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Abstract

With the rapid advances in quantum information science and technol-

ogy, it is of paramount importance to efficiently characterize and develop

resources that are capable of offering quantum advantages. Continuous-

variable quantum computation is the most scalable implementation of

quantum computation to date, but it requires non-Gaussian resources to

allow for exponential speedup and fault tolerance. This can be accom-

plished with non-Gaussian states such as Fock states or non-Gaussian

measurements by photon-number-resolved detection. Therefore, it be-

comes a key task to devise techniques to, (a) efficiently characterize these

non-Gaussian states and measurements and (b) perform non-Gaussian

measurements via photon-number-resolved detection. This thesis is a step

toward this goal.

The work presented in this thesis is two-fold. The first part fo-

cuses on characterizing quantum states with non-Gaussian Wigner quasi-

probability distribution functions using photon-number-resolving (PNR)

measurements performed with the superconducting transition-edge sensor.

The second part focuses on characterizing quantum detectors by Wigner

functions, and designing room temperature PNR detectors using “click

detectors” such as single-photon avalanche-photodiodes (SPADs).

Within the state characterization, we first demonstrate a scheme pro-

posed by Wallentowitz-Vogel [1] and Banaszek-Wódkiewicz [2] (WVBW)

that allows the direct reconstruction of the Wigner function using PNR
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measurements. We observe the negativity of the single-photon Wigner

function in the raw data without any inference or correction for decoher-

ence.

We then propose and experimentally demonstrate a novel scheme that

generalizes and improves upon the WVBW scheme. The proposed scheme

reconstructs the density operator, as opposed to probing the Wigner func-

tion, of an arbitrary quantum state in the Fock space from the state over-

lap measurements with a small set of calibrated coherent states. We devise

computationally efficient and physically reliable techniques to deconvolve

the deleterious effects of experimental imperfections.

In the second part of this thesis, we first investigate the feasibility and

performance of a segmented waveguide detector consisting of SPADs with

low dark count noise for PNR measurements. We characterize its perfor-

mance by evaluating the purities of photon-count positive-operator-valued

measures (POVMs) in terms of the number of SPADs, photon loss, dark

counts, and electrical cross-talk. We find that the number of integrated

SPADs is the dominant factor for high-quality PNR detection. Next, we

propose an experimentally feasible noise-robust method to characterize a

quantum detector by reconstructing the Wigner functions of the detector

POVMs corresponding to the measurement outcomes.

Finally, we study a Heisenberg-limited quantum interferometer with

indistinguishably photon-subtracted twin beams as an input state. We

show that such an interferometer achieves Quantum Cramér-Rao bound

with the intensity difference measurements and can yield a direct fringe

unlike the Holland-Burnett interferometer with twin beams.
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Chapter 1

Introduction

“The light in me honors the

light in you.”

The beginning of the 20th century was the golden age for quantum physics.

New fundamental theories developed by the brilliant minds, to name a few, Max

Planck, Niels Bohr, Louis de Broglie, Albert Einstein, Werner Heisenberg, and Erwin

Schrödinger, led to the first quantum revolution, spurring the development of tech-

nologies such as transistors, magnetic resonance imaging (MRI), and lasers in the mid

20th century, which have had a huge impact on society since their inception [5]. The

technologies were based on the quantum understanding of the natural world around

us. The advent of transistors and their subsequent miniaturization by the current

state-of-the-art nanotechnology has enabled the semiconductor industries to embed

billions of transistors on a single chip, transforming computers from vacuum-tube

based room-sized to pocket-sized devices with enormous computational power. The

number of transistors in a dense integrated circuit (IC) has doubled every 18 months

since the invention of the very first IC at 10 µm scale in 1970 [6]. This was predicted

by Gordon Moore and is known as Moore’s law 1

1Moore’s law is not a physical law, it is rather an empirical observation.

1
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Today the size of a transistor is comparable to that of an atom, i.e., at the

nanometer scale. At this scale, undesired quantum effects start to interfere in the

functioning of these nanometer scale electronic devices, limiting any further shrink-

age in the near future. Therefore, the semiconductor industries have run into their

fundamental limit of device fabrication. To further improve the computational power,

other architectures based on two-dimensional Graphene [7] and genetic circuits (bio-

logical computing) [8] have been explored.

The other promising avenue is to move to a new paradigm of information pro-

cessing based on the laws of quantum physics, in place of classical physics laws. Using

truly quantum phenomenon such as quantum superposition and quantum entangle-

ment, it is believed to perform certain information processing tasks with far superior

performance than the current classical technology. These tasks spans into a variety

of fields including quantum simulation, quantum computing, quantum sensing and

quantum communication.

Before we delve into these fields, let’s briefly discuss how a classical information

processor, for instance, a classical computer (PC) works. The fundamental unit to

encode and process information on a classical computer is a “bit” which is physically

realized using transistor-transistor logic (TTL). A bit is a binary system that can be

either in zero (0V) or one (5V) state. A classical computer with n bits has access

to only one state at a given time out of all 2n possible states of n bits. Any certain

function is then sequentially evaluated on these states, one state at a time. In the

physical sense, these logical operations are implemented by controlling the current

and voltages across these electronic units by using laws of classical electromagnetic

theory.

On the other hand, a quantum computer uses “quantum bits (qubits)” as a

fundamental unit to store and process information. Rather than just being in either

zero or one state, a qubit can also be in the linear combination of them, which is
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one of the key features of quantum systems and is known as quantum superposition.

Mathematically, a qubit is described by a state vector in a 2-dimensional Hilbert

space as

|ψ〉 = α|0〉+ β|1〉, (1.1)

where α and β are complex probability amplitudes such that |α|2 and |β|2 are the

probabilities of collapsing the state vector to zero and one states respectively when a

measurement is performed. One can further create a large quantum system by using

a process called quantum entanglement, a physical phenomenon when two quantum

systems are correlated in some physical degree of freedom, and whenever the state

of one system is measured, it instantaneously changes the physical state of the other

system regardless of how far they are from each other. Consequently, a quantum

computer with n entangled qubits has access to 2n states simultaneously, and a func-

tion is then evaluated using unitary operators acting on this quantum superposition.

This is known as quantum parallelism which is one of the key routines for any quan-

tum algorithm. To be more specific, a quantum algorithm is carefully designed such

that quantum inferences among probability amplitudes increase the probability of

right solution while decreasing the probabilities of wrong solutions. This is somewhat

analogues to constructive and destructive inference phenomenon of the light waves.

When a measurement is performed at the end of the processing (or the sequence of

unitary transformations), the quantum superposition collapses to the solution of the

computational problem with high probability and the amount of resources needed

for this entire physics process have polynomial scaling. For concreteness, let us con-

sider an action of the Hadamard gate (H-gate) on a state defined by Eq. (1.1) for a

particular case of α = β. The H-gate is given as

H =
1√
2

 1 1

−1 1

 (1.2)
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And its action on the basis states leads to

H|0〉 =
1√
2

(|0〉+ |1〉)

H|1〉 =
1√
2

(|0〉 − |1〉) (1.3)

After the H-gate operation, the qubit state is

H|ψ〉 =
1

2
[(|0〉+ |1〉) + (|0〉 − |1〉))] = |0〉 (1.4)

From Eq. (1.4), we can see that the probability amplitudes for the basis state |1〉 de-

structively interfere which results in only |0〉 state. The idea of building a computer

based on the laws of quantum physics was originally proposed by Richard Feynman

in 1982. He proposed:

“Let the computer itself be built of quantum mechanical elements which obey quantum

mechanical laws.”

Feynman conceived the original idea of a quantum simulator, which is a fully

controllable well-known quantum system to simulate the Hamiltonian dynamics of

an unknown quantum system [9]. Quantum simulation is computationally hard, par-

ticularly for systems of many particles with exponentially large Hilbert space of dN ,

where N is the number of particles and d is the size of the Hilbert space of each par-

ticle. Simulation of a physical system consisting of n particles requires exponentially

large resources on a classical computer while a quantum computer would only require

polynomial resources, thereby making it computationally efficient [10]. In computer

science, efficient problems are the ones whose solutions only require polynomial num-

ber of steps, O(Nk) steps for an input size of N and a given constant k. On the other

hand, there are inefficient problems which require exponential large number of steps,
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O(kN) using the best known classical algorithms. The exponential scaling of these

problems makes them computationally hard to solve for a large input size. In the last

couple of decades, there have been many small scale experimental demonstrations of

quantum simulations on various physical platforms [11]–[17].

In the quantum computing domain, significant progress has been made on both

theoretical and experimental fronts. The field has gained momentum after Peter Shor

proposed a polynomial-time quantum algorithm for factorizing large integers [18].

Factorizing large integers uses exponential number of steps on a classical computer

which makes it intractable for large numbers, which is crucial for the security of RSA

based encryption protocols widely used these days. Shor’s algorithm is exponentially

faster than the best known classical algorithm and has been demonstrated for a

number of physical systems [19]–[21]. Another quantum algorithm was proposed by

Lov Grover that offers the quadratic speedup over any known classical algorithm for

finding a particular entry in an unstructured database, i.e., only requires O(
√
N)

number of steps as opposed to O(N) steps in a classical search algorithm [22], [23].

Recently, Google announced to have achieved a major milestone, the so-called

quantum supremacy experiment which consists in solving a computational problem,

in particular, sampling instances of a quantum circuit that no classical computer can

feasibly solve [24]. With this phenomenal experiment by the Google team, we have

officially entered in the quantum computing era.

For a practical realization of the quantum technology, many physical systems

have been explored in last couple of decades. The list of potential candidates in-

cludes superconducting circuits [25], quantum optics [26], trapped ions [27], quantum

dots [28], nuclear spins [19], and neutral atoms [29]. Optical systems have emerged

as one of the leading testbeds to explore quantum science and technology.

The very existence of a single light particle, or photon (quanta of energy), con-

firms the quantum nature of light. Photons are chargeless, massless particles and
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interact very little with the environment, which allows them to travel long distances

easily, making them an excellent candidate for carrying quantum information [30],

[31].

Not only photons are crucial sources for quantum communication protocols, they

also offer a great promise for quantum computing applications: a single photon makes

an excellent room-temperature quantum bit (qubit) by encoding the logical zeros and

ones onto the polarization states of the photon, i.e., |0〉L = |H〉 and |1〉L = |V 〉,
thereby known as a polarization qubit. The other kind of encoding is done by hav-

ing a single photon in two spatial modes, i.e., |0〉L = |10〉 and |1〉 = |01〉, which

is formally known as dual-rail encoding. While photonic qubits are low-noise and

their quantum states could be easily manipulated with simple optical tools, the weak

optical nonlinearity has been a major obstacle in implementing two-qubit gates such

as Controlled-NOT (CNOT), which is necessary for the universal quantum compu-

tation. To circumvent the weak nonlinearity, Knill, Laflamme, and Milburn (KLM)

proposed an efficient quantum computing scheme using single-photon sources, linear

optics (beamsplitters and phaseshifters), photodetectors, and feedback from photode-

tectors [32]. The key component of the KLM scheme is a nondeterministic imple-

mentation of C-NOT gate using ancilla single-photon sources and feedback from the

photodetectors, which offers the required nonlinearity, albeit measurement based and

has a success probability of 1/4. While the success probability can be improved to

near unity, the requirements of large number of ancilla single-photon sources poses

significant experimental challenges for scalability [33]–[37].

Thus far we have only considered quantum computing with qubits where infor-

mation is encoded in the discrete states of physical systems in a finite dimensional

Hilbert space. This is also known as quantum computing with discrete-variable (DV)

systems. There is another relatively new direction for quantum computation known

as continuous-variable quantum computation (CVQC), originally proposed by Llyod

and Braunstein in 1998 [38].
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CVQC is somewhat similar to the analog model of computing, where information

is encoded and processed over the continuous states of physical systems, i.e., the di-

mension of the Hilbert space is inherently infinite. One such encoding can be achieved

by using the continuous position and momentum degrees of freedom of a quantum

harmonic oscillator (QHO). One physical platform to implement CVQC protocols is

through quantum optics. As we discuss later, the quantization of an electromag-

netic field results in quantum harmonic oscillator like formalism, where amplitude

and phase quadratures of the field act as position and momentum observables of the

QHO respectively [39]. Another physical implementation for CVQC has been pro-

posed using the vibrational modes of an ion as opposed to using discrete energy states

of an ion in qubit based QC [40].

The key advantage of optics based CV quantum information lies in its unprece-

dented scalability and experimental feasibility for generating massively entangled

multipartite states known as cluster states, which are experimentally realized us-

ing nonlinear optical processes. A cluster state is a universal quantum computing

resource for measurement-based quantum computing (MBQC), originally proposed

by Raussendorf and Briegel [41] for DV systems and was extened to Gaussian CV

systems by Jing Zhang and Samuel L. Braunstein [42], along with a proposal to gen-

erate one-dimensional cluster states using only single-mode squeezed vacuum states

and linear optics. Later, Menicucci et al. proposed a generalized scheme and showed

that addition of any non-Gaussian element with Gaussian cluster states is sufficient

for universal quantum computation [43]. In MBQC, a cluster state is first prepared,

and then the computing proceeds solely by a sequence of adaptive single-qubit (or

qumode) measurements and feed-forward operations. While the outcomes of these se-

quential measurements are random, any quantum algorithm can be deterministically

implemented [41]. It is worth emphasizing that the 2D-cluster state (in square grid

lattice) is a universal resource, i.e., it offers the implementation of a arbitrary quantum

algorithm by choosing a sequence of single-qubit measurements designed according
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to the algorithm [41], [43]. Therefore, a physical realization of CVQC consists in

preparing a 2D-cluster states and the ability to perform single-qubit measurements.

While we have a detailed discussion on MBQC in Chapter 2, section 2.6, here we

briefly summarize the progress in the field on both theoretical and experimental

fronts. For qubit systems, a cluster state preparation starts with identically prepared

independent qubits each in the superposition state |+〉 = (|0〉 + |1〉)/
√

2 followed

by controlled-phase (C-PHASE) gate applied between adjacent qubit pairs, which

generates the essential entanglement for the MBQC. This has been demonstrated

for a few qubits on both optical systems (with polarization encoding) and neutral

atoms [44]–[46].

For CV systems, an N-mode Gaussian cluster state can be generated using N

single-mode squeezed fields emitted by N optical parametric oscillators (OPOs) and a

linear interferometer consists of O(N2) beamsplitters [47]. Using this scheme, Ref. [48]

reported a four-mode cluster state utilizing two amplitude-quadrature and two phase-

quadrature squeezed states. While this scheme is efficient as it has polynomial scaling

in resources, its experimental implementation is challenging for larger cluster states.

With this scheme, a larger cluster scale implementation requires indistinguishably of

all N single-mode squeezed fields and the phase stabilization of all optical paths in

O(N2) ports interferometer. Therefore, an experimental implementation of a large

cluster state using this method is a daunting task.

This major obstacle for scalability was resolved by taking inspiration from the

original proposal by Pfister et al. to generate multipartite entangled states, in par-

ticular Greenberger-Horne-Zeilinger (GHZ) state using only a single nondegenerate

OPO [49]. This proposal was extended by Menicucci et al. for a two-dimesional (2D)

Gaussian CV cluster state, a universal resource for CVQC [50]. This approach exploits

the quantum optical frequency comb (QOFC) generated by carefully engineering the

phasematching of the nonlinear medium in the OPO and does not necessitate an in-

terferometer, which makes this scheme more experimentally feasible for larger cluster
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states.

In 2014, a multipartite entangled state consists of 60 measured frequency modes

in a dual-rail quantum wire, i.e., one dimensional (1D) topology was demonstrated

in Professor Olivier Pfister’s lab [51]2. Alternatively, both 1D and 2D CV cluster

states have also been proposed and demonstrated by time multiplexing of up to one

million optical modes using fiber delays [52]–[56]. Recently, Xuan et al. showed that

the phase modulation of the QOFC emitted offers an elegant way to increase the

topological dimension of the cluster state from 1D linear cluster to 2D square-lattice

cluster state [57].

Thus it is clear that quantum optics implementations of cluster states offer a

scalable platform for MBQC. As mentioned above, any quantum algorithm can be

implemented by performing a sequence of single qumode (or qubits) measurements.

While quadrature measurements of optical fields can be performed with near-unit

quantum efficiency using balanced homodyne detection technique (discussed in sec-

tion 2.7.1), these measurements alone do not enable universal QC with 2D Gaussian

cluster states. In order to achieve the universality, a non-Gaussian resource (either

state or gate or projective measurement) is necessary [38]. This is discussed in de-

tail in Section 2.6. In quantum optics based implementations for cluster states, the

Gaussian resources are easily accessible using linear optics, squeezing Hamiltonians,

i.e., second order nonlinear optics, and quadrature measurements via homodyne de-

tection. On the other hand, non-Gaussian resources are experimentally demanding

due to lack of strong higher order (> 2) nonlinearity such as Kerr nonlinearity. The

other avenue for enabling non-Gaussian resources is via photon-number-resolved de-

tection (PNRD), which is now a matured technology up to several tens of photons

using superconducting transition-edge sensors (TESs) [58]–[60], and with the spatial-

and time-multiplexed detection schemes employing superconducting nanowire single-

2While 60 entangled modes were experimentally measured, the OPO gain bandwidth allows for
as high as 6700 modes. The measurement was limited by the phase modulation bandwidth of
electro-optic modulator (EOM).
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photon detectors (SNSPDs) and single-photon avalanche-photodiodes (SPADs) [61]–

[68].

Not only does PNRD offers a way to perform non-Gaussian measurements, they

also allow us to prepare non-Gaussian states and to implement non-Gaussian gates

such as qubic phase gate. Significant progress has been made towards non-Gaussian

state engineering using techniques such as photon subtraction [69]–[71] and photon

addition [72], photon catalysis [73], [74], and by converting Gaussian states to non-

Gaussian states using PNRD [75], [76].

In addition to offering a testbed for quantum science [77]–[79], non-Gaussian

resources offer advantages in many other quantum technologies such as quantum

communication, bosonic quantum error correction [80], entanglement distillation [81],

quantum metrology and sensing [82], and quantum imaging [83], [84]. It is therefore

of paramount importance to be able to fully characterize and develop non-Gaussian

resources in order to fully exploit the advantages offered by the quantum technology.

Finally, the coming age of PNR detector led to both theoretical and experi-

mental advances in characterizing quantum states via state tomography using PNR

measurements [1], [2], [85]–[88].

This thesis has two central themes. The first part focuses on characterizing

non-Gaussian states using PNR measurements performed by the TES. The second

part focuses on characterizing quantum detectors by Wigner functions, and designing

room temperature PNR detectors using click or no-click detectors such as single-

photon avalanche-photodiodes. We now provide an outline for this thesis.
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Thesis outline

This thesis is organized as follows. Chapter 2 introduces some routinely used

tools in quantum optics. In chapter 3, we demonstrate a quantum state tomography

method proposed by Wallentowitz and Vogel [1] and Banaszek and Wódkiewicz [2]

(WVBW), which allows the direct reconstruction of the Wigner function of an un-

known quantum state [89] using PNR measurements. In this experiment, we recon-

struct the Wigner function of a heralded single-photon Fock state. We observe the

negativity of the Wigner function in the raw data without any inferences or correc-

tions for decoherence. At the end of this chapter, we extend the WVBW scheme to

reconstruct the Wigner function of a multimode quantum state.

Chapter 4 generalizes the WVBW scheme for point-by-point Wigner function

reconstruction with PNR measurements. The generalized scheme reconstructs the

density matrix of an arbitrary quantum state by experimentally determining the

Wigner function (or quantum state) overlap, between the unknown state and a small

set of known coherent states. Each overlap is determined by the parity expectation

value obtained from photon-number-resolving measurements on only a single mode of

the output field after an interference between each coherent state and the unknown

state. We then use computationally efficient semi-definite programming (SDP) to

obtain the density matrix of the unknown quantum state in the Fock basis.

Next, we develop computationally efficient and physically reliable techniques

to account for experimental imperfections such as losses, noise, and mode-mismatch

between the coherent states and the unknown state. We demonstrate the proposed

scheme for a weak a coherent state and a single-photon Fock state.

In chapter 5, we investigate the feasibility and performance of PNR detection using

a segmented detector, constituted by waveguide-coupled, low-dark current single-

photon avalanche photodiodes (SPADs).
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The crucial advantage of this design is that the nonideal quantum efficiency of

the SPADs does not amount to photon loss, unlike terminally coupled PNR detectors

in the temporally or spatially multiplexed schemes where photons get detected by

SPADs at the end of the multiplexing setup [62]–[64]. Remarkably, we note that the

reasonable levels of losses, dark counts and electrical cross-talk noise do not degrade

the PNR performance as much as having a limited number of SPADs does. Therefore,

the number of integrated SPADs is the dominant factor toward high-quality PNR

detection at the room temperature.

In chapter 6, we propose an experimentally feasible method for characterizing

a photodetector by reconstructing the Wigner functions of the detector’s POVM

elements [90]. The method is shown to be robust against the experimental noise

by using numerically efficient quadratic convex optimization techniques. We also

show that for phase insensitive detectors the proposed method becomes particularly

simple as it only requires (2m0 + 1) measurements to fully characterize a detector

that saturates for photon-number more than m0.

Chapter 7 discusses a new type of a Heisenberg-limited quantum interferome-

ter with photon-subtracted twin beams. We show that such an interferometer can

yield Heisenberg-limited performance and gives a direct fringe reading, unlike for the

twin-beam input of the Holland-Burnett interferometer. We then propose a feasi-

ble experimental realization, using a degenerate optical parametric oscillator above

threshold. The deleterious effects due to experimental losses are also considered. In

chapter 8, we conclude and offer an outlook.



Chapter 2

Quantum optics

In this chapter, we introduce the basis mathematical formalism in quantum optics.

We start with the quantization of the electromagnetic field followed by a brief dis-

cussion on some commonly used quantum states, operators, and measurement tech-

niques. Next, an overview for characterizing quantum states and quantum detectors

is provided.

2.1 Quantization of an electromagnetic field

In order to study the quantum mechanical properties of light one needs the quanti-

zation of the electromagnetic field. The classical free field is described by the source

free Maxwell’s equations where the electric (E) and magnetic (B) fields follow the

13
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physical properties mathematically formulated as:

∇.B = 0, (2.1)

∇× E = −∂B

∂t
, (2.2)

∇.D = 0, (2.3)

∇×H =
∂D

∂t
, (2.4)

where ε0 and µ0 are electric and magnetic permittivity of free space, and D = ε0E

and H = B
µ0

. Solving Maxwell’s equations for the electric field constrained in the

certain physical volume leads to [39]

E(r, t) = i
∑
k

(
~ωk
2ε0

)1/2

[akφk(r)e−iωkt − a∗kφ∗k(r)eiωkt], (2.5)

where ~ is the scaled Plank constant and k is the mode index number describing the

polarization and the Cartesian components of a field propagation vector k. The set

{φk} consists of orthonormal mode functions to represent the electric field in a given

physical volume. The frequency of the mode function φk is ωk and ak and a∗k are

complex Fourier amplitudes in classical electrodynamics. Quantization can then be

accomplished by choosing ak and a∗k as two mutually adjoint operators âk and â†k such

that they satisfy the bosonic commutation relations defined as

[âk, âk′ ] = [â†k, â
†
k′ ] = 0, [âk, â

†
k′ ] = δk,k′ . (2.6)

Since these modes are non-interacting, their dynamical behaviour can be described

by treating them as an ensemble of independent fields. As a result, the system

Hamiltonian can be determined by adding the individual Hamiltonians as

Ĥ =
1

2

∫
(ε0E

2 + µ0H
2)dr =

∑
k

~ωk
(
â†kâk +

1

2

)
(2.7)
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From Eq. (2.7), we can see that the Hamiltonian is equivalent to the Hamiltonian of

independent quantum harmonic oscillators, whereby âk and â†k are the annihilation

and creation operators respectively, and N̂k = â†kâk is the number operator for k-

th harmonic oscillator. In the context of the light, N̂k is known as photon-number

operator for mode k. Therefore, Eq. (2.7) represents the total energy of the field,

where ~ωk
2

is the vacuum fluctuations or zero point energy in the mode k. To further

develop the mathematical formalism of the quantized electromagnetic field, we restrict

ourselves to a single-mode, i.e, k = 1 and omit the index k in everything that follows

in this chapter. We will specify when we have a multi-mode case. The Hamiltonian

of a single-mode electromagnetic field described the annihilation operator â is

Ĥ = ~ω
(
â†â+

1

2

)
= ~ω

(
N̂ +

1

2

)
, (2.8)

where N̂ the single-mode photon-number operator with eigenvalues, n ∈ N = {0, 1, 2, · · · }.
Since â and â† are not Hermitian operators, they do not represent any physical ob-

servable experimentally measured in the lab, but one can define Hermitian operators

by using linear combinations of â and â†. These operators are defined as

Q̂ :=
â+ â†√

2
, (2.9)

P̂ := −i â− â
†

√
2
, (2.10)

[Q̂, P̂ ] = i. (2.11)

The Heisenberg uncertainty relation is

4Q4P ≥ 1

2
. (2.12)
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In quantum optics community, Q̂ and P̂ are known as amplitude and phase quadra-

tures of the field. Their eigenstates are

Q̂|q〉 = q|q〉, (2.13)

P̂ |p〉 = p|p〉. (2.14)

Since Q̂ and P̂ are Hermitian operators, their eigenstates offer complete orthogonal

bases to represent any arbitrary quantum state as

|ψ〉 =

∫
R
ψ(q)|q〉dq (2.15)

|ψ〉 =

∫
R
ψ̃(p)|p〉dp, (2.16)

where R represents the real space. The orthogonality and completeness properties

are

〈q|q′〉 = δ(q − q′), 〈p|p′〉 = δ(p− p′) (2.17)

∫
R
|q〉〈q|dq = I,

∫
R
|p〉〈p|dp = I (2.18)

Moreover, a generalized quadrature operator is defined as

X̂(φ) := Q̂cosφ+ P̂ sinφ (2.19)

The generalized quadrature is measured using an interferometric technique known as

balanced homodyne detection (BHD), detailed in section 2.7. In the next section, we

discuss three main pictures of quantum mechanics used for the time evolution of the

states and operators.
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2.2 Time evolution in quantum mechanics

In quantum mechanics, there are three mathematical formulations known as Schrödinger

picture, Heisenberg picture, and the interaction picture due to Dirac. The key is to

either evolve wave functions or operators or both according to the mathematical con-

venience while ensuring the measurement outcomes such as expectation values remain

invariant. Let’s consider the time evolution of a quantum system with Hamiltonian

Ĥ given as

Ĥ = Ĥ0 + V̂ , (2.20)

where Ĥ0 is free-field Hamiltonian and V̂ is the interaction Hamiltonian.

2.2.1 Schrödinger Picture

In the Schrödinger picture of quantum mechanics, the observables or operators remain

constant while the wave functions (or state vector) evolve in time. The evolution is

given by Schrödinger picture as

d|ψ〉
dt

= − i
~
Ĥ|ψ〉 (2.21)

If we consider the Hamiltonian invariant during the time evolution of the system from

the initial time ti to final time tf , the solution of Eq. (2.21) is

|ψ(tf )〉 = e
−iĤ(tf−ti)

~ |ψ(ti)〉

Furthermore, one can define a unitary operator as

Û(tf , ti) := e−
i
~ Ĥ(tf−ti). (2.22)



2.2. TIME EVOLUTION IN QUANTUM MECHANICS 18

Note that Û(tf , ti) always exists, for a time-dependent Hamiltonian which commutes

with itself at different times, the unitary operator is

Û(tf , ti) := e−
i
~
∫ tf
ti

Ĥ(t)dt. (2.23)

As a result, the expectation value of an observable at time tf is give by

〈Ô〉tf = 〈ψ(tf )|Ô|ψ(tf )〉 (2.24)

2.2.2 Heisenberg Picture

In the Heisenberg picture, the operators evolve in time and the wave functions remain

invariant. The expectation value of an observable at time tf can then be formulated

as

〈Ô〉tf = 〈ψ(ti)|Ô(tf )|ψ(ti)〉, (2.25)

where Ô(tf ) is the time evolved operator at tf given by

Ôtf := Û †(tf , ti)Ô(ti)Û(tf , ti). (2.26)

For brevity, we denote the operator in Heisenberg picture by ÔH and by ÔS in the

Schrödinger picture. Note that at t = ti, we have ÔS(ti) = ÔH(ti). These operators

are related as

ÔH(t) := Û †(tf , ti)ÔSÛ(tf , ti). (2.27)

Time evolution of ÔH in the Heisenberg can be mathematically formulated as

dÔH(t)

dt
= − i

~
[ÔH(t), Ĥs] (2.28)
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where Ĥs is the system Hamiltonian in Schrödinger picture. It is worth mentioning

that the Heisenberg picture is analogous to Hamilton’s equations of motion in classical

mechanics, where the commutators are replaced by the Poisson brackets.

2.2.3 Interaction Picture

In the interaction picture (also known as the Dirac Picture) both operators and states

evolve in time. We first define an operator in the interaction picture as

ÔI(t) := Û0(t)ÔHÛ
†
0(t), (2.29)

where Û0(t) := e−
iĤ0t
~ is the evolution under the Hamiltonian operator Ĥ0 in Eq. (2.20).

The time derivative of Eq. (2.29) leads to

dÔI(t)

dt
=
i

~
[ÔI , Ĥ0] + Û0

dÔH

dt
Û †0 (2.30)

A simple calculation using Eq. (2.28) shows that

Û0
dÔH

dt
Û †0 = − i

~
([ÔI , Ĥ0] + [ÔI , V̂ ]). (2.31)

Using Eqs. [2.30,2.31], one arrives to

dÔI(t)

dt
= − i

~
[ÔI(t), V̂I(t)]. (2.32)

Likewise, the evolution of the system wave function is given as

d|ψI(t)〉
dt

= − i
~
Ĥ0|ψ(t)〉 (2.33)

As a result, we see that in interaction picture operators evolve under the interaction

part of the Hamiltonian, V̂ and the wave function dynamics is governed by the free-
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field Hamiltonian Ĥ0.

2.3 Quantum states, operators, and measurements

In this section, we discuss some routinely used quantum states, operators, and mea-

surements in quantum optics.

2.3.1 Vacuum state

The vacuum state is the ground state of the quantum harmonic oscillator and it

satisfies

â|0〉 = 0. (2.34)

From Eq. (2.8), we see that for n = 0. i.e., absence of any photons, the energy

has the lowest value of ~ω/2. This is truly a quantum mechanical property of the

light, which plays an important role in quantum interferometry, discussed in detail in

chapter 7. We now calculate the expectation value of the first and second moments

of the amplitude and phase quadratures

〈0|Q̂|0〉 = 〈0|P̂ |0〉 = 0, (2.35)

〈0|Q̂2|0〉 = 〈0|P̂ 2|0〉 =
1

2
. (2.36)

The standard deviations in both quadratures are

4Q = [〈Q̂2〉 − 〈Q̂〉2]
1
2 , (2.37)

4P = [〈P̂ 2〉 − 〈P̂ 〉2]
1
2 . (2.38)
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For the vacuum state, we have

4Q = 4P =
1√
2
. (2.39)

Since we have 4Q4P = 1/2, one can immediately see from Eq. (2.12) that the

vacuum state satisfy the Heisenberg minimum-uncertainty relation

4Q4P =
1

2
. (2.40)

2.3.2 Fock states

Fock states are eigenstates of the photon number operator. Thus we have

N̂ |n〉 = n|n〉 (2.41)

An n-photon Fock state, |n〉 is prepared by creating n photons in the vacuum field.

Mathematically, they are defined by n successive actions of the creation operator to

the vacuum field.

|n〉 =
â†

n

√
n!
|0〉. (2.42)

Here we utilize the fact that the action of creation operator is defined as

â†|n〉 =
√
n+ 1|n〉. (2.43)

Likewise, an annihilation operator acting on an n-photon Fock state leads to

â|n〉 =
√
n|n− 1〉. (2.44)
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Using Eq. (2.43) and Eq. (2.44), we can determine the energy of a n-photon Fock

state.

En = 〈n|Ĥ|n〉 = 〈n|~ω
(
â†â+

1

2

)
|n〉 = ~ω

(
n+

1

2

)
(2.45)

We now discuss some properties of the Fock states.

• Orthogonality: Fock states |n〉 and |n′ 6= n〉 are orthogonal.

〈n|n′〉 = δn,n′ (2.46)

• Completeness: Fock states offer a complete basis to represent an arbitrary

single-mode quantum state in the Hilbert space spanned by {|n〉, n ∈ N}.

|ψ〉 =
∞∑
n=0

ψn|n〉, (2.47)

ρ =
∞∑

n,n′=0

ρn,n′ |n〉〈n′|, (2.48)

∞∑
n=0

|n〉〈n| = I, (2.49)

where the diagonal entries ρn,n correspond to the probability of having n pho-

tons. Note that this can be simply extended to arbitrary multi-mode state as

ρ =
∞∑

n1,n2,···m1,m2,···=0

ρn1,n2,···m1,m2,···|n1, n2, · · · 〉〈m1,m2, · · · | (2.50)

In this case, the completeness property leads to

∞∑
n1,n2,···m1,m2,···

|n1, n2, · · · 〉〈m1,m2, · · · | = I. (2.51)
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Coherent state

A coherent state is an eigenstate of the annihilation operator.

â|α〉 = α|α〉, (2.52)

where α = (q + ip)/
√

2 ∈ C. Coherent states are classical states in the sense that their

dynamics can be fully described by using the classical theory of the electromagnetic

field. One can further express coherent state, ||α|eiφ〉 with |α| being the amplitude

and φ is the phase, in the photon-number basis as

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉. (2.53)

The mean photon-number of a coherent state is

N = 〈α|N̂ |α〉 =
∞∑
n=0

nP (n) = |α|2, (2.54)

where P (n) is the probability of having n photons and it is given by the Poissonian

distribution.

P (n) = e−|α|
2 |α|2n
n!

(2.55)

Additionally, some interesting properties of the coherent states are:

• Non-orthogonality: For coherent states |α〉 and |β〉, we get

〈β|α〉 = e−
|β|2+|α|2−2β∗α

2 (2.56)

• Overcompleteness: Coherent states form an overcomplete basis and can be used

to represent any quantum state in the basis {|α〉, α ∈ C}

1

π

∫
|α〉〈α|d2α = I (2.57)
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Coherent states have equal uncertainties in both quadratures, i.e.,4Q = 4P = 1/
√

2

and hence, also satisfy the minimum uncertainty relation as per Eq. (2.12). As we will

see later, coherent states offers a tomographically complete set of probes for quantum

detector tomography and have been extensively used for this purpose [90]–[92].

2.3.3 Phase-averaged coherent state

The phase-averaged coherent state is prepared by randomizing the optical phase of a

coherent state.

ρ =
1

2π

∫ 2π

0

|α〉〈α|dφ =
∞∑
n=0

P (n)|n〉〈n|, (2.58)

where P (n) is given by Eq. (2.55). We see that phase-averaged coherent state is

diagonal in photon-number basis. In the lab, one can use a fast-modulated PZT

mirror to randomize the optical phase of a coherent state.

2.3.4 Thermal mixtures

Thermal light sources are the most common ones, any object at a finite temperature

emits radiation with statistical properties of a thermal mixture. The density operator

of a thermal mixture is also diagonal in photon-number basis.

ρ =
∞∑
n=0

P (n)|n〉〈n|, (2.59)

where P (n) = n̄n

(1+n̄)n+1 is the Bose-Einstein photon-number distribution mean photon-

number n̄. Thermal mixtures could be generated by randomizing the phase and

amplitude of a coherent state by using a rotating ground-glass disk in the lab.
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2.3.5 Squeezed states

Single-mode squeezed vacuum

The next class of states considered here are squeezed states, which are created by a

nonlinear process. A squeezed state has less uncertainty in one quadrature than the

vacuum state. To hold the Heisenberg uncertainty relation, the noise in the other

quadrature must be higher than that of a vacuum state. The single-mode squeezing

operator is given by

Ŝ(ζ) = e
ζ∗
2
â2− ζ

2
â†

2

, (2.60)

where ζ := reiφ is the squeezing parameter with the amplitude r ≥ 0 and 0 ≤ φ ≤ 2π

with φ/2 being the squeezing angle. In the Heisenberg picture, the annihilation and

creation operators transform to

Ŝ†(ζ)âŜ(ζ) = âcoshr − â†eiφsinhr, (2.61)

Ŝ†(ζ)â†Ŝ(ζ) = â†coshr − âe−iφsinhr. (2.62)

This transformation is known as Bogoliubov transformation. The SMSV state is

obtained by applying the squeezing operator to vacuum state.

|SMSV 〉 = Ŝ(ζ)|0〉 =
1√

coshr

∞∑
n=0

√
2n!

2nn!
(−eiφtanhr)n|2n〉, (2.63)

Note that the SMSV state has support only on even number of photons. Next, we

calculate the noise of both the quadratures for a particular case of φ = π, and find

out that

4Q =
er√

2
, (2.64)

4P =
e−r√

2
. (2.65)
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From Eq. (2.64) and Eq. (2.65), we see that the noise in amplitude (phase) quadrature

is increased (decreased) compare to that of the vacuum state. In chapter 3, we will

discuss two-mode squeezed vacuum in depth and see how it can be used to herald a

single-photon Fock state.

In Fig. 2.1, we display the noise distributions in the phase space. From the top row, we

see that the vacuum and a coherent state have equal noise in both field quadratures.

The thermal mixture has larger noise than the vacuum state as per Fig. 2.1c. Finally,

we display the noise ellipse of the SMSV in Fig. 2.1d, where the squeezing angle is

φ/2, and Q′ and P ′ are rotated quadratures.

Figure 2.1: Phase space noise distributions of, (a) Vacuum state with equal noise in
both field quadratures, (b) Coherent state with equal noise like vacuum, (c) Thermal
mixture: it has higher noise than that of a vacuum in both quadratures, (d) Squeezed
state has lesser noise than that of a vacuum in one quadrature and higher in the other
quadrature. The squeezing angle is φ/2, and Q′ and P ′ are rotated quadratures.
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2.4 Quantum operators

We now discuss some commonly used quantum operations and their experimental

implementation in the lab.

2.4.1 The Beamsplitter

A beamsplitter (BS) is one the most common, simplest, and yet very fundamental

optical element used in the lab. Classically, it is a partially reflecting mirror which

splits the incident light into two light beams depending on its reflection (r) and

transmission (t) coefficients. The classical picture of the BS ignores the vacuum

mode always present in the unused port of the BS. Quantum mechanically, a BS has

four ports as per Fig. 2.2, where â and b̂ are the annihilation operators representing

the input modes. The unitary operator for the beamsplitter interaction is

ÛBS = eθ(â
†b̂−âb̂†). (2.66)

Figure 2.2: Quantum model of a beamsplitter.

Adapting the Heisenberg picture, we can find the output modes after the BS interac-
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tion.

â→ tâ+ rb̂ (2.67)

b̂→ tb̂− râ, (2.68)

where t = cosθ and r = sinθ are transmission and reflection coefficients respectively.

Note that t2 + r2 = 1, which is a consequence of energy conservation implying that

the total photon-number is conserved after BS interaction. The field quadrature

operators evolve to

q̂a → tq̂a + rq̂b (2.69)

q̂b → tq̂b − rq̂a (2.70)

p̂a → tp̂a + rp̂b (2.71)

p̂b → tp̂b − rp̂a (2.72)

For a balanced BS we have, t = r = 1/
√

2. In general, the BS operation can be

implemented on any physical platform with the following bi-linear Hamiltonian

Ĥ ∝ i(â†b̂− âb̂†). (2.73)

2.4.2 The displacement operator

The unitary operator for phase space displacement operation is

D̂(α) = eαâ
†−α∗â, (2.74)

where α := (qα + ipα)/
√

2 is the displacement amplitude. Under the action of D̂(α),

mode â evolves to

D̂†(α)âD̂(α) = â+ αI. (2.75)
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Similarly, the evolution of the quadratures is

D̂†(α)q̂D̂(α) = q̂ + qα (2.76)

D̂†(α)p̂D̂(α) = p̂+ pα (2.77)

The experimental implementation of the displacement operator is detailed in chap-

ter 3. An n-mode displacement operator is given by

D̂(α1, α2, · · · , αn) = ⊗ni=1D̂i(αi), (2.78)

where D̂i(αi) is the displacement operator for ith mode.

