reflection associated to the root α.

Sometimes (RS4) may be omitted, and such root systems satisfying it are called

crystallographic. Similarly, sometimes (RS2) may be omitted, and such root sys-

tems satisfying it are called reduced. All of the root systems arising in this paper

are crystallographic and reduced. We note that non-reduced root systems do arise
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naturally in this context when one considers relative root systems (see [27, 15.3.9, pg.

260]), but this will not be necessary for this paper.

An isomorphism of root systems (E,Φ) and (E ′,Φ′) is an E-linear isomor-

phism f : E → E ′ such that F (Φ) = Φ′. The automorphism group Aut(Φ) is a finite

group and the subgroup W(Φ) of Aut(Φ) generated by all the reflections sα, α ∈ Φ,

is called the Weyl group of Φ.

Let Φ1 and Φ2 be root systems in V1 and V2 respectively, and let Φ = Φ1 ∪ Φ2

and V = V1 ⊕ V2. Then Φ is a root system in V , called the sum of Φ1 and Φ2 and

denoted Φ = Φ1 + Φ2. We say that Φ is irreducible if it cannot be written as a sum

of two (or more) root systems. Any root system decomposes uniquely into a sum of

irreducible root systems (see [13, §24, pg. 353]).

Definition 2.1.25. Let Φ be a root system in the Euclidean space E. A subset Φ+

of Φ is called a system of positive roots if there exists an x ∈ E with (α, x) 6= 0

for all α ∈ R such that

Φ+ = {α ∈ Φ | (α, x) > 0}.

Since (·, ·) is a W(Φ)-invariant symmetric bilinear form, W(Φ) acts on the set of

positive root systems, i.e. wΦ+ is a system of positive roots for all w ∈ W(Φ), and it

is not difficult to show that this action is simply transitive.

Definition 2.1.26. Two systems of positive roots Φ+ and Φ̃+ are called adjacent

if |Φ+ ∩ Φ̃+| = |Φ+| − 1.
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Definition 2.1.27. Let Φ be a root system and let Φ+ be a system of positive roots.

Define the following subset of Φ+:

∆ := {α ∈ Φ+ | sαΦ+ is adjacent to Φ+}.

The set ∆ is called the set of simple roots of Φ+.

It is clear for all w ∈ W(Φ) and a set of simple roots ∆, w∆ is also a set of simple

roots and the action of W(Φ) on the set of sets of simple roots is simply transitive.

A subset Π ⊂ Φ is basis of the root system Φ if for any α ∈ Φ,

α =
∑
β∈Π

nββ

for some uniquely determined nβ such that either nβ ≤ 0 for all β ∈ Π or nβ ≥ 0 for

all β ∈ Π.

Proposition 2.1.28. The set of simple roots ∆ is a basis for Φ.

Proof. See [3, Cor. 1 to Thm. 14.8, pg. 189]

We define a graph, called the Dynkin diagram of Φ, which has ∆ as its set of

vertices. The vertices α and β are connected by mαβ edges, where

mαβ =

(
2(α, β)

(β, β)

)(
2(β, α)

(α, α)

)
.
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If α and β are two incident vertices and (α, α) > (β, β), then we label the edges

connecting α and β with a “>” pointing toward β to indicate that the root α is

longer than β.

Let G be a semisimple algebraic group defined over the field K and suppose

that G is split with maximal split torus T . Let g := Lie(G), and consider the

weight space decomposition with respect to the adjoint representation restricted to

T , Ad|T : T → GL(g),

g =
⊕

α∈X(T )

gα.

Definition 2.1.29. The nonzero weights of the adjoint representation for a maximal

torus T ⊆ G are called the roots of G with respect to T and the set of all roots

is denoted Φ(G, T ).

Definition 2.1.30. The Weyl group of G with respect to T is defined to be

W(G, T ) = NG(T )(K)/T (K)

Proposition 2.1.31. Let Φ := Φ(G, T ) be the set of roots of the semisimple group G.

Let Q be the root lattice, the subgroup of X(T ) generated by Φ, and let E = R⊗ZQ.

(a) There exists a W(G, T )-invariant positive definite symmetric bilinear form on

E, denoted (·, ·).

(b) The pair (E,Φ) is a root system with respect to the above W(G, T )-invariant

bilinear form.
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Proof. See [3, Thm. 14.8, pg. 189].

Proposition 2.1.32.

(a) There exists an isomorphism W(G, T ) ∼= 〈sα |α ∈ Φ(G, T )〉.

(b) The conjugation of maximal tori T → T ′ = gTg−1 induces a natural bijection

of root systems Φ(G, T ) → Φ(G, T ′) and a natural isomorphism of Weyl groups

W(G, T ) ∼= W(G, T ′). In particular, Φ(G, T ) and W(G, t) are invariant up to

isomorphism with respect to the choice of maximal torus.

Proof. Part (a) is a consequence of the proof of [3, Thm. 14.8, pg. 189].

Part (b) follows from Proposition 2.1.23(i). If T and T ′ are two maximal tori, then

there exists a g ∈ G(K) such that T ′(K) = g−1T (K)g. The conjugation isomorphism

ψg : T (K) → T ′(K) induces a natural bijection ψ∗g : X(T ′) → X(T ) which induces

a natural bijection between the root system Φ(G, T ′) and the root system Φ(G, T ).

This bijection induces a natural isomorphism between the Weyl groups W(G, T ) and

W(G, T ′).

Isogenies

Let N be an algebraic group scheme over the field K, and let C = K[N ]. We say

that N is a finite group scheme if C is a finite dimensional K-vector space.
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Example 2.1.33.

1. Let p = char(K) and consider N = K[x]/(xp). Then the group scheme αp :=

GN is a finite group scheme.

2. Similarly, let p = char(K) and consider M = K[x]/(xp − 1). Then the group

scheme µp := GM is a finite group scheme.

Definition 2.1.34. Let f : G −→ H be a surjective homomorphism of group schemes

(i.e. f ∗ : K[H] −→ K[G] is injective), and let N = ker(f). The homomorphism f is

called an isogeny if N is a finite group scheme, and it is called a central isogeny

if N(R) is contained in Z(G)(R) for every object R in AlgK and ker(df) is contained

in the center of Lie(G).

Example 2.1.35. Let n > 0 be natural number. Define f : Gm → Gm by fR(x) = xn

for all commutative K-algebras R. Then f is a central isogeny of group schemes.

Definition 2.1.36. Let G and H be connected semisimple linear algebraic K-groups

and π : G −→ H be an isogeny. We say that π is purely inseparable (resp. separa-

ble) if the induced inclusion of function fields K(H) ↪→ K(G) is a purely inseparable

(resp. separable) extension.

Proposition 2.1.37. Suppose that π : G −→ H is a separable isogeny of connected

semisimple K-groups. Then π is a central isogeny.
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Proof. See [3, §22.3, pg. 247].

Definition 2.1.38.

1. Two algebraic groups H and H ′ are called (strictly) isogenous if there exists

an algebraic K-group G and two (central) isogenies G→ H and G→ H ′.

2. A connected semisimple algebraic group H is called simply connected if every

central isogeny H ′ → H, for H ′ connected, is an isomorphism.

3. A connected semisimple algebraic group H is called adjoint if every central

isogeny H → H ′, for H ′ connected, is an isomorphism.

Proposition 2.1.39. Let G be a connected semisimple algebraic K-group. Then there

exists a sequence

G̃
π̃−→ G

π−→ G,

such that G̃ is a simply connected K-group and G is an adjoint K-group, π̃ and π

are central K-isogenies, and G̃, G, π̃, and π are unique up to K-isomorphism.

Proof. See [29, Prop. 2, pg. 42].

The groups G̃ and G are called the simply connected cover and adjoint group

of G respectively.

Definition 2.1.40. A connected algebraic group G is called K-simple if G is non-
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commutative and G(K) has no normal algebraic subgroup except G(K) and {e}.

A connected algebraic group G is called K-almost simple if it is isogenous to an

K-simple group.

For example, the group SLn is K-almost simple and the group PSLn is K-simple

for n > 1 and any infinite field K.

Theorem 2.1.41. Let K be a field and let G be a semisimple simply connected K-

group. Then G is a direct product of K-almost simple simply connected groups.

Proof. See [29, §3.1.1 pg. 46].

Proposition 2.1.42. A K-split semisimple group G is K-simple if and only if Φ(G)

is an irreducible root system. A simply connected (resp. adjoint) K-split semisimple

group G is the direct product of uniquely determined simple subgroups Gi and Φ(G) =∑
i Φ(Gi).

Proof. See [13, Prop. 25.8, pg. 357].

Definition 2.1.43. We say that the algebraic K-group G is absolutely almost

simple if it is almost simple over the algebraic closure K.

The group G is absolutely almost simple if and only if the root system Φ(G) is an

irreducible root system.

Let K ′/K be a finite separable extension and suppose that H is a semisimple
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K ′-group. Then we can define an algebraic K-group RK′/K(H) as a functor by

RK′/K(H)(R) = H(R⊗K K ′)

for all objects R in AlgK . The algebraic K-group RK′/K(H) is called called the re-

striction of scalars of the group H from K ′ to K (also known as Weil restriction).

Theorem 2.1.44. Let G be a K-almost simple simply connected K-group. Then

there exists a finite separable extension K ′ over K and an absolutely almost simple

simply connected group H defined over K ′ such that G ∼= RK′/K(H).

Proof. See [29, §3.1.1 pg. 46].

The isogenies described in Theorems 2.1.41 and 2.1.44 are called almost direct

products. Since semisimple groups essentially break up as almost direct products

of connected absolutely almost simple groups, we will restrict ourselves to the study

of connected absolutely almost simple groups. We hope to address the more general

cases in the future.

One of the benefits to restricting our study to connected absolutely almost simple

groups is because they are classified by their root systems.

Theorem 2.1.45 (Classification theorem). Let G be a connected absolutely almost

simple group. Then the root system of G, Φ(G), is exactly one of type An (n ≥ 1),

Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4, or G2, called the (Killing-
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Cartan) type of G. If G and G′ are strictly isogenous, then Φ(G) and Φ(G′) have

the same type.

Proof. See [29, Thm. 1, pg. 34].

Inseparable isogenies

Let G be an algebraic group defined over K, where char(K) = p > 0. Let A := K[G].

Let f ∈ HomK(A,R). For a ∈ A, consider the map a 7→ f(a)p
n
. This is a ring

homomorphism from A to Rpn , but it takes the action of K on A to an action of Kpn

on Rpn . We would like to ‘fix’ this map so that it is an algebra homomorphism.

Define a K-module structure on Rp by α · r = αp
n
r for α ∈ K, r ∈ Rp. Under

this action, fp
n

: A −→ Rp is a K-algebra homomorphism. The group valued functor

defined by

R 7→ HomK(A,Rpn)

for all objects R in AlgK is an algebraic group. It is represented by the Hopf-algebra

A⊗σK, where the tensor product is twisted by the pnth power, i.e. a⊗α = (α)p
n
a⊗1

for all a ∈ A and α ∈ K (see [16, §1, pg. 448]). The homomorphism of algebraic

groups defined on R-points by the homomorphism

HomK(A,R) −→ HomK(A,Rpn)

is actually an isogeny called the nth Frobenius isogeny, denoted by Frn : G −→
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Frn(G).

The isogeny Frn is purely-inseparable. Any composition of Frobenius isogenies is

also a Frobenius isogeny. This isogeny is also purely inseparable and not central when

G is connected and non-commutative.

Let G be a linear algebraic group over K. We would like to determine how the

Frobenius isogeny acts on the R-rational points of G. Fix an embedding G ⊂ GLN .

It suffices to examine Frn for GLN(R).

Let f ∈ GLN(R). This is given by a K-algebra homomorphism f : K[GLN ]→ R,

and the images of the generators Xij of K[GLN ] determine the matrix entries of a

matrix realization of f . In other words, [f(Xij)] = [aij] is a matrix in GLN(R) in the

classical sense. Let us compute the image of Xij under Frn(f):

Frn(f)(Xij) = f(Xij)
pn = ap

n

ij .

Therefore we have shown that on a matrix group, the Frobenius isogeny is the map

[aij]i,j 7→
[
ap

n

ij

]
i,j
.

Non-standard isogenies

For a few special cases, there exist purely inseparable isogenies between connected

semisimple groups which cannot be obtained from central isogenies and Frobenius



42

isogenies. In particular, there are a few cases where the Frobenius isogeny can be

factored in a nontrivial way. We call such isogenies non-standard isogenies.

Remark 2.1.46. We note that other sources refer to non-standard isogenies as non-

central special isogenies or very special isogenies, but we follow the language used in

Pink [16].

Proposition 2.1.47. Let G be a connected absolutely almost simple group defined

over K, a field of characteristic p > 0. Let Φ be the root system of G and suppose

that Φ contains roots of different lengths so that the squared length ratio is equal to

p. Then Fr: G −→ Fr(G) factors through totally separable isogenies

G
φ−→ G] φ]−→ Fr(G),

such that neither φ nor φ] is an isomorphism. The algebraic group G] is another ab-

solutely almost simple group over K. Let φ] be the root system of G]. The possibilities

for (p,Φ,Φ]) are listed in the following table.

p Type of Φ Type of Φ]

2 Bn (n ≥ 2) Cn

2 Cn (n ≥ 2) Bn

2 F4 F4

3 G2 G2



43

Proof. See [16, Prop. 1.6].

Example 2.1.48. Let K = K be an algebraically closed field of characteristic 2 and

let G be the simply connected almost simple group of type Bl for some l > 2. Let the

set of long roots be denoted by Φl and short roots be denoted by Φs. In this case, the

subalgebra of g := Lie(G) spanned by the short roots is an Ad(G)-invariant subspace

of g (see [11, Table 1]). In this case, ψ : G → G] induces a map, called an isogeny

of root data, between the root systems. The isogeny theorem and isogenies of root

data are discussed at length in [7, Thm. A.4.10, pg. 418]. The isogeny of root data

corresponding to the isogeny ψ is given by

f : Φ→ Φ],

where f(α) = α if α is a long root and f(α) = 2α if α is a short root. Showing that

this is the correct isogeny of root data (see [7, Prop. 7.1.5, pg. 223] for details). Note

that this isogeny maps short roots in Φ to long roots in Φ] and long roots in Φ to

short roots in Φ].

The above isogeny of root data maps Φ onto a root system of type Cl, so G] is an

almost simple group of type Cl.

The corresponding map ψ : G] → Fr(G) induces an isogeny of root data:

f ] : Φ] → 2Φ,
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where f(α]) = α] if α] is a long root in Φ] and f(α]) = 2α] if α] is a short root in Φ].

The composition f ] ◦ f : Φ → 2Φ is multiplication by 2, which corresponds to

the Frobenius isogeny. Furthermore, when G is simply connected, G] is also simply

connected.

Example 2.1.49. For a more concrete example, we note that the isogeny ψ : G→ G]

can also be realized in the following way. Let K be an algebraically closed field of

characteristic 2, let V = K2l+1 be a vector space, and let q be the quadratic form on

V defined by

q(x0, x1, ..., x2l) = x2
0 +

l∑
i=1

xixl+i.

Note that q is a non-degenerate quadratic form, and the spin group Spin(q) of this

quadratic form is a group of type Bl. The associated bilinear form Bq(x, y) = q(x +

y) − q(x) − q(y) has the one dimensional radical V ⊥ = Ke0, which induces a non-

singular alternating form Bq on the 2l-dimensional vector space V = V/V ⊥. The

symplectic group of Bq, Sp(Bq), is a simply connected group of type Cl. It is clear

that any linear transformation that preserves the quadratic form q preserves the form

Bq on V . Therefore, we have a induced homomorphism SO(q)→ Sp(Bq) (and it takes

a little work to show that this is actually surjective). The isogeny ψ can be realized

as a composition of the maps

Spin(q)→ SO(q)→ Sp(Bq).
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Classification of isogenies

All isogenies between connected (split) semisimple groups can be obtained from cen-

tral isogenies, Frobenius isogenies, and the non-standard isogenies. The following

theorem proven in [16] is invaluable to our work.

Theorem 2.1.50. Let f : G −→ H be an isogeny between two connected absolutely

simple adjoint groups defined over a field K of characteristic p.

(a) If p = 0, then f is an isomorphism.

(b) If p > 0, and G possesses no non-standard isogenies, then there exists an integer

n ≥ 0 and an isomorphism ψ : Frn(G) −→ H such that f = ψ ◦ Frn.

(c) If p > 0 and G possesses non-standard isogenies, then there exists an integer n ≥ 0

and an isogeny ψ : Frn(G) −→ H with non-vanishing derivative such that f =

ψ ◦Frn. Furthermore, either ψ is an isomorphism or there exists an isomorphism

χ : Frn(G)] −→ H such that ψ = χ ◦ φ where φ is the non-standard isogeny

Frn(G)
φ−→ Frn(G)].

Proof. See [16, Thm. 1.7].

