
Experiential Learning Through an Internship at Capital One

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

David Dimmett

Spring, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

ADVISORS

Rosanne Vrugtman PhD, Department of Computer Science

Daniel Graham PhD, Department of Computer Science

1

Experiential Learning Through an Internship at Capital One

CS4991 Capstone, 2021

David Dimmett
Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

dcd2sg@virginia.edu

ABSTRACT

Whether classroom learning supports success in experiential

learning environments can be an important matter for

computer science students wanting to work in industry. To

examine the relationship of education and work, I use my

recent internship at Capital One, which was to extend the

functionality of a web application using JavaScript and

Vue.JS. I also implemented functional tests to verify that our

work met business requirements. Computer science courses

at UVA like Advanced Software Engineering and

Algorithms gave me substantial background knowledge that

I could adapt to the requirements of my job. However, more

collaboration in some of these courses would have better

prepared the communication and teamwork skills needed

throughout my internship. Finally, the project I worked on

could be improved by refactoring the code to increase

readability and maintainability. Doing so would make future

extensions to the application easier.

1 INTRODUCTION

“Responding to change,” is one of the core principles of the

Agile Manifesto [1]. My summer project at Capital One

reflects the need to embrace this principle. My team’s task

was to introduce a new user type for an application that

monitors and assesses call center agent performance. When

a manager logs into the system, they can listen to their team’s

calls, address performance needs, and assign their team to

another manager if they need to be absent. We added a senior

manager user to improve upon the team delegation

functionality. Previously, a non-delegated team would have

to be manually assigned by the engineering team via a

database entry. Our general approach was to update the

backend API and frontend interface to support these changes.

The team I worked consisted of three other interns. Two

worked on API changes, while two (including me) worked

on the frontend.

Frontend web development can be challenging for many

reasons, one of the most difficult being, implementing an

application which meets functional requirements and is also

pleasing to use. When adding new features to an existing

project, there is an added challenge of preserving previous

work while deciding which segments of older code need to

be changed to support the new features. This problem is

emblematic of the challenges of iteration in software

development.

2 RELATED WORKS

Matthew Wood describes integration testing in “Integration

Testing with React and Enzyme [2].” While we did not use

React or Enzyme and did functional instead of integration

testing, we followed a similar approach to API mocking.

“Micro Frontends,” by Cam Jackson, gives an introduction

to the micro frontend architecture which the application used

[3].

3 PROJECT DESIGN

The following subsections describe various aspects of the

project’s designs. Sections 3.1, 3.2, 3.3, and 3.4 describe the

technology stack, implementation, testing strategy, and

challenges respectively.

3.1 Technology Stack

The application was just one container in an overarching

system which uses the micro frontend architecture. Micro

frontends are analogous to the microservices architecture [3].

The primary library used for the frontend was Vue.js. Vue is

similar to other frontend frameworks in that it allows

websites to be designed using a component structure. HTML

and JavaScript define components using a declarative

template syntax. The HTML section defines the appearance

of the component and can contain embedded JavaScript

variables. If the JavaScript code modifies a variable, the

template will be automatically redrawn, so the changes are

Capstone’21, November, 2021, Charlottesville, VA USA D. Dimmett

2

visible [4]. This property, along with components being

reusable much like functions, is one of the reasons frontend

frameworks like Vue are so useful.

Vue also provides several extensions to its core library. The

two that the codebase used were Vue Router and Vuex. Vue

Router introduces routing that turns a Vue application into a

Single Page Application [5]. An SPA mimics a typical

multipage application, but the appearance of moving

between different URLs is a clever manipulation of the

DOM [6]. Vue router is particularly useful because it allows

for further organization of the code base through page views.

Vuex is another extension for Vue which implements a one-

way data flow state management library. In this architecture,

there is a global, centralized store which holds the data for

the application. The view layer can access the store and

dispatch actions that mutate the store [7]. Figure 1 shows the

flow of this design pattern.

Figure 1: Vuex architecture [7]

The frontend consumed a variety of APIs. The two most

important being the API to collect direct report information

and to make team delegations. The existing delegation API

consisted of a JavaScript AWS Lambda and Elasticsearch

database.

