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Systems pharmacology of cell-signaling networks in 

human disease 

 

ABSTRACT 

 Cell-signaling networks are fascinatingly complex communication systems that 
integrate a diverse array of extracellular cues and appropriately modulate cellular 
responses.  Deregulation of these networks can result in various human diseases, from 
cancer to Alzheimer’s disease.  A systems-level understanding of cell-signaling networks 
will improve our understanding of normal physiology and disease states, and most 
importantly, improve our ability to pharmacologically treat disease. 

In this dissertation, we develop and implement experimental and computational 
approaches to study human cell-signaling networks.  This work is comprised of four 
aims: 1) to develop an experimental platform to measure receptor expression, 2) to study 
the effect of local pathway topology on directed perturbations, 3) to apply data-driven 
modeling to a host-pathogen dataset to discover signaling subnetworks, and 4) to develop 
a high-throughput multiplex experimental assay to measure dynamic information flow in 
cell-signaling networks. 
 Many signal transduction cascades are initiated by receptors that sense 
extracellular stimuli and catalyze downstream signaling events.  Receptor expression is 
therefore critical in defining cellular responsiveness.  We began by developing a high-
throughput qRT-PCR-based platform to measure expression of 194 signaling receptors.  
We then leveraged the high-throughput capabilities of the assay to probe receptor 
expression patterns in 40 cancer cell lines.  Downstream of receptors, pathway structure 
is critical for processing and propagating cellular information.  We next built 95 
computational models to study the effect of local pathway connectivity on drug and 
RNAi targeting.  The models revealed an important role for pathway structure in 
determining levels of pathway inhibition.  Pathways are further interconnected with other 
pathways to integrate numerous cues and regulate cellular processes.  We next applied 
data-driven modeling to study cell signaling during Coxsackievirus B3 infection of 
cardiomyocytes.  The model implicated the ERK1/2, ERK5, and p38 pathways in 
regulating apoptosis and necrosis during infection.  Follow-up experiments revealed dual 
ERK1/2 and p38 inhibition dramatically reduces cell death and virus release.  In order to 
measure dynamic information flow throughput the network in multiple pathways 
simultaneously, we describe the design of a high-throughput kinase activity assay.  
Together these aims provide a framework to study cell-signaling networks and their 
pharmacological inhibition at a systems level. 
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CHAPTER 1  

Introduction 

 

1.1.   Complexity of cell-signaling as a challenge and opportunity  

1.1.1. Introduction 

Cell-signaling networks are interconnected webs of proteins that sense a cell’s 

extracellular environment and govern cellular responses.  The ability of the cell-signaling 

network to correctly interpret and appropriately respond to extracellular signals underlies 

important biological processes at the molecular, cell, tissue, and organ levels.  The 

deregulation of this communication network is the root of diverse human diseases 

including cancer and Alzheimer’s disease (13, 14).  Drug discovery to combat these 

diseases is a challenge that spans multiple levels of complexity and scale, requiring the 

selection of a compound to modulate a cellular target that will translate to the 

amelioration of a disease across a patient population.  Despite the wealth of possible 

targets for drug therapy, identification of new and effective drug targets remains 

challenging.  Individual proteins of interest have been studied intensively, but 

understanding of signaling at the network level remains poor.  At present, the PubMed 

database contains 67,500 publications relevant to the protein p53, yet new complexities 

of p53 continue to be described (15, 16).  Poor understanding of proteins in the context of 

the greater network have plagued targeted drug therapies with problems of acquired drug 

resistance, unwanted side effects of therapies, and heterogeneous responses in patient 

populations (17, 18).  An improved understanding of the roles of individual targets at the 
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network level will guide our selection of better therapeutic targets and combinations of 

targets to overcome these challenges and deliver much-needed therapies for patients. 

 

 1.1.2. Layers of biological complexity in the cell-signaling network 

 Cells sense and respond to an incredible array of extracellular signals:  diffusible 

proteins, drugs, metabolites, mechanical forces, radiation, osmolarity, and many others.  

These diverse arrays of signals vary with time and are presented in a combinatorial 

manner (19).  Cell-signaling networks have evolved to appropriately respond to these 

complex inputs and regulate important cellular functions in response to environmental 

changes, such as immunity and tissue repair (20).  The response of a cell depends on the 

combination of extracellular signals received, the wiring of the signaling network, and the 

dynamics of signals.   

 It is estimated that 12.2% of human genes (of the 58.3% categorized) are 

dedicated to signal transduction (21).  The largest category of signaling components is the 

receptors (Chapter 2).  In the human genome there are 1,543 receptors that sense 

extracellular cues and initiate downstream signaling.  The presence or absence of these 

receptors dictates a cell’s responsiveness to particular cues.  The second major group of 

signal transduction genes is the kinases (Chapter 5).  Downstream of signaling receptors 

there are 518 protein kinases that catalyze signaling events (21, 22).  Information is 

transmitted through the signaling network through the connections between kinases and 

other components in the network to form signaling pathways.  Pathways are further 

embedded within larger subnetworks that connect multiple pathways to each other, 

creating a complex communication network for information processing and flow in the 
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cell.  In order to study these complexities of the signaling network, it will be important to 

exploit methods that measure the components, their interactions, and the dynamics of 

information flow.   

 

 1.1.3. Challenges in identifying critical signaling nodes for drug 

development 

The cell-signaling network is a promising source to look for new therapeutic 

targets, not only due to the vast number of potential targets and regulatory mechanisms, 

but also because most existing and emerging targeted molecular therapies are directed at 

components of the signaling network (or their mutated counterparts), such as trastuzamab 

for breast cancer, vemurafenib for melanoma, and imatinib for chronic myelogenous 

leukemia (23-25).  These targeted therapies have shown milestone successes in treating 

some human diseases, but there is a desperate need to identify new targets for 

development.  Developing drug therapies for patients is an incredibly time-consuming 

and costly process, averaging 12 years and $800 million per drug, with some estimates 

topping $2 billion (26, 27).  Despite these enormous financial and time commitments, 

therapies have faced an attrition rate of about 90% from phase I to the clinic, with the 

majority of these failures due to lack of efficacy and safety (28). Perhaps the most critical 

step in drug development is deciding which cellular targets we should investigate for 

development in the first place.   

Due to the enormous upfront costs for development, inhibitors continue to be 

developed against the same known targets, leaving many candidate enzymes unexplored 

(29).  The discovery of novel clinical targets would provide new hope for patients and 
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energize the research community as recently observed with vemurafenib in metastatic 

melanoma (30).  Historically, the focus of many drug discovery efforts was screening for 

drug-target interactions and studying them in isolation.  By shifting this focus towards 

network level studies and models, we will choose better targets and preemptively thwart 

problems of efficacy and safety.  Further, the ability to predict effective and worthwhile 

drug targets earlier in the process will dramatically decrease the time and financial 

burdens of drug discovery and development.  By studying cell signaling at the network 

level we will identify novel and more efficacious targets to enter the drug development 

pipeline. 

 

1.2. Challenges in systems-level studies of the cell-signaling network  

 Systems biology is an approach to studying the complex interactions in a 

biological system in a holistic, integrative manner to discover emergent properties of the 

system as a whole (31).  Systems pharmacology applies systems biology approaches to 

study the effect of drugs on the network level (32).  The systems biology approach is 

fueled by our ability to collect comprehensive data about biological systems and to 

effectively analyze and integrate these datasets.  Significant advances in technology have 

prompted the “omics” study of biological systems, from genomics to lipidomics to 

metabolomics (33-35).  The utility of these data collection efforts hinges on the 

development of advanced computational techniques to understand these datasets.  For this 

reason, the combination of experimental and computational methods is necessary to study 

cell signaling on the network level. 
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 1.2.1. Generation of comprehensive experimental datasets  

 Advances in technology have dramatically increased our ability to make 

measurements on the molecular and cellular level.  Perhaps most notably, DNA 

sequencing has reduced the cost and increased the speed of generating sequencing data 

by four orders of magnitude over a seven year period, from a price tag of $1,000 per 

megabase to $0.10 per megabase (36).  In addition to increasing assay throughput and 

decreasing cost, the development of assays that can measure new parameters will enrich 

the study of cell-signaling networks.  As our appreciation for the many layers of 

complexity of cellular controls increases, so does our need for technology to measure 

controls in these layers.  For example, in recent work by Bose et al, a high-throughput 

assay to measure phosphatase activity against specific phosphosubstrates was described.  

Early studies with the new assay revealed complex and dynamic regulation of 

phosphatases not previously appreciated (37).  In this thesis, we will discuss the 

development of two experimental platforms for high-throughput data collection to probe 

cell-signaling networks (Chapters 2 and 5).   

 

 1.2.2. Interpretation and integration of large datasets  

 While many systems biology analyses of cell-signaling networks are inherently 

dependent on large-scale data collection efforts, datasets alone will not guide 

identification of new therapies.  Methods to interpret and analyze datasets are as 

important as the datasets themselves.  As has been argued recently, more data will not 

always lead to clarity, particularly if the type of data being collected does not address the 

right problem (38).  Further, associations or connections found in large-scale data 
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collection efforts may not be relevant or meaningful (39).  For these reasons, the co-

development of analysis tools is necessary to make the best use of our data collection 

efforts and extract testable biological hypotheses.  Large-scale data collection efforts 

coupled with analysis methods have made significant contributions to our understanding 

of signal transduction networks (19, 40, 41).  It is also imperative to understand the 

particular caveats and limitations of different experimental techniques and define the 

contexts where the results may not be as accurate (see examples in Chapter 2.3-2.5).  In 

this thesis we will discuss computational methods to analyze and interpret large datasets 

(Chapters 3-4). 

In addition to producing comprehensive datasets and interpreting their biological 

meaning, understanding the layers of complexity will be dependent on our ability to 

integrate these disparate types of data.  Computational models of cell-signaling systems 

have demonstrated how data integration for studying signaling at the network level can 

lead to new biological insights (40, 42).  In Chapter 5 we describe data-driven modeling 

techniques and apply them to a dataset with multiple types of experimental 

measurements. 

 

1.3. Summary 

 The cell-signaling network is enormously complex, demonstrated by a staggering 

number of components and levels of control mechanisms.  The complexity of the cell-

signaling network is apparent by the difficulty to develop effective therapeutics targeting 

signaling components.  Despite this challenge, this complexity also offers a wealth of 

potential targets for therapy.  Importantly, in order to identify the most efficacious 
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targets, we need to understand their roles in the larger network.  Towards this goal, we 

will need experimental methods to measure the components and controls as well as 

computational tools to understand these measurements.  Studying signaling complexities 

at the local and network levels will aid in our understanding of diseases and address 

unmet medical needs.
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CHAPTER 2 

Defining sensing and signaling capabilities of human cells by 

receptome profiling 

 

2.1. Introduction 

2.1.1. Signaling receptors sense the extracellular environment and initiate 

signal transduction in the network 

Transmembrane signaling receptors are the genetically encoded sensors of the 

extracellular environment (43).  A cell can display millions of receptor copies on its cell 

surface (44), yet intracellular responses can be triggered when just a few dozen receptors 

bind their cognate ligands (45, 46).  Importantly, complete absence of a signaling 

receptor renders a cell unresponsive to its ligands (47, 48), meaning that the cell is 

“blind” to that class of environmental inputs.  Transmembrane proteins are enriched in 

the low-abundance fractions of the transcriptome and proteome (49).  These low-

abundance transcripts and the surface proteins that they encode are also effective 

indicators of cell lineage (6, 49).  The qualitative presence or absence of signaling 

receptors thus defines a critical facet of a cell’s identity and its response capabilities. 