2.4.3 The phase-shift operator

For a given mode â, the phase-shift operator is defined as

Û(φ) = e−iφN̂ , (2.79)

where N̂ = â†â is the number operator. Under the phase-shift operator, mode â

evolves to

â→ âe−iφ (2.80)

and quadrature operators transform as

q̂ → q̂cosφ+ p̂sinφ (2.81)

p̂→ p̂cosφ− q̂sinφ (2.82)

(2.83)

In the lab, phase-shift operation can be implemented using piezoelectric actuator

mirror (PZT) or simply by adding path delays. This operation is extensively used in
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quantum state characterization as well as nullifier measurements in squeezing exper-

iments.

2.5 Phase space representation of optical systems

In classical Hamiltonian mechanics, a physical system composed of M particles is

represented by a vector ~r := {~q, ~p} in a 6M dimensional phase space, where ~q and

~p denote the position and momentum degrees of freedom. For example, the physical

state of a simple 1D harmonic oscillator can be associated with the point coordinates

(q, p) as shown in the Fig 2.3 (a). In classical physics, one can determine the phase

space coordinates (q, p) at a given time with arbitrary precision.

Figure 2.3: (a) Phase space of a simple harmonic oscillator, (b) Phase space of a
quantum harmonic oscillator.

A key question then arises—what does it mean to characterize a quantum system?

In quantum physics, the Heisenberg uncertainty principle prohibits simultaneously

knowing the position and momentum with arbitrary precision. Therefore, one defines

probability density functions. For example, the probability of the 1D quantum har-

monic oscillator being in position range of xi and xf is Px =
∫ xf
xi
f(x)dx, and likewise

for the momentum range of pi and pf is Pp =
∫ pf
pi
g(p)dp, where f(x) = |ψ(x)|2 and
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g(p) = |ψ̃(p)|2 are the probability densities for position and momentum respectively.

A complete knowledge of f(q) and g(p), however, is not sufficient to fully characterize

a quantum system. This is due to the informationally incompleteness of these mea-

surements for quantum state characterization, we discuss this in detail in section 2.7.

Therefore, one needs to have informationally complete measurements in order to fully

characterize a quantum system. In quantum optics, such measurements include gener-

alized quadratures, i.e., their measurement POVM set is {|X(φ)〉〈X(φ)|, X(φ) ∈ R},
measured using homodyne detection and measurements in the coherent state basis

with the POVM set {|α〉〈α|, α ∈ C}, performed with heterodyne detection. As we

discuss later, these measurements enable us to characterize a quantum system ei-

ther by reconstructing the phase space distribution function such as Wigner function

(discussed next) or by reconstructing the density matrix of the system under investi-

gation.

2.5.1 Wigner Function

Eugene Wigner originally defined the continuous phase-space quasiprobability distri-

bution function to study the quantum corrections in statistical physics [93]. For a

quantum state of density operator ρ̂, the Wigner function is given by

W (q, p) =
1

π

∫ ∞
−∞

e2ipy 〈 q − y | ρ̂ | q + y 〉 dy, (2.84)

where q and p are the respective eigenvalues of the position and momentum operators

or, in our case, of the amplitude-quadrature, Q = (â+ â†)/
√

2, and phase-quadrature,

P = i(â† − â)/
√

2, of the quantized electromagnetic field, â and â† being the photon

annihilation and creation operators, respectively. The Wigner function is uniquely

defined and contains all the information about the quantum system. It is normalized

over phase space and its marginal distributions correspond to the probability density
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distributions of the quadratures

∫ ∞
−∞

dpW (p, q) = |ψ(q)|2 (2.85)∫ ∞
−∞

dqW (p, q) = | ˜ψ(p)|2. (2.86)

However, unlike classical distributions, the quantum Wigner distribution W (q, p)

can’t always be interpreted as a joint probability distribution because it can be non-

positive (hence non-Gaussian for pure states [94]), e.g. for Fock states with n > 0.

Some Properties of the Wigner Functions

• Linearity: For a given linear combinations of density operators, the Wigner

function is also the linear combination of individual Wigner functions, as per

Eq. (2.87)

ρ =
∑
i=0

λiρi

Wρ(q, p) =
∑
i=0

λiWρi(q, p), (2.87)

where Wρi(q, p) is the Wigner function of ρi.

• State overlap: For given quantum states ρ1 and ρ2, the state overlap is

O = Tr[ρ1ρ2] = 2π

∫
W1(q, p)W2(q, p)dqdp (2.88)

For a given pure state ρ1 = |ψ1〉〈ψ1|, the overlap is essentially the fidelity

between ρ1 and ρ2. In this thesis, we use the fidelity definition given as

F =

[
Tr
[√√

ρ1ρ2
√
ρ1

]]2

, (2.89)
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which simplifies to the state overlap for a pure state ρ1.

F =

[
Tr
[√
ρ1ρ2ρ1

]]2

= 〈ψ1|ρ2|ψ1〉[Tr[ψ1〉〈ψ1|]2 = 〈ψ1|ρ2|ψ1〉 = Tr[ρ1ρ2] = O,

(2.90)

• State purity: For a quantum state described by ρ, the purity of the density

operator is

Purity(ρ) = Tr[ρ2] = 2π

∫
W 2(q, p)dqdp ≤ 1, (2.91)

where the equality holds for pure states.

• Generalization: The Wigner function can be defined for any Hermitian operator,

i.e., A = A†. Consequently, the expectation value of an operator Ô is

〈Â〉 = Tr[ρÂ] = 2π

∫
Wρ(q, p)WÂ(q, p)dqdp (2.92)

We now plot the Wigner functions of some commonly used quantum states. The

Wigner function of the vacuum state is displayed in Fig. 2.4.

Figure 2.4: Wigner function of the vacuum state

Using Eq. (2.84), one can get the analytical expression of the Wigner function which

turned out to be two dimensional Gaussian function having peak at the origin of the
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phase space.

W|0〉〈0|(q, p) =
1

π
e−q

2−p2 (2.93)

In Fig. 2.5, we display the Wigner function of a coherent state which is essentially a

displacement of the vacuum Wigner function by the coherent state amplitude.

Figure 2.5: Wigner function of a coherent state with amplitude, α = 1 + 1j.

Therefore, the Wigner function of a coherent state can be obtained by the coordinate

translation of the vacuum Wigner function. As a result, we have

W|α〉〈α|(q, p) =
1

π
e−(q−

√
2Re[α])2−(p−

√
2Im[α])2 (2.94)

Next is the Wigner function of amplitude quadrature single-mode squeezed-vacuum

state (SMSV) depicted in Fig. 2.6.
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Figure 2.6: Wigner function of squeezed vacuum with ζ = 1.

The Wigner function is thus given by

W|SMSV 〉〈SMSV |(q, p) =
1

π
exp(−e−ζq2 − eζp2), (2.95)

So far we have only considered non-negative Wigner functions. We now look at some

non-positive Wigner functions and also give analytical expression of the Wigner func-

tion for quantum states described in a finite dimensional Hilbert space. In Fig. 2.7,

we display the Wigner functions of the Fock states for n = 1 and n = 2. We see that

the Wigner functions are non-Gaussian and have negative values in certain regions of

the phase space.
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Figure 2.7: The Wigner functions of a single-photon Fock state, (a) and a two-photon
Fock state, (b). We can see the negative regions in phase space.

In general, the Wigner function of a quantum state in a finite dimensional Hilbert

space can be expressed as a linear combination of the Wigner functions corresponding

to each density matrix element, |n 〉 〈n′ |. For a given density matrix

ρ =

Nd∑
n,n′=0

ρn,n′ |n〉〈n′|, (2.96)

where (Nd + 1) is the Hilbert space dimension. The Wigner function is

W (q, p) =

Nd∑
n,n′=0

ρn,n′Wn,n′(q, p), (2.97)

where Wn,n′(q, p) is [95]

Wn,n′(q, p) =


(−1)n

π

√
2n′n!
2nn′!

(q − ip)n′−ne−(q2+p2)Ln
′−n
n (2(q2 + p2)) n ≤ n′

(−1)n
′

π

√
2nn′!
2n′n!

(q + ip)n−n
′
e−(q2+p2)Ln−n

′

n′ (2(q2 + p2)) n ≥ n′

 ,

(2.98)
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where Ln−n
′

n′ are the associated Laguerre polynomials. Moreover, the Wigner function

of an n-mode Gaussian state can be written as

W (x) =
exp[(−1/2)[x− x̄]TV−1[x− x̄]

(2π)N
√

det[V]]
, (2.99)

where x := [q1, p1, q2, p2, · · · , qN , pN ] and x̄ is the mean vector of the quadratures and

det[V] is the determinant of the covariance matrix [96].

2.5.2 Glauber – Sudarshan P-function

As mentioned earlier, coherent states form overcomplete set of states. The over-

completeness of the coherent states allows us to write arbitrary quantum state in the

coherent state basis, which is formally known as Glauber–Sudarshan P representation

given as

ρ =

∫
P (α)|α〉〈α|d2α, (2.100)

where d2α = dRe[α]dIm[α] is the integration over the complex space. From Eq. (2.100),

one can see that any arbitrary quantum state can be represented in the diagonal form

in the Hilbert space spanned by coherent state basis set, {|α〉, α ∈ C}. The P function

representation is particularly beneficial when one has to determine the expectation

values of normally-ordered operators. Mathematically

〈â†mân〉ρ =

∫
Pρ(α)α∗mαnd2α. (2.101)

For quantum states such as Fock states, the P functions are highly singular, which

makes them undesirable for their experimental reconstructions for characterizing these

quantum states.
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2.5.3 Husimi Q-function

The Husimi Q-function, originally defined by Kôdi Husimi, is another continuous-

variable representation of optical systems. For a single mode quantum state, the

Q-function is defined as [97]

Q(α) =
1

π
〈α|ρ|α〉 =

1

π
Tr[ρ|α〉〈α|]. (2.102)

From Eq. (2.102), we can see that the Q function is essentially the diagonal entries of

density matrix operator represented in the coherent state basis. Since ρ is a positive

and trace bounded operator, Q-function is always non-negative, normalized, and a

regular function. Mathematically

0 ≤ Q(α) ≤ 1

π
. (2.103)

The P functions are highly singular for nonclassical states of light, which makes

them hard to experimentally reconstruct them. On the other hand, Q functions are

regular and several techniques employing six-port and eight-port balanced homodyne

schemes have been proposed and experimentally demonstrated for their reconstruc-

tions [98], [99]. The Q-function is uniquely defined and contains complete information

about the quantum system, i.e., it is equivalent to knowing the density operator of

the system. Therefore, it can be used to predict the measurement outcomes by us-

ing the P function representation of the positive-valued-operator measures (POVMs)

describing a detector1 . While this formalism works in principle, it’s experimental

implementations have significant challenges and might result in unphysical results.

This is because of highly divergent nature of P functions of the detector POVMs,

and using the P functions of the detector POVMs with the state Q functions in the

presence of experimental imperfections might result in numerical instabilities. Addi-

1Every quantum detector can be completely described by a set of hermitian operators known as
positive-valued-operator measures (POVMs). We will discuss this in detail in chapter 5
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Figure 2.8: Top: (a) Husimi Q-function of a cat state, a quantum superposition
of coherent states |α〉 and | − α〉, (b) Q function of a statistical mixture of |α〉 and
|−α〉. Bottom: (c) Wigner function of a cat state, (d) Wigner function of a statistical
mixture. All are plotted for α = 2 and the Hilbert space is truncated at N = 40. The
difference in the Q function values in Figs. (a) and (b) is of O(10−4).
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tionally, quantum effects such as phase space interference are not pronounced in the

Q-function as demonstrated in Fig 2.8, where the top row displays the Q functions of,

(a) cat state, a quantum superposition of coherent states, |α〉 and |−α〉, (b) statistical

mixture of |α〉 and | − α〉. The bottom row shows the Wigner functions of, (c) a cat

state and (d) a statistical mixture. One can see that it is easier to distinguish the cat

state from statistical mixture in the Wigner function representation. Therefore, it is

desirable to experimentally reconstruct the Wigner functions of quantum states for

quantum state tomography, discussed in section 2.7. This briefly covers some basics

of quantum optics.

2.6 Continuous-variable quantum computing

In this section, we cover some basics of continuous-variable quantum computing

(CVQC). A detailed discussion can be found in Refs. [100]–[102] and references

therein. Table 2.1 shows a correspondence between discrete-variable (DV) and continuous-

variable quantum computation. We note that the eigenstates of amplitude and phase

quadratures form the computational and conjugate bases respectively. Within the

qubit computation, the Hadamard transforms the computational basis, {|0〉, |1〉} to

the conjugate basis, {|+〉, |−〉}. This is analogous to the quantum Fourier trans-

formation (QFT) in CVQC, i.e., the conjugate basis, {|p〉, p ∈ R} is obtained by

applying QFT to {|q〉, q ∈ R}. Next, the Pauli group in qubit computing corresponds

to Weyl-Heisenberg (WH) group parametrized by two real parameters denoted by ξ

and $. While the WH operators offer to implement operations governed by the lin-

ear Hamiltonians, they do not allow implementations of higher-order polynomials in

the quadrature operators Q and P . This can be understood using Baker-Campbell-

Hausdorff (BCH) relation expressed as

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + · · · (2.104)
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If both the operators, A and B are linear in quadratures, Q and P , one can imme-

diately see from the BCH relation that any combinations of the WH operators will

not give higher-order polynomials because the commutator [A,B] is a constant. For

example, an action of X(ξ) on the amplitude eigenstate displaces it by ξ, and simply

adds a phase to the phase quadrature eigenstate.

In the pursuit of generating higher-order polynomials, let’s consider the following

quadratic Hamiltonian

H0 =
Q2 + P 2

2
(2.105)

In the Heisenberg picture, the evolution of quadrature operators under the quadratic

Hamiltonian leads to

Q̇ = i[H0, Q] = −P, (2.106)

Ṗ = i[H0, P ] = Q. (2.107)

A simple algebra shows that

Q→ Qcost− P sint, P → P cost+Qsint. (2.108)

It is worth pointing out that the Hamiltonian in Eq. (2.105) is the free-field Hamilto-

nian and its unitary transformation can be implemented by letting the field evolve for

a given time t or by adding a path delay. Thus we see that the quadratic Hamiltonian

leads to linear transformations of the canonical amplitude and phase quadratures.

This is because the commutator [Q,P ] is constant, and [H0, Q] and [H0, P ] can only

create polynomials with the highest order of one in Q and P as per Eq. (2.108).

As discussed in Ref. [38], adding a quadratic Hamiltonian of the form H ∝ (QP+PQ)

allows the construction of any quadratic Hamiltonian2. Since quadratic Hamiltoni-

ans do not increase the polynomial order, their repeated actions can not construct

2This Hamiltonian corresponds to the squeezing Hamiltonian realized using second order χ(2)

nonlinear process.
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the Hamiltonians of arbitrary order. All the unitary transformations corresponding

to these Hamiltonians discussed above come under the class of Gaussian unitaries

because they preserve the Gaussian nature of a quantum state [101]. While these

Gaussian operations can be deterministically implemented, they do not offer any com-

putational advantages with Gaussian states and Gaussian measurements. Bartlett et

al. showed that any quantum circuit consisting of Gaussian states, Gaussian oper-

ations, and Gaussian measurements can be efficiently simulated on a classical com-

puter [103]. This is known as the CV analogue of Gottesman-Knill theorem for qubit

systems [104].

Now the question arises – what kinds of physically realizable Hamiltonians do we

need in order to construct polynomials of arbitray order? A natural inclination will

be to consider higher order optical nonlinearities such as χ(3), also known as Kerr

nonlinearity. The Kerr Hamiltonian is given as

HKerr ∝ (â†â)2 = (Q2 + P 2)2. (2.109)

By making use of the Heisenberg picture, we get [38]

[HKerr, Q] =
i

2
(Q2P + PQ2 + 2P 3). (2.110)

Likewise, for the phase quadrature

[HKerr, P ] = − i
2

(P 2Q+QP 2 + 2Q3). (2.111)

From Eqs. (2.110) and (2.111), we note that the commutators [HKerr, Q] and [HKerr, P ]

increase the order of the polynomial in Q and P . Consequently, repeated commu-

tators allow the construction of any order polynomial in the canonical operators Q

and P , and the number of repetitions to construct a polynomial of order n, has a

polynomial scaling in n. Moreover, one can in fact use any third order Hamiltonian
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along with the Hamiltonians Q,P,H0, and H to generate the Hamiltonians of arbi-

trary order. For instance, the third order Hamiltonian Q3 allows the implementation

of a cubic phase gate, which is a CV analogue of the non-Clifford gate in DV compu-

tation. The addition of the cubic phase gate to the Gaussian toolbox completes the

universal gate set for CVQC [38]. Furthermore, we note that the two-qubit gates, CX

and CZ also have their CV analogues which are used to create entanglement between

modes. While weak higher order optical nonlinerities prohibits a deterministic im-

plementation non-Gaussian gates, there are theoretical proposals to implement cubic

phase gate or prepare cubic phase state via postselections for PNR measurements [75],

[105].

Finally, we see that the measurements in CVQC are homodyne measurements, het-

erodyne measurements, and photon-number- resolving measurements. More recently,

Baragiola et al. showed the universality and fault tolerance using only Gaussian re-

sources given a supply of GKP-encoded Pauli eigenstates [106]. This summarizes the

common tools in CVQC and how it can be made universal by adding a non-Gaussian

element to the relatively easier to implement Gaussian toolbox.
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Discrete variable Continuous variable

Computational Basis {|0〉, |1〉} {|q〉q∈R}
〈n|m〉 = δn,m, n,m ∈ {0, 1} 〈q|q′〉 = δ(q − q′)

Conjugate Basis |±〉 = 1√
2
(|0〉 ± |1〉) {|p〉p∈R}, |p〉 = 1√

2π

∫
eipq|q〉dq

Single-qubit/qumode |ψ〉 = c1|0〉+ c2|1〉 |ψ〉 =
∫
ψ(q)|q〉dq

Bipartite state |ψ〉 = 1√
2
(|00〉+ |11〉) |ψ〉 =

∫
|q, q〉a,bdq

Pauli group Weyl-Heisenberg group
〈X,Z〉 〈{X(ξ)}ξ∈R, {Z($)}$∈R〉

Qubit/qumode X|l〉 = |l ⊕ 1〉, l = 0, 1 X(ξ) = e−iξP , Z($) = ei$Q

Clifford gates
Z|l〉 = eilπ|l〉, l = 0, 1 X(ξ)|q〉 = |q + ξ〉
X|±〉 = ±1|±〉 Z($)|p〉 = |p+$〉
Z|±〉 = |∓〉 X(ξ)|p〉 = e−iξp|p〉

Z($)|q〉 = ei$q|q〉

Two-qubit/qumode CX |l,m〉 = |l, l ⊕m〉 e−iαQ1P2|q, q′〉 = |q, q′ + αq〉
gates CZ |l,m〉 = eiπlm|l,m〉 eiαQ1Q2|q, q′〉 = eiαqq

′|q, q〉

Non-Clifford gates π
4

rotation about z, Rz(
π
4
) Cubic phase gate: eiγQ

3
, γ ∈ R

Measurement bases X, Y , and Z |q〉q∈R, |α〉α:=q+ip∈C, |n〉n∈N,

N̂ = Q2+P 2−1
2

Table 2.1: Equivalence between discrete and continuous variable quantum computing.

2.7 Characterization of quantum resources

In this section, we provide an overview on characterizing quantum states and quan-

tum detectors. We first focus on the characterization of quantum states, which is
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Figure 2.9: Characterization of quantum states, processes, and detectors.

formally known as quantum state tomography (QST), and then we move to char-

acterizing quantum detectors, also known as quantum detector tomography (QDT).

Generally speaking, for a given d-dimensional quantum system represented in some

basis, QST amounts to experimentally identifying d2 complex entries of the density

matrix, thereby 2d2 real parameters. Due to Hermitian nature, i.e., ρ = ρ† of a

physically valid density matrix, all the entries are not independent which reduces the

number of real parameters from 2d2 to d2. Furthermore, with the unit trace property

(Tr[ρ] = 1, the number of required real parameters can be reduced to d2 − 1. There-

fore, O(d2) real parameters have to be estimated in order to fully characterize the

quantum state described by ρ.

Unfortunately, a system of N particles with exponentially large Hilbert space, requires

exponentially large O(d2N) number of measurements to fully characterize it, which

makes QST computationally hard for systems with many particles. Although there

has been significant progress towards reducing the number of required measurements

using tools such as compressed sensing [107] and adaptive-state tomography [108] for

fairly pure states, QST still remains an irreducibly hard estimation problem in the

general setting.

An experimental implementation of QST requires measuring a quantum state such

that the positive-operator-valued measurements (POVMs) describing the measure-
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ment device are informationally complete3.

Figure 2.10: A quantum measurement process. The measured state is ρ and POVM
element for an outcome, k is Πk leading to outcome probability of P (k)

Since a measurement collapses the quantum state being measured, a complete charac-

terization of the state requires quantum measurements on an ensemble of identically

prepared states. One can repeat the measurement process on ensemble in order to

build the probability distribution for all measurement outcomes. The probability of

an outcome k is given by the Born rule

P (k) = Tr[ρΠk]. (2.112)

A QST protocol requires complete knowledge of the quantum detector used for mea-

surements. Hence, we know the exact form of ΠK in Eq. (2.112). The only unknown

in Eq. (2.112) is the density matrix, which could be estimated by inverting it under

physicality constraints discussed in chapter 4.

We now discuss quantum detector tomography. Since trace is cyclic, the role of

quantum state, ρ and measurement operator, Πk can be interchanged in Eq. (2.112).

Consequently, QDT involves experimental reconstruction of the measurement opera-

tors or the POVMs {Πk}. For optical detectors, a light prepared in a set of known

tomographically complete states a.k.a probes is sent to the detector. The probabilities

of different measurement outcomes are then used to invert Eq. (2.112) to determine

Πk. In this thesis, we dedicate chapter 6 to discuss QDT in great depth. We now look

3POVMs are discussed in great depth in chapter 5
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into some continuous-variable tomography methods for both quantum states. Since

a quantum system can be equivalently represented by using either of the phase space

distribution functions discussed in section. 2.5, the CV tomography can be performed

by reconstructing these distributions. As discussed in section. 2.5, the Wigner func-

tion representation has the advantage of having a clear visualization of phase space

interference effects so it is usually preferred for CV tomographic protocols. One such

protocol is based on known as balanced homodyne detection (BDH), discussed next.

2.7.1 State tomography with balanced homodyne detection

The most common method to characterize a CV quantum state is to reconstruct its

Wigner quasiprobability distribution with field quadrature measurements obtained

from BHD technique [109], [110]. In this method, the quantum signal â is interfered

with a relatively stronger amplitude and phase modulated local oscillator (LO) b̂, at

a balanced beamsplitter, as shown in Fig 2.11.

Figure 2.11: Schematic of the balanced homodyne method.The unknown state and
the local oscillator are described by annihilation operators â and b̂ respectively.

The output fields of the beamsplitter are incident to two photodiodes whose pho-
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tocurrents are sent to an electronic subtractor. The current from a photodetector is

proportional to the energy (total photon-number) of the field impinging on it. As a

result, we have

I− ∝ Tr[ρouta,b (N̂ in
a − N̂ in

b )] = Tr[ρina,b(N̂
out
a − N̂ out

b )], (2.113)

where ρ
in(out)
a,b is joint quantum state before (after) the balanced beamsplitter. N̂

out(in)
a

and N̂
out(in)
b are the total number of photons detected by the top and bottom photo-

diode respectively. We solve Eq. (2.113) in the Heisenberg picture. As we discussed

in section 2.3, the evolution of signal and LO modes is given as

â→ â+ b̂√
2

(2.114)

b→ â− b̂√
2
. (2.115)

Next, we calculate the evolved photon-number difference operator as following

N̂ out
a − N̂ out

b =
(â+ b̂)†(â+ b̂)− (â− b̂)†(â− b̂)

2

= â†b̂+ âb̂† (2.116)

Using Eq. (2.113) and Eq. (2.116) with ρinab = ρa ⊗ (|βLO〉〈βLO|)b, we get

I− ∝ |β|〈(âeiφ + â†e−iφ)〉ρa ∝ |β|〈X̂(φ)〉ρa , (2.117)

where X̂(φ) = (âe−iφ + â†eiφ)/
√

2 is the generalized quadrature of the signal mode.

Note that we have used the fact that local oscillator being a coherent state can be

described by a complex variable βLO = |βLO|eiφ, where φ is the phase of the LO. As

a result from Eq. (2.117), one can see that the expectation value of the signal field

quadrature has been amplified by the strong LO field which allows its detection by
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high quantum efficiency conventional photodiodes and standard electronics4.

By varying the LO phases and taking enough measurements at different phases

(typically order of 104), one can obtain the histograms for probability distributions

P (X(φ)) at each phase value. P (X(φ)) is related to the quantum state given by

density matrix, ρ and its Wigner function as

P (X(φ)) = Tr[ρ(|X(φ)〉〈X(φ)|)] = 〈X(φ)|ρ|X(φ)〉 (2.118)

=

∫
W (Qcosφ− P sinφ,Qsinφ+ P cosφ)dP (2.119)

Note that at φ = 0, X̂(φ) is just the amplitude quadrature and P (X(φ = 0)) =

〈X(φ = 0)|ρ|X(φ = 0)〉 = 〈Q|ρ|Q〉 = |ψ(q)|2 =
∫
W (Q,P )dP , thereby resulting

in the probability density of amplitude quadrature. Once P (X(φ))’s are obtained,

one can reconstruct the density matrix by using maximum-likelihood algorithms and

Wigner function using inverse Radon transforms [110], [111]. Moreover, a simple

calculation shows that

P (X(φ)) =
e−X(φ)2

√
π

∑
n=0

∑
m=0

ρn,m√
2n+mn!m!

ei(n−m)φHn(X(φ))Hm(X(φ)). (2.120)

Here, we have used the fock space representation of the generalized quadrature eigen-

state given as

|X(φ)〉 =
e−X(φ)2

π1/4

∑
n=0

cn,φ|n〉, (2.121)

where cn,φ = einφHn(X(φ))/
√

2nn! and Hn(X(φ)) is the Hermite polynomial of de-

gree n. From Eq. (2.120), one can obtain the density matrix of the unknown state by

simply inverting it. It is worth mentioning that a BHD device implements the gen-

eralized measurement operators, {|X̂(φ)〉〈X̂(φ)|, X(φ) ∈ R} as seen in Eq. (2.118).

Note that the probability distributions for Gaussian states are Gaussian distributions,

4Here, by conventional photodiodes we mean photodiodes with no single-photon detection capa-
bilities.
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which is why quadrature measurements using BHD are known as Gaussian measure-

ments [101].

Recently, there has been significant interest in homodyne-like (HL) schemes, where the

actual photon-number difference distribution is measured in place of macroscopic pho-

tocurrent differences. It has been proven and experimentally demonstrated that the

pattern function technique, originally developed for macroscopic photocurrents [111],

can also be applied to a HL scheme where the LO intensity is comparable to the quan-

tum state under investigation [112]. The HL scheme can be tuned to the BHD method

as one increases the amplitude of the LO to the regime where it can be treated as a

classical field [87]. Although the pattern functions or inverse Radon transforms can

be calculated using numerically efficient algorithms [111], they are prone to instabili-

ties leading to nonphysical reconstructions in the presence of noise and low detection

efficiencies [113]. To avoid the nonphysical reconstructions, many methods based on

maximum-likelihood (MaxLik) algorithms have been proposed [113]. Here, the goal is

to find a physical density matrix which maximizes a likelihood function and is consis-

tent with the measured probability distributions. The MaxLik ensures the physicality

of the reconstructed density matrix and the non-unity detection efficiencies can be di-

rectly incorporated. However, the MaxLik algorithm converges slowly in general and

may even fail if the detectors have low quantum efficiency [85]. It is well understood

that maximum likelihood (MaxLik) algorithm is optimal only with informationally

complete measurements [114]. Therefore, due to the informationally incompleteness

of the tomographic measurements for CV systems, there may be many positive den-

sity matrices which are all equally likely. In this case, the estimated quantum state

might not be the true state. Therefore, it is desired to develop QST methods which

require minimal postprocessing of the data and leads to a physical reconstruction of

the true state.
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2.7.2 State characterization using PNR measurements

A more direct approach to reconstruct the Wigner function without any heavy nu-

merical post-processing was proposed by Wallentowitz and Vogel [1] and by Banaszek

and Wódkiewicz [2], which we call WVBW scheme throughout this thesis. The pro-

posed method employs photon-number-resolving (PNR) measurement as opposed to

the quadrature measurements in BHD. In chapter 3, we demonstrate the WVBW

scheme method for a single-photon Fock state. In chapter 4, we propose a general-

ization of the WVBW scheme and experimentally demonstrate it for a weak coherent

state and a single-photon Fock state.



Chapter 3

Quantum State Tomography by

Photon-number-resolving

Measurements

It doesn’t matter how beautiful

your theory is, it doesn’t matter

how smart you are. If it doesn’t

agree with experiment, it’s

wrong.

Richard P. Feynman

In this work, we directly reconstruct the Wigner quasiprobability distribution of a

narrowband single-photon state by quantum state tomography using photon-number-

resolving measurements with transition-edge sensors (TES) at system efficiency of

58(2)%. Our method is state-independent as we make no assumptions on the nature

of the measured state, although a limitation on photon flux is imposed by the TES’

saturation threshold. We observe the negativity of the Wigner function in the raw

data without any inference or correction for decoherence. We also include a discussion

52
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on characterizing a multi-mode quantum state using this scheme.

This chapter is mostly based on the published paper titled, “State-independent

quantum tomography of a single-photon state by photon-number-resolving measure-

ments,” Rajveer Nehra, Aye Win, Miller Eaton, Niranjan Sridhar, Reihaneh Shahrokhshahi,

Thomas Gerrits, Adriana Lita, Sae Woo Nam, and Olivier Pfister, Optica, 6(10),

pp.1356-1360.

3.1 Introduction

Single and multiphoton sources prepared in Fock states are of fundamental impor-

tance: not only do they enable experiments that epitomize the wave-particle “du-

ality” of quantum mechanics, they also can only be described by quantum theory

due to the non-positivity of their Wigner quasi-probability distribution [111], [115].

This acquires major significance in the context of quantum information and quantum

computing over continuous variables (CVQC) [116], [117] as it is well known that all-

Gaussian- (gates and states) CV quantum information suffers from no-go theorems

for Bell inequality violation [77], entanglement distillation [81], and quantum error

correction [80]. However, none of these no-go theorems apply to CVQC when includ-

ing non-Gaussian states or gates [118]–[120]. Non-Gaussian resources are therefore

essential to CVQC and can be implemented, for example, by Fock-state generation or

detection [121]. It is therefore important to be able to characterize Fock states fully

and efficiently, possibly in real time. One standard method of state tomography is

Wigner function reconstruction. Quantum state tomography in phase space [109] can

be performed by reconstructing the Wigner function from the measurement statistics

of the generalized quadrature Q cosφ+P sinφ, measured by balanced homodyne de-

tection (BHD) where phase φ is the tomographic angle (see section 2.7.1). This was
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first done for heralded single photon states in 2001 [122] and recently improved [123].

As discussed in chapter 2, an issue with BHD-based tomography is that the recon-

struction process is computationally intensive, using the inverse Radon transform,

or maximum likelihood algorithms [110]. A more direct approach to reconstruct the

Wigner function was proposed by Wallentowitz and Vogel [1] and by Banaszek and

Wodkiewicz [2]. It is based on the following expression of the Wigner function [124]

Wρ̂(α) =
1

π
Tr[ρ̂D̂(α)(−1)N̂D̂†(α)], (3.1)

where α = (q + ip)/
√

2, D̂(α) = exp(αâ† − α∗â) is the displacement operator, and

N̂ = â†â is the number operator. Equation (3.1) reveals that the Wigner function at

a particular phase space point α is the expectation value of the displaced parity oper-

ator D̂(−1)N̂D̂† over ρ̂ or, equivalently, the expectation value of the parity operator

(−1)N over the displaced density operator D̂†ρ̂D̂. This provides a direct measurement

method given that one has access to photon-number-resolving (PNR) measurements.

In particular, the value of the Wigner function at the origin is the expectation value

of the photon number parity operator

W (0) =
1

π

∞∑
n

(−1)nρnn. (3.2)

Hence, the PNR detection statistics of a quantum system of density operator ρ̂ yields

a direct determination of the Wigner function at the origin. In order to recover the

Wigner function at all points, one can simply displace ρ̂ by the amplitude α. This

can be done by interference at a highly unbalanced beamsplitter [125] of transmission

to refelection coefficient ratio t/r � 1, as depicted in Fig.3.1. This technique is

commonplace in quantum optics and was used, for example, to implement Bob’s

CV unitary in the first unconditional quantum teleportation experiment [126]. In

all rigor, the resulting Wigner function is a more general one, the s-ordered Wigner

function, W (sα; s), which tends toward W (α) when s = −t/r → 0 [127]. This method
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Figure 3.1: Implementation of a displacement by a beamsplitter. The initial coherent
state amplitude is β with |β| � 1, so that we can have t� 1 in order to preserve the
purity of the quantum signal ρ̂, while still retaining a large enough value of |α| = t|β|,
as needed for the raster scan of the Wigner function in phase space.

was implemented for quantum state tomography of phonon Fock states of a vibrating

ion [128], as well as microwave photon states in cavity QED [129], [130]. For quantum

states of light, it has been experimentally realized for the positive Wigner functions

of vacuum and coherent states, as well as phase-diffused coherent-state mixtures,

initially detecting no more than one photon [131] and subsequently detecting several

photons [132], [133]. The nonpositive Wigner function of a single-photon state was

reconstructed using PNR measurements by time-multiplexing non-PNR, low efficiency

avalanche photodiodes, albeit using a priori knowledge of the input state in order to

deconvolve the effect of losses [66].

This work is the first demonstration of state-independent photon-counting quantum

state tomography of a non-positive Wigner function. The only assumption made

here is that the initial quantum state consists of low photon numbers to avoid the

saturation limit of the detector, which is less than five photons per microseconds for

the superconducting Transition-Edge Sensor (TES) used in our experiment. Since no

other prior knowledge is assumed about the state to be measured, this technique is
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equally applicable to any arbitrary quantum state with low photon flux. We directly

observe negativity of the Wigner function with no correction for detector inefficiency.

3.2 Experimental setup and methods

3.2.1 Cavity-enhanced narrowband heralded single-photon

source

3.2.1.1 General model

Our single photon source is based on type-II spontaneous parametric downconver-

sion (SPDC) in a periodically poled KTiOPO4 (PPKTP) crystal. A pump photon

at frequency ωp is downconverted into a cross-polarized signal-idler photon pair at

ωs,i, such that energy ωp = ωs + ωi and momentum ~kp = ~ks + ~ki are conserved as

shown in Fig. 3.2, and the presence of the signal photon is heralded by detecting the

idler photon [122]. All tomographic measurements were therefore conditioned on the

detection of an idler photon. The SPDC Hamiltonian is given by [134], [135]

H ∝ i~χ(2)

∫
d3~r E(−)

p (~r, t)E
(+)
i (~r, t)E(+)

s (~r, t) +H.c. (3.3)

where χ(2) is the crystal’s second-order nonlinearity and the fields in the Heisenberg

picture take the form,

E
(−)
j=p,s,i(~r, t) = E(+)(~r, t)†

=

∫
dωj A(~r, ωj) âj e

i[kj(ωj)r−ωjt], (3.4)

where A(~r, ωj) is an approximately slowly varying amplitude and âj is the annihilation

operator for the mode of frequency ωj. Solving for the state under the evolution of the

Hamiltonian in Eq. (3.3) for low parametric gain regime and a non-depleted classical
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Figure 3.2: (a). Schematic of SPDC process. A higher energy photon interacts
with PPKTP crystal and gets downconverted to signal and idler photon pairs. (b)

displays the phase matching condition, where ~kp(~ks, ~ki) are wavevectors for pump
(signal, idler) fields. (c) shows energy conservation during the process with ωp being
the pump frequency and ωs(ωi) are signal (idler) frequencies.

pump yields the output quantum state

|ψ〉 =

∫
d3~ks,i dωs,i φ(~ks, ωs, ~ki, ωi) â

†
sâ
†
i | 0 〉s | 0 〉i (3.5)

where φ(~ks, ωs, ~ki, ωi) determines the spectral and spatial properties of the SPDC,

depending on the pump field and the non-linear crystal (phase matching bandwidth

around ~kp = ~ks + ~ki). Note that, in a PPKTP crystal, collinear phasematching is

used. We can see from Eq. (3.5) that the signal and idler photon pairs are emitted

in a multitude of spatial and spectral modes. Therefore, any measurement on a par-

ticular idler mode will collapse the quantum state given by Eq. (3.5) to a mixture of

signal-mode states. As a result, the heralded signal state will not be a pure quantum

state, which limits its applications in quantum information processing [136], [137].

This is because a nonzero vector phase-mismatch can lead to a detected, heralding

idler photon with a “twin” signal photon completely out of alignment and therefore
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undetectable, even in the absence of losses, which greatly diminishes the experimen-

tally accessible quantum correlations. One therefore needs to emit photon pairs in

the well defined spatial and spectral modes which are optimally coupled to the de-

tectors. This involves spectral and spatial filtering and has been widely studied both

theoretically and experimentally [138]–[143]. Our spectral and spatial filtering steps

are discussed in the next section.

3.2.1.2 Spectral and spatial filtering

A detailed discussion on our cavity-enhanced single-photon source can be found in

Reihaneh Shahrokhshahi’s thesis from Professor Olivier Pfister’s group at the Univer-

sity of Virginia, Charlottesville. Here, we summarize all the essential steps. Spectral

and spatial filtering was achieved by using optical resonators: both actively, by placing

the nonlinear crystal in a resonant cavity — thereby building an optical parametric

oscillator (OPO) — and passively, by using a filtering cavity (FC) and an interfer-

ence filter (IF) after the OPO. The OPO was used in the well-below-threshold optical

parametric amplifier (OPA) regime. The OPO cavity enhanced the SPDC at dou-

bly resonant (signal and idler) frequencies by a factor of the square of the cavity

finesse [144]. However, this enhancement was still masked by the “sea” of nonreso-

nant SPDC photons until we filtered the idler with a short FC, which selected only

one OPO mode, and with an IF, which selected only one of the FC modes. After

filtering, we are allowed to consider the simpler OPA Hamiltonian

H = i~κ â†sâ
†
i +H.c., (3.6)

where κ is the product of the pump amplitude and χ(2). This yields the well-known

two-mode squeezed state

|ψ〉 = (1− ζ2)
1
2

∞∑
n=0

ζn|n〉s|n〉i, (3.7)
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where ζ = tanh(κt). In the weak pump regime, both κt and ζ � 1, and Eq. (3.7)

can be approximated by

|ψ〉 ' |0〉s|0〉i + ζ|1〉s|1〉i +O(ζ2) (3.8)

A detection of a single photon in the idler mode thus projects the signal mode into a

single-photon state. Note that, since the heralding process consists in postselection

of the idler channel, filtering losses in this channel are unimportant. Indeed, if the

pump power is kept low enough that practically no pairs from different modes ever

overlap in time, one can then reasonably claim that the detected, the heralded signal

photon will be the twin of the filtered, heralding idler photon, as per Eq. (3.8). It is

important to also note that the situation will change if one seeks to herald a multi-

photon state by using PNR detection for heralding, as per Eq. (3.7). In that case,

losses in the heralding channel cannot be tolerated as they will lead to errors. We

investigate it next.

