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1  Introduction 

 Malaria is a disease that has evaded eradication despite decades of 

concentrated research and pooling of the world’s resources. The protozoan parasite 

that causes malaria, Plasmodium, has developed resistance to every drug used thus 

far and innovative approaches are needed to finally eliminate this disease. Basic 

research, research into the fundamental underpinnings of observed phenomena, has 

been a goal of the malaria field since its discovery. Unfortunately, this parasite is 

particularly challenging to study due to its complex life-cycle, relative intractability to 

genetic studies, and the fact that it is a small intracellular parasite that requires 

stringent isolation to avoid host contamination. However, using recent technical 

advances to revisit old observations has led to newfound abilities to answer basic 

biological questions for Plasmodium.  

The goal of my dissertation research has been to investigate the genetic 

mechanisms of evolution of Plasmodium, the parasite that causes malaria. It has 

been known for decades that a common mechanism of adaptation for P. falciparum 

(one species) is through genome structural variations such as DNA copy number 

variations. Copy number variations, gene duplications in particular, have been 

demonstrated to contribute to antimalarial drug resistance, the creation of new 

genes, changing gene functions, and even the creation of new species.  

For this reason, I have sought to identify a mechanism conserved across 

Plasmodium species that they utilize as the first step in the development of copy 

number variations. In order to explore copy number variation and evolution in 

Plasmodium, my focus has primarily been on developing and adapting computational 

methods to analyze whole genome sequencing data and compare genome features 

between parasites. If we can identify the DNA repair mechanisms and sequences 

that are prone to mutation, we can potentially formulate a way of blocking the 

development of resistance to new antimalarials. These studies are key to avoiding 

the development of future antimalarial drug resistance. 
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2  Background 

In this chapter, I summarize general background information on the parasite 

that causes malaria, Plasmodium. I discuss the epidemiology, pathology, and the life-

cycle of Plasmodium spp. While discussing the life-cycle, I comment on methods of 

evolution that the parasite utilizes to rapidly adapt to challenges. I also discuss 

various drug treatments and their failure rates. Copy number variations are an 

under-appreciated mechanism of evolution that has profound effects on both 

genome evolution and selection that we are only now gaining the tools to 

thoroughly investigate. 

 

Plasmodium species infecting humans 

Malaria is caused by members of the Plasmodium species, which belong to 

the parasitic Apicomplexan phylum so named due to their possession of the 

apicoplast, an endosymbiotic, non-photosynthetic plastid. Other members of the 

Apicomplexans cause common human diseases such as Babesiosis, 

Cryptosporidiosis, and Toxoplasmosis. Plasmodium are intracellular, eukaryotic 

pathogens with two different hosts: a blood-feeding insect and a vertebrate. There 

are >2000 different species of Plasmodium that infect a wide-range of hosts 

including mammals, birds, reptiles, and amphibians. Human malaria is caused by six 

different species of Plasmodium parasites. The species that cause malaria in humans 

are P. falciparum, P. vivax, P. knowlesi, P. malariae, P. ovale wallikeri, and P. ovale 

curtisi (https://www.cdc.gov/malaria/about/disease.html).  

Plasmodium falciparum is the primary cause of death by malaria and is by far 

the most well-studied Plasmodium species. P. falciparum is thought to have 

transitioned from gorillas to humans approximately 10000 years ago and is the likely 

cause of ancient records of malaria as early as 4000BCE [1]. Plasmodium vivax is less 

virulent than P. falciparum but was one of the first species to be discovered in 1886. 

P. vivax is the leading cause of recurrent malaria and can also cause severe 

symptoms[2]. Plasmodium knowlesi is a zoonotic species that has drawn increased 

research attention in the last 10 years. Zoonosis is an infectious disease that 

https://www.cdc.gov/malaria/about/disease.html
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transitions from infecting non-human animals to humans. Evidence for human 

infection by P. knowlesi was identified as early as 1932. It is most closely related to P. 

vivax and appears to have diverged 18 to 34 million years ago [3]. There have been 

no reports of transmission of P. knowlesi from humans back to mosquitoes.  

Plasmodium malariae, along with P. vivax, was one of the first species of 

malarial parasite to be described by Camillo Golgi in 1886. It has a long incubation 

period ranging from 16-59 days and can result in life-long infections [4, 5]. 

Unfortunately, it is understudied due to its benign symptoms and cases are thought 

to be underreported. One possible reason for this is that P. malariae and knowlesi 

are frequently confused due to similarity in their appearance under the microscope.  

Plasmodium ovale is the rarest type of human infecting malaria that has 

recently been discovered to consist of two subspecies and is a fascinating example of 

sympatric speciation [5, 6]. Sympatry is where a subspecies has evolved from a living 

ancestor in the same region but are unable to produce progeny with each other. The 

two subspecies are Plasmodium ovale wallikeri and Plasmodium ovale curtisi which 

are thought to have diverged 1 to 3.5 million years ago. Plasmodium ovale is also an 

understudied species of Plasmodium. 

 

Malaria epidemiology 

Malaria was estimated to have caused between 2-5% of all deaths in the 20th 

century, but we have made much progress in its eradication [1]. The total number of 

malaria cases in 2000 was estimated to have been ~262 million with 839,000 deaths 

[7]. However, by 2018 we managed to reduce that burden to an estimated 228 

million cases worldwide with an estimated 405,000 deaths. The majority of deaths 

continue to occur in the elderly, pregnant women, and children. Children under 5 

comprised 67% of all deaths in 2018 [7]. It is still estimated that ~3 billion people 

around the world are at risk of contracting malaria, with the vast majority of cases 

occurring in Africa (Fig. 2.1). 
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Figure 2.1 - Map of malaria case incidence rate (cases per 1000 population at risk) 
by country, 2018. 

 
Image from World Health Organization 2019 report. 

White indicates which countries have no malaria, green are countries that have recently eradicated 
malaria or have <0.1 cases per 1000 pop., and progressively darker colors indicate countries with 
higher incidence with countries in Africa >250 cases per 1000 pop.  

 
Africa experienced 94% of cases in 2018 [8], but 49 endemic countries 

reported fewer than 10,000 cases each and an additional 27 countries reported 

fewer than 100 cases each (Fig. 2.1). Paraguay, Uzbekistan, Algeria, and Argentina 

eliminated malaria in 2018 and China, El Salvador, Iran, Malaysia, and Timor-Leste 

are close to elimination (Fig. 2.1, [7]). Total eradication appears to be stalling as the 

incidence rate of malaria globally has remained virtually the same since 2014 with 

approximately 57 cases per 1000 population at risk (Fig. 2.1, [7]).  

Plasmodium falciparum is the species that causes the most morbidity and 

mortality. It causes 99.7% of cases in Africa, 50% in South-east Asia, 71% in the 

Eastern Mediterranean, and 65% in the Western Pacific [7]. Africa continues to have 

the vast majority of malaria cases with 213 million cases in 2018 (93% of all cases 

compared to 3.4% and 2.1% of cases in South-east Asia and the Eastern 

Mediterranean respectively). 

Plasmodium vivax is endemic to virtually all of the same countries as P. 

falciparum and puts approximately 2.5 billion people at risk of infection [9].  The 

total number of cases world-wide was estimated to be 13.8 million cases in 2014. In 
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2018, P. vivax accounted for 53% of the cases in the South-east Asia region, 47% of 

cases in India, and 75% of malaria cases in the Americas [7].  

Plasmodium knowlesi is the zoonotic malaria species found solely in South-

east Asia [10]. This isolation is due to the geographic restriction of its primary hosts, 

the long-tailed and pig-tailed macaques. There has been an increase in reported 

cases of P. knowlesi in the past 15 years, but this is likely due to increased awareness 

and better detection methods [11]. 

The epidemiology of the other malarial species that infect humans is less well 

understood. P. malariae is most common in sub-Saharan Africa and the southwest 

Pacific but is also detected in Asia, the Middle East, and the Americas [5]. The total 

number of cases throughout the world is difficult to estimate but is likely to be 

relatively low compared to P. falciparum and P. vivax. Plasmodium ovale is endemic 

to Africa, New Guinea, Indonesia, the Philippines, the Middle East, India, and South-

east Asia [5]. However, it is also thought to be relatively uncommon compared to P. 

falciparum and P. vivax. 

 

Symptoms of malaria 

The major distinctive symptom of malaria is cyclical chills followed by fever. 

This cycle presents with 24, 48, or 72-hour increments depending on the species of 

malarial parasite: 24 hours for P. knowlesi, 48 hours for P. falciparum, vivax, and 

ovale, and 72 hours for P. malariae. Other common symptoms include vomiting, 

fever, and headaches. However, the most severe symptoms that can lead to death 

are cerebral malaria, pulmonary edema, organ failure (kidney, liver, or spleen), and 

infrequently, hypoglycemia. A final major symptom is anemia, which can have long-

lasting and profound effects on the health of children. Of the estimated 24 million 

children infected with P. falciparum in 2018 in sub-Saharan Africa, approximately 1.8 

million of them likely had severe anemia. P. vivax cases typically have low blood-

stage parasitemia and are frequently asymptomatic. Furthermore, people infected 

with P. vivax can relapse weeks to months later due to dormant liver-stage parasites 

known as hypnozoites. P. vivax cases typically have low blood-stage parasitemia and 

are frequently asymptomatic, however severe symptoms of P. vivax are similar to 
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those of P. falciparum [9]. P. knowlesi symptoms are similar to those of P. falciparum 

and vivax [10]. Symptoms of P. malariae are generally much milder than other 

species, but it still causes the same chill and fever patterns and is associated with 

nephrotic syndrome from long-term infections.  

 

Plasmodium life cycle and evolution 
Plasmodium species are characterized by an extremely complex life-cycle in 

which they replicate through two different methods. The first is schizogony, within 

erythrocytes (red blood cells) which is a form of asexual replication. Schizogony 

involves the fission of a single cell with multiple nuclei to form daughter cells with a 

single set of chromosomes (haploid) that subsequently reinvade other erythrocytes. 

Plasmodium spp. also undergo sexual replication through the formation of a diploid 

zygote within mosquitoes. This complex life-cycle allows Plasmodium parasites to 

rapidly evolve and adapt to various challenges and methods of selection (Fig. 2.2, 

[12, 13].  Below, I walk through each step of the Plasmodium life cycle and how it 

contributes to their rapid evolution and adaptation. 

Figure 2.2: Malaria life cycle. 
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Figure adapted from https://www.cdc.gov/malaria/about/biology/ 

 

To begin, when an infected mosquito bites a human host, typically fewer 

than 1×102 Plasmodium sporozoites are injected into the bloodstream from the 

salivary glands of the mosquito (Fig. 2.2, step 1) [14, 15]. These sporozoites then 

travel to the liver to go through the exo-erythrocytic cycle, where they infect a single 

liver cell and replicate to create 10,000-30,000 merozoite progeny over the course of 

7-10 days with no symptoms (Fig 2.2A, steps 2-4) [14]. During this stage, there is 

very little selective pressure imposed on the parasites as few current antimalarial 

drugs target the liver stage and the parasites are largely invisible to the immune 

system and therefore little need to adapt. Eventually, the liver cell ruptures to 

release merozoites into the bloodstream. This begins the erythrocytic cycle, in which 

Plasmodium parasites asexually reproduce for multiple rounds within red blood cells 

(Fig. 2.2B, steps 5-7).  

At this stage, the Plasmodium merozoites invade erythrocytes to create what 

is known as the “ring stage.” The ring stage is named as such because several hours 

after invasion, merozoites resemble a ring under the microscope. Once parasites 

https://www.cdc.gov/malaria/about/biology/
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progress into the trophozoite stage, they replicate their DNA for multiple rounds 

within the red blood cells and finally become schizonts with multiple copies (up to 

20) of their genome present within a single cell. The schizonts then rupture out of 

the red blood cell and release haploid merozoites to continue the cycle (Fig 2.2B, 

step 6). This red blood cell rupturing is what causes most visible symptoms of 

malaria. The intra-erythrocytic cycle will continue to expand the parasite population 

up to 108 – 1012 parasites before symptoms manifest [14]. 

Under stress, approximately 1-2% of the merozoites will commit to the 

formation of gametocytes in a process that takes ~10-12 days (Fig. 2.2B, step 7 [14]). 

Each merozoite that commits to sexual reproduction can become either all male 

(micro) or all female (macro) gametes [16]. Once taken up by the mosquito host in a 

blood meal, male gametes are activated in the mosquito’s gut to undergo a process 

known as exflagellation which involves 3 rounds of DNA replication and the creation 

of flagella (Fig. 2.2C, step 9). This replication creates 8 copies of the genome in less 

than 20 minutes and is one of the fastest known forms of DNA replication in 

eukaryotes [17]. DNA replication does not occur in female gametocytes but 

activation in the mosquito gut causes the macrogametes to leave the human red 

blood cell and fuse with the male gamete and subsequent meiosis occurs within the 

oocyst [18]. After fusion and meiosis, the oocyst becomes an ookinete (characterized 

by the ability to move), which then burrows into the midgut of the mosquito where 

it undergoes meiosis and ruptures to generate haploid parasites once again (Fig 

2.2C, steps 10/11). These haploid parasites undergo sporogony to generate 

sporozoites. After generation of sporozoites, the oocyst ruptures and sporozoites 

travel to the salivary glands of the vector where they they are ready to be injected 

back into humans during a blood meal via a bite (Fig. 2.2C, Steps 12 and 1 [14]). 

Malaria is the quintessential example of the Red Queen Hypothesis that 

details the co-evolution of parasites and their hosts. The hypothesis derives its name 

from a quote in Lewis Carroll’s Through the Looking-Glass by the Red queen to Alice 

in which she explains, “Now, here, you see, it takes all the running you can do, to 

keep in the same place.” Plasmodium spp. are not only in an evolutionary arms race 

with their mosquito hosts but also with their vertebrate host. In order to adapt to 
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these dual challenges, Plasmodium’s life cycle has allowed it to take an evolutionary 

path which is hypothesized to differ from normal population genetics in order to 

adapt quickly to virtually all possible stressors [19, 20].  

P. falciparum’s complicated life-cycle expands its population rapidly (up to 

20x per cell cycle) and mutates readily during intraerythrocytic phases, which is then 

purified through natural selection from both mosquito and human host selective 

factors [20]. A natural consequence of this life cycle is that Plasmodium generates a 

large, heterogeneous population that allows for bet-hedging, a population-level 

survival strategy that maintains individuals with lower fitness that may be more fit 

and able to survive if the environment changes [19, 21-24]. One study estimated that 

in a person with 0.01% parasitamemia (% of erythrocytes infected by a Plasmodium  

parasite), they expect “~6 million base pair substitutions, 55 million indels, and 4 

million newly created mosaic var exon 1 sequences” to be created every 2 days. 

when combined with ~262 million cases per year, this is a possibly staggering genetic 

reservoir and when combined with the removal of deleterious mutations through its 

complex life-cycle might explain the cause of Plasmodium’s astounding ability to 

adapt to different host organisms, immune challenges, and drug treatments [7, 25].  

Antimalarial treatment and drug resistance 

Drugs have been used to treat malaria for millenia with the first drug 

treatment in ~168BCE [1]. A tincture using the Artemisia annua plant was used in 

ancient China and eventually led to the discovery of the current frontline 

antimalarial artemisinin by Youyou Tu in 1972. Quinine, which is derived from bark 

of the chinchoa tree, has been used to treat malaria since the 1600’s and led to the 

discovery of chloroquine and other quinoline derivatives. While there have been 

effective drugs developed to combat malaria, there has not been an effective 

vaccine [1]. While there have been effective drugs developed to combat malaria, an 

effective vaccine has proved difficult to develop [1]. Malaria vaccines have low 

efficacy for multiple reasons; the current RTS,S vaccine only has 50% efficacy for 

adults and 25% efficacy for infants [7]. Plasmodium is an intracellular parasite and 

only spends a brief portion of time in the bloodstream before it reinvades new red 

blood cells, which makes removal by the immune system difficult. Plasmodium also 
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has very large gene families for antigenic variation and cell adhesion that frequently 

recombine which help explain the difficulties in creating a vaccine for malaria. 

Drug resistance is a major challenge for the elimination of malaria. P. 

falciparum has developed drug resistance to virtually every drug used in the field 

thus far (Table 2.1, Fig. 2.3).  

Figure 2.3 – Timeline of antimalarial resistance. 

 

Figure from Blasco et al, Nature 2017[14]. 

Colors indicate the class of drug utilized and black triangles denote the first reported resistance. 

Single bars are monotherapies, double bars dual therapies , and triple bars are triple therapies. 

Quinine first had partial resistance in the early 20th century and was later replaced by chloroquine.  

 

Table 2.1: Antimalarials used in the field and associated resistance. 

Drug 
Life-stage 
Target Mechanism of action Usage Resistance reported 

Chloroquine Blood stage 
Hemozoin synthesis 
inhibition 

Treatment and 
prophylaxis Yes [26] 

Amodioquine Blood stage 
Hemozoin synthesis 
inhibition Treatment Yes [26] 

Mefloquine Blood stage 
Hemozoin synthesis 
inhibition 

Treatment or 
prophylaxis Yes [26] 

Piperaquine Blood stage 
Hemozoin synthesis 
inhibition Treatment Yes [26] 

Primaquine 

Liver and 
gametocyte 
stages 

Oxidative damage, 
mechanism unknown 

Treatment of P. vivax 
and ovale, transmission 
prevention of P. 
falciparum and P. vivax  Contested [27] 
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Lumefantrine Blood stage 
Hemozoin synthesis 
inhibition 

Treatment of 
Plasmodium Yes [28] 

Halofantrine Blood stage 
Hemozoin synthesis 
inhibition 

Treatment of 
Plasmodium Yes [29] 

Atovaquone 

Liver and 
blood 
stages 

Cytochrome bc1 
inhibition 

Treatment or 
prophylaxis Yes [30] 

Artemesinin 
derivatives 

Liver and 
blood 
stages 

Oxidative damage, 
mechanism unknown Treatment Yes [31, 32] 

Sulphadoxine Blood stage DHPS inhibition Treatment Yes [33] 

Pyrimethamine Blood stage DHFR inhibition Treatment Yes [34, 35] 

Proguanil Blood stage DHFR inhibition 
Treatment or 
prophylaxis Yes [36] 

Cycloguanil Blood stage DHFR inhibition 
Treatment or 
prophylaxis Yes [36] 

Doxycycline Blood stage 
Protein translation in 
apicoplast Prophylaxis Yes [37] 

Clindamycin Blood stage 
Protein translation in 
apicoplast Prophylaxis Yes [38] 

Fosmidomycin Blood stage 
Protein translation in 
apicoplast Prophylaxis Yes [39] 

 

Artemisinin in combination with other partner drugs is the current frontline 

treatment. However, there have been many recent reports of resistance to 

artemisinin, and resistance to the partner drugs already exists around the world. 

These resistant parasites are found primarily in South-east Asia. Molecular markers 

of artemisinin resistance have been found in Bangladesh, India, Myanmar, Thailand, 

Vietnam, Cambodia, and many other countries in the region [14]. 

Failure rates of the current front-line antimalarials for P. falciparum were 

greater than 10% for regions in South-east Asia and as high as 93% in Thailand. 

Artemesinin combination therapies (ACTs) utilizing artesunate, artemether, and 

dihydroartemesinin all have reported failure around the world. Artesunate-

sulfadoxine-pyramethamine had high failure rates in Somalia and Sudan [7]. In 

Africa, artemether-lumefantrine, artesunate-amodiaquine, and dihydroartemisinin-

piperaquine are still over 98% efficacious, and treatment with first-line antimalarials 

is still largely efficacious in the Americas. However, mutants in PfKelch13, the major 

gene responsible for artemisinin resistance, have been found around the world with 

significant prevalence (>5%) in Guyana, Papua New Guinea, and Rwanda.  
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Other species of Plasmodium parasites appear to have far less antimalarial 

drug resistance. Plasmodium vivax treatment remains efficacious in South-east Asia 

with less than 10% failure. Chloroquine treatment of Plasmodium vivax in Myanmar 

and Timor-Leste has significant failure rates at >10%, and Thailand has ~93% failure 

of chloroquine. Thus far, there have been no reports of Plasmodium knowlesi, 

malariae, or ovale antimalarial drug resistance. These species are now being studied 

with greater frequency, and we may see increased reports of resistance with these 

investigations. 

Novel approaches to finding new drugs and targets are needed. One such 

approach was the creation of a library of novel compounds with proven efficacy that 

would be freely given to both malaria biologists and scientists studying other 

apicomplexans [40]. Another group then put P. falciparum under continuous 

treatment with these drugs to determine if they could develop resistance [41]. After 

whole genome sequence analysis of the drug resistance parasites, the resistance 

associated mutations found were not only single nucleotide polymorphisms, but also 

copy number variations in which a segment of the genome was amplified or deleted. 