 

2.1.2. Limitations of current methods to measure receptor expression 

 Large profiles of receptor families can be extracted from transcriptome 

measurements obtained by oligonucleotide microarrays (50), but the extracted profiles 
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are not definitive.  Microarrays have a compressed dynamic range and poorer detection 

sensitivity relative to single-gene methods (51), and some probe sets on established 

platforms are still plagued with cross-hybridization artifacts (52).  Compared to 

microarrays, digital transcript counting by RNA sequencing (RNA-seq) is more specific 

and shows substantially improved dynamic range (53) and sensitivity (54).  However, 

RNA-seq is methodologically inefficient, because the technique must repeatedly measure 

high-abundance transcripts to achieve maximal sensitivity toward the low-abundance 

targets (55).  There is additional evidence that the rarest transcripts identified by RNA-

seq are nonfunctional (56), which hinders the ability of RNA-seq to determine whether 

signaling-competent receptors are truly present or absent in a cell population. 

 

2.2. Design of a high-throughput assay to measure receptor expression 

Gene expression measurements from microarrays or RNA-seq are often validated 

with quantitative reverse transcription-polymerase chain reaction (qRT-PCR) (51, 56).  

Due to its high sensitivity, wide dynamic range, and verifiable specificity, qRT-PCR is 

routinely viewed as a gold standard for expression studies with individual genes.  

Inspired by an effort aimed at characterizing the transcriptional profile of a subset of G 

protein-coupled receptors (57), here we developed and validated arrayed qRT-PCR 

reagents for 194 transmembrane signaling receptors in the human genome.  We defined a 

signaling “receptome” (58) that includes all human receptor serine-threonine and tyrosine 

kinases, all cytokine and chemokine receptors, as well as all receptors of the Toll-like, 

Frizzled, Notch, and Patched families (Figure 2-1A).  These signaling receptors bind a 

diverse range of macromolecular ligands and show widespread, but selective, tissue 
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expression.  A defined panel enabled in-depth validation of gene-specific reagents that 

together were readily accommodated in a 96-well format for high-throughput profiling. 

 We designed qRT-PCR primers for each gene in the receptome and individually 

optimized the primers so that they produced a consistent amplicon size under the same 

rapid-cycling conditions.  During the initial primer validation, we diagnosed correct 

amplicons by melt-curve analysis, gel electrophoresis, and (when necessary) sequencing.  

The validation experiments produced a verified list of gene-specific melting temperatures 

for direct assessment of receptor transcript presence-absence after each profiling 

experiment. 
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Figure 2-1. High-sensitivity profiling of a human signaling receptome by 
arrayed qRT-PCR.  (A) Distribution of signaling receptor families and 
subfamilies comprising the receptome profiling assay:  TGFβR, transforming 
growth factor-β receptor; BMPR, bone morphogenetic protein receptor; 
ACVR, activin A receptor; EPH, ephrin receptor; EGFR, epidermal growth 
factor receptor; FGFR, fibroblast growth factor receptor; INSR, insulin 
receptor; PDGFR, platelet-derived growth factor receptor; TRK, tropomyosin 
receptor kinase; VEGFR, vascular endothelial growth factor receptor; DDR, 
discoidin domain receptor; LTK, leukocyte receptor tyrosine kinase; MET, 
mesenchymal epithelial transition factor; ROR, retinoic acid receptor-related 
orphan receptor; TIE, tyrosine kinase with immunoglobulin-like and EGF-like 
domains; ILR, interleukin receptor; TNFR, tumor necrosis factor receptor; 
CSFR, colony stimulating factor receptor; IFNR, interferon receptor; CCR, 
chemokine (C-C motif) receptor; CXCR, chemokine (C-X-C motif) receptor; 
TLR, toll-like receptor; FZD, frizzled receptor; Ptch, patched.  (B) 
Reproducibility of receptome profiling across assay replicates.  Receptors 
detected in at least one assay replicate were plotted as log2 relative abundance 
estimated by qRT-PCR cycle threshold assuming 100% amplification 
efficiency.  The complete set of pairwise comparisons is shown in Figure 2-2.	
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Because qRT-PCR of extremely low abundance targets can be sporadic (59), we profiled 

the receptome of each sample in separate duplicates.  Between duplicate qRT-PCR plates, 

we observed strong pairwise correlations in cycle threshold (CT) values (median 

Spearman ρ = 0.84, Pearson R = 0.78) (Figure 2-1F, Figure 2-2).  This indicated that 

plate-to-plate amplification efficiencies were comparable and average CT values could be 

used as a semi-quantitative log2 measure of relative transcript abundance across 

independent qRT-PCR reactions.  In addition, receptor transcript status could be 

qualitatively scored as present or absent based on whether specific amplification was 

detected in at least one of two replicates or not.  Analysis of blank qRT-PCR reactions 

lacking sample indicated that the leading cause for missed detection in a replicate was 

competition of the desired amplicon by nonspecific primer-dimer products that arose 

during the late cycles of amplification.  We reduced these artifacts by minimizing the 

primer concentration while maintaining the amplification efficiency of the desired RT-

PCR product.  Nonetheless, a few receptor transcripts (EPHA8, ERBB2, NRTK1, IL2RB, 

IL22RA2, TNFRSF10A, and TNFRSF25) were significantly variable (P < 0.01, 

Bonferroni-corrected binomial test) because of primer-dimer competition, reinforcing the 

need for duplicate measurements across the receptome. 
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2.3. qRT-PCR receptome profiling is accurate, precise, and more sensitive than 

oligonucleotide microarrays 

To investigate the sensitivity of qRT-PCR receptome profiling, we selected HT-

29 colon adenocarcinoma cells treated with interferon-γ (IFN-γ), which previously served 

as the base condition for a large signaling dataset (19, 41, 60).  We assessed transcript 

presence or absence in HT-29 cells exposed to IFN-γ by receptome profiling and by 

transcriptional profiling with conventional oligonucleotide microarrays.  Compared to the 

	
  
Figure 2-2. Receptome profiling is consistently reproducible across assay duplicates.  Receptor 
transcripts detected in at least one assay replicate (red, one replicate; blue, two replicates) were plotted as 
log2 relative abundance estimated by qRT-PCR cycle threshold assuming 100% amplification efficiency.  
En dash (–) indicates not detected.  The Spearman (ρ) and Pearson (r) correlation coefficients are shown 
inside each graph. 
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present-absent calls of the commercial microarray analysis software, we found that 

receptome profiling was more sensitive (Figure 2-3A).  Only eight receptor transcripts 

were called present by microarray and absent by receptome profiling, and literature 

suggests that several of these 

receptors are false positives on 

the microarray.  For example, 

both ERBB4 and EPOR were 

called present by microarray, 

but ERBB4 mRNA (61), 

ERBB4 protein (62), and 

EPOR protein and receptor 

signaling (63) are undetectable 

in HT-29 cells.  By contrast, 

qRT-PCR receptome profiling 

detected 54 additional receptor 

transcripts that were called 

absent by microarrays.  Many 

of these additional receptors 

have been detected or 

functionally validated in HT-29 

cells previously (Table 2-1).  

This suggested that 

	
  
Figure 2-3.  qRT-PCR receptome profiling is significantly 
more sensitive for detecting receptor transcripts than 
conventional oligonucleotide microarrays.  (A) Present-
absent calls for 177 receptor transcripts monitored on 
Affymetrix U133A microarrays were compared to receptome-
profiling results for HT-29 cells sensitized with 200 U ml-1 
IFNγ for 24 hr.  Statistical significance was assessed by 
Fisher’s exact test.  (B) Detection of FAS protein in HT-29 
cells with or without IFNγ sensitization.  (C) Caspase-3 
cleavage in IFNγ-sensitized HT-29 cells after FAS crosslinking 
with 1 µg ml-1 anti-APO for 24 hr.  (D) Replicated 
densitometry of anti-APO-induced caspase-3 cleavage in HT-
29 cells.  Data are shown as the mean ± s.e.m. of three 
independent samples, and asterisk indicates statistical 
significance (P < 0.05) by Welch’s one-sided t test.  For (B) 
and (C), cells were immunoblotted for the indicated proteins 
with tubulin used as a loading control.  All immunoblots are 
representative of at least three independent experiments.	
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conventional microarray present-absent calls largely reflect differences in detection rather 

than true presence or absence of a transcript.  

 We further evaluated the specificity of receptome profiling by analyzing receptor 

presence or absence through a panel of independent measurements.  We selected the 

death receptor FAS as a gene with lineage-specific expression (64).  FAS mRNA was 

predicted to be absent in IFN-γ-treated HT-29 cells by microarray but present by 

receptome profiling.  We examined FAS abundance by immunoblotting and found that it 

was present and its abundance was increased by IFN-γ (Figure 2-3B), consistent with 

reports in other cell types (64).  Accordingly, stimulation of IFN-γ-treated HT-29 cells 

with a FAS crosslinking antibody (anti-APO) resulted in a strong apoptotic response as 

indicated by caspase-3 cleavage (Figure 2-3C and D).  Thus, qRT-PCR receptome 

profiling uncovered signaling capabilities missed by conventional oligonucleotide 

microarray methods. 

Table 2-1.  Literature support for present calls in HT-29 cells. 

Receptor gene Literature support 

PTK7 Transmembrane and soluble form detected by immunoblotting (65) 
TGFBR1 Detected by qRT-PCR (66) 
CXCR1 Detected by qRT-PCR and flow cytometry, and promotes cell migration in response to 

CXCL8 (67) 
CXCR2 Detected by qRT-PCR and immunohistochemistry (68) 
CXCR4 Detected by qRT-PCR and flow cytometry, and promotes Ca2+ mobilization, increased 

ICAM1 levels, and IL-8 and GROα secretion in response to SDF-1α (69, 70) 

CCR6 Detected by qRT-PCR (70) 
CCR8 Detected by qRT-PCR (70) 
IL15RA Detected by qRT-PCR (71) 
PRLR Detected by Southern blotting (72) 
OSMR Detected by qRT-PCR (73) 
TLR2 Detected by qRT-PCR (74, 75) 
TLR6 Detected by qRT-PCR (74) 
TLR7 Detected by qRT-PCR (75) 
TLR8 Detected by qRT-PCR (75) 
FAS Detected by flow cytometry (76) 
TNFRSF1A Detected by qRT-PCR (77) 
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To assess the accuracy of absent calls, we performed reciprocal experiments with 

two breast epithelial lines, MDA-MB-436 and MCF10A, and tested for the expression of 

CSF1R, encoding the cytokine receptor for macrophage colony-stimulating factor 

(MCSF).  qRT-PCR receptome profiling predicted that CSF1R transcripts were absent in 

MDA-MB-436 cells but present in MCF10A cells, whereas microarray data that did not 

detect CSF1R in either cell line (78).  Using an antibody that recognizes CSF1R, we 

immunoblotted MCF10A cell lysates and detected immunoreactive bands at the predicted 

molecular weight of CSF1R, which were absent in MDA-MB-436 cell lysates (Figure 2-

4A).  We stimulated both cell lines with MCSF and monitored extracellular signal-

regulated kinase 1 and 2 (ERK1/2) phosphorylation as a downstream signaling readout.  

Phosphorylated ERK1/2 (pERK1/2) immunoreactivity increased significantly at 15 min 

after MCSF stimulation in MCF10A cells (Figure 2-4A, B, and C).  Conversely, no 

increases in pERK1/2 were observed in MDA-MB-436 cells at any time after MCSF 

treatment (Figure 2-4D).  The lack of pERK1/2 signaling in MDA-MB-436 cells was not 

due to a general defect in upstream kinases, because we observed robust ERK1/2 

phosphorylation upon epidermal growth factor (EGF) stimulation (Figure 2-4E).  These 

data indicated that MDA-MB-436 cells lack CSF1R transcripts, validating the accuracy 

of the absent calls made by qRT-PCR receptome profiling. 