3.2.1.3 A generalized model for heralded state generation

We now understand how an imperfect PNR detector used in idler (heralding) path and

optical losses in the signal (heralded) path play a role in the heralded state generation.

From Equation (3.7), the density matrix of the two-mode squeezed vacuum state is

ρ =
∞∑
n,n′

cn,nc
∗
n′,n′|n, n〉〈n′, n′|, (3.9)

where cn,n = (1 − ζ2)
1
2 ζn. For a perfect PNR detector in the heralding path and no

losses in the heralded path, the probability of heralding a k-photon Fock state can be

determined by the Born rule

p(k) = Tr[ρ(Is ⊗ |k〉〈k|i)] = |ck,k|2. (3.10)
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Let’s consider an imperfect heralding PNR detector with detection efficiency, ηi. The

POVM element corresponding to k photons detection is given by

Mk =
∞∑
k=m

p(k|m)|m〉〈m|, (3.11)

where p(k|m) =
(
m
k

)
ηki (1−ηi)m−k is the conditional probability of detecting k photons

given m photons are incident to the PNR detector. Using Eq. (3.9) and Eq. (3.11),

the probability of heralding k-photon Fock state is then

p(k) = Tr[ρ(Is ⊗Mk,i] =
∞∑
l=k

|cl,l|2p(k|l) (3.12)

The heralded state is

ρk =
Tri[ρ(Is ⊗Mk,i)]

Tr[ρ(Is ⊗Mk,i)]
. (3.13)

Further simplification leads to

ρk =

∞∑
l=k

|cl,l|2p(k|l)|l〉〈l|

∞∑
l=k

|cl,l|2p(k|l)
. (3.14)

From Eq. (3.14), we see that an imperfect PNR detector projects the TMSV on to a

statistical mixture. Therefore, it is crucial to have a PNR detector with high quantum

efficiency in heralding experiments for state preparation. It is worth mentioning that

for a perfect PNR detector, i.e., ηi = 1, the POVM element is a pure projective

measurement as in Eq. (3.11). Consequently, the heralded state in Eq. (3.14) has

zero conditional probabilities, p(k|l) for all l 6= k, thereby leading to a heralded pure

state, ρk = |k〉〈k|.
Next, we consider the losses in the heralded path modeled by adding a fictitious

beamsplitter of transmission ηs and reflection 1− ηs. The heralded state is described

by â and the other unused port of beamsplitter has vacuum mode represented by
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b̂. We adopt the Heisenberg picture to find out the two-mode output state after the

fictitious beamsplitter. Mathematically,

ρa,bout = ÛBS(ρk ⊗ |0b〉〈0b|)Û †BS. (3.15)

By employing the Heisenberg picture evolution of operators â and b̂, we have

ρa,bout =
1

N
∞∑
l=k

|cl,l|2p(k|l)(
√
ηsâ
† +
√

1− ηsb̂†)l|0a, 0b〉〈0a, 0b|(
√
ηsâ+

√
1− ηsb̂)l,

(3.16)

where N =
∞∑
l=k

|cl,l|2p(k|l). We are interested in finding the quantum state in mode

â. A further simplification of Eq. (3.16) after tracing out mode b̂ leads to

ρheralded =
1

N
∞∑
l=k

|cl,l|2p(k|l)
l∑

m=0

(
l

m

)2

ηl−ms (1−ηs)mm!(l−m)!|l−m〉〈l−m|, (3.17)

Thus Eq. (3.17) describes the heralded state in the most general case1. For a heralded

single-photon Fock state, i.e., k = 1, and in the weak pump regime when l = k = 1

mostly contributes to the sum in Eq. (3.17), we get

ρheralded = (1− ηs)|0〉〈0|+ ηs|1〉〈1|. (3.18)

As a result, the heralded state is a statistical mixture of vacuum and a single-photon

Fock state. It is worth pointing out that as long as the pump power is kept low such

that Eq. (3.8) holds true, the detector efficiency or losses in the heralding (idler) path

do not matter for heralding a single-photon Fock state. Note that this would not

hold true for heralding a multiphoton Fock state, for instance two-photon Fock state,

as we can see that from the presence of ηi dependence in p(k|l), as per Eq. (3.17).

1Note that we have not considered the effect due to detector dark-count noise on heralded state
preparation, only non-ideal quantum efficiency is considered. This assumption is reasonable when
heralding is done using superconducting transition-edge sensor because these detectors have negli-
gible dark-count noise.
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Although, one can suppress the effects of an imperfect heralding PNR detector by

setting up the pump power in such a way that the contribution due to n > 2 in

Eq. (3.7) is negligible but it then reduces the two-photon emission. Therefore, it is

desirable to have to high efficiency PNR detector in order to generate a two-photon

Fock state at high rate.

Additionally, as the pump power increases the summand in Eq. (3.17) would have

contribution from l > k terms, i.e., a heralded single-photon state results in a statis-

tical mixture of higher Fock components. Therefore, it is desired to keep the pump

power way-below OPO threshold.

In the experiment, a significant contribution to photon loss in the heralding path

is due to the mode mismatch between the OPO and the filter cavity (FC), which

must also be locked on resonance simultaneously, as detailed in the next section. By

careful modematching of a seed OPO beam to the FC, we were able to achieve 83%

transmission of the OPO mode through the FC. This was achieved by using the setup

displayed in Fig 3.3. We seed the OPO through the highly reflective (99.995%) mirror

and its transmission through the OPO output coupler was divided into two parts us-

ing a PBS. The first part (dashed line) was used to lock the OPO using PDH locking

loop and the second part was guided to the FC. We further carefully aligned the op-

tics in order to optimize the FC transmission for pure TEM00 mode. To quantify the

modematching of the OPO and FC, we first measured the power before the FC and

then the power after the FC was measured while keeping the FC locked by manually

tuning the Servo fine gain.
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Figure 3.3: Experimental setup for optimizing the modematching of OPO beam to
the FC.

3.2.2 Experimental setup for quantum tomography

3.2.2.1 Setup description

The experiment, depicted in Fig.3.4, built upon our previous demonstration of coherent-

state tomography [133] with the addition of the heralded single-photon source. The

OPO was pumped by a stable frequency-doubled 532 nm Nd:YAG nonplanar ring os-

cillator laser (1 kHz FWHM). A type-II (YZY) quasi-phasematched PPKTP crystal,

of period 450 µm, was used in the doubly resonant OPO. The two-mirror OPO cavity,

as mentioned above, was one-ended, with a finesse of F ' 300, an FSR of 1.5 GHz and

a FWHM of 5 MHz. One mirror’s inside facet was 99.995% reflective for the signal

and idler fields near 1064 nm and 98% transmissive for the pump field at 532 nm (the

outside mirror facet was uncoated); the other mirror’s inside facet was 98% reflec-

tive at 1064 nm and 99.95% reflective at 532 nm (its outside facet was antireflection
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Figure 3.4: Experimental setup. The red dotted lines denote the locking beam paths
for the on/off Pound-Drever-Hall (PDH) servo loops of the OPO and the FC. The
displacement operation is contained in the black dash-dotted box at the top. BP:
Brewster prism. DM: Dichroic Mirror. EOM: Electro-optic modulator. FI : Faraday
Isolator. FR: Faraday Rotator. HWP: Half-wave plate. IF : Interference Filter. LO:
Local Oscillator input to the displacement field. PBS: Polarizing Beamsplitter. PD:
Photodiode. POL: Polarizer. PZT: Piezoelectric transducer.

coated at 1064 nm). The cavity was near-concentric with a super-Invar structure, the

mirrors’ radius of curvature being 5 cm and the mirrors '10 cm apart. The FC was

made of two 5 cm-curvature, 99% reflective mirrors placed '0.5 mm apart. The OPO

mode was aligned and mode-matched to all parts of the experiment (FC, TES fibers)

by using a seed beam which was injected into the OPO through its highly (99.995%)

reflecting mirror and exited through its output coupler. The seed beam was carefully

mode-matched to the OPO so as to be a pure TEM00 mode before being sent to the

rest of the setup. The seed beam set up is displayed in Fig 3.5. We guide a part

of OPO seed transmission (dashed-line) to the FC PDH locking photodiode which

provides the error signal used to lock the OPO to a pure TEM00 mode. Note that

the OPO is still being PDH locked by its own Vescent Servos, a key difference here is
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Figure 3.5: Experimental setup for optimizing the modematching the LO field to
single-photon field.

that the locking signal is being provided by the photodiode which is originally used

for the FC PDH locking. Once the OPO is locked, we guide the other bright part

of the seed beam to interfere with the LO. Both the LO and the OPO seed beam

transmission are matched spatially at the first PBS1, and then their polarization are

mixed using the HWP. We then optimize the free-space visibility of their interference

at one of the ports of the PBS2 before coupling it to SMF-28. Further, it was also

used for optimizing the fiber coupling.

3.2.2.2 Stabilization procedure

Both the OPO and the FC cavities were Pound-Drever-Hall (PDH) locked [145] to a

reference laser beam provided by the undoubled output of the pump laser.
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3.2.2.3 PDH locking

This was achieved by an “on/off” locking system, effected by a system of computer-

controlled diaphragm shutters. In the “on” locking phase, the input to the single-

photon sensitive PNR detectors was closed and the reference laser was unblocked and

sent into both the OPO and the FC (dotted lines in Fig.3.4) whose PDH lock loops

were closed for a few seconds. Because of its super-Invar structure, the OPO drift was

low and the PDH loops could then be open, in the “off” phase, with their correction

signals held constant. The shutter of the reference laser was closed and the paths

between the OPO and the PNR detectors were open for data acquisition, for as long

as 3 seconds, see Fig.3.6. This procedure allowed us to lock the OPO to its doubly

Figure 3.6: On/off cycles of alternated active locking and data acquisition. Data
collection begins for a period of 800ms while the auxiliary locking beam is blocked,
followed by a period of 200ms where the auxiliary locking (broken red line in the
experiment schematic) is enabled for active locking and the signal channel is blocked.
This process occurs cyclically during data collection to prevent excess photon flux
from damaging the TES while ensuring a stable OPO cavity mode.

resonant, frequency degenerate mode at ωs = ωi = ωp/2. This was essential as the

displacement field, also provided by the undoubled output of the pump laser, had

to be at the same frequency as the OPO’s quantum signal beam and phase-coherent

with it. Note that finding this frequency degenerate, doubly resonant OPO mode is
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nontrivial since the double resonance condition

ωs = ωi (3.19)

⇔ ms

L+ ns(T )`
=

mi

L+ ni(T )`
(3.20)

features two different indices of refraction ns 6= ni (L is the cavity length in air only,

` the crystal length and ms,i ∈ N are the mode numbers). It is, however, possible to

temperature-tune the OPO crystal to achieve stable frequency degeneracy [146]–[148].

This required active temperature control of the PPKTP crystal to the level a few mil-

lidegrees, around 27.810◦ C, using a commercial wavelength electronics temperature

controller.

3.2.2.4 PNR detection

Our PNR detection system is comprised of two transistion-edge sensors (TESs), con-

sisting of tungsten chips in a cryostat, coupled through standard telecom fiber. A

detailed description of the TES system can be found in Refs. [133], [149]. The TESs

are cooled using an adiabatic demagnetization fridge at a stable temperature of 100

mK, at the bottom edge of the steep superconducting transition slope (resistance

versus temperature) in Fig. 3.7(b). As seen in Fig. 3.7, when a photon is incident to

the sensor, its energy is absorbed by the tungsten chip, yielding a sharp increase in its

resistance which is detected as a pulse in the TES current by an inductively coupled

SQUID amplifier over a rise time on the order of 100 ns. Due to linear behaviour of

the resistance versus temperature a two-photon absorption causes a larger tempera-

ture change which produces a larger signal than a single-photon absorption, thereby

allowing photon-number resolution measurements in the superconducting regime.
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Figure 3.7: (a) Taken from Ref. [3], when a photon is detected, its heat is then dis-
sipated to the bath through a weak thermal link. The absorbed heat causes a sharp
increase in its resistance which is detected as a pulse in the TES current by an in-
ductively coupled SQUID amplifier. (b) Working principle of a transition-edge sensor
consists of a tungsten thin film. The sensor operates in the superconducting temper-
ature range of 100 mK –140 mK. In this regime, any small variation in temperature
causes a large change in resistance.

The heat is then dissipated through a weak thermal link, over a time on the order

of 1 µs. During this time, the TES is still active (as opposed to, say, of nanowire

detectors or avalanche photodiodes). Due to the finiteness of its superconducting

transition slope, the TES can resolve up to 5 photons. The absolute maximum photon

flux sustainable by the TES without the tungsten driven into the normal conductive

regime is therefore 5 photons/µs in the continuous-wave regime, i.e., a power of 1

pW. The OPO’s average power was kept at 100 fW by setting the pump power to

200 µW (the OPO threshold was 200 mW). Once the lab lights were turned off and

fiber couplers were covered by a black foil, we observed that the background counts

were negligible when the TES signal was suppressed by rotating the pump’s linear

polarization by 90◦, thereby completely phase-mismatching the nonlinear interaction

in PPKTP.
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3.2.2.5 Displacement calibration

Since we are probing the Wigner function point-by-point defined by the amplitude

of the displacement field α, it is essential to know α. The displacement operator

was implemented by interfering the OPO signal mode with a phase- and amplitude-

modulated coherent-state displacement field at a highly unbalanced beamsplitter with

a reflectivity r2 = 0.97. The interference visibility between the seed OPO beam and

the displacement field was 90%, which ensured a good mode overlap between the

displacement field and single-photon field. The amplitude shift |α| was effected by

a homemade, temperature-stabilized electro-optic modulator consisting in an X-cut,

20 mm-long rubidium titanyl arsenate (RbTiOAsO4) crystal; the phase shift arg(α)

was effected by a piezoelectric transducer- (PZT) actuated mirror. Both the EOM

and the PZT mirror were driven by homemade, low-noise, high voltage drivers, fed

by computer-controlled Stanford Research Systems lock-in amplifiers. The amplitude

displacement was varied in 20 steps from |α| = 0 to |αmax| = 0.796(7), fixed by the

TES’ photon flux limit of 5 photons/µs. The phase displacement was varied in 10

steps from 0 to 2π. The amplitude steps |α| = √η|β|, where η is the overall detection

efficiency, were directly calibrated by comparing the TES photon statistics to that of

a Poisson distribution

P (n) = e−|α|
2 |α|2n
n!

, (3.21)

with the OPO beam blocked. This allowed us to determine the displacement ampli-

tude

|α| =
[

2P (2)

P (1)

] 1
2

. (3.22)

Note that this method requires the presence of 2-photon detection events, i.e., |αmin| '
0.15 for the very first displacement amplitude, besides the zero displacement for which

we blocked the displacement beam. Photon number statistics were averaged over 2
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seconds to ensure an average calibration accuracy

4|α| = 3× 10−3 (3.23)

of the displacement amplitude. However, the error on the maximum displacement

was somewhat larger

4|αmax| = 7× 10−3, (3.24)

due to the photon pileups occurring at higher flux which make the continuous-wave

TES signals harder to analyze. We observed the long-term power stability of the

laser to be on the order of 1% over an hour. The laser’s short-term intensity noise

was much lower as ensured by a built-in “noise eater” intensity servo. Moreover, the

temperature stability of the EOM was on the order of 1 mK. Because of all this, we

consider the error 4|α| on the displacement calibration to be valid over the course of

our data acquisition time of several minutes.

The phase steps were calibrated by scanning the interference fringe between the OPO

seed beam and the displacement field, which provided a set of 10 voltage values for

the PZT mirror. Experimental data runs were conducted by scanning the amplitude

at fixed phases, with the phase PZT voltage being refreshed at every amplitude EOM

voltage step. For each point of the quantum phase space, a continuous stream of data

was acquired at 5 MS/s, digitized using an PCI board, and stored for subsequent

photon statistical analysis. A detailed discussion of our data analysis of continuous-

wave photon counting can be found in our previous paper and in Niranjan Sridhar’s

PhD thesis on coherent state tomography using PNR measurements [133]. Here, we

detail the main steps of the TES data processing for continuous-wave (CW) fields.

We first identified each detection event by finding rising edges in the TES signal

using numerical differentiation. A rising edge is characterized as a detection event

if it rises at least X% (typically 40-50%) of the average height of a single-photon

detection event above the mean noise level. Note that this threshold depend on the
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Figure 3.8: TES photon-number histogram when a weak monochromatic coherent
state at 1064 nm is sent to the sensor. Each ‘-’ represents a small bin.

TES temperature and SQUID biases and should be set in the calibration process.

We then store the maximum signal in the ≈ 2µs following each starting time and

this maximum value is stored as well. As a result, the rising edge is comprised of

about 10 sampling points each sampled at every 200 ns since the sampling speed

is 5 MS/s. Although this method is general but the analysis here is dependent on

the sampling speed. For instance, if the sampling was done at 10 MS/s, then each

sampled point would be after every 100 ns. We then construct the histogram from

the recorded maximum signal heights which is displayed in Fig. 3.8 where we can

see a clear distinction for different photon-number events. Using the histogram, we

can then define the photon-number quantization thresholds which are further used

to characterize the photon-number events of the TES signal. It is worth mentioning

that sometimes TES signal might be noisy due to bias not being set at the right

value. In this case, smoothing the data might be beneficial using carefully designed

Savitzky-Golay filter implemented in MATLAB in order to ensure that it does not

distort the peak characteristics.
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3.3 Experimental results

In this section, we characterize the quality of our single-photon source by measur-

ing the heralding ratio, cross-correlation of signal and idler channels, and quantum

mechanical second order coherence g(2)(0).

3.3.1 Heralding ratio

The heralding ratio is the probability of seeing one photon in the OPO signal (her-

alded) beam with no displacement field, provided one photon was detected in the

filtered idler (heralding) beam. To measure the heralding ratio, we first identify the

single-photon events in the TES trace for idler (heralding) channel and store the time

stamps corresponding to detection events. We then look for single-photon events in

the immediate vicinity of these time stamps in the signal (heralded channel) data to

determine the coincidences. As a result, the ratio of coincidences and single-photon

events in the idler channel gives the heralding ratio or heralding efficiency. Measured

results are displayed in Table 3.1.

Ns Ni Nc

Single-photon events 54320± 90 1556± 30 903± 17

Table 3.1: Experimentally measured number of single-photon counts on both chan-
nels. Ns: number of photons in the (heralded) signal channel, Ni: number of photons
on the (heralding) idler channel, Nc: number of coincident counts.

The pump power was kept low enough to suppress two-photon events in the OPO

signal in the absence of a displacement field. In Fig 3.9, we plot a small portion of the

raw TES data traces for both heralded and heralding channel. Black dashed-ellipse

correspond to degenerate single-photon pair events. We can see that the heralded

channel has a lot more counts than the heralding channel, as expected since the

latter is filtered by the FC and the IF.
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Figure 3.9: TES data traces for both heralded (blue) and heralding channel (organge).
Dashed-ellipse contains the single-photon coincidences.

We then calculate the heralding efficiency defined as

ηs =
Nc

Ni

(3.25)

= 0.58± 0.02 (3.26)

and can also be considered the overall detection efficiency, ηs of the heralded channel,

i.e., of the quantum signal. Next, we determine the cross-correlation function between

signal (heralded) and idler (heralding) channels, displayed in Fig. 3.10 2 As one can

see that correlation decays after a time delay of ≈ 6µs, which is equivalent to the

total length of a single-photon spike from the TES. This ensures that the correlation

is absolutely due to the single-photon coincidences. Asymmetry and slight offset from

zero time delay in the correlation function (C) might be attributed to the systematic

delay between TES’ channels and their inherent jitter of ≈ 100 ns.

2The MATLAB cross-correlation is: C(s, i)[m] =

N−m−1∑
n=0

fs(n+m)gi(n).
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Figure 3.10: Correlation function between signal and idler channel. Black data points
are at every 200 ns delay and red curve is a Gaussian fit.

We then calculate the quantum mechanical second order coherence of the heralded

single-photon state, which is defined as

g(2)(0) =
〈: n̂2 :〉
〈n̂〉2 , (3.27)

where : n̂2 := â†2â2 is the normal ordering of the creation and annihilation operators.

For a pure n-photon Fock state, g2(0) turned out to be

g(2)(0) =
Tr[|n〉〈n| : n̂2 :]

Tr[|n〉〈n|n̂]2
=
n(n− 1)

n2
(3.28)

From Eq. (3.28), one can see that for an ideal single-photon Fock state |n = 1〉,
g(2)(0) = 0. In general, nonclassical states of light have 0 ≤ g(2)(0) ≤ 1 which leads

to photon antibunching effect [39]. On the other hand, classical states of light must

have g(2)(0) ≥ 1 which is formally known as photon bunching. With finite heralding
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efficiency and optical losses present in the heralded path, the single-photon state in

the low pump power regime can be approximated by using Eq. (3.17) as

ρ = p0|0〉〈0|+ p1|1〉〈1|+ p2|2〉〈2|+O(ζ4). (3.29)

Using Eq. (3.28) and Eq. (3.29), g(2)(0) can be formulated as

g(2)(0) =
2p2

(p1 + 2p2)2
(3.30)

From Fig. 3.11, we see that the two-photon counts are extremely low, which results

in a very low second-order coherence g(2)(0) = 0.07(5) determined using Eq. (3.30) .

3.3.2 Photon probability distributions versus displacement

amplitude

Figure 3.11 displays the measured photon number distributions for a heralded single-

photon input when |α| = 0 (left) and 0.25 (right). For no displacement, the histogram

reflects the exact same measurement as in Table 3.1 and Eq. (3.25), and the result

yields a compatible value of 0.58(2). For |α| = 0.25, the two-photon peak grows from

the presence of the displacement field. In both cases, the observations agree with

the theoretical distribution, calculated with η = 0.58. As expected, the single-photon

component decreased while the vacuum and higher photon components increased. It

can be thought of as follows: If we displace a pure single-photon state, then we obtain

D(α)|1〉 = D(α)a†D†(α)|α〉

= a†|α〉 − α∗|α〉.

Clearly, the first term has no vacuum component, as does the initial state |1〉, but

the second term does have a vacuum component. Therefore, the displacement of a
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Figure 3.11: Measured photon-number distributions, left: α = 0 and right : |α| =
0.25. Error bars (1σ) are calculated from the statistics of the measurements.

single-photon state increases its vacuum component probability amplitude, somewhat

unintuitively. In the case where our initial state is a mixture of vacuum and single-

photon, then it can be seen that for low enough displacement amplitudes, the vacuum

component still increases from its previous value. As the displacement becomes large,

the vacuum component will eventually decrease. In Fig. 3.12, we display the TES

data traces for both signal and idler channels in the presence of the displacement field

of amplitude of |α| ≈ 0.4. We can see that in the weak-pump regime the single-photon

(1γ) events in idler channel are most likely due to true single-photon detection, not

because of a multiphoton state being detected as a single-photon due to losses in

the idler path or non-ideal detection efficiency of the TES. The corresponding single-

photon (1γ) and two-photon (2γ) events in the signal channel are then due to either

displaced vacuum when the twin photon is lost or due to the displaced single-photon

field.
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Figure 3.12: TES data traces for both heralded (purple) and heralding channel when
displacement field was turned on. 1γ and 2γ are single-photon and two-photon events
respectively.

3.3.3 Model Wigner function and loss analysis

Before we turn to the tomography results, we outline the Wigner function model

that accounts for the aforementioned nonideal system detection efficiency. There are

several sources of losses in our experiment: photon absorption and general scattering

out of the mode due to mismatch. As mentioned above, losses in the heralding channel

can be factored out in the generation of a heralded single-photon state provided that

the OPO output never contains more than one photon per mode during the detection

window, which was the case in this work.

It is also important to note that the TES fiber is single-mode at telecom wavelengths

but not at our operating wavelength of 1064 nm. Hence we need to address the

possibility of multimode coupling into the TES fiber. To quantify the multimode

coupling, we introduce a parameter called normalized optical frequency or V-number

of an optical fiber, which is defined at a given wavelength, λ and fiber core radius, a

as following

V =
2πa

λ
NA, (3.31)

where NA is the numerical aperture which is related with the acceptable incident



3.3. EXPERIMENTAL RESULTS 78

angle of θ0 of the fiber as [150]

NA = sinθ0 =
√
n2

core − n2
clad , (3.32)

where ncore and nclad are the refractive indexes of the fiber core and cladding respec-

tively. The SMF-28e+ Corning fiber has NA = 0.14 and core radius a = 4.1 µm.

Using these parameters in Eq. (3.31) at the optical telecommunication wavelength

λ = 1550 nm, we get V = 2.327 which is below the cutoff V-number of Vcut-off = 2.405

for any fiber to be a single-mode fiber. In our experiment, the working wavelength

for optical fibers is 1064 nm at which V-number turned out to be 3.389 which leads

to a multimode coupling into the SMF-28e+. In order to further determine the ap-

proximate number of modes supported in an optical fiber, we use

Nmodes ≈
V 2

2
= 5.7426 (3.33)

As a result, we see that SMF-28e+ roughly supports five modes. To minimize the

coupling to higher modes, we optimized our fiber coupling to as high as 90% with

the seed beam (discussed in the “spectral and spatial filtering” section above) and we

also measured the intensity variations of about 1% at the output of the fiber. This

ensures that most of the fiber coupling was to the fundamental mode of the fiber.

Furthermore, a simple reasoning shows that this is not a matter of concern if there

are no losses in the fiber. Indeed, the coupling of the input field into each of the

different, orthogonal propagation modes of the fiber can be accurately described by

as many beamsplitting operations into distinguishable outputs. While each of these

beamsplitting operations does bring in vacuum fluctuations, all beamsplitter outputs

are still detected and the final TES detection is simply that of the total photon num-

ber of all the fiber modes. In the absence of losses, the multimode fiber is a passive

optical element which conserves the total photon number and the final total photon

number measurement must therefore give the same exact result as the initial one,
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before the quantum light is coupled into the fiber. An argument could be made that

fiber losses could be mode dependent, with higher-order modes being more likely to

leak out of the fiber; we assume that this is negligible in our case because the oper-

ating wavelength was close enough to the specified single-mode wavelength that the

mode order should not be that high.

We measured the coupling efficiency, ηOFC, into the TES fiber on the optical table by

cleaving the fiber to insert a power meter and re-fusing it to the TES thereafter. How-

ever, we didn’t measure the overall fiber transmission into the TES cryostat. This was

bundled with the TES quantum efficiency in ηTES, which was inferred from all other

measured efficiencies, as summarized in Table 3.2. We modeled losses by considering

ηTES ηOT ηBS ηOFC ηs
0.71(3) 0.93(1) 0.97(1) 0.90(2) 0.58(2)

Table 3.2: ηTES: TES quantum efficiency (including fiber transmissivity); ηOT : op-
tical transmission of single-photon signal field from the OPO to the displacement
operation; ηOFC: optical fiber coupling. The overall efficiency of the signal channel is
ηs = ηTES × ηOT × ηBS × ηOFC.

a fictitious beamsplitter of transmissivity ηs and reflectivity (1− ηs), placed between

the displacement and a detector of unity efficiency as shown in Fig.3.13. The input

state of this system is

ρ̂in = |1〉a a〈1| ⊗ |0〉b b〈0|. (3.34)

After applying the displacement D̂a(β) and beamsplitter Ûab operators we obtain the

reduced, detected density operator by tracing out the vacuum mode

ρ̂out = Trb

[
ÛabD̂(β)|1〉a a〈1| ⊗ |0〉b b〈0|D̂†(β)Û †ab

]
(3.35)

= D̂(
√
ηsβ) [ηs|1〉a a〈1|+ (1− ηs)|0〉a a〈0|] D̂(

√
ηsβ)†. (3.36)

From Eq. (3.36) we can see that displacement by β followed by losses ηs is essen-

tially the same as introducing losses first by mixing the pure single-photon state
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Figure 3.13: Loss model. The beamsplitter transmission and reflection coefficients
are
√
ηs and

√
1− ηs respectively.

with vacuum, and then applying a displacement by the reduced amount
√
ηsβ. Due

to the linearity of the Wigner function, Eq. (3.36) shows that the experimentally

reconstructed Wigner function will in fact be

W (p, q) = ηsW|1〉〈1|(p, q) + (1− ηs)W|0〉〈0|(p, q). (3.37)

As expected, losses (1-ηs) add a Gaussian vacuum function to the original nonpositive

Wigner function of the single-photon state. In particular, the undisplaced photon-

number distribution will yield the overall transmissivity of the whole experiment ηs,

as in Fig.3.11, left.

3.3.4 Quantum tomography of a single-photon state

We now turn to the state tomography results. Figure 3.14 shows the reconstructed

Wigner function along with a fit with Wigner function Eq. (3.37), of free parameter ηs.

The Wigner function is plotted for experimentally measured values of |α| where phase

space coordinates are (q, p) = (
√

2|α| cosφ,
√

2|α| sinφ), where φ is the tomographic
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Figure 3.14: Top, reconstructed Wigner function. Black points: reconstructed values
from raw data. Solid surface: least-square Wigner-function fit, Eq. (3.37). Bottom,
fit residuals.



3.3. EXPERIMENTAL RESULTS 82

angle. We can clearly see the negativity around the origin of the phase space,

W (0, 0) = −0.035± 0.005. (3.38)

Errors in the displacement amplitudes were considered to be negligible due to the

long-term amplitude stability of the laser producing the displacement field and the

high-accuracy of the calibration as mentioned in the “displacement calibration” sec-

tion. The Wigner function error bars (1σ) at zero-displacement were obtained from

the statistics of multiple data sets with the displacement field blocked. At non-zero

displacement, in order to speed up the measurement process and minimize experimen-

tal drifts, we decided to use the statistics of the measurement results at 10 different

phases for the same displacement amplitude. This procedure yields a conservative

estimate of the Wigner function error bars (1σ), in the particular case of a single-

photon Fock state, because it assumes that the measured Wigner function has the

required cylindrical symmetry about the origin of phase space. The results are plot-

ted on Fig.3.15.

Note that the fact that Wigner function isn’t significantly altered by this averaging

— in fact, both the 2D fit in Fig.3.14 and the 1D fit in Fig.3.15 yield ηs = 0.57(3) —

speaks to the high quality of the phase-space rotational symmetry of our data. One

can notice that the fit residuals are reasonably small around the origin of phase space

but grow larger in the outskirts of the function, near our maximum displacement

values. Additionally, we were not able to probe the Wigner function at many phase

space points around the origin because we needed a minimum amplitude of |α| ≈ 0.15

for the coherent state in order to see a two-photon event required for displacement

calibration. This is not going to be a matter of concern if one uses TESs in the

pulsed regime, where one can simply use only zero-photon detection events to cali-

brate the amplitude of the displacement field. These correspond to larger detected

photon numbers on the TES, for which photon pileups during the TES’ cooling time
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make data analysis more arduous [133].

Figure 3.15: Phase-averaged Wigner function. The Wigner function fit yielded ηs =
0.57(3), which is consistent with the heralding efficiency 0.58(2). Error bars are
discussed in the text.

We also plot reconstructed Wigner function corresponding to each phase of the dis-

placement field, as depicted in Fig. 3.16.
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Figure 3.16: Experimentally reconstructed Wigner function slices for 10 phases of the
displacement field.

While the overall trend remains as expected and the phase-averaged Wigner function

has a strong agreement with the expected Wigner function when all the losses and

detection efficiency are taken in account, there are some fluctuations in the Wigner

functions at different phases. These fluctuations might be attributed to the long-

term drifts in the laser intensity as the entire data run took a few hours including the

sampling and streaming the data to computer memory. Therefore, it is advantageous

to calibrate the amplitude of displacement field right after acquiring the data each

phase space coordinate. This was not the case in our data acquisition process, we

calibrated all the amplitudes after entire tomography data was acquired. It seems

plausible to do so, but it might lead to some random vibrations or bumps on the



3.4. DIRECT CHARACTERIZATION OF A MULTIMODE QUANTUM STATE85

optical table because it would be required to lift the plexiglass at each time in order

to block the OPO signal. Although a programmable shutter could be used in the

future to avoid lifting. Additionally, the multimode coupling into the optical fiber

makes it overly sensitive to random variations and bumps as it slightly changes the

internal structure of the fiber, thereby changing the total internal reflection conditions.

Consequently, the fundamental mode might get coupled to higher-order modes that

might leak out from the fiber. This concludes the tomography results. We now discuss

how to characterize a multimode quantum state using this technique.

3.4 Direct characterization of a multimode quan-

tum state

In this section, we extend direct state characterization for a multimode quantum

state. We start with the two-mode state written in the photon-number basis as

ρ1,2 =
∞∑

n1,n2,n′1,n
′
2

cn1,n2,n′1,n
′
2
|n1, n2〉〈n′1, n′2|. (3.39)

The two-mode Wigner function can be written as

W (α, β) =
1

π2
Tr[D̂(α)⊗ D̂(β)ρ1,2D̂(β)†D̂(α)†(−1)N̂1+N̂2 ], (3.40)

where D̂(α)⊗ D̂(β) is the two-mode displacement operator, and the two-mode joint

parity is

P1,2 = (−1)N̂ , (3.41)

where N̂ = N̂1 + N̂2 is total photon-number operator with N̂1 being number opera-

tor for mode 1 with eigenvalue n1 and N̂2 is the number operator for mode 2 with
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eigenvalue n2. Analogous to the single-mode Wigner function, the value at the origin

(α = 0, β = 0) of two-mode Wigner function is the expectation value of joint parity

operator. As a result, we have

W (α, β = 0) =
1

π2
Tr
[
(−1)N̂1+N̂2

∞∑
n1,n2,n′1,n

′
2=0

cn1,n2,n′1,n
′
2
|n1, n2〉〈n′1, n′2|

]
(3.42)

Further simplification leads to

W (α, β = 0) =
1

π2

∞∑
n1,n2=0

(−1)n1+n2cn1,n2,n1,n2 , (3.43)

where cn1,n2,n1,n2 are the diagonal elements of two-mode density matrix. This shows

that a measurement of joint parity allows to determine the Wigner function at the

origin of the four-dimensional phase space. In order to find the Wigner function over

the entire phase space, one needs to displace both modes as shown in Fig 3.17 over

the entire 4-dimensional phase space, and then the measurement of the overall parity

allows to reconstruct the two-mode Wigner function at the amplitudes of the displace-

ment field. As a result, the two-mode Wigner function can be directly reconstructed

by displacing each mode followed by two-mode parity measurements. This method

can be further generalized to an arbitrary multimode-state.

3.5 Conclusions

In this chapter, we demonstrated state-independent photon-counting quantum state

tomography with PNR measurements using a superconducting TES system and evi-

denced clear negativity in the single-photon Fock Wigner function with no correction

for photon loss. This work has been limited by two factors: when working with

continuous-wave detection, photon fluxes become overwhelming to the TES when

|α| → 1. Moreover, photon pileups, in particular during the TES cooling time,
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Figure 3.17: Schematic of two-mode Wigner tomography using PNR measurement.

greatly complicate data analysis [133]. In the future, we will multiplex several TES

channels in order to access larger displacement amplitudes, i.e., larger regions of phase

space. This will also reduce the photon pileup effect. Finally, owing to the intrinsic

simplicity of photon-counting quantum tomography, we believe it is possible to her-

ald and visualize Fock state Wigner functions in real time for quantum information

applications.



Chapter 4

Generalized Overlap Quantum

State Tomography

A good idea has a way of

becoming simpler and solving

problems other than that for

which it was intended.

Robert E. Tarjan

This chapter is primarily based on the paper titled,“Generalized Overlap Quan-

tum State Tomography,” Rajveer Nehra, Miller Eaton, Carlos González-Arciniegas,

M. S. Kim, and Olivier Pfister, arXiv:1911.00173v2 [quant-ph] (Submitted). In this

work, we propose and experimentally demonstrate a quantum state tomography pro-

tocol that generalizes and improves upon the Wallentowitz-Vogel [1] and Banaszek-

Wódkiewicz [2] (WVBW) point-by-point Wigner function reconstruction discussed in

chapter 3. The full density operator of an arbitrary quantum state is reconstructed

in the Fock basis, using numerically efficient semidefinite programming, after inter-

ference with a small set of calibrated coherent states. This new protocol is resource-

and computationally efficient, is robust against noise, does not rely on approximate

88
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state displacements, and ensures the physicality of results. The proposed scheme is

demonstrated for a weak coherent state and a single-photon Fock state. We also

disuss

4.1 Motivation for this work

Since a quantum system is fully characterized by its density operator [151], the exper-

imental implementation, and investigation, of quantum state tomography [152] plays

a crucial role in quantum information (QI). While the dimension 2N of a N -qubit

Hilbert space prohibits full quantum state tomography for large values of N due to

exponential growth, except in the particular case of sparse density operators [153], full

state tomography of small scale quantum systems can still be realized and is essential

to characterizing important resource states, e.g. quantum error correcting codes. As

we discussed in chapter 3, the Wigner function [93], [154] plays a central role as a

quantum state descriptor strictly equivalent to the density operator ρ:

W (q, p) =
1

π

∫ ∞
−∞

e2ipy〈q − y|ρ̂|q + y〉dy, (4.1)

where quantum phase space variables q and p are the eigenvalues of the position-

like amplitude quadrature, Q̂ = (â+ â†)/
√

2, and momentum-like phase quadrature,

P̂ = i(â† − â)/
√

2, of the electromagnetic field, and where â is the bosonic annihi-

lation operator for a given qumode, typically specified by its wave vector, frequency

and polarization. The experimental determination of the Wigner function, first pro-

posed and realized by interferometric, homodyne quadrature measurements [109],

thus constitutes another approach to quantum state tomography. A technical diffi-

culty of the aforementioned optical homodyne tomography approach resides in the

need for computationally intensive reconstruction procedures, using either the inverse

Radon transform (whence the “tomography” moniker) or maximum likelihood algo-
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rithms [110]. Recently E. S. Tiunov et al. proposed a scheme using machine learning,

restricted Boltzmann machine (RBM), which has significant advantages over MaxLik

based OHD [155], yet is not provably efficient for arbitrary quantum states [156].

Such difficulties can be alleviated by replacing field measurements with photon-

number ones, using the fact that the Wigner function at the origin of phase space

coincides with the expectation value of the photon-number parity operator [124]. This

yields an expression of the Wigner function in the Fock basis which is easy to recon-

struct, as was first proposed by Wallentowitz-Vogel [1] and Banaszek-Wodkiewicz [2].

As detailed in chapter 3, the WVBW includes a simple phase space translations,

i.e., displacements, of the quantum state to be characterized, followed by parity

measurements accessed using photon-number-resolving (PNR) detection, allows easy

determination of the Wigner function. More recently, the coming of age of photon-

number-resolving (PNR) detection [149] has opened the door to using the full WVBW

method on traveling optical fields with no prior knowledge of the measured quantum

state [89], [133].

While the WVBW method presents clear advantages in terms of the numerical de-

mands on reconstruction, it requires a phase space raster scan involving a large num-

ber of optical displacements, and the pitch of the raster scan is determined by the

specific features of the—unknown—Wigner function to be resolved. Moreover, the

best experimental implementation of phase space displacements is intrinsically lossy

due to an approximate implementation of optical displacements [125]. Finally, the

method does require, like homodyne tomography, a very high system detection effi-

ciency in order to prevent the quantum decoherence caused by vacuum fluctuation

contamination. Additionally, the WVBW protocol mandates a matrix inversion for

each experimental data point in order to infer the true photon-number distribution

from the measured loss-degraded distribution which could be experimentally demand-

ing for probing the Wigner functions of complicated structure, such as cat states or
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Gottesman-Kitaev-Preskill (GKP) states [66]. Moreover, as we will see later that this

inversion becomes very sensitive to errors for larger increasing photon numbers.