 

Comparative genomics and copy number variations 

Comparative genomics is a method of studying evolution and adaptation by 

comparing gene content, linkage, and direct sequences. Comparisons are frequently 

represented as a phylogenetic tree, which demonstrates the relatedness of 

sequences in two organisms and groups based on the most common recent ancestor 

[42]. Another approach is the direct comparison of DNA sequences and blocks of 

sequence between two species. If the species are closely related, their genes are 

likely to be syntenic, which is when their genes and sequence motifs are grouped in a 

conserved, linear pattern [43]. Comparative genomics and synteny can be 

challenging for several reasons. Heritable large-scale changes in the overall structure 

between genomes can mix up sequences or the chromosomal order of genes. High 

quality sequence assemblies are also necessary but difficult to create due to 

repetitive sequences and structural variations. The overall goal of comparative 



15 

genomics is elucidation of the mechanisms of genome evolution and is therefore an 

important tool to study Plasmodium evolution.  

Structural variations are changes to the overall architecture or structure of a 

genome compared to a reference (Fig. 2.4).  

 
Figure 2.4 – CNVs are a subset of structural variations 

 

Figure adapted from a slide by Aaron Quinlan, University of Utah 

By definition, copy number variations (CNVs) and structural variations are a 

form of genome comparison as they are increases or decreases in a segment of DNA 

compared to another genome. Types of structural variations include deletions, 

insertions, duplications, inversions, and translocations (Fig. 2.4). Deletions are the 

loss of a segment of DNA and insertions are the creation of a completely new 

segment of DNA. Duplications can be subdivided into tandem and interspersed 

duplications which differ in whether the segments are duplicated right next to each 

other or into another location in the genome. Inversions swap the order of segments 

of DNA on a single chromosome while maintaining their original location. Finally, 

translocations are the swapping of segments of DNA from one location to a 

completely separate location, either on the same chromosome or on another. CNVs 

are a subset of structural variations that create a change in the number of copies of a 

particular segment of a genome. CNVs include deletions, duplications, or 

amplifications of segments of DNA to >2 copies. They can be broadly grouped into 

two categories: small sequence repeats (bi-nucleotide or tri-nucleotide) or larger 

sequence repeats that can include parts of genes or even multiple genes (Fig 2.4, 

[44]). CNVs, particularly whole gene amplifications, are becoming increasingly 
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important areas of study for human diseases and evolution in general as they allow 

rapid adaptation and evolution by allowing one copy of a gene to freely mutate 

while the other performs its original function [45, 46].  

 

Methods for identifying copy number variations 

CNVs have been a known form of genetic variance for many years [47]. 

Investigation of CNVs began with traditional cytogenetics [47]. Karyotyping was one 

of the original methods of DNA comparison which examines the size, shape, and 

number of chromosomes for abnormalities [47]. FISH, or fluorescent in situ 

hybridization, was the next major method of discovery [48]. FISH involves the 

labeling of segments of DNA with fluorescent probes for subsequent visualization 

under a microscope. CNVs are detected by using FISH by increased or decreased 

levels of fluorescence. 

Methods for identifying CNVs then progressed to comparative genomic 

hybridization (CGH) microarrays [49]. In this approach, DNA sequence probes were 

hybridized to a microarray composed of many different known DNA sequences fixed 

to the array to create a testable library. For comparison, two genomes are then 

fragmented and labeled with different fluorescent colors. They are then hybridized 

to the microarray in equal DNA quantities to compete for binding to the DNA 

sequences fixed to microarray. Amplifications or deletions are identified through 

comparison of the binding of the two genomes to the microarray. Normal sequences 

would fluoresce as an equal mixture of colors of the two genomes. Amplifications 

would fluoresce primarily with the color of the test genome and deletions fluoresce 

primarily with the color of the reference genome. While this was a major step 

forward in the discovery of copy number variations, it still had severe limitations 

including only being able to detect the sequences included in the microarray design 

and limited resolution of boundaries and orientation of amplifications. 

The current most common technology for identifying CNVs and other 

structural variations is the usage of Illumina short-read sequencing [50]. Illumina 

sequencing involves pairs of short-reads in an expected orientation (facing each 

other on opposite DNA strands), which can be used to identify the boundaries and 
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orientation of structural variations with greater sensitivity and resolution than 

previous technologies (Fig. 2.5).  

Figure 2.5 – Comparison between de novo assembly, short-read, and long-read 
mapping approaches to identify structural variants 

  
Image from Mahmoud et al. 2019 [51]. No changes made, used under the Creative Commons License 
- http://creativecommons.org/licenses/by/4.0/ 

For short-read-based mapping approaches, paired-end (red) and split reads (purple) are typically used 
to decipher the type size and location. In addition, the coverage can be used to improve the detection 
of deletions and duplications. Long-read-based mapping approaches typically leverage the alignment 
patterns of long reads (green) to detect the different types of SVs. 

 

The first approach that can be utilized with short-read technologies is de 

novo assembly, which involves iteratively overlapping and matching short-reads to 

build a completely new sequence and then compare that sequence with a reference 

genome to identify structural variants (Fig 2.5, [51]). The next approach is the 

analysis of the orientation of paired-reads after mapping them to the reference 

genome  [50]. Different orientations give different signatures of structural variants 

http://creativecommons.org/licenses/by/4.0/
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(Fig. 2.5). Another method of analyzing the short-reads is the identification of split-

reads, in which a portion of the read maps to one location in a genome and the other 

portion of the read maps to another location  [50]. The final method that can be 

used to identify copy number variations is read-depth analysis, the quantifies reads 

mapped to a particular segment of the genome as either overrepresented or 

underrepresented if there are amplifications or deletions in the genome, 

respectively [50, 51]. 

Newer “third generation” sequencing technologies such as Oxford Nanopore 

and Pacific Biosciences are the most promising methods for identifying structural 

variations. These technologies create reads that are significantly longer than Illumina 

and can be up to 2.2Mb in length [52]. Long reads are much more likely to span the 

junction of a structural variant and therefore give the most confidence when 

identifying new structural variants. In the future, these technologies will expand our 

capability to accurately and sensitively identify structural and copy number 

variations in Plasmodium. 
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3 Complex DNA structures trigger copy 
number variation across the Plasmodium 
falciparum genome 
 

Synopsis 

Antimalarial resistance is a major obstacle in the eradication of the human 

malaria parasite, Plasmodium falciparum. Genome amplifications, a type of DNA 

copy number variation (CNV), facilitate overexpression of drug targets 

and contribute to parasite survival. Long monomeric A/T tracks are found at the 

breakpoints of many Plasmodium resistance-conferring CNVs. We hypothesize that 

other proximal sequence features, such as DNA hairpins, act with A/T tracks to 

trigger CNV formation. By adapting a sequence analysis pipeline to investigate 

previously reported CNVs, we identified breakpoints in 35 parasite clones with near 

single base-pair resolution. Using parental genome sequence, we predicted the 

formation of stable hairpins within close proximity to all future breakpoint locations. 

Especially stable hairpins were predicted to form near five shared breakpoints, 

establishing that the initiating event could have occurred at these sites. Further in-

depth analyses defined characteristics of these ‘trigger sites’ across the genome and 

detected signatures of error-prone repair pathways at the breakpoints. We propose 

that these two genomic signals form the initial lesion (hairpins) and facilitate 

microhomology-mediated repair (A/T tracks) that lead to CNV formation across this 

highly repetitive genome. Targeting these repair pathways in P. falciparum may be 

used to block adaptation to antimalarial drugs. 

 

Introduction 

Major efforts have succeeded in eradicating malaria in North America and 

Europe, but have largely failed in Southeast Asia and Africa [54]. Some of the 

remaining challenges include a lack of accessible treatments and the widespread 

development of drug resistance. Plasmodium falciparum, the protozoan parasite 
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that causes the most severe form of malaria and the majority of malaria deaths, has 

developed resistance to all drug interventions thus far [55]. Single nucleotide 

polymorphisms (SNPs) are the most commonly studied genetic contribution to 

antimalarial drug resistance. However, chromosomal size polymorphisms, including 

copy number variations (CNVs) that encompass the genes of antimalarial targets or 

drug transporters, also play a key role in parasite survival [56]. 

CNVs often carry strong fitness costs due to increased cellular burden for DNA 

replication and alterations of metabolic flux due to differing levels of enzyme 

expression [57]. However, it has been proposed that in many organisms, including P. 

falciparum, the creation of redundant gene copies facilitates the accumulation of 

SNPs [58-61]. Studies observing both types of mutations in Plasmodium provide 

evidence that CNVs appear to eventually be lost in favor of SNPs [62-64]. 

Two CNVs associated with clinical antimalarial resistance encompass the genes 

encoding the multiple drug resistance protein 1 (pfmdr1) and GTP-cyclohydrolase 1 

(gch1) [28, 65-69]. Additionally, a number of resistance-associated CNVs across many 

chromosomes were detected in the P. falciparum genome following laboratory 

selections with novel antimalarials [61, 62, 66, 70-77]. CNVs have also been detected 

in clinical P. vivax isolates [70, 78-81], providing evidence that this form of 

adaptation is not confined to P. falciparum. 

Mechanisms leading to CNVs in Plasmodium are currently unknown. Due to a lack 

of significant sequence homology surrounding the CNV breakpoints, homologous 

recombination is not likely to be involved in the process. The most compelling 

evidence of a shared mechanism is the presence of long monomeric A/T tracks at 

CNV boundaries [61, 69, 79, 82, 83]. In other organisms, there is precedence for 

polymerase pausing and DNA double-stranded breaks (DSBs) at long 

mononucleotide repeats or AT/TA dinucleotide repeats [84-87]. However, in-depth 

characterization of multiple independently generated CNVs on chromosome 6 

indicates an additional signal present that triggers amplification [61]. Specifically, 

two distinct CNVs were found to share a common boundary on one end, an event 

that is highly unlikely to occur by chance. The A/T track at this shared breakpoint is 

not significantly longer (37bp long compared to a mean of 33bp for all CNVs included 
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in our analysis) and thus other factors must be driving this repeat occurrence. 

Abnormal DNA structures, including hairpins and stem-loops, have also been 

implicated in replication fork stalling and DSBs in yeast and humans [88-93]. 

Therefore, we investigated whether sequences proximal to CNV breakpoints across 

the highly A/T-rich P. falciparum genome are enriched in these DNA structures. 

Here, we present evidence that DNA hairpin formation is likely an initiating event 

in the generation of CNVs in P. falciparum. First, we adapted a CNV-calling pipeline 

to achieve near single base pair resolution to study laboratory acquired CNVs in 35 

total resistant parasite clones selected with eight different antimalarials (19 parasite 

clones with distinct CNVs). Sequence analysis of sensitive parent genomes (before 

CNV generation, termed pre-CNV) confirmed that long A/T tracks are found at nearly 

all breakpoint locations and identified four additional shared breakpoints (5 in total). 

Computational predictions revealed stable hairpin structures in close proximity to all 

pre-CNV breakpoint locations. Especially stable hairpins sat close to the shared 

breakpoints, providing further support for a role of hairpin structures in alterations 

of copy number. We defined the relationship between these genomic features on a 

genome-wide scale and this association provided a map of CNV-capable sites 

available to the parasite during adaptation to countless antimalarials. These ‘trigger 

sites’ are found broadly throughout the parasite genome and would facilitate 

adaptation to most selective forces. Lastly, in-depth analysis of breakpoints in 

resistant clones (termed post-CNV) suggests the action of two repair pathways that 

utilize the A/T tracks as short stretches of homology. These findings contribute to a 

growing model of the mechanisms that lead to enhanced generation of CNVs across 

highly repetitive genomes. 

 

Materials and methods 

Collection of genomic and breakpoint sequences.  

We analyzed whole genome sequencing data to identify CNVs from in vitro 

haploid erythrocytic P. falciparum parasites that were selected with a number of 

different antimalarials  (see details on parent and resistant clones, antimalarial 

target, chromosome, CNV sizes, and accession numbers in Table 3.1 and Table 3.2, 
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[41, 61, 68, 94]). For clarity of procedures, we present a flow chart of our overall 

analysis methods (Fig. 3.1). 

Figure 3.1: Bioinformatic analysis of Plasmodium CNVs.   

 

A. Alignment of whole genome sequencing reads starts with BBTools to remove low quality bases or 
adapter sequences and verify correct pairing of reads. The resulting “clean” paired reads are evaluated 
by FastQC for overrepresented sequences, per base read qualities, and read length distributions. After 
passing read quality control, BWA-MEM is used to align “clean” paired reads to the 3d7 Plasmodium 
falciparum reference genome. Qualimap 2 is then used to evaluate the alignments for mean/median 
read depth, paired read insert distributions, and mapping quality. B. After passing mapping quality 
control, Speedseq is used to call structural variants and CNVs with support from LUMPY, CNVnator, and 
positions from previous reports. The Integrative Genome Viewer is then used to manually verify CNV 
calls and evaluate mutational signatures such as read-pair orientation, CNV breakpoint sequences (i.e. 
A/T tract length), and proximal sequence changes that arise during CNV formation. Sequences windows 
around verified CNV breakpoints are extracted using a combination of Bash and Python scripts to create 
50bp sliding windows with a 1bp shift and submitted to Vienna RNAfold for stable hairpin prediction. 
C. For genome-wide analysis, Vienna RNAfold is used to evaluate hairpin formation across all 
chromosomes (excluding subtelomeric/telomeric regions 50kb from the ends). Custom Bash/Python 
scripts are used to find local hairpin minima to find “stable hairpin forming regions”. Phobos Repeat 
Finder is used on the same sequences to map mononucleotide A/T tracts. After mapping 
mononucleotide A/T tracts and stable hairpin forming regions, Bedtools and R are used to determine 
trigger-site feature relationships. 
 

Briefly, low quality bases and adapter sequences from Illumina-based whole 

genome sequencing of both the parent and resistant clones (Table 3.1) were 

removed using BBTools (version 35.82, https://sourceforge.net/projects/bbmap/). 

Uncorrectable errors were assigned low quality scores and cleaned reads were 
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evaluated using FastQC to check per base read qualities, sequence duplication levels, 

overrepresented sequences, and read length distributions [95] (Fig. 3.1A). 

For whole genome sequencing alignments, BWA-MEM was utilized to align 

reads with default settings to the 3d7 reference genome (PlasmoDB release 32, Fig. 

3.1B) [96]. Alignment quality of the resulting bam files were evaluated for mean read 

depth, mean mapping quality, and quartiles of paired read insert-size using 

Qualimap 2 (Table 3.2) [97]. Breakpoints of the CNVs, or locations where DNA 

recombination occurred to generate genome amplifications, were identified by 

adapting the Speedseq pipeline [98]. We used the CNVnator algorithm for 

automated read depth analysis and copy number estimation, the LUMPY algorithm 

for split-read and discordant read pair analysis, and a Bayesian analytical method to 

genotype structural variants and call precise breakpoints [99, 100] (see more details 

below). CNVnator utilizes a read depth mean-shift approach to copy number 

variation detection and applies additional corrections including those for GC-content 

bias of Illumina sequencing; for this analysis, we used default settings to calculate 

read depth in 100bp bins. This was recommended in the CNVnator manuscript for 

30x and 100x coverage, which is the range observed in our analysis. The Speedseq 

pipeline extracts discordant read-pairs and split-reads that can be visualized to 

determine CNV orientation and type (i.e. inversion or translocation). LUMPY takes 

the discordant read-pairs and split-reads and calculates probability distributions of 

breakpoints spanning a putative DNA structural variant. As discordant read-pair and 

split-read analysis give greater breakpoint resolution than read depth, the resulting 

LUMPY breakpoint locations were evaluated for sample quality scores (>100), 

quantity of supporting reads (>3), and significant overlap with amplification 

boundaries from CNVnator and the published data (Table 3.5). CNV calls were both 

manually verified and visualized using IGV 2.4.10 to determine CNV type and observe 

mutational signatures near CNV breakpoints [101]. These breakpoint locations were 

used to obtain consensus sequence (1kb in total, 500bp upstream (5’end) and 

downstream (3’end)) from the parent line for secondary structure predictions (pre-

CNV, see below). For clones in which whole genome sequencing was not available 
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(DSM1-E and -F), previously published sequence from PCR-amplification across the 

breakpoint was used to pinpoint precise breakpoint locations [61].  

Calculating the likelihood of DNA hairpin formation.  

The probability of hairpin structure formation across the desired regions was 

predicted essentially as previously described [102, 103]. In brief, 50bp windows were 

selected by shifting by 1bp across a 2kb stretch of sequence surrounding the pre-

CNV breakpoint position in the parent genome. 50bp windows were chosen to 

ensure hairpin formation was possible within the Okazaki initiation zone during 

replication. The size of the Okazaki initiation zone is not known in Plasmodium but it 

is expected to be in the same range as other eukaryotes (300 to 1000bp [104]). Next, 

the Gibbs free energy (∆G), which predicts the stability of the sequence folding on 

itself, was determined for each window using Vienna 2.1.9 folding prediction 

software with Mathews 2004 DNA folding parameters and G-quadruplexes, GU 

pairing, and lonely base pairs were disallowed [105]. Lonely base pairs are helices in 

a hairpin or stem-loop that are composed of only 1bp and do not stack on other base 

pairs. These structures are not energetically favorable and cannot form and are 

therefore excluded from analyses. During this analysis, each 50bp window was 

counted as a separate possible hairpin. Initially this analysis was confined to 

sequences from the parent genome prior to CNV generation (the pre-CNV breakpoint 

position). Predictions were subsequently performed on sequences from post-CNV 

breakpoint locations from resistant clones.  

Defining stable hairpins.  

Due to a non-normal distribution of predicted hairpin ∆G values, the ∆G 

cutoff of stable hairpins was determined using a randomization method: sequence 

from each chromosome was randomly shuffled using the EMBOSS shuffleseq 

function to maintain overall A/T composition and hairpins were again predicted 

[106]. In this analysis, 50kb of sequence on either chromosome end was trimmed to 

avoid highly repetitive telomeric sequences. The value of the resulting top 3% of 

shuffled hairpins was used as the stability cut-off for all analyses (-5.8 kCal/mol); 

sequences with values below this cutoff indicated a high probability of a ‘stable’ 

structure forming. This value is consistent with that utilized in previous P. falciparum 
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investigations [103]. Furthermore, this value is similar to the top 5% of non-shuffled 

hairpins (∆G of -5.5kcal/mol in our analysis), a threshold utilized in secondary 

structure studies of other organisms [107]. 

Determining the mean ∆G profile.  

The mean ∆G of folding in close proximity to CNV breakpoints (shared or all) 

was determined by setting the end of the A/T track breakpoint to distance zero and 

calculating the mean ∆G for each 50bp window as the sequence is shifted by 1bp. 

The 95% confidence interval of each position was calculated and then plotted using 

Graphpad PRISM 7 (www.graphpad.com). For comparison with sequences not 

associated with CNVs, this process was repeated with 36 randomly chosen A/T tracks 

between 20-40 bp in length from intergenic regions across the genome. This length 

was chosen for random analysis because these A/T tracks are similar to those 

associated with CNV breakpoints (mean of 33bp, Table 3.6 and see Evaluation of A/T 

track lengths across the genome). Each random A/T track position was chosen using 

a random number generator to pick a line number from the bed file of all A/T tracks 

of this size across the genome (excluding telomeres). Due to unequal sample sizes 

and a non-normal distribution, the level of significance in differences was calculated 

using the Wilcoxon-Mann-Whitney test. 

Evaluation of A/T track lengths across the genome.  

A/T tracks were identified with the Phobos Repeat Finder [108], which 

mapped the locations and lengths of long monomeric A/T tracks >9bp across the 3d7 

genome (Fig. 3.1C). The level of significance in differences between the two data 

sets was again calculated using Wilcoxon-Mann-Whitney test. This length of track 

was chosen based on a previous study that showed that those above 9bp were 

overrepresented on P. falciparum chromosome 2 [109]. To determine if A/T tracks 

were observed solely due to the high A/T content of P. falciparum (80.6%), we 

calculated the probability of observing different A/T tracks lengths based purely on 

nucleotide composition. Frequencies of monomeric A/T tracks of length N were 

calculated as follows.  

  



27 

The observed frequency of A and T tracks of length N were obtained using the 

following equation:  

𝑓𝑁
𝑜𝑏𝑠 =

𝐶𝑁
𝑜𝑏𝑠

𝑙𝑠𝑒𝑞
 

where 𝐶𝑁
𝑜𝑏𝑠  is the observed number of monomeric tracks of length N and 𝑙𝑠𝑒𝑞 is the 

length of the sequence.  For each A or T track observed with length N, the 

corresponding expected frequency of A and T tracks was obtained from the following 

equation: 

𝑓𝑁
𝑒𝑥𝑝 = (𝑓𝐴

𝑜𝑏𝑠)
𝑁

(1 − 𝑓𝐴
𝑜𝑏𝑠)2 + (𝑓𝑇

𝑜𝑏𝑠)
𝑁

(1 − 𝑓𝑇
𝑜𝑏𝑠)2 

where 𝑓𝑖
𝑜𝑏𝑠 is the observed frequency of any base pair i which corresponds to the 

overall percent base composition. 