2.4. qRT-PCR receptome profiling is more sensitive than exon arrays 

Conventional oligonucleotide microarrays are heavily 3’ biased and thus lack the 

probe density of newer arrays that target all known exons (79).  Bioinformatic 

comparisons between exon-targeted and 3’-biased arrays have suggested that exon arrays 

are more sensitive and specific for detecting expressed transcripts than 3’ arrays (80).  
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This raised the possibility that exon-array data would compare more favorably with qRT-

PCR receptome profiling for predicting receptor presence or absence. 

 To make the direct comparison, we prepared total RNA from IFN-γ-treated HT-

29 cells, MCF10A cells, and MDA-MB-436 cells and hybridized these samples to 

Human Exon 1.0 ST arrays.  Exon arrays do not provide a discrete present-absent call, so 

we analyzed the receiver operating characteristics (ROC) of the background-corrected 

expression index (81) for each transcript with respect to the corresponding present-absent 

	
  
Figure 2-4.  qRT-PCR receptome profiling accurately distinguishes receptor 
absence.  (A) Detection of CSF1R protein in MCF10A cells but not in MDA-MB-436 
cells.  Asterisk marks a nonspecific band.  (B) ERK1/2 phosphorylation in MCF10A 
cells following treatment with 100 ng ml-1 MCSF for 15 min.  (C) Replicated 
densitometry of MCSF-induced ERK1/2 phosphorylation in MCF10A cells.  Data are 
shown as the mean ± s.e.m. of three independent samples, and asterisk indicates 
statistical significance (P < 0.05) by Welch’s one-sided t test.  (D) ERK1/2 
phosphorylation in MDA-MB-436 cells following treatment with 100 ng ml-1 MCSF 
for 15 min.  (E) ERK1/2 phosphorylation in MDA-MB-436 cells following treatment 
with 100 ng ml-1 EGF for 5 min.  For (A), (B), (D) and (E), cells were immunoblotted 
for the indicated proteins with tubulin used as a loading control.  All immunoblots are 
representative of at least three independent experiments.	
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call made by qRT-PCR receptome profiling (Figure 2-5A).  At a false-positive rate of 

10%, we found that exon arrays achieved a true-positive rate of 40–55% for signaling 

receptor transcripts, consistent with earlier transcriptome-wide analyses (47% true-

positive rate relative to serial analysis of gene expression) (80).  FAS transcripts were 

readily detected in IFN-γ-treated HT-29 cells below the 10% false-positive rate (Figure 2-

5A), illustrating that exon arrays are more sensitive than 3’ arrays for certain targets. 

 

 For CSF1R, however, we found that a false-positive rate of 40–60% must be 

tolerated to distinguish MCF10A and MDA-MB-436 cells properly (Figure 2-5B and C).  

At this relaxed expression threshold (expression index = 20), the gamma subunit of the 

interleukin-2 (IL-2) receptor IL2RG was predicted by exon arrays to be present in HT-29 

cells and absent in MCF10A and MDA-MB-436 cells (Figure 2-5A, B, and C).  By 

contrast, qRT-PCR receptome profiling predicted that IL2RG should be present in all 

	
  
Figure 2-5.  qRT-PCR receptome profiling is more sensitive for detecting receptor transcripts than exon 
arrays.  (A to C) Receiver operating characteristic (ROC) curves relating exon array expression index to qRT-
PCR present-absent calls for (A) IFNγ-sensitized HT-29 cells, (B) MCF10A cells, and (C) MDA-MB-436 
cells.  The dashed line indicates a representative expression index that properly distinguishes CSF1R 
expression in MCF10A and MDA-MB-436 cells.  The area under the ROC curve (AUC) indicate the overall 
quality of the present-absent classification based on exon array data, with AUC = 1 indicating perfect 
classification and AUC = 0.5 indicating random guessing.  (D) Detection of IL2RG protein in HT-29, 
MCF10A, and MDA-MB-436 cells but not in A375 cells.  Cells were immunoblotted for IL2RG with tubulin 
used as a loading control.  Immunoblots are representative of three independent experiments. 
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three but absent in a fourth cell line, A375 melanoma cells.  Functional testing of IL2RG 

presence through IL-2 stimulation was not possible, because receptome profiling 

indicated that these cell lines lacked one or more of the requisite subunits for the IL-2 

receptor heterotrimer (IL2RA and IL2RB).  Nevertheless, we found by immunoblotting 

that IL2RG was detected in HT-29, MCF10A, and MDA-MB-436 cells, but not in A375 

cells, and the relative abundance of IL2RG protein was consistent with its relative 

transcript abundance obtained by qRT-PCR receptome profiling (Figure 2-5D).  These 

data indicated that sensitivity remains a challenge for exon-targeted microarrays when 

compared to receptome profiling by qRT-PCR.  

 

2.5. qRT-PCR receptome profiling is more specific for mature transcripts than 

RNA-seq 

 A third alternative for global receptome profiling is RNA-seq (53-55), which is 

more sensitive than oligonucleotide microarrays (54, 56).  To compare RNA-seq directly 

with qRT-PCR receptome profiling, we magnetically purified poly(A)+ RNA from lysates 

of HT-29 cells treated with IFN-γ, MDA-MB-436 cells, or MCF10A cells and sequenced 

at two depths:  25 million (M) reads and 50M reads (IFN-γ-treated HT-29, MDA-MB-

436) or 25M reads and 100M reads (MCF10A).  As expected, the RNA-seq analyses 

were strongly correlated across duplicates (Figure 2-6A), and the 50–100M analyses 

detected sequences from substantially more genes than the matched 25M analyses 

(Figure 2-6B).  The RNA-seq data provided an unbiased, comprehensive, and replicated 

set of measurements to compare with qRT-PCR receptome profiling. 
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 We normalized the RNA-seq data to yield relative transcript abundances as reads 

per kilobase per million mapped reads (RPKM) (55) and generated ROC curves with 

respect to the qRT-PCR present-absent calls made by receptome profiling.  For 

nontumorigenic MCF10A cells, there was a strong concordance between RPKM and 

qRT-PCR receptome profiling, which improved slightly with the depth of sequencing 

(Figure 2-7A).  For instance, using a detection threshold of 0.3 RPKM (6), we found that 

RNA-seq could correctly distinguish the presence of CSF1R in MCF10A cells (~0.6 

RPKM) from its absence in MDA-MB-436 cells (~0.02 RPKM) (Figure 2-7, A and B).  

However, for MDA-MB-436 cells, the RPKM-qRT-PCR agreement was much poorer, 

because false positives increased proportionally with false negatives for most RPKM 

thresholds (Figure 2-7B).  This pattern was also observed in IFN-γ-treated HT-29 cells, 

with false positives increasing abruptly at thresholds as high as 10–20 RPKM (Figure 2-

7C).  The discrepancies in the two cancer cell lines was not resolved by deeper 

sequencing (Figure 2-7B and C, lower graphs), suggesting a fundamental difference 

between RNA-seq and qRT-PCR receptome profiling. 
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Figure 2-6. RNA-seq is consistently reproducible across assay duplicates with sensitivity that depends 
on sequencing depth.  (A)  Duplicate RNA-seq data collected from the indicated cells. HT-29 cells were 
IFN-g sensitized.  Note that the total reads differ along the y-axis: MCF10A, 100M total reads, MDA-MB-
436 and HT-29, 50M total reads.  Data were scaled as the total reads per gene per million mapped reads to 
account for the difference in total reads between the x- and y-axes.  (B) Decrease in the number of missed 
genes with increasing sequencing depth.  Data are shown as the number of genes with zero mapped reads 
that were detected in the duplicate RNA-seq dataset. 
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 To determine which data type corresponded more closely to signaling competency, 

we selected two receptors with large RPKM values that were predicted to be absent by 

qRT-PCR receptome profiling.  The fibroblast growth factor receptor 1-encoding gene 

FGFR1 is overexpressed in some colon cancers (82) and was detected at ~20 RPKM in 

IFN-γ-treated HT-29 cells, but FGFR1 transcripts were predicted to be absent by 

receptome profiling.  Using a C-terminal antibody recognizing multiple splice variants of 

FGFR1, we detected FGFR1 in multiple colon cancer cell lines but not in IFN-γ-treated 

HT-29 cells (Figure 2-7D).  Another discrepancy was found with the epidermal growth 

factor receptor family member ERBB3, which was sequenced at ~3 RPKM in MCF10A 

cells and was present by qRT-PCR, ~90 RPKM in MDA-MB-436 cells and was absent 

by qRT-PCR, and ~0.4 RPKM in HT-29 cells and was present by qRT-PCR.  We 

immunoblotted for the cytoplasmic domain of ERBB3 and detected strong 

immunoreactivity in MCF10A cells, which was weaker in HT-29 cells and absent in 

MDA-MB-436 cells (Figure 2-7E), consistent with the relative abundances predicted by 

qRT-PCR receptome profiling.  Therefore, abundant RNA-seq alignments did not 

necessarily correspond to functional receptors in cancer cells. 
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Figure 2-7.  qRT-PCR receptome profiling is more specific for detecting functional receptor genes 
than RNA-seq.  (A to F) Receiver operating characteristic (ROC) curves relating RNA-seq reads per 
kilobase per million mapped reads (RPKM) to qRT-PCR present-absent calls for MCF10A cells 
analyzed at 25M total reads (A) or 100M total reads (B), MDA-MB-436 cells analyzed at 25M total 
reads (C) or 50M total reads (D), and IFNγ-sensitized HT-29 cells analyzed at 25M total reads (E) or 
50M total reads (F).  The dashed line indicates a previously reported RPKM threshold for gene 
detection by RNA-seq (6).  The area under the ROC curve (AUC) is shown as in Fig. 4.  (G) Detection 
of FGFR1 protein in various colon cancer cell lines and MCF10A cells but not in IFNγ-sensitized HT-
29 cells.  (H) Detection of ERBB3 protein in IFNγ-sensitized HT-29 cells and MCF10A cells but not in 
MDA-MB-436 cells.  (I and J) Coverage of RNA-seq reads across portions of the FGFR1 (I) and 
ERBB3 (J) loci for the indicated cell lines.  Introns showing consistent coverage above background are 
underlined in green. 
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 We examined FGFR1 and ERBB3 further by inspecting the coverage of aligned 

sequences across each locus.  In both instances where the corresponding protein was 

absent despite high RPKM, we identified a subset of introns that were detected, 

suggesting incomplete splicing or aberrant intron retention (Figure 2-7F, green).  The 

observed introns were not likely caused by assembly or alignment errors, because we 

obtained multiple paired-end reads spanning the intron-exon junctions of each retention 

event.  MDA-MB-436 and HT-29 cells showed the same overall coverage of intronic and 

other noncoding RNA sequences compared to MCF10A cells (Figure 2-8A).  However, 

when focusing on the putative false positives detected by RNA-seq in the cancer cell 

lines, we found that these genes were significantly enriched for intronic sequences 

relative to receptor transcripts that were also called present by qRT-PCR (Figure 2-8B).  

These data suggest that incompletely spliced RNA sequences can be discriminated more 

effectively by qRT-PCR-based profiling than by current implementations of RNA-seq. 