In this chapter, we present a generalization of the WVBW approach which uses a

Wigner function overlap measurement to reconstruct the density operator, rather

than the Wigner function, using computationally efficient semidefinite programming.

This general method requires considerably less data acquisition, and ensures physi-

cal results which are robust against measurement noise. The effect of known system

losses (such as optical losses or detection losses) can also be entirely deconvoluted

from the measured density operator. We present the mathematical formalism of

this generalized overlap quantum state tomography and present experimental results

for a single-photon Fock state and a weak coherent state with performance that far

exceeds that of the WVBW demonstration in chapter 3 for a single-photon Fock

state. Furthermore, we can perform loss-compensation in a single-shot for the entire

density matrix ρ, unlike at each experimental data point in WVBW method. The

proposed scheme requires significantly fewer measurements as compared with Max-

Lik and RBM tomography methods and achieves higher fidelity for all the states

considered in Ref. [155].

4.2 Principle of generalized overlap tomography

In this section, we discuss the general framework of quantum tomography with the

state overlap. We consider the situation depicted in Fig. 4.1(a): a field with unknown

density operator ρ and Wigner function W1(q1, p1) interferes with a reference field in

a coherent state |α 〉 〈α | of Wigner function W2(q2, p2). We then adopt the Heisen-

berg picture and determine the evolved output quadratures under the beamsplitter

interaction to be q′1 = tq1 − rq2 and p′1 = tp1 − rp2. Likewise, q′2 = rq1 + tq2 and

p′2 = rp1 + tp2. Before the beamsplitter interaction, the two-mode input state is
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Figure 4.1: (a), Schematic of the experiment: the field to be measured, of density
operator ρ, interferes with a calibrated field in coherent state α at a beamsplitter of
field reflectance r ∈ R and transmittance t = (1 − r2)1/2. PNRD: photon-number-
resolving detector. (b), Principle of generalized overlap tomography exemplied with a
two-photon Fock state.(c), Limit case of (b), where a highly unbalanced beamsplitter
merely implements a displacement of ρ by −β.

written in the Wigner function representation as

W1,2(x) = W1(q1, p1)W2(q2, p2). (4.2)

Next, by using the evolved quadratures, one can write the Wigner function of the

beamsplitter output as

W ′
1,2(x′) =W1(tq′1 + rq′2, tp

′
1 + rp′2)W2(−rq′1 + tq′2,−rp′1 + tp′2), (4.3)

where x and x′ are column vectors consisting of quadratures corresponding to the

input and output modes, respectively. The value of the Wigner function of output

mode 1 at the origin can be obtained by setting q′1 = p′1 = 0 and tracing out over

mode 2 leads to

W ′
1(0, 0; r, t) =

∫∫
W ′

1,2(x′)dq′2dp
′
2|q′1,p′1=0. (4.4)
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A simple algebra shows that

W ′
1(0, 0; r, t) =

∫∫
W1(rq′2, rp

′
2)W2(tq′2, tp

′
2)dq′2dp

′
2

=
1

r2

∫∫
W1(q, p)W2( t

r
q, t

r
p)dqdp. (4.5)

By setting r = t = 1√
2
, we see that Eq. (4.4) gives the Wigner function overlap

between ρ and |αj〉〈αj|. From the Wigner function overlap theorem [111], the overlap

O of the unknown ρ with |αj〉〈αj|:

Oj = Tr[ρ|αj〉〈αj|] = πW ′
1(0, 0; 1√

2
, 1√

2
). (4.6)

As a result, we see that measuring the Wigner of the output mode 1 at the origin

allows us to measure the state overlap of the unknown quantum state and coherent

state. As discussed in chapter 3, we can simply measure photon statistics at only one

beamsplitter output to evaluate the expectation value of the photon-number parity

operator, which determines the value of Wigner function of this output mode [124],

[157] at the origin of phase space.

Before we proceed further, let’s note that, in the limiting case of t�r, the function

W2( t
r
q, t

r
p) in Eq. (A.1) is a contracted Gaussian that tends toward a Dirac delta func-

tion δ(
√

2Re[β],
√

2Im[β]), where β = rα/t, thereby yielding W1(
√

2Re[β],
√

2Im[β]),

i.e., precisely the WVBW tomography protocol, as illustrated in Fig. 4.1(c). The

validity of this limit case is equivalent to the validity of implementing a displacement

with an unbalanced beamsplitter. The state overlap approach is free of such consider-

ations and general for any beamsplitter parameters as we show that in the appendix

A. For simplicity, from here on, we set r = t. Even though this would appear to cause

an irremediable loss of information, we show that ρ can nonetheless be accurately

and efficiently retrieved by measuring Oj for a series of distinct coherent states |αj〉.
The role of the other output port of the BS is also examined in the appendix A.
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For a given single-mode quantum state, one can write the density matrix in the

photon-number basis as

ρ =
∞∑

n,n′=0

ρn,n′ |n〉〈n′|. (4.7)

Complete characterization of ρ requires determining ρn,n′ . To do that, we choose a

set of distinct coherent states, |αj〉 and experimentally determine the overlap with

the unknown state ρ. For a given coherent state represented in the photon-number

basis, |αj〉 =
∞∑
m=0

cjm|m〉, the overlap can be determined using Eq. (4.6)

Oj =
∞∑

m′=0

c∗jm′〈m′|
∞∑

n,n′=0

ρn,n′ |n〉〈n′|
∞∑
m=0

cjm|m〉. (4.8)

A further simplification leads to

Oj =
∞∑
n=0

∞∑
m=0

cjmc
∗
jnρn,m, (4.9)

where cjm=exp(−|αj|2/2)αmj /
√
m!. Ideally, the sum in Eq. (4.9) over n and m goes

to infinity but for practical purposes one needs to truncate it at a certain number

n0 such that any terms n,m > n0 do not significantly contribute to the sum. In the

physical sense, the truncation can be thought as the finite size of the Hilbert with

dimension n0 + 1. As a result, we have

Oj =

n0∑
n=0

n0∑
m=0

cjmc
∗
jnρn,m. (4.10)

For Np = (n0 + 1)2 measurements, we can write Eq. (4.10) in the matrix form as


O(0)

O(1)

...

ONp


=


c00c

∗
00 c00c

∗
01 . . . c0n0c

∗
0n0

c10c
∗
10 c10c

∗
11 . . . c1n0c

∗
1n0

...
...

. . .
...

cNp0c
∗
Np0 cNp0c

∗
Np1 . . . cNpn0c

∗
Npn0




ρ0,0

ρ0,1

...

ρn0,n0


. (4.11)
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We can rewrite Eq. (4.11) in compact form as

O = CP, (4.12)

where O ∈ R(n0+1)2 , P ∈ C(n0+1)2 and C ∈ C(n0+1)2×(n0+1)2 . Note that P is the

unknown density matrix written in the Liouville vector form, i.e, stacking all the

rows of density matrix in a column vector of dimension (n0 + 1)2. Next, we can

invert Eq. (4.12) to reconstruct P. To do this, we employ semidefinite programming

(SDP) to run a convex quadratic optimization algorithm that minimizes the `2-norm,

||O−CP||2, subject to physicality constraints in order to extract P. The procedure

is computationally efficient and yields a unique solution. Note that C does not have

to be a square matrix, so that the number of measured overlaps (the dimension of

O) can be increased for better data statistics. Thus the semidefinite program is

mathematically defined as

Minimize
ρ

||O−CP||2

Subject to ρ ≥ 0, Tr[ρ] = 1, (4.13)

where ||.||2 is the `2-norm defined as ||V ||2 =
√∑

i

|vi|2. We now turn to numerical

simulations performed using open source Python modules QuTip and CVXPY [158],

[159] where the Hilbert space for each optical mode was constructed in the Fock basis

with a high enough dimensionality to ensure state probability amplitudes decayed

to less than 10−7 before truncation. Under these parameters, the numerically effi-

cient SDP algorithms converged in order of 10−2 seconds on a 3GHz Intel i5 quad

core processor with 16 GB RAM. We perform numerical simulations for both real-

and complex-valued density matrices. First, the method is demonstrated in Fig.

4.2 for the example cases of the cat state, |ψ〉 ∝ |α〉 + | − α〉 where α =
√

3, and

a Gottesman-Kitaev-Preskill (GKP) state of mean photon number 5. These states
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were reconstructed using 400 different coherent states of 20 equidistant amplitude

increments from β = 0 to β =
√

6 and 20 phase increments from 0 to 2π, to achieve

fidelities with the target states greater than 0.999 for the cat state, and a fidelity of

0.985 for the GKP state. The reduced fidelity for GKP state is due to the fact that

the Wigner function has complicated features compare to cat state which necessitates

the number of coherent probes (or overlap measurements) to be higher than that of

a cat states.

Figure 4.2: Tomographic reconstruction using 400 coherent state probes for (a) a cat
state of amplitude

√
3, and (b) a GKP state with a mean photon number of 5. The

top row displays the density matrix for the ideal theoretical state, and the bottom
shows the numerical reconstructions. Insets display the plotted Wigner function of
each state.

In general, the state tomographer is assumed to have no prior knowledge of the state

to be characterized. Thus it is important to scan the entirety of phase space in ques-
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tion with different coherent states so as to have sufficient overlap measurements to

capture all features of the state under characterization process. If some prior knowl-

edge of the state is obtained, then the coherent state probes can be restricted to a

localized region of phase space near the unknown quantum state which might help in

reducing the number of overlap measurements.

Second, we demonstrate the tomography protocol for complex-valued density matri-

ces displayed in Fig. 4.3. We perform the tomography with coherent state probes

that range in amplitude in 20 equidistant steps from |β| ∈ [0,
√

3] and 20 phases

φ ∈ [0, 2π], for a coherent state denoted by complex variable, α =
√

2(i + 1) and a

superposition of photon-number states with the complex probability amplitude. The

Wigner functions are shown along with separate plots for the real and imaginary

elements of the respective reconstructed density matrices, including an inset fidelity

with the ideal states.

Figure 4.3: Reconstruction of states with complex-valued density matrices for (a) the
coherent state, |α〉, with α =

√
2(i+ 1) and (b) the superposition 1√

2
(|2〉− i|3〉). The

inset fidelity is calculated between the reconstructed state and the ideal target state.
(i) Reconstructed Wigner functions. (ii) Real elements of the density matrices. (iii)
Imaginary elements of the density matrices. Note that the viewing perspective for
the coherent state is changed in (a) for a better visualization.
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4.3 Imperfections: losses, experimental noise, and

mode mismatch

Thus far we have only considered an ideal experiment with no noise, losses, and a

perfect mode matching between the fields of coherent state probes (or local oscillators

(LOs)) and unknown state. We now deal with all these imperfections and devise

methods to compensate for the losses and mode mismatch while suppressing the

effects of experimental noise in the reconstruction.

4.3.1 Loss Compensation

Photon loss is the primary source of imperfections in the state tomography. Since our

method solely requires photon-number distributions to perform the complete state

tomography, we are interested in inferring the true photon-number distribution from

the loss-degraded experimentally measured photon-number distribution. Methods to

correct for loss-degraded photon number distributions when counting photons are

known [66], [160], [161], but this requires performing a matrix inversion for each

experimental measurement as discussed in detail next.

4.3.2 Photon-number distribution correction

In this section, we deal with the optical losses to the state before and after interfer-

ence with the coherent states |αj〉’s. All these optical losses and non-ideal detector

efficiency can be modeled by inserting a single fictitious beamsplitter of transmittivity

η in front of a perfect detector. Our goal here is then to infer the true photon-number

distribution from the loss-degraded measured photon-number distribution denoted by

Pn and P ′n respectively. For a detector of overall detection efficiency (including opti-

cal losses), η and no darkcount noise, the POVM element corresponding to n-photon
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detection event is given by

Πn =

m0∑
m=n

P (n|m)|m〉〈m|, (4.14)

where P (n|m) =
(
m
n

)
ηn(1−η)m−n is the conditional probability of detecting n photons

if m photons are incident to the detector and m0 is the photon-number at which the

detector saturates. For an input state given by density matrix ρ =
∑∞

n,n′=0 ρnn′ |n〉〈n′|,
the probability of detecting n photons is

P ′n = Tr[ρΠn]. (4.15)

Using Eq. (6.1) and Eq. (4.15), we get

P ′n =

m0∑
m=n

P (n|m)ρmm =

m0∑
m=n

P (n|m)Pm, (4.16)

where ρmm = Pm is the probability of having m photons in the input state ρ before

losses. From Eq. (4.16), one can see that the measured photon-number distribution,

P ′n is linearly related to true photon-number distribution, Pm. Furthermore, Eq. (4.16)

can be rewritten for all detector outcomes in the matrix form as

P′ = ΠP, (4.17)

where P′ and P are column vectors of length m0 + 1 representing loss-degraded ex-

perimentally measured and ideal (without losses) photon-number distribution respec-

tively. Π is an upper triangular matrix of dimension (m0+1)×(m0+1) characterizing

the photon-number resolving detector. Thus by simply inverting Eq. (4.17), one can

obtain the true photon-number statistics from the experimental data, which allows

to perform the complete state tomography using the method discussed above. It is

worth noting that for a perfect detector, i.e., η = 1, Π is an identity matrix which
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means the measured photon-number distribution is essentially the true distribution.

This has been experimentally demonstrated for state characterization [161], [162]

and the WVBW protocol, but requires a matrix inversion for each experimental data

point [66]. Additionally, the linear inversion in the presence of any small deviations in

P′ can lead numerical instabilities causing unphysically large or negative entries in P.

We now propose an inversion scheme which allows to compensate for losses in one fell

swoop for the whole density matrix ρ, in lieu of point-by-point as in WVBW method.

The proposed inversion scheme guarantees the physicality of the reconstruction as we

see next.

4.3.3 Complete density matrix correction

We now aim to correct an arbitrary density matrix given a known loss. In this case, we

have experimentally measured loss-degraded ρ′, but our goal is then to compensate

the losses in order to reconstruct the density matrix before the loss, ρ. As shown

in Fig. 4.4, this can be modeled by sending ρ through a fictitious loss beamsplitter

with reflection and transmission coefficients of r =
√

1− η and t =
√
η, where η is

the overall detection efficiency in the experiment. The general single-mode quantum

Figure 4.4: Lossy channel.
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state density matrix before the loss is

ρ =
∞∑

n,n′=0

ρn,n′ |n〉〈n′|. (4.18)

If this state enters into the loss beamsplitter in mode â with vacuum in mode b̂, then

the mode operators transform in the Heisenberg picture according to â→ tâ+rb̂ and

b̂→ −râ+ tb̂ to yield an output density matrix

ρout =
∞∑

n,n′=0

ρn,n′
(tâ† + rb̂†)n√

n!
|0〉a|0〉b〈0|b〈0|a

(tâ+ rb̂)n
′

√
n′!

. (4.19)

Tracing out over mode b̂ yields the final state after loss, which is given by

ρ′ = Trb[ρout] =
∞∑

n,n′=0

ρn,n′
n∑
k=0

n′∑
k′=0

An,n′,k,k′ |n− k〉〈n′ − k′|〈k|k′〉δk,k′ , (4.20)

where we have

A(n, n′, k, k′) =

√(
n

k

)(
n′

k′

)
rk+k′tn+n′−k−k′ . (4.21)

Substituting n − k and n′ − k with m and m′ allows us to rearrange the expression

and rewrite a sum over the Fock components in order as

ρ′ =
∞∑

m,m′,k=0

ρ(m+k),(m′+k)A(m+ k,m′ + k, k, k)|m〉〈m′|, (4.22)

where it is easy to see that each element of the density matrix after loss is related to

the original state by

ρ′m,m′ =
∞∑
k=0

ρm+k,m′+k

(
m+k
k

) 1
2
(
m′+k
k

) 1
2 r2ktm+m′

=
∞∑
k=0

ρm+k,m′+k

(
m+k
k

) 1
2
(
m′+k
k

) 1
2 (1− η)kη

m+m′
2 (4.23)
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It is worth emphasizing that form = m′, Eq. (4.23) essentially transforms to Eq. (4.16)

only for photon-number distribution, i.e, the diagonal entries of the density matrix

ρ′. As a result, Eq. (4.23) can be viewed as a generalized Bernoulli distribution [163]

which can be inverted to read

ρm,m′ =
∞∑
k=0

(−1)kρ′m+k,m′+k

(
m+k
k

) 1
2
(
m′+k
k

) 1
2

(r
t

)2k

t−m−m
′
. (4.24)

In practice, the sum over k can be truncated to some value, Nmax, beyond which

the entries in the initial density matrix are negligible. We can then reformulate Eq.

(4.23) as a series of Nmax linear maps from the ith diagonal of ρ′ to the ith diagonal

of ρ, where the main diagonal corresponds to i = 0. Each of these linear maps, M(i),

is an upper triangular matrix of dimension Nmax − i×Nmax − i with elements

M
(i)
jk (η) =

 0 j > k√(
k
k−j

)(
i+k
k−j

)
(1− η)(k−j)η

i
2

+j otherwise

 (4.25)

Since each M(i)(η) is triangular with nonzero diagonal elements, the inverse mappings

can be found by inverting the generalized Bernoulli transformation and are given

by [163]

Inv[M(i)(η)] = M(i)(η−1). (4.26)

It is somewhat counter-intuitive that we are able to recover the complete information

about the quantum state which has undergone through irreversible photon losses to

the vacuum field b̂ coming from the unused port of the beamsplitter in Fig. 4.4.

The existence of this inversion is due to the known well-defined statistical nature

of the loss channel, which makes it possible to perfectly reconstruct any ρ within a

finite-dimensional Hilbert space when η and ρ′ are precisely known [163]. However,

the presence of any small deviations in an experimentally measured ρ′ can lead to
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unphysically large or negative diagonal density matrix elements in the reconstruction

of ρ, even while ρ remains normalized. This is similar to the possible numerical

instabilities that arise when using pattern-functions [113]. Here, we solve this issue

by inverting each M(i)(η) using semidefinite programming where the optimization

problem is defined as

Minimize
ρ

Nmax∑
i=0

||ρ′(i) −M(i)ρ(i)||2

Subject to ρ ≥ 0, Tr[ρ] = 1, and ρm,m ≤ η−mρ′m,m, (4.27)

where ρ(i) denotes the ith diagonal of ρ where i = 0 is the main diagonal and M(i)(η)

is the linear map describing the binomial-law loss degradation along each diagonal of

ρ. The third constraint stems from the fact that Eq. (4.23) yields ρ′mm = ηnρmm + ε,

where ε is positive. Additionally, it is only necessary to sum over the upper diagonals

of ρ in the minimization (hence the sum starting at i = 0), due to the enforced

positivity of ρ. If the value of the loss parameter η is known, this loss deconvolution

method is numerically efficient by the virtue of being a convex optimization and

physically reliable due to enforced physicality constraints in Eq. (4.27).

In Fig. 4.5, we display the numerical simulations for a four-photon Fock state and a cat

state. In each instance, the state is sent through a 50% lossy channel followed by the

generalized tomographic procedure with coherent state probes having 40 amplitude

and 40 phase increments as opposed to 20 amplitudes and 20 phases used in the

ideal numerical simulation above. The high number of coherent state measurements

was chosen to ensure highly accurate tomographic reconstructions for the lossy state.

Fig. 4.5 (a) displays the actual numerical reconstructions where the fidelities are

determined with the ideal four-photon Fock state and a cat state. We notice that

due to 50% losses negative regions or phase space fringes of the Wigner function are

erased out.
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Figure 4.5: (a) Reconstruction of a four-photon Fock state and a cat state with
α =
√

3 in the presence of 50% losses. (b) Loss compensation using SDP. All fidelities
are determined with the ideal states.

We then plot the loss compensated reconstruction using SDP in Fig. 4.5 (b). Remark-

ably, we find that the loss compensation leads to near-unity fidelity reconstruction

and the negative regions of the Wigner function are retrieved.

Next we compare the proposed loss compensation scheme with the analytical gener-

alized Bernoulli transformation from Eq. (4.24). The effects of numerical instabilities

are demonstrated with a reconstruction of a cat state with 30% loss. Numerical simu-

lations are displayed in Fig. 4.6. On the left, we have the photon-number distribution

of a loss-compensated cat state and its Wigner function. First the loss-degraded cat

state was tomographed and then we use the generalized Bernoulli transformation de-

fined in Eq. (4.24) to obtain the loss-compensated density matrix and plot its Wigner

function.
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Figure 4.6: Loss-compensation for tomographed cat state of amplitude
√

3 after 30%
loss and Hilbert space cut-off of d = 20, with (a) inversion using the generalized
Bernoulli transformation and (b) inversion using SDP. The figure insets show the
Wigner function for each state. We notice the negative diagonal entries for photon-
numbers greater than 10 on the left pane

From the Fig. 4.6(a), we can see that inversion with generalized Bernoulli trans-

formation fails to reliably reconstruct the state as confirmed by negative entries in

diagonal (or negative probabilities). These errors become pronounced for low detec-

tor efficiencies at high photon-numbers as seen Fig. 4.6 (a) for the specific case of a

loss-compensated cat state. Therefore, it becomes extremely crucial to have a pri-

ori information about the energy of the quantum state in order truncate the Hilbert

space precisely to avoid numerical instabilities at high photon numbers. On the right

in Fig. 4.6, we show the loss-compensated reconstruction using the proposed SDP in

Eq. (4.27). One can clearly see that the inversion using SDPs successfully reconstructs

the state after loss-compensation as evident from the absence of negative diagonal en-

tries or smoothness and well-bounded nature of the reconstructed Wigner function.

We emphasize that all the errors, i.e., |ρ′i,j − ρi,j|, in the loss-degraded reconstructed

density matrix elements are on the order of 10−3, where ρ′ is the loss-degraded experi-

mentally reconstructed density matrix using 400 coherent probes and ρ is an ideal cat



4.3. IMPERFECTIONS: LOSSES, EXPERIMENTAL NOISE, AND MODE
MISMATCH 106

state that has undergone 30% losses. Thus we note that how small errors on density

matrix elements from performing the tomographic procedure on a loss-degraded cat

state give rise to an unphysical loss-compensated state using the analytical matrix

inversion from Ref. [163], whereas inversion using SDPs guarantees the physicality of

the loss-compensated state.

To further quantify the quality of the reconstruction using SDP inversion, we define

a new parameter Q as

Q := log[1 + T(ρ, σ)], (4.28)

where where T[ρ, σ] is the trace distance defined as

T (ρ, σ) :=
1

2
||ρ− σ||1 =

1

2
Tr

[√
(ρ− σ)†(ρ− σ)

]
, (4.29)

where ρ and σ are the density matrices describing the reconstructed state and ideal

state, respectively and ||.||1 is the `1-norm defined as ||M ||1 =
∑
i

|λi| with λ1 being

the eigen values of the hermitian matrix M = ρ− σ. We note that 0 ≤ T (ρ, σ) ≤ 1,

where the equality from the left is satisfied for ρ = σ and the right equality holds for

orthogonal states. As a result, we get Q = 0 when the reconstruction is perfect and

any increment in Q from zero quantifies the errors in the reconstruction. We now

calculate the Q parameter using both Bernoulli transformation and the proposed

SDP method for a cat state and a single-photon Fock state. Results are displayed in

Fig. 4.6. The trace distance is calculated between the reconstructed state, ρ and the

ideal state, σ which is then used to determine Q parameter.
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Figure 4.7: (a) The logarithm of the trace-distance between the reconstructed state
and the ideal target state is plotted against η for the Hilber space cut-off of d = 20. (b)
The logarithm of the trace-distance is plotted against the Hilbert space truncation
d for given η = 0.70. Both of these simulations are done for a cat state and a
single-photon Fock state. We note that T (ρ, σ) > 1 occurs due to the unphysical
reconstruction of ρ and large non-positive diagonal elements.

In Fig. 4.7 (a), we plot the Q versus overall loss η for a given Hilbert space truncation

of d = 20. One can clearly see that the validity of the loss-compensation can heavily

depend on the overall loss parameter η if the loss-compensation was done using the

generalized Bernoulli transformation. On the other hand, loss-compensation with

SDP does not show any dependence on η and it works much better than Bernoulli

transformation for a typical range of overall losses in an experiment as seen from

Q ≈ 0, the blue curves in the Fig. 4.7.

In Fig. 4.7 (b), we see the effects of Hibert space truncation for a given detection

efficiency η = 0.70. We note that the deviation (or Q parameter) grows quickly as d

increases in the case of inversion with Bernoulli transformation. However, Q remains

both small and relatively independent of d when using SDP. As a result, the proposed

loss-compensation method is significantly improves on loss-compensation in state to-

mography.

Furthermore, we can use this technique to our advantage in mitigating detector sat-

uration threshold for PNR measurements. By introducing a well-calibrated loss right

before the PNR detector, we can decrease the energy of the interfered state to be



4.3. IMPERFECTIONS: LOSSES, EXPERIMENTAL NOISE, AND MODE
MISMATCH 108

measured which allows us to use a lower maximum amplitude for |αmax〉 and also

reduces the energy of the unknown state. In the next section, we show that adding

the well-calibrated losses prior to the interference in the path of unknown state as

well as coherent state probes has the same effect of having losses after the interference

as shown in Fig. 4.8, left.

4.3.4 Equivalence of photon-number distributions

Here, we show that both networks in Fig. 4.8 leads to same photon-number distri-

bution. The left configuration has a well-calibrated beamsplitter of transmission η

right before a perfect PNR detector. The right configuration has beamsplitters with

transmission η in both paths right before the balanced BS. The interfered signal is

then detected by a perfect PNR detector.

Figure 4.8: Schematic of the loss model. Left and right networks produce the same
photon-number distribution.

To show the equivalence of the photon-number distributions measured in each con-

figuration, we adapt the approach originally introduced in Ref. [1]. The signal and

coherent states are described by annihilation operators â and b̂ respectively, and ĉv

and d̂v are vacuum modes coming from the unused port of the beamsplitters. For a
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perfect PNR detector, the probability of measuring n photons is given by [164]

P (N = n) =

〈
:
N̂n

n!
e−N̂ :

〉
ρin

, (4.30)

where N̂ = d̂†d̂ is the photon-number operator of the detection mode and the expec-

tation value is calculated over the initial states, and :: is the normal ordering of the

creation and annihilation operators. By employing the Heisenberg picture, we first

determine the detection mode in terms of input modes for the network on the left of

Fig. 4.8. The input mode denoted by annihilation operator, â evolves to

After first BS: â→ â+ b̂√
2

(4.31)

After second BS:
√
η

(
â+ b̂√

2

)
+
√

1− ηĉv

(4.32)

Since the input states for mode b̂ and ĉv are coherent and vacuum states respectively,

the normal ordering allows to treat them as complex numbers. As a result, the

effective photon-number operator is given by

N̂L
eff. = d̂†Ld̂L, (4.33)

where the detection mode is

d̂L =
√
η

(
â+ β√

2

)
. (4.34)
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Likewise, for the right network, we have

After first BS: â→ √ηâ+
√

1− ηb̂v (4.35)

After top BS: b̂→ √ηb̂+
√

1− ηĉv (4.36)

After balanced BS: d̂ =
1√
2

(
√
ηâ+

√
1− ηb̂v +

√
ηb̂+

√
1− ηĉv),

where ĉv, b̂v are vacuum modes and b̂ is a coherent state. We again utilize the fact

that normal ordering allows coherent states to be represented by a complex number

and the vacuum state can also be considered as a coherent state with zero amplitude.

Thus, the detection mode can be further simplified as

d̂R =
√
η

(
â+ β√

2

)
. (4.37)

From Eq. (4.34) and Eq. (4.37), one can see that both networks have the same de-

tection mode, therefore would produce the same photon-number distribution for a

given quantum state, ρin under investigation. This shows that by adding the well-

calibrated losses, one can alleviate the detector threshold by a considerable amount.

This plays a crucial role when one needs to characterize a highly energetic state with

the state-of-the-art PNR technology that only allows to resolve photons in the order

of tens.

4.4 Mode mismatch correction

We now consider the effects of mode mismatch between the fields of the unknown

state and coherent states (or local oscillators (LOs)) on the measured photon-number

distributions. In contrast to balanced homodyne detection (BHD), the imperfect

modematching between the coherent state and the signal fields cannot simply be

treated as losses in the proposed scheme. This can be understood as follows: In
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BHD, the measured photocurrent difference is proportional to only the interference

term, i.e, I− ∝ â†αLO + âα∗LO, which implies that only the overlapping portion of the

signal field gets amplified by the strong local oscillator (LO) and the non-overlapping

portion is considered as losses. We now show that this will no longer be the case with

the proposed method.

Figure 4.9: Model for mode mismatch analysis.

As displayed in Fig 4.9, the interference between the local oscillator and signal mode,

denoted by âLO and âs respectively, can be decomposed into two orthogonal modes

that each reach the PNR detector. The LO can be seen as interfering with vacuum

mode âv to be split into a component that overlaps (interferes) entirely with the

signal field, â
||
LO, and an orthogonal component, â⊥LO, that proceeds to the detector

without interacting with the signal. Defining the mode-mismatch parameter M , as

the transmission of the fictitious beamsplitter decomposing the components of the

LO and making use of the Heisenberg picture, we get
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â⊥LO =
√

1−MâLO +
√
Mâv. (4.38)

â
||
LO = −

√
MâLO +

√
1−Mâv. (4.39)

Likewise, the signal mode after interfering with â
||
LO at the balanced BS evolves to

âs → ÛBS âsÛ
†
BS =

âs + â
||
LO√

2
, (4.40)

where ÛBS is the unitary operator of the balanced beamsplitter. We then find the

photon-number operators corresponding to both the fields reaching to the PNR de-

tectors. Thus, we get

n̂1 = (â⊥LO)†â⊥LO (4.41)

n̂2 =

(
âs + â

||
LO√

2

)†(
âs + â

||
LO√

2

)
= ÛBS â

†
sâsÛ

†
BS (4.42)

As a result, the total number operator is

N̂ = n̂1 + n̂2 = (â⊥LO)†â⊥LO + ÛBS â
†
sâsÛ

†
BS. (4.43)

By employing Eq. 4.30, one can further determine the probability of detecting total

n = n1 + n2 photons by both the detectors in Fig. 4.9 as

P (n = n1 + n2) =

〈
:
N̂n

n!
e−N̂ :

〉
ρin

, (4.44)

where N̂ = n̂1 + n̂2 is the two-mode photon-number operator. We then use the fact

that in the normal ordering formulation, the annihilation operators denoting coherent
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states can be simply treated as complex variables, α⊥LO and α
||
LO. Therefore, we have

N̂ = (1−M)|αLO|2 + ÛBS â
†
sâsÛ

†
BS. (4.45)

Using Eq. (4.44) and Eq. (4.45) results in

P (n) =

〈
: e−
[

(1−M)|αLO|2+ÛBS â
†
sâsÛ

†
BS

] [
(1−M)|αLO|2 + ÛBS â

†
sâsÛ

†
BS

]n
n!

:

〉
ρin

(4.46)

After further simplification, we get

P (n) =

〈
: e−
[

(1−M)|αLO|2+ÛBS â
†
sâsÛ

†
BS

] n∑
l=0

(
n

l

)
(ÛBS â

†
sâsÛ

†
BS

)l
[(1−M)|αLO|2]n−l

n!
:

〉
ρin

=
n∑
l=0

〈
:
eÛBS â

†
sâsÛ

†
BS(ÛBS â

†
sâsÛ

†
BS

)l
l!

:

〉
ρin

e−[(1−M)|αLO|2][(1−M)|αLO|2]n−l

(n− l)!

(4.47)

From Eq. (4.47), one can see that the probability of detecting n photons is the con-

volution of two probability distributions. The first term in the normal ordering form

corresponds to detecting l photons in the signal mode after the interference with â
||
LO

while the second Poissonian distribution term is the probability of (n − l) photons

being detected in the orthogonal LO mode, â⊥LO. We can further rewrite Eq. (4.47)

in a compact way as

P (n) =
n∑
l=0

P ||(l)P⊥(n− l). (4.48)

Note that P⊥(n− l) can be determined by knowing the overlap parameter, M , which

is experimentally measured from a bright-field visibility measurement [165]. The

overlap parameter is defined as

M =
V

2− V . (4.49)

Once M is determined, we have the information about the amplitude of the non-
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overlapping LO field, i.e,
√

1−MαLO, which allows us to determine P⊥(n− l). Next,

we can simply invert Eq. (4.48) in order to reconstruct the true photon-number dis-

tribution for the interfered field of unknown state and the mode matched part of LO

field |α||LO〉 = |
√
MαLO〉. Note that for classical visibility nearing unity (as in our

experiment), V ≈
√
M .

4.4.1 Experimental noise

A crucial point is the impact of inevitable experimental fluctuations on the numerical

stability of the solution in Eq. (4.12). The linear equation for the overlap measure-

ments is

O = CP. (4.50)

In the ideal case, the solution of this linear equation is then

P = C−1O. (4.51)

If we have some noise or experimental fluctuations in the experiment which leads to

measuring O′ instead of the true overlap measurements O. Thus we have

O′ = CP. (4.52)

In this case, the new solution is

P′ = C−1O′ = C−1O + C−1δO, (4.53)

where δO is the deviation from the true overlap measurements, i.e., δO = O′ −O.

One can see from Eq. (4.53) that the new solution P′ has an additional noise term

C−1δO to the original solution P = C−1O. The errors, δO in the overlap measure-
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ments gets amplified by C−1 and can potentially lead to unphysical results. Thus the

invertible nature of the matrix C determines the numerical stability of Eq. (4.50). To

further quantify the sensitivity of the inversion against experimental noise, a param-

eter known as the condition number of matrix C is formally defined as

Condition(C) =

||C−1δO′||
||C−1O||
|δO||
||O||

, (4.54)

where ||.|| is the `2- norm. The condition number is essentially the ratio of relative

changes in P to relative changes in O. If the condition number is not too much larger

than one, then the linear equation governed by the matrix C is well-conditioned,

thereby its inverse can be approximated with high accuracy even in the presence of

reasonable experimental noise. If the condition number is much larger than 1, then

the linear equation will be considered as ill-conditioned and any errors in the overlap

measurements would substantially alter the solution for P. A detailed discussion on

the nature of C and how it changes the reconstruction can be found in Ref. [166].

In our case, by the nature of its slowly-decaying Poissonian coefficients, matrix C

necessarily contains both large and small entries and, therefore, both large and small

singular values, which makes it ill conditioned [167], and therefore its inversion ex-

tremely sensitive to experimental fluctuations in the measured photon statistics or

the inversion is numerical unstable. In order to suppress these instabilities, we choose

to use a Tikhonov regularization procedure [168], formulated as the SDP problem

Minimize
ρ

||O−CP||2 + γ||P||2

Subject to ρ ≥ 0, Tr[ρ] = 1, (4.55)

where γ is a small regularization parameter set according to the noise level [169]. The

optimization still remains quadratic convex which can be solved efficiently. We now

perform some numerical simulations in the presence of amplitude and phase noise
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in the coherent state probes. We model our noise in the same spirit as [91], [92] by

introducing artificial fluctuations in the amplitude and phase of the coherent states,

|αj〉. The amplitude noise is sampled using a Gaussian distribution of zero mean

and standard deviation of σ = 2%|αj|2, and likewise the phase noise is sampled from

σ ∈ [−1, 1] degrees using a Gaussian distribution with zero mean.

To demonstrate the effect of experimental fluctuations on the reconstruction, we nu-

merically performed the state tomography of an ideal 4-photon Fock state and the

statistical mixture desribed by ρmix = 0.8|5〉〈5| + 0.2|β〉〈β| in the presence of 50%

detection losses, where the varying coherent state probes now have both phase and

amplitude noise. Numerical results are displayed in Fig. 4.10 with 40 amplitudes and

40 phases of coherent states. Evidently, we are able to identify the Wigner functions;

however, we now see the appearance of noise-induced ripples as shown in Fig. 4.10a,

which obfuscate the differences between the pure Fock state and the mixture. In

order to suppress the noise effects, we repeat the experiment N = 30 times in order

to obtain smooth Wigner functions by averaging the overlap measurements. From

Fig. 4.10b, we can clearly see the ripples become diminished, which demonstrates the

rather intuitive result that performing multiple measurements in the presence of noise

can improve resolution. We note that the added noise in these numerical simulations

is larger than the typical noise present in the well stabilized lasers with built-in noise

eater servos.
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Figure 4.10: Reconstructions of an ideal 4-photon Fock state and statistical mixture
following a 50% loss in the presence of noise. (a) The coherent state probes have noisy
fluctuations of 2% intensity and 1 degree in phase. (b) Averaging noisy measurement
outcomes produces a smoothing effect on the reconstructed states.

Furthermore, we note that this procedure remains robust and state-independent in

the sense that allowing γ to vary by an order of magnitude (from 0.001 to 0.01) neg-

ligibly impacts the state reconstruction in each case considered, as measured by the

change in fidelity with the appropriate target state. Several other kinds of regulariza-

tion techniques have been explored for state tomography, process tomography, and

detector tomography [90]–[92], [170]–[172].

4.4.2 High-loss compensation

In this section, we show that quantum states with losses greater than 50% can also

be accurately tomographed and compensated for loss even in the presence of noise.

However, increasing loss requires greater accuracy in the measured loss-degraded den-
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sity matrix for the reconstruction to be valid. This is not prohibitive to the success

and simply requires increasing the number of overlap measurements until the desired

accuracy in the tomographic procedure is reached.

Figure 4.11: (a) Reconstruction for the superposition 1√
2
(|2〉 + |3〉) after 70% loss in

the presence of noise on the tomographic probes. (b) loss-compensated reconstruction
using SDP. We notice that the negativity of the Wigner function is recovered.

Nonetheless, we demonstrate that the process is successful for high losses in the pres-

ence of noise without an undue requirement on the number of measurements to be

made. For the state |ψ〉 = 1√
2
(|2〉 + |3〉), the reconstruction is displayed in Fig. 4.11

in the presence of a known 70% loss with phase and amplitude fluctuations on the

coherent state probes. The tomography is performed with coherent states at 40 am-

plitudes and 40 phases with 0.5% intensity 0.5 degree phase noise sampled using

Gaussian distributions. The overall fidelity of the loss-compensated state with the

target is F = 0.978. The state reconstruction can be further improved by increasing

the number of measurements and by averaging many experimental runs as discussed

above.

This concludes the theoretical framework for the proposed generalized overlap state

tomography method. We now turn to experimental implementations for a weak co-
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herent state of amplitude and a heralded single-photon Fock state.

4.5 Experimental implementation

The experimental setup displayed in Fig. 4.12 is identical to our previous implemen-

tation of WVBW tomography detailed in chapter 3. It is based on a very stable CW

Nd:YAG laser whose undoubled output provided all coherent states (or LO) upon

phase and amplitude modulations by a computer controlled piezoelectric-actuated

mirror and a home-made RbTiOAsO4 electro-optic modulator, respectively. The cal-

ibrated coherent-state amplitude range was |α| = 0.138(2) to 0.339(3), in six steps,

calibrated by our PNR detector, a superconducting transition edge sensor (TES) [133],

[149]. The calibration was done by comparing the TES photon statistics to that of a

Poisson distribution with the signal beam blocked as detailed in our previous imple-

mentation [89]. The phase steps were calibrated by scanning the interference fringe

between the OPO seed beam and the coherent state beam, which provided a set of

10 voltage values for the PZT mirror corresponding to 10 discrete steps of 0.58(5)

radians.
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Figure 4.12: Experimental setup. The tomography protocol is contained in the orange
box where the mode-matched LO is interfered with the state ρ. When the FM is
in position, tomography for the coherent state, β, is performed; otherwise, ρ is the
single-photon state generated in the aqua colored box. EOM, electro-optic modulator;
FC, filter cavity; FM, flip mirror; HWP, half-wave plate; IF, interference filter; LO,
local oscillator; ND, neutral-density filter; OPO, optical parametric oscillator; PBS,
polarizing beamsplitter; POL, polarizer; PZT, piezoelectric transducer.