Maximum expected length for each chromosome was found using the following 

formula: 

𝑁𝑒𝑥𝑝 =

log(
1

𝑙𝑠𝑒𝑞(1 − 𝑓𝐴
𝑜𝑏𝑠)2

)

log(𝑓𝐴
𝑜𝑏𝑠)

+

log(
1

𝑙𝑠𝑒𝑞(1 − 𝑓𝑇
𝑜𝑏𝑠)2

)

log(𝑓𝑇
𝑜𝑏𝑠)

 

 

Investigating genome-scale A/T track-hairpin relationships.  

In order to assess the hairpin and A/T track relationship on a larger scale, 

hairpins across the entire genome were predicted as described above. Where 

indicated, analyses were confined to tracks >20bp as this reflects the lengths of A/T 

tracks found at observed CNV breakpoints (Table 3.6). The relationship between 

hairpins and long A/T tracks was then determined in genic and intergenic regions 

separately. This was accomplished by taking gene annotations from the 3d7 

reference genome and extracting A/T tracks from regions within or outside of gene 

annotations utilizing the ‘intersect’ and ‘subtract’ bedtools functions, respectively 

(Fig. 3.1C). Distance between genic or intergenic A/T tracks to the nearest stable 

hairpin (either upstream or downstream) was then calculated using the ‘closest’ 

function in bedtools [110]. For this analysis, the positions of the local minima of 

hairpins had to be identified. First, we extracted all hairpins below our significance 

threshold (-5.8 kCal/mol, see Defining stable hairpins). Then, for each set of windows 
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with contiguous positions below this threshold, we identified the window with the 

most negative value and created a data subset with these minima. If there were 

multiple contiguous windows with the same value, all matching windows were 

extracted and used for analysis. The level of significance in differences were 

calculated using the Wilcoxon-Mann-Whitney test. Visualization of the frequency of 

lengths of the A/T tracks compared to distance to stable hairpins was performed 

using ggplot2 in R version 3.2.4 [111, 112]. The Kolmogorov-Smirnov non-parametric 

test was used to compare the equality of intergenic and genic distributions. 
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RESULTS 

CNV breakpoint features are conserved in Plasmodium falciparum.  

We obtained sequence from P. falciparum clones that had been selected for 

resistance to novel antimalarials in vitro [41, 61, 68, 113] (Table 3.1). 

Table 3.1: Summary of CNV characteristics used in our analysis. 

Antimalarial 
Parent 
clone 

Clones 
Putative gene 

amplified 
(chromosome) 

Amp. 
sizes 

Data 
source 

Accession 
reference 

DSM1 Dd2 

C 

Dihydroorotate 
dehydrogenase (6) 

~70kb 

[1] 

SRX326516 

D ~95kb SRX326519 

E ~34kb N/A 

F ~39kb N/A 

Parent N/A SRX326518 

Halofuginone Dd2 

HFGRII 
Prolyl–tRNA synthetase 

(12) 

~30kb 
[2] 

SRX158283 

HFGRIII SRX200273 

Parent N/A SRX738616 

MMV029272 3d7 

R2B2 

ABC transporter I family 
member, putative (1) 

~62kb 

[3] 
 
 
 
 
 
  

SRX2479359 

R2C9 SRX2479247 

R3E7 SRX2479252 

R3F10 SRX2479375 

Parent N/A SRX2479354 

MMV019662 3d7 

1C4 

Lipid/sterol:H+ 
symporter (1) 

~95kb 

SRX2479223 

2B6 SRX2479224 

2F6 SRX2479226 

3G6 SRX2479265 

F7 SRX2479256 

2D6 SRX2479372 

3B6 ~99kb SRX2479268 

1F4 
~52kb 

SRX2479340 

1F9 SRX2479347 

33XC3 ~35kb SRX2479331 

3C3 
~51kb 

SRX2479355 

3F10 SRX2479219 

2G6 
~41kb 

SRX2479399 

2G9 SRX2479357 

Parent N/A SRX2479243 

MMV028038 3d7 

2E3 

Lipid/sterol:H+ 
symporter (1) 

~51kb 

SRX2479393 

2F10 SRX2479204 

3E9 SRX2479235 

3F5 SRX2479392 

1E10 
~41kb 

SRX2479244 

1E3 SRX2479242 

Parent N/A SRX2479243 

MMV08149 Dd2 
1B2 

Unknown (10, 12) 

~18kb, 
~30kb 

SRX1561330 

Parent N/A SRX5161067 

Cladosporin Dd2 
CladoA Lysyl tRNA Synthetase, 

(13) 

~58kb SRX2479289 

CladoB ~50kb SRX2479338 
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CladoC ~35kb SRX2479378 

Parent N/A SRX2479309 

Primaquine Dd2 
PQA11 Patatin-like 

phospholipase, putative 
(10) 

~18kb SRX2479288 

Parent N/A SRX2479263 

N/A = whole genome sequencing not available (For DSM1 clones, CNVs were determined by PCR 
across breakpoints and microarrays). 

 
After read alignment and CNV calling using an adapted Speedseq pipeline 

with stringent quality controls (see Materials and Methods), we selected sequence 

from 35 parasite clones that displayed high confidence CNV breakpoints for further 

analysis (Table 3.2 and Table 3.3).  

Table 3.2: Plasmodium falciparum CNV locations used in this study.  
Clone Data Source CNV 

Chr. 

CNV Start (bp w/ 

95% confidence 

interval) 

CNV End (bp w/ 

95% confidence 

interval) 

# of 

supporting 

genomes 

DSM1C Guler et al., 2013 6 79,067 ± 0 152,482 ± 0 1 

DSM1D 6 64,578± 0 158,152± 0 1 

DSM1-E 6 118,425@ 153,231@ 1 

DSM1-F 6 113,523@ 152,482@ 1 

HFGRII Herman et al., 2014 12 587,623 ± 61 612,922 ± 3 1 

HFGRIII 12 589,189 ± 5 621,909 ± 1 1 

CladoA Manary et al., 2014 13 2,000,221 ± 11 2,058,842 ± 1 1 

CladoB 13 2,004,915 ± 2 2,055,159 ± 1 1 

CladoC 13 2,000,213 ± 4 2,022,803 ± 0 1 

PQA11 Cowell et al., 2018 10 290,655 ± 0 308,771 ± 2 1 

F7 1 264,317 ± 0 359,349 ± 0 6 

3B6 1 264,317 ± 1 362,912 ± 0 1 

1F4 1 321,511 ± 5 373,058 ± 9 2 

2G9 1 321,511 ± 2 362,912 ± 10 2 

1E3 1 321,511 ± 2 362,913 ± 9 2 

33XC3 12 1,733,591 ± 3 1,768,713 ± 3 1 

3C3 12 1,718,154 ± 3 1,769,038 ± 3 6 

R2B2 3 782,909 ± 45 845,526 ± 0 4 

1B2 10 285,731 ± 27 315,681 ± 3 1 

 12 1,549,855 ± 5 1,567,426 ± 1 

@Whole genome sequencing is not available for these two clones. Analysis was performed using 
locations identified by PCR sequencing.  
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Table 3.3: Alignment statistics and mapping quality.  

Clone 
# of 
mapped 
reads 

% 
mapped 
of total 
reads 

Mean 
coverage 
(reads/bp 
± std. 
dev) 

Mean 
Mapping 
Quality* 

Median 
Insert 
Size* 

Mean 
Coverage 
2kb around 
breakpoint 
regions 
(reads/bp ± 
std. dev) 

Mean 
Coverage 
100bp 
around 
breakpoint 
regions 
(reads/bp ± 
std. dev) 

DSM1-C 23,606,598 98.73 96.2 ± 68 57.0 308 
465.8 ± 
435.6 

315.4 ± 
249.9 

DSM1-D 58,986,651 97.95 
210.2 ± 
121.7 

54.82 261 
872.3 ± 
737.1 

125,592.0 ± 
256,594.6 

HFGRII 35,595,585 98.02 
143.9 ± 
63.4 

56.4 144 
158.2 ± 
37.9 

97.1 ± 25.0 

HFGRIII 35,477,690 98.18 
142.4 ± 
91.6 

54.46 150 
255.4 ± 
105.2 

180.0 ± 65.9 

CladoA 21,978,885 100 
54.7 ± 
34.8 

55.4 321 
118.5 ± 
94.2 

58.8 ± 30.9 

CladoB 31,695,884 100 
79.5 ± 
54.2 

55.6 349 
152.3 ± 
120.4 

127.2 ± 68.9 

CladoC 39,472,609 100 
99.3 ± 
64.9 

55.8 294 
237.2 ± 
209.0 

117.0 ± 89.0 

PQA11 11,056,363 100 
47.8 ± 
76.5 

57.0 267 60.7 ± 26.5 45.9 ± 22.3 

F7 26,916,655 100 
111.5 ± 
141.4 

57.8 242 
127..0 ± 
70.9 

73.2 ± 33.4 

3B6 15,482,302 100 
63.5 ± 
331.6 

57.8 238 60.1 ± 49.7 30.3 ± 12.0 

1F4 20,833,721 100 
85.0 ± 
95.9 

57.8 227 
118.1 ± 
65.8 

55.9 ± 33.3 

2G9 15,622,275 100 
61.6 ± 
77.2 

57.8 182 81.3 ± 52.2 48.4 ± 29.5 

1E3 28,662,532 100 
106.7 ± 
127.2 

57.7 122 
117.0 ± 
85.9 

63.8 ± 39.9 

33XC3 20,214,893 100 
80.1 ± 
74.7 

57.6 160 67.7 ± 31.2 60.8 ± 16.8 

3C3 24,656,913 100 
97.1 ± 
139.9 

57.8 152 
84.0 ± 
111.1 

38.59 ± 25.5 

R2B2 21,492,697 100 
89.2 ± 
184.0 

57.7 238 
114.7 ± 
72.3 

23.8 ± 11.0 

1B2ch10 24,513,373 90.23 
85.9 ± 
97.3 

58.4 250 
104.2 ± 
61.8 

62.5 ± 20.3 

1B2ch12 24,513,373 90.23 
85.9 ± 
97.3 

58.4 250 94.9 ± 78.7 39.7 ± 9.5 
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Clones 
with 
non-
unique 
CNVs 

  

Mean 
coverage 
(reads/bp 
± std. 
dev) 

Mean 
Mapping 
Quality* 

Median 
Insert 
Size 

Mean 
Coverage 
2kb around 
breakpoint 
regions 
(reads/bp ± 
std. dev) 

Mean 
Coverage 
100bp 
around 
breakpoint 
regions 
(reads/bp ± 
std. dev) 

R2C9 19,750,338 100 
81.7 ± 
179.8 

57.7 255 
127.7 ± 
89.9 

24.3 ± 13.5 

R3E7 21,127,436 100 
72.0 ± 
75.1 

57.8 213 
107.3 ± 
64.5 

28.2 ± 13.7 

R3F10 27,855,320 100 
92.6 ± 
97.3 

57.6 160 
141.0 ± 
95.4 

26.2 ± 12.8 

1C4 13,804,219 100 
56.9 ± 
94.3 

56.3 220 78.0 ± 67.3 73.6 ± 47.0 

2B6 21,906,529 100 
91.1 ± 
127.2 

57.8 253 99.2 ± 69.2 57.7 ± 30.9 

2F6 25,244,172 100 
104.6 ± 
120.4 

57.8 222 
119.6 ± 
68.9 

84.7 ± 29.1 

3G6 21,155,622 100 
87.2 ± 
303.6 

57.8 223 90.3 ± 53.3 69.0 ± 26.3 

2D6 20,427,288 100 
84.9 ± 
88.0 

57.9 247 91.6 ± 62.5 51.7 ± 19.3 

1F9 33,525,957 100 
132.0 ± 
178.8 

57.8 159 
149.6 ± 
85.9 

77.4 ± 43.9 

3F10 21,739,212 100 
80.5 ± 
64.5 

57.8 176 
107.8 ± 
115.7 

45.0 ± 17.8 

2E3 11,170,025 100 
87.4 ± 
101.3 

57.7 128 21.5 ± 22 11.2 ± 2.8 

2F10 24936046 100 
86.7 ± 
55.6 

57.7 144 
104.4 ± 
96.3 

52.2 ± 20.8 

3E9 27,252,221 100 
92.9 ± 
70.6 

57.6 132 98.0 ± 95.9 57.8 ± 29.7 

3F5 29,612,259 100 
114.6 ± 
138.7 

57.7 141 
107.4 ± 
97.8 

53.87 ± 25.4 

2G6 20,240,247 100 
80.2 ± 
104.4 

57.8 193 
114.0 ± 
60.4 

63.9 ± 42.1 

1E10 24,613,192 100 
91.2 ± 
114.9 

57.6 122 98.3 ± 71.2 56.8 ± 31.5 

*Mean mapping quality was determined excluding 50kb from each end of chromosomes to avoid 
telomeric DNA, max value is 60. Median insert sizes are the median distance between mapped 
forward and reverse reads. 

 

Due to improved resolution, breakpoint locations were identified primarily 

through discordant- and split-read analysis (extracted by LUMPY). This analysis 

identified 19 distinct CNVs for a total of 33 CNV breakpoints: 5 were conserved 

between different CNVs in multiple parasite clones (termed “shared” breakpoints) 

and 28 were unique to their respective CNV (Table 3.4). In total, these breakpoints 
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had a median of 27 supporting split and discordant reads (range of 3 to 1025 reads, 

Table 3.5). 

Table 3.4: Hairpin stability and distance relationships at CNV breakpoints 
Breakpoint ∆G of Closest Hairpin Track-Hairpin Distance* Hairpin Forming Sequence  

DSM1F/C_3 -10.9 88 Inverted repeat 

CladoA/C_5 -9.1 222 Inverted repeat 

F7/3B6_5 -8.1 218 AT dinucleotide 

1F4/1E3_5 -10.2 104 AT dinucleotide 

3B6/1E3_3 -10.2 194 AT dinucleotide 

Mean of shared -9.7 ± 1.0 165 ± 58 NA 

DSM1C_5 -6.7 216 Inverted repeat 

DSM1D_5 -9.7 49 Inverted repeat 

DSM1D_3 -7.1 2 Inverted repeat 

DSM1E_5@ -6.3 234 AT dinucleotide 

DSM1E_5@ -5.8 424 Inverted repeat 

DSM1F_5@ -8.4 172 AT dinucleotide 

HFGRII_5 -6.1 0 Inverted repeat 

HFGRII_3 -7.3 2 Inverted repeat 

HFGRIII_5 -7.1 21 Inverted repeat 

HFGRIII_3 -6.7 137 AT dinucleotide 

CladoA_3 -7.9 59 AT dinucleotide 

CladoB5 -6.6 105 Inverted repeat 

CladoB3 -6.1 14 AT dinucleotide 

CladoC3 -8.3 92 AT dinucleotide 

PQA11_5 -13.2 234 AT dinucleotide 

PQA11_3 -8.7 212 AT dinucleotide 

1F4_3 -8.9 268 AT dinucleotide 

2G9_5 -13.1 104 AT dinucleotide 

2G9_3 -10.2 194 AT dinucleotide 

33XC3_5** -13.1 118 AT dinucleotide 

33XC3_3** -9 30 Inverted repeat 

3C3_5 -6.8 342 Inverted repeat 

3C3_3 -9 261 Inverted repeat 

R2B2_5 -7.3 2 Inverted repeat 

R2B2_3 -10.7 95 AT dinucleotide 

1B2ch10_5 -8.4 0 AT dinucleotide 
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1B2ch10_3 -8.3 123 AT dinucleotide 

1B2ch12_5* -8 2 AT dinucleotide 

1B2ch12_3* -7.9 171 AT dinucleotide 

Mean of all -8.6 ± 2.0 132.6 ± 106.3 NA 

*Track-hairpin distance was calculated to the nearest stably predicted hairpin. NA, not applicable. _5, 
upstream breakpoint. _3, downstream breakpoint. @sequences derived from PCR across breakpoints. 
Distances of 0 have the A/T track breakpoint participating in hairpin formation. **Utilize A/T 
dinucleotides as the breakpoint rather than A/T tracks. 

 
Table 3.5: Variant statistics and confidence.  

Clone 
Orientation of 
amplification 

LUMPY 
Sample 
Quality 

LUMPY 
PE/SR 
Support 

CNVnator 
Start 

CNVnator 
End 

CNVnator 
Copy # 

DSM1-C Tandem 18620.94 1025/0 79101 152500 7.2 

DSM1-D Tandem 8595.33 32/0 64501 158200 5.8 

HFGRII Inverted 174.29 3/0 N/A N/A N/A 

HFGRIII Tandem 902.33 44/0 575001 621900 2.0 

CladoA Tandem 2257.46 129/0 2000301 2058400 5.3 

CladoB Tandem 5542.93 330/0 2005701 2055100 5.0 

CladoC Tandem 7587.09 445/0 2000201 2022800 5.0 

PQA11 Tandem 957.11 59/0 290001 308800 2.9 

F7 Tandem 700.79 29/4 264301 359400 2.0 

3B6 Tandem 338.98 39/3 264301 359300 2.2 

1F4 Tandem 1574.1 11/0 321501 372900 2.3 

2G9 Tandem 964.9 39/3 321501 360300 2.4 

1E3 Tandem 1221.36 48/1 321601 362600 2.2 

33XC3 Tandem 143.15 13/1 1733601 1768700 2.1 

3C3 Tandem 307.73 7/1 1726001 1767900 2.4 

R2B2 Tandem 179.06 12/0 782801 857600 2.1 

1B2ch10 Tandem 231.77 22/0 285701 315700 2.4 

1B2ch12 Tandem 528.74 33/0 1549901 1567200 2.3 

Supporting 
Clones 

Orientation of 
amplification 

LUMPY 
Quality 
Score 

LUMPY 
PE/SR 
Support 

CNVnator 
Start 

CNVnator 
End 

CNVnator 
Copy # 

R2C9 Tandem 459.26 24/0 783001 857600 3.0 

R3E7 Tandem 241.39 15/0 782901 856300 2.1 

R3F10 Tandem 208.27 11/0 783001 857600 2.0 

1C4 Tandem 707.66 29/0 266201 359400 2.0 

2B6 Tandem 709.47 30/1 264401 356400 2.1 

2F6 Tandem 467.2 19/2 264301 359400 2.1 

3G6 Tandem 437.43 17/1 266201 359400 2.1 

2D6 Inverted 443.03 19/3 266201 359300 2.0 

1F9 Tandem 1766.92 74/0 321601 372900 2.2 

2G6 Tandem 1323.84 56/1 321601 364800 2.3 

1E10 Tandem 969.48 38/1 321601 342600 2.2 

3F10 Tandem 351.89 5/2 1718201# 1770000# 2.2 

2E3 Tandem 474.66 5/1 1718201# 1768000# 2.0 

2F10 Tandem 106.51 5/0 1718201 1768000 2.1 

3E9 Tandem 419.7 7/1 1718201 1768100 2.0 

3F5 Tandem 548.68 3/1 1718201 1768100 2.0 
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Amplification orientation was determined by comparing paired-end sequencing read-mate 
orientation and strand (Fig. S1). LUMPY sample qualities have no theoretical maximum but >100 are 
considered high quality calls. PE/SR= paired-end and split-read support respectively. CNVnator was 
unable to call read depth analysis but visual inspection of bam file showed increase in coverage 
indicating presence of CNV. #Clones had contiguous duplication calls from CNVnator that were 
combined for the overall amplification. 

Read depth changes (detected by CNVnator) further confirmed these general 

breakpoint locations and the orientation of reads confirmed the tandem duplications 

at these sites (Fig. 3.2).  

Confidence in this analysis was bolstered by overall read depth and quality scores 

determined for each sequenced genome. Read depth across each chromosome, 

excluding telomeric regions, was >40-fold (median of 87-fold); coverage across CNV 

breakpoints was similar with a median of 107-fold for 2kb surrounding breakpoints 

and a median of 57-fold for 100bp surrounding breakpoints (Table 3.3). The mean 

mapping quality scores across the genome was 57 (out of a maximum score of 60 

[96]).  

Figure 3.2: Discordant read orientation of duplications.   