 35 

 

2.6. Receptome profiling defines signaling signatures enriched in specific tissue 

lineages 

To demonstrate an application of receptome profiling, we surveyed the signaling 

receptomes of 40 human cell lines.  The collection was weighted toward pancreatic, 

melanocytic, breast, and colonic lineages to evaluate the link between receptome 

signatures and tissue origin.  As expected (83),	
  we found that receptome signatures 

clustered significantly according to lineage (Figure 2-9).  Lineage enrichment was 

associated with the high abundance of certain signaling receptor transcripts (Figure 2-10, 

yellow).  For example, transcripts for the receptor tyrosine kinase ERBB3 were increased 

among breast epithelia, which may explain why some breast cancers have amplification 

	
  
Figure 2-8. Receptor discrepancies between qRT-PCR and RNA-seq in cancer cells are enriched for 
retained intronic sequences.  (A) Distribution of transcript-associated RNA-seq reads in the indicated cell 
lines.  HT-29 cells were IFN-g sensitized.  (B) Contingency tables for the receptor genes that agree or 
disagree between qRT-PCR and RNA-seq with respect to the genes with partial intronic coverage as 
measured by RNA-seq.  Statistical significance was assessed by Fisher’s exact test. 
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of ERBB2, a dimerization partner of ERBB3 (84).  Many tissue-enhanced patterns were 

supported by previous studies, although roughly half of the patterns uncovered by 

receptome profiling had not been described to our knowledge (Table 2-2). 

 To exploit the qualitative sensitivity of receptome profiling, we removed all 

quantitative information and reclustered the 40 cell lines on the basis of the presence or 

absence of receptor transcripts.  The binary present-absent signature was sufficient to 

categorize much of the cell-line panel according to lineage (Figure 2-11).  For the tissue 

types in the panel, lineage enrichment was not associated with tissue-selective presence 

of receptor subsets, but rather with the absence of transcripts (Figure 2-12, yellow).  

Using strict criteria for lineage specificity, we identified seven receptors with tissue-

specific absence but only one receptor with tissue-specific presence (Table 2-3).  For 

example, the chemokine receptor XCR1 was absent in eight of 10 melanoma lines (P < 

0.005, hypergeometric test), consistent with the reported loss of XCR1 in culture 

compared to primary melanoma tumors (85).  A few absent signatures could be inferred 

from literature reports, but most had not been reported previously (Table 2-3). 

 

 



 37 

SK-MEL-2

SLM2

HPDE

HeLa

RTKRS/TKChemokine Cytokine Other

MelanomaPancreatic Breast Colon Other
2

	
  
Figure 2-9. One-way hierarchical clustering of relative receptor transcript abundances obtained 
by receptome profiling in 40 human cell lines.  One-way hierarchical clustering of receptor-specific 
relative abundance after normalization to GAPDH as a loading control.  Clustering was done using a 
Euclidean distance metric with Ward’s linkage.  Dendrogram branches significantly enriched for 
specific lineages (P < 0.05) are matched to the color associated with the lineage.  Enrichment analysis 
for cell lineages was performed by the hypergeometric test.  n.d., not detected. 
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Figure 2-10.  Two-way hierarchical clustering of relative receptor abundances obtained by 
receptome profiling in 40 human cell lines.   Two-way hierarchical clustering of receptor-specific 
relative abundance after normalization to GAPDH as a loading control.  Clustering was done using a 
Euclidean distance metric with Ward’s linkage.  Yellow boxes highlight local clusters of receptor 
patterns that are lineage specific.  Dendrogram branches significantly enriched for specific lineages 
(P < 0.05) are matched to the color associated with the lineage.  Enrichment analysis for cell lineages 
was performed by the hypergeometric test.  n.d., not detected. 



 39 

 

	
  
Figure 2-11. One-way hierarchical clustering of high-sensitivity present-absent calls obtained 
by receptome profiling in 40 human cell lines.  One-way hierarchical clustering of high-
sensitivity present-absent calls from receptome profiling.  Clustering was done using a Euclidean 
distance metric with Ward’s linkage.  Dendrogram branches significantly enriched for specific 
lineages (P < 0.05) are matched to the color associated with the lineage.  Enrichment analysis for 
cell lineages was performed by the hypergeometric test.  n.d., not detected. 
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Figure 2-12. Two-way hierarchical clustering of high-sensitivity present-absent calls 
obtained by receptome profiling in 40 human cell lines.  Two-way hierarchical clustering of 
high-sensitivity present-absent calls from receptome profiling.  Clustering was done using a 
Euclidean distance metric with Ward’s linkage.  Yellow boxes in (B) and (D) highlight local 
clusters of receptor patterns that are lineage specific.  Dendrogram branches significantly 
enriched for specific lineages (P < 0.05) are matched to the color associated with the lineage.  
Enrichment analysis for cell lineages was performed by the hypergeometric test.  n.d., not 
detected. 



 41 

 
2.7. Ectopic expression of IL10RA in melanoma cells engages an artificial 

autocrine circuit 

We examined the impact of receptor absence on cell function by selecting the 

interleukin-10 (IL-10) receptor alpha subunit IL10RA for follow-up studies.  IL10RA was 

called absent in nine of 10 melanoma lines by qRT-PCR receptome profiling (Table 2-3), 

which was notable because melanoma cells are a source of anti-inflammatory IL-10 (86, 

87).  To determine if absence of IL10RA influenced cell behavior, we used A375 

melanoma cells, which lack IL10RA but constitutively secrete IL-10 (88).  We 

transduced the cells with either a control luciferase-expressing lentivirus or a lentivirus 

encoding IL10RA.  As expected, IL10RA was not detectable in control luciferase-

expressing A375 cells but was present in cells transduced with IL10RA (Figure 2-13A).  

The IL10RA-expressing cells also showed phosphorylation of STAT3 upon stimulation 

with recombinant IL-10, whereas the control A375 cells were unresponsive (Figure 2-13, 

B and C).  Therefore, the A375 melanoma cell line has all the intracellular machinery for 

transducing an IL-10 signal except for IL10RA, which acts as a gatekeeper for conferring 

cellular responsiveness. 

 To determine whether IL10RA had engaged an artificial autocrine circuit in A375 

cells, we analyzed the concentration of IL-10 in conditioned medium by ELISA.  IL-10 

was readily detected in the medium conditioned by control cells but not in medium 

conditioned by IL10RA-expressing cells (Figure 2-13D).  By contrast, IL10 mRNA 

abundance was the same in the control and IL10RA-expressing cells (Figure 2-13E), 

suggesting that the absence of IL-10 in the medium of IL10RA-expressing cells could be 



 42 

the result of autocrine trapping.  We also noted a ~60% reduction in basal STAT3 

phosphorylation (Figure 2-13F), which may be due to chronic IL-10 signaling causing 

feedback desensitization of other STAT3-activating pathways in IL10RA-expressing 

cells (89). 

To test whether the IL10RA-triggered autocrine circuit was sufficient to affect 

cellular responses, we stimulated receptors of the tumor necrosis factor (TNF)-family that 

were detected in A375 cells by qRT-PCR receptome profiling.  IL10RA slightly 

increased the resistance of A375 cells to apoptosis induced by FAS crosslinking with 

anti-APO (Figure 2-13G).  The transcriptional signature of nuclear factor-κB (NF-κB) 

target genes was also altered when IL10RA-expressing A375 cells were stimulated with 

TNF (Figure 2-13H).  Whereas some NF-κB targets, such as NFKBIA and CCL2, were 

unaffected by ectopic IL10RA expression, others were significantly inhibited (IL1A and 

IL6, Figure 2-13H).  We conclude that receptor absence is important to insulate cells 

from secreted proteins that are meant to act as paracrine ligands.  Aberrant receptor 

expression creates autocrine circuitry that traps paracrine factors locally and disrupts 

signaling, gene expression, and cellular responses. 
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Figure 2-13.  Forced expression of IL10RA in melanoma cells creates an autocrine signaling loop 
that alters signaling, gene expression, and cell fate.  (A) IL10RA protein abundance after lentiviral 
transduction of A375 cells with V5-tagged luciferase or IL10RA.  (B) STAT3 phosphorylation in 
luciferase- or IL10RA-expressing A375 cells following treatment with 20 ng ml-1 IL-10 for 20 min.  (C) 
Replicated densitometry of IL-10-induced STAT3 phosphorylation in A375 cells.  (D) ELISA 
quantification of IL-10 protein in the conditioned medium of luciferase- or IL10RA-expressing A375 
cells.  (E) qRT-PCR quantification of IL10 mRNA abundance in luciferase- or IL10RA-expressing A375 
cells.  (F and G) Decrease in baseline STAT3 phosphorylation for A375 cells ectopically expressing 
IL10RA.  (H and I) Caspase-3 cleavage in luciferase- or IL10RA-expressing A375 cells after FAS 
crosslinking with 1 µg ml-1 anti-APO for 24 hr.  (J to M) qRT-PCR quantification of NF-κB target genes 
in luciferase- or IL10RA-expressing A375 cells following treatment with 100 ng ml-1 TNF for the 
indicated time points.  For (A), (B), (F), and (H), cells were immunoblotted for the indicated proteins with 
tubulin or procaspase-3 used as a loading control.  For (C), (D), (G), and (I), data are shown as the mean ± 
s.e.m. of three independent samples.  For (E) and (J) to (M), data are shown as the geometric mean ± log-
transformed s.e.m. of four independent samples.  Asterisk indicates statistical significance (P < 0.05) by 
Welch’s one-sided t test (I) or log-transformed two-way ANOVA with Sidák post-test correction (L and 
M).  All immunoblots are representative of at least three independent experiments. 
	
  



 44 

2.8. Perturbation of cellular receptome signatures by environmental stimuli 

We explored the plasticity of cellular receptomes by profiling receptor transcript 

abundance in 293T embryonic kidney cells and MCF7 breast carcinoma cells after 

exposure to various stimuli (Figure 2-14A).  We used EGF as a growth factor stimulus, 

IFN-γ and TNF as proinflammatory stimuli, and ionizing radiation (IR) as an 

environmental stress.  We found that most stimulus-induced changes in the abundance of 

receptor transcripts were relatively minor (± twofold).  This was particularly true for IR-

treated samples, which gave rise to abundance changes that were highly variable across 

independently irradiated cultures.  For the proinflammatory stimuli, however, there were 

several notable transcriptional responses that warranted additional analysis.  In both cell 

lines, the TNF-superfamily receptor TNFRSF9 was strongly induced upon TNF 

stimulation (Figure 2-14B), consistent with a previous report (90).  We also observed 

many changes that were specific to cell type, indicating context-specific transcriptional 

programs.  For example, abundance of the insulin receptor transcript INSR mildly 

increased in TNF-stimulated MCF7 cells (Figure 2-14B).  MCF7 cells also showed 

selective increases in TLR3 and IL15RA transcripts upon stimulation with IFN-γ, which 

were not observed in 293T cells (Figure 2-14B).  This difference cannot be attributed to a 

general lack of IFN-γ responsiveness, because 293T cells abundantly express the 

transcripts of the required receptors and IFN-γ triggers changes in the abundance of other 

transcripts (Figure 2-14A) (91).  The induction of IL15RA upon IFN-γ treatment of 

MCF7 cells agrees with a previous study (92), and we further found that IL15RA was also 

induced in MCF7 cells by TNF (Figure 2-14B).  TNF-stimulated transcription of IL15RA 

has not been previously reported, illustrating that receptome profiling can be used as a 



 45 

discovery tool to link environmental changes to transcriptional signatures of other 

environmental sensors. 
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Figure 2-14.  Stimulus-
dependent changes in 
receptome profiles are 
dependent on cell type.  (A) 
Receptor abundances in 293T 
embryonic kidney cells and 
MCF7 breast carcinoma cells 
after stimulation with 100 ng 
ml-1 EGF for 4 hr, 200 U ml-1 
IFNγ for 4 hr, 5 Gy IR for 2 
hr, or 20 ng ml-1 TNF for 4 
hr.  One-way hierarchical 
clustering was done using a 
Euclidean distance metric 
with Ward’s linkage after 
normalization to GAPDH as a 
loading control.  Data were 
centered on the cell type-
matched untreated (No tx) 
condition or the median 
observed abundance if the 
receptor was absent under the 
untreated condition.  (B to F) 
Plate-matched qRT-PCR 
quantification of TNFRSF9 
(B), INSR (C), TLR3 (D), and 
IL15RA (E and F) in response 
to TNF (B, C, and F) or IFNγ 
(D and E).  For (A), data are 
shown as the median cycle 
threshold (approximate log2 
relative abundance) of three 
independent biological 
samples.  For (B) to (F), data 
are shown as the geometric 
mean ± log-transformed 
s.e.m. of three independent 
biological samples.  Asterisk 
indicates statistical 
significance (P < 0.05) by 
log-transformed, unpaired 
one-sided t test.  n.d., not 
detected. 
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2.9. qRT-PCR receptome profiling is compatible with primary human tissues 

To illustrate that receptome profiling can be applied to primary tissue samples, we 

profiled primary specimens of brain and skeletal muscle (Figure 2-15).  Compared to the 

cell lines, we detected transcripts from significantly fewer types of receptors in the 

primary tissues (P < 10-6, binomial test assuming 78% of receptors are present based on 

Figure 2-10).  Although some transcripts may have been lost during sample isolation, we 

attributed the restricted overall expression pattern to the highly specialized tissues 

examined.  Many specific receptors detected in one or both tissues were consistent with 

the known biology, including the presence of GHR (encoding growth hormone receptor) 

in muscle (93), SMO and PTCH2 (encoding the Hedgehog receptor Smoothened and its 

coreceptor target Patched) and FZD-family (encoding the Wnt receptors of the Frizzled 

family) transcripts in brain (94, 95), and INSR in both brain and muscle (96, 97).  