The tomography of a quantum states is performed by interfering a mode-matched

local oscillator (LO) with the signal state, ρ, at a balanced beamsplitter followed by

detection of one output mode using a photon-number resolving transition-edge sensor

(TES) as shown in Fig. 4.12. A portion of the LO is split and strongly attenuated by

neutral density (ND) filters to be used as a coherent state, |β〉, for the signal when the

flip mirror is engaged. When the flip mirror is not in place, the signal is a single-photon

source based on heralded, cavity-enhanced type-II spontaneous-parametric downcon-

version from a periodically-poled KTiOPO4 crystal. As discussed in chapter 3, the

spectral and spatial filtering was achieved by the optical parametric oscillator created

by placing the crystal in a resonant cavity and an additional Fabry-Perot filter cavity

on the heralding arm as shown in Fig. 4.12. The cavities were Pound-Drever-Hall-

locked [145] using a portion of the LO in an “on/off” configuration as described in
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Ref. [89]. The coherent-state probes derived from the LO were amplitude modulated

with a combination of polarizer and electro-optic modulator (EOM) and were phase

controlled with a mirror-mounted piezoelectric actuator (PZT). Extensive details on

the single-photon source, mode filtering, and the LO amplitude calibration using the

TES can also be found in chapter 3.

4.5.1 Coherent state tomography

First, we implemented the generalized overlap tomography protocol for a weak co-

herent state. The rationale for measuring a coherent state was to display a phase-

dependent, i.e. non-cylindrically symmetric structure in phase space. The coherent

state |β〉 was chosen |β| = 0.191(3), as calibrated by the TES Poissonian photon

statistics. For each of the 60 coherent-state probes |αj〉, data was acquired for ap-

proximately 3 seconds to obtain ∼ 105 events from which to construct the photon-

number probability distributions. We then deconvolve the effects of mode-mismatch

on the measured PNR distribution as discussed in Section 4.4. We measured the mode

overlap parameter of M = 0.83(2) of the signal coherent state |β〉 with the coherent

state probes (LO in the Fig. 4.12) and deconvolve the Poissonian distribution of the

mode-mismatched |
√

1−Mαj〉⊥ from our measured PNR statistics as per Eq. 4.48.

It is very important to note that the overlap measurements obtained from the expec-

tation of parity are now between ρ = |β〉〈β| and |
√
Mαj〉|| for each coherent state

probe, and therefore the coefficient matrix C must be modified accordingly. This is

achieved by simply multiplying the measured coherent state amplitudes |αj|’s by the

factor
√
M .

The SDP tomography results after correcting for mode mismatch are displayed on

Fig. 4.13. Examining the magnitude of the density matrix elements, we clearly see

that the diagonal and off-diagonal terms of ρ were both successfully reconstructed.

The phase and amplitude accuracy is more evident when comparing the associated
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Figure 4.13: Tomography of a weak coherent state. Bottom Left, absolute value of
the target (theory) density matrix elements and its Wigner function, top left. Right,
reconstructed density matrix and associated Wigner function. The black error bars
are obtained from the measurement statistics.

Wigner functions plotted in Fig. 4.13, right, where the red dashed lines delineate the

zero axis values. We achieve a fidelity of F = 0.97(2) between the reconstructed

state, ρ, and the target pure state, |β〉 calibrated by the TES. The slight asymmetry

of the Wigner function is imputable to residual phase noise in our measurements as

we only use passive noise cancellation techniques for the optical paths. Imperfections

in phase control and stability resulted in approximately 0.05 radians of phase-error

on probe calibrations that contribute to the slight asymmetry in the experimentally

constructed Wigner functions of the coherent state.
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4.5.2 Single-photon Fock state tomography

We then performed the tomography of a heralded single-photon Fock state. The re-

constructed density matrices and constructed Wigner functions are shown in Fig.4.14.

On the top left, we have the mode-mismatch corrected reconstruction for a single-

Figure 4.14: Generalized overlap tomography of a single-photon Fock state. Top
row, SDP with mode mismatch corrected but no correction for losses. Bottom row,
loss-deconvoluting SDP reconstruction. Left column, direct reconstructions. Right
column, reconstructions using phase-averaged measurements. Reconstruction fideli-
ties are 0.85(8) and for the bottom left panel and 0.94(6) for the bottom right panel.
Inset: Wigner functions calculated from reconstructed density matrices.

photon Fock state and the bottom left displays the loss-compensated reconstruction

where losses were calibrated by measuring the heralding ratio as discussed in chap-

ter 3. The mode overlap parameter, M = 0.86(2) was measured using the bright field

visibility of the interference between OPO seed transmission and the LO field.

Due to the nature of our heralded source undergoing an overall loss, η, we expect

to measure a statistical mixture of the one-photon and vacuum states which has a
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rotationally symmetric Wigner function [89], [122] by the virtue of the density matrix

being diagonal in the photon-number basis. Under this assumption, an average over

the optical phases of the coherent probes can be performed, yielding the results on

the right column of Fig. 4.14. It is, of course, also interesting to examine the un-

averaged measurements, left column of Fig. 4.14, in order to assess the quality of our

tomographic reconstruction. Despite the effects of experimental noise, visible in the

off-diagonal terms, the reconstruction has a fidelity of F = 0.94(2) with the expected

mixture where η = 0.50(1), as measured by the heralding ratio as in chapter 3.

The performance of the noise deconvolution by SDP is displayed on the bottom row of

Fig. 4.14. The overall loss was determined to be η = 0.50(1) by measuring the herald-

ing ratio, as was done in chapter 3. Assuming no prior knowledge about the state

other than this calibrated measurement loss, the reconstructed loss-compensated state

is depicted in the bottom left of Fig. 4.14, where we achieved a fidelity of F = 0.85(8)

with a single-photon Fock state. While the phase noise of the LO does not contribute

to the overlap measurements with a phase-insensitive state such as heralded single-

photon Fock state, the amplitude noise and other experimental fluctuations might be

attributed to the ripples seen in the reconstructed Wigner function.

Adding the assumption of a phase-invariant state and averaging measurements as in

Refs. [122], [123], [173] for each of the ten phases before compensating for loss yielded

the nearly perfect reconstruction shown in the bottom right panel, where we achieved

F = 0.94(6). It is worth emphasizing that the negativity of the single-photon Wigner

function was fully recovered after compensating for loss and measured mode-mismatch

of M = 0.86(2) (Fig. 4.14, bottom row), even though the 50% loss level suppressed

negativity when no loss deconvolution was performed (Fig. 4.14, top row).

Finally, it is important to note that the maximum amplitude probe was |αmax| '
0.34, which led to a mean photon number detection of 〈N〉 ' 0.56, yet our overlap

tomography accurately reconstructed the Wigner function at quadrature coordinates

beyond q or p = 3 (consistent with our truncation of the Hilbert space to no=5).



4.6. CONCLUSIONS 125

This is in stark contrast to the WVBW case of chapter 3, in which the maximum

of the Wigner function, at q or p = 1, could not be reached using displacements

with |αmax| ' 0.80 and 〈N〉 ' 1.64. Therefore, generalized overlap tomography

necessitates PNR detection of significantly lower photon flux while still requiring the

detection of only a single field mode.

4.6 Conclusions

In this chapter, we proposed and experimentally demonstrated the generalized over-

lap quantum state tomography using PNR measurements on a single field-mode. Our

approach, (i), makes no prior assumption on the initial state (ii), exploits numerically

efficient, noise-robust SDP that enforces physicality, (iii), uses fewer, lower-amplitude

probes that point-by-point WVBW tomography (which might outperform WVBW for

complex states where fine resolution of the Wigner function is required), (iv), imple-

ments no approximated displacement operations, (v), requires only a single PNR

detector and necessitates fewer measurements than densely probing the Wigner func-

tion [166], (vi), compensates for known losses with fewer numerical instabilities.

Our approach is equally valid for other physical systems and can be readily applied

in circuit quantum electrodynamics [174]. It could also be used to directly measure

the purity of a quantum state by measuring the overlap between two copies of the

same system, which allows access to the second order Rényi entropy extensively used

to quantify the entanglement of many-body physical systems [175].

Finally, the proposed scheme can be simply extended to characterize a multi-mode

quantum system by interfering with a multi-mode set of coherent states followed by

measuring the overall parity of the state after the interference.

The work was supported by NSF grants PHY-1708023 and PHY-1820882 and it was

carried jointly with Miller Eaton.



Chapter 5

Room Temperature

Photon-number-resolving

Segmented Detectors

A measurement always causes

the system to jump into an

eigenstate of the dynamical

variable that is being measured,

the eigenvalue this eigenstate

belongs to being equal to the

result of the measurement.

P. A. M. Dirac (1958) in The

Principles of Quantum

Mechanics, p. 36

This chapter is adapted from the published paper titled, “Photon-number-resolving

segmented detectors based on single-photon avalanche-photodiodes,” Rajveer Nehra,

Chun-Hung Chang, Qianhuan Yu, Andreas Beling, and Olivier Pfister, Opt. Ex-

126
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press, 28, 3660-3675 (2020). Here, we investigate the feasibility and performance of

photon-number-resolved photodetection employing single-photon avalanche photodi-

odes (SPADs) with low dark counts. While the main idea is to split n photons into m

detection modes with a vanishing probability of more than one photon per mode, we

investigate here a important variant of this situation where SPADs are side-coupled

to the same waveguide rather than terminally coupled to a propagation tree. This

prevents the nonideal SPAD quantum efficiency from contributing to photon loss.

We propose a concrete SPAD segmented waveguide detector based on a vertical

directional coupler design, and characterize its performance by evaluating the puri-

ties of Positive-Operator-Valued Measures (POVMs) in terms of number of SPADs,

photon loss, dark counts, and electrical cross-talk.

5.1 Introduction

Quantum measurements are essential to quantum information science and technol-

ogy. Photon-Number-Resolving (PNR) detection, in particular, fully exploiting the

corpuscular nature of classically undulatory light, is key in quantum metrology and

sensing [84] and quantum technologies [83]. A PNR detector produces a signal that

has a linear dependence with the number of incident photons, which allows it to re-

solve an n-photon state from (n+1)-photon state. Photon-number-resolving detectors

have been realized with superconducting transition-edge sensors (TES) [58], [176], sil-

icon photomultipliers [177], superconducting nanowires [65], [178]–[180], linear mode

avalanche photodiodes (SPADs), and quantum-dot field-effect transistors [181], [182].

Moreover, methods based on spatial- and time-multiplexing of non-PNR detectors

have been proposed for PNR measurements using SPADs [61]–[65]. Such proposals

have been thoroughly modeled mathematically [183]–[186].

This chapter is organized as follows. In Section 5.2, we provide the mathematical
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formulation of quantum measurements. Section 5.3 details two models for splitting n

photons over m modes, and we then conclude in Section 5.4.

5.2 Quantum measurements: collapse of a wave-

function

Quantum measurements are described by a set of hermitian operators acting on the

Hilbert space of the system. An ideal quantum measurement originally postulated

by John von Neumann says that a measurement performed on a quantum system

instantaneously collapses the quantum state onto one of the eigenstates of measured

observable [187]. Let us consider a spin-1
2

particle described by wavefunction |ψ〉 in

two-dimensional Hilbert space spanned by Ŝz eigenstates {| ↑〉 := [1 0]T, | ↓〉 :=

[0 1]T} as shown in Fig. (5.1).

Figure 5.1: Visualization of a von Neumann measurement device.

An ensemble of these identically prepared particles is sent to a Ŝz measurement device

which either registers |↑〉 or |↓〉 with probability |α|2 for |↑〉 and |β|2 for |↓〉. This

process can be completely described by the action of two projective operators, namely

Π|↑〉 = |↑〉〈↑ |, (5.1)

Π|↓〉 = |↓〉〈↓|.
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Furthermore, the probability of obtaining an outcome is given by the Born rule

Pi=|↑〉,|↓〉 = Tr[|ψ〉〈ψ|(|i〉〈i|)] = 〈ψ|i〉〈i|ψ〉 = |〈i|ψ〉|2. (5.2)

Since these are the only two possible outcomes, the probabilities must add up to

unity. Thus, we have

P|↑〉 + P|↓〉 = Tr[|ψ〉〈ψ|(|↑〉〈↑ |)] + Tr[|ψ〉〈ψ|(| ↑〉〈↑ |)] = 〈↑ |ψ〉|2 + |〈↓ |ψ〉|2 (5.3)

= Tr[|ψ〉〈ψ|(|↑〉〈↑ |+ |↓〉〈↓ |)] = |α|2 + |β|2 = 1 (5.4)

As a result, we see that Eq. (5.4) holds only if we have

| ↑〉〈↑ |+| ↓〉〈↓ |= I (5.5)

We now understand measuring light in the von Neumann measurement formalism.

Consider a light prepared in an arbitrary quantum state written in photon-number

basis as

|ψ〉 =
∞∑
n=0

ψn|n〉. (5.6)

If this light is incident to an ideal photon-number-resolving device, the probability of

measuring n photons is

P (n) = Tr[|ψ〉〈ψ|(|n〉〈n|)] = |ψn|2. (5.7)

Since Fock states provide a complete basis. By the definition of their completeness

property, we have
∞∑
n=0

|n〉〈n| = I. (5.8)

As a result, the set of projectors {|n〉〈n|;n ∈ N} completely describes an ideal photon-

number-resolving detector. However, in a realistic case measurement devices do
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not necessarily implement projective measurements but more a general measurement

known as Positive-Operator-Valued Measures (POVMs) which have been widely used

to model photodetection [188], [189].

The POVMs are a set of Hermitian operators {Πk} with some properties discussed

below. The probability of an outcome k is again given using the Born rule

p(k) = Tr[ρΠk]. (5.9)

• Completeness: Analogous to projective measurements, POVM measurements

are also complete. For a measurement device sensitive to only K outcomes, we

have
K−1∑
k=0

Πk = I.

One can immediately see that this property is a restatement of the probabilities

of all possible outcomes adding up to one.

K−1∑
k=0

p(k) =
K−1∑
k=0

Tr[ρΠk] = Tr

[
ρ
K−1∑
k=0

Πk

]
= 1

Therefore, characterizing a measurement device involves identifying the POVM

elements corresponding to all possible measurement outcomes. This is formally

known as quantum detector tomography discussed in detail in chapter 6. Ex-

perimental quantum-detector tomography has been achieved in a number of

different situations [64], [91], [190].

• Orthogonality: Unlike projective measurements, POVMs are not necessarily

orthogonal to each other, which implies that repeated POVM measurements

might not result in the same outcome.

ΠkΠl 6= δk,lΠk (5.10)
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We now consider the POVMs for a PNR detector with quantum efficiency η and no

dark-count noise 1. To model the detection losses, one can consider a physical case

where a beamsplitter with transmission η and reflection 1− η is placed in front of an

ideal PNR detector as depicted in Fig. 5.2.

Figure 5.2: Model for a PNR detector with efficiency η, where η is the beamsplitter
transmission.

For a given n-photon Fock state |n〉, the probability of k photons arriving to the

detector is essentially the probability of k photons getting detected. With the BS

transmission η, the conditional probability of k photons getting transmitted out of n

input photons is given by the binomial probability defined as

P (k|n) =

(
n

k

)
ηk(1− η)n−k. (5.11)

One can further determine the probability of detecting k photons in the general case

as

Pk =
∞∑
n−k

P (k|n)Pn, (5.12)

where P (k|n) is the conditional probability of detecting k photons given n photons

are incident to the detector, and P (n) is the of having n photons in the given state

1For simplicity, we neglect the dark-count noise for now. We take it into account in Section 5.3.5.3
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of light. In the operator formalism, the POVM operator for k-photon detection event

can be defined as

Πk =
∞∑
n=k

P (k|n)|n〉〈n|. (5.13)

For example, we consider a coherent state of amplitude α with mean photon-number

λ = |α2|, which is measured by an imperfect PNR detector. The photon-number

distribution of the coherent state is

Pk = e−λ
λk

k!
. (5.14)

The loss-degraded (or measured) photon-number distribution is can be determined

using Eq. (5.12), Eq. (5.11), and Eq. (5.14). Thus, we have

Pk =
∞∑
n−k

(
n

k

)
ηk(1− η)n−ke−λ

λn

n!
. (5.15)

Note that Eq. (5.15) can also be obtained using the Born rule. Mathematically,

Pk = Tr[Πk|α〉〈α|] (5.16)

Using the photon-number basis representation of the coherent state and the POVM

element from Eq. 5.13, we get

Pk = e−ηλ
(ηλ)k

k!
. (5.17)

From Eq. (5.17), we see that the amplitude of the measured coherent state is atten-

uated by the detection efficiency η of an imperfect PNR detector.

We now define the purity of a POVM element to characterize the PNR performance

of a detector. From Eq. (5.13), we can see that Πk is a statistical mixture of pure

measurement operators or projectors, and it becomes a pure measurement for η = 1.

Since POVMs are not necessarily pure measurements, to quantify their purity one can
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define the purity in the similar fashion as quantum states. The purity of a POVM

element for an outcome k is defined

Purity(Πk) =
Tr[Π2

k]

Tr[Πk]2
. (5.18)

The purity is a positive quantity. It also satisfies

1

D
≤ Purity(Πk) ≤ 1, (5.19)

where D is the dimension of the Hilbert space of the POVM element Πk, i.e., the

number of projectors with nonzero probabilities in the sum of Eq. (5.13)2. Clearly, a

POVM element giving a completely random outcome will yield D →∞ and a purity

of zero. Therefore, the reciprocal of the purity Purity(Πk)
−1 can be seen intuitively

as a loose estimator of the number of input states that result in a certain outcome

k. As a result, the Purity(Πk) could be used to characterize the PNR performance

of the detector, as in a perfect PNR detector has Purity(Πk) = 1 for all the POVMs.

We have discussed mathematical tools essential for this chapter and now move on to

modeling the photon splitting employing two models.

5.3 Models

In this section, we consider two models of splitting n photons over m detection modes

with a vanishing probability of more than one photon per mode. First, we con-

sider beamsplitter tree (BST) consisting of balanced beamsplitters and single-photon

avalanche-photodiodes (SPADs) are used for detection at the terminal of the tree.

Second, we investigate a new design where SPADs are side-coupled to the a waveg-

uide rather than terminally coupled as in BST.

2Note that the sum in Eq. (5.13) goes to infinity but for practical limitations, it can be truncated
at some finite value, say n0 such that the terms beyond n0 do not contribute to the sum significantly.
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5.3.1 Beamsplitter Tree

We first consider the splitting using beamsplitter tree (BST) where each beam splitter

is balanced, i.e., r = t where r and r are reflections and transmission coefficients

respectively. The input n-photon Fock state is described by annihilation operator

â1 and the unused m − 1 ports of the BST are vacuum modes described by â2, â3,

..., âm. The annihilation operators corresponding to detection modes at the terminal

of the BST are âl1, âl2, ...,âlm−1, âlm, which are detected by single-photon avalanche-

photodiodes (SPADs). We model photon splitting using BST depicted in Fig. (5.3)

in the Heisenberg picture.

|n〉

nm, â
l
m

nm−1, a
l
m−1

âl=1
2

âl=1
1

âl=2
3

âl=2
4

âl=2
1

âl=2
2

n2, â
l
2

n1, â
l
1

Figure 5.3: Beam-splitter tree: the level index l goes from l = 1 to l and m denotes
the number of output modes or the number of SPADs. The input mode is represented
by â1 and the detection modes are âl1, âl2, ...,âlm−1, and âlm.

To determine the output quantum state after the BST linear network, it is convenient

to write the input quantum state in the basis spanned by the detection modes. We

do this by back-propagating the detection modes. We start with the simplest case
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of l = 1 and m = 2, i.e., the BST has only one beamsplitter. The input mode is

described by annihilation operator â1 and the two detection modes are âl=1
1 and âl=1

2 .

In this case, the input mode can be written in terms of output modes as

â1 =
âl=1

1 + âl=1
1√

2
(5.20)

Next, we consider l = 2 and m = 4 where the detection modes are âl=2
1 , âl=2

2 , âl=2
3 and

âl=2
4 . Similar to m = 2 case, one can simply backpropagate the detection modes to

write the input mode in terms of detection modes. Mathematically,

â1 =

âl=2
1 +âl=2

1√
2

+
âl=2
3 +âl=2

4√
2√

2
=
âl=2

1 + âl=2
2 + âl=2

3 + âl=2
4

2
. (5.21)

One can further extend it to a BST of length l and m = 2l as

â1 =
1√
2l

m=2l∑
i=1

âli. (5.22)

As a result, the output quantum state is

|ψ〉out =
1√
n!

(
1√
m

)n( m∑
i=1

a†li

)n
|0〉⊗m . (5.23)

Using multinomial expansion we can simply it to

|ψ〉out =

(
1√
m

)n n∑
n1=0

· · ·
n∑

nm=0︸ ︷︷ ︸∑m
j=1 nj=n

{ √
n!

n1!n2!...nm!

m∏
i=1

((âl)†i )
ni

}
|0〉⊗m . (5.24)

Using Eq. (5.24), we can further determine the probability of obtaining a certain

configuration ~n = [n1 n2 · · · nm]T, which is given by

P (|n1, n2, · · ·nm〉) =

(
1

mn

)
n!

n1!n2! · · ·nm!
. (5.25)
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It is easy to verify that the total probabilities corresponding to all possible configu-

rations add to unity.

P (n,m) =

(
1

mn

) n∑
n1=0

· · ·
n∑

nm=0︸ ︷︷ ︸∑m
j=1 nj=n

n!

n1!n2!...nm!
=

(
1

mn

)
(1 + 1 + · · ·+ 1)n︸ ︷︷ ︸

mn

= 1 (5.26)

We are interested in finding the probability of getting k clicks given a n-photon Fock

state, |n〉 is incident to the BST. Considering lossless case where no photons are lost

during the propagation through the BST and all the SPADs have unity quantum

efficiency, i.e., η = 1, the conditional probability of registering k clicks is

Pm(k|n) =
n!

mn

(
m

k

) n∑
n1=1

· · ·
n∑

nm=1︸ ︷︷ ︸∑k
j=1 nj=n

1∏k
i=1 ni!

. (5.27)

Eq. (5.27) can be understood as following. Since it is the probability of getting k

clicks out of n input photons incident to the lossless BST, it means that k detectors

receive all n photons and m − k receive no photons. There are in total
(
m
k

)
ways

for registering k clicks out of m detectors. The number of detected photons in each

detectors may be different that determines the probability of getting k clicks for an

input state with n photons. Therefore, one needs to consider all possible solutions of

the following linear equation.

n1 + n2 + ...+ nk = n, (5.28)

where each ni ∈ [1, n]. Consequently, the overall probability would be the sum of

probabilities corresponding to each splitting configuration (or the solution of linear

equation) of photon splitting over m modes. Once we have found the splitting con-

figurations, we are further interested in finding the probability of getting n clicks for

a n-photon state is incident to the BST, which means each clicked detector has only
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one photon, i.e., ni = 1, ∀ i ∈ [1, k]. Thus, for k = n, Eq. (5.27) simplifies to

Pm(n|n) =

(
m

n

)
n!

mn
. (5.29)

We plot Eq. (5.29) in Fig. (5.4) for m = 100 and n ∈ [2, 6]. For a given n photons

as input, one can see that as the number of detectors, m increases the probability of

having k = n clicks increases.

Figure 5.4: Conditional probabilities Pm(n|n) versus m, and η = 1.
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We further simplify Eq. (5.29) as

Pm(n|n) =
m(m− 1)(m− 2) · · · (m− n+ 1)

mn
= 1

(
1− 1

m

)(
1− 2

m

)
· · ·
(

1− n
m

+
1

m

)
.

(5.30)

From Eq. (5.30), we can see that Pm(n|n) approaches to unity as m → ∞. There-

fore, it is beneficial to increase the length of the BST in order to have a good PNR

performance, but it then increases the chances of photons being lost during the prop-

agation through the BST. Additionally, the imperfect quantum efficiency of SPADs

will contribute to the photon loss in the realistic case. In the next section, we propose

a new design in order to avoid the losses caused by nonideal SPADs.

5.3.2 Segmented Detector

We now investigate the possibility of PNR detection using a segmented detector,

constituted by waveguide-coupled, low dark-current SPADs, as per Fig. (5.5).

α3α2α1

|n〉

loss channel

← waveguide
← cladding

Figure 5.5: Principle sketch of a segmented detector. Guided photons are detected
alongside propagation by SPADs which frustrate total internal reflection. The quan-
tum efficiency (QE) of SPAD #j is α2

j . The design goal is to eschew detection losses,
which are distinct from the nonunity of α2

j , and keep all undetected photons in the
waveguide for further detection.

This linear array is essentially a long detector divided into m detector segments, each

with an individual read-out. The gist of this design is that photons that are not

absorbed in the first SPAD must not be lost and be coupled back into the waveguide

to be absorbed later. The crucial advantage of this configuration is that nonideal

quantum efficiency of the SPADs does not amount to photon loss, unlike terminally

coupled PNR detectors in which temporally or spatially split photons impinge on
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SPADs on the end of their path [62]–[64] as in BST. Moreover, the SPAD coupling

should follow a gradient down the waveguide so as to ensure no more than one photon

is detected at a time (since SPADs are not PNR) while still ensuring efficient detec-

tion. The design goal is therefore to whittle down an initial n photons, one by one.

We envision that such a segmented photodetector will become feasible in large-scale

integrated photonic platforms using either monolithic or heterogeneous integration of

SPADs on low-loss waveguides, as has already been hinted at by the integration on

waveguides of PIN photodiodes [191], [192] and of transition edge sensors [193], [194].

The essential physics of the SPAD coupling can be captured by a simplified model,

pictured in Fig. (5.6), which assumes that the SPAD length is exactly equal to the

period of the mode beat between the main waveguide and the SPAD.

tt′ + rr′
√

1− α2

Radiative loss = tr′ − rt′
√

1− α2

|n〉
(r, t) (r′, t′)

α

Figure 5.6: Model for detection alongside propagation.

In Section 5.3.3, we give concrete and detailed waveguide modeling results for this

configuration, which has already been experimentally realized for PIN photodiodes [4].

The simplified model will be enough, without loss of generality, for the quantum

analysis of the PNR behavior in Section 5.3.4. We take the SPAD quantum efficiency

to be α2, accounting for both coupling efficiency and intrinsic absorption, such that

its field transmissivity is 1−α2. Note that it is desirable for α not be too large, so that

the probability for any SPAD to see more than one photon during the same detection

window can be vanishing, since SPADs are not PNR detectors; this translates into
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the condition α2 � 1/n, for n incident photons. In some cases, the mere click

statistics from a click/no-click detector system suffice to certify the non-classicality

of a state [183], [195]. In such cases, the proposed design is particularly beneficial

as it increases the overall detection efficiency by recycling the photons which are not

absorbed at the first time but are detected as they propagate in the waveguide.

We require that the bottom output of the exit beamsplitter in Fig. (5.6), which

is effectively the radiative loss channel of the waveguide, be nulled by destructive

interference. The condition can be achieved in the presence of SPAD absorption

by choosing parameters (r, t, r′, t′) of the beamsplitters, and absorption coefficient α,

such that

tr′ − rt′
√

1− α2 = 0. (5.31)

If this is the case, then the detection process truly takes place alongside propagation

and finite quantum efficiency — necessary here to attain PNR performance with

SPADs, by detecting no more than one photon at a time — does not contribute to

photon loss. This kind of optical coupling from the waveguide into the SPAD absorber

and back into the waveguide can be accomplished by using a vertical directional

coupler design discussed in detail in Section 5.3.3.

In order to further simplify the model for Section 5.3.4, at no cost to its generality,

we can recast our segmented detector as the SPAD sequence depicted in Fig. (5.7).
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a′1 (n1) a′m−1 (nm−1)

a′m (nm)

Figure 5.7: Model of a PNR segmented photodetector with Rj+Tj ≡ r2
j +t2j = 1,∀j ∈

[1,m]. For jth SPAD, we have tj = tt′ + rr′
√

1− α2, where tj = T
1/2
j , determined

from Fig. (5.6).

In that case, the loss channel corresponding to deviations to Eq. (5.31) becomes

equivalent to
√

1− η, where η is the quantum efficiency of the terminally coupled

SPADs in Fig. (5.7). While there is no fundamental difference between radiative

losses in Fig. (5.5) and Fig. (5.6) and η < 1 in Fig. (5.7), there is, again, a conceptual

difference between α2 < 1, which doesn’t lead to photon loss since the photon can

re-enter the waveguide, and η < 1, which does constitute photon loss. In addition,

η < 1 also accounts for the mechanism by which the photon can be absorbed in a

SPAD without causing an avalanche. Our theoretical model in Section 5.3.4 will also

account for dark counts and electrical cross-talk.

5.3.3 Segmented waveguide detector design

To verify the optical design of the segmented detector, a monolithically integrated

InP-based p-i-n waveguide photodetector consisting of 6 PIN photodiodes (PDs),

coupled to one waveguide [4], Fig. (5.8)(a) was previously reported. These simulations

were performed by Qianhuan Yu from Professor Andreas Beling’s group at UVa, a

detailed discussion can be found in Qianhuan Yu’s thesis. Optical coupling from the

waveguide into the PD absorber and back into the waveguide was accomplished by

using a vertical directional coupler design as shown in Fig. (5.8)(b).
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Figure 5.8: (a) Cross-section of waveguide photodiode [4]; (b) Side view schematic of
light propagating in the segmented waveguide photodetector. (c) Normalized optical
power and QE of PD1 to PD6 in the segmented photodetector. The inset shows the
optical intensity in PD1 with a PD length of 32µm.

Input light propagates in the passive waveguide WG1 and couples into the absorption

waveguide (WG2) of the PD where electron-hole pairs are generated. Residual light

in the WG2 couples back into WG1 at the end surface of each PD.

By using a segmented photodetector with six elements, an overall quantum efficiency

(QE) of 90% was experimentally demonstrated. Fig. (5.8)(c) shows the simulated

optical power along the segmented photodetector for the design in [4] along with the

QE of each PD. Each period in the photodetector was 50 µm long with a 32 µm-long

PD and a 18 µm-long passive waveguide. The solid line shows how the optical power

decreases while propagating in direction z. We simulated a total optical loss of 1%

at the front and rear side of each PD. WG1 was assumed to be lossless. The red

and blue symbols show the simulated and measured QE for each individual PD in

the photodetector. Here, the optical power was referred to the input power in the

waveguide at z = 0. The simulated total QE was 96.5% which was close to the mea-

sured value of (90±5)% [4]. The error originated from uncertainty in determining the

fiber-chip coupling loss; the difference between simulation and measurement can be
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explained by fabrication tolerances and non-zero waveguide loss. To reduce the latter,

the waveguide length can be reduced to < 10µm. To further reduce the radiation loss

and enable segmented detectors with larger PD count we designed a new structure

and made two changes compared to [4]: (i) we added an additional cladding layer

on top of the passive waveguide WG1, and (ii), we also reduced the thickness of the

absorption layer from 30 nm in [4] to only 6 nm as seen in Fig. (5.9).

Figure 5.9: (a) Cross-section of of new waveguide photodiode design with thin ab-
sorber; (b) Side view schematic of light propagating in the segmented waveguide
photodetector with cladding layer.

A small active volume is beneficial since it helps reducing the dark current, jitter,

and increases the PD’s count rate. Given the fact that the PD length can only be an

integral multiple of the mode beat length L [191], we designed a 50-element segmented

detector with 20 PDs with PD length L, followed by 15 PDs with PD length 2L, 6

PDs with 4L, 3 PDs with 6L, and 6 PDs with 10L as demonstrated in Fig. (5.10)(a).

This ensures complete absorption and a similar number of photogenerated electron-

hole pairs in each of the 50 PDs. Fig. (5.10)(b) shows the stepwise decay of the

simulated optical power in the segmented detector with uniform PD QE of 2.5% in

each PD. We estimated the overall radiation loss to be as low as 7% by simulating

the same structure without including any imaginary indices, Fig. (5.10)(b). It should

be mentioned that additional loss originating from WG1 can be as low as 1% or

4% assuming either a low-loss Si3N4 waveguide (0.1 dB/cm [196]) or an InGaAsP
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waveguide (0.4 dB/cm [197]).

Figure 5.10: (a) Simulated optical intensity in PDs with various lengths; (b) Nor-
malized optical power with (black) and without (red) absorption in the 50-element
segmented detector with 8 mm total length.

5.3.4 Quantum modeling of a segmented detector

We now provide a complete POVM analysis of a segmented detector. As discussed

in Section 5.2, the POVM element in the most general case for k independent SPAD

pulses, or “clicks,” is given by

Πk =
∞∑
n=0

P (k|n)|n〉〈n|, (5.32)

where P (k|n) is the conditional probability of getting k clicks given an n-photon

input. Note that the sum over n starts from zero because k clicks might entirely get

registered from the dark-noise. Further, the purity of the POVM element for outcome

k is given as

Purity(Πk) =
Tr(Π2

k)

Tr(Πk)2
=

∞∑
n=0

P (k|n)2

[ ∞∑
n=0

P (k|n)

]2
. (5.33)
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As discussed in Section 5.2, Purity(Πk) = 1 corresponds to pure PNR measurements,

i.e., projective measurements, and a POVM measurement with Purity(Πk) = 0 will

yield a completely random outcome. Hence, Purity(Πk) can be utilized to quantify

the PNR capabilities of the detector. Here we study the theoretical purity of the

POVM elements of Eq. (5.33) versus the input photon number, in the presence of

nonidealities such as loss channels, which make k < n due to radiative losses and

detector absorption without avalanche. We also study how electrical cross-talk and

dark counts, which make k > n due to non-photon-triggered avalanches, absorption-

triggered parasitic flashes on the detector surface, and afterpulsing affect the POVM

purities. Note that afterpulsing, i.e., dark counts caused by charges from previous

avalanches trapped in impurity levels, is also conditioned on the number of clicks on a

given SPAD but we’ll treat this effect as a second order one and neglect it, effectively

treating afterpulsing as dark counts.

We again model Fig. (5.7) by using the Heisenberg picture approach. The quantum

input mode is described by annihilation operator a1 and input Fock state |n〉, the

other m− 1 input modes a2, a3, ..., am are vacuum modes, and the detection modes

are a′1, a′2, ..., a′m. We consider m− 1 beamsplitters (Tj, Rj) and η = 1 (no losses) for

all modes. The input quantum state is

|n〉 =
a†1
n

√
n!
|0〉⊗m . (5.34)

In order to find the probability of an outcome it is convenient to write the output

quantum state in terms of detection modes. Using backpropagation of the detection

modes, a′is we get

a†1 = r1a
′†
1 +

m−1∑
k=2

[m−1∏
l=1

tl
]
rk−1a

′†
k +

m−1∏
l=1

tla
′†
m, (5.35)

and the output quantum state is
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|ψ〉out =
1√
n!

(
r1a
′†
1 +

m−1∑
k=2

m−1∏
l=1

tl rk−1 a
′†
k +

m−1∏
l=1

tl a
′†
m

)n

|0〉⊗m (5.36)

and the multinomial expansion yields

|ψ〉out =
n∑

n1=0

· · ·
n∑

nm=0︸ ︷︷ ︸∑m
j=1 nj=n

√
n!

n1!n2!...nm!
rn1

1

m−1∏
k=2

τnk1,k−1r
nk
k τnmm−1,1

m∏
i=1

a′†nii |0〉⊗
m

, (5.37)

where each ni can take any value from 0 to n and τi,j = ti . . . tj.

Given n input photons, the probability Pm(k|n) of getting k clicks from m SPADs

— where each click may result from one or several simultaneous photons, since single

SPADs aren’t PNR — is, in the lossless case,

Pm(k|n) =
n∑

n1=0

· · ·
n∑

nm=0︸ ︷︷ ︸
(∗)

∑k
i=1 ni=n

n!∏m
i=1 ni!

X, (5.38)

where X =

(
rn1

1

m−1∏
k=2

τnk1,k−1r
nk
k τnmm−1,1

)2

(5.39)

= Rn1
1 T

n−n1
1 ×Rn2

2 T
n−n1−n2
2 × · · · ×Rnm−1

m−1 T
n−

∑m−1
j=1 nj

m−1 . (5.40)

The asterisk in Eq. (5.38) symbolizes the following constraint: in this lossless case, k

clicks will be obtained if and only if k different SPADs out of m receive at least one

photon, and the other m − k SPADs receive zero photons. An explicit formula will

be given for the symmetrized detector in the next section. Further, we see that X is

essentially the multiplication of probabilities for detection events at each photodiode.

For instance, the probability for reflection of n1 photons and transmission of n−n1 is

Rn1
1 T

n−n1
1 at the first beam-splitter, which happens to be the first factor in Eq. (5.40)

and same follows for rest of the factors.
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We can obtain the probability of getting a particular configuration of ni’s such that∑m
j=1 ni = n holds true is

P (|n1, n2, · · ·nm〉) =
n!

n1!n2! · · ·nm!
X. (5.41)

Note that our goal is to actually split the n input photons among m� n modes with

never more than 1 photon per mode. The first beamsplitter’s reflectivity must then

be much less than n−1. Taking all beamsplitters identical is clearly not optimal since

the subsequent modes will gradually see fewer photons and can therefore afford larger

reflectivities without running the to risk of detecting more than one photon. Also,

at the end of the segmented device, the last beam splitter should clearly be balanced

since the constraint has to be symmetric for both its output ports. Bearing all this

in mind, a symmetrized device appears to be the optimal choice. We investigate it

next.

5.3.5 Symmetrized segmented detector

5.3.5.1 Lossless case

We take η = 1 and the beamsplitters’ reflectivities to be Rj = 1
m−j+1

, where j ∈
[1,m− 1], yields the simplification

X =[Rn1
1 Tn−n1

1 ][Rn2
2 Tn−n1−n2

2 ] · · · [Rnm−1

m−1 T
n−

∑m−1
j=1 nj

m−1 ]

=

[(
1

m

)n1
(
m− 1

m

)n−n1
][(

1

m− 1

)n2
(
m− 2

m− 1

)n−n1−n2
]
· · ·
[(

1

2

)nm−1
(

1

2

)n−∑m−1
i=1 ni]

=
1

mn
.

(5.42)

and makes the symmetrized segemented detector equivalent to a symmetric beam-

splitter tree, to the notable difference that SPADs are not terminally coupled here

and so their nonideal QE does not contribute to detection losses. Eq. (5.38) thus
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Figure 5.11: Conditional probabilities P50(k|n) versus n, for η = 1.

simplifies to

Pm(k|n) =
n!

mn

(
m

k

) n∑
n1=1

· · ·
n∑

nk=1︸ ︷︷ ︸∑k
j=1 nj=n

1∏k
i=1 ni!

. (5.43)

These conditional probabilities are plotted in for m = 50, 100, 1000, 2000 and η = 1.

From Fig. 5.11, Fig. 5.12, Fig. 5.13, and Fig. 5.14, it is evident that P (k|n) increases

as number of detectors m increases. It is also worth mentioning that as the SPAD

number m increases, the peak width reduces for higher clicks, which implies that

POVM purity increases for a given click-number k. As can be seen in Fig. (5.15),

reasonably good PNR performance (POVM purity of at least 90%) is reached for

n ∼ 10 with m ∼ 1000.
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Figure 5.12: Conditional probabilities P100(k|n) versus n, for η = 1.
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Figure 5.13: Conditional probabilities P1000(k|n) versus n, for η = 1.
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Figure 5.14: Conditional probabilities P2000(k|n) versus n, for η = 1.
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5.3.5.2 Lossy case

We now consider the effect of photon losses in each detection mode, i.e., η < 1.