 

A. Reads aligning to the reference genome are colored based on read orientation and shown as pairs 
in IGV version 2.4.10. If reads match the reference sequence, they are expected to be gray and face 
towards each other as in the reference concordant example. B. If reads are found in a tandem 
duplication with respect to the reference sequence, they are colored green and face away from each 
other as in the C710 breakpoint example. These reads are shown with their pairs at their respective 
breakpoints and the insert sizes correspond to the size of the duplication. C. If reads are found in an 
inverted duplication with respect to the reference sequence, they are colored both blue and teal and 
are found facing each other and overlapping.  
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To determine whether DNA hairpins were associated with CNV breakpoints in P. 

falciparum, we went to the locations of the shared breakpoints in the pre-CNV 

parent genome. Two kilobases of proximal sequence were used to predict the 

probability of secondary structure formation nearby; a ∆G of less than -5.8kCal/mol 

indicated a high probability of a ‘stable’ structure forming from this sequence 

window (see Materials and Methods). From this focused analysis, we invariably 

detected extremely stable hairpins (the top 0.2% most stable structures across the 

entire genome, mean ∆G of <-9.7 kCal/mol) within a few hundred base pairs of the 

shared breakpoint A/T tracks (Fig. 3.3A-C, mean distance of 165bp +/- 58bp, Table 

3.2). Stable hairpin structures were predicted to form by inverted repeats and AT 

dinucleotides present in the analyzed sequence (Table 3.2). In all cases, multiple 

stable hairpins were detected in close proximity to the shared breakpoints (see Fig. 

3.3, where multiple peaks reach or fall below the dotted line); it was not clear which 

structure was contributing to CNV formation (i.e. the closest one or the most stable 

one). We therefore used this data to investigate whether there was a critical track-

hairpin distance; we determined the mean ∆G at each bp traveling away from the 

A/T tracks for the 5 shared breakpoints. When we compared this profile with that 

from random A/T tracks across the genome that do not participate in CNV formation 

(see Materials and Methods for details about these sequences were chosen), we 

detected a ∆G minima for the shared breakpoints at a distance of ~80bp and ~360bp 

(Fig. 3.4A, p < 0.05 for both). This analysis provided evidence that stable hairpins 

within very close proximity (<400bp) to the breakpoint A/T track contributed to CNV 

formation. 
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Figure 3.3: Highly stable DNA hairpins are found near pre-CNV boundaries. 

 
Resistant clones from various selections exhibit a range of CNV sizes but all have long A/T track 
breakpoints on their upstream and downstream ends. Shared breakpoints are indicated with arrows 
and depicted in red (boxes and plots); unique breakpoints are shown for comparison and depicted in 
gray (boxes and plots). The insets show the ∆G of folding for each 50bp window across 1kb of 
sequence surrounding the A/T track breakpoint (vertical red/grey bar at 500bp). The dotted line 
demarks the threshold for stable hairpin formation (∆G of -5.8kCal/mol, see Materials and Methods 
for how this was defined). A. Each CNV from DSM1 resistant parasites (C, D, E, and F) encompasses 
the gene for the target dihydroorotate dehydrogenase (DHODH, grey bar with star). The shared 3’ 
breakpoint from clones C and F is indicated (arrows).  B. Each CNV from Cladosporin resistant 
parasites (A, B, and C) encompasses the gene for the target lysyl-tRNA synthetase (KRS1, grey bar with 
star). The shared 3’ breakpoint from CladoA and CladoC is indicated (arrows).  C. Each CNV from the 
MMV019662 and MMV028038 resistant parasites (1F4, 2G6, 3B6, and 2B6) encompasses the gene 
target Pf3D7_0107500, a member of the resistance-nodulation-division transporter family (grey bar 
with star). The shared breakpoints are indicated (arrows). 
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Figure 3.4: Mean free energy profiles highlight a critical distance for stable 
hairpins. 

 
The mean ∆G of folding in close proximity to shared (A) and all (B) CNV breakpoints is plotted. This 
was done by setting the A/T track breakpoint at a distance of 0bp and calculating the mean ∆G for 
each window of 50bp as the sequence is shifted by 1bp (A: purple line, and B: blue line). As a 
comparator, the mean ∆G profile of 36 randomly chosen A/T tracks not associated with CNV 
formation (20-40 bp in length) was plotted (green line, see characteristics in Materials and Methods). 
Mean values with 95% confidence interval are shown. Shared breakpoints are DSM1C/F_3, 
CladoA/C_5, F7/3B6_5, 1F4/1E3_5, and 3B6/1E3_3 (see Table 2).  

 

We extended our analysis to the remainder of the high quality CNV breakpoints 

identified in the above analysis (Supplementary Table S1). Although less pronounced 

than with the shared breakpoints, the mean ∆G profile for all CNV breakpoints 

indicated that the most stable structure is within ~400bp (Fig. 3.4B). Minima were 

identified at similar distances from the breakpoints and were significantly stronger 

than random A/T tracks (p < 0.05). In line with this result, stably predicted hairpins 

were found in very close proximity to all CNV breakpoints (mean hairpin distance of 

133 + 106bp, mean ∆G of -8.6kCal/mol). Overall, 42% of breakpoints had a highly 

stable structure within 100bp of the A/T track breakpoint, 60% within 150bp 

distance, and all but one within 400bp (Table 3.4). These proximal structures were 

frequently composed of inverted repeats or AT dinucleotide repeats (Table 3.4).  

As has been noted before, the majority of CNV breakpoints occurred at very long 

A/T tracks (>20bp, Table 3.6). There were a few exceptions; AT dinucleotide repeats 

sat at both junctions for 33XC3 and 1B2 ch10 and an imperfect A/T track was found 

on the 3’ end of the 1F4 clone (88% pure T’s). 
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Table 3.6: Comparison of A/T track breakpoint length pre- and post-CNV 

formation.  

Shared Breakpoint 
Pre-CNV A/T 
track length 
(bp) 

Post-CNV A/T 
track length 
(bp) 

% 
change 

# of 
supporting 
split-reads 

Mean phred 
score of split-
read bases 

DSM1F/C_3 37 31 -16 30 60 

CladoA/C_5 40 ND  ND ND ND 

F7/3B6_5 24 29  +21 2 60 

1F4/1E3_5 33 29  -12 1 60 

3B6/1E3_3 35 29  -18 3 60 

Average 34 30 -6 14 60 

Unique Breakpoint 
Pre-CNV A/T 
track length 
(bp) 

Post-CNV A/T 
track length 
(bp) 

% 
change 

  

DSM1C_5 29 31 +7 30 60 

DSM1D_5 38 20 -47 1 60 

DSM1D_3 28 20 -29 1 60 

DSM1E_5@ 21 15 -29 ND ND 

DSM1E_5@ 36 15 -58 ND ND 

DSM1-F@ 32 25 -22 ND ND 

HFGRII_5 31 ND ND ND ND 

HFGRII_3 N/A^  N/A^  N/A^ N/A^ N/A^ 

HFGRIII_5 41 31  -24  2 60 

HFGRIII_3 41 31  -24  2 60 

CladoA_3 32 ND  ND  ND ND 

CladoB5 40 ND  ND  ND ND 

CladoB3 38 ND  ND  ND ND 

CladoC3 27 ND  ND  ND ND 

PQA11_5 37 26  -30  10 60 

PQA11_3 26 26  0  10 60 

1F4_3 25* ND  ND ND ND 

2G9_5 33 29  -12 3 60 

2G9_3 35 29  -18 3 60 

33XC3_5 N/A^ N/A^ N/A^  N/A^  N/A^  

33XC3_3 N/A^ N/A^ N/A^  N/A^  N/A^  

3C3_5 19 18  -5 3 60 

3C3_3 34 18   -47 3 60 

R2B2_5 24 ND  ND  ND ND 

R2B2_3 26 ND  ND  ND ND 

1B2ch10_5 35 ND  ND  ND ND 

1B2ch10_3 N/A^ ND  ND  ND ND 

1B2ch12_5 30 29 -3  3 60 

1B2ch12_3 24 29 +21  3 60 

Average 32 25 -17 7 60 

Post-CNV A/T track length was determined through split-reads from whole genome sequencing data. 
ND = not determined due to absence of split-reads mapped across breakpoints. N/A^ = AT 
dinucleotide repeats instead of A/T tracks, * = imperfect A/T track repeat 

 

CNV breakpoint features are enriched in intergenic regions.  
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We noted previously that CNV breakpoints are more often found in 

intergenic than genic regions [61]. To explore this further, we expanded our analysis 

across these two regions of the P. falciparum genome. Specifically, we investigated 

1) the quantity and length of A/T tracks, 2) the propensity for DNA hairpin formation, 

as measured by ∆G of folding, and 3) the relationship between these two features. 

First, when compared to expected numbers, long A/T tracks (>9bp) were highly 

enriched across the genome (Fig 3.5, p < 0.01 for A/T tracks > 9bp).  

Figure 3.5: Expected vs observed frequency of long A/T tracks.   

 
Frequency of (# tracks observed/chromosome length) for varying A/T tract lengths on all 
chromosomes. For equations used in calculation, see Materials and Methods. 

 

When comparing genic to intergenic regions of the genome, we found about 

twice as many long A/T tracks in intergenic sequences than genic (42,026 in 

intergenic versus 19,408 in genic, Table 3.7, p < 0.001). A more striking difference 

was observed if the quantity of very long A/T tracks (>20bp) were compared (~4-fold 

increase: 9509 in intergenic regions and 2410 in genic, Table 3.7, p < 0.001). Second, 

we predicted a greater number of stable structures (∆G <-5.8 kCal/mol) in intergenic 

compared to genic regions (37,439 intergenic and 23,442 genic, Table 3.7, p < 0.05) 

and an increase in the mean hairpin strength of these stable hairpins (-7.56 kCal/mol 
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for intergenic compared to -7.23 kCal/mol for genic, p < 0.01). Lastly, we found that 

the distance between A/T tracks and hairpins differed greatly between genic and 

intergenic regions. The mean track-hairpin distance when considering long A/T tracks 

was 99bp in intergenic regions and 277bp in genic regions (Table 3.7, p < 10-13). This 

trend was conserved when considering very long A/T tracks (mean of 104bp distance 

in intergenic and 163bp in genic, p < 10-6).  

Table 3.7: Quantification of A/T track frequency, hairpin frequency, and distance 
relationships across the genome.  

 

A/T Tracks >9bp A/T Tracks >20bp 
Stable Hairpin 

Minima* 

Mean Distance (bp): 

A/T tracks >9bp 

Mean Distance 

(bp): A/T tracks 

>20bp 

 
Genic Intergenic Genic Intergenic Genic Intergenic Genic Intergenic Genic Intergenic 

Chr. 1 434 1223 70 250 566 958 269 103.0 145.3 101.3 

Chr. 2 742 1629 93 371 915 1484 254.1 99.6 160.6 115.4 

Chr. 3 962 1824 126 401 1117 1568 249.5 98.8 143.8 105.9 

Chr. 4 1040 2005 106 460 1270 1734 318.8 107.3 195.5 110.9 

Chr. 5 1085 2404 131 576 1307 2085 287.1 92.5 143.0 101.9 

Chr. 6 1155 2365 143 526 1447 2449 299.8 92.1 193.5 95.9 

Chr. 7 1292 2350 153 532 1558 2037 302.6 102.7 190.9 105.8 

Chr. 8 1274 2722 146 631 1562 2466 274.6 99.4 173.6 105.8 

Chr. 9 1286 2977 167 675 1543 2604 234.3 103.3 120.3 100.3 

Chr. 10 1336 3160 175 710 1657 3009 266.0 99.4 152.2 101.7 

Chr. 11 1746 3821 219 858 2060 3477 273.9 95.3 170.1 100.5 

Chr. 12 1935 4169 239 989 2273 3655 272.1 97.7 151.1 98.2 

Chr. 13 2336 5321 283 1197 2870 4690 280.7 102.9 177.6 102.7 

Chr. 14 2785 6056 359 1333 3297 5223 282.6 100.9 175.7 106.2 

Total 19408 42026 2410 9509 23442 37439 277.3 99.2 163.8 103.8 

*Stable hairpin minima were determined by identifying the most stably predicted structure, most 
negative ∆G. If contiguous windows had the same minimum, the windows were combined into the 
same structure feature for calculations. Distances between A/T tracks and stable hairpin minimum 
were calculated from the edge of A/T tracks to the edge of stable hairpin minima. 
 

By visualizing these distributions on a whole genome scale, the disparities 

between the two genomic regions and the close A/T track-hairpin association in 

intergenic regions are emphasized (Fig. 3.6A and B, Kolmogorov-Smirnov test, p < 

10-15). Due to the characteristics of these features that are associated with observed 

CNV breakpoints, we propose that there is an optimal range for A/T track lengths 

(~20-40 bp) and track-hairpin distances (<400 bp) (yellow highlight in Fig. 3.6A-B). 

We defined genome positions with these characteristics as CNV “trigger sites”: those 

locations that are competent to generate CNVs. Using these parameters, there are 
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9,130 intergenic and 2,222 genic trigger sites across the P. falciparum genome 

(corresponds to 19.0% of intergenic and 9.6% of genic A/T tracks).  

Figure 3.6: Stable hairpins near long A/T tracks are overrepresented in the P. 
falciparum genome. 

  

The distribution of absolute distances between long A/T tracks (>9bp) and the nearest stable hairpin 
(<-5.8 kCal/mol) for intergenic sequences (A) and genic sequences (B) in the 3d7 genome. The yellow 
highlight indicates the critical ranges noted in our analysis: A/T tracks between 20 and 40bp in length 
(the range detected in our analysis of CNV breakpoints, see supplementary table S4) and distance of 
<400bp (the distance limit for the most highly stable structures identified in mean profiles, Fig. 2). All 
plots exclude absolute distance values >4000bp (few data points fell beyond this distance).  

 

Identifying DNA repair pathways utilized in CNV formation.  

The above analysis was performed using parent sequence prior to CNV 

formation (pre-CNV, Fig. 3.7A). In order to pinpoint which repair pathways may be 

acting in this process, we also studied the sequence from resistant clones after CNV 

formation (post-CNV, Fig. 3.7B). This was accomplished by comparing pre- and post-

CNV sequences from two sources, when available: PCR sequence of the A/T track 

breakpoint (for two DSM1 resistant clones) and split-reads from breakpoint 
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alignment sequences (for another 14 clones). We found that the post-CNV A/T track 

lengths were 16.6 + 19.0% shorter than the pre-CNV lengths (Supplementary Table 

S4, p < 0.01). Despite the almost ubiquitous shortening of the breakpoint A/T track, 

hairpin predictions using post-CNV sequence from DSM1 resistant clones yielded a 

pattern similar to that of pre-CNV sequence due to a general lack of mutations 

surrounding the A/T tracks (Fig. 3.7C, Fig. 3.8B and D). In two exceptions (of 7 post-

CNV breakpoints analyzed), a novel stable hairpin was generated (Fig. 3.7D, Fig. 3.8A 

and C), indicating sequence changes following CNV generation. Analysis of deep 

sequencing reads at these locations further confirmed these findings (unpublished 

data). These two different patterns suggest the action of multiple repair pathways in 

CNV generation (see Discussion).  
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Figure 3.7: Post-CNV sequences indicate two models of repair.   

 

A and B. Steps leading to the generation of a novel junction after CNV formation. A. Upstream (5', 
red chevron) and downstream (3', blue chevron) sequences in the parent clone undergo 
recombination (yellow bolt), amplifying the genome surrounding the target gene (gray bar with star). 
Sequence outside of the amplified region is indicated in yellow. B. Following recombination, a tandem 
duplication with two copies of the target gene and a novel junction at the upstream and downstream 
sequence (arrow) is formed. Sequence outside of the amplicon is conserved (yellow). C and D. Use of 
hairpin prediction at the novel junction to identify signatures of repair pathways. C. Hairpin 
prediction pattern is conserved at the novel junction, indicating action of microhomology-mediated 
end joining (MMEJ, red/blue: predicted error-free repair, black: observed sequence, plot shown for 
DSM1 resistant D clone, see Fig. 3.8 for DSM1 resistant F clone). Repair via MMEJ occurs through 
resection, A/T track exposure, and annealing of two complementary genomic locations. The method 
of repair does not affect upstream and downstream sequence but may remove nucleotides from the 
A/T track.  D. Hairpin prediction pattern is altered at the junction/novel downstream hairpins and 
mismatched locations indicate action of microhomology-mediated break induced replication (MMBIR, 
red/blue: predicted error-free repair, black: observed sequence, plot shown for DSM1 resistant C 
clone, see Fig. 3.8 for DSM1 resistant E clone). Repair via MMBIR uses error prone replication that 
induces mutations around the A/T track to resolve a stalled replication fork (arrow). This likely occurs 
through A/T track invasion at another genomic location for CNV generation and resolution.  
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Figure 3.8: Hairpin stability at novel junctions created by the generation of CNVs.  

 
 
Hairpin stability (∆G) across 1kb of sequence at novel junctions created by the generation of CNVs 
(see Fig. 3.7B). Red and blue lines indicate predicted error-free repair utilizing pre-CNV sequence, 
black lines demark observed post-CNV sequence. Conserved junctions from D and F clones (panels B 
and D, respectively) indicate MMEJ action (see Fig. 4. Novel junctions created post-CNV from C and E 
clones (panels A and C, respectively) indicate MMBIR action (also see Fig. 3.7C and D). Significant 
hairpins fall below the dotted black line (see methods for details on cut-off, -5.8 kCal/mol). The 
location of the A/T track at upstream and downstream breakpoints are indicated with vertical grey 
bars. 

 

DISCUSSION 

CNVs are an established contributor to clinical antimalarial resistance [56, 66, 

69, 76, 83, 114, 115]. From conservative estimates on wild parasite populations, as 

much as 6% of P. falciparum genes are encompassed within CNVs [66]. It is 

important to note that this estimate is distinct from laboratory selections because it 

quantifies stable CNVs that persist following purifying selection in the mosquito or 

human parasite stages. Recent laboratory selections have shown that CNVs are as 

frequently observed as non-synonymous SNPs within in vitro selected P. falciparum 

clones [41]. However, CNVs affect more total base pairs and are distributed across all 

chromosomes [41, 66]. This broad distribution is somewhat unique. CNVs are often 

biased to certain chromosomes in organisms as diverse as rice [116], rats [117], 

cattle [118], and humans [119]. However, organisms that show vast phenotypic 
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diversity and high selective pressures appear to have a broader CNV distribution 

(such as dogs [120] and mice [121]). 

Here, we took a novel approach to dissect CNV generation across the genome 

of the protozoan parasite; we performed in-depth bioinformatic analysis of 

sequences found at known CNV breakpoints across all chromosomes. In doing so, we 

gained an understanding of DNA features and molecular pathways that can trigger 

CNV formation. We and others have postulated that CNV formation is the initial step 

in P. falciparum that leads to the accumulation of high level, stable, resistance-

conferring SNPs [61, 122]. This hypothesis is consistent with the role of CNVs as an 

adaptation strategy that is broadly relevant to the parasite as well as other 

organisms [66, 122-125]. 

Shared CNV breakpoints reveal a model of CNV formation 

High quality deep sequencing of parasites from several controlled laboratory 

selections provided a unique opportunity to study CNV formation in the P. 

falciparum genome (Table 3.2). Three characteristics facilitated these studies: 1) the 

availability of sequence from parent clones (prior to selection or pre-CNV) allowed 

for analysis of the native genome architecture at the position of the future CNV 

breakpoint, 2) sequence from resistant clones (post-CNV) allowed for mechanistic 

studies on the pathways that enacted the change, and 3) breakpoints that occurred 

more than once in independent selections (or ‘shared’ breakpoints) allowed us to 

identify features that likely contribute to CNV formation.  

Overall, five shared breakpoints were detected in our analysis; due to their 

occurrence, we speculated that there was an additional CNV signal beyond the 

almost ubiquitous A/T track present at these locations. Indeed, secondary structure 

predictions identified extremely stable hairpins in close proximity to these shared 

breakpoints (Fig. 3.3, Fig. 3.4, Table 3.4). The specific hairpins identified in this 

analysis were more stable than 99.8% of hairpins predicted across the genome 

(~23.5 million structures overall) or the top 8% of stable hairpins (~61,000 structures 

with ∆G of <-5.8kCal/mol in total). This finding increased our confidence that 

hairpins within close proximity to the breakpoint A/T track were of importance. 

Structure predictions on the remaining unique CNV breakpoints displayed a similar 
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profile with a mean ∆G in the top 12% of stably predicted hairpins across the 

genome. 

DNA hairpins and other secondary structures have been implicated in 

mechanisms of immune evasion by P. falciparum [93, 103, 126]. Additionally, such 

structures are known to cause problems during DNA replication in other organisms: 

they result in higher levels of replication fork collapse and DNA breakage [44, 92] 

and hairpin-binding proteins can stimulate recombination at these sites [127-129]. 

When repaired erroneously, these events can lead to the formation of CNVs [44, 

102, 103, 130].  

In light of these previous studies and our results, we propose a model of CNV 

generation (Fig. 3.9): DNA hairpins in close proximity to long A/T tracks throughout 

the P. falciparum genome have the propensity to create DSBs by replication fork 

collapse (Step 1A) or cleavage by hairpin-binding proteins (Step 1B). These DSBs are 

subsequently repaired in a non-faithful manner to create CNVs (Step 2). Resulting 

amplifications are initially rare throughout P. falciparum populations but then 

undergo selection to remove deleterious CNVs and promote the maintenance of 

beneficial CNVs (Step 3). 
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Figure 3.9: Model of copy number variation development and selection in P. 
falciparum. 