Conversely, some receptor transcripts that were ubiquitous in cultured epithelial cells, 

such as EPHA2 and EPHB4, were absent in the brain-muscle isolates, corroborating their 

reported tissue distribution (98, 99).  We conclude that qRT-PCR receptome profiling is a 

versatile approach for systematic interrogation of canonical receptors involved in cell 

signaling. 
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Figure 2-15. Receptome profiling is 
compatible with primary tissue 
samples.  (A) Relative receptor 
abundances and (B) high-sensitivity 
present-absent calls obtained by 
receptome profiling in a primary 
human brain sample and a primary 
human muscle sample.  n.d., not 
detected. 
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Table 2-2. Signaling receptors with abundant transcripts indicating lineage-specific gene expression. 

Lineage Receptor gene Literature support (if available) 

Pancreas CD40 High abundance in pancreatic cancer (100). 

 EPHA2 Increased abundance associated with pancreatic cancer and metastases (101, 

102). 

 EPHB2 High abundance in the developing pancreatic epithelium (103, 104). 

 ERBB1 Increased abundance in pancreatic cancer (105). 

 ERBB2 High abundance in the fetal pancreas during development (106). 

 FGFR2 Required for normal pancreas development (107) and increased abundance in 

pancreatic cancer (108). 

 FGFR3 Inhibits expansion of the immature pancreatic epithelium (109). 

 IL1R2 Candidate biomarker for pancreatic ductal adenocarcinoma (110). 

 MET Increased abundance in pancreatic cancer (111, 112). 

 RON Increased abundance in pancreatic cancer (113). 

 TGFBR2 Increased abundance in pancreatic cancer cell lines (114). 

 TNFRSF10A High abundance in many pancreatic cell lines (115) and increased abundance 

in pancreatic cancer (116); acts as the dominant receptor for TRAIL 

signaling in pancreatic cancer (117). 

 TNFRSF10D Increased abundance in pancreatic cancer (116) and pancreatic cancer cell 

lines (118). 

 IL2RB None. 

 IL7R None. 

 IL15RA None. 

 IL22RA1 None. 

 IL31RA None. 

 MER None. 

 ROR1 None. 

 STYK1 None. 

 TLR6 None. 

 TNFRSF14 None. 
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Melanoma EPHA3 Increased abundance in melanoma and implicated in cell adhesion, 

movement, shape, and growth (119). 

 EPHA5 Detected in multiple melanoma cell lines (120). 

 GHR High abundance in skin and melanoma (121). 

 IL1R1 High abundance in melanoma cell lines (122). 

 IL1RAP Autocrine IL-1 signaling important for melanoma proliferation (122). 

 TNFRSF19 Candidate biomarker for melanoma (123). 

 ALK7 None. 

 CXCR1 None. 

 DDR2 None. 

 PDGFRA None. 

 TLR5 None. 

Breast DDR1 Increased abundance in breast cancer (124). 

 EPHB4 Associated with the histological grade and stage of breast cancer and a 

survival factor in breast cancer (125). 

 ERBB3 Important for breast tumor cell proliferation (126, 127). 

 FGFR4 Associated with ER and PR positivity and may be involved in breast 

tumorigenesis (128); predicts resistance to tamoxifen therapy (129). 

 EDA2R None. 

 EPHB3 None. 

Colon TLR2 Increased abundance and may be involved in sporadic colorectal 

carcinogenesis (130). 

 CSF1R None. 

 IL10RA None. 

 IL28RA1 None. 

 XCR1 None. 
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Table 2-3. Lineage-specific presence or absence of signaling receptors. 

I. Signaling receptors absent in a lineage-selective manner. 

Lineage Receptor gene Literature support (if available) 

Melanoma XCR1 Present in primary tumors but absent in cell lines (85). 

 IL10RA Detected in only a very small fraction of melanoma cells in animal models 

(131), and see Figure 2-13A. 

 IL20RA None. 

 IL22RA2 None. 

 EPHA10 None. 

Breast TNFRSF6B Hormonally induced (132) and present in hormone-positive breast-cancer cell 

lines, such as MCF7 (133).  All other breast lines in the panel are hormone 

negative (78), and all but one lack TNFRSF6B. 

Colon EPHA3 None. 

II. Signaling receptors qualitatively present in a lineage-selective manner. 

Lineage Receptor gene Literature support (if available) 

Colon CCR1 Widely detected in intestinal epithelial cell lines (70). 
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2.10.  Sensitivity of receptome profiling may be related to method of mRNA 

isolation 

 We verified that qRT-PCR receptome profiling is substantially more sensitive for 

discerning receptor presence or absence than microarrays, irrespective of the microarray 

probe coverage along the transcript.  This result was expected considering the stringency 

of microarray hybridization that is required to gauge specificity reliably using perfect 

match and mismatch probes.  More surprising was the superior specificity of qRT-PCR-

based profiling compared to RNA-seq when the receptomes of cancer cells were profiled.  

The difference here may be related to the methods used for mRNA isolation during the 

two measurement techniques.  Our first-strand synthesis for qRT-PCR is primed with 

oligo(dT)24, and high-stringency reverse transcription is performed at 50 ºC, ensuring that 

most, if not all, cDNAs contain at least poly(A)24 (134).  For RNA-seq, however, 

poly(A)+ transcripts are isolated by magnetic separation after room-temperature annealing 

to oligo(dT)25 beads, which may co-purify mRNAs with much shorter oligo(A) tails.  The 

distinction is important, because shorter oligo(A) tails remain on transcripts undergoing 

nonsense-mediated decay, which is triggered when premature stop codons are 

encountered after aberrant splicing events, such as intron retention (135, 136).  Nonsense-

mediated decay may be specifically enhanced in cancer cells to suppress anti-tumor 

immune responses (137, 138), which could explain why we observed most RNA-seq 

discrepancies in transformed cells.  The discrepancies can, in theory, be avoided by 

sequencing the transcriptome as oligo(dT)24-primed cDNA, but this decreases the 

uniformity of coverage along transcripts (55), which is a major advantage of RNA-seq. 
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2.11.  Importance of receptor presence/absence 

Our collection of qRT-PCR receptome profiles across 40 human cell lines 

complements other work showing that an exceedingly small fraction of proteins is 

detected in a purely cell- or tissue-specific manner (139).  Furthermore, the binary 

present-absent signatures indicate that receptor silencing might be just as important in 

defining a lineage as the receptors that are highly abundant.  Receptor silencing could be 

an important mechanism for enabling effective paracrine communication without the 

complications of autocrine crosstalk.  For example, forced expression of IL10RA in 

melanoma cells would not only sequester IL-10 away from neighboring immune cells but 

would also severely dampen the induction of anti-inflammatory signals, such as IL6.  We 

confirmed these predictions by showing that the IL10RA-expressing cells had less IL-10 

in the medium (Figure 2-13D) and produced fewer IL6 transcripts in response to TNF 

(Figure 2-13H).  Thus, IL10RA-harboring melanoma cells would be predicted to be more 

immunogenic overall than their naturally occurring counterparts.  Besides lineage-

specific silencing, it may also be worth examining receptors that are lost in individual 

cancer lines to get a sense of how transformed cells evolve resistance to ligands that 

inhibit tumor growth. 

 

2.12. Summary 

The presence or absence of signaling receptors determines a cell’s ability to 

respond to its environment.  By defining a receptome panel and validating each qRT-PCR 

reagent in the array individually, we provide a convenient tool for establishing the 

boundaries of cellular responsiveness to the ligands that activate these receptors.  
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Detection of the mRNA of a receptor does not always imply that this receptor will be 

properly translated and localized to bind ligands and transmit signals.  However, we 

showed that lack of mature receptor transcripts was consistent with cellular 

unresponsiveness (Figures 2-4, A and D, and 2-13B), a finding that required the 

sensitivity and specificity of the profiling approach described here.  

A major challenge for deciphering the microenvironment is the complex cocktail 

of ligands that cells encounter physiologically (140).  We can gain a clearer 

understanding of the microenvironment by distinguishing the ligands that activate 

intracellular signaling from those that are ignored.  The qRT-PCR array described here 

provides a straightforward and scalable way to make this discrimination.  With better 

sensitivity than microarrays and better specificity than RNA-seq at less than 1/10th of the 

cost, qRT-PCR receptome profiling could be readily incorporated into large-scale 

characterizations of cell lines, primary tissues, and tumors. 
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CHAPTER 3   

Quantitative modeling of local structure in signaling cascades 

3.1 Introduction 

Technological advances in experimental assays have permitted extensive study of 

individual signaling proteins.  In Chapter 2, we described an experimental method that 

robustly measures transcript abundance for receptors, where presence or absence of 

receptor expression is critical in defining signaling capabilities of the cell.  Given the 

dynamic properties of downstream signaling networks, it is not clear whether abundance 

or activity of a signaling protein, or both, is most informative.  Experimental 

measurements of protein or transcript amount (Western blots, qRT-PCRand activity 

(phosphoproteomics, kinase activity assays (see Chapter 5), etc) are both used 

extensively to collect data about cell-signaling systems.  Similarly, methods to perturb 

signaling proteins can target either transcript abundance (RNAi) or enzymatic activity 

(small-molecule inhibitors).  Often, these types of perturbations are used interchangeably 

to corroborate findings with the other method and to make conclusions about individual 

signaling components in the network.  In this chapter we study the local pathway 

connectivity and its effects on perturbations of protein abundance and activity.  We 

describe a quantitative modeling approach to characterize local network topologies and 

how different topologies will respond to molecular perturbations.  These findings have 

important implications on how we interpret data about networks, notably for identifying 

drug targets from high-throughput screening efforts. 
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3.2 High-throughput screening with RNAi and small-molecule inhibitors 

To identify novel targets for drug development, many large-scale cell-based 

screening efforts have been pursued (141, 142).  High-throughput screens largely fall into 

two classes.  The first class involves using RNAi knockdown of signaling molecules to 

identify potential targets for the future development of inhibitors.  The second class of 

screens involves using large chemical libraries to identify drugs or combinations of drugs 

that could be used for an alternate purpose (for example, repurposing an anti-

inflammatory drug that shows efficacy in cancer treatment when combined with a kinase 

inhibitor (143)).  While both these screening techniques can identify important signaling 

nodes, the underlying reagents perturb signaling pathways by distinct mechanisms.  