Note that for a K-defined isogeny f : G→ H, this does not imply that the above

morphisms ψ : Frn(G) −→ H and χ : Frn(G)] −→ H are defined over K. Only when

G (and therefore H) is split over K can we determine that these are defined over K.
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Inner and outer forms

In this section, we will assume that the reader has knowledge about the basic results

from Galois cohomology. For more details, we refer the reader to [26].

Let G be a semisimple group defined over K.

The following definition is due to Tits in [29, pg. 39]. For this section, let G :=

Gal(Ksep/K) be the absolute Galois group, S ⊆ G be a maximal K-split torus in G,

and let T be a maximal K-torus of G containing S.

If S = T , then it is clear that G is split over K. If ZG(S) = T , then we say that

G is quasi-split over K.

Remark 2.1.51. The semisimple group G is quasi-split over K if and only if there

exists a Borel subgroup of G defined over K. This is the traditional definition of

quasi-split and it is equivalent to our definition [27, 16.2, pg. 271].

Let Φ(G, T ) be a the root system of G, let ∆ := ∆(G, T ) be a system of simple

roots in Φ(G, T ), and let W = NG(T )(K)/T (K) be the Weyl group of G. Let ∆0 be

the subset of ∆ consisting of those simple roots that vanish on S.

We first define an action, called the ∗-action, of G on ∆. Recall that G naturally

acts on X(T ). Note that for the set of simple roots ∆, σ(∆) is again a system of

simple roots. Since W acts simply transitively on the systems of simple roots, there

exists a well-defined element w ∈ W such that w(σ(∆)) = ∆. We define the ∗-action

of G on ∆ by σ ∗∆ = w ◦ σ(∆) for all σ ∈ G . Note that the ∗-action of G fixes both
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∆0, and ∆−∆0.

Definition 2.1.52. If the ∗-action of G on ∆ is trivial (resp. nontrivial), we say that

the group G is an inner form over K (resp. outer form over K).

Note that the ∗-action of G induces a diagram automorphism τ ∈ Aut(Dyn(G)).

We call the data consisting the triple (∆,∆0, τ) the Tits index of the group G.

To represent the Tits index, the Dynkin diagram of G is drawn so that vertices

belonging to the same G orbit are close to each other, and the orbits whose elements

belong to ∆−∆0, called distinguished orbits, are circled.

Inner forms also have a Galois cohomological description, as demonstrated by the

following lemma proven in [20]. Let G be a connected absolutely almost simple group

defined over K. Given a (continuous) Galois 1-cocycle z ∈ Z1(K,Aut(G)), we can

form the group zG, the algebraic group twisted by the 1-cocycle z as follows.

Let Ksep[G] be the Hopf algebra of regular functions of G over Ksep. This is

naturally a G -module. Given a 1-cocycle z ∈ Z1(K,AutG), we define a new action

of G on Ksep[G] by the following rule. Let f ∈ Ksep[G] and σ ∈ G and note that

zσ ∈ AutKsep(G). Therefore, σ◦zσ ∈ AutKsep(G). Let (σ◦zσ)∗ ∈ AutKsep−alg(K
sep[G])

be the automorphism of Hopf algebras corresponding to σ ◦ zσ. Define the twisted

action of G on Ksep[G] by

σ · f = (σ ◦ zσ)∗(f),

for all f ∈ Ksep[G], σ ∈ G . Let K[zG] be the fixed points of Ksep[G] under this new
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action of G . The twisted group zG is algebraic group scheme corresponding to K[zG].

Lemma 2.1.53. Let G be a connected absolutely almost simple group defined over a

field K. Then G(K) is an inner form over K (i.e. the ∗-action is trivial) if and only

if G(K) is isomorphic to (zG0)(K), where G0 is a connected absolutely almost simple

K-split group and z is a 1-cocycle with values in Int(G0), i.e. z ∈ Z1(K, Int(G0)).

Furthermore, there exists a finite Galois extension L/K such that G is an inner form

over L.

Proof. See [20, Lemma 4.1].

Fields of definition of a Zariski-dense subgroup

Let K be a field and let V be an K-vector space of finite dimension. Let A ⊆ K be

a subring of K.

Definition 2.1.54. A set L ⊆ V is called an A-lattice if it is a finitely generated

A-module such that K ⊗A L ∼= V .

Remark 2.1.55. Note that if A is a principal ideal domain, then every A-lattice has

a basis that is also a basis for V over K. Thus, if A is a principal ideal domain, then

L is free.

Definition 2.1.56. Let ∆ ⊆ End(V ). Let A ⊆ K be a subring of K such that V

contains a ∆-invariant A-lattice. Then A is called a ring of definition for ∆. We
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also say that ∆ is definable over A.

Lemma 2.1.57. Let A be an integrally closed Noetherian ring. If ∆ is definable over

A, then tr(∆) ⊆ A.

If we apply Lemma 2.1.57 to the setting of connected semisimple algebraic groups,

then we see that given the adjoint representation of a connected semisimple algebraic

group G defined over a field K, AdK : G(K) → GL(Lie(G)), if Γ ⊆ G(A) then

tr(AdK(γ)) ∈ A. With some additional conditions, we are able to find a characteri-

zation of the ring A such that the converse is true. By a slight abuse of notation, we

use Ad when referring to AdK for the rest of this section.

Theorem 2.1.58. Let K be a field of characteristic 0, and let A ⊆ K be an integrally

closed Noetherian ring. Let Γ ⊆ G(K) be a Zariski-dense subgroup.

(a) Then A is a ring of definition for Ad(Γ) ⊆ GL(Lie(G)) if and only if tr(Ad(γ)) ∈

A for all γ ∈ Γ.

(b) There exists a minimal field of definition for the group Ad(Γ), and it is the subfield

of K generated by 1 and the elements tr(Ad(γ)) for all γ ∈ Γ.

Sketch of the proof. See [30, Theorem 1] for the complete argument.

The proof of (a) consists of a close examination of the regular function f0 : =

trAd ∈ K[G]. Suppose that tr(Ad(γ)) ∈ A for all γ ∈ Γ. Let V (f0) be the vector

subspace of K[G] generated by left translations of f0 by elements of G(K). The
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resulting representation, denoted ρ : G(K) → GL(V (f0)) is a multiple of the adjoint

representation, so the kernel of the action of G(K) on V (f0) is finite.

Consider the set

L = {f ∈ V (f0) | f(γ) ∈ A for all γ ∈ Γ}.

This is an ρ(Γ)-invariant A-submodule of V (f0). Since Γ is Zariski-dense in G(K),

this implies that L⊗A K is ρ(G)-invariant.

Choose elements γ1, ..., γn ∈ Γ such that the map σ : V (f0)→ Kn defined by

σ(f) = (f(γ1), ..., f(γn))

is an isomorphism.

Linear dependence of elements of L over Frac(A) implies linear dependence of

elements of L over K. Therefore, σ(L) ⊗K ∼= Kn ∼= V (f0), which implies that L is

an A-lattice of V (f0) and that ρ(Γ) (hence Ad(Γ)) is definable over A.

The proof of (b) is an immediate consequence of (a).

We call the field generated by the traces Γ the trace field of Γ, and since for

fields of characteristic zero, the trace field and the minimal field of definition coincide,

we denote the trace field by KΓ as well.

We will have to modify the notion of the field of definition in order for these results
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to hold over fields of arbitrary characteristic. These nuances are addressed by Pink

in [16] and [17] and summarized in Section 2.2.

Local fields

For now, let K be any field.

Definition 2.1.59. We say that | · | : K → R≥0 is an absolute value on K if for all

x, y ∈ K, it satisfies the following:

(a) |x| = 0 if and only if x = 0,

(b) |xy| = |x||y|,

(c) and |x+ y| ≤ |x|+ |y|.

A trivial absolute value is one for which |x| = 1 for all x 6= 0. We assume that all

absolute values are nontrivial unless otherwise stated.

Definition 2.1.60. A local field is a topological field that is locally compact with

respect to a non-discrete topology.

Let K be a local field, let µ be the Haar measure of the additive group of K, and

let A ⊂ K be any measurable set. Consider the function | · | : K → R≥0 defined by

|x| = µ(xA)

µ(A)
.
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Fact 2.1.61.

(a) The function | · | defined above is an absolute value on K.

(b) The metric topology induced by the absolute value is the same as the original

topology.

Proof. Part (a) is a consequence of [32, Prop. 1, pg. 4]. Part (b) is a consequence

of [32, Cor. 1, pg. 5].

Definition 2.1.62. We say that the absolute value | · | : K → R≥0 is archimedean

if |n · 1| > |1| for all integers n > 1, and non-archimedean otherwise.

Since p · 1 = 0, it is clear that all absolute values are non-archimedean when

char(K) = p > 0. When the absolute value on K is archimedean (resp. non-

archimedean) we typically say that the fieldK is archimedean (resp. non-archimedean)

as well.

Fact 2.1.63. If K is a complete local field with archimedean absolute value, then

K = R or K = C.

Proof. See [12, Ch. II, §4, pg. 85-88].

Lemma 2.1.64. Let K be a local field. Then K is complete.

Proof. Let K̃ be the completion of K, and let x ∈ K̃. Let Sx = {y ∈ K; |y| = |x|}.
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This is a compact set since the absolute value is continuous. Let {xn} be a sequence

in K that converges to x. Since K is locally compact, there exists a large enough

N ∈ Z so that xn is contained in a compact set U ⊂ K for all n > N . Since U

contains all of its limit points, x ∈ U .

Fact 2.1.65. A non-archimedean absolute value satisfies the ultrametric inequal-

ity. Specifically, |x + y| ≤ max{|x|, |y|} for all x, y ∈ K. Furthermore, |x + y| =

max{|x|, |y|} if |x| 6= |y|.

Suppose now that K is a non-archimedean local field.

Definition 2.1.66. We define the following:

(a) the ring of integers of K, OK = {a ∈ K; |a| ≤ 1},

(b) the maximal ideal of O, mK = {a ∈ K; |a| < 1},

(c) the group of units O×K = OK \mK , and

(d) the residue field k = OK/mK .

Lemma 2.1.67.

(a) The ring OK is a local ring.

(b) The ideal mK is closed.

(c) The ring OK is a principal ideal domain.
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Proof.

Part (a): Let n ⊆ OK be a maximal ideal. Then OK/n is a field. Let x ∈ mK and

suppose that x /∈ n.

If x ∈ OK \ n, then there exists a y ∈ OK such that xy− 1 ∈ n. Since |x| < 1 and

|y| ≤ 1, we have that |xy| 6= 1. Since |xy− 1| = max{|xy|, 1} when |xy| 6= 1, we have

that |xy − 1| = 1 and so xy − 1 is a unit. This is a contradiction, so mK = n.

Part (b): Let {rn} be a sequence in mK that converges to some r in K. Since

|rn| = |r| < 1 for large enough n, we have that r ∈ mK . Thus, mK is closed.

Part (c): The ideal mK is closed and uniformly bounded, which implies that mK

is compact. Since the norm is continuous, we have that there exists some π ∈ mK

such that |π| ≥ |a| for all a ∈ mK .

Let x ∈ K. Then there exists some n ∈ Z such that

|π|n+1 < |x| ≤ |π|n,

so 1 < |xπ−(n+1)| and |xπ−n| ≤ 1, so xπ−n ∈ OK . If |xπ−n| 6= 1, we have that

|xπ−n| ≤ |π|, so |xπ−(n+1)| ≤ 1. This is a contradiction, so xπ−n ∈ O×K .

Thus, every element x ∈ K has a unique presentation x = πnu for some n ∈ Z

and u ∈ O×K . Therefore, mK = (π).
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A generator of mK is called a uniformizer of the field K. Given a uniformizer π,

every element x ∈ K has a unique decomposition x = πnu for n ∈ Z and u ∈ O×K .

Definition 2.1.68. A discrete valuation on K is a surjective function v : K −→

Z ∪ {∞} satisfying

1. v(0) =∞,

2. v(xy) = v(x) + v(y) for all x, y ∈ K, and

3. v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ K.

A ring (resp. field) with a discrete valuation is called a discrete valuation ring

(resp. field).

Fact 2.1.69. Any local principal ideal domain that is not a field is a discrete valuation

ring.

Proof. See [2, Prop. 9.2, pg. 94].

In particular, OK is a discrete valuation ring. In the proof of Lemma 2.1.67(c), we

showed that every element x of OK has the form x = πnu for some n ≥ 0 and u ∈ O×K .

An example of a discrete valuation on OK is given by the function v(x) = v(πnu) = n.

Note that we can extend any discrete valuation v on OK to K by setting

v
(a
b

)
= v(a)− v(b).
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Given a discrete valuation v on K, we can define an absolute value on K, called

the v-adic norm, given by the expression

|x|v = dv(x)

for any real number 0 < d < 1.

Thus, K is a complete discrete valuation field with valuation v : K −→ Z ∪ {∞}.

Since the v-adic norm and the absolute value induce the same topology on K, we

may assume that we have renormalized the absolute value so that | · | = dv(·).

Theorem 2.1.70. Every local field of characteristic zero with a non-archimedean

absolute value is equal to a finite extension of the p-adic numbers Qp for some p.

Every local field of characteristic p > 0 is isomorphic to a local field of the form

Fq((T )) for some indeterminant T and q = pr.

Proof. For the characteristic p > 0 part, see [25, II.4, Thm. 2, pg. 33]. For the

characteristic zero case, see [25, II.5, Thm. 3, pg. 36].

Global fields

Definition 2.1.71. We say that K is a global field if K is a finite field extension of

either the field of rational numbers Q or a field of rational functions in one variable

over a finite field.
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If K is a finite extension of Q, let R = Z. If K is a finite extension of Fq(t), let

R = Fq[t] ⊂ K. In both cases, let OK be the integral closure of R in K. It is clear

that Frac(OK) = K.

Note that for the characteristic p > 0 case, the choice of R = Fq[t] is not unique.

However, many of the number-theoretic constructions are invariant with respect to

the choice of R.

Recall that a domain R is a Dedekind domain if R is Noetherian, integrally closed

in its field of fractions, and every prime ideal of R is maximal.

Proposition 2.1.72.

(a) The ring OK is a Dedekind domain.

(b) For all x ∈ OK \ {0}, the principal ideal (x) decomposes as a unique product of

prime ideals p ⊆ OK,

(x) =
∏

p prime

pvp(x).

(c) For each prime ideal p, the function x 7→ vp(x) is a discrete valuation on OK,

assuming that we set vp(0) =∞.

Note that part (b) is true for any ideal of OK , not just principal ideals. We only

need the statement for principal ideals in order to define the valuation associated to

a prime ideal p.
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Proof. Part (a) follows from the Krull-Akizuki theorem (see [15, Cor. to Thm. 11.7,

pg. 85]).

For part (b), see [10, Prop. 1.12, pg. 40].

Part (c) can be verified by examining the properties of prime ideals. For example,

suppose x ∈ pn and y ∈ pm, and m and n are the minimal such integers.

Then xy ∈ pm+n and m + n is the smallest such integer such that this is true, so

vp(xy) = vp(x) + vp(y). For r = min{n,m}, x+ y ∈ pr so vp(x+ y) ≤ min{m,n}.

Extend vp to all of K by setting vp(x/y) = vp(x)− vp(y) for x, y ∈ OK .

Each valuation induces a metric on K, making K a topological field. We say that

two discrete valuations are equivalent if they induce the same topology on K. An

equivalence class of a discrete valuation is called a place. If vp is a representative of

a place for some prime ideal p ⊆ OK , we say that p ⊆ K is a prime of K.

Define V K
f to be the set of places on K. We let V K denote the set of all pair-

wise inequivalent absolute values on K, and we identify V K
f with the subset of V K

consisting of those absolute values coming from places v ∈ V K
f .

Given a place v on K, K becomes a metric space with respect to the metric coming

from the v-adic norm. We can complete K with respect to this absolute value and we

denote this completion by Kv. This is a local field, and let Ov be the ring of integers

in Kv. If p ⊆ K is a prime, we write Op and Kp to be the completions with respect

to the vp-adic norm of OK and K respectively.
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Let L/K be a finite Galois extension and let p be a prime in K. We say that a

prime b ⊂ L lies above p if b∩K = p, and denote this by b|p. Every prime p has a

unique decomposition in OL as

pOL = be11 ...b
er
r ,

for primes bi|p and integers ei ≥ 1. The integer ei is called the ramification index

of bi over p and is also denoted e(bi|p). If we define fi = [Lbi : Kp] for i = 1...r, then

[L : K] =
r∑
i=1

eifi.

The integer fi is called the relative degree of bi over p and is also denoted as

f(bi|p). We say that bi is unramified over p if ei = 1.

Let G := Gal(L/K). We now define two important subgroups of G :

D(b|p) = {σ ∈ G | σb = b},

I(b|p) = {σ ∈ G | σw ≡ w (mod b), for all w ∈ Ob}.

The first group D(b|p) is called the decomposition group of b over p and the

second group I(b|p) is called the inertia group of b over p.
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Proposition 2.1.73. The orders |D(b|p)| = e(b|p)f(b|p) and |I(b|p)| = e(b|p).

Proof. See [23, Lemma 9.4, Thm. 9.6, pg. 118].