  
In Step 1, DNA hairpins trigger double strand breaks throughout the P. falciparum genome 
presumably by either halting replication fork progression (Step 1A) or recognition by hairpin-binding 
proteins (Step 1B). In Step 2, long A/T tracks (grey circles) within 400bp of the double strand break 
are utilized as microhomology for error-prone repair pathways to generate CNVs (blue, red, and green 
bars). CNV breakpoints (vertical dotted lines) are generated semi-randomly across the genome but 
more stable hairpins are more likely to generate recurrent breakpoints (purple dotted line). De novo 
CNVs can either contain beneficial genes (grey bar with star) or those unrelated to the selection. New 
CNVs are generated frequently and could randomly occur throughout the highly repetitive P. 
falciparum genome (green bar), but may increase under selective pressure (see Discussion). In Step 3, 
selection (i.e. drug or fitness effects) enriches for beneficial CNVs (blue and red parasites) and purges 
deleterious CNVs (green parasite) from the population.  

 

CNV trigger sites are enriched within intergenic regions 
We detected elevated numbers of long A/T tracks (>9bp) and stable hairpins 

(>-5.8kCal/mol) in intergenic regions when compared to genic regions of the P. 

falciparum genome (Table 3.7). Furthermore, we identified a closer track-hairpin 

relationship in intergenic regions (Table 3.7, Fig. 3.4) and a corresponding 

enrichment in trigger sites (defined as A/T tracks between 20-40 bp in length within 

400 bp of a stable hairpin, which occurs for 19.0% of intergenic A/T tracks). These 

data indicate that there may be a selective benefit of their association in non-coding 

regions of the genome. We hypothesize that one such benefit includes increased 
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CNV generation and thus, increased adaptability especially in the face of antimalarial 

selection. In support of this hypothesis, the presence of CNV trigger sites across the 

genome poises every potential drug target for amplification (Fig. 3.4 and Fig. 3.9). It 

is interesting to speculate that characteristics of CNV trigger sites could contribute to 

the observation that some clones develop resistance in vitro more readily than 

others [61, 131]. This would be the first time that DNA sequence itself, as opposed to 

the regulation of specific repair proteins [115, 132], has been implicated in the ability 

of P. falciparum to develop resistance. 

Potential DNA repair mechanisms leading to CNV formation in Plasmodium 

falciparum  

Through the analysis of post-CNV sequences, we detect evidence for two 

DNA repair pathways acting in the generation of P. falciparum CNVs: 

microhomology-mediated end joining (MMEJ, [133-135]) and break-induced repair 

(MMBIR, [136, 137]). The ubiquitous shortening of long A/T tracks after CNV 

generation as well as several single nucleotide insertions after repair implicates 

MMEJ, which can cause deletions with and without small insertions (clones D and F, 

Fig. 4C, Supplementary Fig. S4 and Supplementary Table S2). Alternatively, the 

presence of short repeat expansions points to MMBIR, which has not been 

characterized in P. falciparum (clones C and E, Fig. 3.7D). Nucleotide addition is a 

common consequence of fork slippage during replication-mediated repair processes 

[134, 136-138]. Fork slippage is also a hallmark of an alternate and possibly unique 

pathway to P. falciparum, synthesis-dependent MMEJ, which appears to be a 

mixture of MMEJ and MMBIR [134].  

One major influence on the use of microhomology-mediated pathways 

(MMEJ and MMBIR) verses homologous recombination is the distance of DNA 

resection (e.g. the distance from DNA lesion to homologous sequence used for 

repair). For example, short-range resection biases repair towards microhomology-

mediated pathways and extensive resection biases repair towards homologous 

recombination [139, 140]. Furthermore, when excluding homologous recombination, 

short resection distances of <50bp are more likely to lead to MMEJ as a means of 

repair and longer distances <250bp are more likely enacted by MMBIR [141]. Our 



50 

CNV ‘trigger site’ model suggests an important role for the A/T track-hairpin distance 

(Fig. 3.9); we speculate that the span of sequence between each component could 

reflect the resection distance for either of these two repair pathways. Given the 

proposed 400bp distance limit (Fig. 3.4), there are 9,130 intergenic and 2,222 genic 

trigger sites capable of being utilized by these pathways (Table 3.7 and Fig. 3.4). 

Although our study only assessed amplifications, repair of DSB breaks at these sites 

can lead to deletions as well; further investigation is required to understand the 

mechanisms involved in the generation of deletions as well as how they contribute 

to the adaptability of the parasite. 

Homologous recombination is highly active in the parasite [68, 74, 134, 135]; 

what then leads to the use of these error-prone pathways for repair? We propose 

that antimalarial treatment, which causes metabolic stress, skews repair towards 

MMEJ and MMBIR in P. falciparum. Microhomology-mediated pathways in other 

organisms have been shown to exhibit increased activity when cells are under stress 

[142-144]. For example, under normal conditions in mammalian cells, RAD51 inhibits 

MMBIR activity and facilitates the use of homologous recombination for DSB repair 

[145]. However, RAD51 is downregulated during hypoxic stress in tumors, dNTP 

depletion as well as the starvation response in E. coli and cancer, and replication 

stress in humans [143, 145-149]. Future studies on the levels of key repair proteins 

will be required to see if this is the case in P. falciparum.   

Overall, we propose that a close A/T track-hairpin relationship in the P. 

falciparum genome leads to the utilization of error prone microhomology-mediated 

pathways. These events lead to enhanced generation of CNVs and adaptability of 

this parasite under selective pressure. Further investigation of these mechanisms 

may identify DNA repair pathways that can be targeted to limit parasite adaptability. 
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Chapter 4: CNV trigger sites are 
conserved in Plasmodium spp. 

 
 
 
 
 
 

In this section, Claire Granum analyzed the probability of the formation of long 
homopolymeric A/T and G/C tracks in P. vivax 
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4 CNV trigger sites are conserved in 
Plasmodium spp. 
 

SYNOPSIS 

Genome amplifications, a type of DNA copy number variation (CNV), are a 

common method of adaptation of Plasmodium falciparum in response to drug 

treatment and other selective factors. We previously found evidence that long 

monomeric A/T tracks are found at the breakpoints of many Plasmodium resistance-

conferring CNVs and that nearby DNA hairpins act as the mechanism to trigger CNV 

formation. P. falciparum is extremely A/T rich and thus the utilization of these 

features might be expected however not all Plasmodium species are as A/T rich and 

we wondered if this might be conserved. We applied our previous analysis pipeline 

to analyze known CNVs in two other Plasmodium species, P. vivax and P. knowlesi. 

We found that the breakpoints of CNVs were also located within long monomeric 

A/T tracts. Furthermore, we found that long monomeric A/T tracts were enriched 

within Plasmodium genomes regardless of their overall genome A/T content. The 

evolutionary conservation of trigger site features at CNVs and their 

overrepresentation in different Plasmodium species reinforces our previous trigger 

site model and stresses the need for further investigation of the molecular 

mechanisms of CNV creation utilized by Plasmodium. 

 

INTRODUCTION 

With the onset of COVID-19 this year, as well SARS, MERS, and other recent 

zoonotic diseases, it is increasingly important to understand the mechanisms of 

evolution for infectious diseases. Malaria is a disease caused by six species of 

Plasmodium that has been with humans for millennia [1-6]. Plasmodium falciparum 

is the species that causes the most morbidity and mortality [7]. It is highly adaptable 

and has developed resistance to every drug we have used in the field thus far, 

however different Plasmodium species have varying infection rates and symptom 

severity. Plasmodium falciparum appears best able to adapt to selective factors from 
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human intervention but the reasons for this are largely unknown. Plasmodium vivax 

causes the second most cases after P. falciparum but has exhibited far less drug 

resistance [7]. Previous studies found that P. knowlesi is an ancient zoonosis from 

macaque monkeys but there are two hypothesized factors limiting its zoonosis: its 

obligate mosquito vector is currently limited to South-east Asia and its cell surface 

invasion ligands are not efficient in human red blood cell invasion [11, 150]. It is 

hypothesized that the expressed ratio of ligands limits invasion efficiency due to 

copy number variation [150]. 

Copy number variation, particularly through gene duplication and deletion, is 

an important evolutionary strategy for many organisms [45, 58, 59, 151, 152]. Gene 

duplication is key for the evolution of new genes and as a strategy for increasing 

expression of the gene, but it also has been shown to facilitate the accumulation of 

SNPs [58-61]. Studies observing both types of mutations in Plasmodium provide 

evidence that CNVs appear to eventually be lost in favor of SNPs [62-64]. The 

contribution of CNVs to drug resistance and general adaptation in P. falciparum is 

very well established. Two CNVs associated with clinical antimalarial resistance 

encompass the genes encoding the multiple drug resistance protein 1 (pfmdr1) and 

GTP-cyclohydrolase 1 (gch1) [28, 65-69]. Selection with novel drugs under laboratory 

conditions frequently result in resistance-associated CNVs [41, 61, 62, 66, 70-77]. 

CNVs are also a commonly observed method of adaptation by P. vivax [70, 78-81].  

All Plasmodium species have large families of genes involved in host cell invasion and 

immune system evasion, which frequently undergo copy number variation and 

recombination [153-155].  

In our previous research, we identified genomic features involved in the 

creation of CNVs in P. falciparum [53]. Long homopolymeric A/T tracks (20-40bp in 

length) were found at virtually every CNV breakpoint. We also identified stable 

hairpins in close proximity to CNV breakpoints that were likely the initiating lesion. 

These features were everywhere through the P. falciparum genome due to it’s 

overall 80.6% A/T content. However, we wondered whether these features might be 

utilized in other Plasmodium species that are not as A/T-rich such as P. vivax or P. 

knowlesi and if the features were present in an equally A/T-rich species, P. relictum. 
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In our investigation, we utilized whole genome sequencing to study the development 

of copy number variations in different Plasmodium species and the sequences 

utilized in their creation.  Furthermore, we hypothesize that there are differences in 

our previous CNV trigger site model between different species. IF these features are 

conserved between species, the DNA repair pathways and proteins that utilize them 

to generate CNVs would likely serve as a novel antimalarial target to block the 

creation of CNVs and thereby slow or block development of drug resistance. 

 

MATERIALS AND METHODS 

Collection of genomic and breakpoint sequences. 

In order to compare breakpoint data from Plasmodium spp., we combined 

three different data sources: 1) data previously generated from CNV analysis of P. 

falciparum whole genome, 2) newly gathered CNV breakpoints from whole 

sequencing data of clinical P. vivax samples with known drug resistance associated 

CNVs, and 3) CNV breakpoints from the whole genome sequencing analysis of the 

YH1 laboratory strain of P. knowlesi that was adapted to human blood (Table 4.1, 

[150, 156]).  

We used similar methods to those outlined in our previous investigation of 

drug resistance-associated amplifications in P. falciparum [53]. Bases with low 

quality scores and adapters were removed using BBTools (version 35.82, 

https://sourceforge.net/projects/bbmap/). Uncorrectable errors were assigned low 

quality scores and the resulting cleaned reads were evaluated using FastQC to check 

per base read qualities, sequence duplication levels, overrepresented sequences, 

and read length distributions as previously [95]. Reads were aligned to P. falciparum 

3d7, P. vivax P01, and P. knowlesi Strain H reference genomes (PlasmoDB release 46) 

by BWA-MEM with default settings [96]. Alignment quality of the resulting bam files 

were evaluated for mean read depth, mean mapping quality, and quartiles of paired 

read insert-size using Qualimap 2 [97].  

 CNV breakpoints were identified as previously described using the Speedseq 

pipeline which utilizes a Bayesian analytical method for genotyping and precise calls 

from LUMPY for split-read and discordant read-pair analysis and from CNVnator for 
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read depth analysis [53, 98-100]. LUMPY breakpoint locations were used as the final 

breakpoint location after evaluation for sample quality scores (>100), quantity of 

supporting reads (>3), and significant overlap with amplification boundaries from 

CNVnator and the previously published data. We then used SURVIVOR to merge the 

resulting calls and determine which samples shared CNVs by requiring 95% overlap, 

a minimum of two supporting samples that agree on the type (duplication, deletion 

etc), on the strand, and have a minimum length of 2500bp and a maximum of 

100,000bp [157]. The resulting duplications were visually inspected using IGV 2.4.10 

to confirm the position and determine amplification orientation [101]. 

Determining the probability of homopolymeric track formation 

To determine the probability for the formation of long homopolymeric tracks 

based upon genome composition (A/T vs G/C), we calculated the probability of 

observing different tracks lengths based purely on nucleotide composition. 

Frequencies of monomeric tracks of length N were calculated as follows. The 

observed frequency of A, T, G, and C tracks of length N were obtained using the 

following equation:  

𝑓𝑁
𝑜𝑏𝑠 =

𝐶𝑁
𝑜𝑏𝑠

𝑙𝑠𝑒𝑞
 

where 𝐶𝑁
𝑜𝑏𝑠  is the observed number of monomeric tracks of length N and 𝑙𝑠𝑒𝑞 is the 

length of the sequence.  For each track observed with length N (in this case A and T), 

the corresponding expected frequency of tracks was obtained from the following 

equation given: 

𝑓𝑁
𝑒𝑥𝑝 = (𝑓𝐴

𝑜𝑏𝑠)
𝑁

(1 − 𝑓𝐴
𝑜𝑏𝑠)2 + (𝑓𝑇

𝑜𝑏𝑠)
𝑁

(1 − 𝑓𝑇
𝑜𝑏𝑠)2 

where 𝑓𝑖
𝑜𝑏𝑠 is the observed frequency of any base pair i which corresponds to the 

overall percent base composition. 

Maximum expected length for each chromosome was found using the following 

formula: 

𝑁𝑒𝑥𝑝 =

log(
1

𝑙𝑠𝑒𝑞(1 − 𝑓𝐴
𝑜𝑏𝑠)2

)

log(𝑓𝐴
𝑜𝑏𝑠)

+

log(
1

𝑙𝑠𝑒𝑞(1 − 𝑓𝑇
𝑜𝑏𝑠)2

)

log(𝑓𝑇
𝑜𝑏𝑠)

 

Calculating the likelihood of DNA hairpin formation. 
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The probability of hairpin structure formation across the desired regions was 

predicted as previously described [53, 102, 103]. To summarize, 50bp windows of 

sequence were generated by shifting by 1bp across a 2kb stretch of sequence 

surrounding the pre-CNV breakpoint position in the parent genome. 50bp windows 

were chosen to ensure hairpin formation was possible within the Okazaki initiation 

zone during replication. The size of the Okazaki initiation zone is not known in 

Plasmodium but it is expected to be in the same range as other eukaryotes (300 to 

1000bp [104]). Next, the Gibbs free energy (∆G), which predicts the stability of the 

sequence folding on itself, was determined for each window using Vienna 2.1.9 

folding prediction software with Mathews 2004 DNA folding parameters and G-

quadruplexes, GU pairing, and lonely base pairs were disallowed [105]. Lonely base 

pairs are helices in a hairpin or stem-loop that are composed of only 1bp and do not 

stack on other base pairs. These structures are not energetically favorable and 

cannot form and are therefore excluded from analyses. 

Defining stable hairpins. 

Due to a non-normal distribution of predicted hairpin ∆G values, the ∆G 

cutoff of stable hairpins for each respective Plasmodium genome was determined as 

previously using a randomization method: sequence from each chromosome was 

randomly shuffled using the EMBOSS shuffleseq function to maintain overall A/T 

composition and hairpins were again predicted [106]. In this analysis, 50kb of 

sequence on either chromosome end was trimmed to avoid highly repetitive 

telomeric sequences and the mitochondria, apicoplast, and unplaced contigs were 

excluded. The value of the resulting top 3% of shuffled hairpins was used as the 

stability cut-off for each respective genome; sequences with values more negative 

than this cutoff indicated a high probability of a ‘stable’ structure forming. 

To quantify how many stable hairpins were expected in a genome, the local 

minima of hairpins had to be identified. First, we extracted all hairpins below our 

significance threshold. Then, for each set of windows with contiguous positions 

below this threshold, we identified the window with the most negative value and 

created a data subset with these minima. If there were multiple contiguous windows 
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with the same value, they were collapsed to form a single hairpin forming minima 

location. 

Evaluation of trigger site features across the genome 

 For this analysis, telomeres/subtelomeric regions, the mitochondria, 

apicoplast, and unplaced contigs were excluded from analysis and thus only core 

chromosomal sequences were analyzed. 50kb was trimmed off the end of each 

chromosome to remove telomeres and subtelomeres as previously. A/T tracks were 

identified with the Phobos Repeat Finder [108], which mapped the locations and 

lengths of long monomeric A/T tracks >9bp across the respective genomes. This 

length of track was chosen based on our previous finding, as well as others, that 

demonstrated that >9bp sequences were overrepresented in Plasmodium falciparum 

genomes [53, 109].  To determine if this value was appropriate for other Plasmodium 

species, we also calculated the probability of observing A/T track lengths of a given 

length for the less A/T rich P. vivax P01 reference genome utilizing the approach we 

previously applied and determined that 9bp was still an appropriate cut-off [53]. 

Syntenic trigger site comparison 

A final method of comparison was to identify chromosomes and sequences 

with high synteny in order to more directly compare trigger site density within 

homologous locations. Previous studies have also performed this comparison but not 

with the precise versions of reference genomes in this analysis and thus synteny was 

analyzed using the progress MAUVE alignment algorithm within Geneious with 

default settings to compare all chromosomes between the Plasmodium species 

outlined above as well as P. relictum [158, 159]. The default settings include full 

alignment, automatic seed weight calculation, automatic calculation of minimum 

locally collinear block (LCB) scores, and the computation of LCBs. From this step, the 

chromosomes with the highest synteny were identified for direct comparison. 

 

RESULTS 

Plasmodium spp. genomes contents are highly variable 
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In our previous analysis, we identified drug resistance associated CNVs in P. 

falciparum and found that virtually every CNV breakpoint was found in an long A/T 

track 20-40bp and hypothesized that this may be an evolutionarily conserved feature 

of Plasmodia [53]. To begin this investigation, we first compared the reference 

genomes and overall genome content of different Plasmodium spp.: P. falciparum, P. 

vivax, P. knowlesi, and P. relictum (Table 4.1).  

Table 4.1 - Plasmodium genome composition comparison 

Plasmodium 

species 
Host species 

Full 

Genome 

Size 

(Mb) 

Contigs/Chroms 

Sequencing 

for 

reference 

AT 

Content 

Protein 

Coding 

Genes 

# of Gene 

Orthologs 

P. 

falciparum 
Human 23.33 14/14 

Shotgun + 

Sanger 
80.6% 5460 5458 

P. vivax Human 29.05 226/14 Illumina 60.2% 6830 6660 

P. knowlesi Macaque/human 24.4 128/14 
Shotgun + 

Sanger 
61.4% 5483 5319 

P. relictum Avian 22.61 498/14 Illumina 81.7% 5138 5108 

Reference genomes: P. falciparum = 3d7, P. vivax = P01, P. knowlesi = PknH, P. relictum = SGS1. 

 

In addition to P. falciparum, we chose two human-infective species of 

malaria, P. vivax and P. knowlesi, which both have genome A/T contents closer to 

60% and P. relictum that is slightly more A/T-rich (Table 4.1). While the reference 

genomes are in differing states of completion, each species had 14 chromosomes, an 

apicoplast, and mitochondrial genomes (Table 4.1) [160-162]. P. falciparum had the 

most complete genome with zero unplaced contigs, which was accomplished in 2002 

through the efforts of a large consortium to shotgun sequence the whole genome 

from plasmid clones [160]. P. knowlesi was also accomplished using shotgun 

sequencing of plasmid clones whereas the other two species were assembled using 

Illumina short-read sequencing with various read-lengths and assembly strategies 

[161, 162]. The final genome completion status was inferred based upon the number 

of unplaced contigs, protein coding genes, and gene orthologs. Despite different 

genome sizes and assembly methods, P. falciparum, P. knowlesi, and P. vivax had 

similar numbers of protein coding genes and orthologs (Table 4.1). P. vivax was the 
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only species which was significantly larger and had more predicted protein coding 

genes and orthologs.  

CNV breakpoint junction sequences occur at long A/T tracks in P. falciparum, vivax, 
and knowlesi 

After initial genome characterization where we sought to appreciate broad 

genomic differences, we utilized our previous CNV analysis pipeline to gain precise 

resolution of the breakpoints for validated gene amplifications in P. vivax and P. 

knowlesi genomes. For P. vivax, we analyzed a data set that included 46 high quality 

clinical isolates from various regions of the world [156]. These isolates contained 1) 

an MDR1 amplification associated with resistance to chloroquine, 2) an amplification 

of the PVP01_1468200 gene that may be involved in merozoite invasion, and 3) an 

amplification of the Duffy-Binding Protein (DBP) that may improve efficient invasion 

of Malagasy individuals [70, 79, 80, 163]. 