RNAi identifies nodes by reducing the target transcript abundance while drug screens 

identify targets by reducing their catalytic activity.  A key challenge for RNAi screening 

efforts is to decide which of tens or hundreds of targets on the “hit” list are worthy of 

follow-up.  Given the mechanistic differences between RNAi and small molecules, it is 

important to determine whether these two screening methods will yield the same high-

priority targets.  

There exist a few anecdotal examples in the literature where RNAi knockdown 

and enzyme inhibition of the same target give rise to different phenotypes (144, 145).  

However, despite ongoing screening efforts, it has yet to be directly tested whether RNAi 

and small-molecule inhibitor screens will identify the same quality of candidate targets.  

This information is critical to interpret and prioritize results from both RNAi and drug 

screens and to translate them to therapies in the clinic.  Several mechanisms have been 
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proposed and studied for discrepancies between RNAi and drug targeting, such as time 

scales of inhibition, off-target effects of the shRNA or drug, and non-enzymatic roles of a 

signaling protein (scaffolding, for example) (146).  Local network connectivity, however, 

has not yet been considered.  Examining local network connectivity will yield a simple 

means for excluding targets that are embedded within networks predicted to be 

suboptimally druggable from high-throughput screens.  It may also prompt a re-

examination of signaling enzymes with weak knockdown phenotypes that are predicted 

to be preferentially druggable.   

 

3.3 Feedback and feed-forward loops in cell-signaling networks 

Signaling pathways are not simple linear cascades of molecules that can be turned 

“off” and “on”.  Instead, the interconnectedness of pathways allows for tight regulatory 

control by the cell over time.  Within pathways, feedback loop motifs, where an output 

signal is connected back to an input signal, are important architectural designs by the cell 

to impart complex higher-level system behaviors (147).  Feedback loops can be described 

as positive or negative, where the output signal can either promote or antagonize the 

original input signal.  Feed-forward loops have also been described in signaling systems 

where the input can positively or negatively affect the output of the pathway (148).  

Feedback loops can inform particular signaling behaviors in a network, such as 

homeostasis or amplification (147).  While it is easy to conceptualize and predict the 

effect of a perturbation against a single enzyme substrate reaction, predicting the effect 

becomes much more complicated when the enzyme and substrate are embedded in a 

pathway (where each is both a substrate and an enzyme in different reactions).  Local 
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connectivity created by feedback loops creates an extra layer of complexity, imparting 

additional enzyme and substrate roles for a given signaling molecule.  This complexity 

makes it impossible to ascertain the effect of perturbations within the pathway by visual 

inspection of a pathway wiring.  Instead, predicting outcomes from complex pathways is 

a challenge well suited for computational modeling. 

 

3.4. Computational modeling of feedback and feed-forward loops in cell signaling 

networks 

We hypothesized that local connectivity of a signaling network determines 

whether a signaling enzyme will be sensitive to either protein abundance or catalytic 

activity.  To test this hypothesis, we began by computationally modeling a simple three-

tiered enzymatic cascade (consisting of enzymes A, B, and C) triggered by an input 

stimulus and yielding an amplified output response (Figure 3-1) (149-151).  The models 

were constructed using simplifying Michaelis-Menten kinetics assumptions (for review 
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Figure 3-1.  Exhaustive modeling of three-enzyme cascades.  The initial model describes a three-enzyme 
cascade of enzymes A, B, and C, where B is targeted by RNAi or an inhibitor.  Iterations of the model were 
built to include all possible one- and two-edge networks of positive or negative feedback. 
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see (152)).  Michaelis-Menten kinetics describe an enzyme (E) and substrate (S) reaction 

where product (P) is formed: 

 

The rate of product formation (dP/dt) is described by 

 

where kcat is the catalytic rate and KM is the Michaelis constant.  RNAi decreases the 

amount of available enzyme ([E]) and subsequently decreases the numerator, whereas 

small-molecule inhibition increases the effective KM and thereby increases the 

denominator of the equation.  The parameters of the baseline model were optimized such 

that RNAi knockdown or competitive inhibition of the transducer enzyme B yielded 

identical inhibition of the pathway output at all levels of perturbation.  We then adapted 

the model to simulate all possible iterations of one or two feedback, feed-forward, and 

autoregulatory loops in addition to the linear pathway (Figure 3-1).   

 

3.5 RNAi and small-molecule inhibition are not equivalent perturbations to 

signaling pathways 

By exhaustively simulating every one- and two-feedback configuration of a three-

node signaling network we generated 95 pathway models.  Perturbations were compared 

within each model by simulating the level of relative output (activated enzyme C 

compared to uninhibited pathway) over a range of 0-100% inhibition of the middle 

enzyme B by RNAi or a small-molecule inhibitor (Figure 3-2A).  The area between these 

curves (“integrated difference”) was used as a metric to compare the levels of 

discrepancy, where a negative integrated difference implies that the small-molecule is 



 60 

more potent at inhibiting pathway output and a positive integrated difference implied that 

the RNAi is more potent (Figure 3-2A). 

Some network wirings predicted little or no discrepancy in pathway output 

(Figure 3-2B, gray), while other wirings predicted wildly different responses depending 

on whether enzyme B was perturbed by RNAi or small-molecule inhibition.  

Interestingly, some pathway configurations were sensitive to changes in protein levels but 

not small-molecule inhibition, whereas other pathway wirings were predicted to display 

the opposite behavior (Figure 3-2B).  Interestingly, it is predicted that RNAi more 

effectively inhibits pathway output in more wirings than small-molecule inhibition 

(Figure 3-2B).  Generally, for wirings that involve negative feedback at or above the 

target enzyme, the model predicts the output of the pathway will be more effectively 

inhibited by small-molecule inhibition.  The model predicts the opposite for pathways 

	
  
	
  
Figure 3-2.  Pathway models are compared by their integrated discrepancies over 0-100% target 
inhibition.  (A)  The output of each pathway model was simulated over 0 to 100% target inhibition for 
small-molecule and RNAi.  (B)  Models were ranked by their levels of discrepancy as calculated in A. 
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that include positive feedback at or above the target enzyme (Figure 3-3).  Positive 

autoregulatory connections within a pathway also appear to be quite strong in dictating 

the effect of the perturbations, regardless of additional connections in the model (Figure 

3-3, first three rows).  These behaviors are not immediately clear upon inspection of a 

pathway and demonstrate the importance and utility of the models.  While this simplified 

modeling framework has several limitations, including the assumptions made in building 

the models and the estimation of model parameters, it provides a starting point to begin to 

classify pathway wirings. 

  

	
  
	
  
Figure 3-3.  Negative and positive feedback patterns across 95 models.  Enzyme connection components 
present in the models, where red indicates positive regulation and blue indicates negative regulation (top).  
Models ranked by integrated difference value (from Figure 3-2B)  (bottom). 
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3.6. Experimental tests of model predictions 

 3.6.1.  The Raf-MEK-ERK pathway 

A network wiring that is predicted to respond differently to inhibition by small-

molecule compared to RNAi is one where the third element negatively feeds back on the 

first (Figure 3-4A).  In this model, it is predicted that small molecule inhibition of the 

second signaling element (B) will inhibit pathway output more potently than RNAi 

inhibition (Figure 3-4A).  A signaling pathway that contains this subnetwork wiring is the 

Raf–MEK1/2–ERK1/2 pathway, where ERK1/2 hyperphosphorylates and inactivates Raf 

(153, 154), creating a negative-feedback loop (Figure 3-4B). The Raf–MEK–ERK circuit 

is an ideal case to test our model prediction because the pathway is relatively well 

insulated (155) and there are selective inhibitors of MEK1/2 (156, 157). 

	
  
Figure 3-4.  The Raf-MEK-ERK pathway is predicted to be more effectively inhibited by small-
molecules than by RNAi.  (A)  The pathway wiring where enzyme C negatively feeds back on 
enzyme A is predicted to be more potently inhibited by small-molecule inhibition.  (B)  The Raf—
MEK—ERK kinase cascade is a pathway that mirrors the structure in (A). 
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To test this model hypothesis, we sought to compare the potency of a shMEK 

construct relative to the small-molecule inhibitor of MEK1/2 activation, U0126 (156) 

(Figure 3-5A). To make a fair comparison between shMEK1/2 and U0126, the “matched” 

U0126 dosage needed to be determined in the absence of negative feedback from 

ERK1/2 to Raf.  This negative feedback was disrupted by adding FR180204, a selective 

	
  
Figure 3-5.  MEK1/2 inhibition by U0126 is dosed to be equivalent to RNAi knockdown in the 
absence of ERK1/2-Raf feedback.  (A)  ERK1/2-specific inhibitor FR180204 breaks negative 
feedback from ERK1/2 to Raf.  (B)  Raf hyperphosphorylation by ERK1/2 is prevented by FR180204 
inhibition of ERK.  (C)  shMEK1/2 reduces total MEK1/2 levels by fivefold.  (D)  U0126 was dosed to 
reduce phosphorylated MEK1/2 levels to those seen with shMEK1/2 inhibition.  For (B-D) 3T3 cells 
were serum starved for 24 hours and pretreated with 20 µM FR180204 and 2 µM U0126 for 1 hour 
prior to 1 ng/ml PDGF stimulation for 30 minutes (B) or 5 minutes (D). 
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inhibitor of ERK1/2 (158) (Figure 3-5, A and B).  By blocking ERK1/2 activity in 

response to growth factor (PDGF), FR180204 prevents the hyperphosphorylation of Raf, 

measured by its size upshift on a Western blot (Figure 3-5B).  We engineered a stable 

RNA hairpin that targets both isoforms of murine MEK1/2 and reduces total MEK1/2 

expression by fivefold in 3T3 fibroblasts (Figure 3-5C).  A dose of U0126 (2 µM) was 

determined that lowered phospho-MEK1/2 to the same extent as the shMEK1/2 cells 

when the pathway was stimulated by a growth factor (Figure 3-5D).  By matching the 

inhibition of U0126 to the hairpin, an appropriate comparison of mechanisms of 

inhibition could be made. 

In vitro, MEK1/2 phosphorylation by Raf is inhibited approximately 70% by µM 

doses of U0126 (157).  However, there are a few possible limitations to the dose 

matching evaluated in Figure 3-5D.  First, the matching was performed using a phospho-

MEK1/2 antibody that recognizes only phosphorylated serine 221 on MEK1/2.  Raf 

phosphorylates MEK1/2 on both serines 217 and 221, and the bisphosphorylated 

MEK1/2 has been shown to be more active than the singly phosphorylated forms (159, 

160).   

To account for both of the MEK1/2 phosphorylation sites, phospho-MEK1/2 was 

monitored with an antibody that recognizes both the single and bis-phosphorylated forms 

of the protein over three concentrations of U0126 (Figure 3-6A).  Unexpectedly, 

phospho-MEK1/2 levels increased with higher concentrations of U0126 (Figure 3-6A).  

This effect was not likely due to nonspecific effects of U0126 as the same effect was 

apparent using a second, mechanistically different inhibitor of MEK1/2, GSK1120212 

(Figure 3-6B) (159).  Despite elevated phospho-MEK1/2 levels, phospho-ERK1/2 was 
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still inhibited by both U0126 and GSK1120212 at higher concentrations (Figure 3-6, A 

and B).  This effect was seen regardless of the phospho-site(s) analyzed (singly 

phosphorylated at serine 217 or 221, or bisphosphorylated), growth factor used for 

stimulation (EGF versus PDGF), or time of stimulation (data not shown). 