3.2 Implementation

We divided the extension of the frontend into two phases.

The first was to update the view after logging in so that the

senior manager could view their team. On the backend team,

the API had to be modified to collect the managers reporting

to the senior manager and then the agents reporting to each

manager. The frontend received this data as a large nested

object. The presence of nesting determined whether the user

was a senior manager. There were several alternatives

proposed for determining if the user was a senior manager.

We initially tried fetching the direct reports of the user and

then iterating over the result as a list to find the direct reports

of each manager. The performance of this approach was

slow for even modestly sized teams. However, the

alternatives were not stable in the results they returned. For

example, some high-level individual contributors were

counted as managers, even though they were not while using

other APIs. Our team did not own the direct reports API

either, so modifications to suit our needs were not

immediately possible. In the interest of time, we decided to

stick with our original approach, but made some

performance enhancements using Promise.all. Before, we

were waiting for each API call to finish before starting the

next. Promise.all accepts several asynchronous functional

calls and finishes when all the API calls have completed [8].

This method sped up the team data fetching process enough

to be acceptable for our scope.

To display this new team data for senior managers, we

changed several aspects of the application’s design. The first

was to change the language on the main team dashboard to

reflect a senior manager’s perspective. For example, words

like “Agents,” were changed to, “Associates.” We changed

the breadcrumb navigation bar to display “Manager:” before

the names of users that were managers. We also added a

new page route in View Router for the manager team page.

Likewise, we added dynamic links, so a user could click

through senior manager, and manager team levels to view an

individual agent.

The final modification was to enable senior managers to

make delegations. On the backend, we added a single field

to indicate who made a delegation. On the frontend, we

added this field to the API call and changed the wording to

indicate the user was delegating on behalf of another team.

3.3 Testing Strategy

The frontend already had excellent unit and functional test

coverage before work, so maintaining the coverage levels

was essential. I was only assigned functional tests, so I focus

on these tests here.

The functional test suite used Cucumber and Cypress to

execute the tests. Cucumber is a behaviour-driven testing

framework which uses a language called Gherkin to define

test cases. Gherkin uses a plain language like syntax to

define test cases based on the acceptance criteria of a user

story. These are called steps, which are then backed up by

code that actually executes the assertions and mocks

common in test cases [9]. Cypress is a test runner which

simulates a live web browser to run tests against. Most of the

Capstone’21, November, 2021, Charlottesville, VA USA D. Dimmett

3

functional test cases assert some condition in the web page

has been met. For example, one user story required the page

to display an error if the team data API did not work. The

test case then mocked the API for failure and asserted that

the error component was on the page.

3.4 Challenges

There were two major blockers that occurred during

development. The first was an issue related to feature toggles

and an API call. Throughout development, we used feature

toggles to guard our work from going into the production

environment too soon. The frontend fetched the feature

toggles via an API call in the top-level component and stored

it in Vuex. In the breadcrumb navigation component,

rendering would sometimes finish before the API call

returned. Even if the API call eventually finished, the page

would not update accordingly. We found that assigning the

feature toggle variable to a watcher property in Vue allowed

us to poll if the toggle was ready. Although this solution was

somewhat verbose, it prevented an awkward inconsistency

from appearing to the user.

Setting up API mocking in the functional test also proved

difficult. The version of Cypress needed to mock network

requests was incompatible with several other JavaScript

packages used in the application. We had to carefully

upgrade those packages and remedy any issues caused by

obsolesce. This change also had to be approved by another

team. The benefit was that we could better test our changes.

4 RESULTS

We were able to complete all user stories for implementing

the senior manager user type. While I do not have

quantitative data on our work, our team did present our work

before several managers and the team’s product manager.

These stakeholders positively received the work. The

completion of our work also meant that the engineering team

will no longer have to shift focus away from normal work to

handle database management tasks.

Besides the material results discussed above, I learned more

about frontend web development, software testing, and

Agile. Most of my frontend experience has been with React,

but learning Vue showed me some different approaches to

the problem. Despite overlapping in some areas, Vue is

much more declarative than React. Vue also provides more

built-in functionality that would otherwise have to be

achieved through third-party packages in React.