From this dataset, we identified 9 clinical isolates with the known CNVs 

described above that were supported by both CNVnator and LUMPY [156] (Table 

4.2). There were 5 supporting isolates for the DBP duplication, 2 supporting isolates 

for the MDR1 amplification, and 2 isolates for the PVP01_1468200 duplication. It is 

interesting to note that the CNVs we identified differed greatly from the original data 

source in both their location and even chromosomes. This was entirely due to our 

usage of the P01 reference genome as opposed to the less accurate PvSal1 reference 

genome (Table 4.2) [156, 164]. 

 
Table 4.2 – Plasmodium CNV locations 

Plasmodium 
Species 

Gene  
CNV 
Chr. 

CNV 
Start 
(±CI) 

CNV End 
(±CI) 

Supporting 
Isolates 

Source 

P. vivax  

DBP 06 
980473 

±1 
987840 

±0 

ERR111718 
ERR111719 
ERR111729 
ERR111732 
SRR828416 [156] 

MDR1 10 
468190 

±0 
506357 

±0 
ERR111717 
ERR111721 

PVP01_1468200 14 
2903557 

±0 
2907109 

±0 
ERR054084 
ERR054085 

P. knowlesi DBP 6  
996,794  

±7 
1,047,723  

±10 
SRR3135172  [150] 

Reference genomes are: P. falciparum = 3d7, P. vivax = P01, P. knowlesi = PknH. ±CI = confidence 
interval. CNVs share 95% overlap and same strand support. 
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We also analyzed the P. knowlesi YH1 strain which has a DBP alpha 

duplication identified on chromosome 6 [150]. We previously reported that of 19 

unique CNVs identified in P. falciparum clones with 33 unique breakpoint sequences, 

all but 4 were found in long A/T tracks [53]. Here we identified 6 unique junctions in 

P. vivax and 2 unique CNV junctions in P. knowlesi. Every single P. vivax breakpoint 

junction occurred at a long A/T track (mean length of 18bp) and the DBPalpha 

breakpoints for P. knowlesi were 18bp A/T tracks on either end. This means that 

virtually every CNV we have identified in Plasmodia species utilizes a long A/T track 

as its junction sequence. 

A/T tracks are overrepresented genome-wide in all analyzed Plasmodium spp. 

After identifying that CNV breakpoints were once again found within long A/T 

tracks, we next investigated the expected and observed number of long A/T tracks 

within the P. vivax genome. We chose the P. vivax genome because it has the lowest 

A/T content of all genomes that we analyzed and is composed of 60.2% A/T (Table 

4.1). We calculated the probability of formation as previously and found the 

probability of observing A/T tracks of 7bp or longer for P. vivax P01 is <0.1% (data 

not shown). Based upon our previous analysis with P. falciparum, we continued to 

analyze A/T tracks >9bp in length [53].  We also found that A/T tracks in the range of 

20-40bp (which is the length we previously hypothesized were involved in CNV 

formation) are vastly overrepresented in the P. vivax genome with ~107 more 

observed than would be expected for virtually every chromosome (Fig. 4.1, Table 

4.3). We also found that long G/C tracks were overrepresented. However, there 

were very few GC tracks between 20-40bp on any chromosome (with 0 on 

chromosomes 3 and 6) and these sequences are not expected to play a role in CNV 

formation (Fig. 4.1).  
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Figure 4.1 – Track length for P. vivax P01 expected vs observed

 
The probability of observing a homopolymeric track of a given length (orange) was calculated based 
upon the base composition of each chromosome (see Methods). The observed number of 
homopolymeric tracks 20-40bp long (blue) was determined using Phobos Repeat Finder. 
 

Table 4.3 – A/T track lengths per chromosome for P. falciparum 3d7, P. vivax P01, 
P. knowlesi Strain H, and P. relictum SGS1 

Chromosome 

A/T Tracks >9bp A/T Tracks >20bp 

P. 
falciparum 

P. 
vivax 

P. 
knowlesi 

P. 
relictum 

P. 
falciparum 

P. 
vivax 

P. 
knowlesi 

P. 
relictum 

Chr. 1 1657 1240 1324 2275 320 158 437 79 

Chr. 2 2371 1140 1064 2185 464 141 306 70 

Chr. 3 2786 1077 1591 1828 527 159 445 59 

Chr. 4 3045 1309 1745 2275 566 162 538 67 

Chr. 5 3489 2291 1166 2379 707 290 317 71 

Chr. 6 3520 1433 1694 2562 669 261 502 62 

Chr. 7 3642 2320 2558 4391 685 301 792 127 

Chr. 8 3996 2483 3148 4435 777 398 866 127 

Chr. 9 4263 3247 3850 5919 842 478 1048 174 

Chr. 10 4496 2106 2325 3874 885 266 670 115 

Chr. 11 5567 3007 3886 6272 1077 415 1131 174 

Chr. 12 6104 4709 5680 9005 1228 596 1545 258 

Chr. 13 7657 3087 4514 6884 1480 443 1249 177 

Chr. 14 8841 4733 5640 8967 1692 560 1447 244 

Total 61434 34182 40185 63251 11919 4628 11293 1804 

For these calculations, the apicoplast, mitochondria, unplaced contigs, and telomeres were excluded. 

Finally, we analyzed long A/T tracks on a chromosome-by-chromosome and 

genome-wide basis, we found that P. falciparum had the most A/T tracks >9bp with 

61,434 genome-wide; despite being significantly less A/T-rich, P. knowlesi had 

40,185 and P. vivax with 34,182 A/T tracks >9bp (Table 4.3). However, there were 

two interesting observations. The first was that P. knowlesi had almost as many A/T 
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tracks >20bp genome-wide as P. falciparum (11,293 versus 11919, Table 4.3). It is 

important to note that P. knowlesi Strain H is composed of only 61.4% A/T as 

opposed to P. falciparum 3d7 which is composed of 80.6% A/T. The second 

interesting observation was that two species with the highest A/T content (P. 

falciparum and P. relictum) had similar quantities of A/T tracks >9bp but there were 

significantly fewer A/T tracks >20bp in P. relictum. It is difficult to compare the 

species on a chromosome by chromosome basis as each chromosome is a different 

length and due to differences in synteny, each chromosome may not be directly 

comparable. However, we address this later by identifying syntenic chromosomes 

and specifically comparing them. 

P. vivax is predicted to form the most stable hairpins 

 After investigating A/T tracks, we next investigated the formation of stable 

hairpins which are the second feature involved in our trigger sites. Using the same 

methods as previously outlined, we found that the overall genome-wide mean ΔG 

was highest for P. falciparum and lowest for P. vivax (after excluding unplaced 

contigs, the apicoplast, the mitochondria, and telomeres). This was partially 

expected based on the difference in overall A/T content as G/C bonds are stronger 

than A/T bonds (Table 4.4).   

 
Table 4.4 – A/T track lengths per chromosome for P. falciparum 3d7, P. vivax P01, 
P. knowlesi Strain H, and P. relictum SGS1. 

Plasmodium 
species 

Hairpin Minima 

Genome-wide 
Mean ΔG * 

ΔG cutoff stable 
hairpins (kcal/mol) 

Stable Hairpin 
Collapsed Minima * 

Mean ΔG of 
Minima * 

P. falciparum -1.4 -5.8 60881 -7.43 

P. vivax -3.31 -7.2 135513 -8.76 

P. knowlesi -2.54 -6.2 91202 -7.65 

P. relictum -1.89 -5 64215 -6.20 

For all calculations, the apicoplast, mitochondria, unplaced contigs, and telomeres were excluded 

 

After utilizing our previous method of determining stable hairpins, we found 

that the cutoff for formation of stable 50bp hairpins was -5.8 kcal/mol in P. 

falciparum, -7.2 kcal/mol in P. vivax, 6.2 kcall/mol in P. knowlesi, and -5 in P. relictum 

(Table 4.4). In order to determine the number of stable hairpin forming regions, we 
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found local stable hairpin minima and found that P. vivax is predicted to form the 

most stable hairpins with ~135,000 genome-wide as opposed to ~61,000, ~91,000, 

and ~64,000 for P. falciparum, P. knowlesi, and P. relictum respectively (Table 4.4, 

Fig 4.2).  

When analyzed on a chromosome by chromosome basis, several trends stand 

out. The Plasmodium spp. follow the same general trends for each chromosome as 

they do genome-wide with P. falciparum having the least A/T tracks per 

chromosome and P. vivax the most (Fig. 4.2). An interesting observation we made 

was that the number of stable hairpins increases linearly by chromosome for P. 

falciparum but jumps between chromosomes for P. vivax and P. knowlesi.  

Figure 4.2 – Stable hairpin collapsed minima per chromosome 

 
Stable hairpin minima were found in P. falciparum 3d7 (blue), P. vivax P01 (green), P. knowlesi Strain 
H (orange), and P. relictum SGS1 (gray). For these calculations, the apicoplast, mitochondria, unplaced 
contigs, and telomeres were excluded. P. falciparum chromosomes are numbered by size and other 
species are numbered based upon synteny between species. 
 

 However, it is important to remember that the synteny and homology 

between species of Plasmodium is not perfect and each chromosome may not be a 

perfect match for the same chromosome number in another species. For this reason, 

we next determined syntenic chromosomes for a more direct comparison using the 

MAUVE algorithm which maps conserved blocks of homology (Fig. 4.3). It had 
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previously been reported that P. falciparum chromosome 11 was highly syntenic to 

chromosomes 9 for P. knowlesi and P. vivax and we confirmed this with our MAUVE 

analysis as well as showed that P. relictum chromosome 9 is also highly syntenic (Fig. 

4.3, [153, 161]). We further confirmed that P. vivax and P. knowlesi had near 1-to-1 

synteny and that both parasites had less synteny with P. falciparum and P. relictum 

(Fig. 4.3). When comparing these chromosomes, the three human infective species 

were relatively the same length but P. relictum was significantly shorter (Table 4.5). 

 
Figure 4.3: Comparison of syntenic Plasmodium DNA matches genome-wide trigger 
site trends.  

 
P. falciparum 3d7 chromosome 11, P. knowlesi chromosome 9, P. vivax P01 chromosome 9, and p. 
relictum chromosome 9 are highly syntenic. All chromosomes of the four species were analyzed 
using the MAUVE algorithm to find blocks of conserved DNA and each conserved block is given a 
particular color (red, yellow, dark purple, green, orange, and purple). Connecting lines point to 
boundaries of conserved blocks. 

 
Table 4.5 – Plasmodium syntenic chromosome comparison 

Plasmodium species 
chromosome 

Ch. Size 
(Mb) 

# of genes 
A/T tracks 

>9bp * 
A/T tracks 

>20bp * 
Stable hairpin 

minima * 

P. falciparum 3d7, Ch. 11 2.04 525 5567 1077 5780 

P. vivax P01, Ch. 9 2.24 516 3451 575 12116 

P. knowlesi Strain H, Ch. 9 2.16 480 3850 1048 9151 

P. relictum 
SGS1, Ch. 9 

1.69 453 5919 174 5805 

*Apicoplast, mitochondria, unplaced contigs, and telomeres excluded 
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All of the species had similar numbers of genes. The previously observed genome-

wide trends continued in these syntenic chromosomes. 

The trends we observed genome-wide for both A/T tracks and stable hairpin 

minima were conserved with P. falciparum having the most long A/T tracks and P. 

vivax having the most stable hairpins. As a final means of comparison, we 

determined the distance in between the previously defined trigger site features of 

long A/T tracks and stable hairpins and found that the distance between the two 

features was shortest in P. knowlesi and longest in P. falciparum. This is somewhat 

expected based on the total number of stable hairpins and A/T tracks which would 

force the density to be higher in P. knowlesi and P. vivax than in P. falciparum. 

However, based upon our previous model P. falciparum would still have the most 

possible trigger sites due solely to having the most long A/T tracks. 

 

Discussion 

A/T track breakpoints are conserved in clinically relevant Plasmodium spp. 

Based upon our previous analysis, we developed a trigger site model in P. 

falciparum that facilitates the creation of copy number variations [53]. We 

developed this model through the identification of two primary features at virtually 

every breakpoint of CNV junction: long A/T tracks and stable hairpins. In this study, 

we investigated whether this trigger site model contributes to CNV generation in two 

other clinically relevant Plasmodium spp. (P. vivax and P. knowlesi) through the 

sensitive and specific investigation of known CNVs [150, 156]. We found that every 

CNV had long A/T track as their breakpoints (Table 4.2). P. vivax CNVs on different 

chromosomes and from different areas of the world all utilized A/T tracks as 

microhomology in the creation of their CNVs. Furthermore, a lab adapted clone of P. 

knowlesi YH1 also utilized A/T tracks for the creation of the duplication that 

facilitated the invasion of human red blood cells (Table 4.2) [150]. Through the use 

of SURVIVOR and stringent requirements for CNV identification (see Materials and 

Methods), we identified multiple amplifications and deletions to corroborate the 

usage of A/T tracks in the creation of CNVs in Plasmodium. Automated tools such as 

SURVIVOR allow us to more efficiently analyze CNVs and gather greater quantities of 
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known trigger sites to expand our model. Finally, it would be interesting to see if P. 

relictum or Plasmodium spp. that infect other organisms such as rodent also utilized 

A/T tracks as their breakpoints. 

Unfortunately, we were not able to perform the same stable hairpin analysis 

near CNV breakpoints as we performed previously [53]. Without the direct parent of 

an isolate, we are unable to determine the importance of stable hairpins in the 

formation of these CNVs. We had previously compared parent and clone genomes at 

CNV breakpoints, we were able to identify that the hairpin causing the DNA break 

was sometimes conserved and was sometimes lost during the repair process. 

Without direct parent and daughter samples this process is impossible to 

accomplish. The parasite undergoes many rounds of replication and mutation in the 

host and during this process it may lose stretches of sequence that have directly 

contributed to CNV formation.  

Trigger site features are overrepresented in all Plasmodium spp. 

We then investigated these trigger site features genome-wide in P. vivax, P. 

knowlesi, and P. relictum. Despite being considerably less A/T-rich, both P. vivax and 

P. knowlesi have far more long A/T tracks than would be expected (Table 4.1, Fig. 

4.1, and Table 4.3). It was interesting to find that P. knowlesi had almost as many 

A/T tracks between 20-40bp in length as P. falciparum (Table 4.3). In juxtaposition, 

P. relictum had the A/T tracks >20bp despite being the most A/T-rich. The reasons 

for these differences likely have interesting biological causes and consequences for 

the formation of CNVs. 

When investigating the formation of stable hairpins, we found that P. vivax 

was predicted to form both the most stable hairpins and the most stable hairpins 

genome-wide (Table 4.4 and Fig. 4.2). In order to more directly compare sequences, 

we identified syntenic chromosomes where the order of blocks of homologous DNA 

were conserved between species (Fig. 4.3). The trends that we observed genome-

wide held up for these sequences as well and may therefore be directly comparable 

between genes (Table 4.5). An interesting example would be the direct comparison 

of sequences surrounding the MDR1 gene, which is known to confer resistance to 

antimalarials in P. falciparum and P. vivax but has not thus far been identified as a 
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means of drug resistance in P. knowlesi. We have speculated previously that 

ubiquitous nature of the CNV trigger sites in P. falciparum contribute to its ability to 

rapidly adapt to various stressors and through this mechanism, it is possible that P. 

knowlesi exhibits a similar propensity. However, a firm conclusion in this regard 

would require laboratory selections with both species under various forms of stress. 

In order to perform the same rigorous CNV analysis and identify the repair pathways 

utilized in the creation of their CNVs that we did for P. falciparum, we would need 

three things: to obtain parent and daughter sequences for newly formed CNVs, to 

identify shared breakpoints in order to prove the importance of stable hairpins as a 

source of DNA breaks, and to expand the numbers of CNVs to see the exact 

frequency of A/T track usage in the other Plasmodium parasites. Future studies will 

investigate the mutational signatures found at de novo CNVs in other Plasmodium 

species in order to investigate their conservation of DNA repair pathways. 
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Chapter 5: Adaptation of novel 
computational methods to 

investigate Plasmodium 
falciparum biology 

 
 
 
 
 
 

For the single cell sequencing section, some of the following text, figures, and tables 
have been adapted from Liu et al. 2020, [165]. For the extrachromosomal DNA 
section, some of the text, figures, and tables have been adapted from McDaniels, 
Jennifer M. et al. "The generation of extra-chromosomal DNA amplicons in 
antimalarial resistant Plasmodium falciparum”, in preparation for Molecular 
Microbiology. 
 
The work in this chapter was done in collaboration with and augmented by the work 
of several coauthors. Specifically, Shiwei Liu conducted all single cell experimental 
work, the read depth analysis for bins >10kb, and all analysis of variance in Figures 
5.1 and 5.3. William Chronister analyzed read depth for the binning data ≤10kb to 
predict CNVs in Figure 5.5. Jennifer McDaniels conducted all ecDNA experimental 
work and expanded analysis of the sac3 super-amplicon in the sequencing data in 
Figures 5.6 and 5.7. Contributions are detailed beneath figures.  
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5  Adaptation of computational methods 
to Plasmodium falciparum 

 

SYNOPSIS 

 P.  falciparum is a challenging organism in which to perform genetic studies 

for a number of reasons. This intracellular parasite has a very biased (80.6% A/T), 

small genome at 23Mb and ~25 femtograms of DNA per genome copy. In addition, 

sample preparations are heavily contaminated with human host DNA from 

circulating cells and cell-free DNA [166]. Combined, these factors make isolation of 

parasite DNA for whole genome sequencing of single parasites and auxiliary forms of 

DNA (such as extrachromosomal DNA) especially difficult. In this chapter, I present 

novel applications and investigations of whole genome sequencing to investigate the 

Plasmodium genome and copy number variations. Specifically, I discuss our efforts to 

identify copy number variations within individual parasites to investigate 

heterogeneity within populations. Finally, I briefly discuss the computational 

investigation of P. falciparum extrachromosomal DNA. 

 
Single cell sequencing to investigate P. falciparum copy 
number variations heterogeneity 
 

INTRODUCTION 

Population heterogeneity is an important strategy that Plasmodium utilizes to 

improve survival and functionality; having a diverse population enables a better 

chance of survival under novel stressors. However, results from whole genome 

sequencing represent an average of populations of cells and can only find mutations 

above a certain frequency in a population. Single cell sequencing is the best method 

of investigating cryptic populations hidden within bulk samples. We are attempting 

to use single cell sequencing to answer two major outstanding questions regarding P. 

falciparum CNVs. With what frequency do CNVs arise in P. falciparum under stress? 

Are there hidden copy number variations to be found within populations? The 
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present methods of identifying CNVs in P. falciparum utilize Illumina short-read 

sequencing of bulk DNA. The two current best methods of identifying CNVs from 

Illumina whole genome sequencing are read depth analysis and split-read/discordant 

read pair analysis (as used in [53]). Both approaches have great difficulty in detecting 

rare variants. 

Due to the limitations of bulk sequence analysis, recent investigations have 

analyzed single cells to appreciate low frequency CNVs across heterogeneous 

populations of yeast, mouse, and human cells [167-172]. This approach provides a 

significant advantage for detecting rare genetic variants by no longer deriving an 

average signal from large quantities of cells. However, short read sequencing 

requires nanogram to microgram quantities of genomic material for library 

construction, which is many orders of magnitude greater than the genomic content 

of individual Plasmodium cells (femtogram quantities). Therefore, whole genome 

amplification (WGA) is required to generate sufficient DNA quantities. Several WGA 

approaches have been reported and each has advantages and disadvantages for 

different applications [173-175] but most were optimized for mammalian cell 

analysis [172, 174, 176-183]. 

Few studies have attempted to detect genetic variations in single P. 

falciparum parasites. One WGA method, multiple displacement amplification or 

MDA, has been used to amplify single P. falciparum genomes with near complete 

genome coverage [50, 51]. These studies successfully detected single nucleotide 

polymorphisms between single parasites; however, MDA is less useful for CNV 

detection because analysis is disrupted by low genome coverage uniformity and the 

generation of chimeric reads [175, 184]. 

Multiple annealing and looping-based amplification cycling (MALBAC) is 

another WGA method that exhibits improved uniformity over MDA, which is 

advantageous for detecting CNVs in single cells [185]. MALBAC has the unique 

feature of quasi-linear pre-amplification, which reduces the bias associated with 

exponential amplification [185]. However, standard MALBAC has been reported to 

be less tolerant to AT-biased genomes, unreliable with low DNA input, and prone to 
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contamination [186-188]. Thus, before using MALBAC to amplify the P. falciparum 

genome, optimization of this WGA method is necessary. 

The ability to analyze the resulting Illumina whole genome sequencing data 

largely depends on the ability to align Illumina paired-end sequences to a reference 

genome. Finding unique mapping locations for the reads is frequently the goal for 

these analyses. However, each reference genome presents a unique challenge as it 

has its own sequence bias, repetitive sequences, and assembly quality. Gaps in the 

reference genome will lead to unmappable reads, sequence bias (high A/T or G/C 

content) can influence the ability of libraries to accurately capture the sequence, and 

repetitive sequences can either prevent unique mapping of reads or present a 

challenge for amplification by polymerases.  