Again, η should not be misconstrued as the SPAD absorption efficiency because the

latter plays no role in photon losses, as unabsorbed photons can enter back into the

waveguide and get detected by subsequent SPADs. Further more, the quantity 1− η
is the probability of a photon exiting the waveguide undetected or a photon was

absorbed without causing an avalanche, losing its chance for further detection. We

assume that the parameter η is independent of the photon number. The probability

to get zero clicks in one mode is

P1(0|n, η) = (1− η)n. (5.44)

Likewise, the probability to get one click in one mode is [198]

P1(1|n, η) =
n∑
k=1

(
n

k

)
ηk(1− η)n−k = 1− (1− η)n. (5.45)

It is important to note that in the sum over k starts with 1 here because we neglected

dark counts. Therefore, Eq. (5.43) can be generalized to the lossy case as

Pm(k|n, η) = n!

(
1− η
m

)n(
m

k

) n∑
n1=0

· · ·
n∑

nm=0︸ ︷︷ ︸∑m
j=1 nj=n

1∏m
j=1 nj!

nk∏
l=n1

[(
1

1− η

)l
− 1

]
,

(5.46)

In Eq. (5.46), in addition to multinomial coefficient for probability we also have

the product term due to non-unity quantum efficiency. It is worth noting that the

probability of getting zero clicks is still the same as the case of one detector, i.e.,

Eq. (5.44), and for η = 1, Eq. (5.46) turns out to be same as Eq. (5.43) for ni ≥ 1

where i ∈ [1, k] for k clicks. For η < 1 the computer simulations run extremely

slowly for higher values of m (reminiscent of the boson sampling problem), therefore



5.3. MODELS 152

we were limited to m = 50 for the calculation of conditional probabilities at η =

0.9, 0.99, 0.999. A closed analytical expression can be found in Ref. [199], it allows

to compute multinomial probabilities more efficiently. The results at η = 0.9 are

displayed, for illustrative purposes, in Fig. (5.16).
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Figure 5.16: Conditional probabilities P50(k|n) versus n, for η = 0.9.

The degradation of the count probability with photon loss is evident, compared to

Fig. (5.14). Also recall that η = 0.9 means 10% loss per detection mode which is a

very poor performance as previous experimental work on low loss waveguides shows

one can do much better [200].

The purity calculation, displayed in Fig. (5.17), is particularly illuminating.
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Indeed, it is clear that, as η increases beyond the low η = 0.9 level, the photon

losses have a decreasing to negligible (η = 0.999, i.e., 0.1% loss per detector) effect

on purity, which is essentially limited by m, as per Fig. (5.15). This is an interesting

result. It is likely that the same level of photon loss may have a more detrimental

effect as m increases, however, the exact scaling of this effect is not yet known, due

to the long computation times for the nonideal case. Figures (5.17) and (5.16) can be

related by the aforementioned intuitive meaning of the POVM purity: consider, for

example, k = 5 in Fig. (5.17), for which the POVM purity ' 0.3. This implies that

the number of input states leading to clicks with significant probabilities is about 3 to

4, which corresponds to the number of points making up most of the purple P (5|n)

peak in Fig. (5.16). Also, one can clearly see that, as the purity decreases with k

in Fig. (5.17), the conditional probabilities have broader and broader supports with

larger k in Fig. (5.16).
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5.3.5.3 Dark count noise modeling

We now model dark counts for the segmented detector. We start with a fixed dark

count probability, δ, independent of the input photon-number. Recall that a non-

PNR detector has 2 POVM elements Πd
1 and Πd

0 corresponding to 2 detection events,

click and no-click respectively. In the presence of dark counts, the probability of

having no click becomes, from Eq. (5.44),

P d
0 = (1− δ)(1− η)n, (5.47)

which can be interpreted as the joint probability of Eq. (5.44) (no photon detected

from the incident light, with probability (1 − η)n) and no click from dark counts,

with probability of (1 − δ). Since both of those events are independent, the over-

all probability of them occurring simultaneously is the multiplication of individual

probabilities. Thus, the probability of registering a click is

P d
1 = 1− P d

0 = 1− (1− δ)(1− η)n, (5.48)

and the 1-click POVM for a phase insensitive detector is

Πd
1 =

n=∞∑
n=0

[1− (1− δ)(1− η)n] |n〉〈n|. (5.49)

Note that the sum in Eq. (5.49) is now starting from zero which accounts for the

possibility of dark counts, of probability δ, with no light incident on the detector. We

now consider two identical click detectors as shown in Fig. 5.18.
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Figure 5.18: Multiplexing set up for 2 click detectors.

Detection event space has 3 elements which are zero-, single- and two-click events.

Hence, there will be three POVM elements, {Π0,Π1,Π2} such that Π0 + Π1 + Π2 = I.

The probability of getting zero-click outcome

P0 =

(
1

2

)n n∑
n1=0

n∑
n2=0︸ ︷︷ ︸∑2

j=1 nj=n

n!

n1!n2

(1− δ)2︸ ︷︷ ︸
No dark counts

(1− η)n1(1− η)n2︸ ︷︷ ︸
No photons detected

(5.50)

=

(
1

2

)n n∑
n1=0

n∑
n2=0︸ ︷︷ ︸∑2

j=1 nj=n

n!

n1!n2

(1− δ)2(1− η)n (5.51)
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Likewise, the probabilities of one- and two-click detection events are

P1 =

(
1

2

)n n∑
n1=0

n∑
n2=0︸ ︷︷ ︸∑2

j=1 nj=n

n!

n1!n2

[{(1− (1− δ)(1− η)n1)︸ ︷︷ ︸
Bottom detector clicked

(1− δ)(1− η)n2}︸ ︷︷ ︸
No click from top detector

(5.52)

+ {(1− (1− δ)(1− η)n2)(1− δ)(1− η)n1}︸ ︷︷ ︸
Other way around

] (5.53)

P2 =

(
1

2

)n n∑
n1=0

n∑
n2=0︸ ︷︷ ︸∑2

j=1 nj=n

n!

n1!n2

[{(1− (1− δ)(1− η)n1)︸ ︷︷ ︸
Bottom detector clicked

(1− (1− δ)(1− η)n2}︸ ︷︷ ︸
Top detector clicked

(5.54)

(5.55)

We can simply check that
∑3

j=0 Pj = 1. One can further extend it to m detectors

and k clicks. The k-click POVM is then

Pm(k|n, η) = n!(1− δ)m
(

1− η
m

)n(
m

k

) n∑
n1=0

· · ·
n∑

nm=0︸ ︷︷ ︸∑m
j=1 nj=n

1∏m
j=1 nj!

nk∏
l=n1

[
1

1− δ

(
1

1− η

)l
− 1

]
.

(5.56)

Fig. (5.19) displays the simulated POVM purities for m = 16, k 6 5, η = 0.90, and

dark count probabilities δ = 0, 0.001, 0.01, and 0.1. (Due to the heavy numerical

load, we could not compute for larger SPAD numbers m.) We see that the POVM

purities decrease as dark count probability increases, unsurprisingly. However, the

key point is that δ = 0.1% is practically indistinguishable from zero dark counts in

this case, where the scalability of the segmented detector and efficiency η are the

main limitation to PNR operation.
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Figure 5.19: POVM element Purity(Πk) versus click number k, for several values of
dark count probabilities, δ at m = 16

5.3.5.4 Cross-talk noise modeling

A cross-talk event is registered when an avalanche in a particular SPAD causes an

avalanche in the neighboring SPADs [201]. Since the dark-count rate can be extremely

low in our design, we only consider the cross-talk events due to the incident light.

The effect of cross-talk can be reduced by increasing the distance between consecutive

SPADs but this will increase the propagation losses in the waveguide. Thus, it be-

comes critical to account for registered clicks caused due to cross-talk. To model the

cross-talk, we first consider the simplest case of two SPADs on the waveguide. In this

case, the POVM set has 3 elements corresponding to zero-, one-, and two-click detec-

tion outcomes. If n photons are coupled to the waveguide, n1 photons are coupled

to first SPAD and n2 are coupled to the second SPAD. We define a new parameter

ε, which is the probability cross-talk event caused by an avalanche in neighboring



5.3. MODELS 158

SPADs. In the two-SPAD case, the probability of a cross-talk event registered by the

first SPAD is (1− ε)n2 , where n2 = n−n1 is the number of photons passed to second

SPAD. Thus, the probability of getting zero-click outcome is

P d,ε
0 =

(
1

2

)n n∑
n1=0

n∑
n2=0︸ ︷︷ ︸∑2

j=1 nj=n

n!

n1!n2!
(1− δ)(1− η)n1(1− ε)n2︸ ︷︷ ︸

*

(1− δ)(1− η)n2(1− ε)n1︸ ︷︷ ︸
#

(5.57)

= (1− δ)2(1− η)n(1− ε)n, (5.58)

where ‘∗’ and ‘#’ are the probabilities of having no click from the first and second

SPAD respectively. Likewise, for one- and two-click detection events we have

P d,ε
1 =

(
1

2

)n n∑
n1=0

n∑
n2=0︸ ︷︷ ︸∑2

j=1 nj=n

n!

n1!n2!
{[1− (1− δ)(1− η)n1(1− ε)n2 ]︸ ︷︷ ︸

First SPAD clicked

[(1− δ)(1− η)n2(1− ε)n1 ]︸ ︷︷ ︸
No click from second SPAD

+ [1− (1− δ)(1− η)n2(1− ε)n1 ][(1− δ)(1− η)n1(1− ε)n2 ]︸ ︷︷ ︸
The other way around

}, (5.59)

P d,ε
2 =

(
1

2

)n n∑
n1=0

n∑
n2=0︸ ︷︷ ︸∑2

j=1 nj=n

n!

n1!n2!
[1−(1−δ)(1−η)n1(1−ε)n2 ][(1−(1−δ)(1−η)n2(1−ε)n1 ].

(5.60)

We can generalize to m detectors and k clicks as

Pm(k|n, η, δ, ε) = Cn!

(
1− η
m

)n(
m

k

) n∑
n1=0

· · ·
n∑

nm=0︸ ︷︷ ︸∑m
j=1 nj=n

{
1∏m

j=1 nj !

nk∏
l=n1

[
1

(1− δ)(1− ε)n
(

1− ε
1− η

)l
− 1

]}
,

(5.61)

where C = (1−δ)m(1− ε)(m−1)n is a constant depending on dark count and cross-talk

rates. In Fig. (5.20), we plot these conditional probabilities for m = 16 with the dark-



5.3. MODELS 159

count probability δ = 0.9 and cross-talk ε = 0.01. It can be clearly seen that in the

presence of dark-count and cross-talk events, the peaks are broadened and shifted to

the left in comparison to Fig. (5.16). This implies that a k click event could happen

even if less than n = k photons are incident to the detector, which is caused by

registered avalanches due to dark-count and cross-talk. In addition, the probability

of getting zero click reduces substantially as seen in red curve in Fig. (5.20).
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Figure 5.20: Conditional probabilities P16(k|n) versus n, for η = 0.9, δ = 0.1, and
ε = 0.01.

In Fig. (5.21), we plot in the POVM purity for η = 0.9 and m = 16 for δ = 0, 0.01, 0.1

and ε = 0, 0.1, 0.01. The general trend shows that the POVM purity decreases as

dark-count and cross-talk rates increase, unsurprisingly. Note the slight increase in

the POVM purity for δ = 0.01 and ε = 0.01 for k = 1, a consequence of dark-count

and cross-talk events compensating for photon loss in the waveguide, as per green

curve in Fig. (5.21). Furthermore, we find that for a given rate, say 0.1, dark counts

are more detrimental to POVM purity than the cross-talk events as evident from

black curve (δ = 0.1, ε = 0) and blue curve (δ = 0, ε = 0.1) in Fig. (5.21). In general,
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k− kδ,ε clicks can be mistaken as k clicks, where kδ,ε are the effective registered clicks

due to dark count and cross talk. Thus, it becomes crucial to have a PNR detector

with negligible δ and ε for applications in conditional quantum state preparation and

state engineering as well as state characterization with PNR measurements [1], [2],

[73], [89]
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Figure 5.21: POVM element Purity(Πk) versus click number k, for several values of
δ and ε at m = 16.

In practice, extremely low dark count rates have been achieved, which supports our

decision to neglect them: silicon SPADs achieved dark count rates per active area

below 1 Hz/µm2 [202], [203]; InGaAs/InP SPADs tend to have larger dark count rates

and 25 µ-diameter devices with a dark count rate of 60 kHz (120 Hz/µm2) have been

demonstrated [204]. In the particular case of the detection of optical field pulses over

much shorter times, it is clear that dark count rates several order of magnitude lower

than photon detection rated could be achieved. Moreover, detection of sufficiently

short optical pulses will ensure that the dead time due to SPAD quenching can also
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be ignored.

5.4 Conclusion

In this work, we carried out the theoretical evaluation of the photon-count POVM

for a segmented detector such as the one designed in Section 5.3.3. Results show

that PNR detection in the ideal case of no losses and no dark counts requires on

the order of 103 SPADs to resolve 10 photons, using an efficient gradient coupling

scheme. This level of scaling appears to be worthwhile of an integrated optics ef-

fort as it would yield a high quality room-temperature PNR detector. While photon

losses were taken into account, it is important to note that they did not include the

nonideal quantum efficiency of the SPADs, by design of the segmented detector. The

reduction of photon losses will therefore only involve passive optical design consider-

ations, a notable difference with terminally coupled tree-splitting detectors in which

the quantum efficiency of the SPADs must be unity. Note also that a tree architec-

ture can still be used to initially split the initial photon number among smaller-sized

segmented photodetectors.

It is remarkable that reasonable levels of losses (1% per detector mode), and dark

counts and cross-talk noise do not degrade performance as much as having a limited

number of SPADs does, the number of integrated SPADs being then the dominant fac-

tor toward high-quality PNR detection. This means that investing into such a scalable

integrated structure, manufacturable with available integrated photonic technology,

can yield the benefit of room-temperature high-quality PNR operation.



Chapter 6

Characterizing Quantum Detectors

by Wigner Functions

In this chapter, we propose a method for characterizing a photodetector by di-

rectly reconstructing the Wigner functions of the detector’s Positive-Operator-Value-

Measure (POVM) elements. This method extends the works of S. Wallentowitz and

Vogel [Phys. Rev. A 53, 4528 (1996)] and Banaszek and Wòdkiewicz [Phys. Rev.

Lett. 76, 4344 (1996)] for quantum state tomography via weak-field unbalanced ho-

modyne technique, discussed in chapter 3, to characterize quantum detectors. The

proposed scheme uses displaced thermal mixtures as probes to the detector and recon-

structs the Wigner function of the photodetector POVM elements from its outcome

statistics. Furthermore, we employ techniques from numerically efficient quadratic

convex optimizations to make the reconstruction robust to the inevitable experimen-

tal noise.

We also discuss required resources to fully characterize a phase-insensitive detec-

tor. This work is adapted from the paper titled, “Characterizing quantum detectors

by Wigner functions,” Rajveer Nehra and Kevin Valson Jacob, arXiv:1909.10628 [quant-

ph] (Submitted).
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Motivation for this work

Photodetection has been making consistent progress with rapidly developing optical

quantum technology [65], [176], [177], [191], [205], [206]. Not only do detectors pro-

vide us with deeper insights on the quantum behaviour of light by allowing us to

perform precise measurements, they also are an integral part of quantum technology

such as quantum computing, quantum enhanced metrology, and quantum communi-

cation [116], [207]–[211].

As discussed in chapter 5, for every quantum detector, one can associate a set of

measurement operators {Mk} called as Positive Operator Valued Measures (POVMs).

When such a device measures a quantum state ρ, the probability of observing an

outcome ‘k’ is

p(k)ρ = Tr[ρMk]. (6.1)

Since probabilities are non-negative and sum to one, POVM elements are positive

semi-definite and satisfy the completeness property
∑K−1

k=0 Mk = I. This implies that

a set of POVM elements completely describes the measurement device [212], [213].

Therefore, in order to characterize a detector, we have to determine its POVM set.

In order to identify the POVM elements of a detector, one can invert Eq. (6.1) which

is known as Quantum Detector Tomography (QDT) [91], [206]. In optical QDT, light

prepared in a set of known tomographically complete states a.k.a probes is incident on

the detector to be characterized. The probabilities of different measurement outcomes

is then used to characterize the detector.

One such possible set of probes is composed of coherent states {|α〉〈α|, α ∈ C}. With

a coherent state |α〉 as the probe, the probability of outcome k is given as

p(k)|α〉 = Tr[|α〉〈α|Mk] = πQMk
(α), (6.2)
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where QMk
(α) is the Husimi Q quasi-probability distribution corresponding to the

detector POVM element Mk. Therefore, one can simply reconstruct the Q functions

for POVM elements directly from the measurement statistics. Since QMk
(α) has

complete information about the POVM element Mk, ideally it could be used to predict

the measurement outcomes for an arbitrary quantum state as follows: consider a

quantum state ρ represented in Glauber-Sudarshan P representation as

ρ =

∫
Pρ(α)|α〉〈α|d2α, (6.3)

where d2α := dRe(α)dIm(α). The probability of outcome k can then be obtained

using the Born rule as

p(k)ρ = Tr[ρMk] = π

∫
Pρ(α)QMk

(α)d2α. (6.4)

Therefore, by using the Q representation for detector POVM elements and P repre-

sentation for the input quantum state, one can, in principle determine the outcome

probabilities corresponding to detector outcomes.

But this approach suffers from an inherent shortcoming due to the divergent nature of

P functions for nonclassical states of the optical field [127]. In addition, as discussed

in [91], experimental errors and statistical noise during the experiments may distort

Q functions resulting in nonphysical POVM elements. In order to alleviate this short-

coming, it is beneficial to determine the POVM elements in some basis as opposed

to the constructing Q-function, for instance photon-number basis, from the measure-

ment outcome statistics. Several techniques have been proposed and demonstrated

to reconstruct the POVM elements in the photon-number basis [59], [64], [91], [92],

[214], [215]. One can further represent the POVMs in the phase space using Wigner

quasiprobability distribution functions as discussed in Section 6.1.

As we discussed in chapter 2, Wigner functions provide a useful method to visualize
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quantum states and detectors in the phase space [216], [217]. The Wigner function

corresponding to a quantum state of light has been experimentally obtained using the

balanced homodyne method as well as photon number resolving measurements [89],

[122], [123], [131], [133], [218].

It is insightful to note that there exists a symmetry between quantum states and

measurement operators. We can see this from Eq. (6.1) wherein, due to the cyclicity

of trace, the roles of the state and the operator can be swapped. This is the underlying

relation which we exploit in order to identify the Wigner functions of the measurement

operators (POVM elements). By obtaining the Wigner functions of the detector, any

experimental probability can be found in terms of the Wigner functions of the state

as well as of the detector, which are well-behaved unlike highly divergent P functions.

Thus, Eq. (6.4) can be written as

p(k)ρ = Tr[ρMk] = 2π

∫
Wρ(α)WMk

(α)d2α, (6.5)

where Wρ(α) and WMk
(α) are the Wigner functions of quantum state ρ and POVM

element Mk respectively.

In this chapter, we propose an alternative method for quantum detector tomography

by directly reconstructing the Wigner quasiprobability functions corresponding to

detector POVM elements: it alleviates the need of finding the POVMs in the photon-

number basis. Apart from the fundamental interest in obtaining Wigner functions of

a detector, the proposed scheme is particularly beneficial to study the decoherence

of a quantum detector by observing the behaviour of the POVM Wigner functions in

certain regions of the phase space [219].

This chapter is organized as follows. In section 6.1, we detail the method for char-

acterizing photodetectors using displaced thermal mixtures. In section 6.3, we then

apply this method to photon-number-resolving detectors. Section 6.4 discusses the

resources required for characterizing a phase-insensitive detector. We discuss the
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number of phase space points where Wigner function should be experimentally mea-

sured in order to have a good confidence in reconstruction. In section 6.5, we use

convex optimization techniques to make our reconstruction robust to noise. Finally,

we note our conclusions in section 6.6.

6.1 Method

We use the well known result that the Wigner function operator can be represented

in Fock space as

Ŵ (α) =
2

π

∞∑
n=0

(−1)nD̂(α)|n〉〈n|D̂†(α), (6.6)

where D̂(α) = exp(αâ† − α∗â) is the displacement operator with α ∈ C [124]. For a

detector, our aim is to experimentally reconstruct the Wigner functions corresponding

to its POVM elements. Since POVMs are self-adjoint positive semi-definite operators,

one can write the Wigner function of a POVM element Mk as

WMk
(α) =

2

π

∞∑
n=0

(−1)nTr
[
MkD̂(α)|n〉〈n|D̂†(α)

]
, (6.7)

where, for simplicity, we define

Q
(n)
Mk

(α) := Tr
[
MkD̂(α)|n〉〈n|D̂†(α)

]
. (6.8)

It is worth pointing out that the Q
(n)
Mk

(α) is essentially the probability of getting

outcome k when a displaced n-photon Fock state is incident to the detector. Although

the sum in Eq. (6.7) has infinite terms, in practice one can truncate it to n0 as

further terms do not significantly contribute to the sum. This can be tested by

choosing a certain n0 first and then increase it slightly to, say (n0 + l) see if it changes

reconstruction significantly. And if it does not, then n0 can be chosen to truncate the

sums, otherwise one should increase the value of n0. As a result, we have
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WMk
(α) ≈ 2

π

n0∑
n=0

(−1)nQ
(n)
Mk

(α). (6.9)

From Eq. (6.9) we can see that finding the Wigner function corresponding to ‘Mk’

amounts to finding out all these summands.

Here, we restrict ourselves to phase-insensitive detectors for simplicity. The phase-

insensitive detectors such as photon-number-resolving detector only allow to measure

the number of photons in electromagnetic field, but do not provide any information

about its phase. On the other hand, the phase-sensitive detectors such as balance

homodyne detector allow to measure both the amplitude and phase of the field.

The phase-insensitive detectors have the Wigner functions of their POVM elements

rotationally symmetric around the origin, and hence can be characterized on the real

axis, i.e., α can be chosen real for numerical simulations. However, we note that this

scheme is also applicable to phase-sensitive detectors; and for such detectors, we have

to choose α in the complex plane.

6.2 Proposed experimental setup

We now propose an experimental scheme to perform the QDT using this scheme.

Fig. 6.1 shows a schematic for our proposed experiment. A laser beam is split into two

beams at the first beamsplitter (BS). One beam is used to generate thermal mixtures.

Thermal mixtures can be generated by randomzing the phase and amplitude of the

laser beam (coherent state). To achieve that, we use a Variable Neutral Density Filter

(VNDF) along with a Rotating Ground-Glass Disk (RGGD). VNDF allows to produce

coherent states of variable amplitudes, which are further fed to RGGD for the phase

and amplitude randomization in order to produce thermal mixtures [220]. The other

beam is used as a Local Oscillator (LO) whose amplitude and phase are modulated to

reconstruct the Wigner functions over the entire phase space. Amplitude and phase
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modulation is achieved using Local Oscillator Modulator (LOMD). For phase space

displacement implementation, we interfere thermal mixtures with the LO at a highly

unbalanced beamsplitter denoted as DBS in the experiment schematic.

Figure 6.1: Schematic of the experimental setup. BS: beamsplitter. LO: Local Oscil-
lator. VNDF: Variable Neutral Density Filter. RGGD: Rotating Ground-Glass Disk.
DBS: Displacement beamsplitter. LOMD: Local oscillator modulator.

In order to do this, we consider (n0 + 1) distinct thermal mixtures given as

ρ(j) =
∞∑
n=0

p(j)
n |n〉〈n| (6.10)

where j = 0, . . . , n0 labels the thermal states, and p
(j)
n =

n̄nj
(1+n̄j)n+1 is the Bose-Einstein

photon-number distribution of a thermal mixture ρ(j) with mean photon-number n̄j.

We then displace these thermal mixtures by amplitude α which is, in general, a

complex number. The probability of obtaining ‘k’ outcome with the displaced thermal
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input as input is given by

Q
(j)
k (α) ≈

n0∑
n=0

p(j)
n P

(n)
Mk

(α), (6.11)

where we choose the thermal state such that the contribution to the RHS from the

omitted terms is negligible. This is possible because the thermal state has an ex-

ponentially decreasing photon number distribution. In matrix form, we can write

Eq. (6.11) as


P

(0)
k (α)

P
(1)
k (α)

...

P
(n0)
k (α)


=


p

(0)
0 p

(0)
1 . . . p

(0)
n0

p
(1)
0 p

(1)
1 . . . p

(1)
n0

...

p
(n0)
0 p

(n0)
1 . . . p

(n0)
n0




Q

(0)
Mk

(α)

Q
(1)
Mk

(α)

...

Q
(n0)
Mk

(α)


. (6.12)

We can further write Eq. (6.12) compactly as

P = ΠQMk
(α), (6.13)

where P and QMk
(α) are vectors of length (n0 + 1), and Π is the probability distri-

bution square matrix of dimension (n0 + 1)× (n0 + 1). Thus by solving Eq. (6.13), we

can determine QMk
(α), which allows us to calculate the summation in Eq. (6.7). To

solve for QMk
(α), one can solve the following convex quadratic optimization problem:

Minimize ||P−ΠQMk
(α)||2,

Subject to 0 ≤ QMk
(α) ≤ 1,

− 1 ≤
n0∑
n=0

(−1)nQ
(n)
Mk

(α) ≤ 1,
(6.14)

where ||.|| is the l2 norm defined as ||V ||2 =
(∑

i |Vi|2
)1/2

for a vector V . The opti-
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mization constraints in Eq. (6.14) can be understood as follows. First, the nth element

Q
(n)
Mk

(α) of QMk
(α) is essentially the probability of getting k-click if a displaced n-

photon Fock state is incident to the detector. Therefore, we have 1 ≥ Q
(n)
Mk

(α) ≥ 0.

Second, Wigner functions are well-defined and bounded between [−2/π, 2/π] for a

POVM element corresponding to a phase-insensitive detector. This is because the

POVM element in such a case is a statistical mixture of projectors and the number

of projectors, i.e., |n〉〈n| is truncated due to the finite saturation threshold of the

detector. In this case we can use the second constraint in Eq. (6.14). Thus solving

this optimization allows us to determine the Wigner function at a given phase space

point α. Further, we can repeat the process with different displacement amplitudes

to reconstruct the Wigner function over the entire phase space.

In practice, the Wigner functions of various detectors with a finite saturation thresh-

old are localized around the origin and vanishes to zero for large α due to decaying

Gaussian modulation, so it is unnecessary to displace the thermal states with arbi-

trarily large α. This can be easily predetermined by knowing the detector threshold

and identifying the tail of the Wigner function. In the following section we numer-

ically simulate this method for a phase-insensitive detector. We hasten to add that

this method is applicable to any type of detector.

6.3 Modelling a photon-number-resolving detec-

tor

In this section, we reconstruct the Wigner functions of a perfect and an imperfect

photon-number-resolving (PNR) detector. In general, a POVM element correspond-

ing to ‘k’ outcome can be written in the photon-number basis as

Mk =
∞∑

m,n=0

〈m|Mk|n〉|m〉〈n|, (6.15)
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where 〈m|Mk|n〉 are the matrix elements of the POVM operator. One can further

simplify Eq. (6.15) for a PNR detector with no dark counts as

Mk =

m0∑
m=k

〈m|Mk|m〉|m〉〈m|. (6.16)

Note that Eq. (6.16) differs from Eq. (6.15) in three ways. First, the POVM is

diagonal with entries 〈m|Mk|m〉, which are essentially the probabilities of detecting

‘k’ photons given ‘m’ photons are incident to the detector. Thus for a detector with

detection efficiency η, we have

p(k|m) = 〈m|Mk|m〉 =

(
m

k

)
ηk(1− η)m−k. (6.17)

Second, we have truncated the sum to ‘m0’ such that it exceeds the photon-number

at which saturates the detector. Third, the sum is starting from ‘k’ because with no

dark counts noise, one would expect ‘k’ clicks only if there are m ≥ k photons are

incident on the detector.

Eq. (6.16) and Eq. (6.17) can be interpreted as follows: The POVM elements of

a perfect PNR detector are projectors Πm = |m〉〈m|. However, for an imperfect

detector, its efficiency η < 1. If m photons impinge on such a detector, due to its

non-unity detection efficiency, k < m photons results in a detection event contributing

a factor of ηk to the probability of the event; while (m−k) photons remain undetected

contributing a factor of (1−η)m−k to the probability of the event. Thus, such POVMs

are statistical mixtures of projective measurements.

In numerical simulations, we considered equidistant 51 displacement amplitudes in

α ∈ [−3.6, 3.6], which allowed us to probe the Wigner function uniformly over the

entire region of phase space where the Wigner function is non-vanishing. We used

50 equally spaced thermal states of mean photon-number in n̄ ∈ [0, 4]. For all of

our simulations in open source Python module QuTip [221], we generally limited the
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dimension of the Hilbert space to 50, and the sum in Eq. (6.16) was truncated with

m0 = 50 at which point P (k|m0) was of the order of 10−10 for η = 0.90.

B. C.

D.
E. F.

W
(Q

,P
=

0)

Q

n = 0 n = 1 n = 2

A.

Figure 6.2: Wigner functions for POVM elements corresponding to zero-, one- and
two-photon detection events. Red curves are theoretically expected Wigner functions
and blue ones the reconstructed one using the proposed method. In the top row, A,
B, and C are for a perfect PNR detector; and in the bottom row D, E, and F are for
a PNR detector with detection efficiency η = 0.90.

In Fig. 6.2, we plot the Wigner functions of one, two, and three photon detections

for a perfect detector and an imperfect detector with imperfections as modelled in

Eq. (6.16). From Fig. 6.2, we notice that the extrema of the Wigner functions of

imperfect detectors are closer to the origin than those of perfect detectors. This is

due to the contribution of higher order projectors in the Wigner functions of imper-

fect detectors. In particular for the imperfect single-photon detection event, we see a

reduced negativity in the Wigner function around the origin. This is due to the con-
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tribution of the Wigner function of the two-photon detection event which is strongly

positive around origin. Similar arguments can be made for the the reduced positivity

of the Wigner function for zero- and two-photon detection event POVMs.

In our reconstruction, we have uniformly sampled the phase space. A natural question

that now arises is whether the number of points that needs to be probed in the phase

space can be reduced. We investigate this question in the following section.

6.4 Characterizing a PNR detector with polyno-

mial resources

Although the method outline earlier is general, it had substantial resource require-

ments as we had to uniformly sample over the phase space. However, this requirement

can be drastically reduced if we have the prior knowledge that the detector is phase-

insensitive, i.e., the representations of its POVM elements are diagonal in the Fock

basis. Note that the phase sensitivity of a detector can easily be checked by varying

the phase of the LO while keeping the amplitude fixed. In this case, unlike a PNR

detector, a phase sensitive detector outputs different measurement statistics for dif-

ferent phases and fixed amplitudes of the LO. We recall that the Wigner functions

of Fock states are Gaussian modulated Laguerre polynomials [111]. This allows us to

write the Wigner function the POVM elememt ‘Mk’ of a PNR detector as

WMk
(α) =

2e−2|α|2

π

m0∑
m=0

(−1)mp(k|m) Lm(4|α|2), (6.18)

where Lm(x) represents the Laguerre polynomial of mth degree in |α|2. As the Wigner

function is a function of |α|2, it is symmetric around the origin, and can be fully

characterized on the real axis. Since the Wigner function is a Gaussian modulated

polynomial, the problem of reconstruction is reduced to finding out a polynomial of
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degree 2m0 in α which requires us to find the Wigner function only at 2m0 +1 points.

As an example, we considered the POVM element corresponding to a single-photon

detection event for both perfect and imperfect PNR detectors. In Fig. 6.3, the

red curves show the POVM determined by the naive summation up to 15 terms of

Eq. (6.7); and the blue curves the reconstructed Wigner functions with black points

being the phase space coordinates where the Wigner function was probed.
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Figure 6.3: Left : Wigner function corresponding to a perfect single-photon detection
POVM determined by naive summation up to 15 terms of Eq. (6.7) (Red), and using
an Gaussian modulated quadratic fit near the origin (Blue). Black points represent the
phase space points where the Wigner function was probed by the proposed method
here. The latter approximates well the actual Wigner function. Right : Wigner
function corresponding to an imperfect single-photon detection POVM with η = 0.90.

We see that one needs to probe the Wigner function only at three points for a perfect

detector because the Laguerre polynomial Lm=1(4|α|2) is quadratic in α, and therefore

can be fully characterized using three distinct points. Likewise, the Wigner function

for an imperfect single-photon POVM can be reconstructed using only 11 distinct

points (black points in Fig. 6.3) if we truncate the sum in Eq. (6.16) at m0 = 5

where p(k|m) is of the order of 10−6. In this case, we will have to reconstruct an

Gaussian modulated polynomials of degree 10 because the last term in the Eq. (6.16)

would be a projector, |5〉〈5| with Wigner function given by Gaussian modulation of
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Lm=5(4|α|2).

Note that finding the Gaussian modulated polynomial also works for a general detec-

tor given by Eq. (6.15). However, instead of reconstructing the Wigner function on

the real line, we will have to reconstruct it in the complex plane for which appropriate

polynomial interpolation schemes have to be used [222].

6.5 Robustness against experimental noise

In this section, we discuss the robustness of this method against experimental noise. In

general, inverting Eq. (6.13) is ill-conditioned as seen by the large ratio of the largest

and smallest singular values of the matrix P. This makes the reconstructed POVM

elements extremely sensitive to small fluctuations in the measurement statistics, and

can lead to nonphysical POVMs.

However, the effects of ill-conditioning can be remarkably suppressed by adding a

regularization to the optimization problem. Several types of regularization techniques

are discussed in detail in [91], and for this work we use Tikhonov regularization [223].

Using this technique, inverting Eq. (6.13) can be mathematically formulated as the

following optimization problem:

Minimize ||P−ΠQMk
(α)||2 + γ||QMk

(α)||2,

Subject to 0 ≤ QMk
(α)) ≤ 1,

− 1 ≤
n0∑
n=0

(−1)nQ
(n)
Mk

(α) ≤ 1,
(6.19)

where γ is the regularization parameter. Solving this problem translates to a convex

quadratic optimization which can be efficiently solved using any of the widely used

convex solvers, for instance, the Python package CVXOPT [159].
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In order to simulate the presence of noise in our reconstruction, we introduce noise in

the LO’s amplitude |α|. We model this noise as a Gaussian distribution of mean zero

and standard deviation σ = 1%|α|2, i.e., σ = 0.01|α|2. Note that this level of noise

is much higher than the stabilized lasers available these days at 1064nm. Therefore,

the displacement amplitudes are (α1 + δd1, α2 + δd2 . . . , αmax + δdmax), where each

δdi is a random variable sampled from the Gaussian distribution.

To further reduce the effects of the fluctuations, we average the Wigner functions

obtained over N = 40 iterations of the optimization. As a result, we get

WMk
(α) =

∑N
j=1W

j
Mk

(α + δαj)

N
. (6.20)

Having obtained WMk
(α), we then we utilize robust nonlinear regression methods to

further suppress the fluctuations. We recall that for a phase insensitive detector, the

POVMs are Gaussian modulated polynomials of degree 2m0 in α, where m0 is the

saturation limit given in Eq. (6.18). Therefore, once we have experimentally probed

the Wigner function at 2m0 + 1 distinct points of the phase space, we could simply

fit a Gaussian modulated polynomial of degree 2m0 in α to reconstruct the Wigner

function over the entire phase space. Keeping that in mind, we set an optimization

problem as:

Minimize:{
1

2

∑
i=1

L

[(
e−2|αi|2Poly(2m0, αi)−WMk

(αi)
)2
]}

, (6.21)

where L is defined as

L(y) = 2(
√

1 + y − 1), (6.22)

and Poly(2m0, αi) is a polynomial of degree 2m0. Note that this approach of finding

the Gaussian modulated polynomial has an advantage of not being biased unlike the

simple least-square fitting method which tends to significantly bias in order to avoid
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high residuals in the data [224].

We further evaluate the quality of reconstruction method by using the relative error

defined with l2 norm as:

4 :=
||W theory

Mk
(α)−W reconstruted

Mk
(α)||2

||W theory
Mk

(α)||2
. (6.23)

The result of our reconstruction is shown in Fig. 6.4. Since the fluctuations grow

with increasing local oscillator amplitude, the reconstruction of the Wigner function

around the origin of phase space is the least disturbed, but with higher displacements

the fluctuations grow stronger as seen in Fig. 6.4.

Therefore, it may be beneficial to probe the Wigner function around the origin densely,

and sparsely at the higher displacements, in particular |α| > 1. Note that probing

near the origin doesn’t undermine the quality of reconstruction as long as we probe the

Wigner function at 2m0+1 distinct points because we need only 2m0+1 distinct points

to reconstruct a polynomial of degree 2m0 as seen in Fig. 6.3. In fact, we can further

exploit the rotational symmetry of the POVMs corresponding to phase insensitive

detector, which means the Wigner function at α has the same value at−α. This allows

us to only probe the Wigner function at m0 + 1 distinct points to fully characterize

a quantum detector that saturates at the photon-number m0. However, in this work

we numerically probe the phase space at equidistant displacement amplitudes.

We now investigate how sensitive our reconstruction is to the choice of γ. To evaluate

that, we calculate the relative error defined in Eq. (6.23) for several values of γ ∈
[10−4, 0.012]. The result is illustrated on the bottom right in Fig. 6.4 for the POVM

element corresponding to n = 1 and η = 0.90. We can clearly see that even if we vary

γ by an order of magnitude (from 10−3 to 10−2), the relative error only changes by

less than one percent. This shows that there is sufficient freedom in the choice of γ.



6.5. ROBUSTNESS AGAINST EXPERIMENTAL NOISE 178

Figure 6.4: Blue: Reconstructed Wigner functions using regularization for zero-,one-
and two-photon detection event of a detector with η = 0.90. Red curves are theoret-
ically expected Wigner functions. Gray areas are error (1σ) obtained using N = 40
iterations. Bottom right: Dashed-diamond curve illustrates the robustness of the
reconstruction against regularization parameter γ and black solid line is without reg-
ularization, i.e, γ = 0.
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6.6 Conclusions

We have developed a method for characterizing photodetectors by experimentally

obtaining the Wigner functions corresponding to the POVMs describing the detector

measurements. The proposed experimental scheme is simple and easily accessible,

in particular, for a phase insensitive detector. Augmented with quadratic convex

optimization and robust nonlinear fitting techniques, we demonstrated its robustness

to the experimental fluctuations. Future work on this method may involve an account

for mode mismatch between the local oscillator and the optical mode of thermal

mixtures. This direction of research is motivated by the fact that unlike in the

balanced homodyne technique, mode mismatch cannot simply be treated as losses in

this method. Another direction is to employ phase-averaged coherent states (PACSs),

which are also diagonal in photon-number basis, instead of thermal mixtures. The

PACS can be easily prepared in the lab by only randomizing the optical phase of a

coherent state. This work was jointly done with Kevin Valson Jacob at Louisiana

State University during my visit in 2018.



Chapter 7

Heisenberg-limited quantum

interferometry with

photon-subtracted twin beams

In this chapter, we propose a new type of a Heisenberg-limited quantum interfer-

ometer, whose input is indistinguishably photon-subtracted twin beams. This type

of interferometer can yield Heisenberg-limited performance while at the same time

giving a direct fringe reading, unlike for the twin-beam input of the Holland-Burnett

interferometer. We show that with intensity difference measurements the quantum

Cramér-Rao bound for the phase measurement can be achieved. We propose a feasible

experimental realization.

This chapter is based on the paper titled, “Heisenberg-limited quantum interfer-

ometry with photon-subtracted twin beams”, Rajveer Nehra, Aye Win, and Olivier

Pfister, arXiv:1707.07641 [quant-ph].