Let lb and kp be the residue fields of Lb and Kp respectively. Suppose that b|p is

unramified. Then there exist isomorphisms

D(b|p) ∼= Gal(Lb/Kp) ∼= Gal(lb/kp).

Note that Gal(lb/kp) is a cyclic group of order f(b|p) and the automorphism φ : lb → lb

defined by

φ(x) = x|kp|, for all x ∈ lb,

generates Gal(lb/kp). We can find an element σ ∈ D(b|p) such that σ is mapped

to φ under the above isomorphism. The automorphism φ is called the Frobenius

automorphism and is denoted by [L/K, b].

Let SK be the set of primes of K, and let M ⊆ SK be a subset. The Dirichlet

density of M , denoted δ(M), is given by the following limit, provided that the limit

exists. If it doe not exist, we say that M does not have Dirichlet density.

δ(M) = lim
s→1+

∑
p∈M |kp|−s∑
p∈SK

|kp|−s

It is clear from the definition that when δ(M) exists 0 ≤ δ(M) ≤ δ(SK) = 1.
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Theorem 2.1.74 (Tchebotarev’s density theorem). Let L/K be a Galois extension

of global fields with Galois group G . For all conjugacy classes C ⊆ G , let

SC = {p ⊆ K prime | [L/K, b] ∈ C, for all b ⊆ L such that b|p is unramified} ,

where [L/K, b] is the Frobenius automorphism. The set SC has Dirichlet density in

the primes of K equal to |C|/|G |.

Proof. See [23, Theorem 9.13A].

Remark 2.1.75. A consequence of Theorem 2.1.74 is that given an irreducible poly-

nomial f(x) over a global field K, we can find infinitely many primes p ⊆ K such that

f(x) splits completely over the completion Kp (since we can think of [L/K, b] as the

generator of the decomposition group D(b|p) ∼= Gal(Lb/Kp) whenever b is unramified

over p).

In fact, if f(x) splits as f(x) = f1(x)...fk(x) where deg(fi) = ni over Kp for a

given prime p ⊆ K, there are infinitely many other primes q ⊆ K such that f(x)

splits as f(x) = g1(x)...gk(x) where deg(gi) = ni over Kq.

The implicit function theorem

In this section, we review the classical theory of K-analytic manifolds and the cor-

responding version of the implicit function theorem. We begin by introducing the

definition of a K-analytic manifold.
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Throughout this section, let K be a non-archimedean local field complete with

respect to the absolute value | · |. For all n > 0 and x ∈ Kn, let Br(x) denote the

open ball about x ∈ Kn of radius r > 0.

Definition 2.1.76.

1. Let V ⊂ Kn be open in the induced topology on Kn and let φ : U → K be a

function. The function φ is said to be analytic in V if for each x ∈ V there is

a formal power series fx and a radius r := rx > 0 such that

(a) the open ball Br(x) ⊂ V ,

(b) the power series fx converges in Br(0), and

(c) for all h ∈ Br(0), φ(x+ h) = fx(h).

2. Let V ⊂ Kn be open in the induced topology onKn and let φ = (φ1, ..., φm) : U →

Km be a function. Then φ is said to be analytic if φi is analytic for i = 1, ...,m.

Definition 2.1.77. Let X be a topological space.

1. A chart on X is a triple C = (UC , φC , nC) such that

(a) the set UC ⊂ X is open,

(b) the integer nC ∈ Z is greater than 0, and

(c) the continuous map φC : UC → KnC has open image φC(UC) ⊂ KnC and

φC induces a homeomorphism between UC and φC(UC) ⊂ KNC .
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2. Two charts, C and C ′, on X are said to be compatible if, setting V = UC∩UC′ ,

the maps φC′ ◦ φ−1
C |φC(V ) and φC ◦ φ−1

C′ |φC′ (V ) are analytic.

3. A family {Ci}i∈I of charts on X is said to cover X is
⋃
i∈I UCi

= X.

4. An atlas A on X is a family of charts on X which cover X such that all the

charts in the family are mutually compatible.

5. Two atlases A and A′ of X are compatible if A ∪ A′ is an atlas of X.

Note that compatibility of atlases is an equivalence relation. See [24, LG 3.2] for

a proof of this fact.

Definition 2.1.78.

1. Let X be a topological space. A K-analytic manifold structure on X is

an equivalence class of compatible atlases. If X has a K-analytic manifold

structure, then we call X a K-analytic manifold (or just analytic manifold if K

is clear from context).

2. Let X and Y be K-analytic manifolds. A function f : X → Y is said to be an

analytic function or a morphism if f is continuous and f is locally given by

analytic functions. That is, there exist atlases A of X and B of Y such that if
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C ∈ A and D ∈ B are charts, then, setting W = UC ∩ f−1(UD), the composite

φC(W )
φ−1
C−→ W

f−→ UD
φD−→ φD(UD)

is analytic.

Example 2.1.79.

• Let X = Kn. Let A be the collection of charts (X,φ, n) where φ : X → Kn is a

linear isomorphism. Each pair of charts is compatible, so A is an atlas and X

is a K-analytic manifold.

• The group GLn(K) has a K-analytic structure such that multiplication and

inversion are morphisms. See [24, LG 4.4] for a proof.

• Let G ⊆ GLn be a K-defined algebraic subgroup. Then the group of rational

points G(K) has a K-analytic structure such that multiplication and inversion

are morphisms. See [24, LG 4.5] for a proof.

Let X be an K-analytic manifold and let x ∈ X. Let Fx be the set of all pairs

(U, φ), where U is an open neighborhood of x and φ : U → K is an analytic function.

We say two elements (U, φ), (V, ψ) of Fx are equivalent if there is an open neighbor-

hood W of x such that W ⊂ U ∩ V and φ|W = ψ|W . The set of equivalence classes

of Fx is denoted O(x) and is called the germs of analytic functions at x. One
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can show that O(x) is a local ring [24, LG 3.8-9]. The canonical map Fx −→ K that

sends (U, φ) ∈ Fx to φ(x) ∈ K induces a canonical homomorphism θ : O(x) −→ K.

The kernel of θ is a maximal ideal mx.

Definition 2.1.80.

1. Let X be a K-analytic manifold and let x ∈ X. The tangent space of X at

x is defined to be

Tx(X) = HomK(mx/m
2
x, K).

2. Let f ∈ O(x). Since f − f(x) ∈ mx, we can consider the image of this func-

tion modulo m2
x. Define dfx := f − f(x) mod m2

x ∈ mx/m
2
x and call this the

differential of f at x.

3. Let Y be a second K-analytic manifold, let y ∈ Y , and let φ : X −→ Y be a

morphism such that φ(x) = y. Define the derivative of φ at x to be the map

Tx(φ) : Tx(X) −→ Ty(Y ) by the formula

Tx(φ)(v)(dfy) = v(d(f ◦ φ)x)

for all v ∈ Tx(X) and f ∈ O(x).

Theorem 2.1.81. Let G be an algebraic group over K and let e ∈ G(K) be the

identity element. Then there is a canonical bijection between Lie(G) and Te(G(K)).
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Proof. See [24, LG 3.12] and [31, §12.2, pg. 93].

Definition 2.1.82. Let X be a K-analytic manifold, let x ∈ X, and let f1, ..., fm be

analytic functions on a neighborhood U of x. Let F (y) = (f1(y), ..., fm(y)) for y ∈ U .

We say that {fi}i=1,...,m defines a coordinate system at x if there exists an open

neighborhood U ′ of x, contained in U , such that (U ′, F |U ′ ,m) is a chart on X.

In this context, we get a version of the implicit function theorem that is valid over

a non-archimedean local field of any characteristic.

Theorem 2.1.83 (The implicit function theorem). Let X be a K-analytic manifold,

let x ∈ X, and let f1, ..., fm be analytic functions on a neighborhood U of x. Let

F (y) = (f1(y), ..., fm(y)) for y ∈ U . Then {fi}i=1,...,m defines a coordinate system at

x if and only if {d(fi)x}i=1,...,m forms a K-basis of mx/m
2
x.

Proof. See [24, LG 3.13].

Corollary 2.1.84. Let X and Y be K-analytic manifolds, let x ∈ X, y ∈ Y , and let

φ : X → Y be a morphism such that φ(x) = y. Then the following are equivalent:

1. The linear map Tx(φ) : Tx(X)→ Ty(Y ) is surjective.

2. There exist open neighborhoods U ⊂ X of x and V ⊂ Y of y and a morphism

σ : V → U such that φ(U) ⊂ V and φ ◦ σ = IdV .

Proof. See the discussion in [24, LG 3.16].
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Note that the existence of σ : V → U in Corollary 2.1.84(2) implies that in fact

φ(U) = V . Therefore, we have the following immediate corollary.

Corollary 2.1.85. Let X and Y be K-analytic manifolds and let φ : X → Y be a

morphism. Suppose that the linear map Tx(φ) : Tx(X)→ Tφ(x)(Y ) is surjective for all

x ∈ X. Then φ is an open map.

Now, let G be a connected algebraic group over K, let g ∈ G(K) and let λg :

G(K) → G(K) be the K-morphism defined by h 7→ gh. Note that the composition

λg−1 ◦λg = IdG(K), so λg is a K-isomorphism of K-analytic manifolds. Therefore, the

K-linear map Te(λg) is a K-isomorphism between Te(G(K)) and Tg(G(K)).

Corollary 2.1.86. Let G and H be connected algebraic groups defined over K and

let φ : G → H be a homomorphism (of algebraic groups). Let x ∈ G(K) and let

φK(x) = y ∈ H(K). Suppose that the linear map Tx(φK) : Tx(G(K))→ Ty(H(K)) is

surjective. Then φK is an open map.

Proof. It suffices to prove that for x′ ∈ G(K) and y′ = φK(x′), the linear map

Tx′(φK) : Tx′(G(K)) → Ty′(H(K)) is surjective. This follows from the fact that the

composition

Tx′(G(K))
Tx′(λx(x′)−1)
−−−−−−−−→ Tx(G(K))

Tx(φK)−−−−→ Ty(H(K))
Ty(λy′(y)−1)
−−−−−−−→ Ty′(H(K))
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is surjective and equal to Tx′(φK).

As above, let K be a non-archimedean local field complete with respect to the

absolute value | · |.

Lemma 2.1.87. Let G be a connected absolutely almost simple group over K and let

X be an irreducible K-variety. Let G × X → X be a K-regular action of G on X.

Then for x ∈ X(K), the G(K) orbit of x, G(K)x ⊂ X(K) is open in X(K).

Proof. Let x ∈ X(K) and let Y be the Zariski closure of the orbit G(K)x in X. Then

φ : G −→ Y

defined on K points by g 7→ gx is a dominant K-morphism by construction. This

implies that the induced morphism on the tangent spaces, Tg(φ), is surjective. By

Corollary 2.1.85, the map φK is open at the point g ∈ G(K). Since φK(hg) = hφK(g)

for all h ∈ G(K), then φK is open at all points h ∈ G(K). In particular, G(K)x is

open in X(K).

Weak approximation and the variety of maximal tori

Now, let K be a field (not necessarily local).

Definition 2.1.88. Let X and Y be irreducible varieties over K and let φ : X → Y

be a rational morphism.
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1. The morphism φ is called a birational morphism if there exists and inverse

rational map φ−1 : Y → X. If both φ and φ−1 are defined over K, then φ is

called an K-birational morphism.

2. Varieties that are (K-)birationally isomorphic to an affine space are called (K-

)rational.

Definition 2.1.89. Let K be a field, let X be an algebraic variety defined over K,

and let S be a finite set of inequivalent valuations on K. We say that X satisfies

the weak approximation property with respect to S if the diagonal embedding

X(K) −→
∏

v∈S X(Kv) is dense, where the topology on the product is the product

topology.

Proposition 2.1.90. Let K be a field and let S be a finite set of inequivalent valua-

tions on K.

1. If X and Y are biregularly isomorphic varieties over K, then both have weak

approximation with respect to S, or neither have.

2. Let X be an irreducible, smooth K-rational variety. Then X satisfies the weak

approximation property with respect to S.

Proof.

1. The biregular isomorphism induces a natural homeomorphism of topological
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spaces.

2. The K-rationality of X means there exists a biregular K-isomorphism φ : U −→

W between open subsets U ⊆ Al (l = dimX) and W ⊆ X. The variety Al has

weak approximation (see [9, Prop. 3.7, pg. 6]). This implies that W has weak

approximation, i.e., W (K) is dense in
∏

v∈SW (Kv). Note that W (Kv) is dense

in X(Kv) for v ∈ S by [3, AG 13.7, pg. 29]. It follows that W (K), and thus

certainly X(K), are dense in
∏

v∈S X(Kv).

Let G be an absolutely almost simple group defined over the field K and let T ⊂ G

be a maximal K-torus and let N := NG(T ) be the normalizer of T in G. It follows

from Proposition 2.1.23(i) that for g ∈ G(K), the map Tg = gTg−1 7→ gN gives a

bijection between K-maximal tori of G and the K-points of G/N .

Definition 2.1.91. The variety T := G/N is called the variety of maximal tori

of G.

Note that T (K) corresponds to the maximal K-tori of G and that up to K-

isomorphism, T does not depend on the choice of maximal torus T .

Theorem 2.1.92. The variety of maximal tori T is K-rational.

Proof. See [1, XIV, Thm. 6.1].
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Corollary 2.1.93. The variety of maximal tori T has the weak approximation prop-

erty with respect to a finite set of inequivalent valuations S.

Proof. Follows immediately from Proposition 2.1.90 and Theorem 2.1.92.

Proposition 2.1.94. Let K be a field and let S be a finite set of inequivalent val-

uations on K. Let G be a connected absolutely almost simple group over K and let

Tv ⊂ G be a maximal Kv-torus for all v ∈ S. Then the G(Kv)-conjugacy class of Tv

is open in T (Kv) for all v ∈ S, and in particular the exists a maximal K-torus T

that is G(Kv)-conjugate to each Tv.

Proof. Pick v ∈ S. Note that T is irreducible and G(Kv) acts on T (Kv) in the

following way. Let g ∈ G(Kv) and xN ∈ T(Kv).

(g, xN) 7→ gxN,

If we consider the identification of points of T (Kv) with maximal Kv-tori of G, xN 7→

xTvx
−1, we see that gxN 7→ g(xTvx

−1)g−1. In particular, the orbit of N ∈ T (Kv)

is open in T (Kv) by Lemma 2.1.87 and corresponds to the G(Kv)-conjugacy class of

Tv. Since the G(Kv)-orbit of Tv is open for all v ∈ S, there exists a maximal K-torus

T conjugate to each Tv over G(Kv) by Corollary 2.1.93.



72

2.2 Strong approximation in positive characteris-

tic

In order to prove the main results of our paper, it is necessary to use a form of

strong approximation for Zariski-dense subgroups of connected absolutely almost

simple groups. In characteristic zero, the strong approximation of Zariski-dense sub-

groups can be translated to a problem concerning Lie algebras (see [19, Lemma 2]).

As stated previously, this is not possible in characteristic p > 0. Instead, we use the

results due to Pink, proved in [16] and [17]. To show this property holds, Pink uses

so-called (weak) quasi-models. To state the approximation results that we use, we

begin with a definition of a (weak) quasi-model.

Weak quasi-models

To define these (weak) quasi-models, we need to introduce the following notation.

Definition 2.2.1. For i = 1, ..., l, let Fi be a field (of arbitrary characteristic). Fur-

thermore, we make the additional restriction that the fields Fi must all be local or

they must all be global. Define

F =
l⊕

i=1

Fi.

For each i = 1, ...l, let Gi be a connected absolutely simple adjoint group defined over
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the field Fi. Define the group scheme G over the ring F as the product

G =
l∏

i=1

Gi.

Let

G(F ) =
l∏

i=1

Gi(Fi),

and call G(F ) the group of F -rational points of G. Let Γi ⊆ Gi(Fi) be a Zariski-dense

subgroup of Gi(Fi) and let

Γ =
l∏

i=1

Γi.

We call triples (F,G,Γ) with the above structure standard triples.

Let (F,G,Γ) and (F,H,∆) be two standard triples. We say that φ : G → H

is an F -isogeny if φ is surjective and the restriction of φ to each direct factor Gi,

denoted φi, maps onto a simple factor Hi of H and φi : Gi → Hi is an Fi-isogeny for

all i = 1, ..., l. In particular, φ is an isomorphism, central, purely inseparable, or non-

standard if each φi is an isomorphism, central, purely inseparable, or non-standard

respectively.

For a standard triple (F,G,Γ), define its Lie algebra (over F ) to be the formal

product of the the Lie algebras (over Fi) of the simple factors, namely

Lie(G) =
l∏

i=1

Lie(Gi).
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In this way, we can define the derivative at the identity of an F -isogeny φ, denoted

dφ, to be the map

dφ : Lie(G) −→ Lie(H),

where dφi = dφ|Lie(Gi) : Lie(Gi)→ Lie(Hi) is a homomorphism of Lie algebras Lie(Gi)

and Lie(Hi) over Fi found by taking the derivative at the identity of the Fi-isogeny

φi : Gi → Fi. We say that dφ is nowhere vanishing if each dφi is an isomorphism

of Fi-Lie algebras.