Software testing and Agile development are both discussed

in classes like Advanced Software Development

Techniques; however, I had never experienced these topics

in such a structured way. On my team, there was a dedicated

Agile delivery lead and product manager. The product

manager was the primary stakeholder of our project, so being

able to refer questions to them during stand up was very

beneficial. I also gained experience using the Jira software

to manage sprint tickets. Most of the code I wrote was test

code. The functional testing experience I gained taught me

about the importance of crafting precise test cases. I also

learned different approaches to browser simulation and API

mocking.

5 Conclusion

Software is an iterative process. During daily stand-up

meetings, requirements were discussed and updated,

showing the need to embrace the iterative process. In the end,

this iteration led to a finished product that satisfied our

stakeholders.

6 FUTURE WORK

In retrospect, the method for determining if a user is a senior

manager, was brittle. The check is repeated on multiple

pages, and is not cached. In the future, new pages wishing to

incorporate the senior manager user data will have to repeat

the API call. The user-type checking logic could be moved

into Vue Router as a beforeEach navigation guard.

Navigation guards are functions that are run each time the

user navigates from one view to another [10]. We would

move the checking logic to a navigation guard during the

initial load of the application. This modification would

simplify the codebase and make it easier to add new user

types in the future.

7 Evaluation

Nothing in the CS curriculum explicitly taught me Vue,

JavaScript, or functional testing with Cucumber. However, I

felt well-equipped to learn all these technologies on my own.

The background knowledge I have gotten from CS courses

like Algorithms, Program and Data Representation, and

Advanced Software Development is therefore adaptable to

many scenarios. However, students would benefit from more

group work experience. Many classes require students to

work independently and ban collaboration, but we were

expected to collaborate frequently in the work environment.

More group work in CS classes would improve

communication and project planning skills.

REFERENCES

Capstone’21, November, 2021, Charlottesville, VA USA D. Dimmett

4

[1] Manifesto for Agile Software Development. Retrieved October

23, 2021 from https://agilemanifesto.org/

[2] Matthew Wood. 2018. Integration Testing with React and

Enzyme. Retrieved October 23, 2021 from

https://tech.ebayinc.com/engineering/integration-testing-with-

react-and-enzyme/

[3] Cam Jackson. Micro Frontends. martinfowler.com. Retrieved
October 23, 2021 from https://martinfowler.com/articles/micro-
frontends.html

[4] Introduction | Vue.js. Retrieved October 24, 2021 from

https://v3.vuejs.org/guide/introduction.html#what-is-vue-js

[5] Vue Router. Retrieved October 24, 2021 from

https://next.router.vuejs.org/introduction.html

[6] SPA (Single-page application) - MDN Web Docs Glossary:
Definitions of Web-related terms | MDN. Retrieved November 13,
2021 from https://developer.mozilla.org/en-
US/docs/Glossary/SPA

[7] What is Vuex? | Vuex. Retrieved October 25, 2021 from
https://vuex.vuejs.org/#what-is-a-state-management-pattern

[8] Promise.all() - JavaScript | MDN. Retrieved October 24, 2021

from https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all

[9] Introduction - Cucumber Documentation. Retrieved October
25, 2021 from https://cucumber.io/docs/guides/overview/

[10] Vue Router. Retrieved October 25, 2021 from

https://next.router.vuejs.org/guide/advanced/navigation-

guards.html

https://agilemanifesto.org/
https://tech.ebayinc.com/engineering/integration-testing-with-react-and-enzyme/
https://tech.ebayinc.com/engineering/integration-testing-with-react-and-enzyme/
https://martinfowler.com/articles/micro-frontends.html
https://martinfowler.com/articles/micro-frontends.html
https://v3.vuejs.org/guide/introduction.html#what-is-vue-js
https://next.router.vuejs.org/introduction.html
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://vuex.vuejs.org/#what-is-a-state-management-pattern
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://cucumber.io/docs/guides/overview/
https://next.router.vuejs.org/guide/advanced/navigation-guards.html
https://next.router.vuejs.org/guide/advanced/navigation-guards.html