180
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7.1 Introduction

A general interferometer, typified by the Mach-Zehnder interferometer (MZI) of Fig.7.1,

measures the phase difference between two propagation paths by probing them with

mutually coherent waves. From a purely undulatory standpoint, a sure way of ensur-

ing such mutual coherence is to split an initial wave into two waves, for example by

use of a beam splitter. However, the unitarity of quantum evolution mandates that

any two-wave-output unitary have a two-mode input as well — rather than a classi-

cal, single-mode input. Thus, the quantum description of a “classical” interferometer

must feature an “idle” vacuum field in addition to the initial wave as we discuss in

chapter 2, and the quantum fundamental limit of interferometric measurements is

Figure 7.1: A Mach-Zehnder interferometer with phase difference φ between two
optical paths. Both beam splitters are balanced. Quantum splitting of input field a
implies interference with the vacuum field b.

then dictated by the corpuscular statistics of the interference between the two inputs

of the beam splitter (Fig.7.1).

We now derive the phase noise for a coherent state, |α〉 in mode a and vacuum,

|0〉 in mode b as an input to the MZI interferometer in Fig.7.1. In a typical inter-
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ferometry experiment, one measures the intensity difference at both outputs of the

interferometer for a given input 1. Thus, we need to calculate

Ia − Ia = 〈N̂a − N̂b〉|ψ〉outa,b
, (7.1)

where Na = a†a and Nb = b†b are the photon-number operators and |ψ〉outa,b is the

two-mode output state. The state after the first 50:50 beamsplitter (BS)

|α〉a|0〉b After first BS−−−−−−−→
∣∣∣∣ α√2

〉
a

∣∣∣∣ α√2

〉
b

(7.2)

Likewise, the phase shifted state inside the interferometer

∣∣∣∣ α√2

〉
a

∣∣∣∣ α√2

〉
b

After phase shifter−−−−−−−−−−→= e−iφN̂a
∣∣∣∣ α√2

〉
a

∣∣∣∣ α√2

〉
b

=

∣∣∣∣αe−iφ√
2

〉
a

∣∣∣∣ α√2

〉
b

(7.3)

Finally, the output state after the second 50:50 BS

∣∣∣∣αe−iφ√
2

〉
a

∣∣∣∣ α√2

〉
b

After second BS−−−−−−−−−→ |ψ〉outa,b =

∣∣∣∣αe−iφ + α

2

〉
a

∣∣∣∣αe−iφ − α2

〉
b

(7.4)

We then determine the intensity difference using Eqs. 7.1 and 7.4, which yields

〈N̂a − N̂b〉|ψ〉outa,b
= Tr[|ψ〉outa,b 〈ψ|outa,b (N̂a − N̂b)] = |α|2cosφ (7.5)

The measurement uncertainty in the intensity difference is

4〈N̂a − N̂b〉|ψ〉outa,b
=

√
〈(N̂a − N̂b)2〉|ψ〉outa,b

− 〈N̂a − N̂b〉2|ψ〉outa,b
, (7.6)

= |α|2 (7.7)

1Quantum interferometry can be thought as an estimation problem where our goal is to estimate
the phase difference by measuring some physical observable, a.k.a, the estimator. In this chapter, we
will be using the intensity difference at the output ports of MZI to estimate the phase measurement
noise.
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where we have used

〈(N̂a − N̂b)
2〉|ψ〉outa,b

= |α|2(1 + |α|2cos2φ) (7.8)

Using the error propagation, one can get the phase noise given as

4φ =
4〈N̂a − N̂b〉|ψ〉outa,b∣∣∣∣d〈N̂a−N̂b〉|ψ〉outa,b

dφ

∣∣∣∣ . (7.9)

Using Eqs. 7.5, 7.7, and 7.9

4φ =
1

|α|sinφ =
1√

N |sinφ|

∣∣∣∣
φ→π

2

≈ 1√
N

(7.10)

As a result, we note that in a classical interferometer, the vacuum fluctuations at the

idle input port limit the phase difference sensitivity between the two interferometer

arms to the quantum limit of classical interferometry [225], the input beamsplitter’s

shot-noise limit (SNL)2

∆φSNL ∼ 〈N〉−
1
2 , (7.11)

where φ is the phase difference to be measured and N = Na +Nb is the total photon

number operator. This limit is that of phase noise inside the interferometer and has

nothing to do with, say, the single-mode properties of a coherent state (e.g., laser)

input |α 〉 of photon-number deviation ∆N = |α| = 〈N〉1/2 and phase deviation 3

∆φ ∼ 〈N〉−1/2 before the interferometer. In fact, Caves showed that a Fock-state input

|n 〉, for which ∆N = 0 and hence ∆φ→∞, still yields the SNL of Eq. (7.11) [225].

When both input modes of the interferometer are properly “quantum engineered,”

2The SNL is often called “standard quantum limit.” However, the latter was initially defined
with a different meaning, in order to address the optimum error of quantum measurements in the
presence of back action, such as radiation pressure on interferometer mirrors. [226], [227].

3From the number-phase Heisenberg inequality ∆N∆φ > 1/2, easily derived from the energy-
time inequality [228].
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one can, in principle, reach the ultimate limit, called the Heisenberg limit (HL),

∆φH ∼ 〈N〉−1 , (7.12)

which can clearly be many orders of magnitude lower than the SNL when 〈N〉 � 1.

A recent comprehensive review of quantum interferometry can be found in Ref. [229].

The first quantum engineering proposal to break through the SNL was Caves’ idea

to replace the vacuum state input with a squeezed vacuum [230], which has since

been shown to optimize the quantum Cramér-Rao bound when the input field is a

coherent state [231]. This was demonstrated experimentally [232], [233] and is now

the approach adopted for high-frequency signals (above the standard quantum limit)

in gravitational-wave detectors [234], [235]. Many other approaches have been inves-

tigated [236], [237], such as twin beams [82], [147], [238]–[241], “noon” states [242]–

[246], or two-mode squeezed states. These different schemes were recently compared

in terms of their quantum Cramér-Rao bound [247].

It is important to recall here the essential result of Escher, de Matos Filho, and

Davidovich: operating a realistic, i.e., lossy, interferometer at the Heisenberg limit

requires losses to be no greater than 〈N〉−1 [248], i.e., the grand total of the loss

can never exceed one photon, on average. This result had been obtained earlier by

Pooser and Pfister in the particular case of Holland-Burnett interferometry [249]:

using Monte Carlo simulations for up to n = 10 000 photons, it was shown that the

phase error of a nonideal Holland-Burnett interferometer scales with the Heisenberg

limit if the losses are of the order of n−1, and that larger losses degrade the scaling to a

limit proportional to the SNL N−1/2, staying sub-SNL as long as photon correlations

are present in the twin Fock input. This is consistent with the general result of Escher,

de Matos Filho, and Davidovich for phase estimation [248].

A direct consequence is that, if the total photon number is too large, ultimate-

sensitivity interferometry cannot be Heisenberg-limited in the current state of technol-
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ogy: the most sensitive interferometer to date, the Laser Interferometer Gravitational-

wave Observatory (LIGO) boasts ∆φSN ∼ 10−11 rad and is shot-noise-limited in some

spectral regions, therefore featuring 〈N〉 ∼ 1022 photons. While a Heisenberg-limited

version of LIGO would only require 〈N〉 ∼ 1011 photons to reach the same sensitivity,

it would also require an unrealistic loss level of 10−11, the optical coatings on LIGO’s

mirrors “only” reaching already remarkable sub-ppm loss levels [250].

However, the maximally efficient use of photons by Heisenberg-limited interferometry

can still be interesting provided we take into account this constraint of an ultimate

loss level of 10−6. At this level, a 1064 nm interferometer with (arbitrarily chosen) 10

ms measurements would be allowed to reach the 106-photon HL of 1 µrad with only

200 pW, whereas a classical interferometer would need 1012 photons, i.e., 200 µW, to

have its SNL at 1 µrad. This can be of interest in situations where low light levels

are beneficial, such as phase imaging of living biological tissue.

In order to motivate the approach of this chapter, we review and compare and contrast

some different HL proposals in Table 7.1. The key points we examine here are:

(i), whether the input state enables HL performance;

(ii), whether a direct interference fringe is observable;

(iii), whether the 〈N〉 � 1 regime is experimentally accessible.

As we’ll see, the new input state we propose in this chapter is the only one that fulfills

all three criteria.

The first two cases are classical interferometer ones. The third one is Caves’ squeezed

input [230]. These benefit from mature, high-level laser and quantum optics tech-

nology, with large average photon numbers from well stabilized lasers [145]. Case 3

benefits from the recent 15 dB squeezing record [251], but it does require that the

phase difference between the squeezed state and the coherent state be controlled [252].

Gravitational-wave observatory LIGO is described by case 2, and soon case 3 [235],

whereas GEO-600 is now operating with squeezing [234].
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Table 7.1: Characteristics and performance of different input states — except the
“noon” state∗ which is a state specified inside the interferometer. Also the fringe
signal for the “noon” state requires n-photon detection(‡). The phase error ∆φ is the
quantum Cramer-Rao bound [247]. The state whose use we propose in this chapter
is the last one.

Input∗ state (i) ∆φ (ii)〈Na −Nb〉 (iii) 〈N〉 � 1?

1. |n 〉a | 0 〉b 1001[225]
1√
n

SNL n cosφ yes

2. |α 〉a | 0 〉b [225]
1√
〈N〉

SNL |α|2 cosφ yes

3. |α 〉a | 0, r 〉b [230]
e−r

|α| sub-SNL |α|2 cosφ yes

4. |n 〉a |n 〉b [238]
1√

2n(n+ 1)
HL 0 yes [147]

5. |n 〉a |n− 1 〉b [247]
1√

2n2 − 1
HL

1

2
cosφ possible

6.∗ NOON [242], [243]
1

n
HL ∼ cos(nφ)(‡) unknown

7. Yurke [236]
1√

n(n+ 1)
HL cosφ

2
− sinφ

4

√
n(n+ 2) unknown

8. This work
1

n
HL −n

2
sinφ possible

Case 4 in Table 7.1 is the twin Fock state input first proposed by Holland and Bur-

nett [238], and which is implementable, to a good approximation, with large photon

numbers by using an optical parametric oscillator above threshold [147], [241], [253]–

[255].

The input density operator is then of the form, in the absence of losses,

ρ =
∑
n,n′

ρn,n′ |nn 〉 〈n′n′ | , (7.13)
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which can be a pure state (ρn,n′ 7→ ρnρ
∗
n′), e.g. the two-mode squeezed state emitted by

a lossless optical parametric oscillator (OPO) below threshold, or can be a general sta-

tistical mixture as emitted by a lossless OPO above threshold 4. It thus also benefits

from the same mature OPO-based squeezing technology, with a record 9.7 dB reduc-

tion on the intensity-difference noise [255]. Moreover, the phase difference between

the twin beams is irrelevant (being actually very noisy from being anti-squeezed)

and thus need not be controlled before the interferometer. The generalized [256]

Hong-Ou-Mandel [257] quantum interference responsible for twin beams breaking the

SNL was demonstrated experimentally in an ultrastable phase-difference-locked OPO

above threshold [147], [258], [259], with several mW of CW power.

An inconvenient feature of the Holland-Burnett scheme, however, is that the direct

interference fringe disappears (〈Na −Nb〉 = 0 in Table 7.1, a property also shared by

the classical input |α 〉a |α 〉b) in contrast to all previous cases for which the fringe

signal is proportional to the total photon number. This inconvenience can be cir-

cumvented by the use of Bayesian reconstruction of the probability distribution [238],

[240], [249]. However, this requires photon-number-resolved detection at large pho-

ton numbers, which isn’t accessible experimentally yet. Another workaround is to

use the variance of the photon-number difference, which is sensitive to φ [239] but

whose signal-to-noise ratio is bounded by
√

2 [240]. Another idea is to use a hetero-

dyne signal, which presents high visibility but is restricted to phase shifts ever closer

to zero as the squeezing increases [260]. This was demonstrated experimentally as

heterodyne polarimetry 4.8 dB below the SNL [241].

Case 5 in Table 7.1 is a variant of the twin Fock state, the “fraternal” twin Fock

state [247], does provide a direct fringe signal which being Heisenberg-limited, but

the fringe signal is still extremely small.

Case 6 stands out for several reasons. The “noon” state is not to an interferometer

4This is the most general mixture for which 〈Na −Nb〉 = 0 and ∆(Na −Nb) = 0.
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input state but to a state inside the Mach-Zehnder interferometer [242], [243]. While

it yields performance at the HL, its experimental generation isn’t yet experimentally

accessible for n� 1; previous experimental realizations have been using postselected

outcomes for n = 3 [244] and 4 [245], a method which doesn’t scale to large photon

numbers, though a more scalable method using coherent state displacement was also

demonstrated [246]. Last but not least, the use of a noon state with n photons

requires n-photon detection, which isn’t experimentally accessible optically for n� 1

(but may be easier to reach in atomic spectroscopy [242]).

Case 7 is the theoretical proposal of Yurke, McCall, and Klauder (YMCK) [236]. It

features both performance at the HL and a strong fringe signal, but its experimental

realization hasn’t been figured out yet.

Case 8 features the input proposed in this chapter; it is the only one of the table

that features HL performance, a clear interference fringe signal, and is experimen-

tally feasible with demonstrated technology for large photon numbers. The state can

be generated by using bright twin beams from which one photon has been indistin-

guishably subtracted (or added).

A similar approach was proposed by Carranza and Gerry [261], in which they propose

to subtract equal photon numbers from the weak twin beams created by two-mode

squeezing, in part to increase the average photon number by photon subtraction — a

counterintuitive but well-known effect, already demonstrated for small photon num-

bers [262]. In this chapter, the proposal is different in several ways: first, we perform

indistinguishable — rather than simultaneous in Ref. [261] — photon subtraction to

obtain, as detailed below, the state of case 8, which is different from Ref. [261] ;

second, we consider bright twin beams, such as emitted by an OPO above threshold,

in order to start with large photon numbers and truly evidence the HL advantage

over the SNL; third, the emphasis here is on a direct fringe measurement, allowed

by our state, as opposed to the parity measurement considered in Ref. [261], and ini-
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tially proposed by Anisimov et al. [263], a measurement that’s not yet experimentally

feasible for large photon numbers.

This chapter is organized as follows. In section 7.2, we examine the effect of various

types of photon subtraction on twin beams for quantum interferometry and deter-

mine the optimum input. In section 7.3, we derive the interference signal and phase

sensitivity that can be obtained with such states, and corresponding statistical mix-

tures, and show that the HL can be reached. We also analyze the effect of losses on

performance, and confirm the general result of Escher et al. [248].

7.2 Study of indistinguishable photon subtraction

processes on twin beams

As announced in Table 7.1 — and proven in the next section — the input state

∣∣φ+
〉

=
1√
2

(|n 〉a |n− 1 〉b + |n− 1 〉a |n 〉b) (7.14)

boasts Heisenberg-limited performance as well as a strong fringe signal, experimen-

tally accessible with state-of-the-art technology. A casual examination of this state

easily reveals why the process of indistinguishable photon subtraction from either

mode a or mode b is being considered as a means to prepare such a state. However,

one should be mindful of a crucial point: the output of multimode photon subtraction

is, in general, not a pure state but a statistical mixture [264]. In the following, we

consider two experimental protocols, both of which can be legitimately construed as

“indistinguishable photon subtracting,” and show that only the one that preserves

quantum coherence can prepare the state of Eq. (7.14).
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7.2.1 “Bucket” indistinguishable photon subtraction

We consider the situation depicted in Fig.7.2, in which a twin-beam input sees a

photon subtracted from either mode by detection by a single photodetector. Adopting

Figure 7.2: Indistinguishable single-photon subtraction producing a statistical mix-
ture. All interferometer output measurements are conditioned by the single-photon
detection event in blue.

the method introduced in Ref. 264, we now derive the quantum output of this “bucket”

photon subtraction procedure. The formal description of photon subtraction uses a

very unbalanced beam splitter. The unitary operator for a multimode beam splitter

is

UBS = exp

[
i

m∑
n=1

θn(an
†a′n + a′n

†
an)

]
, (7.15)

where θn is the beam splitter parameter such that rn = sin θn and tn = cos θn, where

rn and tn are the respective reflection and transmission coefficients, and an and a′n

are the annihilation operators for the signal and vacuum modes respectively. An

unbalanced beam splitter features θn � 1, which allows us to neglect the higher

order terms in the power series. Therefore, we have

UBS ' I + i

m∑
n=1

θn(an
†a′n + a′n

†
an). (7.16)
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As shown in Fig.7.2, one port of each beam splitter is being fed an n-photon Fock

state and the other port a vacuum state:

∣∣ψin 〉 = |n, n 〉a,b ⊗ | 0, 0 〉a′,b′ . (7.17)

We consider two distinct cases of single photon subtraction which are differentiated

by conditioned photon detection process. In first case, we adopt the multimode single

photon subtraction method introduced in [264].

The quantum state just after the two leftmost beam splitters in Fig.7.2 is, taking

θ1 = θ2 = θ,

|ψ′ 〉 = UBS |ψin 〉

= |n, n 〉a,b ⊗ | 0, 0 〉a′,b′ + i
√
nθ |n− 1, n 〉a,b ⊗ | 1, 0 〉a′,b′

+ i
√
nθ |n, n− 1 〉a,b ⊗ | 0, 1 〉a′,b′ . (7.18)

The subtracted single photon traveling in either arm gets absorbed at detector, and

the Positive-Operator Valued-Measurement (POVM) for detecting one photon is

Π = p | 10 〉a′,b′ 〈 10 |a′,b′ + (1− p) | 01 〉a′,b′ 〈 01 |a′,b′ , (7.19)

where p is the probability of photon being present in mode a′. Due to indistinguisha-

bility we set p = 1
2

and the POVM becomes

Π =
1

2
| 10 〉a′,b′ 〈 10 |a′,b′ +

1

2
| 01 〉a′,b′ 〈 01 |a′,b′ . (7.20)

The MZI input modes a, b are conditioned by the measurement of a single photon,
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which can be calculated by a partial trace over the two-mode Hilbert space of a′, b′:

ρa,b = Tra′,b′ [UBS(
∣∣ψin 〉 〈ψin ∣∣)U †BSΠ] (7.21)

=
1

2
|n, n− 1 〉a,b 〈n, n− 1 |a,b +

1

2
|n− 1, n 〉a,b 〈n− 1, n |a,b , (7.22)

as written in Fig.7.2. The density operator of Eq. (7.22) is a statistical mixture and is

not the density operator of the state |ψ+ 〉 (Eq. (7.14)). Moreover, it is not performing

adequately in interferometry: indeed, it is straightforward to show that MZI input

ρa,b does not generate a direct interference fringe,

〈Jz〉 = Tr(ρa,bJz) = 0, (7.23)

which is the same shortcoming at the twin-Fock state input. It is therefore important

to be precise as to how the indistinguishable photon subtraction is conducted, so

that the pure state of Eq. (7.14) can be obtained. We now turn to the proper state

preparation protocol.

7.2.2 Coherently indistinguishable photon subtraction

We now consider the experiment depicted in Fig.7.3, in which the two “subtraction”

modes a′, b′ are made coherently indistinguishable by interference at a balanced beam

splitter — rather than being equiprobably detected by a single detector as above. The

photon numbers of the output ports of the balanced beam splitter are then detected

and only one detection configuration, (na′ = 1, nb′ = 0), is considered for further
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Figure 7.3: Indistinguishable single-photon subtraction producing a pure state. All
interferometer output measurements are conditioned by the 1-0 joint photon detection
event in blue (note that the 0-1 event would work as well, merely flipping the sign of
the superposition).

heralding of the MZI input. The state after the balanced beam splitter is

∣∣∣ψ′′ 〉 = |n, n 〉a,b | 0, 0 〉a′,b′

+ iθ

√
n

2
|n− 1, n 〉a,b [| 1, 0 〉a′,b′ + | 0, 1 〉a′,b′ ]

+ iθ

√
n

2
|n, n− 1 〉a,b [| 1, 0 〉a′,b′ − | 0, 1 〉a′,b′ ] (7.24)

= |n, n 〉a,b | 0, 0 〉a′,b′

+ iθ

√
n

2
(|n, n− 1 〉a,b + |n− 1, n 〉a,b) | 1, 0 〉a′,b′

− iθ
√
n

2
(|n, n− 1 〉a,b − |n− 1, n 〉a,b) | 0, 1 〉a′,b′ (7.25)

It is clear that the POVM elements for single-photon detection in this case are pure:,

Π+ = | 10 〉a′,b′ 〈 10 |a′,b′ (7.26)

Π− = | 01 〉a′,b′ 〈 01 |a′,b′ , (7.27)



7.3. INTERFEROMETRIC SENSITIVITY OF PHOTON-SUBTRACTED
TWIN-BEAM INTERFEROMETRY 194

and that the postselected state for MZI input modes a, b will therefore be also pure.

Indeed,
∣∣ψ′′ 〉 collapses to the respective states

|ψ± 〉 =
1√
2

(|n, n− 1 〉a,b ± |n− 1, n 〉a,b). (7.28)

In the next section, we show that both these states achieve Heisenberg-limited inter-

ferometric performance, and that they also yield a direct interference fringe.

7.3 Interferometric sensitivity of photon-subtracted

twin-beam interferometry

7.3.1 Schwinger representation

For the sake of convenience, we adopt for our calculation the Schwinger-spin SU(2)

representation [265] initially proposed by Yurke et al. for quantum interferometers [236].

A fictitious spin ~J is defined from a pair of bosonic modes (a, b) as

Jx =
1

2
(a†b+ b†a) (7.29)

Jy = − i
2

(a†b− b†a) (7.30)

Jz =
1

2
(a†a− b†b) (7.31)

where a and b are the annihilation operators of each mode. These operators satisfy

the canonical angular momentum commutation relations of the su(2) algebra

[Ji, Jj] = iεijkJk. (7.32)

The operator Jz represents the photon number difference operator between the two

modes whereas Jx,y are interference terms. The total photon number of the two-mode
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field is represented by the operator

J2 =
a†a+ b†b

2

(
a†a+ b†b

2
+ 1

)
. (7.33)

The common eigenstates of J2 and Jz are the two-mode Fock states

| jm 〉z = |na 〉a |nb 〉b , (7.34)

where the respective eigenvalues, j(j + 1) and m, are given by

j =
na + nb

2
, (7.35)

m =
na − nb

2
. (7.36)

The single photon-subtracted state of Eq. (7.28) therefore becomes, in the Schwinger

representation, ∣∣ψ± 〉 =
1√
2

(| j, 1
2
〉 ± | j,− 1

2
〉) . (7.37)

7.3.2 Field evolution in the interferometer

In the Heisenberg picture, the action of the MZI amounts to the transformation of the

Ji operators as the sequence of rotations of π/2 around x axis, φ around z axis, and

−π/2 around x axis respectively resulting effective rotation of φ around y axis [236].

Joutz = ei
π
2
JxeiφJze−i

π
2
JxJze

iπ
2
Jxe−iφJze−i

π
2
Jx , (7.38)

which yields

Jout
z = − sinφJx + cosφJz (7.39)

(Jout
z )2 = sin2 φJ2

x + cos2 φJ2
z − sinφ cosφ(JxJz + JzJx) (7.40)
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For the input state |ψ± 〉, we obtain an interference fringe whose amplitude is of the

order of the photon number,

〈Jz〉 = −sinφ

2

√
j(j + 1) +

1

4
, (7.41)

which is the result presented in Table 7.1. Turning now to the phase error, we first

derive the mean square value 〈J2
z 〉 for |ψ± 〉 is

〈J2
z 〉 =

[
j(j + 1)− 1

4

]
sin2 φ

2
+

1

4
cos2 φ . (7.42)

If Jz is our phase estimator, the phase error is

4φ =
4Jz∣∣∣d〈Jz〉outdφ

∣∣∣ . (7.43)

and we get

4φ =

√
j(j + 1) sin2 φ+ cos2 φ− 3

4
sin2 φ

cosφ
√
j(j + 1) + 1

4

(7.44)

which has its minimum value at φ = 0,

4φmin =
1√

j(j + 1) + 1
4

=
1

n
, (7.45)

since j = n
2
− 1. In the appendix 5, we show that the indistinguishable single photon

subtraction protocol also works for the general twin-beam density operator input

ρ =
∑
n,n′

ρn,n′ |nn 〉 〈n′n′ | . (7.46)
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7.3.3 Quantum Fisher Information

The quantum Fisher information (QFI) is an important tool in quantum interferom-

etry as it allows to obtain a lower bound of the phase measurement error [231]. The

QFI is defined as

F(ρφ) = Tr[ρ(φ)L̂2
φ], (7.47)

where L̂φ is symmetric-logarithmic derivative (SLD), mathematically formulated as

∂ρ(φ)

∂φ
=

1

2
[ρφL̂φ + L̂φρφ]. (7.48)

We now calculate the SLD for pure states, i.e., ρφ = ρ2
φ = |ψφ〉〈ψφ|. A simple

calculation shows that

∂ρφ
∂φ

= ρφ
∂ρφ
∂φ

+
∂ρφ
∂φ

ρφ. (7.49)

From Eqs. 7.48 and 7.49, we note that

Lφ = 2
∂|ψφ〉
∂φ

= |ψφ〉
∂|ψφ〉
∂φ

+
∂|ψφ〉
∂φ
|ψφ〉, (7.50)

where |ψφ〉 is the output quantum state with the phase information encoded in the

probability amplitudes. From Eqs. 7.47 and 7.50, we get

F(ρφ = Tr[ρ(φ)L̂2
φ] = 4

[〈
∂ψφ
∂φ

∣∣∣∣∂ψφ∂φ

〉
−
∣∣∣∣〈∂ψφ∂φ

∣∣∣∣ψ〉∣∣∣∣2] (7.51)

One can further express Eq. 7.51 in the Schwinger representation, where it turns out

to be

F(ρφ) = 4〈(4Jy)2〉|ψ±〉 (7.52)

As a result, we see that the calculation QFI for pure states in the quantum inter-

ferometry amounts to calculate the variance of Jy for the given quantum state, |ψ±〉
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from Eq. 7.28 in our case. With this state, the QFI leads to

F(ρφ) = 2n2 − 1 (7.53)

This quantity is then related to the phase error by [266]

(∆φ)2 ≥ 1

F(ρφ)
(7.54)

We then calculate the lower bound, i.e., quantum Cramér-Rao bound (QCRB) on the

phase error, which is

4φQCRB ≈
1√

2n2 − 1
(7.55)

From Eq. 7.55, it is evident that phase error achieves the Heisenberg limit. In other

words, the QFI is quadratic in mean photon-number for the proposed state.

7.3.4 Effect of losses

Losses in both modes are modeled by two beam splitters (t1,r1 and t2,r2) placed before

detection. The expectation values of the spin operators become

〈Jz〉 = −1

2

[
nt1t2 sinφ+

(
n− 1

2

)
(t21 − t22) cosφ

]
(7.56)

〈J2
z 〉in =

1

4

[
n(n− 1)(t21 − t22)2 +

1

2
(t41 + t42) +

n

2
(t1r

2
1 + t2r

2
2)

]
(7.57)

=
1

4

[(
n− 1

2

)
(t21 + t22) + 2t21t

2
2n(n− 1)

]
(7.58)

〈JxJz + JzJx〉in =
n

2
[(2n− 1)t1t2(t21 − t22) + t1t2(r2

1 − r2
2)] (7.59)

which yields

4φ =

√(
c21
4

+ c3
2
n
)
C2 + [c1(n− 1

2
) + nc2(nc2 − 4)]S2

n c2 C + (n− 1
2
)c4 S

, (7.60)
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where we posed

C = cosφ (7.61)

S = sinφ (7.62)

c1 = (t21 + t22) (7.63)

c2 = t1t2 (7.64)

c3 = (t1r
2
1 + t2r

2
2) (7.65)

c4 = (t21 − t22). (7.66)

For t1 = t2 = 1, we recover the lossless case of Eq. (7.44). To simplify further, we

assume identical beam splitters (t1 = t2 = t) and φ→ 0, which yields

4φ ' 1

tn

√
1 +

1− t2
t

n (7.67)

The first term in the square root on the right-hand side of Eq. (7.67) is the HL,

reached for t = 1; the second term is the SNL, which dominates when t→ 0.

The tipping point for the losses is given by

1 =
1− t2
t

n (7.68)

which, solved for t in the limit of large n, yields the loss coefficient

1− t2 ' 1

n
, (7.69)

consistent with the general result of Escher, de Matos Filho, and Davidovich [248].
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7.4 Conclusions and outlook

In this chapter, we have proposed and studied a nontrivial modification of the twin-

beam input for Heisenberg-limited quantum interferometry, which features coher-

ently indistinguishable photon subtraction. This modification brings about a strong

fringe signal — absent from the unmodified twin-beam input — while preserving

Heisenberg-limited operation. The loss behavior is consistent with what is now well

known about Heisenberg-limited interferometry. The experimental implementation

should be feasible with state-of-the-art technology, for example using a stable OPO

above threshold [147], [258], [259] and photodetectors with single-photon sensitivity.

We believe it is possible to operate at no more than 106 photons per detection time

bin, so as to be compatible with the lowest achievable optical losses and splitting

ratios. Such an experimental endeavor is currently under progress in our laboratory.

A underway direction employs macroscopically entangled states for quantum inter-

ferometry. One such state is

|ψ〉 = N (â1
†|α1, α2〉+ â2

†|α1, α2〉) (7.70)

These states can be experimentally generated by using an indistinguishable addition

of a single-photon to two optical modes prepared in macroscopic coherent states.



Chapter 8

Conclusions and future directions

Friends applaud, the comedy is

over.

Ludwig van Beethoven

Since their original conception by Richard Feynman in the 1980s, quantum computers

have evolved from a groundbreaking theoretical idea to physically realized devices on

a variety of platforms including superconducting circuits, trapped ions, and optics.

While there has been significant progress towards scaling qubit-based quantum com-

putation, the continuous-variable implementations with quantum optics still remain

the most scalable platforms for quantum computation. It is well understood that

in order to achieve exponential speedup and fault tolerance in continuous-variable

quantum computation the inclusion of a non-Gaussian element (states or operations,

or measurements) is necessary. Therefore, the efficient characterization and develop-

ment of these non-Gaussian elements is a key task in building a fault-tolerant quantum

computer.

201
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8.1 State tomography with PNR measurements

In Chapter 2, we demonstrate the WVBW scheme, which allows us to directly probe

the Wigner quasiprobability distribution using PNR measurements. While we demon-

strate the WVBW scheme for a single-photon Fock state, our tomography setup is

state-independent, and hence can be used to characterize arbitrary quantum states

prepared in a single-mode weak quantum field [267]. We observe the negativity of the

Wigner function without using any numerical post-processing or correcting for losses.

The WVBW scheme requires a phase space raster scan which can be experimentally

demanding, particularly for quantum states, such as cat state or Gottesman-Kitaev-

Preskill state, with rich phase space interference features. These states play an im-

portant role in bosonic quantum error correction [105], [106]. In addition to having

to probe the phase space densely, the WVBW scheme is intrinsically lossy due to

approximated implementations of phase space displacements.

In Chapter 3, we present a generalization of the WVBW scheme. The proposed

scheme uses state overlap measurements between the unknown state and a small set

of known coherent states to reconstruct the density matrix in the Fock space, as

opposed to WVBW, which is a point-by-point phase-space Wigner function recon-

struction technique. Our scheme requires considerably less data and laser power while

allowing higher resolution of the phase space as compared with the WVBW scheme.

We then consider experimental imperfections due to detection losses, noise, and mode

mismatch between the fields of unknown state and coherent states. We devise tech-

niques to deconvolve the deleterious effects of these experimental imperfections. Our

deconvolution techniques are computationally efficient and lead to physically reliable

reconstructions. We demonstrate the generalized overlap tomography for a weak-

coherent state and a single-photon Fock state [268].

A natural direction for future work is to characterize a multimode quantum state
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with the WVBW and generalized overlap tomography schemes and see how these

schemes compare to conventional balanced homodyne detection. Moreover, the re-

construction of a multimode Wigner function offers an interesting way to test the

quantum nonlocality in phase space for commonly used entangled states such as the

Bell state and Einstein-Podolsky-Rosen state [269], [270]. On the experimental front,

an immediate step to improve the setup would be to lock the phase between the fields

of the local oscillator and the unknown state. This will be particularly beneficial for

characterizing phase-sensitive quantum states.

Finally, the generalized scheme can be employed for other physical platforms such as

cavity and circuit quantum electrodynamics. We hope that it draws attention from

researchers in these fields.

8.2 Spectral and temporal aspects of the segmented

detector

In Chapter 4, we propose a new design for a room-temperature segmented waveg-

uide PNR detector with click or no-click detectors such as single-photon avalanche-

photodiodes (SPADs). While we split n photons over m modes, as in other spatial or

temporal multiplexed methods [62], [162], the key advantage of our segmented detec-

tor is that the nonideal quantum efficiency of SPADs does not contribute to photon

loss. In our design, SPADs are side-coupled to the same waveguide rather than ter-

minally coupled, which allows photons that are not absorbed in the first SPAD to

couple back into the waveguide to be absorbed by the next SPADs. We characterize

the PNR performance by evaluating the purity of the POVM elements correspond-

ing to the measurement outcomes of the detector. We find that reasonable levels

of losses, dark counts, and cross-talk noise do not degrade performance as much as

having a limited number of SPADs does. Therefore, the number of integrated SPADs
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is the dominant factor for high-quality PNR detection. We hope that this work offers

enough motivation to invest in such a scalable integrated photonic technology, which

has the potential for room-temperature high-quality PNR operations.

In this work, our analysis only focuses on the PNR measurements in that we ignore

the spectral and temporal features of the detected photons. We assume that the sig-

nal field is extremely narrowband and all the detectors which register an event click at

the same time. Recently, S.J. van Enk developed a formalism to determine the time-

dependent POVM of a broadband single-photon field [188]. While Ref. [188] focuses

on constructing the time-dependent POVM of a single-photon, it completely omits

the multiphoton situation. An important next step would be to add the spectral and

temporal features to the segmented detector, which will enable us to experimentally

test fundamental trade-off relations between the different quantum figures-of-merit

such as photon-number resolution, quantum efficiency, and dark noise [189]. One may

also expect trade-off relations between the classical detector characteristics, namely,

detector bandwidth, jitter time, and spectral resolution. A segmented device with

spectral and temporal features may help us settle the conjecture that there are no

fundamental trade-off relations between the quantum and classical detector charac-

teristics [189].

Finally, our model considers the homogeneous radiative losses throughout the waveg-

uide for simplicity. However, a realistic detector may have varying losses. In that

case it becomes crucial to understand how the losses affect detector performance and

be able to account for these effects in the device design.
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8.3 Phase space characterization of quantum de-

tectors

In Chapter 5, we devise a method to reconstruct the Wigner functions of the de-

tector’s POVM elements. The proposed method uses displaced-thermal mixtures as

tomography probes and reconstructs the Wigner function point-by-point over the en-

tire phase space. We further show that the resources required to fully characterize a

PNR detector scale linearly with the detector saturation threshold. Finally, we make

the method robust to experimental fluctuations by using quadratic convex optimiza-

tions.

We note that one can use any state that is diagonal in photon-number basis. One

such state is a phase-averaged coherent state (PACS), which can be prepared by us-

ing a fast-modulated PZT mirror to randomize the optical phase of a coherent state.

Since PACSs have less noise compared to the thermal mixtures, the reconstruction

performance might be improved. Ongoing work is considering PACSs as the detector

probes. Additionally, one can also look into including the mode mismatch between

the fields of the local oscillator and probes.

Most of the quantum detector tomography schemes use classical states as their probes,

mainly because these states are easy to prepare in the lab [91], [271]. Brida et al.

demonstrated that using quantum resources such as twin-beam outperforms classi-

cal resources in statistical robustness in the POVM reconstruction [272]. It would

be interesting to extend this work with such quantum resources and see what kinds

of improvements it would lead to as compared to the classical resources. We are

currently investigating such ideas.
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8.4 Quantum interferometry with macroscopically-

entangled states (MES)

Chapter 6 presents a Heisenberg-limited (HL) interferometer with coherently photon-

subtracted twin beams. We propose an experimental realization using a stable opti-

cal parametric oscillator above threshold and detectors with single-photon sensitivity.

This work provides motivation to investigate into quantum interferometry with coher-

ently photon-added states. For instance, a coherent addition of a single-photon to two

classical fields, say |α〉1 and |α〉2, allows us to prepare a macroscopically-entangled

two-mode state. It would be intriguing to see how MESs perform in quantum in-

terferometry, particularly under realistic scenarios with losses, and what kinds of

measurements one needs to use in order to achieve the quantum Cramèr–Rao bound

for the phase measurement. The MESs might offer advantages both due to their

bright fields and the entanglement inside the interferometer.



Appendix A

Generalized overlap quantum state

tomography

In the case of an unbalanced beamsplitter where the input probe is still a coherent

state, αj = 1√
2
(qαj + ipαj), we recall that the overlap is

W ′
1(0, 0; r, t) =

∫∫
W1(rq′2, rp

′
2)W2(tq′2, tp

′
2)dq′2dp

′
2

=
1

r2

∫∫
W1(q, p)W2( t

r
q, t

r
p)dqdp. (A.1)

A further simplification leads to

W2( t
r
q, t

r
p) = W|αj 〉〈αj |(

t
r
q, t

r
p) =

1

π
exp

[
−
(
t
r
q + qαj

)2 −
(
t
r
p+ pαj)

)2
]

(A.2)

=
1

π
exp

{
− 1

σ2

[(
q + qβj

)2
+
(
p+ pβj

)2
]}

, (A.3)

where σ = r
t

and βj = σαj. The integral overlap from Eq. A.1 is then

1

t2

∫∫
W1(q, p)Wσ(q + qβj , p+ pβj)dqdp, (A.4)
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where Wσ(q+qβj , p+pβj) = 1
πσ2 exp

{
− 1
σ2

[(
q + qβj

)2
+
(
p+ pβj

)2
]}

. Note that when

σ > 1, Eq. (A.4) gives a scaled overlap between ρin and a thermal state displaced by

βj with the Wigner function Wσ(q + qβj , p+ pβj). When σ < 1, however, the overlap

is between ρin and a mathematical object that approaches a displaced delta function

in the limit where σ → 0 and |α| → ∞, which exactly probes the Wigner function of

unknown state, ρ point-by-point as in the unbalanced homodyne technique of Refs. [1]

and [2].

One might also wonder about the outcome of a similar measurement performed on

the other port of the beamsplitter. If we go back to Eq. (4.3) and now determine the

value of the Wigner function of output mode 2 at the origin while tracing out over

mode 1, we have

∫
W ′

1,2(x′)dq′1dp
′
1|q′2,p′2=0 =

∫
W1(tq′1, tp

′
1)W2(−rq′1,−rp′1)dq′1dp

′
1 (A.5)

=
1

t2

∫
W1(q, p)W2(− r

t
q,− r

t
p)dqdp. (A.6)

With r = t, the measured Wigner function overlap is between ρin and | − αj〉〈−αj|,
i.e., the very same coherent state probe with a phase factor of eiπ. From this, we

can conclude that measuring the Wigner function at the origin of both beamsplitter

outputs would yield the overlap between the signal and coherent-state probes at

opposite phases. When performing the tomographic reconstruction, it is possible to

utilize both outputs to collect overlap measurements and only externally vary the

probe phases by half of the desired range; however, ensuring that both detection

channels following the beamsplitter are identical in losses, detector efficiency, etc., is

experimentally challenging, and this also imposes additional requirements on PNR

detection capabilities. Therefore, it is simpler to utilize a single output mode to

perform the tomographic reconstruction and correct for known losses as detailed in

the main text.
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A.0.1 Discussion on inverting Eq. 4 for a general beam split-

ter

In this section, we investigate an inversion scheme for an arbitrary beamsplitter with

reflection and transmission coefficients of r and t, respectively. This elegant proof

was done by Carlos González-Arciniegas (after a long “mathematical” wrestling) with

some inputs, mainly in the form of encouragement, from me. We start with formally

defining the Wigner function of an operator denoted by T̂ as

WT̂ (q, p) =
1

2π
Tr[T̂ Π̂(q, p)], (A.7)

where Π̂(q, p) is the translated parity operator formally defined as

Π̂(q, p) =

∫∫
dq′dp′

2π
e−i(qp

′−pq′)D̂ (q′, p′) =

∫
dq′e−ipq

′
∣∣∣∣ q +

q′

2

〉〈
q − q′

2

∣∣∣∣ , (A.8)

where D̂(q, p) is the phase space displacement operator. For a given quantum state

T̂ = ρ, Eq. (A.8) leads to the usual Wigner function of the state. However, this

definition is general and may be extended to any arbitrary operator, T̂ = T (q̂, p̂) in

order to calculate the so called Weyl symbol representing the operator T̂ . This is

achieved by inverting Eq. (A.7) which results to the operator T̂ in Weyl symbol form

as

T̂ =

∫∫
dpdqWT (q, p)Π̂(q, p). (A.9)

Here we have used the fact that Tr[Π̂ (q, p) Π̂ (q′, p′)] = 2πδ(q− q′)δ(p− p′). Next, we

calculate the matrix elements of the operator T̂ as

Tn,m = 〈n | T̂ |m 〉 =

∫∫
WT (q, p) 〈n | Π̂(q, p) |m 〉 dqdp, (A.10)
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where the matrix elements of the displaced parity operator can be determined using

Eq. A.8 as

〈n | Π̂(p, q) |m 〉 =

∫
dq′e−ipq

′
〈
n

∣∣∣∣q − q′

2

〉〈
q +

q′

2

∣∣∣∣m〉
=

e−q
2

√
π2m+nn!m!