Let E =
⊕l

i=1Ei be a semisimple ring with the same structure as those in the

definition of a standard triple. Suppose that F is a semisimple ring that is also an

E-algebra of finite type. Then

F =
l⊕

i=1

Vi,

where Vi is a finite dimensional Ei-vector space. Since F is semisimple, each Vi is the

direct product of fields, denoted

Vi =

ni⊕
j=1

Fi,j,

where each Fi,j is a finite field extension of Ei.

Suppose that (E,H,∆) is a standard triple and let F be an E-algebra of finite
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type. Then define the extension of scalars, denoted H ×E F , to be the product

H ×E F =
l∏

i=1

ni∏
j=1

Hi ×Ei
Fi,j.

The F -rational points of H ×E F are given by the rule

(H ×E F )(F ) =
l∏

i=1

ni∏
j=1

Hi(Fi,j).

This makes sense since each Hi is defined over Ei for each i and for a given i, each

Fi,j is a finite extension of Ei for all j, so Hi is defined over Fi,j as well.

Definition 2.2.2. A weak quasi-model of the standard triple (F,G,Γ) is a triple

(E,H, φ) such that

(a) F is a semisimple E-algebra of finite type,

(b) φ : H ×E F → G is an F -isogeny such that

(c) Γ ⊆ φ(H(E)) ⊆ G(F ).

When φ has nowhere vanishing derivative dφ, we call (E,H, φ) a quasi-model.

Note that if (E,H, φ) is a (weak) quasi-model of the standard triple (F,G,Γ),

then (E,H, φ−1(Γ)) is a standard triple as well.

Proposition 2.2.3. For any weak quasi-model (E,H, φ) of (F,G,Γ), there exists
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a ring endomorphism τ : F → F , which on each simple summand Fi is either the

identity or a power of the Frobenius morphism, and a quasi-model (E1, H1, φ1) of

(F,G,Γ), such that E1 = τ(E). Clearly, (E,H, φ) is already a quasi-model if τ is an

isomorphism.

Proof. See [16, Prop. 3.3].

Definition 2.2.4. We call the standard triple (F,G,Γ) minimal if and only if for

every (weak) quasi-model (E,H, φ), E = F and φ is an F -isomorphism. The (weak)

quasi-model (E,H, φ) is called minimal if (E,H, φ−1(Γ)) is a minimal standard triple.

Theorem 2.2.5. For every standard triple (F,G,Γ), there exists a minimal quasi-

model (E,H, φ). If (E ′, H ′, φ′) is another minimal quasi-model of (F,G,Γ), then

E = E ′ and there exists an E-isomorphism between H and H ′.

Proof. See [16, Thm. 3.6]

Theorem 2.2.5 combined with Proposition 2.2.3 implies that minimal weak quasi-

models are in fact quasi-models. Therefore, we are able to drop the “weak” modifier

in the subsequent results.

Weak quasi-models over fields

In order to make the definitions in the previous section more clear, we write down

the definition of (weak) quasi-model for group schemes over fields F . In other words,
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l = 1 in the above definition.

Let F be a field, G is an absolutely simple adjoint group defined over F , and

Γ ⊂ G(F ) is a Zariski-dense subgroup. Then (F,G,Γ) is a standard triple according

to our definition.

In this case, the definitions of F -isogeny and the Lie algebra of G over F coincide

with the definitions given in Subsection 2.1 and Subsection 2.1 respectively.

Let E be a field and (E,H,∆) is a standard triple. Let F be an E-algebra of

finite type. This implies that F is a direct product of field extensions of E, denoted

Fi. Explicitly,

F =
n⊕
i=1

Fi.

The extension of scalars H ×E F is then just

H ×E F =
n∏
i=1

Hi ×E Fi.

If F is a field extension of E, then H ×E F = HF , the group H considered as an

F -group.

Let (F,G,Γ) be a standard triple with F a field. A weak quasi-model of (F,G,Γ)

is then a triple (E,H, φ) such that E is a finite subextension of F ,

φ : H ×E F → G is an F -isogeny such that Γ ⊂ φ(H(E)).
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Strong approximation results

Let (F,G,Γ) be a standard triple. Let G̃ be the simply connected cover of G, which

we define to be the direct product of the simply connected covers of each of the Gi,

and let π : G̃ −→ G be the corresponding central isogeny. Let Γ′ be the subgroup of

G̃(F ) generated by elements of the form π−1([γ1, γ2]) for all γ1, γ2 ∈ Γ.

Theorem 2.2.6. Let (E,G,Γ) be a minimal standard triple. Then when E is a direct

product of local fields and Γ′ is contained in a compact subgroup of G̃(E), the closure

of Γ′ is open in G̃(E).

Proof. See [16, Thm. 0.2] and [17, Thm. 0.2].

Furthermore, the minimal semisimple ring E of a minimal triple (E,G,Γ) can

be described explicitly. To do this, we first need to examine the adjoint representa-

tion of a connected absolutely almost simple algebraic group over fields of positive

characteristic.

For now, we examine the case where l = 1 in the definition of the standard triple.

In other words, suppose that E is an infinite field of characteristic p > 0. Let G

be a connected absolutely almost simple adjoint algebraic group over E, and let G̃

be its simply connected cover with central isogeny π : G̃ → G. Let g := Lie(G) and

g̃ := Lie(G̃).

The kernel of the induced map dπ : g̃→ g is the center of the Lie algebra, denoted

z. Define g to be the image of g̃ in g via dπ, and let z∗ be the quotient g/g.
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Let R be an object in AlgE. Since π : G̃ → G is central, any elements z̃, z̃′ ∈

ker(π)(R) are in the R-points of the center of G̃, so they have the property that

[ãz̃, b̃z̃′] = [ã, b̃] for ã, b̃ ∈ G̃(R). Since G̃/ ker(π) ∼= G, this implies that the commu-

tator on G̃, [−,−] : G̃× G̃→ G̃, descends to an E-morphism

[−,−]∼ : G×G→ G̃.

If we take the derivative of this morphism (at the identity) with respect to the second

argument, we get a morphism

ÃdG : G −→ Hom(g, g̃),

where Hom(g, g̃) is the group scheme over E defined as follows. For any object R in

the category AlgE, we have Hom(g, g̃)(R) = HomE−lin(g⊗E R, g̃⊗E R).

Let ĝ = g̃ ⊕ z∗. Let ι : g̃ → ĝ be the inclusion of g̃ in the first summand. Then

g ∼= g ⊕ z∗ for some arbitrary but fixed embedding of E-vector spaces z∗ ↪→ g.

Let ω : ĝ → g be the composite map of dπ on the first summand and the above

isomorphism.

Define the morphism

ρ̂ : G −→ GL(ĝ)

by the following rule.
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Let R be an object in AlgE, and let g ∈ Gi(R). Define ρ̂ to be the group scheme

morphism defined on R-points by

ρ̂R(g) = 1ĝR + ιR ◦ ÃdR(g) ◦ ωR.

It is straightforward to check that this morphism defines a representation which makes

ĝ into a G-module. It is clear that when ker(dπ) = {0}, this is the normal adjoint

representation of G.

Recall that V is said to be a constant representation of G if the representation

ρV : G → GL(V ) has vanishing derivative, i.e. dρ(x) = 0 ∈ gl(V ) for all x ∈ Lie(G),

and V is a non-constant representation otherwise.

Proposition 2.2.7 ([16, Prop. 1.11]). Let G, ĝ, g̃, g, g, z, z∗, and ρ̂ be as defined

above.

(a) The representations z and z∗ are constant representations with the same dimen-

sion. The dimension is greater than 0 only when p divides the index of the root

lattice in the weight lattice. It is greater than 1 if and only if p = 2 and G is of

type Dn for some even n. Then the dimension is 2.

(b) When G does not possess non-standard isogenies, then g is an absolutely irre-

ducible non-constant representation of G. Furthermore, it is the unique simple

quotient G-module of g̃ and the unique simple G-submodule of g, which implies
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that it is the unique simple non-constant subquotient of ĝ.

(c) When G has non-standard isogenies, then g has a unique simple non-constant

G-submodule gS and g̃ has a unique simple non-constant quotient G-module gL.

These are pairwise inequivalent absolutely irreducible representations of G, and

they are the two unique non-constant simple subquotients of ĝ.

Sketch of the Proof. All of the above statements can be verified by explicitly looking

at the sub-representations of ĝ. These correspond to ideals of the Lie algebra g̃. By

looking at [11, Table 1], we can determine all ideals of the Lie algebra coming from a

group of a given type over a field of a given characteristic. The only remaining diffi-

culty occurs in part (c) of the proposition, but this can may be proved by examining

the derivative of the non-standard isogeny φ : G → G#, denoted dφ : g → g#. Since

dφ is trivial on a root space if and only if that root is long, we can find gS and gL

in the kernel and image of dφ respectively using [11, Table 1]. This leads to a very

complete description of any Jordan-Hölder series for ĝ, summarized by the diagrams

in [16, Prop. 1.11].

Denote the G-representation corresponding to the module g (resp. gS, gL) by ρ

(resp. ρS, ρL).

Let (F,G,Γ) be a standard triple such that

F =
l⊕

i=1

Fi, G =
l∏

i=1

Gi, Γ =
l∏

i=1

Γi.
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Definition 2.2.8. When Gi does not admit any non-standard isogenies, let ρi be

the absolutely irreducible non-constant representation of Gi described by Proposition

2.2.7. Define Eρi to be the subfield of Fi generated by 1 and tr(ρi(Γi)).

When Gi admits non-standard isogenies, then let ρi,S and ρi,L be the unique

absolutely irreducible non-constant representations of Gi described by Proposition

2.2.7. Define Eρi to be the subfield of Fi generated by 1, tr(ρi,S(Γi)), and tr(ρi,L(Γi)).

In each case, we call Eρi the trace field of Γi.

Proposition 2.2.9. Let (F,G,Γ) be a standard triple and let (E,H, φ) be a minimal

quasi-model. Then E has the form

E =
l⊕

i=1

Ei.

For each i = 1, ...l, let Eρi be the field defined above. Let char(Ei) = pi. If pi 6= 2 or

3, then the factor Ei is the closure of Eρi in the local case and Ei = Eρi in the global

case. If pi = 2 or 3, then the closure of Eρi is either Ei or Epi
i in the local case and

Eρi is either Ei or Epi
i in the global case.

Proof. See [16, Prop. 3.3]

In the case where E is a field, we have the following corollary.

Corollary 2.2.10. Let (E,G,Γ) be a minimal triple such that l = 1 in the definition.

Specifically, E is a local or global field, G is a connected absolutely almost simple
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adjoint algebraic group over E, and Γ ⊆ G(E) is a Zarisi-dense subgroup.

(a) Suppose that E is a local field. Then one of the following is true.

(i) The characteristic of E is p 6= 2, 3 and the closure of EΓ := Eρ is E.

(ii) The characteristic of E is p = 2 or 3 and the closure of EΓ := Eρ is E.

(iii) The characteristic of E is p = 2 or 3, the closure of Eρ is Ep, and there

exists some purely inseparable element α in E such that the closure of

EΓ := Eρ(α) is E.

(b) Suppose that E is a global field. Then EΓ := Eρ or EΓ := E
1/p
ρ , and EΓ = E by

Proposition 2.2.9.

In each of these cases, call EΓ the minimal field of Γ. In other words, it is the

smallest field extension of the trace field such that (the closure of) EΓ is the field E

such that (E,G,Γ) is a minimal standard triple.

Note that different choices of α in Definition 2.2.8(iii) may yield different minimal

fields, but this will not affect our results. In the local case, we only need the trace

field to be a dense subfield of the minimal local field E described by Theorem 2.2.5.
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Chapter 3

Proofs of main results

3.1 Generic elements in Zariski-dense subgroups

Results from field theory

Suppose that E is a field with discrete valuation v. Throughout this section, we

denote the completion of E with respect to v by Ev and the ring of integers of Ev by

O(Ev).

Proposition 3.1.1. Let E ′ be a finitely generated infinite field of characteristic p > 0,

let E/E ′ be a purely transcendental extension with transcendence basis X, and let F/E

be a finite separable extension. Let R be a finitely generated infinite integral domain

such that E is its field of fractions. Then there exist infinitely many non-archimedean,

pairwise inequivalent valuations v on E such that Ev is locally compact, R ⊆ O(Ev),

Fw = Ev for any extension w|v of v, and v(x) = 0 for all x ∈ X.

Proof. The field Fp is the prime subfield of E ′. Since Fp is prefect, there exists a

transcendence basis {s1, ..., sl} of E ′ such that E ′ is separable over P = Fp(s1, ..., sl)



85

(see for example [14, Ch. VIII, §, Cor. 4.4, pg. 365]). Furthermore, E is separable

over P ′ = Fp(s1, ..., sl, X). The extension F/P ′ is also separable, so let α be a

primitive element of F/P ′. Let A = Fp[s1, ..., sl, X] and B = A[α]. Since R is finitely

generated, there exists some a ∈ A such that R ⊆ B[1/a].

We can also choose a so that the minimal monic polynomial f(z) of α over P

has coefficients in A[1/a]. Since f(z) is separable, it must be prime to its derivative.

Hence, there exist q(z), r(z) ∈ A[z] so that

q(z)f(z) + r(z)f ′(z) = b

for some non-zero b ∈ A. Set c = ab
(∏

x∈X x
)
.

Let C = Fp[t]. Define ε : A −→ C be a homomorphism that takes ab to t ∈ C and

x 7→ 1 for all x ∈ X. This implies that ε is surjective and ε(c) 6= 0.

Let L := Fp(t), the field of fractions of ε(A). We can invoke Tchebotarev’s density

theorem (see Theorem 2.1.74) to say that for any separable extension L/L, there exist

infinitely many discrete valuations u of L such that for any extension w of u to L,

the completions Lw and Lu coincide.

Let g(z) := f ε(z) ∈ C[z], the polynomial obtained by applying ε to the coefficients

of f(z). Since f(z) is prime to its derivative, then g(z) is prime to its derivative as

well. Hence, g(z) is separable. For a given r ∈ L×, we know that u(r) ≥ 0 for

all but finitely many non-archimedean valuations u of L. This implies that we can



86

find infinitely many valuations u such that ε(c1), ..., ε(cl) lie in the valuation ring of

u, u(ε(c)) = 0, and g(z) splits completely over the completion Lu. Let u be such a

valuation.

Let O(Lu) be the ring of integers in Lu, mu be its maximal ideal, and let ku be the

residue field. Since g(z) is monic with coefficients in O(Lu) and O(Lu) is integrally

closed, the roots of g(z) are in O(Lu). Thus, the residue polynomial g(z) is a product

of linear factors over ku.

Since O(Lu) is uncountable, it is possible to find elements t1, ..., tl ∈ O(Lu) such

that t1, ..., tl are algebraically independent over Fp(t) and satisfy the conditions ti ≡ ci

(mod mu) for all i = 1, ..., l. Let σ : P −→ Lu be the embedding sending si to ti. Let

h(z) := fσ(z), the polynomial formed by applying σ to the coefficients of f(z).

Since h(z) = g(z), h(z) splits into linear factors. Furthermore,

qσ(z)h(x) + rσ(z)h′(z) = b 6= 0,

which implies that h(z) is prime to h′(z). By Hensel’s lemma, h(z) splits in O(Eu)

into linear factors.

Since h(z) splits, for any embedding σ : F ↪→ Lu extending σ (where Lu denotes

the algebraic closure of Lu), we have that σ(F ) ⊆ Lu by our choice of u. If v is

a valuation of E obtained by pulling back u under one of these embeddings, then

Ev = Lu and O(Ev) = O(Lu) by construction. Moreover, Fw = Ev = Lu for any
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extension w|v. Since σ(α) is a root of h(x), we know that σ(α) ∈ O(Ev). Note that

all factors of c in A are units in O(Ev). Since v(a) = 0, we conclude that R ⊆ O(Ev).

Furthermore, v(x) = 0 for all x ∈ X.

Remark 3.1.2. Proposition 3.1.1 implies that there exist infinitely many nontrivial

non-archimedean places v′ on E ′ with an embedding

εv′ : F ↪→ E ′v′ ,

such that the field F is dense in the locally compact completion E ′v. Furthermore, all

such valuations v on E lying above such a v′, i.e. v′ = v|E′ , have the property that

E ′v′ = Ev.

Proof of Theorem E

For the rest of the section, let G be a connected absolutely almost simple algebraic

group over a finitely generated infinite field K of characteristic p > 0. Let Γ ⊆ G(K)

be a finitely generated Zariski-dense subgroup, and let E ′ ⊆ K be the minimal field

of Γ as defined by Definition 2.2.8. Furthermore, let R ⊆ K be a finitely generated

ring such that Γ ⊆ G(R).

Let X be a transcendence basis of K/E ′ and define E := E ′(X). Let F ⊆ K be

the separable closure of E in K.