Both read depth and discordant/split-read analysis rely upon the ability to 

uniquely map reads to the reference genome. However, various alignment 

algorithms handle this challenge in different manners and therefore a standardized 

pre-processing step may be useful. One common approach to this problem is the 

utilizing the “mappability” of a genome. Regions of a genome with high 

“mappability” would tend to produce uniquely mapped reads and could theoretically 

be used for normalization or masking procedures in copy number variation analysis. 

This is most frequently calculated purely based upon a given reference genome and 

read length without mismatches.   

In this study, we present a single cell sequencing pipeline for P. falciparum 

parasites, which includes efficient isolation of single infected erythrocytes, an 

optimized WGA method inspired by MALBAC, and a sensitive method of assessing 

sample quality prior to sequencing. We tested our pipeline on erythrocytes infected 

with laboratory-reared parasites as well as patient-isolated parasites with heavy 

human genome contamination. Genome amplification using our optimized protocol 

showed increased genome coverage, better coverage uniformity, and strong 

amplification reproducibility. These improvements will enable the detection of 

parasite-to-parasite heterogeneity to clarify the role of genetic variations, such as 

CNVs, in the adaptation of P. falciparum. These improvements also provide a 
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framework for the optimization of single cell amplification in other organisms with 

challenging genomes. 

 

MATERIALS AND METHODS 

Some of the methods detailed in this section have been adapted and 

abbreviated from our publication on improved single cell amplification of P. 

falciparum [165]. The full parasite culturing, amplification, sequencing methods, as 

well as expanded coverage analysis for this data are detailed in Liu et al. 2020 [165]. 

Selected sequencing analysis for this chapter 

Sequencing quality control and alignments were performed essentially as 

previously described [53]. Briefly, we removed Illumina adapters and PhiX reads, and 

trimmed primers from reads in each fastq file with the BBDuk tool in BBMap [189]. 

We then aligned each fastq file to the hg19 human reference genome to remove 

human contamination and kept the unmapped reads (presumably from P. 

falciparum) for further analysis [189]. Each “cleaned” fastq file was then aligned to 

the 3D7 P. falciparum reference genome with Speedseq [98]. Reads with low-

mapping quality score (below 10) and duplicated reads were discarded using 

Samtools [190]. Qualimap 2.0 was used to analyze genome-wide coverage statistics 

[97]. We compared the variation of normalized read abundance (log10 ratio) at 

different bin sizes using boxplot analysis (Figure 5.1, R version 3.6.1) and determined 

the bin size of 20 kb using the plateau of decreasing variation of normalized read 

abundance (log10 ratio) when increasing bin sizes. We also investigated the breadth 

of coverage for genic and intergenic regions of the genome using the gff files which 

give gene locations from PlasmoDB to create bedfiles to select regions (genic and 

intergenic) of the genome for further analysis (PlasmoDB release 44). Read coverage 

from the entire genome was then divided into non-overlapping 20 kb bins using 

Bedtools and normalized by dividing each bin by the total average reads in each 

sample [110]. Finally, we calculated the coefficient of variation of normalized read 

abundance by dividing the standard deviation by the mean and multiplying by 100 

[175, 191], then and analyzed the equality of coefficients of variation by R package 

“cvequality” version 0.2.0 [192]. 
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Figure 5.1: Distribution of normalized read counts in various bin sizes 

 
Figure from Liu et al. 2020, [165]. AH generated files for analysis and analyzed data for 1kb-10kb, SL 

analyzed 20kb-50kb and generated the figure. 
The Log10 ratios of normalized read abundance in 1-50kb (at intervals of 5 and 10kb) are showed for 
sequenced samples. The boxes indicate Q1 (25th percentiles) to Q3 (75th percentiles) with a horizontal 
line drawn in the middle to denote the median. Outliers, above the highest point of the upper whisker 
(Q3 + 1.5×IQR) or below the lowest point of the lower whisker (Q1-1.5×IQR), are not displayed. A. 
Distribution of normalized read counts in various bins sizes for select sample types. Dd2 Bulk 
(purple), ENM (pink, 1 samples), LNM (maroon, 1 samples), COM (blue, 2 samples) samples. B. 
Distribution of normalized read counts in various bin sizes for all EOM samples. EOM (green, 
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n=13). C. Distribution of normalized read counts in various bin sizes for LOM samples. LOM (purple, 
n=10). 
 

 

Calculating P. falciparum mappability 

After preliminary coverage analysis and normalization, we determined that 

further methods for normalization were needed to attempt identification of CVNs. 

For this analysis, I analyzed the Plasmodium falciparum 3d7 reference genome, 

release 42. I utilized the GEM mappability suite to create “mappability” tracks of the 

P. falciparum 3d7 reference genome (release 42) by first creating a GEM index of the 

genome and then computing the mappability for 50, 100, 150, and 300bp read 

lengths [193]. These GEM mappability files were then converted to wig files using 

the gem-2-wig program in the GEM suite of tools then visualized on IGV for broad 

characterization. 

 

CNV analysis of P. falciparum single cell sequencing data  

The “cleaned” alignments generated in the previous analysis were used for 

this section. The samples to be analyzed included a known P. falciparum CNV on 

chromosome 5 that includes the MDR1 gene. This CNV was known to occur from 

approximately 880,000 to 970,000 on chromosome 5.  

For read depth analysis of these cells, we initially utilized bin sizes from 5kb 

through 10kb, but only the data for 7kb and 10kb are shown. This range was chosen 

as a trade-off between bin variation and the ability to detect medium to large CNVs 

(15kb or more). Read counts for each bin were determined by Bedtools V2.17.0 

coverageBed [110]. To avoid read count bias arising from GC content, bins were 

grouped into 20 even quantiles of GC content using R. Counts were then normalized 

within those 20 groups; the median read count for the bin group (with outlier read 

counts excluded) was normalized to 1 and all other read counts were divided by the 

median read count. Outliers were considered greater than median + 4 MADs or less 

than median - 4 MADs. The 100-mer mappability track that I previously generated 

was then used to normalize each bin for probability of being able to map a read to 

each location within that bin. Single cell segmentation for CNVs was accomplished 
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on the normalized bin data using the R package DNAcopy with the parameters alpha 

= 0.0001, undo.SD = 0, and min.width = 5 [194]. Split-read and discordant read 

analysis of alignment data was conducted as previously using the Speedseq pipeline 

in order to identify a known amplification present within the cells [98]. 

 

RESULTS 

Optimized MALBAC improves single cell Plasmodium falciparum-infected 
erythrocytes read coverage. 

For the full results of this publication, see Liu et al. [165]. Our single cell 

sequencing pipeline for P. falciparum parasites included stage-specific parasite 

enrichment, isolation of single infected erythrocytes, cell lysis, whole genome 

amplification, pre-sequencing quality control, whole genome sequencing, and 

analysis steps (Figure 5.2A). 

We collected parasites from either an in vitro-propagated laboratory line or 

from a blood sample of an infected patient (referred to as ‘laboratory’ and ‘clinical’ 

parasites, respectively). This allowed us to test the efficiency of our procedures on 

parasites from different environments with varying amounts of human host DNA 

contamination. Furthermore, for laboratory samples, we isolated both early (1n) and 

late (~16n) stage parasite-infected erythrocytes to evaluate the impact of parasite 

DNA content on the performance of WGA. For single cell isolation, we used the 

automatic microscopy-based CellRaft Air system (Figure 5.2B), which has the benefit 

of low volume capture procedures (minimum: 2μl).  

Following isolation, we successfully amplified 3 early and 4 late stage 

individual cells from laboratory samples using the standard MALBAC protocol 

(termed non-optimized MALBAC, ENM and LNM respectively).  We also applied a 

version of MALBAC that we optimized for the small AT-rich P. falciparum genome 

(termed optimized MALBAC) to 42 early (EOM) and 20 late stage (LOM) laboratory 

samples and 4 clinical samples. Post-amplification and purification DNA yields were 

detectable in all single cell samples, indicating successful amplification. Compared to 

standard MALBAC, our optimized protocol had a lower reaction volume, more 

amplification cycles, and used a modified pre-amplification random primer (see 
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Methods in Liu et al. 2020 publication for more details). Using this method, we 

successfully amplified 43% of the early and 90% of the late stage laboratory samples 

and 100% of the clinical samples.  

Figure 5.2: Single P. falciparum-infected erythrocytes are isolated, amplified, and 
sequenced.  

  
 

Figure from Liu et al. 2020, [165]. AH developed protocol for single cell isolation and application of 
non-optimized MALBAC to Plasmodium, SL optimized MALBAC, performed quality control, whole 

genome sequencing, and generated figure. 
A. Experimental workflow. Parasite cultures are obtained and then enriched using column and 
gradient-based methods (see Liu et al 2020). Individual parasite-infected erythrocytes (see panel B) 
were automatically isolated into PCR tubes using the CellRaft AIR System (Cell Microsystems). All 
samples were lysed by combining a freeze–thaw step and treatment with a detergent prior to MALBAC 
amplification. MALBAC uses a combination of common (orange) and degenerate (grey) primer 
sequences to amplify the genome. The quality of amplified genomes was assessed prior to library 
preparation and sequencing using Droplet Digital (dd)PCR. B. Parasite stage visualization on the 
CellRaft AIR System using microscopy (10X magnification). Parasite-infected erythrocytes were seeded 
into microwells to yield only a single cell per well (left image of each group), and identified with SYBR 
green and Mitotracker Red staining (parasite DNA and mitochondrion, respectively). Early stage 
parasites exhibited lower fluorescence due to their smaller size and late stage parasites had noticeable 
dark spots (arrow) due to the accumulation of hemozoin pigment. Scale bar represents 10 μm. 
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Optimized MALBAC improves uniformity for single cell samples. 

To investigate the uniformity of read abundance distributed over the P. 

falciparum genome, we divided the reference genome into 20kb bins and plotted 

the read abundance in these bins over the 14 chromosomes (Figure 5.3A). For this 

analysis, we selected a 20kb bin size based on its relatively low coverage variation 

compared to smaller bin sizes and similar coverage variation as the larger bin sizes. 

To quantitatively measure this variation, we calculated the normalized read 

abundance per bin in each sample (by dividing the raw read counts with the mean 

read counts per 20kb bin, Figure 5.3B). Indeed, the bulk control displayed the 

smallest range of read abundance for outlier bins (blue circles, Figure 5.3B) and 

lowest interquartile range (IQR) value of non-outlier bins (black box, Figure 5.3B), 

indicating less bin-to-bin variation in read abundance. Both EOM and LOM samples 

exhibited a smaller range of normalized read abundance in outlier bins than ENM 

and LNM samples (Figure 5.3B). In addition, the read abundance variation of COM 

samples was similar to EOM or LOM samples (Figure 5.3B). Finally, due to the 

extremely low coverage of the clinical bulk sample, the read abundance variation 

was much higher than all other samples (Figure 5.3B).  

We then calculated the mean coefficient of variation (CV) for read abundance 

in the different sample types to compare the variation of read abundance in all 

sequenced samples (Table 5.1, Figure 5.3C).  

Table 5.1: Coefficients of variation of normalized read abundance in each sample 

Sample name Mean Coefficient of Variation (CV) SD  

Dd2 Bulk (1) 22 - 

ENM (1) 147 - 

EOM (13) 89 4 

LNM (1) 111 - 

LOM (10) 79 2 

COM (2) 87 12 

Clinical Bulk (1) 472 - 

SD, standard deviation. 
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Figure 5.3: Samples amplified by optimized MALBAC display improved 
uniformity of read abundance. 

 
Figure from Liu et al. 2020, [165]. AH generated files for read-depth analysis and GC characteristics. SL 

did read-depth normalization and generated the figure. 
A. Normalized read abundance across the genome. The reference genome was divided into 20kb bins 
and read counts in each bin were normalized by the mean read count in each sample. The circles of the 
plot represent (from outside to inside):  chromosomes 1 to 14 (tan); one EOM sample (#23, grey); one 
ENM sample (#3, orange); one LOM sample (#16, purple); one LNM sample (#2, dark red); Dd2 bulk 
genomic DNA (black). The zoomed panel shows the read distribution across chromosome 5, which has 
a known copy number variation (arrow on Dd2 bulk sample). B. Distribution of normalized read 
abundance values for all bins.  The midline represents the median normalized read abundance for each 
sample. Error bars represent the 25th (Q1) and 75th (Q3) percentiles. Outliers, identified by either 
1.5×IQR (interquartile range) or more above Q3, or 1.5×IQR or more below Q1, are depicted with circles. 
One sample from each type is represented (see all samples in Figure S2 and Figure S3C). C. Coefficient 
of variation of normalized read abundance. The average and SD (error bars) coefficient of variation for 
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all samples from each type is represented (EOM: 13 samples; ENM: 1 sample; LOM: 10 samples; LNM: 
1 sample; Dd2 Bulk: 1 sample; COM: 2 samples; Clinical Bulk: 1 sample). See Methods for calculation. 
 

The CV from the ENM sample was significantly different when compared to 

the CV of each EOM sample (147% versus a mean of 89%, respectively, p value 

<0.01, Table 5.1). Similarly, the LNM-CV was significantly different when compared 

to the CV of each LOM sample (111% versus a mean of 79%, respectively, p value 

<0.01, Table 5.1). These data showed improvement in levels of read uniformity 

across the genome when using optimized MALBAC over the standard protocol. In 

support of this finding, the CV value of COM samples were similar to EOM and LOM 

samples (Table 5.2, Figure 5.2C). 

Table 5.2 – Average coverage of sequenced samples 

MALBAC 
type 

Single 
cell 

Sample type (#) 
Coverage breadth 

Whole 
genome  

Genic coverage 
Intergenic 
coverage 

Optimized 

Yes 

EOM (13) 57.9% 78.0% 27.8% 

LOM (10) 57.3% 79.0% 25.0% 

COM (2) 48.0% 67.7% 18.5% 

Non- 
optimized 

ENM (1) 23.0% 34.4% 6.1% 

LNM (1) 47.4% 67.9% 16.9% 

NA No 
Dd2_Bulk gDNA (1) 96.1% 97.0% 94.9% 

Clinical Bulk gDNA (1) 0.3% 0.3% 0.2% 

 

Known P. falciparum CNVs are detected by single cell sequencing. 

 After preliminary read depth analysis and alignment characterization, we then 

attempted to find both rare and known CNVs within individual cells. The first attempt 

utilized our previous analysis pipeline to identify split-reads and discordant reads [53]. 

With sufficient depth, these reads would ignore any potential biases in amplification 

from MALBAC and would allow us to find copy number variations with high resolution. 

As a first investigation, we sequenced parasites with a known copy number variation 

on chromosome 5 and attempted to detect it in cells amplified by non-optimized 

MALBAC and our optimized MALBAC amplification. This approach allowed us to detect 

the CNV not only from bulk sequencing but also in 5/13 early stage parasites that were 

amplified with our optimized MALBAC procedure (EOM, Table 5.3).  
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Table 5.3 – MDR1 detection by discordant read pair and split-read analysis. 

Condition 
Proportion of samples MDR1 detected* (positive 

detection/total) 
Mean Read 
Support (n) 

Bulk 1/1 67 (1) 

NM 0/2 - 

EOM 5/13 2.4 (5) 

LOM 1/11 2 (1) 

*Full amplicon is detected 

Unfortunately, we only detected the known amplification in sequencing data 

from 1 out of 11 late-stage cells amplified by our optimized MALBAC (LOM, Table 

5.3). A particularly interesting finding from this analysis was the existence of two 

distinct known CNVs (MDR1) within the individual cells. The known copy number 

variation is found on chromosome 5 from ~880,000 to ~970,000bp. Of the EOM cells 

in which we identified the known CNV, the CNV was identified from ~889,900 to 

~969,800 in two cells (19 and 23, Table 5.4) and from ~888,330 to ~970,200 in three 

cells (21, 25, and 27, Table 5.4). 

Table 5.4 – Discordant and split-read analysis identifies two distinct versions of 
MDR1 within the EOM population. 

MALBAC 
condition 

Cell CNV 
Length 

Chromosome Start 
position (bp) 

End Position 
(bp) 

# of supporting 
reads (PE+SR) 

EOM 19 79875 Pf3D7_05_v3 889928 969803 3 (2+1) 

EOM 21 81831 Pf3D7_05_v3 888328 970159 1 (1+0) 

EOM 23 79890 Pf3D7_05_v3 889899 969789 6 (3+3) 

EOM 25 81921 Pf3D7_05_v3 888329 970250 1 (1+0) 

EOM 27 81905 Pf3D7_05_v3 888346 970251 1 (1+0) 

 

We next utilized a read depth analysis pipeline developed for sparsely 

sequenced individual human neurons [172]. However, our sequencing data was 

significantly deeper, performed on a much smaller genome with different sequence 

characteristics, and was done with a different amplification protocol. Thus, 

modifications were made including mappability calculations, GC-normalization 

methods, and overall binning. The mappability for the Plasmodium falciparum 3d7 

reference genome was largely very high with near perfect mappability in core 

genome sections on the interior of chromosomes (Fig. 5.4A and B).  Regions of low 

mappability were found at telomeres and large gene families involved in antigenic 

variation as was expected (Fig. 5.4C). 50bp reads were still mostly mappable but 
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mappability increased as read length increased again as expected with standard read 

lengths of ≥ 100bp being highly mappable (Fig 5.4). It is important to note that this 

program estimates mappability for individual reads and does not account for 

mismatches allowed by alignment programs (caused by SNPs or through sequencing 

errors) and also does not take into account the reality of paired-end sequencing 

which more easily allows unique mappings. 

 

Figure 5.4 - The P. falciparum core genome is mappable for reads greater than 

50bp long.  

 
AH performed all work related to this figure. 

Mappability file for Pf3d7 chromosome 6 were calculated using GEM mappability suite for 50, 100, 
150, and 300bp read length. Files were converted to wig format and visualized on IGV. Probabilities 
are displayed in blue between 0 and 1 with the max height observed as 1.  A. Pf3d7 chromosome 6. B. 
Core genome subsection of Pf3d7 chromosome 6. C. Telomeric subsection of Pf3d7 chromosome 6.  

 
 After these modifications, the known CNV was easy to detect in bulk 

sequencing regardless of bin size and significance cutoff (Fig. 5.5A). Cell 23 was one 

of the most promising cells as we were able to identify the known CNV through 

discordant/split-read approaches as well as read depth analysis (Table 5.5, Fig. 

5.4A). Even under strict significance cutoffs, we were able to detect the known CNV 

with 7kb bins (Fig. 5.5B). However, our ability to detect the known CNV varied 

between bin sizes as we were unable to detect the CNV with 10kb bins (Fig. 5.5B). It 

is interesting to note that this analysis pipeline also identified another novel CNV on 

chromosome 5 in several cells that was not present in bulk sequencing (Fig. 5.5). 

However, further mathematical analysis is needed to confidently say that these 

novel CNVs are the result of true signal and not due to bias in amplification. 
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Figure 5.5 – A known CNV is identifiable in bulk DNA and some single cells. 

 

AH generated all bin files, mappability files, and GC bins. WC applied single cell analysis pipeline and 
generated the images used in this figure. 

A. Bulk DNA analysis in 7kb and 10kb bins with stringent alpha 0.0001. Odd chromosomes are 
shown in green and even chromosomes in blue. Each bin for their respective size (7kb or 10kb) is 
graphed based upon its copy number state on the y-axis. The red line represents the segmentation 
output from DNAcopy. The vertical yellow bar is the position of the known CNV. B. Amplified single 
cell 23 for both 7kb and 10kb bins.  
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DISCUSSION 

Discordant read pair and split-read analysis is a promising approach to the 

identification of CNVs from single cell sequencing data if relatively high coverage of 

single cells can be achieved (Table 5.4 and Table 5.5). Discordant read pairs and 

split-reads identified the known CNV in almost half of the EOM samples and with 

further improvements to our amplification method, this is likely to improve. 

Furthermore, we identified that two separate versions of the known CNV within the 

single cell samples based upon these methods (Table 5.4), which is extremely 

promising for future studies. Two separate versions indicate that there is 

heterogeneity in either the creation of the CNVs or in their fate. CNVs typically carry 

an associated fitness cost either from changing the expression of off-target genes or 

from the necessity of greater DNA synthesis. If CNVs are slowly shortened to only 

include the necessary gene or mutation, the evolutionary advantage of the CNV 

would be maintained but the fitness cost would be removed. Given the relatively 

small differences between breakpoints (~200-300bp on either end), the ability to 

distinguish between these CNVs would be lost within bulk sequencing and would 

likely be judged as the same CNV with less breakpoint resolution. 