∫
dq′e−ipq

′
e−q

′2/4Hn

(
q +

q′

2

)
Hm

(
q − q′

2

)
q′→2(x−ip)

=
2e−(q2+p2)
√
π2n+mn!m!

∫
dxe−x

2

Hn(x+ (q − ip))(−1)mHm(x− (q + ip)).

(A.11)

Note that 〈x|n〉 = 1
π1/4

e−x
2/2

√
2nn!

Hn(x) and Hn(−x) = (−1)nHn(x). Using these relations,

we get

∫
dxe−x

2

Hm(x+ σ)Hn(x+ ρ) =


√
π2nn!(2σ)m−nLm−nn (−2σρ) n < m
√
π2mm!(2ρ)n−mLn−mm (−2σρ) m < n


(A.12)

〈n | Π̂(p, q) |m 〉 =

 2(−1)n
√

2mn!
2nm!

e−|α|
2
αm−nLm−nn (2|α|2) n < m

2(−1)m
√

2nm!
2mn!

e−|α|
2
α∗n−mLn−mm (2|α|2) m < n

 , (A.13)

where α := q + ip. For a general beamsplitter, the measured overlap is between the

Wigner function of the unknown state and a Wigner function of the form given by

Eq. (A.3)

WT (α) =
1

πσ2
exp

{
−|α− β|

2

σ2

}
. (A.14)
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Defining τ = 1/σ and using Eq. (A.13), we have that the matrix elements Eq. (A.10)

of the operator given by the Wigner function above are for m < n:

Tn,m =

∫ ∞
−∞

2(−1)m
√

2nm!

2mn!
e−|α|

2

α∗n−mLn−mm (2|α|2)
1

πσ2
exp

{
−|α− β|

2

σ2

}
d2α

= Ce−τ
2|β|2

∫ ∞
−∞

α∗n−mLn−mm (2|α|2)e−(τ2+1)|α|2eτ
2(αβ∗+α∗β)d2α,

(A.15)

where we define C = 2(−1)m

πσ2

√
2nm!
2mn!

. Now we we transform Eq. (A.15) using polar

coordinate transformation α = reiθ and d2α = rdrdθ which leads to the matrix

elements

Tn,m = Ce−τ
2|β|2

∫ ∞
−∞

dr

∫ 2π

0

dθrn−m+1Ψe−i(n−m)θe−(τ
2+1)r2eτ

2r(eiθβ∗+e−iθβ)Ln−mn

(
2r2
)

= Ce−τ
2|β|2

∫ ∞
−∞

dr

∫ 2π

0

dθrn−m+1Ψe−i(n−m)θe−(τ
2+1)r2Ln−mn

(
2r2
) ∞∑
k=0

τ2krk

k!

(
eiθβ∗ + e−iθβ

)k
= Ce−τ

2|β|2
∫ ∞
−∞

drrn−m+1e−(τ
2+1)r2Ln−mn

(
2r2
) ∞∑
k=0

τ2krk

k!

k∑
l=0

β∗lβk−l
(
k

l

)∫ 2π

0

dθeiθ(2l−k−n+m).

(A.16)

The last integral is null for l 6= 1
2
(k + n − m) and equals 2π for l = 1

2
(k + n − m).

Therefore, we can write k = n −m + 2s (k + n −m must be even and 0 ≤ l ≤ k),

s = 0, 1, ... which implies that l = n−m+ s. This simplification leads to

Tn,m = 2πCe−τ
2|β|2

∞∑
s=0

(
n−m+ 2s

s+ n−m

)
β∗s+n−mβs

(n−m+ 2s)!
τ 2(n−m+2s)

×
∫ ∞
−∞

dr r2(n−m+s)+1e−(τ2+1)r2Ln−mn

(
2r2
)
e−sr

2

.



212

To evaluate the last integral (which we will call I), we use the following identity [273]:

∫ ∞
0

xµ−1e−σxL(α1)
n1

(λ1x) · · ·L(αν)
nr (λνx) dx

x=r2
= 2

∫ ∞
0

r2µ−1e−σr
2

L(α1)
n1

(
λ1r

2
)
· · ·Lανnν

(
λνr

2
)
dr

=

 n1 + α1

n1

 . . .

 nν + αν

nν

 Γ(µ)

σµ
F

(r)
A

[
µ,−n1, . . . ,−nν ;α1 + 1, . . . , αν + 1;

λ1

σ
, . . . ,

λν
σ

]

(Re(µ) > 0; Re(σ) > 0; nj ∈ N0; j = 1, . . . , ν) ,

where F
(ν)
A denotes the first of the four Lauricella’s hypergeometric functions of ν

variables defined by

F
(ν)
A [a, b1, . . . , bν ; c1, . . . , cν ; z1, . . . , zν ] =

∞∑
k1,...,kν=0

(a)k1+···+kν (b1)k1 · · · (bν)kν
(c1)k1 · · · (cν)kν

zk11

k1!
· · · z

kν
ν

kν !

(|z1|+ · · ·+ |zν | < 1) and (a)n =
Γ(a+ n)

Γ(a)
,

where Γ(a) = (a− 1)! are standard gamma functions. Thus,

I =
1

2

n!

(τ 2 + 1)n−m+s+1

m∑
k=0

(−1)k(n−m+ s+ k)!

(m− k)!(n−m+ k)!k!

(
2

τ 2 + 1

)k
,

and the matrix elements to be calculated take the form

Tn,m = 2πCe−τ
2|β|2β∗(n−m) τ 2(n−m)

(1 + τ 2)n−m+1

×
∞∑
s=0

(
n−m+ 2s

n−m+ s

)
(τ 4|β|2)

s
n!

(n−m+ 2s)!(1 + τ 2)s

m∑
k=0

(−1)k(n−m+ s+ k)!

(m− k)!(n−m+ k)!k!

(
2

τ 2 + 1

)k
,

where the expression above can be rewritten as

Tn,m = 2πCe−τ
2|β|2n!

β∗(n−m)

1 + τ 2

(
τ 2

1 + τ 2

)n−m m∑
k=0

(−1)k
(

2
τ2+1

)k
(m− k)!(n−m+ k)!

×
∞∑
s=0

(
τ 4|β|2
1 + τ 2

)s
1

s!

(
n−m+ s+ k

k

)
.
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Using Vandermonde’s identity, we may write the last binomial term as

(
n−m+ s+ k

k

)
=

k∑
j=0

(
s

j

)(
n−m+ k

k − j

)
, (A.17)

which gives us

Tn,m = 2πCe−τ
2|β|2 β

∗(n−m)

1 + τ 2

(
τ 2

1 + τ 2

)n−m m∑
k=0

(
n

m− k

)( −2

τ 2 + 1

)k k∑
j=0

(
n−m+ k

k − j

)

×
∞∑
s=0

(
τ 4|β|2
1 + τ 2

)s
1

s!

(
s

j

)
= 2πCe−τ

2|β|2 β
∗(n−m)

1 + τ 2

(
τ 2

1 + τ 2

)n−m m∑
k=0

(
n

m− k

)( −2

τ 2 + 1

)k
×

k∑
j=0

(
n−m+ k

k − j

)(
τ 4|β|2
1 + τ 2

)j
1

j!
exp

(
τ 4|β|2
1 + τ 2

)

= 2πC exp

(
− τ

2|β|2
1 + τ 2

)
β∗(n−m)

1 + τ 2

(
τ 2

1 + τ 2

)n−m m∑
k=0

(
n

m− k

)( −2

τ 2 + 1

)k
Ln−mk

(
τ 4|β|2
1 + τ 2

)
,

(A.18)

where we have used the additional identities

∞∑
s=0

xs

s!

(
s

j

)
=
∞∑
s=j

xs

s!

(
s

j

)
=
xjex

j!
(A.19)

and the definitions of the generalized Laguerre’s polynomials

k∑
j=0

(
n−m+ k

k − j

)
xj

j!
= Ln−mk (−x). (A.20)

Finally, we can use the multiplication theorem of the generalized Laguerre’s polyno-

mials,

Lλm(yx) =
m∑
k=0

(
m+ λ

m− k

)
Lλk(y)xk(1− x)m−k, (A.21)
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written as

(1− x)mLn−mm

( −yx
1− x

)
=

m∑
k=0

(
n

m− k

)
Ln−mk (y)(−x)k, (A.22)

to derive a closed form for the photon-number basis matrix elements of the operator

described by the general Gaussian Wigner function ((A.14)) as

Tn,m =
2(−1)m

2 + τ 2

√
2nm!

2mn!
β∗(n−m)

(
τ 2

1 + τ 2

)n−m(
τ 2 − 1

τ 2 + 1

)m
Ln−mm

(
2τ 4|β|2
τ 4 − 1

)
. (A.23)

This expression allows us to explicitly write down the overlap integral, even in the

case of unbalanced beamsplitter, as

O =
∑
n=0

∑
m=0

Tn,mρm,n, (A.24)

where Tn,m’s are calculated in Eq. (A.23) and ρm,n’s are matrix elements of the un-

known state.

A.0.2 Overlap tomography of a multimode state

For a multi-mode quantum state, we interfere each mode at a balanced beamsplitter

followed by measuring the overall parity of the multi-mode state. For example, let’s

consider a two-mode state state. The Wigner function at the origin of phase space is

then given by

W ′
1,2(γ, δ = 0) =

1

π2

∞∑
n1,n2=0

(−1)n1+n2cn1,n2,n1,n2 =
1

π2

∞∑
n1,n2=0

(−1)NcN , (A.25)

where cn1,n2,n1,n2 are the diagonal elements of two-mode density matrix and N =

n1 + n2, thereby CN being the probability of N -photon detection in two-mode state
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after the interference. The state overlap is given by

O = Tr[ρ1,2(|α1〉〈α1| ⊗ |α2〉〈α2|)], (A.26)

where |α1〉 and α2 are known coherent states. Consider the unknown two-mode state

described by density matrix

ρ1,2 =
∞∑

n1,n2,n′1,n
′
2

ρn1,n2,n′1,n
′
2
|n1, n2〉〈n′1, n′2|. (A.27)

The coherent states in the Fock basis are

ρα1 =
∞∑

m1,m′1

c1
m1,m′1

|m1〉〈m′1| (A.28)

ρα2 =
∞∑

m2,m′2

c2
m2,m′2

|m2〉〈m′2| (A.29)

Using Eqs.A.26,A.27, A.28, A.29, we get

O =
∞∑

n1,n2,n′1,n
′
2=0

ρn1,n2,n′1,n
′
2
c1
n1,n′1

c2
n2,n′2

. (A.30)

With the finite Hilbert space truncation, we have

O =

n0∑
n1,n2,n′1,n

′
2=0

ρn1,n2,n′1,n
′
2
c1
n1,n′1

c2
n2,n′2

(A.31)

One can then employ SDP programming to invert Eq. A.31 as in single-mode case.

Furthermore, it could be extended to n-mode case where the measurement positive-

valued-operator measures are defined as

{|α1, α2, . . . αN〉〈α1, α2, . . . αN |, α ∈ C}. Although, the higher number of modes re-

sults in larger Hilbert space dimension as expected but due to inherently finite size

of Hilbert space leads to finite size of POVM set. In the ideal case, O(d2N) POVM



216

measurements would be required for a Hilbert space size of d per mode and N being

number of modes.



Appendix B

Interferometric phase noise for a

general twin-beam input

In this section, we show that our photon subtraction protocol also works for the most

general statistical mixture, e.g. as produced by an OPO above threshold. The density

operator in the Fock basis is given by

ρ =
∑
n,n′

ρn,n′ |nn 〉 〈n′n′ | . (B.1)

After single photon subtraction, the density operator becomes

ρ± =

∑
n,n′

√
nn′ρn,n′(|n− 1, n 〉 〈n′ − 1, n′ | ± |n− 1, n 〉 〈n′, n′ − 1 |

2
∑

n nρnn
± |n, n− 1 〉 〈n′ − 1, n′ |+ |n, n− 1 〉 〈n′, n′ − 1 |)

2
∑

n nρnn
(B.2)

Where ρ+ and ρ− are referred to the conditioned detection by detectors D1 and D2.

ρ± can be further simplified as

ρ± =

∑
n,n′

√
nn′ρn,n′

( |n−1,n 〉±|n,n−1 〉√
2

)( 〈n′−1,n′ |±〈n′,n′−1 |√
2

)∑
n nρnn

(B.3)
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The normalized density operator in Schwinger representation is

ρ± =
∑
j,j′

cj,j′

( | j,−1/2 〉 ± | j, 1/2 〉√
2

)(〈 j′,−1/2 | ± 〈 j′, 1/2 |√
2

)
, (B.4)

where

cj,j′ =

√
(j + 1/2)(j′ + 1/2)ρj+1/2,j′+1/2∑

j(j + 1/2)ρj+1/2,j+1/2

. (B.5)

The mean values 〈Jz〉 and 〈J2
z 〉 for ρ± as an input state of the MZI are

〈Jz〉 = −sinφ

2

∑
j

cj,j

√
j(j + 1) +

1

4
(B.6)

which shows that the direct fringe signal is still present. Turning now to the phase

error, we have

〈J2
z 〉 =

sin2 φ

2

∑
j

cj,j

(
j(j + 1)− 1

4

)
+

1

4
cos2 φ, (B.7)

and the phase uncertainty 4φ is

4φ =

√
cos2 φ

4
+ sin2 φ

2

∑
j cj,j

(
j(j + 1)− 1

4

)
− sin2 φ

4

(∑
j cj,j

√
j(j + 1) + 1

4

)2

cosφ
2

∑
j cj,j

√
j(j + 1) + 1

4

. (B.8)

The minimum error is obtained, as before, for φ = 0, and we have

4φmin =
1∑

j cj,j

√
j(j + 1) + 1

4

=
1

〈N〉 (B.9)



Appendix C

Multiplexing TES Channels for

Higher Photon-Number-Resolved

Measurements

In this section, we consider spatial multiplexing using a 50:50 beamsplitter, of two

TES channels for performing PNR measurements at larger photon numbers. This

is of importance when one needs to characterize a high energy state using PNR

measurements with TESs. The detection efficiencies of TESs channels are η1 and η2

modeled by setting up fictitious beamsplitters of transmission η1 and η2 as shown in

Fig. C.1. Input modes are â1 and â2 corresponding to the signal and vacuum field

respectively. Vacuum modes for the fictitious BSs are a3 and a4 as shown in the

figure.

219
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Figure C.1: Spatial multiplexing setup

We are interested in total photon number given by both TES channels. Therefore, we

would like to determine the detection modes right before both the detectors D1 and

D2. We adopt the Heisenberg picture and evolve the input modes under beamsplitter

interactions. After the 50:50 BS, we get

â1 →
(â1 − â2)√

2
= â

′

1. (C.1)

â2 →
(â1 + â2)√

2
= â

′

2. (C.2)

Similarly, after BS(η1) and BS(η2):

â
′

1 →
√
η1

(â1 − â2)√
2

−
√

1− η1â3 = â
′′

1 . (C.3)
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â
′

2 →
√
η2

(â1 + â2)√
2

−
√

1− η2â4 = â
′′

2 (C.4)

As a result, the total photon-number operator right before the detectors is given by

N = â
′′†
2 â

′′

2 + â
′′†
1 â

′′

1 . (C.5)

Using Eq.(C.19) and Eq. (C.20), we get

N̂ =

(
η1

2
+
η2

2

)
(â†1â1 + â†2â2) + (1− η1)a†3a3 + (1− η2)a†4a4 (C.6)

− (
√

1− η1
√
η1(â1 − â2)a†3√

2
− (
√

1− η1
√
η1(â†1 − â†2)a3√

2
(C.7)

− (
√

1− η2
√
η2(â1 + â2)a†4√

2
− (
√

1− η2
√
η2(â†1 + â†2)a4√

2
(C.8)

Next, we calculate the expectation value of the total number operator given by

Eq. (C.8) for a signal state prepared in n-photon Fock state. Thus, the input quantum

state is given by

|φin〉 = |n〉 ⊗ |000〉 (C.9)

As a result, measured photon-count using Eq.(C.8) and Eq. (C.9) is

〈N〉 = Tr[|φin〉〈φin|N ] = 〈φin|N |φin〉 =

(
η1

2
+
η2

2

)
n. (C.10)

Note that we could define an effective photon-number operator given as

N̂effective :=

(
η1

2
+
η2

2

)
â†1â1. (C.11)

Here, we utilize the fact the expectation value of remaining terms in Eq. (C.8) results

to zero. If we have η1 = η2 = η, Eq. (C.10) gives 〈N〉 = ηn, which means that

the measured mean-photon number reduces by a factor determined by η. This is
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equivalent of having a single beamsplitter with transmission η put up in front of a

single perfect PNR detector. Additionally, we consider another example where mode

â1 is prepared in a coherent state. After the 50:50 BS, we get two coherent states

of amplitudes α√
2

and α√
2
, which are further fed to 2 BSs of transmissions η1 and η2

leading to the output coherent states of amplitudes
√
η1α√

2
and

√
η2α√

2
. In this case, the

photon-number in both coherent states is

〈N〉 =

(
η1

2
+
η2

2

)
|α|2. (C.12)

Note that the result in Eq. (C.12) can be obtained using Eq. (C.10) with |φin〉 = |α〉.
We now measure the variance in total photon-number operator for an arbitrary single-

mode quantum state given as

ρ =
∑
n,n′=0

cn,n′ |n〉〈n′|. (C.13)

The standard deviation is

4N =

√
〈N̂2〉 − 〈N̂〉2, (C.14)

where N is given by Eq.C.24. A simple calculation shows that

4N =
η1 + η2

2

√∑
n

n2cn,n −
(∑

n

ncn,n
)2

=
η1 + η2

2
4No, (C.15)

where 4No is the photon-number variance of the input state. Here, we use the fact

that number operator N̂effective is diagonal in photon-number basis, and the expec-

tation value for all the terms having vacuum modes is zero. Therefore, we see that

multiplexing two TES channels with quantum efficiencies η1 and η2 is equivalent to

having a single channel with overall efficiency of η1+η2
2

.
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C.1 Balanced Homodyne Detection with Photon-

Number-Resolving Measurements

In this section, we formulate the conventional Balanced Homodyne Detection (BHD)

tomography using PNR detectors in place of photodiodes as in Ref. [85]. In BHD

tomography, the density matrix elements can be obtained using pattern functions as

in Eq. (C.16) [85], [111]

ρn,m =

∫ π

0

dφ

∫ +∞

−∞
dx P (X,φ)Fn,m(X,φ), (C.16)

where p(X,φ) = 〈Xφ|ρ|Xφ〉 is the probability distribution for quadrature Xφ, exper-

imentally determined by setting up the local oscillator phase to φ.

Figure C.2: Balanced homodyne detection with PNR detectors.

In Fig. C.2, we display BHD with PNR detectors of efficiencies η1 and η2. The

input modes are signal mode, â1 and local oscillator mode â2. The vacuum modes

of fictitious beamsplitters are denoted by â3 and â4. We are interested in the total

photon-number difference operator. Therefore we would like to know the evolved
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modes right before both the detectors as in multiplexing setup. In the Heisenberg

picture after the 50:50 BS, we have

â1 →
(â1 − â2)√

2
= â

′

1. (C.17)

â2 →
(â1 + â2)√

2
= â

′

2. (C.18)

Similarly, after BS(η1) and BS(η2):

â
′

1 →
√
η1

(â1 − â2)√
2

−
√

1− η1â3 = â
′′

1 . (C.19)

â
′

2 →
√
η2

(â1 + â2)√
2

−
√

1− η2â4 = â
′′

2 (C.20)

In the lab, we measure the expectation value of the photon-number difference operator

given as

N̂− = â
′′†
1 â

′′

1 + â
′′†
2 â

′′

2 . (C.21)

And the expectation value can be calculated as

〈N̂−〉 = Tr[|ψ〉1,2,3,4〈ψ|1,2,3,4N̂−], (C.22)

where |ψ〉1,2,3,4 = |ψ〉a1 ⊗ |α〉a2 ⊗ |0, 0〉a3,a4 is the four-mode input state. A simple

algebra shows that

〈N−〉 =

(
η1

2
− η2

2

)
〈(â†1â1 + â†2â2)〉|ψ〉a1⊗|α〉a2 +

(
η1

2
+
η2

2

)
〈(â†1â2 + â†2â1)〉|ψ〉a1⊗|α〉a2︸ ︷︷ ︸ .

(C.23)
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Thus, the effective photon-number difference operator is

N̂−effective :=

(
η1

2
− η2

2

)
(â†1â1 + â†2â2) +

(
η1

2
+
η2

2

)
(â†1â2 + â†2â1)︸ ︷︷ ︸ (C.24)

Here, we again utilize the fact the expectation value of remaining terms in Eq. (C.21)

results to zero because of vacuum inputs in modes â3 and â4. If we have η1 = η2 = η,

only interference term under-brace contributes to the total photon-number difference

operator. Thus, Eq. (C.22) gives

〈N−〉 = η〈(â†1â2 + â†2â1)〉. (C.25)

A further simplification leads to

〈N−〉 = η|α2|(â†1eiφ + e−iφâ1) =
√

2η|α2|〈X̂φ〉, (C.26)

where we have used â2|α2〉 = α2|α2〉. Next, let’s define

4 :=
√

2η|α2|〈X̂φ〉, (C.27)

where X̂φ is the quadrature operator of the signal field and it’s mean value is given

by

〈X̂φ〉 =
4√

2η|α2|
(C.28)

As a result, the continuous distributions, P (X,φ) are replaced by the discrete photon-

number difference distributions, P
( 4√

2η|α2|
, φ
)
, where4 is the loss-degraded measured

photon-number difference expectation values.



Appendix D

Python Codes

In this appendix, we provide the main python functions used for various purposes in

this thesis. These functions use opensource Python libraries such as QuTIP [221],

CVXPY [159], and Operation Research (OR)-Tools developed by Google, available

at OR-Tools.
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Quantum Optics Functions

July 29, 2020

[1]: """This notebook contains some functions commonly used in quantum optics, they␣
↪→are written by Miller Eaton and me built on

QuTIPT: http://qutip.org/docs/3.1.0/index.html: """
"""Importing all the modules"""
import cmath, random, numpy
import functools
import matplotlib.pyplot as plt
import sys
import os
from qutip import*
from sympy import*
from scipy import optimize
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import math
from qutip import *
from qutip.ipynbtools import plot_animation
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib.pylab as plt
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from IPython.display import display, Math, Latex
from mpl_toolkits.axes_grid1 import AxesGrid
from scipy.special import factorial as fac
xvec = np.arange(-80.,80.)*5./80 ##Mash for Surface plots
yvec = np.arange(-50.,50)*5/40
X,Y = np.meshgrid(xvec, xvec) ##Some plotting params
X1,Y1 = np.meshgrid(yvec,yvec)
N_dim = 35 ##Dimenstion of the Hilbert space
"""Define single-mode annihilation operators"""
a1 = destroy(N_dim)
a2 = destroy(N_dim)
a3 = destroy(N_dim)

1



'''Displacement operator: accepts input density matrix and outputs displaced␣
↪→density matrix'''

def D(state,alpha):
Rho_new=displace(N_dim,alpha)*state*displace(N_dim,alpha).dag()
return Rho_new

"""Phase shift operator"""
def Phase(theta):

b=-1j*theta*a1.dag()*a1;
return b.expm()

"""Balanced Beamsplitter"""
def BS_50_50(a1,a2):

b = (np.pi/4)*(tensor(a1,a2.dag()) - tensor(a1.dag(),a2))
return b.expm()

'''The function below creates a beamsplitter operation that acts on
two modes. The value for k determines what number Fock state could be
filtered out of the first state based on a single photon input for the
second BS port, followed by single photon detection.'''
def BS_operator_filtering(a1, a2, k):

theta_k = np.arctan(1/np.sqrt(k))
T = np.sin(theta_k)*np.sin(theta_k)
R = np.cos(theta_k)*np.cos(theta_k)
print('I am filtering', k, 'and:', theta_k*180/math.pi)
print('BS T is : ', T, 'and : ', R)
b = theta_k*(tensor(a1,a2.dag()) - tensor(a1.dag(),a2))
return b.expm()

"""n-photon Fock state density matrix: http://qutip.org/docs/3.1.0/guide/
↪→guide-states.html"""

def Fock_state(n, N_dim):
return fock_dm(N_dim, n)

"""Coherent State: alpha is the amplitude"""
def coherent_state(alpha, N_dim):

return coherent_dm(N_dim, alpha)
""" Phase-averaged coherent states"""
def PHAV(alpha, n_dim, n_trun):

PHAV = 0;
for i in range(n_trun):

PHAV += ((math.pow(alpha, 2*i)/math.factorial(i))*fock_dm(n_dim, i))
rho_PHAV = math.exp(-math.pow(alpha,2))*PHAV
return Qobj(rho_PHAV)

"""Squeezed state: r is the squeezing parameter"""
def Sq(state,r):

Rho_new=squeeze(N_dim,r)*state*squeeze(N_dim,r).dag();
return Rho_new

"""Schrodinger cat states"""
def cat_plus(alpha):

cat = (1/(np.sqrt(2)*np.sqrt(1+np.e**(-alpha*alpha.
↪→conj()))))*(coherent(N_dim,-alpha)+(coherent(N_dim,alpha)))

2



return cat
def cat_minus(alpha):

cat = (1/(np.sqrt(2)*np.sqrt(1-np.e**(-alpha*alpha.
↪→conj()))))*(-coherent(N_dim,-alpha)+(coherent(N_dim,alpha)))

return cat
"""Utilize positive-operator value measurments (POVM) of the detector
to define a PNR detector with efficiency eta, n_truc is the detector saturation␣

↪→threshold, please refer to:
https://arxiv.org/abs/1909.10628 for more details"""

def pnr_resolution_detector(eta, click, n_truc):
pi_n = 0;
l = np.arange(click,n_truc)
for i in l:

pi_n += n_choose_k(i,click)*math.pow((1-eta),(i-click))*math.
↪→pow(eta,click)*fock(N_dim,i)*fock(N_dim,i).dag()

#print("The final Povm element is: ", pi_0)
return Qobj(pi_n)

'''Performs photon catalysis with Fock state input. Both inputs
are density matrices, and the returned output mode is a normalized
density matrix after the PNR detection'''
def Fock_Filter_povm(in_state,in_fock,refl,num_det,eta,n_truc):

Projector = tensor(pnr_resolution_detector(eta, num_det,␣
↪→n_truc),qeye(N_dim));

Initial_state=tensor(in_state,ket2dm(fock(N_dim,in_fock)));
theta_k=np.arccos(np.sqrt(refl));
BS1= ((theta_k)*(tensor(a1,a2.dag()) - tensor(a1.dag(),a2))).expm()
Rho=BS1*Initial_state*BS1.dag();
Rho_filtered = ((Rho*Projector).ptrace(1))/((Rho*Projector).tr())
'''The operation .ptrace(m) takes the partial trace over every mode
EXCEPT m, where the numbering startes at 0. So .ptrace(1) means
you keep mode 1, which is actually the 2nd mode'''
print('BS has reflectivity',refl,' and I am detecting the |',num,

'> state,where my detector has efficiency', eta)
return Rho_filtered

'''Performs photon catalysis with Fock state input and calculates
the probability of success.'''
def Fock_Filter_prob(in_state,in_fock,refl,num_det,eta,n_truc):

Projector = tensor(pnr_resolution_detector(eta, num_det,␣
↪→n_truc),qeye(N_dim));

Initial_state=tensor(in_state,ket2dm(fock(N_dim,in_fock)));
theta_k=np.arccos(np.sqrt(refl));
BS1= ((theta_k)*(tensor(a1,a2.dag()) - tensor(a1.dag(),a2))).expm()
Rho=BS1*Initial_state*BS1.dag();
P=(Rho*Projector).tr()
print('The probability of a sucessful detection is:',P)
Rho_filtered = ((Rho*Projector).ptrace(1))/((Rho*Projector).tr())
#Rho_filtered=Rho*Projector

3



'''The operation .ptrace(m) takes the partial trace over every mode
EXCEPT m, where the numbering startes at 0. So .ptrace(1) means you
keep mode 1, which is actually the 2nd mode'''
print('BS has reflectivity',refl,' and I am detecting the |',num,

'> state, where my detector has efficiency', eta)
return Rho_filtered

'''Generic photon catalysis where the two input states are allowed to be
arbitrary. Takes in two density matrices and returns a density matrix
along with success probability.'''
def catalysis(in1,in2,refl,num_det,eta,n_truc):

Projector = tensor(pnr_resolution_detector(eta, num_det,␣
↪→n_truc),qeye(N_dim));

Initial_state=tensor(in1,in2);
theta_k=np.arccos(np.sqrt(refl));
BS1= ((theta_k)*(tensor(a1,a2.dag()) - tensor(a1.dag(),a2))).expm()
Rho=BS1*Initial_state*BS1.dag();
P=(Rho*Projector).tr()
print('The probability of a sucessful detection is:',P)
Rho_filtered = ((Rho*Projector).ptrace(1))/((Rho*Projector).tr())
'''The operation .ptrace(m) takes the partial trace over every mode
EXCEPT m, where the numbering startes at 0. So .ptrace(1) means you
keep mode 1, which is actually the 2nd mode'''
print('BS has reflectivity',refl,' and I am detecting the |',num,

'> state, where my detector has efficiency', eta)
return Rho_filtered

'''Defines the fidelity between two arbitrary quantum states'''
def fid(state1,state2):

F=np.absolute((state1.sqrtm()*state2*state1.sqrtm()).sqrtm().tr())
return F

"""The Wigner function reconstruction from the parity measurements accessed␣
↪→with PNR measurements"""

def Wigner_as_parity_expectation(rho):
W = 0;
prob_array = rho.diag()
#print("length of prob_araay:", len(prob_array))
for i in range(len(prob_array)):

W+=math.pow(-1,i)*prob_array[i]
print("Amplitude of Wigner function is: ", W/math.pi)
return W/math.pi

4
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[1]: """This SDP is built upon opensource python library for convex optimizations.␣
↪→Please refer to:https://www.cvxpy.org/"""

import cvxpy as cp
import cvxopt
from scipy import linalg
import scipy as scp

[2]: '''This functions minimized the l2 norm of [O-CM], please refer to: https://
↪→arxiv.org/abs/1911.00173v2'''

def state_overlap_tomography(Matrix_prob, Measurements, gamma):
M = Matrix_prob; # the coherent state coefficients matrix
Q_measured = Measurements; #Overlab measurements and gamma is the adhoc␣

↪→paremeter set according to noise level
#P = cp.Variable((N_dim,N_dim), PSD = True) #To optimize over the real␣

↪→space
P = cp.Variable((N_dim,N_dim), hermitian = True)# To optimize over the␣

↪→complex space
#Error = cp.sum_squares(M*P - Q_measured)
Error = cp.norm(M*cp.vec(P) - Q_measured,2)#second parameter gives norm␣

↪→type
Obj_detect = cp.Minimize(Error + gamma*cp.norm(cp.vec(P),2))#the overall␣

↪→minimizer including the regularizer
"""Some other norms"""
#Obj_detect = cp.Minimize(Error + gamma*cp.norm(smooth_regulizer(P), 1))
#Obj_detect = cp.Minimize(Error + gamma*(smooth_regulizer(P)))
#Obj_detect = cp.Minimize(Error + gamma*cp.norm(Diagonal_Matrix(N_dim,␣

↪→N_dim)*P, 2))
#Obj_detect = cp.Minimize(Error + gamma*cp.norm(np.ones(N_dim)*P,␣

↪→2))#+2*gamma*(cp.norm(np.ones(N_dim)*P, 1)))
#Obj_detect = cp.Minimize(Error + gamma*cp.sum_squares(cp.

↪→diff(P)))#*gamma*cp.norm(cp.tv(P),1))
#print(cp.norm(np.ones(N_dim)*P,2))
#constraints = [(cp.reshape(P, 10)).trace()==1]
constraints = [cp.trace(P)==1]# Normalization
#for i in range(N_dim):

1



# constraints.append(cp.real(P[i][i]) >= 0) ##In case,one needs to more␣
↪→constraints on the density matrix elements

Prob_detect = cp.Problem(Obj_detect,constraints)
Prob_detect.solve(verbose = False)
#Prob_detect.solve(cp.CVXOPT) ##Optimizers to solve
p_values = (P.value)
return p_values

2



Detector Tomography

July 29, 2020

[2]: """These functions are used for characterizing quantum detectors by the Wigner␣
↪→funtions, please refer to: https://arxiv.org/abs/1909.10628. To minimize the␣
↪→l2 norm,

we employ the CVXPY"""
def thermal_state_prob(mu, N_dim, N_turn):

Th_m = thermal_dm(N_dim, mu)
Prob = Th_m.diag()
return Prob

def thermal_state_displace_expectation(thermal_state, POVM):
Exp = (D(thermal_state)*POVM).tr() #D(.) is the displacement operator
return Exp

def phase_average_displace_expectation(PHAV, POVM):
Exp = (D(PHAV)*POVM).tr() #D(.) is the displacement operator
return Exp

def Convex_optimization(Matrix_prob, POVM_thermal, gamma):
M = Matrix_prob;
Q_measured = POVM_thermal;
P = cp.Variable(len(POVM_thermal))
Error = cp.norm(M*P - Q_measured,2)
"""Other norms to invert [MP-Q]"""
#Obj_detect = cp.Minimize(Error + gamma*cp.norm(smooth_regulizer(P), 1))
#Obj_detect = cp.Minimize(Error + gamma*(smooth_regulizer(P)))
#Obj_detect = cp.Minimize(Error + gamma*cp.norm(Diagonal_Matrix(N_dim,␣

↪→N_dim)*P, 2))
#Obj_detect = cp.Minimize(Error + gamma*cp.norm(np.ones(N_dim)*P,␣

↪→2))#+2*gamma*(cp.norm(np.ones(N_dim)*P, 1)))
Obj_detect = cp.Minimize(Error + gamma*cp.norm(P,2))

## Obj_detect = cp.Minimize(Error + gamma*cp.sum_squares(cp.
↪→diff(P)))#*gamma*cp.norm(cp.tv(P),1))

#print(cp.norm(np.ones(N_dim)*P,2))
#constraints = [0 <= P, P <= 1, cp.sum(P)<=1, -1<=␣

↪→overall_P(P),overall_P(P)<=1]
constraints = [0 <= P, P <= 1, -1<= overall_P(P),overall_P(P)<=1]
Prob_detect = cp.Problem(Obj_detect, constraints)
Prob_detect.solve(solver=cp.CVXOPT)
p_values = (P.value)

1



return p_values
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PNR distributions for segmented detector

July 29, 2020

[1]: """This function was used to find the number of photon-splitting␣
↪→configurations, please refer to, Optics Express 28 (3), 3660-3675

for details. Details on the opensource solver can be found:
https://developers.google.com/optimization/cp/original_cp_solver"""

from ortools.constraint_solver import pywrapcp
import matplotlib.pyplot as plt
from matplotlib import*
def CP_solver(num_input, num_mode, k_clicks):

"""num_input: number of photons
num_mode : number of output modes or SPADs
K : Solutions are stored in two-array
k_clicks: the click number"""

global K, eta
solver = pywrapcp.Solver("Photon_Detection")
A = [solver.IntVar(0, num_input, "n%i" % i) for i in range(num_mode)]
solver.Add(np.sum(A) == num_input)
#for i in range(k_clicks):
# solver.Add(A[i]!=0) ##This is used when eta is 1, i.e., no␣

↪→radiative losses
db = solver.Phase(A, solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE)
solution = solver.Assignment()
solution.Add(A)
collector = solver.AllSolutionCollector(solution)
solver.Solve(db, [collector])
print("Solutions found:", collector.SolutionCount())
print("Time:", solver.WallTime(), "ms")
K = np.zeros((collector.SolutionCount(),num_mode))
for sol in range(collector.SolutionCount()):

#print("Solution number" , sol, '\n')
for i in range(num_mode):

K[sol][i] = (collector.Value(sol, A[i]))
return K

1
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tion of arbitrary photon statistics. Phys. Rev. Lett., 123:153604, Oct 2019.

[68] Rajveer Nehra, Chun-Hung Chang, Qianhuan Yu, Andreas Beling, and Olivier

Pfister. Photon-number-resolving segmented detectors based on single-photon

avalanche-photodiodes. Optics Express, 28(3):3660–3675, 2020.

[69] Young-Sik Ra, Adrien Dufour, Mattia Walschaers, Clément Jacquard, Thibault

Michel, Claude Fabre, and Nicolas Treps. Non-gaussian quantum states of a

multimode light field. Nature Physics, 16(2):144–147, 2020.
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[152] Matteo Paris and Jaroslav Řeháček, editors. Quantum State Estimation, volume

649. Springer-Verlag Berlin Heidelberg, 2004.

[153] Marcus Cramer, Martin B. Plenio, Steven T. Flammia, Rolando Somma, David

Gross, Stephen D. Bartlett, Olivier Landon-Cardinal, David Poulin, and Yi-Kai

Liu. Efficient quantum state tomography. Nat. Commun., 1:149, 2010.

[154] M. Hillery, R.F. O’Connell, M.O. Scully, and E.P. Wigner. Distribution func-

tions in physics: Fundamentals. Physics Reports, 106(3):121 – 167, 1984.



BIBLIOGRAPHY 255

[155] Egor S Tiunov, VV Tiunova, Alexander E Ulanov, AI Lvovsky, and AK Fedorov.

Experimental quantum homodyne tomography via machine learning. Optica,

7(5):448–454, 2020.

[156] Xun Gao and Lu-Ming Duan. Efficient representation of quantum many-body

states with deep neural networks. Nature communications, 8(1):1–6, 2017.

[157] MS Kim, Jinhyoung Lee, and William J Munro. Experimentally realizable

characterizations of continuous-variable Gaussian states. Physical Review A,

66(3):030301, 2002.

[158] J Robert Johansson, Paul D Nation, and Franco Nori. Qutip 2: A python

framework for the dynamics of open quantum systems. Computer Physics Com-

munications, 184(4):1234–1240, 2013.

[159] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded model-

ing language for convex optimization. Journal of Machine Learning Research,

17(83):1–5, 2016.

[160] Ching Tsung Lee. External photodetection of cavity radiation. Physical Review

A, 48(3):2285, 1993.

[161] Daryl Achilles, Christine Silberhorn, and Ian A Walmsley. Direct, loss-

tolerant characterization of nonclassical photon statistics. Physical review let-

ters, 97(4):043602, 2006.
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