Lemma 3.1.3. There exist infinitely many valuations discrete v on F such that
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(a) Fv is locally compact,

(b) for w = v|E′, E ′w = Fv,

(c) R ⊆ O(E ′w), and

(d) G splits over E ′w = Fv.

Proof. Assume the same set-up as the proof of Proposition 3.1.1. This proposition

already guarantees the existence of an infinite set with properties (a)-(c). We claim

that (d) follows automatically from the proof of Proposition 3.1.1. Note that G

becomes split over some finite separable extension and we have chosen valuations u

on L so that for a given finite separable extension L/L and for any valuation w|u on

L, we have guaranteed that Lw = Lu. We are able choose L to be large enough so

that G splits over L. Thus, G splits over Lu = Fv.

Remark 3.1.4. Since K/F is a purely inseparable extension, any valuation on F

extends uniquely to a valuation on K. Therefore, we will abuse notation slightly and

use the same symbols to denote valuations on F and K.

Let T be any maximal torus of G and let W := W(G, T ). Let r be the number

of nontrivial conjugacy classes of W (which does not depend on T by Proposition

2.1.32). Invoke Lemma 3.1.3 to find a set S of r nontrivial pairwise inequivalent

non-archimedean valuations of K such that for every v ∈ S, the completion Kv is

locally compact and G splits over Kv. To prove Theorem E, we first construct the
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appropriate Tv for each v ∈ S.

First notice that for each v ∈ S, the simply connected cover G̃ splits over Kv.

Therefore, we can consider a Kv-split maximal torus T̃0,v in G̃. Let T̃ be the K-

variety of maximal tori of G̃. By Proposition 2.1.94, the G̃(Kv)-conjugacy class of

T̃0,v is open in T̃ (Kv) for all v ∈ S, the weak approximation property implies that

there exists a maximal K-torus T̃0 of G̃ that is G̃(Kv)-conjugate to T̃0,v for all v ∈ S.

Set T0 = π(T̃0) (where π : G̃→ G is the canonical central isogeny).

Fix any bijection between the r nontrivial conjugacy classes of W and the set S.

Let cv be the corresponding conjugacy class of W . For w ∈ W , let [w] denote the

conjugacy class of w in W , and for U ⊆ W , let [U ] be the set of conjugacy classes of

W that intersect U . Let T, T ′ be two Kv-split maximal tori in G, and let g ∈ G(Kv)

such that T ′(Kv) = gT (Kv)g
−1.

Let φ ∈ AutΦ(G, T ), and let β ∈ Φ(G, T ′). Then β ◦ Int(g) ∈ Φ(G, T ), so

φ(β ◦ Int(g)) ∈ Φ(G, T ). Define

ιg(φ)(t′) = φ(β ◦ Int(g))(gt′g−1),

for all β ∈ Φ(G, T ′) and t′ ∈ T ′(Kv). Then it is clear that the map

ιg : AutΦ(G, T )→ AutΦ(G, T ′),

defined above is an isomorphism.
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If we are given another g′ ∈ G(Kv) such that T ′(Kv) = g′T (Kv)(g
′)−1, then

note that g′g−1 ∈ NG(T ′)(Kv). Since W(G, T ′) ∼= NG(T ′)(Kv)/T
′(Kv), note that

ιg′ = Int(w′) ◦ ιg, where w′ is the class of g′g−1 in W(G, T ′).

In other words, [ιg(w)] = [ιg′(w)] in [W(G, T ′)] for all w ∈ W(G, T ). Let [w] ∈

[W(G, T )]. Fix some g ∈ G(Kv) such that T ′(Kv) = gT (Kv)g
−1 and define the map

ιT,T ′ : [W(G, T )]→ [W(G, T ′)]

by

ιT,T ′([w]) = [ιg(w)].

The work above shows that this map is well-defined and bijective. Furthermore, it is

clear that ιT,T = id, ιT,T ′ = ι−1
T ′,T , and ιT1,T3 = ιT2,T3 ◦ ιT1,T2 .

Lemma 3.1.5. For each v ∈ S, there exists a maximal Kv-torus Tv of G such that

cv ∈ ιTv ,T0([θTv(Gal((Kv)Tv/Kv)) ∩W(G, Tv)]).

Proof. Since T0 and T̃0 are split overKv, we know thatW(G, T0) ∼= NG(T0)(Kv)/T0(Kv)

and W(G̃, T̃0) ∼= NG̃(T̃0)(Kv)/T̃0(Kv).

The idea behind the proof is the following observation. Let N = NG̃(T̃0) and

consider the variety of maximal tori T = G̃/N . Furthermore, G̃ acts by left multi-

plication on T (which corresponds to conjugation by G̃ on the set of maximal tori)
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and the elements of the orbit set G̃(Kv)\T (Kv) are in bijective correspondence with

the G̃(Kv)-conjugacy classes of maximal tori.

Let

C := ker(H1(Kv, N) −→ H1(Kv, G̃)).

It is well-known that there is a natural bijection

δ : C −→ G̃(Kv) \T (Kv).

See for example [20, Lemma 9.1].

By [5, Section 4.7], we know that H1(Kv, G̃) is trivial. Therefore, C = H1(Kv, N)

and conjugacy classes of maximal Kv-tori may be completely described by 1-cocycles

with values in N(Ksep
v ). As a result, we first construct such a cocycle.

Since G̃ is the same Killing-Cartan type as G, the central isogeny π : G̃ → G

induces an isomorphism

π̃ : W(G̃, T̃0) −→W(G, T0).

Let c̃v be the conjugacy class in W(G̃, T̃0) corresponding to cv, and let x ∈ c̃v be

a representative of c̃v. Since G̃ splits over Kv, it is Kv-isomorphic to the simply
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connected Chevalley group over Kv. Define

Xα(Kv) = {xα(t) | t ∈ Kv}.

We call this subgroup the elementary root subgroup corresponding to the root α ∈

Φ(G̃, T̃0). See Section 3 of [28] for more details as to how such xα are defined. Define

Ñ0 := NG̃(T̃0) and consider the elements

wα(t) = xα(t)x−α(−t−1)xα(t) ∈ Ñ0(Kv),

for α ∈ Φ(G̃, T̃0) and t ∈ Kv. Note that [28, Lemma 22, Section 3] implies that

Ñ0(Kv) contains wα(1) for all α ∈ Φ(G̃, T̃0) up to Kv-isomorphism.

In particular, there exists a Chevalley Z-subscheme N such that when we extend

scalars, N ×Z Kv = (Ñ0)Kv , and wα(1) ∈ N (Z), as well as split-torus Z-subscheme

T such that T ×Z Kv = (T̃0)Kv . The group N (Z)/T ∼=W(G̃, T̃0) and since |T (Z)| <

∞, elements of N (Z) have finite order and N (Z) contains representatives for all

elements of W(G̃, T̃0). After extending scalars of N to Kv, we can conclude that

Ñ0(Kv) contains a set of all conjugacy class representatives of W(G̃, T̃0), and each

representation of finite order. Let y ∈ Ñ0(Kv) be an element congruent to x modulo

T̃0(Kv) (of finite order).

Fix a separably closed extension Ksep
v as well as a maximal unramified extension
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Kur
v in Ksep

v . Consider the map

ζ : Ẑ −→ Ñ0(Kv)

defined by ζ(1) = y. Kv is a locally compact field, so Gal(Kur
v /Kv) ∼= Ẑ (see [6, Ch.

1, Section 7]). Since y has finite order, we can think of ζ as a continuous 1-cocycle

on Gal(Kur
v /Kv) with values in Ñ0(Kur

v ).

We can extend ζ to the absolute Galois group Gv = Gal(Ksep
v /Kv) with values in

Ñ0(Ksep
v ). We know that H1(Kv, G̃) = {1} (see [5, Section 4.7]).

This implies that there exists some g ∈ G̃(Ksep
v ) such that ζ(γ) = g−1γ(g) for all

γ ∈ Gv. Let T̃v be the Ksep
v -torus T̃v(K

sep
v ) = gT̃0(Ksep

v )g−1 and Tv = π(T̃v).

To show T̃v is defined over Kv, we need to show that it is Gv-stable. Let γ ∈ Gv.

Then

γ(T̃v) = γ(g)T̃0γ(g)−1

= g(g−1γ(g))T̃0(g−1γ(g))−1g−1

= gT̃0g
−1

= T̃v,

since g−1γ(g) ∈ Ñ0(Ksep
v ). Thus, T̃v and Tv are defined over Kv.

We now need to show that θT0(Gal((Kv)Tv/Kv)) intersects c̃v. Let α0 ∈ Φ(G̃, T̃0).
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Define α ∈ Φ(G̃, T̃v) by

α(t) = α0(g−1tg)

for all t ∈ T̃v(Ksep
v ). Let

ι := ιg : AutΦ(G̃, T̃0) −→ AutΦ(G̃, T̃v)

be the map induced by conjugation by g. Since T̃0 is Kv-split, α0 is defined over Kv.

Let t ∈ T̃0(Ksep
v ) and γ ∈ Gal(Ksep

v /Kv). Then

ι ◦ θT̃0(γ)(α0(t)) = γ(α)(gtg−1)

= γ(α(γ−1(g)γ−1(t)γ−1(g)−1))

= γ(α0(g−1γ−1(g)γ−1(t)(γ−1(g)−1g)))

= α0((g−1γ(g))−1tg−1γ(g))

= ζ(γ)(α0)(t),

since ζ(γ) = g−1γ(g).

If we let ζ be the image of ζ in W(G̃, T̃0), then

ι

(
θT̃0

(
Gal

(
(Kv)T̃v
Kv

)))
= Im(ζ) ⊆ W(G̃, T̃0).

Since ζ(φ) = x ∈ c̃v, where φ is the Frobenius element in Gal(Kur
v /Kv), we know
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that θT̃0(Gal((Kv)Tv/Kv)) intersects c̃v nontrivially, hence it intersects cv nontrivially

when we apply π̃.

To complete the proof of Theorem E, we need the following general lemma.

Lemma 3.1.6. Let G be a finite group and suppose that H ≤ G is a subgroup that

intersects all the conjugacy classes of G . Then G = H .

Proof. Since H intersects all the conjugacy classes of G , we have the decomposition

G =
⋃
g∈G

gH g−1.

If there exist g1, g2 ∈ G such that g1H = g2H , then H g−1
1 = H g−1

2 . Therefore,

g1H g−1
1 = g2H g−1

2 . If {g1, ..., gr} is a set of distinct coset representatives for G /H ,

then

G =
r⋃
i=1

giH g−1
i .

The number of elements on the left is |G |, and the number of elements on the right

is [G : H ]|H | = |G |, which implies that the union of giH g−1
i is disjoint. Since each

giH g−1
i contains the identity, this is a contradiction unless G = H .

Proof of Theorem E. For each v ∈ S, invoke Lemma 3.1.5 to construct the maximal

Kv-torus Tv. We know that there exists a maximal K-torus T that is G(Kv)-conjugate

to each of the Tv for v ∈ S by Proposition 2.1.94.
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Let T be such a maximal K-torus. Since T is G(Kv)-conjugate to Tv, we see that

the splitting fields of T and Tv over Kv must be the same. We need to check that the

following diagram commutes.

Gal((Kv)T/Kv) Gal((Kv)Tv/Kv)

AutΦ(G, T ) AutΦ(G, Tv)

θT

id

ιg

θTv

Let σ ∈ Gal((Kv)T/Kv), t
′ ∈ Tv(Kv), and β ∈ Φ(G, Tv). Since g ∈ G(Kv), it is

σ-invariant, so we see that

ιg(θT (σ))(β)(t′) = θT (σ)(β ◦ Int(g))(g−1t′g),

= σ(β ◦ Int(g)(σ−1(gt′g−1))),

= σ(β(σ−1(t′))),

= θTv(σ)(β)(t′).

Therefore, the above diagram commutes.

The Galois group Gal((Kv)T/Kv) naturally embeds into Gal(KT/K). Therefore,

know that θT (Gal(KT/K)) has nontrivial intersection with every conjugacy class of

W(G, T ). By Lemma 3.1.6, we know that W(G, T ) ⊆ θT (Gal(KT/K)), i.e. the torus

T is generic over K.

Notice that the proof of Theorem E prescribes a the set of places S and tori Tv for



97

v ∈ S and shows that any T that is G(Kv)-conjugate to each Tv will be K-generic.

In the way, we can construct a K-generic torus T with any desired local behavior by

simply enlarging the set of places S.

Corollary 3.1.7 (Analog of [20, Cor. 3.2]). Let G and K be as above. Let S ′ be

a finite set of nontrivial non-archimedean valuations on K such that Kv is locally

compact for all v ∈ S ′. Let Tv be a maximal Kv-torus for all v ∈ S ′. Then there

exists a K-generic torus T that is G(Kv)-conjugate to Tv for all v ∈ S ′.

Proof. Let r be the number of nontrivial conjugacy classes ofW . Suppose L is a finite

extension of K such that G splits over L. By Lemma 3.1.3, we know that there exists

an infinite number of places w on L such that G splits over Kw. Let S = {v1, ..., vr}

be a set of r places on K that are pullbacks of the w-adic valuations where L embeds

into Kw. Then, G is split over Kvi for all i = 1, ..., r. Since there are infinitely many

choices for these places, we may choose S so that S ∩ S ′ = ∅.

Let Tvi be the Kvi-torus constructed by Lemma 3.1.5. Since Kv is locally compact

for all v ∈ S ∪ S ′, we know that the tori in the G(Kv)-conjugacy class of Tv are

points in an open subset of T (Kv) by the implicit function theorem. As above, T

has the weak approximation property, so there exists some maximal K-torus T that

is G(Kv)-conjugate to Tv for all v ∈ S ∪ S ′. By Theorem E, this implies that T is

K-generic.
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Proof of Theorem F

Let ω : G→ G be the central isogeny from G to its adjoint group G. Let T0 ⊆ G be

a maximal torus and let T 0 = ω(T0). The isogeny induces an isomorphism

ω̃ : W(G, T0)→W(G, T 0).

It is clear that KT0 ⊇ KT 0
. Therefore, T0 is generic over K if T 0 is generic over K,

so we may assume that G = G is adjoint without loss of generality.

As before, we invoke Lemma 3.1.3 to find a set S of non-archimedean pairwise

inequivalent valuations on K such that |S| = r.

Define GS :=
∏

v∈S G(Kv) and let

δS : G(K) −→ GS (3.1.1)

be the diagonal embedding.

Lemma 3.1.8. Let G and S be as above and let r = |S|. Consider the topology

on G(Kv) induced by the v-adic topology on Kv. There exists a subset U of GS =∏
v∈S G(Kv) that is open in the v-adic topology with the following properties:

(a) U intersects every open subgroup of GS, and

(b) δ−1
S (δS(G(K) ∩ U)) consists of K-generic elements.
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Proof. Let v ∈ S, and let Tv be a maximal Kv-torus of G satisfying the conclusion of

Lemma 3.1.5. Consider the map

φ : G(Kv)× Tv(Kv) −→ G(Kv)

given by φ(g, t) = gtg−1.

Let (Tv)reg(Kv) be the set of Kv-regular elements in Tv(Kv), which we know is

dense by Proposition 2.1.11. We claim that the set U(Tv, v) = φ(G(Kv), (Tv)reg(Kv))

is a open subset of G(Kv) that intersects every open subgroup of G(Kv).

Let (g, t) ∈ G(Kv)× (Tv)reg(Kv). The homomorphism φ factors as

G(Kv)× Tv(Kv)
φ1−→ G(Kv)× Tv(Kv)

φ2−→ G(Kv)
φ3−→ G(Kv),

where φ1(x, y) = (g−1x, t−1y), φ2(x, y) = t−1xtyx−1, and φ3(z) = gtzg−1. The φ1 and

φ3 are isomorphisms of Kv-analytic manifolds. Compute the Kv-tangent spaces

T(g,t)(G× Tv)
T(g,t)(φ1)
−−−−−→ T(e,e)(G× Tv)

T(e,e)(φ2)
−−−−−→ Te(G)

Te(φ3)−−−→ Tg(G).

Since T(g,t)(φ1) and Te(φ3) are Kv-vector space isomorphisms, the differential T(g,t)φ is

surjective if and only if T(e,e)(φ2) is surjective. The map T(e,e)(φ2) us an isomorphism

of Lie algebras, so we may compute T(e,e)(φ2) using the discussion in [31, §12.2, pg.

93].
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Let Kv[ε] = Kv[x]/(x2). We may compute T(e,e)(φ2) by computing the kernel of

the ε→ 0 map

G(Kv[ε])× Tv(Kv[ε])
φ2−→ G(Kv[ε])/

For (1 + εX, 1 + εY ) ∈ G(Kv[ε])× Tv(Kv[ε]),

(1 + εX, 1 + εY ) 7→ t−1(1 + εX)t(1 + εY )(1− εX)

= (1 + ε(t−1Xt))(1 + εY )(1− εX)

= 1 + ε(t−1Xt+ Y −X).