At later times, ERK1/2 activation is limited by additional negative feedback by 

ERK-dependent expression of MAP kinase phosphatases (MKPs) and Sprouty proteins 

that down regulate upstream receptor activation (161, 162).  Further, MEK1/2 

phosphorylation can be induced by inhibition of MEK1/2 phosphorylation of ERK1/2 

and disruption of the negative feedback from ERK1/2 to Raf (163, 164). While these 

previously described observations occur at longer times than the experiments here, it is 

possible that the 1 hour pre-treatment with MEK1/2 and ERK1/2 inhibitors could be 

confounding the resulting phosphorylated MEK1/2 by altering baseline signaling before 

growth factor stimulation.   

	
  
Figure 3-6.  Phosphorylation of MEK1/2 increases with increased MEK1/2 inhibition by U0126 
and GSK1120212.  (A-B)  3T3 cells stably expressing shMEK1/2 or shGFP constructs were 
stimulated with 100 ng/ml EGF for 5 minutes.  Cells were pretreated for 1 hour with 20 µM 
FR180204 and the indicated concentration of U0126 (A) or GSK1120212 (B).  Samples are shGFP 
cells unless otherwise indicated.  The phospho-MEK1/2 antibody recognizes pS217, pS221, and 
pS217/pS221 (Cell Signaling Technology #9121).  For (A-B) 3T3 cells were serum starved for 24 
hours and before drug pretreatment. 
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To determine if MEK1/2 and/or ERK1/2 inhibition creates artificial elevation of 

MEK1/2 phosphorylation, phospho-MEK1/2 was monitored in cells inhibited with 20 

µM FR180204 and 0.1 nM GSK1120212 over 1 hour in the absence of pathway 

stimulation by growth factors (Figure 3-7).  MEK1/2 phosphorylation was elevated as 

early as 5 minutes, and continued to rise over the 60 minute timecourse (Figure 3-7).  

Since previous experiments were performed 

by pre-treating the cells with inhibitors for 1 

hour prior to growth factor stimulation, the 

elevated phospho-MEK1/2 levels could be 

an artifact from the drug pretreatment.  

Accounting for this artifact will be 

important in future experiments to more 

accurately evaluate the dose of MEK1/2 

inhibitor that is equivalent to MEK1/2 

knockdown. 

Despite the potential limitations identified with our U0126 dose matching 

(Figures 3-6 and 3-7), we next analyzed pathway output (phospho-ERK1/2) over time in 

response to pathway activation by PDGF when ERK–Raf negative feedback was 

restored.  Our preliminary data suggest that phospho-ERK1/2 responses are both 

qualitatively and quantitatively different for shMEK cells compared to cells treated with 

U0126 (Figure 3-8).  In U0126-treated cells, phospho-ERK1/2 activation after PDGF 

stimulation is delayed and transient compared to activation in shMEK1/2 cells, which 

shows reduced phospho-ERK1/2 compared to controls but no differences in signaling 

	
  
Figure 3-7.  Phospho-MEK1/2 increases over 
time when MEK1/2 and ERK1/2 are inhibited.  
3T3 cells stably expressing shGFP construct were 
treated with 20 µM FR180204 and 0.1 nM 
GSK1120212 for the indicated time following a 
24 hour serum starvation. 	
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kinetics (Figure 3-8).  The sustained phospho-ERK1/2 signaling in shMEK1/2 cells 

compared to U0126-treated cells thus supported our model prediction that small-molecule 

inhibition of MEK1/2 will more potently inhibit pathway output compared to RNAi.  

Levels of ERK1/2 signaling reduction may be clinically important, as in vivo models 

require greater than 80% inhibition of ERK1/2 signaling to demonstrate antitumor 

activity (165). 

 
 

	
  
Figure 3-8.  U0126 is more potent than shMEK in the presence of ERK-Raf feedback. (A-C) Stable 
3T3 cell lines (shGFP or shMEK#1) were serum starved for 24 hours and pre-treated with 2 µM U0126 
(B) or DMSO (A,C) for one hour and stimulated with 1 ng/ml PDGF for the indicated times.  (D)  
Quantification of signaling timecourses in A-C for three replicates. 
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Sustained phospho-ERK1/2 signaling has been shown to lead to cell proliferation, 

while transient activation does not (166).  We examined changes in proliferation by 

phospho-RB immunofluorescence and found that U0126-treated cells did not proliferate 

	
  
Figure 3-9.  MEK1/2 inhibition by RNAi knockdown does not prevent proliferation.  Stable 3T3 cell 
lines (shGFP or shMEK #1) were serum starved for 24 hours and pre-treated with 2 µM U0126 (C,F) or 
DMSO (A, B, D, E) for one hour and stimulated with 1 ng/ml PDGF for 24 hours.  Cells were stained for 
phosphorylated Rb (pink) and nuclei were labeled by DAPI (blue).  Scale bar is 40 µm.  (D)  
Quantification of cells with nuclear phosphorylated Rb staining for three replicates. 
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in response to PDGF, while shMEK1/2 cells show strong nuclear phospho-RB staining 

(Figure 3-9).  This suggests that the attenuation of PDGF-induced phospho-ERK1/2 in 

shMEK1/2 cells is not sufficient to perturb proliferative responses to growth factor, 

despite substantial reductions in MEK enzyme levels (Figures 3-5C and 3-10A).   

 

Whether this effect was specific to the level of inhibition or more general to 

behavior of MEK1/2 knockdown was tested using a second hairpin of MEK1/2 

(shMEK1/2 #2).  Our modeling predicts that at inhibitions near 0% or 100%, the results 

for the small-molecule inhibition and RNAi knockdown will converge and have the same 

effect on pathway output (Figure 3-2A).  To test this hypothesis, we developed a second 

stable cell line expressing a second hairpin against MEK1/2 that was generated using two 

rounds lentiviral infection.  This second hairpin reduced levels to 3% of control lines 

(Figure 3-10B).  The potent MEK1/2 knockdown eliminated sustained phospho-ERK 

signaling relative to control (Figure 3-11, A and C), more closely resembling the result 

seen with U0126 treatment (Figure 3-11B).  Cells expressing the more potent MEK1/2 

	
  
Figure 3-10.  MEK1/2 hairpins #1 and #2 knockdown total MEK1/2 levels 80% and 97%, 
respectively.  (A) shMEK #1, repeated from Fig. 3-5C as reference.  (B)  shMEK #2. 
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hairpin (shMEK1/2 #2) showed reduced nuclear phospho-RB staining compared to 

control (Figure 3-12).  This suggests that at high enough levels of MEK1/2 reduction, the 

RNAi will behave similar to the inhibitor. 

 In parallel with our experimental studies, we are also updating a specific 

mechanistic model of the Raf–MEK–ERK pathway.  We began with a published model 

(150) and added the negative feedback from ERK to Raf that was not included in the 

original work.  Our preliminary modeling results are consistent with our initial three-

enzyme simulations, further supporting that the Raf–MEK–ERK pathway wiring is more 

sensitive to small-molecule inhibition than to RNAi. 

	
  
Figure 3-11. Potent MEK1/2 knockdown eliminates sustained phospho-ERK signaling in response 
to PDGF.  (A-C) Stable 3T3 cell lines (shGFP or shMEK#1) were serum starved for 24 hours and pre-
treated with 2 µM U0126 (B) or DMSO (A,C) for 1 hour and stimulated with 1 ng/ml PDGF for the 
indicated times.  (D)  Quantification of signaling timecourses in A-C for three replicates. 
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Figure 3-12.  Potent MEK1/2 inhibition by RNAi knockdown prevents proliferation.  Stable 3T3 
cell lines (shGFP or shMEK #1) were serum starved for 24 hours and pre-treated with 2 µM U0126 
(C,F) or DMSO (A, B, D, E) for one hour and stimulated with 1 ng/ml PDGF for 24 hours.  Cells were 
stained for phosphorylated Rb (pink) and nuclei were labeled by DAPI (blue).  Scale bar is 40 µm.  (D)  
Quantification of cells with nuclear phosphorylated Rb staining for three replicates. 
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 3.6.2.  The caspase-8–caspase-3–caspase-6 pathway 

Our modeling predicts that in a three-node pathway where the third element feeds 

back positively on the first, RNAi inhibition of the second element will inhibit pathway 

output more potently than small-molecule inhibition (Figure 3-13A).  An example of this 

wiring is the caspase-8–caspase-3–caspase-6 pathway, where caspase-6 positively feeds 

back on caspase-8 to drive caspase cleavage and apoptosis in some cells (Figure 3-13B) 

(167).   

The human lymphoblastoma cell line SKW 6.4 has been shown to have strong 

positive feedback from caspase-6 to caspase-8 (168).  Importantly, these cells do not 

engage the mitochondrial arm of apoptosis in response to anti-APO treatment (169), 

thereby insulating the caspase-8–caspase-3–caspase-6 circuit from other inputs.  In 

	
  
Figure 3-13.  The caspase-8—caspase3—caspase-6 pathway is predicted to be more effectively 
inhibited by RNAi than small-molecules.  (A)  The pathway wiring where enzyme C positively feeds back 
on enzyme A is predicted to be more potently inhibited by RNAi.  (B)  The caspase-8—caspase3—caspase-
6 cascade is a pathway that mirrors the structure in (A). 
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addition, there exists a complete model of the caspase-8–caspase-3–caspase-6 signaling 

pathway (168) that could test predictions as described for the Raf–MEK1/2–ERK1/2 

pathway in Chapter 3.6.1.  These characteristics make the SKW 6.4 line ideal for testing 

the model prediction. 

To compare a caspase-3 inhibitor to caspase-3 knockdown directly, the positive 

feedback from caspase-6 to caspase-8 needs to be blocked.  Since inhibitors of caspase-3 

and caspase-6 are 

promiscuous (170, 

171) or cell 

impermeable (172), 

we sought to 

genetically engineer 

a SKW 6.4 line that 

expresses a 

catalytically 

inactive caspase-3 

(Figure 3-14A).  We 

hypothesize that if the caspase-3 (C163A) construct is expressed at high enough levels 

(relative to endogenous caspase-3) it will function as a dominant negative, where the 

cleavage of caspase-8 by caspase-6 will be blocked.  Expression of caspase-3 (C163A) 

would then effectively abrogate the positive feedback from caspase-6 to caspase-8 

(Figure 3-14A).   

	
  
Figure 3-14.  Methods to break positive feedback from caspase-6 to 
caspase-8.  (A)  Dominant-negative caspase-3 (dn-casp3) will prevent 
caspase-3 cleavage of caspase-6 (casp6) and break the positive feedback 
from caspase-6 to caspase-8 (casp8).  (B)  Dominant-negative caspase-6 (dn-
casp6) will prevent caspase-6 cleavage of caspase-8 and break the positive 
feedback from caspase-6 to caspase-8.	
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A stable SKW 6.4 line was generated to express a dominant-negative caspase-3 

construct driven by a cytomegalovirus promoter (CMV) (pLNCX2 vector), but 

expression was poor (Figure 3-15A).  Construct expression did not improve in lines with 

an additional round of lentiviral infection (Figure 3-15A, 1X versus 2X).  Low detection 

of the dominant-negative caspase-3 construct was not due to differential recognition by 

the total caspase-3 antibody caused by the mutation, as a second caspase-3 antibody 

directed against a site distant to the mutation detected similar levels (antibody #1 versus 

antibody #2, Figure 3-15A).   

Since constitutive expression of the dominant-negative caspase-3 construct could 

negatively affect the selection or growth of cells, a dominant-negative caspase-3-

3XFLAG was cloned into a vector driven by a doxycycline (DOX) inducible promoter.  