Read depth analysis of the single cell sequencing data is also promising as we 

were able to detect the known CNV in cells with strict significance cutoffs as well as 

potentially novel CNVs (Fig. 5.5B). It is encouraging to note that the amplification 

reproducibility for our methods is fairly high (Fig. 5.4). This is especially helpful for 

read depth analysis as it allows approaches like cross-sample normalization to 

succeed by controlling for all noise regardless of source [168, 195]. The major 

challenge for continued read depth analysis is the remaining relatively high variance 

in coverage, likely due to sparse coverage in intergenic regions of the genome (Table 

5.3). One possibility for future analysis is to exclude intergenic regions and solely 

analyze coverage in genic regions (similar to exome sequencing analysis). However, 

future improvements in the amplification method to improve coverage in intergenic 

regions and analytical methods to control for background noise in our methodology 

will allow us to confidently identify novel CNVs from individual parasites. 
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Computational investigation of P. falciparum 
extrachromosomal DNA 
 
INTRODUCTION 

Plasmodium’s ability to adapt to different stressors through heterogeneity 

has previously been discussed; however, there are other mechanisms that could 

contribute to its flexibility. One major contributor that is frequently overlooked is 

extra-chromosomal DNA (ecDNA). The contribution of gene duplication has been 

previously discussed in other chapters but ecDNA constitutes another source of 

extra copies of DNA. ecDNA has been reported to contribute to the fitness of such 

diverse organisms as the Leishmania and Trypansoma parasites, yeast, human 

cancer, mammalian cells [136, 196-203].  

Our lab began studying the genetic development of drug resistance with a set 

of parasites that had developed drug resistance to under controlled selection with 

the novel antimalarial, DSM1 [61]. The parasites first duplicated and then later 

amplified a segment of their genome to facilitate overexpression of the drug target 

and thus titrate out the drug. An interesting result was that in separate distinct 

clones selected in separate cultures developed different DNA breakpoints. Several 

interesting observations of these clones led to the hypothesis that the parasites 

were creating extrachromosomal DNA (ecDNA) as a further means of drug 

resistance. When they were subjected to higher concentrations of DSM1, the 

parasites further amplified the drug resistance associated CNV to as many as 10 

chromosomal copies but each clone maintained the same sequence boundaries for 

each new copy. This demonstrated that increased CNV copies were not created de 

novo each time but were instead the amplification of the previous copies. More 

importantly, the drug resistance was not directly proportional to the apparent CNV 

copy number. When measured by qPCR, the H1 clone (high level resistance), had 

~10x higher EC50 than another clone with the same observed copy number and we 

therefore hypothesized the existence of ecDNA.  

Jennifer McDaniels definitively identified ecDNA in the highly resistant H1 

clones using complex electrophoresis-based purification and multiple highly sensitive 
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DNA analysis methods including droplet digital PCR. These methods identified 

resistance-conferring genes outside of the chromosomes. Enzymatic digestions of 

the ecDNA showed that there were two separate structures of ecDNA but we 

attempted to investigate their precise sequence using whole genome sequencing.  

After Jennifer McDaniels put in vast efforts to isolate, characterize, and 

prepare the ecDNA for sequencing I applied our previous whole genome sequencing 

analytical methods to see if we could find identify features unique within the ecDNA 

samples. Analysis has proven challenging but we present evidence of specific 

differences in the whole genome sequencing results.   

 

METHODS AND MATERIALS 

This text has been adapted from Jennifer McDaniels et. al, in preparation to 

only include the whole genome sequencing analysis that I performed. For the full 

experimental methodology and further information on the ecDNA, please consult 

the full paper, McDaniels et al. in preparation. 

Methods for this analysis were previously reported in (Huckaby et al., 2019). 

For whole genome sequencing analysis, we used BBtools to trim adapter sequences 

and remove low-quality reads [189]. Remaining unmapped reads that did not align 

to the P. falciparum Dd2 genome were then blasted (NCBI database) to determine % 

contamination with sequences that aligned to other organisms using Geneious [158, 

204]. After evaluation, human and bacterial read contamination were removed by 

aligning the reads to the human hg19 reference genome and top 3 bacterial 

genomes from BLAST using BBMAP version 38.33 [189, 204]. BBmap alignment 

options included a minimum of 95% identity, max indels of 3, a minimum of two 

seed hits, with quick match and fast modes enabled. Unmapped reads from this step 

were used for subsequent alignment and CNV analysis. 

Lastly, to determine the orientation of the amplicon (tandem or reverse 

tandem duplication) discordant reads were visually inspected at the breakpoints 

using IGV 2.4.10 [101]. Two algorithms, CNVnator, which call CNVs using read depth, 

and LUMPY, which calls CNVs using discordant reads, were then used to further 

evaluate copy number variations after BWA-MEM was used to align reads with 
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default settings to the Dd2 genome (PlasmoDB release 42) [96, 99, 100]. QualiMap 2 

was also used to evaluate the mapping quality of reads and number of reads that 

aligned to the Plasmodium genome [97]. Analysis of LUMPY was used to determine 

the location and length of the DSM1 CNV using paired-ends and split read 

alignments. CNVnator was used to confirm the location of the CNV and an 

estimation of copy number was provided by read depth analysis using 1000bp. 

 

RESULTS 

When comparing read coverage across the dhodh amplicon relative to that 

from the entire chromosome 6, we observed very high enrichment of the amplicon 

in the gel-incompetent material (mean of ~170-fold, Table 5.5) and conservation of 

the amplicon boundaries with those from genomic DNA (Figure 5.6).  

 

Table 5.5: Summary of coverage enrichment at known CNVs 

Samples 
H1 genomic 

DNA 
H1 gel- incompetent DNA* 

Chromosome 6 coverage 

Minus dhodh 
amplicon  

6.5x 3.6x 

dhodh amplicon 
only 

79x 604x** 

Estimated CN 12 170** 

Mitochondrial genome 
coverage 

MT-CYB coverage 286.6x 683.5x 

Estimated CN 32 76 

Chromosome 5 coverage 

Minus mdr1 
amplicon  

8.6x 5x 

mdr1 amplicon only 29x 14x 

Estimated CN 3 3 

Chromosome 12 coverage  

Minus gch1 
amplicon 

8.7x 6.2x 

gch1 amplicon only 54x 1.5x 

Estimated CN 6 0 

CN, copy number; dhodh, dihydroorate dehydrogenase; published copies 8-10 [61]; mt-cyb, 
cytochrome b; published copies 20-150 (Lane et al., 2018); mdr1, multidrug resistance protein 1, 
published copies 2-3 (Triglia et al., 1991); gch1, GTP cyclohydrolase 1 published copies 2 (Anderson et 
al., 2009). *This sample was isolated form the loading well of a PFGE gel and amplified using a DNA 
amplification kit to generate enough material for sequencing. **This amplicon includes the super-
peak region detailed in Supplemental Table 2. Without this region, the estimated CN is 15 copies. 
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Figure 5.6: In-depth investigation of H1 gDNA and gel-incompetent DNA revealed 
shared dhodh amplicon boundaries and a super-peak unique to gel-incompetent 
DNA. 

 
Figure from McDaniels et al. in prep. AH generated files for coverage analysis and analyzed amplicon 

boundaries/initial coverage, JM continued coverage analysis and generated figure. 
A. Coverage map of gDNA (black) compared to gel-incompetent DNA (blue). Enrichment of region 
partially spanning sac3 domain-containing protein, putative (sac3) (PlasmoDB ID: PF3D7_0602600) is 
overrepresented at 36,636-fold (asterisk, super-peak). B. Exact boundaries of the amplicon are the 
same in both DNA samples. Dashed box are enlarged from panel A. C. Location of dhodh (red box) and 
sac3 within the full dhodh amplicon (black box, top) adapted from Guler et al. 2013. Coverage was 
analyzed using Integrative Genomics Viewer Software (IGV 2.4.10). H1, highly resistant clone; Dashed 
box, ~70kb dhodh amplicon; grey circles, location of A/T tracks; unidentified black boxes, genes. 

 

Additionally, we discovered an A/T-rich (88.2%), 714bp sequence found 

specifically within the dhodh amplicon of the gel-incompetent ecDNA; this region is 

drastically over-enriched (Figure 5.6). We termed this the “super-peak” due to a 

maximum coverage of >36,000-fold and a mean coverage of >25,000-fold (Figure 

5.6). The mean coverage of the full ~70kb dhodh amplicon including the super-peak 

is 604x (Table 5.5) and excluding the super-peak is 55x (Table 5.5, see footnote). 

Initially, we suspected that the extremely high coverage at this region is due to an 

artifact of the DNA amplification method; if we exclude this particular region, we 

estimated an expected number of dhodh amplicons (~15 copies, Table 5.5). Indeed, 

other small regions of the genome are over-amplified in the well-derived sample 

(Figure 5.6A), although not to the same extent (mean of ~240-fold). Analysis of 

discordant reads at this location revealed that copies of the amplified region that 
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make up the super-peak are arranged in a tandem head-to-tail orientation (Figure 

5.7A and C).  

Figure 5.7. Orientation of discordant reads at sac3 super-peak position and dhodh 
amplicon is indicative of tandem duplication.  

  
Figure from McDaniels et al. in prep. AH generated the files for read-pair analysis and set-up 

visualization in IGV. JM generated the figure. 
A. Schematic of a tandem duplication which illustrates paired-end reads pointing outwards. B. 
Schematic of an inverted duplication which illustrates paired reads pointing in the same direction. C. 
IGV image of paired reads at the super-peak. The super-peak includes the sac3 domain-containing, 
putative protein found on chromosome 6 at position 86,429 - 87,143bp. H1 gel-incompetent DNA is 
sequenced and the paired-ends are aligned to the WT1 reference genome. D. IGV image of paired 
reads of the dhodh breakpoints matches previously reported tandem duplication (Guler et al., 2013). 
Due to size of the amplicon, boundaries of reads are shown in a split screen. Reads were analyzed 
using Integrative Genomics Viewer Software (IGV 2.4.10) and does not depict the total reads at those 
locations. Colored arrows, discordant reads; green arrows depict tandem duplications and blue 
arrows depicts inverted duplications. 
 

This result is similar to the known orientation of chromosomal copies of the 

dhodh amplicon ([61], Figure 5.7D). However, we do not detect this pattern in other 

over-amplified regions (data not shown), likely because MDA can create chimeric 

reads or randomly connected sequences due to template switching during high 

polymerase processivity [184]. Due to the extreme level of over-amplification and 

read orientation across this region, the super-peak is likely to represent a sequence 

that was present prior to WGA steps and therefore, may hold biological significance. 

A targeted analysis of this region in the non-amplified sample is precluded by the 

high A/T content of this region (88.2%), which makes the design of specific PCR 

primers impractical. 

 

DISCUSSION 

From these studies, we identified that the chromosomal amplicon is precisely 

conserved within the ecDNA as there are no observable differences between their 

boundaries and (Figure 5.6 and Figure 5.7). Unfortunately, these shared features add 
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to the difficulty in purifying ecDNA away from the genome and the recognition of 

unique features. If we are able to better purify the ecDNA away from the genome, 

there are novel methods that we could potentially utilize such as stringent de novo 

assembly using the BBMap Tadpole tool and then comparing the resulting contigs. If 

this result works, we may be able to generate the circular ecDNA sequences [189]. 

Another possibility is kmer feature identification to directly compare the profiles of 

reads against each other [205].  

Deep sequencing of this region did reveal one feature that was unique to 

ecDNA: the Sac3 super-peak. We found that this was a small highly A/T-rich region of 

the amplicon was greatly overrepresented in well-derived material (asterisk, Figure 

5.6B, 5.6C, and Table 5.6, termed the super-peak). This region encompassed a 

portion of the upstream UTR and 5’ end of the gene for the SAC3 domain-containing 

protein (PlasmoDB gene ID: PF3D7_0602600 [206]. This peak is unlikely to be an 

artifact of amplification due to the fact that chimeras created through MDA 

amplification are typically in an inverted orientation and there are too many 

supporting reads for this feature (Figure 5.7).  

An interesting observation is that the super-peak is extremely A/T-rich and a 

tandem duplication orientation. These features are also found in Plasmodium 

replication origins and centromeres [160, 207-210]. It has been previously identified 

that short 400-500bp A/T-rich sequences can serve as replication origins [207, 208]. 

If there is an origin of replication or even multiple origins within the ecDNA this 

might explain the super-peak but does not explain why we don’t see increased 

coverage of sequences surrounding it or the resistance conferring dhodh gene. 

Another extremely A/T-rich genome features is the centromere. However, all of the 

work done on Plasmodium centromeres currently show an average 4-4.5kb length 

with a 2-2.5kb extremely A/T-rich repeat [211]. Jennifer McDaniels has speculated 

that the super-peak sequence may serve as a binding scaffold to increase the 

translation rate of a nearby protein target, such as SAC3 itself or nearby DHODH 

[212]. Alternatively, this sequence may have a role in the maintenance of the ecDNA 

element. Past studies linked the stability of transfected episomes in malaria parasites 

with A/T-rich centromere-like elements, which increases the efficiency of mitotic 
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segregation and it is possible that the super-peak could perform a similar function in 

ecDNA [209, 211].  
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Chapter 6: Conclusions and 
future directions 
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6 Conclusions and future directions 

CNV creation mechanisms in Plasmodium spp. 

Malaria is in an evolutionary arms-race with humans and has had the 

strongest influence on the evolution of the human genome in recent history [213]. 

Many features of the Plasmodium life-cycle lend themselves to evolvability and thus 

it is critical to understand the mechanisms by which Plasmodium spp. evolve. 

Plasmodium falciparum, the primary cause of malaria-related morbidity and 

mortality, has been able to adapt to every antimalarial drug thus far. Previous work 

by our lab indicated that CNVs may be the first step in the development of drug 

antimalarial resistance [61]. In order to investigate this possibility, our research 

turned to identifying genome features associated with DNA damage and the 

subsequent DNA repair mechanisms utilized by Plasmodium spp.  

Our research began with the identification of novel genetic features utilized 

by P. falciparum to create CNVs (Chapter 3). I adapted a whole genome sequencing 

analysis pipeline that gave us the ability to identify previously known CNV 

breakpoints with high sensitivity and specificity with near single base-pair resolution. 

Several previous observations had found that the breakpoints of drug-resistance 

associated CNVs were found in long homopolymeric A/T tracks but our study 

identified that virtually all of them were found within these sequences in a particular 

orientation. However, A/T tracks have not previously been shown to a source of DNA 

breakage and thus we worked on identifying the initial cause of DNA double-

stranded breaks. Alternative DNA structures including hairpins and stem-loops were 

previously shown to cause DNA double-stranded breaks and facilitate the formation 

of CNVs in other organisms and were implicated in recombination of genes involved 

in cell adhesion and immune system evasion in Plasmodium falciparum. We 

confirmed the presence of highly stable alternative DNA structures in close proximity 

to the A/T track breakpoints. These two features at a particular distance indicate a 

CNV “trigger site” profile. Both stable hairpins and long A/T tracks are 

overrepresented in the Plasmodium falciparum genome and we hypothesize that 

they explain why P. falciparum has adapted to every antimalarial drug thus far.  
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We next investigated the CNV trigger site model in three other species of 

Plasmodium: the second most clinically relevant species P. vivax, the human-

infective zoonotic species P. knowlesi¸ and the A/T-rich avian malaria P. relictum 

(Chapter 4). By applying our previous analysis pipeline, we identified that the 

breakpoints of CNVs in P. vivax and P. knowlesi were also found in long A/T tracks.  

When investigating trigger sites on a genome-wide scale, we found that long A/T 

tracks are overrepresented in all four species of Plasmodium. Even given the 80.6% 

A/T content of the P. falciparum genome, long A/T tracks were overrepresented. 

Despite being closer to ~60% A/T, P. knowlesi and P. vivax were also enriched in 

trigger site features. These genome-wide observations were conserved when looking 

at syntenic chromosomes as well.  

All of these data point towards an evolutionarily conserved CNV generation 

mechanism within the Plasmodium species. We propose that antimalarial treatment, 

which causes metabolic stress, skews DNA repair towards two repair pathways in 

Plasmodium spp.: microhomology-mediated end joining (MMEJ) and 

microhomology-mediated break induced replication (MMBIR). In P. falciparum 

clones, we identified the possible hallmarks of both MMEJ (deletions and single 

nucletotide insertions within the long A/T track breakpoint) and MMBIR (short 

repeat expansions in close proximity to the breakpoints) which indicates replication 

fork slippage during a replication mediated repair process (Chapter 3). MMBIR is 

capable of causing both of these features and is more likely to be the causative DNA 

repair pathway. A recent publication indicates that all four species we investigated 

possess the exact proteins (Rev1 and Polymerase Zeta) that are thought to drive 

MMBIR whereas Plasmodium species that infect rodents do not [214, 215]. In order 

to further investigate this mechanism of CNV creation in Plasmodium, there are 

several possible avenues forward.  

Another method of studying these trigger sites and mechanisms of CNV 

creation is through expanding the identification of CNVs and our comparative 

genomics to other Plasmodium spp. Unfortunately, there are currently no known 

CNVS and few whole genome sequencing data sets of P. relictum however we would 

expect CNV breakpoints to also be found in long A/T tracks at our trigger sites in this 
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species. It would especially interesting to investigate CNVs and the genome of rodent 

malaria to determine if they also are enriched in trigger site features. These 

comparisons would bolster evidence for the conservation of a novel CNV creation 

mechanism in Plasmodium spp. 

Another area of expansion is the investigation of the other type of CNV, 

deletions. My previous work only assessed amplifications, repair of DSB breaks at 

these sites is equally likely to lead to deletions. I hypothesize that the same trigger 

point features contribute to genomic deletions which are also critical to the 

adaptability of the parasite. Future investigations of deletions of parent and 

daughter P. falciparum clones will add breakpoints and stable hairpins to expand our 

trigger site model of gene duplication. The inclusion of deletions into our analysis will 

also afford us more opportunities to identify the usage of specific DNA repair 

pathways in repairing the breakpoints as we did previously (Chapter 3). 

The most definitive method of identifying DNA repair pathways and 

expanding our trigger site analysis is through specifically mapping DNA double-

stranded breaks. Previous studies in other organisms have shown that aphidicolin 

can induce replicative repair mechanisms in the absence of NHEJ, which all 

Plasmodium species lack [134, 144, 216]. We have preliminary data that not only 

does aphidicolin inhibit DNA replication in P. falciparum but it also increases DNA 

breakage. We believe that many of these break sites would be found near or within 

long A/T tracks. We are currently adapting a modified DSBcapture protocol created 

by collaborators to map DNA DSBs which will provide an unbiased method of 

investigating our trigger site model under different conditions including aphidicolin 

treatment, antimalarial treatment, and nutrient deprivation which are all known to 

enhance DNA replication associated damage. Thus far I have developed a protocol to 

isolate high-molecular weight (HMW) DNA >50kb in length from untreated P. 

falciparum and demonstrated our ability to identify a single break site within the 

bulk DSBcapture prep. The final steps in this analysis are the creation of an Illumina 

sequencing library and subsequent identification of break-site peaks. Through the 

identification of CNV trigger sites and DNA repair pathways utilized by Plasmodium 
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spp., we may be able to block a critical evolutionary strategy and the development of 

antimalarial drug resistance. 

 

Computational investigation of CNV heterogeneity in malaria 

 A remaining question is the extent of Plasmodium CNV heterogeneity. The 

previously mentioned study that estimated the creation of “~6 million base pair 

substitutions, 55 million indels, and 4 million newly created mosaic var exon 1 

sequences every 2 days” indicates that there is large reservoir of hidden 

heterogeneity. I helped identify two novel sources of heterogeneity in P. falciparum: 

CNVs hidden within bulk sequencing and extrachromosomal DNA (Chapter 5). The 

identification of these sources of heterogeneity and other structural variants such as 

inversions, translocations, and complex mutations require accurate reference 

genomes for comparison, specialized computational approaches, and further 

automation. It is a well-known fact that the identification of CNVs is more robust 

than other structural variants and there are several approaches that may help bridge 

this gap in the malaria field.  

Up until recently there was only a single reference genome for P. falciparum 

and the reference genomes for other species are incomplete (Chapter 4). The field of 

long-read sequencing is not only promising for CNV identification but also de novo 

assembly of near complete malaria genomes [217].  My protocol for isolating HMW 

DNA is highly applicable to this and is already being utilized by our lab for long-read 

sequencing and de novo assembly. Long read sequencing is also useful for the 

identification of CNVs also may be useful in the identification of hidden CNVs within 

bulk DNA samples. 

 Another factor that would greatly facilitate identification of CNVs and 

heterogeneity is the creation of a database of known “gold-standard” structural 

variants. This approach has been utilized in the study of human CNVs and facilitates 

the creation and optimization of structural variation detection tools [46, 100]. The 

combination of different existing structural variant identification tools is also 

promising. We utilized an analysis pipeline that combined a read-depth approach 

and split-read/discordant read-pair approach and obtained improved data. Other 



96 

newer pipelines combine multiple versions of these approaches as well as de novo 

assembly which would be helpful for Plasmodium analysis [218-220].  
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