For (X, Y ) ∈ T(e,e)(G× T ), the value T(e,e)(φ2)(X, Y ) = Ad(t)X −X + Y . Since t

is regular, the 1-eigenspace of Ad(t) is Te(T ). Therefore, the differential T(e,e)(φ2) is

surjective, and therefore T(g,t)φ is surjective.

Since T(g,t)φ is surjective, φ is an open map by Corollary 2.1.86. Thus, U(T, v) is

open. For any open subgroup Ω ⊆ G(Kv), Tv(Kv) ∩ Ω is Zariski-dense in Tv(Kv), so

it contains an element of (Tv)reg(Kv). Thus, U(Tv, v) ∩ Ω 6= ∅.

Let U =
∏

v∈S U(Tv, v). If δS(x) ∈ δS(G(K)) ∩ U , then x is a K-element that is

Kv-regular semisimple for all v ∈ S, hence it is K-regular semisimple. In other words,

and K-torus that becomes a maximal Kv-torus after extending scalars is a priori a

maximal K-torus. Let T = ZG(x)◦ and note that θT (Gal(KT/K)) ⊇ W(G, T ) by

construction. Thus, x is K-generic.
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As above, let E ′ be the minimal field of Γ, let X be a transcendence basis of K/E ′,

and let E = E ′(X). Let F be the separable closure of E in K.

If T is a torus defined over F , then note that since FTK = KT and FT ∩K = F ,

a classic result from Galois theory states that

Gal(KT/K) ∼= Gal(FT/F ).

By the above isomorphism, any F -generic torus is automatically a K-generic torus.

Therefore, we will find an F -generic element in Γ, which will automatically be K-

generic.

Suppose now that G is adjoint. Fix an embedding G ⊆ GLN and consider the

matrix realization of Γ ⊆ GLN(K). Let ΓF = Γ∩G(F ). Since G is semisimple, G(F )

is Zariski-dense in G and ΓF is not empty, but not necessarily dense. Let H be the

Zariski-closure of ΓF in G. Let T ⊂ G be a maximal torus and let γ ∈ Tsep(K) ∩ Γ.

The element γ is regular semisimple. If [K : F ] = ps, consider γp
s
. This is a regular

element and the eigenvalues of γp
s

lie in a Galois extension of F . Therefore, there

exists g ∈ G(K) such that gγp
s
g−1 ∈ G(F ), and in particular gHg−1. Therefore,

H contains a maximal torus of the same rank as T . Therefore rank(H) = rank(G)

and ΓF must be Zariski-dense. Therefore, it suffices to prove Theorem F under the

assumption that Γ ⊆ G(F ).

Proof of Theorem F. Let Γ′ be the subgroup of G̃(F ) generated by elements of the
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form π−1([γ1, γ2]) for all γ1, γ2 ∈ Γ. Since Γ is finitely generated, there exists a finitely

generated subring R ⊆ F such that Γ ⊆ G(R) and Γ′ ⊆ G̃(R).

By Lemma 3.1.3, we know that there exists a set S of r distinct nontrivial non-

archimedean discrete valuations on E ′ such that for every v ∈ S, there exits an

embedding

εv : F → E ′v,

and G̃ splits over E ′v. Thus, we can apply Theorem E to construct maximal E ′v-tori

Tv ⊆ G such that any E ′-torus that is G(E ′v)-conjugate to each Tv is E ′-generic. Since

E ′v = Fw for any valuation w|v, any such F -torus is F -generic as well.

Let δS be the diagonal embedding of G(F ) into GS.

Let

δ̃S : G̃(F ) −→ G̃S :=
∏
v∈S

G̃(E ′v)

be the diagonal embedding of corresponding simply connected covers.

From this set of tori Tv for v ∈ S, we also construct the open subset U ⊆ G̃S

specified by Lemma 3.1.8.

Let H be the closure of δ̃S(Γ′) in G̃S. By Proposition 2.2.9, we see that since E ′v

is the closure of the minimal field, so
⊕

v∈S E
′
v is the minimal semisimple ring for

GS. Because Γ′ ⊆ G̃(R) ⊆ G̃(Ov) for each v ∈ S, we see that δS(Γ) is contained in a

compact subgroup of GS. Thus, (⊕SE ′v, GS, δS(Γ)) is a minimal triple. By Theorem

2.2.6, we know that H is an open subgroup in G̃S, so Y = H ∩ U 6= ∅. Furthermore,
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δ̃S(Γ′) ∩ Y is dense in Y , so δ̃S(Γ′) ∩ Y 6= ∅. Let x̃ ∈ Γ′ such that δ̃S(x̃) ∈ δ̃S(Γ′) ∩ Y .

By construction, x̃ is a regular semisimple E-element of infinite order. Let T̃ =

ZG̃(x̃)◦, then π(T̃ ) = T = ZG(x)◦ is a maximal F -torus in G as well and π(x̃) = x ∈ Γ.

Furthermore, θT (Gal(FT/F )) ⊇ W(G, T ). Thus, x is generic over F .

3.2 Weak commensurability

We will now prove a few elementary results on weak commensurability. It is useful to

start by defining the notion of a ‘neat’ subgroup with the properties described in [21]

and show that these subgroups exist in the positive characteristic case.

Definition 3.2.1. Let H ⊆ GLn(F ). We say that the element x ∈ H is neat if the

subgroup of (F )× generated by the eigenvalues of x contains no nontrivial root of

unity. We say that H is a neat subgroup if all elements x ∈ H are neat.

Proposition 3.2.2. Let G be a connected absolutely almost simple connected algebraic

group defined over an infinite finitely generated field F of characteristic p > 0 and

let Γ ⊆ G(F ) be a finitely generated Zariski-dense subgroup. Then Γ contains a neat

subgroup of finite index.

For the proof of the analogous proposition in the characteristic zero, see [21,

Theorem 6.11]. The proof is somewhat simpler in the positive characteristic case.
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Proof. Since Γ is finitely generated, there exists a finitely generated subring R ⊆ F

such that Γ ⊆ G(R). By Proposition 3.1.1, we can say that there exists some non-

archimedean discrete valuation v on F with locally compact completion Fv such that

R ⊆ Ov. Let m = R ∩ pv, where pv is the maximal ideal of Ov. Then m is a proper

maximal ideal of R and R/m embeds into kv := Ov/pv, the residue field associated

to v. Hence, R/m is a finite field.

Choose an embedding G(F ) ↪→ GLn(F ). Let η : R → R/m be the natural pro-

jection, and let η̃ : G(R) → G(R/m) be the induced surjective homomorphism. Let

H = ker(η̃). We claim that H is neat.

Let x ∈ H. Then x ∈ GLn(Ov) and x ≡ 1 mod pv. The eigenvalues of x all lie

in some finite integral extension O′ of Ov, and let p′ be a maximal ideal of O′ such

that Ov ∩ p′ = pv. Take det(x−λI) = 0 mod p′ to see that (1−λ)n ≡ 0 mod p′. In

particular, each eigenvalue is a unit in O′. The lemma will be proved if we can show

that 1 + p′ contains no nontrivial roots of unity.

Choose a uniformizer π of p′. Note that

1 + p′

1 + (p′)2
∼= kv,

via the isomorphism (to the additive group kv) that sends [1 + πu] mod 1 + (p′)2 to

u ∈ kv.

Suppose that µ ∈ 1 + p′ is a nontrivial root of unity and suppose r > 1 is the
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smallest such integer such that µr = 1. Then µ = 1 + πu for u 6= 0. Then µ is sent

to u ∈ k×v under this isomorphism, and we see that ru = 0 in kv. Therefore, p|r, so

let r′ be an integer such that r = pr′. Therefore,

µpr
′
= 1 implies that (µr

′
)p − 1 = (µr

′ − 1)p = 0.

Therefore, µr
′

= 1. Since r′ is strictly smaller that r and r is minimal, we have

reached a contradiction.

Thus, Γ′ = Γ ∩H is neat and of finite index in Γ.

For each i = 1, 2, let Gi be connected absolutely almost simple algebraic groups

defined over an infinite finitely generated field F of characteristic p > 0 and let

Γi ⊆ Gi(F ) be a finitely generated Zariski-dense subgroup.

Using the existence of neat subgroups, we are able to prove the following elemen-

tary lemmas that describe the behavior of weakly commensurable subgroups. These

results are analogous to Lemma 2.3 and Lemma 2.4 in [20].

Lemma 3.2.3. For i = 1, 2, let Γi and Gi(F ) be as above. Suppose that Γ1 and Γ2

are weakly commensurable. For i = 1, 2, suppose that ∆i is a subgroup of Gi(F ) that

is commensurable with Γi. Then ∆1 and ∆2 are weakly commensurable.

Proof. By Proposition 3.2.2, we can find a neat subgroup Θ ⊆ Γ1 ∩ ∆1 of finite

index. Let δ1 ∈ ∆1 be a semisimple element of infinite order. Pick n1 ≥ 1 such that
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γ1 = δn1
1 ∈ Θ. Since Γ1 and Γ2 are weakly commensurable, there exist tori Ti such

that γi ∈ Ti(F ) and there exist χi ∈ X(Ti) for i = 1, 2 such that

χ1(γ1) = χ2(γ2) 6= 1.

Pick n2 ≥ 1 such that δ2 = γn2
2 ∈ Γ2 ∩∆2. Then

χ1(γ1)n2 = χ1(γn2
1 ) = χ1(δn1n2

1 ) = χ2(δ2).

Since γ1 ∈ Θ, χ1(γ1)n2 6= 1. Therefore δ1 and δ2 are weakly commensurable elements,

which implies that ∆1 and ∆2 are weakly commensurable.

Lemma 3.2.4. For i = 1, 2, let πi : Gi → G′i be an F -isogeny of connected absolutely

almost simple algebraic groups, and let Γi be a finitely generated Zariski-dense sub-

group of Gi(F ). Then Γ1 and Γ2 are weakly commensurable if and only if Γ′1 = π1(Γ1)

and Γ′2 = π2(Γ2) are weakly commensurable.

Proof. Suppose that Γ′1 and Γ′2 are weakly commensurable. Let γ1 ∈ Γ1 be a semisim-

ple element of infinite order. Then there exists a semisimple γ2 ∈ Γ2 of infinite order

such that for i = 1, 2, there exists a maximal F -torus T ′i of G′i and a character χ′i of

T ′i such that πi(γi) ∈ T ′i (F ) and

χ′1(π1(γ1)) = χ′2(π2(γ2)) 6= 1.
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Then for i = 1, 2, let Ti = π−1
i (T ′i ) be the maximal F -torus of Gi and note that

γi ∈ Ti(F ). Let π∗i : X(T ′i ) −→ X(Ti) be the induced map on character groups. Let

χi = π∗i (χ
′
i) ∈ X(Ti). Then

χ1(γ1) = χ2(γ2) 6= 1,

and Γ1 and Γ2 are weakly commensurable.

Suppose now that Γ1 and Γ2 are weakly commensurable. Use Proposition 3.2.2,

pick neat subgroups of finite index ∆i of Γi for i = 1, 2. By Lemma 3.2.3, it suffices

to show that π1(∆1) and π2(∆2) are weakly commensurable. Let δ1 be a nontrivial

semisimple element of infinite order ∆1. There exists a δ2 ∈ ∆2 such that for i = 1, 2,

there exists a maximal F -torus Ti of Gi with δi ∈ Ti(F ) and a character χi ∈ X(Ti)

so that

χ1(δ1) = χ2(δ2) 6= 1.

Set T ′i = πi(Ti). Then πi(δi) ∈ T ′i (F ). Let m = |(kerπ1)(F )||(kerπ2)(F )|.

There exist characters χ′i ∈ X(T ′i ) such that χi(t)
m = χ′i ◦ πi(t) for t ∈ Ti(F ).

Since ∆1 is neat, χ1(δ1) is not an mth root of unity. Thus

χ′1(π1(δ1)) = χ′2(π2(δ2)) = χ1(δ1)m 6= 1.

Thus, π1(∆1) and π2(∆2) are weakly commensurable.

Lemma 3.2.4 is useful in that we are able to make the assumption that each Gi is
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simply connected or adjoint for i = 1, 2 without loss of generality. The lemma shows

that the existence of weakly commensurable subgroups in the adjoint case implies

their existence in the simply connected case and vice versa, so we may reduce or

problems to the cases where the groups adjoint or simply connected with relative

impunity.

Lemma 3.2.5. Let T be a K-generic torus, and KT is its splitting field over K. Let

t ∈ T (K) be an element of infinite order, let χ ∈ X(T ) be a nontrivial character and

let λ = χ(t). Then the Galois conjugates σ(λ) with σ ∈ Gal(KT/K) generate KT

over K.

Proof. The set Φ(G, T ) forms a generating set for the vector space V = X(T )⊗Z Q.

The Weyl group W(G, T ) acts irreducibly on V , and because Gal(KT/K) contains

the Weyl group, the vector space V has no Gal(KT/K)-invariant subspaces.

It suffices to show that if τ ∈ Gal(KT/K) with the property

τ(σ(λ)) = σ(λ) for all σ ∈ Gal(KT/K),

then τ = 1. Let τ ∈ Gal(KT/K). Then

(σ−1τσ)(λ) = (σ−1τσ(χ))(t) = λ.

Note that (−χ+σ−1τσ(χ) is a character that takes the value 1 at t. The element t ∈
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T (K) generates a Zariski-dense subgroup of T since T is K-generic, hence irreducible.

This implies that the character must be trivial on all of T (K). The elements σ(χ)

for σ ∈ Gal(KT/K) span the Q-vector space V = X(T )⊗Z Q. Since τ acts trivially

on V , it must be the case that τ = 1.

We also make use of the following theorem.

Theorem 3.2.6. Let K be a local field of positive characteristic and let G be a

semisimple group over K. Then there exists an maximal K-anisotropic torus T ⊂ G.

Proof. See the discussion in [8, §2.4]. Specifically for semisimple G over K, a K-

minisotropic torus is K-anisotropic.

Proof of Theorem A

Proof of Theorem A. Without loss of generality, we can assume thatK is large enough

so that Gi is defined and split over K for both i = 1, 2. Let Ei be the minimal field

of Γi for i = 1, 2, and let Fi be the separable closure of Ei in K. Since K/Fi is purely

inseparable, we know that [KT : K] = [(Fi)T : Fi] for i = 1, 2 and any maximal Fi-

torus T ⊆ Gi. By applying Theorem F, we know that there exists a generic element

γ1 ∈ Γ1 such that T1 = ZG(γ1)◦ and

θT1(Gal(KT1/K)) ⊇ W(G1, T1).
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Since Γ1 and Γ2 are weakly commensurable, we have that there exist γ2 ∈ G2(K), a

maximal torus T2 ⊆ G2, and characters χi ∈ X(Ti) such that

χ1(γ1) = χ2(γ2) = λ 6= 1.

Note that KT1 is generated by all the Galois conjugates σ(λ) for σ ∈ Gal(Ksep/K).

Since all of these conjugates belong to KT2 as well, we have that KT1 ⊆ KT2 . Since

G2 splits over K, it must be an inner form over K, so by Lemma 2.1.53, we have that

θT2(Gal(KT2/K)) ⊆ W(G2, T2).

This implies that |W(G1, T1)| divides |W(G2, T2)|. By symmetry, |W(G1, T1)| =

|W(G2, T2)|.

Products of minimal triples

The proof of Theorem B requires a few technical lemmas and some results from the

theory of quasi-models. Namely, we would like to explicitly describe the behavior of

quasi-models formed by taking the product of two minimal standard triples. First,

we state the following result due Pink [16].

Lemma 3.2.7. Suppose that F = F1⊕F2 for local fields F1 and F2, G = G1×G2, and
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Γ = Γ1×Γ2 such that Gi is a connected absolutely simple adjoint group over Fi, and Γi

is compact Zariski-dense subgroup of Gi(Fi) for each i = 1, 2. Suppose that for i = 1, 2

each triple (Fi, Gi, πi(Γ)) is minimal, and ρi be the non-constant representation of Gi

that occurs as the subquotient of the adjoint representation. Define ρ = ρ1 ⊕ ρ2 to be

the representation of G over F . Then exactly one of the following is true:

(a) Eρ = Eρ1 ⊕ Eρ2, or

(b) there is a quasi-model (E,H, φ) of (F,H,Γ) such that E is a field, φ is an

isomorphism, and ρ = ρ0 ◦ φ, where ρ0 is a representation of H.

Proof. See [16, Prop. 3.13]

Proposition 3.2.8. Let G be a connected absolutely simple adjoint algebraic group

defined over a local field L with Zariski-dense compact subgroup Γ ⊆ G(L). Let

ι : L → F be an embedding of L into some field F . Let G′ be the algebraic F -group

obtained by extension of scalars given by ι and let ψ : G(L) → G′(F ) be the induced

homomorphism. If (K,G,Γ) is a minimal standard triple for some K ⊆ L, then

(ι(K), G′, ψ(Γ)) is also minimal.

Proof. Let (E ′, H ′, φ) be a minimal quasi-model of (ι(K), G′, ψ(Γ)). Let F ′ = ι(K),

so there is an isomorphism ι−1 : F ′ → K, and let E = ι−1(E ′) ⊆ K. The embedding
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ι|E′ : E ′ → K induces a E ′-morphism

ζ : H ′ → H,

where H is the group obtained from H ′ by extension of scalars via ι|E′ . By construc-

tion, E ⊆ K, H(K) ∼= G(K) and ζ ◦ψ(Γ) ∼= Γ over K. This implies that (E,H, ζ ◦ψ)

is a quasi-model for (K,G,Γ). Hence, E = K since (K,G,Γ) is minimal. Therefore,

E ′ = F ′ as well. The F ′-isogeny

φ : H ′ → G′,

is totally inseparable and induces a K-isomorphism

ζ ◦ φ : H → G.

Note that ζ ◦ φ has non-zero derivative and does not have a non-standard isogeny as

a factor. Thus φ has non-zero derivative and has no non-standard isogeny as a factor,

so φ is an isomorphism as well.

The following Proposition reinterprets the result of Lemma 3.2.7 in a way that

will be useful to the proof of Theorem B.

Proposition 3.2.9. Let G be a connected absolutely simple adjoint group defined
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over a local field L of characteristic p > 0. Suppose that Γ is a compact Zariski-dense

subgroup of G(L) and that (L,G,Γ) is a minimal standard triple. Let K := KΓ ⊆ L be

the minimal field of Γ and let v be the discrete valuation on K obtained by restricting

the discrete valuation on L. Suppose that for i = 1, 2, we can construct embeddings

ι(i) : L → Kv. Let G(i) be the algebraic Kv-group obtained from G by extension of

scalars via ι(i), and let ψ(i) : G(L) → G(i)(Kv) be the induced homomorphism. Then

exactly one of the following is true:

(a) G(1) ∼= G(2) and ι(1)(K) = ι(2)(K).

(b) The triple (ι(1)(L)⊕ ι(2)(L), G(1) ×G(2), ψ(1)(Γ)× ψ(2)(Γ)) is minimal.

Proof. Note that since (L,G,Γ) is minimal, the triple (ι(1)(L)⊕ι(2)(L), G(1)×G(2), ψ(1)(Γ)×

ψ(2)(Γ)) is fibre-wise minimal by Proposition 3.2.8. This implies that we can invoke

Lemma 3.2.7 to say that either Eρ = Eρ1 ⊕ Eρ2 or there is a quasi-model (E,H, φ)

of (F,H,Γ) such that E is a field, φ is an isomorphism, and ρ = ρ0 ◦ φ, where

ρ0 is a representation of H. Let (F,H, φ) be a minimal quasi-model of the triple

(ι(1)(L)⊕ ι(2)(L), G(1) ×G(2), ψ(1)(Γ)× ψ(2)(Γ)).

Suppose that Eρ = Eρ1 ⊕ Eρ2 . It is clear that Eρ ∩ ι(i)(L) ⊆ Eρi . Since we

either have Eρi = ι(i)(L) or Eρi = ι(i)(L)p for i = 1, 2, we can conclude that F =

ι(1)(L)⊕ ι(2)(L).
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Consider the isomorphism

φ : H(F )→ G(1)(ι(1)(L))×G(2)(ι(2)(L)).

Denote the projection onto the ith compontent of G(1) × G(2) by πi for i = 1, 2. For

each i = 1, 2, define the ι(i)(L)-groups Hi := (πi ◦ φ)−1(G(i)). It is then clear that

H = H1 ×H2 and the isomorphism

φ : H(F )→ G(1)(ι(1)(L))×G(2)(ι(2)(L))

factors into isomorphisms H1
∼= G(1) and H2

∼= G(2).

This implies that the triple (ι(1)(L) ⊕ ι(2)(L), G(1) × G(2), ψ(1)(Γ) × ψ(2)(Γ)) is

minimal.

Suppose that Eρ is a field. Again, this implies that F is a field. We know that

ι(1)(L) ⊕ ι(2)(L) is of finite type over F , which implies that F ⊆ ι(1)(L) is a finite

extension. We have that H ×F ι(1)(L) ∼= G(1)(ι(1)(L)), which is only possible if

F = ι(1)(L) by the minimality of the fibres and the uniqueness of the closure of

the minimal field. Thus, G(1) ∼= G(2) and ι(1)(L) = ι(2)(L). Since K is dense in L,

ι(i)(L) is entirely determined by the image of K. Therefore, ι(1)(K) = ι(2)(K).

Corollary 3.2.10. With the set-up of Proposition 3.2.9, if ι(1)(K) 6= ι(2)(K), then
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the closure of the image of the homomorphism

δv : Γ′ −→ G̃(1)(Kv)× G̃(2)(Kv)

is open in G̃(1)(Kv)× G̃(2)(Kv).

Proof. If ι(1)(K) 6= ι(2)(K), then (ι(1)(L)⊕ ι(2)(L), G(1) ×G(2), ψ(1)(Γ)× ψ(2)(Γ)) is a

minimal standard triple. The Corollary follows immediately from Theorem 2.2.6.

Proof of Theorem B

Before proving the main result of this section, we prove the following general field

theoretic result.

Lemma 3.2.11. Let F ⊆ F1 ( F2 ⊆ K be a tower of finitely generated infinite fields

of characteristic p > 0 such that K is separable over F1, F1 is a purely transcendental

extension of F , and let R ⊆ K be a finitely generated subring. Then there exists an

infinite set of discrete valuations v over F such that for each v, there are embeddings

ι1, ι2 : K → Fv such that

(1) both ι1(R) and ι2(R) are contained in Ov,

(2) the restriction ι1|F1 = ι2|F1, but ι1|F2 6= ι2|F2.

Proof. Since K is a finite separable extension of the field F1, let M be a the Galois

closure of K over F1. Then there exists a σ ∈ Gal(M/F1) which acts nontrivially
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on F2. Let R0 be the subring of K generated by R and σ(R). Since M is a finitely

generated field and R0 is a finitely generated ring, by Proposition 3.1.1, there exist

infinitely many discrete valuations v on F such that for each valuation v, we have the

embedding

ιv : M → Fv

such that ιv(R0) ⊆ Ov. Then the embeddings

ι1 = ιv|K and ι2 = (ιv ◦ σ)|K

satisfy the requirements of the Lemma by construction.

Proof of Theorem B. Let G1 and G2 be two connected absolutely simple adjoint al-

gebraic groups defined over a finitely generated field F of characteristic p > 0. For

i = 1, 2, let Γi ⊆ Gi(F ) be a finitely generated Zariski-dense subgroup and let

Ki := KΓi
be the minimal field of Γi defined by Corollary 2.2.10. Suppose that

Γ1 and Γ2 are weakly commensurable.

By Corollary 2.2.10, the trace field of Γi is either equal to the minimal field KΓi

or it is a purely inseparable subextension, it suffices to prove the conclusion of the

theorem for the minimal fields. Specifically, we would like to show that there exists

some integer k ≥ 0 such that (K1)p
k ⊆ K2. To show this, we shall assume that for

all integers k ≥ 0, (K1)p
k 6⊆ K2 and reach a contradiction.

The compositum of the fields K1K2 might have nontrivial transcendence degree
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over K2. Let X ⊂ K1 be a finite transcendence basis such that K1K2 is algebraic

over K2(X).

The theorem is proved in two steps. First, we prove the case where the extension

K1K2 over K2 is separable. Then we show that the general case can be reduced to

this case.

Case 1: K1K2 is separable over K2(X):

Define K := K1K2, and let L be a Galois extension of K such that G1 and G2 are

split over L. We can replace (K1)p
k 6⊆ K2 for any k with the weaker assumption

K1 6⊆ K2. Therefore, we now assume that K1 6⊆ K2 and that K/K2(X) is separable.

Let r be the number of nontrivial conjugacy classes of the Weyl group of G1. By

Lemma 3.1.3, there exists an (arbitrarily large) finite set of places SL ⊆ V K such that

Kv = Lw for all places w on L over v ∈ SL. For a given v ∈ SL, define vi := v|Ki
.

By construction, Kv = (K1)v1 = (K2)v2 . Define S := {v|K2 | v ∈ SL} ⊆ V K2 .

Furthermore, find a subset S ′ ⊆ {v|K1 | v ∈ SL and v|K2 ∈ S}. Choose SL large

enough so that |S| = |S ′| = r, and identify the sets S and S ′ via that bijection that

takes v1 ∈ S ′ to the unique place v2 ∈ S such that (K1)v1 = (K2)v2 .

Therefore, the set S contains r inequivalent discrete valuations on K2, and for

each v ∈ S, there exists a unique v′ ∈ S ′ such that (K2)v = (K1)v′ and an embedding

ιv : L −→ (K2)v such that ιv(R) ⊆ Ov (where Ov ⊆ (K2)v is the ring of integers).

Note that G1 is a (K2)v-group and ((K2)v, G1,Γ1) is a minimal standard triple by
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construction. Let ψv : Γ1 −→ G1(Ov) be the homomorphism induced by the embed-

ding ιv. Let Γ′1 be the group generated by [Γ1,Γ1]∼ ⊆ G̃1(Ov). By Theorem 2.2.6, we

know that the closure of the image of the homomorphism

δS : Γ′1 −→
∏
v∈S

G̃1(Ov) := G̃S

is open. By Lemma 3.1.8, there exists an open subset U ⊆ G̃S such that for any

γ̃ ∈ Γ′1 with δS(γ̃) ∈ U , γ̃ is L-generic. Let π : G̃1 → G1 is the canonical central

isogeny, and let γ = π(γ̃). For the L-torus T = ZG1(γ)◦, we have that

θT (Gal(LT/L)) ⊇ W(G1, T ).

Since L is separable over K2(X), we can apply Lemma 3.2.11 to the tower of fields

K2 ⊆ K2(X) $ K ⊆ L. Therefore, there exists a discrete valuation w ∈ V K2 \S such

that (K2)w = (K1)w′ for some w′ ∈ V K2 \ S ′, and embeddings ι(1), ι(2) : L −→ (K2)w

such that ι(1)(K2) = ι(2)(K2), but ι(1)(K) 6= ι(2)(K). We also have that ι(i)(R) ⊆ Ow

for i = 1, 2. Let G
(i)
1 be the algebraic (K2)w-group obtained from G1 by extension of

scalars via ι(i) for i = 1, 2.

Let ψ(i) : Γ1 −→ G1
(i)(Ov) be the induced homomorphism. The fact that ι(1)(K2) =

ι(2)(K2) and ι(1)(K) 6= ι(2)(K) implies that ι(1)(K1) 6= ι(2)(K1). By Corollary 3.2.10,
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we have that the closure of the image of the homomorphism

δw : Γ′1 −→ G̃1

(1)
(Ow)× G̃1

(2)
(Ow)

is open. Since w /∈ S, it follows that the closure of the image of the homomorphism

δ : Γ′1 −→ G̃S × G̃1

(1)
(Ow)× G̃1

(2)
(Ow) := G̃S,w

is open in G̃S,w.

Since L ⊆ (K2)w, G
(1)
1 splits over (K2)w. Let T (1) be a (K2)w-split maximal torus

of G
(1)
1 . By applying Theorem 3.2.6, we can find a (K2)w-anisotropic maximal torus

T (2) ⊆ G
(2)
1 .

For i = 1, 2 define the function

φi : G̃
(i)
1 ((K2)w)× T̃ (i)((K2)w)→ G̃

(i)
1 ((K2)w)

in the same way as φ from Lemma 3.1.8. Namely, let φi(g, t) = gtg−1 for all g ∈

G̃
(i)
1 ((K2)w) and t ∈ T̃ (i)((K2)w) for i = 1, 2.

Define U (i) := φi(G̃1

(i)
((K2)w), T̃

(i)
reg((K2)w)). Note that U (i) intersects every open

subgroup of G̃1

(i)
((K2)w) for i = 1, 2.



120

Thus, there exists some γ̃1 ∈ Γ′1 such that

δ(γ̃1) ∈ U × U (1) × U (2).

Then for γ1 = π(γ̃1), the torus T1 = ZG1(γ1)◦ is a maximal K1-torus of G1 since

γ1 ∈ Γ1 ⊆ G1(K1).

Since Γ1 and Γ2 are weakly commensurable, there exists a maximal K2-torus T2

of G2 and γ2 ∈ Γ2 ∩ T2(K2) such that

χ1(γ1) = χ2(γ2) = λ 6= 1,

for some characters χi ∈ X(Ti) for i = 1, 2. Note that this implies that λ is algebraic

over both K1 and K2.

Let Ki be the field over Ki generated by σ(λ), where σ ∈ Gal(Ksep
i /Ki) and let

L be the field over L generated by σ(λ), where σ ∈ Gal(Lsep/L).

Note that Gal(Lsep/L) naturally embeds into Gal(Ksep
i /Ki) for i = 1, 2. This

implies that L ⊆ KiL for i = 1, 2.

To show that opposite direction, notice that since δ(γ1) ∈ U , we see that T1 is

L-generic. By Lemma 3.2.5, L = LT1 , the splitting field of the torus T1. We can

therefore conclude that

|Gal(L /L)| ≥ |W(G1, T1)|.
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Observe that KiL is contained in the splitting field LTi (with equality for i = 1 since

T1 is L-irreducible). Gi splits over L, which implies that Gi is an inner form over L.

By Lemma 2.1.53,

θTi(Gal(LTi/L)) ⊆ W(G1, T1).

Therefore,

|Gal(KiL/L)| ≤ |W(G1, T1)| = |W(G2, T2)| ≤ |Gal(L /L)|,

and it follows that L = K1L = K2L.

Note that the conclusion of Lemma 3.1.3 implies that (K2)w = Lw′ for all w′|w.

Let vi = (ι(i))−1(w|ι(i)(K1)) for i = 1, 2. Thus vi is a valuation on K1 for i = 1, 2. By

our choice of w, we can identify (K1)vi with (K2)w for i = 1, 2.

By the construction of the set U , we know that the torus T1 is G
(1)
1 ((K2)w)-

conjugate to the (K2)w-split torus T (1). By the above identification, T1 is isomorphic

to a (K1)v1-split torus.

Furthermore, T1 is G
(2)
1 ((K2)w)-conjugate to the (K2)w-anisotropic torus T (2),

hence T1 is isomorphic to an anisotropic torus over (K1)v2 .

Since T1 is isomorphic to a (K1)v2-anisotropic torus, we have that for every non-

trivial χ ∈ X(T1), there exists some σ ∈ Gal((K1)sep
v2
/(K1)v2) such that σ ◦ χ 6= χ.
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Since γ1 generates a Zariski-dense subgroup, we have that

σ(χ)(γ1) 6= χ(γ1),

which implies that

χ(γ1) /∈ (K1)v2 for all nontrivial χ ∈ X(T1).

Since T1 is isomorphic to a split torus over (K1)v1 , this implies that

σ(λ) = σ(χ)(γ1) ∈ (K1)v1

for all σ ∈ Gal(Ksep
1 /K1).

For i = 1, 2, extend the embedding

ι(i) : L −→ (K2)w

to an embedding

ι̃(i) : L −→ (K2)sep
w .

From above, we see that ι̃(1)(K1) ⊆ (K2)w. Since KiL = L for i = 1, 2, this

implies that ι̃(i)(K2) ⊆ (K2)w as well.

On the other hand, we see that ι̃(2)(K1) 6⊆ (K2)w, so ι̃(2)(K2) 6⊆ (K2)w as well.
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Since ι̃(1) and ι̃(2) have the same restriction to K2 and K2/K2 is Galois, this

implies that ι̃(1)

∣∣∣
K2

and ι̃(2)

∣∣∣
K2

differ by an element of Gal(K2/K2). These elements

fix (K2)w, so

ι̃(2)(K2) 6⊆ (K2)w and ι̃(2)(K2),⊆ (K2)w

which is a contradiction. Therefore, K1 ⊆ K2 and the theorem is proved for the

separable case.

Case 2: K1K2 is not separable over K2(X):

Let K be the separable closure of K2(X) in K1K2. Let L a separable extension of

K1K2 such that G1 and G2 both split over L. Let L2 be the separable closure of

K in L. This implies that K2(X) ⊆ K ⊆ L2 is a separable tower of fields, and

the extensions L/L2 and K1K2/K are purely inseparable. Note that all the fields

described above are finitely generated extensions of K1 or K2.

Since (K1)p
k 6⊆ K2 for any k, we know that K2 6= K. Let l > 0 be an integer such

that [K1K2 : K] = pl.

Consider the lth Frobenius isogeny,

Frl : G1 −→ Frl(G1),
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which gives the following homomorphism on K1K2 points,

ê := FrlK1K2
: G1(K1K2) −→ G1((K1K2)p

l

),

Let G := Frl(G1). Note that G1 and G have the same Killing-Cartan type and

the Weyl groups of G1 and G are the same. Furthermore, G is a K-group since

K ⊂ (K1K2)p
l
. Define Γ := ê(Γ1), and let K ′1 be the minimal field of Γ. By Lemma

3.2.4, Γ is weakly commensurable to Γ2. We know that Γ is finitely generated as well,

so we can find a finitely generated subring R ⊆ L2 such that Γ ⊆ G(R).

Let K ′1 be the minimal field of Γ. Since Γ is defined over K1 ∩K by construction,

we know that K ′1 ⊆ K1 ∩K.

We now compute the trace field of Γ. Fix an embedding Γ1 ⊂ GLN(K1K2), and

suppose that γ ∈ Γ1 has eigenvalues λ1, ..., λN . Let ρ be the irreducible subquotient

of the adjoint representation of G1 (or the direct product of the two irreducible rep-

resentations ρS and ρL) defined by Proposition 2.2.7. By choosing a basis of the Lie

algebra glN(K), we can realize ρ(γ) ∈ GLN2(K1K2). The trace of this element is

given by

tr(ρ(γ)) =
∑
i,j

λiλ
−1
j .
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Finding a common denominator, we see that

tr(ρ(γ)) =
∑
i,j

λiλ
−1
j

=
∑
i,j

λi
λ1...λ̂j...λN
λ1...λN

=
∑
i

λi

(∑
j

λ1...λ̂j...λN
λ1...λN

)
=

s1sN−1

sN
,

where

s1 =
∑
i

λi, sN−1 =
∑
i

λ1...λ̂i...λN , sN = λ1...λN .

Note that s1, sN−1, and sN are coefficients of the characteristic polynomial of γ. In

particular, tr(ρ(γ)) ∈ K1K2. If we consider the image ê(γ) ∈ Γ, we see that ê(γ) has

eigenvalues λp
l

1 , ..., λ
pl

N . By the above computation,

tr(ρ(ê(γ))) = tr(ρ(γ))p
l

.

The minimal field K ′1 is a purely inseparable extension of the trace field (the field

generated by 1 and tr(ρ(Γ))). Therefore, the extension K1 ∩K/K ′1 is purely insepa-

rable. Therefore, the extension K/(K ′1K2) is purely inseparable and separable, hence

K = K ′1K2. The relations between the defined fields are seen in the following diagram.
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L

L2 K1K2

K = K ′1K2 K1

K2(X) K ′1

Note that the statement (K1)p
k 6⊆ K2 for all k implies that K ′1 6⊆ K2. But

K/K2(X) is a separable extension and Γ is weakly commensurable to Γ2. By Case 1,

we know that K ′1 ⊆ K2, so we have a contradiction.

Corollary 3.2.12. Suppose the same set-up as Theorem B and that F is a global

field. Then (K1)p
k1 = (K2)p

k2 for some k1, k2 ∈ Z.

Proof. If G1 and G2 are defined over a global field, then K1 and K2 are global fields

as well (since they are infinite fields contained in a field F that has transcendence

degree 1 over a finite field). The corollary will follow from the following general fact.

Let L be a global field. There exists a separating transcendence basis x ∈ L such

that L/Fp(x) is separable. Let α be a primitive element such that L = Fp(x, α). If

f(t) is a minimal polynomial in Fp(x)[t] for α, then apply the pth power morphism

to the coefficients of f(t) to get the polynomial fp(t) ∈ Fp(xp)[t]. Then αp is a root

fp(T ), so Lp = Fp(xp, αp) is separable over Fp(xp) and [L : Fp(x)] = [Lp : Fp(xp)].
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This implies that [Fp(x) : Fp(xp)] = [L : Lp] = p.

Without loss of generality, suppose that there exists some k such that (K1)p
k+1 ⊆

K2 ⊆ (K1)p
k
. Since [(K1)p

k
: (K1)p

k+1
] = p, then K2 = (K1)p

k
or K2 = (K1)p

k+1
.

Proof of Theorem C

Before proving Theorem C, we state the following field-theoretic lemma.

Lemma 3.2.13. Let K and L be imperfect fields of characteristic p > 0 and suppose

that K ⊆ L is a finite purely inseparable extension. Then there is a natural continuous

isomorphism

ι : Gal (Lsep/L) −→ Gal (Ksep/K) .

Proof. Use [14, Ch. VI, Theorem 1.2, pg. 266]

Proof of Theorem C. Again, let G1 and G2 be two connected absolutely almost simple

adjoint algebraic groups defined over a finitely generated field F of characteristic

p > 0. For i = 1, 2, let Γi ⊆ Gi be a finitely generated Zariski-dense subgroup

and let Ki := KΓi
be the minimal field of Γi. Suppose that Γ1 and Γ2 are weakly

commensurable.

For each i = 1, 2, let Li be the minimal Galois extension of Ki such that Gi

becomes an inner form over Li. We would like to show that there exists some integer

k ≥ 0 such that (L1)p
k ⊆ L2. Without loss of generality, suppose that (K1)p

k ⊆ K2

by Theorem B.
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Consider the kth Frobenius isogeny,

Frk : : G1 −→ Frk(G1),

and set G0 := Frk(G1), Γ0 := FrkK1
(Γ1), and let K0 := KΓ0 be the minimal field.

Lemma 3.2.4 implies that Γ0 and Γ2 are weakly commensurable since Frk is an isogeny.

Let L0 be the minimal Galois extension of K0 such that G0 becomes an inner form

over L0. Note that L0 must be a finite purely inseparable subextension of L1. To

prove the theorem, it suffices to show that L0 ⊆ L2.

Suppose that L0 6⊆ L2. Let L = L0L2. By Theorem F, there exists a semisimple

element γ0 ∈ Γ0 such that T0 := ZG0(γ0)◦ is an L-generic torus. Let γ2 ∈ Γ2 be an

element such that γ0 is weakly commensurable to γ2. By [20, Theorem 4.2], there

exists a K0K2-isogeny f : T0 −→ T2. This induces a homomorphism between the

character groups of T2 and T0:

f ∗ : X(T2) −→ X(T0).

Extending scalars by Q, we get a Q-linear isomorphism of vector spaces

f ∗Q : X(T2)⊗Z Q −→ X(T0)⊗Z Q.
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This induces a homomorphism

f : GL(X(T0)⊗Z Q) −→ GL(X(T2)⊗Z Q).

Let L′0 be the separable closure of L0 in L and let L′2 be the separable closure of L2

in L. Then the following diagram commutes.

Gal(Ksep
0 /L′0) GL(X(T0)⊗Z Q)

Gal(Ksep
2 /L′2) GL(X(T2)⊗Z Q)

θT0

ι

θT2

f

For any field extension F of K0 in Ksep
0 and a purely inseparable extension F ′ of

F in Ksep
2 , the map f induces an isomorphism between the images of Gal(Ksep

0 /F )

under θT0 and θT2(Gal(Ksep
2 /F ′) under θT2 . Therefore,

|θT0(Gal(Ksep
0 /F ))| = |θT2(Gal(Ksep

2 /F ′))| (3.2.1)

The assumption that L0 6⊆ L2 implies that L2 ( L. Since G2 is inner over L2, we

have that

θT2(Gal(Ksep
2 /L2)) =W(G2, T2).

Since G0 is not inner over L2, by [20, Lemma 4.1] we know that

|θT0(Gal(Ksep
0 /(L2 ∩Ksep

0 ))| > |W(G0, T0)| = |W(G2, T2)| = |θT2(Gal(Ksep
2 /L2))|.
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This contradicts (3.2.1), so L0 ⊂ L2.

3.3 Discrete subgroups

In this section, let F be a non-archimedean local field, let G be a connected absolutely

almost simple group defined over F , and let Γ be a finitely generated Zariski-dense

subgroup of G(F ). Since G(F ) has a locally compact topology, we can consider the

induced topology on the subgroup Γ. The following lemmas will be used to prove

Theorem D. We should note that many of these results are similar to those found

in [16] and [17] with slight changes.

Lemma 3.3.1 (Analog of [16, Cor. 3.8]). Let G be a connected, absolutely simple,

adjoint algebraic group over a local (or global) field F . Suppose that Γ is a Zariski-

dense subgroup of G(F ), and ∆ is a Zariski-dense subgroup of G(F ) that is normal

in Γ. If (F,G,Γ) is a minimal triple, then (F,G,∆) is a minimal triple.

Proof. Let (E,H, φ) be a minimal quasi-model of (F,G,∆). Let γ ∈ Γ. Define int(γ)

to be the inner automorphism corresponding to γ. Then (E,H, int(γ)◦φ) is a minimal

quasi-model of (F,G,∆). Therefore, both (E,H, φ) and (E,H, int ◦ φ) are minimal

quasi-models of (F,G,∆). By the uniqueness of minimal quasi-models, there exists

some α ∈ Aut(H) such that φ ◦ α = int(γ) ◦ φ.

Note that since φ is an isogeny with nowhere vanishing derivative, it factors
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the central isogeny π : G̃ → G (a consequence of Proposition 2.1.39 and Theorem

2.1.50). Since π induces an isomorphism Out(G̃) ∼= Out(G), we get an isomorphism

of Out(H ×E F ) ∼= Out(G) induced by φ. This implies that α must be an inner

automorphism of H, so α = int(δ) for some δ ∈ H(E) since H is adjoint.

Then γ = φ(δ) ∈ φ(H(E)), which implies that (E,H, φ) is also a minimal quasi-

model for (F,G,Γ). Thus, φ is an isomorphism and E = F , so (F,G,∆) is also

minimal.

Corollary 3.3.2 (Analog of [17, Prop. 3.9]). Let G be a connected, absolutely simple,

adjoint algebraic group over a local (or global) field F . Suppose that Γ is a Zariski-

dense subgroup of G(F ), and ∆ is a Zariski-dense subgroup of G(F ) that is closed

and of finite index in Γ. If (F,G,Γ) is a minimal triple, then (F,G,∆) is a minimal

triple.

Proof. Let

∆′ =
⋂
γ∈Γ

γ∆γ−1.

Then ∆′ is normal in Γ, so (F,G,∆′) is minimal by Lemma 3.3.1. Thus (F,G,∆)

must be minimal.

Recall that a subgroup H ⊆ G is commensurated by G if for all g ∈ G , gH g−1

is commensurable to H .
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Lemma 3.3.3 (Analog of [17, Prop. 3.10]). Let G(F ) be a connected, absolutely

simple, adjoint algebraic group over a local (or global) field F . Suppose that Γ is a

Zariski-dense subgroup of G(F ), and ∆ is a Zariski-dense subgroup of G(F ) commen-

surated by Γ. Additionally, we assume that ∆ is either compact in the local case or

finitely generated in the global case. If (F,G,Γ) is a minimal triple, then (F,G,∆) is

a minimal triple.

Proof. Let (E,H, φ) be a minimal quasi-model of (F,G,∆). Let γ ∈ Γ. Define int(γ)

to be the inner automorphism of G corresponding to γ. Then (E,H, int(γ) ◦ φ) is

a minimal model of (F,G, γ∆γ−1). Since ∆ is commensurated by Γ, we know that

∆∩γ∆γ−1 is finite index in each of ∆ and γ∆γ−1. By Corollary 3.3.2, both (E,H, φ)

and (E,H, int ◦ φ) are minimal quasi-models of (F,G,∆ ∩ γ∆γ−1).

By the exact same argument as the one in the proof of Lemma 3.3.1, φ is an

isomorphism and E = F , so (F,G,∆) is minimal.

Lemma 3.3.4. Suppose the G is a connected, absolutely simple, adjoint algebraic

group defined over a local field F . Let Γ ⊆ G(F ) be a Zariski-dense subgroup. Suppose

that the triple (F,G,Γ) is minimal. Then exactly one of the following is true:

(a) Γ
′ ⊆ G̃(F ) is open,

(b) Γ ⊆ G(F ) is discrete.

Proof of Lemma 3.3.4. Let K ⊆ G(F ) be a compact open subgroup. Let ∆ = Γ∩K.
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Note that ∆ is then an open compact subgroup of Γ in the subspace topology.

Let Θ be any open subgroup of ∆. Since {gΘ}g∈Γ is an open cover of ∆ and since

∆ is relatively compact, it must have a finite subcover. Hence, [∆ : Θ] < ∞. Let

γ ∈ Γ. Since the intersection of ∆∩ (γ∆γ−1) must have finite index in each of ∆ and

γ∆γ−1, we see that ∆ is commensurated by Γ.

Let H be the Zariski-closure of ∆ in G. Note that ∆ and γ∆γ−1 are contained in

H(F ). Since Γ is Zariski-dense and H(F ) is normalized by Γ, this implies that H is

normal in G. Since G is simple, H is trivial or H(F ) = G(F ).

If H is trivial, then ∆ = {1} and is open compact. Hence, γ∆ = {γ} is open for

all γ ∈ Γ. Thus, Γ is discrete.

If H(F ) = G(F ), then ∆ is Zariski-dense. By Lemma 3.3.3 and Theorem 2.2.6,

we see that ∆
′

is open in G̃(F ).

Thus γ∆
′

is open for all γ ∈ Γ
′
, so

Γ
′
=
⋃
γ∈Γ

′

γ∆
′

is open in G̃(F ).

Proof of Theorem D

Proof of Theorem D. Suppose that Γ1 is discrete and Γ2 is not discrete. Let K1 and

K2 be the minimal fields of Γ1 and Γ2 respectively. Let v be the discrete valuation



134

on F .

By Theorem B, we know that Kpl

1 ⊆ K2 for some l ≥ 0. We first show that if Γ1

is discrete, then Frl(Γ1) is discrete.

Choose an embedding Γ1 ⊂ GLN(F ). If Γ := (Fr)l(Γ1) is not discrete, then there

exists a convergent sequence Frl(γr) that converges to 1 ∈ Γ as r → ∞. Via the

embedding into GLN(F ), this becomes a convergent sequence of matrices

Frl(γr) = [(a
(r)
ij )p

l

]i,j −→ 1.

Therefore, the (i, j)th matrix entry of the sequence of matrices is a convergent se-

quence in F that converges to δi,j (the Kronecker delta function). Since the pth power

map is an automorphism of F , the sequence

(a
(r)
ij )p

l −→ δi,j

induces a sequence

a
(r)
ij −→ δi,j.

This implies that γr converges to 1 in Γ1. This is impossible since Γ1 is discrete, hence

Γ is discrete.

Therefore, Γ is discrete and weakly commensurable to Γ2. By replacing Γ1 with

Γ, we may assume without loss of generality that F is equal to the completion of K2
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with respect to the restriction of the v-adic norm on F . Furthermore, we may replace

G2 by its image under some purely inseparable isogeny so that the triple (F,G2,Γ2)

is minimal.

By Lemma 3.3.4, we know that Γ
′
2 is open in G̃2(F ). Since Γ2 is finitely generated,

there exists some subring R ⊆ K2 such that Γ2 ⊆ G2(R). By Theorem 3.2.6, there

exists a maximal F -anisotropic torus T0 in G2. Let r be the number of nontrivial

conjugacy classes of the Weyl group W(G2, T0).

Let U0 = U(T0, v) be the open subset of G̃2(F ) constructed in Lemma 3.1.8

associated to the torus T0 and the valuation v on F .

By Proposition 3.1.1, we can pick r inequivalent valuations v1, ..., vr, such that

v is not equivalent to vj for 1 = 1, ..., r, such that the completion (K2)vj is locally

compact, and the embeddings ιj : K2 −→ (K2)vj have the property that ιj(R) ⊆ Ovj

for all j = 1, ..., r.

Define the embedding

δS : G̃2(K2) −→ G̃S :=
r∏
j=1

G̃2((K2)vj).

as above. Since Γ′2 is mapped into a compact subgroup, the closure of the image

δS(Γ′2) is open in G̃S. Invoke Lemma 3.1.8 to construct an open subset U of G̃S

such that δ−1
S (δS(G2(K2)) ∩ U) consists of K2-generic elements. Then U = U0 × U

intersects every open subgroup of G̃2(F )× G̃S. Let δS,v be the embedding of G̃2(K2)
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into G̃2(F ) × G̃S. Pick γ2 ∈ π(δS,v(Γ′2) ∩ U). Lemma 3.1.8 implies that γ2 is a

K2-generic element that generates a F -anisotropic torus in G2(F ).

Since Γ2 and Γ1 are weakly commensurable, γ2 is weakly commensurable to a

semisimple γ1 ∈ Γ1 of infinite order. Let T1 = ZG1(γ1)◦. By the isogeny theorem

(see [20, Theorem 4.2]), we know that T2 is F -isogenous to T1 which implies that T1

is F -anisotropic. Note that T1(F ) is compact and Γ1 is discrete; thus T1(F )∩Γ1 must

be finite. However, it must contain the element γ1, which has infinite order. Thus,

we have a contradiction.
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mazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 153, Springer-

Verlag, Berlin-New York, 1970. MR 0274460 (43 #223c)

[2] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra,

Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

MR 0242802 (39 #4129)

[3] Armand Borel, Linear algebraic groups, second ed., Graduate Texts in Mathe-

matics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012 (92d:20001)

[4] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 1–3, Elements of Math-

ematics (Berlin), Springer-Verlag, Berlin, 1998, Translated from the French,

Reprint of the 1989 English translation. MR 1728312 (2001g:17006)
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