Stable SKW 6.4 cell lines were developed and induced for 24 hours.  DOX induction did 

	
  
Figure 3-15.  Stable SKW 6.4 cell lines expressing dominant-negative caspase-3 constructs did not 
achieve overexpression.  (A)  SKW 6.4 cells were stably infected once or twice (1X versus 2X) with 
pLNCX2 vector containing dominant-negative capase-3-MYC (dn-Casp3-MYC) sequence or empty 
pLNCX2 vector.  Caspase 3 levels were monitored with two antibodies recognizing different regions of 
the protein.  (B)  SKW 6.4 cells expressing a doxycycline (DOX) inducible dominant-negative caspase-
3-3XFLAG (dn-Casp3-3XFLAG) were induced with 1 µg/ml (+) or 2 µg/ml (++) DOX for 24 hours.  
(C)  SKW 6.4 cells stably expressing DOX-inducible RNAi-resistant dn-Casp3-3XFLAG and 
shcaspase-3 #1 (C) or #2 (D) constructs were induced with 1 µg/ml DOX for 1, 3, 5, and 7 days. 
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not achieve overexpression of dominant-negative caspase-3 and doubling the standard 

concentration of DOX did not appreciably increase construct expression (Figure 3-15B).  

Increasing DOX stimulation time also did not increase expression levels (data not 

shown).   

Since caspase-3 overexpression was not achieved by constitutive or DOX-

inducible expression, we next sought to knockdown endogenous caspase-3 expression 

while simultaneously expressing an RNAi-resistant dominant-negative caspase-3.  Stable 

SKW 6.4 lines were generated to inducibly express both an RNAi-resistant dominant-

negative caspase-3 and caspase-3 hairpin in response to DOX.  Two separate lines were 

generated with two unique hairpin sequences directed at caspase-3 with corresponding 

RNAi-resistant dominant-negative caspase-3.  Dual expression did not improve ratio of 

dominant-negative caspase-3 relative to endogenous levels (Figure 3-15, C and D).   

Since promoter strength and duration of induction did not improve expression 

(Figure 3-15), it is possible that the expression limitations are inherent to the caspase-3 

construct.  Protein expression can be limited by rare codon usage (173).  In the caspase-3 

sequence, the third position of codons is more frequently A/T (63.31%) than G/C 

(36.69%), which corresponds to rarer codons that can hamper protein translation (174).  

Optimization of the caspase-3 sequence for codon usage could potentially increase 

expression levels, but would require significant mutations to the constructs.  

Alternatively, negative regulators of caspase-3 transcript or protein, such as 

ubiquitination, could be limiting total caspase-3 protein levels.  It is unclear at this time 

whether overexpression limitations are specific to SKW 6.4 cells, caspase-3, or the 

experimental systems used. 
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While the desired overexpression of dominant-negative caspase-3 was not 

achieved, it was directly tested whether the levels were sufficient to inhibit downstream 

signaling, indicating abrogation of the positive feedback loop from caspase-6 to caspase-

8.  Levels of dominant-negative caspase-3 were not sufficient to block downstream 

apoptotic signaling in response to three doses of anti-APO as demonstrated by PARP and 

lamin A cleavage (Figure 3-16).   Unexpectedly, DOX-induction of the dominant-

negative caspase-3 construct 

appeared to increase 

downstream apoptotic 

signaling in two doses of 

anti-APO tested (Figure 3-

16).  Further, selection of 

cells expressing higher levels 

of dominant-negative 

caspase-3 by flow cytometry 

(as measured by FLAG 

immunoreactivity) did not 

result in increased resistance 

to anti-APO stimulus. 

A second option to disrupt the positive feedback loop from caspase-6 to caspase-8 

is overexpression of dominant-negative caspase-6 (C163A) (Figure 3-14B).  Lentiviral 

vectors were generated with dominant-negative caspase-6 driven by a CMV promoter 

(pLX302 vector).  The lentivirus packaged did not produce stable cell lines for dominant-

	
  
Figure 3-16.  Dominant-negative caspase-3 did not block 
downstream apoptotic signaling.  SKW 6.4 cells stably expressing 
the DOX-inducoble dominant-negative caspase-3-3XFLAG (dn-
Casp3-3XFLAG) were induced for 24 hours with 1 µg/ml DOX.  
Following DOX induction, cells were treated with the indicated 
dose of anti-APO for 30 minutes before cell lysis.	
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negative caspase-6 or control (Luciferase) constructs using our standard protocol for 1X 

and 0.5X virus.  Extended recovery time before antibiotic selection did not increase 

survival.  Additionally, toxicity due to the polybrene was not evident over 48 hours in the 

dose used in the protocol (8 µg/ml).  While it is presently unclear why these constructs 

failed to generate stable lines, it may be necessary to optimize an alternative protocol for 

lentivirus packaging and viral transduction for SKW 6.4 cells.   

Efforts to transfect constructs into SKW 6.4 cells were also unsuccessful.  Since 

SKW 6.4 cells are not readily transfected by standard lipofection methods, dominant-

negative caspase-3-MYC constructs were electroporated into SKW 6.4 cells using the 

BioRad GenePulser XCell and Invitrogen Neon systems according to the manufacturer’s 

	
  
	
  
Figure 3-17.  Transfection of SKW 6.4 cells by electroporation.  (A)  SKW 6.4 cells were 
electroporated with the GenePulser or Neon devices with dominant-negative caspase-3-MYC (dn-
Casp3-MYC) plasmid DNA.  (B)  SKW 6.4 cells were electroporated with the GenePulser with or 
without 50 µM pep419 and stimulated with 1 µg/ml anti-APO for 30 minutes.  
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protocols.  Additionally, the cell-impermeable caspase-6 specific inhibitor, pep419 (172), 

was electroporated into SKW 6.4 cells.   No detectable dominant-negative caspase-3 was 

detected in electroporated cells (Figure 3-17A).  Cells electroporated with the BioRad 

instrument appeared to be apoptotic as evidenced by caspase-3 cleavage (Figure 3-17A).  

Electroporated cells stimulated with anti-APO displayed high levels of cleaved lamin A 

and PARP, indicating that electroporation of dominant-negative caspase-3 nor pep419 

was sufficient to inhibit pathway signaling (Figure 3-17B). 

Since expression of dominant-negative caspase-3 did not reach high enough levels 

in SKW 6.4 cells via stable lines or transfections, we next used transient transfection of 

293Ts, which are readily transfected.  To block mitochondrial caspase signaling in 293Ts 

we simultaneously overexpressed Bcl2 with dominant-negative caspase-3 (Figure 3-

18A).  Unexpectedly, overexpression of Bcl2 increased caspase-3 cleavage in 293Ts and 

	
  
Figure 3-18.  Dual transient transfection of dominant-negative caspase-3 and Bcl2 into 293T cells 
increased apoptotic signaling.  (A)  Bcl2 and dominant-negative caspase-3-MYC expression was 
obtained by simultaneous transfection.  293T cells were transiently transfected by lipofection with 
dominant-negative caspase-3-MYC or empty PLNCX2 vector and Bcl2 in pBABE or pMIG plasmids 
or pBABE empty vector.  pMIG Bcl2 plasmid yielded higher Bcl2 expression.  (B)  Overexpression of 
Bcl2 induced caspase-3 cleavage compared to cells transfected with empty vector.  Transiently 
transfected 293T cells were treated with 100 ng/ml anti-APO for 24 hours. 
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293Ts did not respond to moderate (100 ng/ml) anti-APO stimulation for 24 hours.  

Taken together, these results suggested that 293Ts might not be a useful system to study 

the caspase-8—caspase-3—caspase-6 pathway in isolation.   

 Increased caspase-3 cleavage was observed in SKW 6.4 and 293Ts expressing the 

dominant-negative caspase-3 construct.  These observations raised the intriguing 

possibility that the construct itself could be inducing apoptotic signaling.  To test this, 

293Ts were transiently transfected with dominant-negative caspase-3-MYC or empty 

pcDNA3 plasmid and treated with varying doses of anti-APO for 30 minutes or 3 hours.  

Caspase-3 cleavage was evident in all samples transfected with dominant-negative 

caspase-3-MYC but not in those transfected with empty pcDNA3 vector (Figure 3-19A), 

suggesting again that 293Ts were not sensitive to anti-APO.  Cleaved dominant negative 

caspase-3 is catalytically inactive and should not induce downstream apoptotic signaling.  

However, PARP cleavage seemed to increase in samples transfected with dominant-

negative caspase-3-MYC (Figure 3-19A), indicating that overexpression of the dominant-

negative caspase-3-MYC could be initiating apoptotic signaling.  If overexpression of 

dominant-negative caspase-3-MYC drives apoptotic signaling, it could be preventing 

overexpression in stable cell lines (Figure 3-15).    

To check if this observation was a general overexpression artifact, 293Ts were 

transiently transfected with control empty vector or Luciferase plasmids, dominant-

negative caspase-3 and caspase-6 constructs, or wild-type caspase-6 (Figure 3-19B).  

Caspase-3 cleavage and PARP cleavage was only evident in cells transfected with the 

dominant-negative caspase-3 construct.  The same constructs were then transiently 

transfected into 3T3 cells to test the generality of this observation across cell types 
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(Figure 3-19C).  Levels of dominant-negative caspase-3-MYC relative to endogenous 

caspase-3 were much lower compared to 293T transfections, indicating that transfection 

conditions may need to be optimized for 3T3 cells.  Caspase-3 cleavage was apparent in 

3T3 cells transfected with dominant-negative caspase-3-MYC but not with other 

constructs.  However, PARP cleavage was not detected in any 3T3 samples (Figure 3-

19C).  While these results are single observations, they raise an interesting question about 

cell response to caspase-3 overexpression and possibly address the difficulty obtaining 

caspase-3 overexpressing stable cell lines. 
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Figure 3-19.  Transient transfections of dominant-negative caspase-3 into 293T and 3T3 cells 
increases caspase-3 cleavage.  (A)  293Ts do not respond to 30 min or 3 hour exposure to anti-APO but 
show increased caspase-3 cleavage and PARP cleavage when transfected with dominant-negative 
caspase-3-MYC compared to empty pcDNA3 vector.  293Ts (B) and 3T3s (C) were transiently 
transfected with the indicated constructs and lysed 48 hours after transfection.  
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3.7. Summary 

Cell-signaling networks integrate signals transmitted from receptors (Chapter 2) 

and process the information to make decisions about cell fate.  These networks are wired 

so a cell can appropriately respond to a specific cue or a complex combination of cues 

that change over time.  In contrast to simple linear cascades stemming from individual 

receptors, cell-signaling networks are understood to be increasingly complex and 

interconnected.  Despite this appreciation, little work has been devoted to considering 

how this architecture may complicate our interpretation of experimental data.  In this 

chapter we quantitatively modeled three-tier enzyme cascades to define the effect of local 

wiring on perturbations of protein amount (by RNAi) and activity (by small-molecule 

inhibitors).  We found that local connectivity is critical in determining the behavior of a 

pathway in response to these mechanistically different perturbations.  We believe that 

computational modeling of local network connectivity could identify druggable signaling 

nodes and prioritize drug targets, lowering the time and cost of drug development. 
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CHAPTER 4 

A data-driven model of CVB3 infection of cardiomyocytes 

predicts therapeutic targets 

 

4.1. Introduction 

Connectivity within the cell-signaling network is an important consideration in 

determining the effect of a perturbation and thus in identifying a drug target (Chapter 3).  

But how can we determine unknown network topology from experimental datasets? 

Signaling through different pathways is not independent, because some are connected 

through shared components and others jointly converge upon common cellular functions.  

This coupling creates a hidden structure within the signaling network that regulates 

higher-level organizing principles of the system and how it responds to complex 

perturbations, such as a pathogen.   

The effects of pathogens on cells are multifaceted, making it difficult to link 

specific stimuli or perturbations to cellular responses, and therefore difficult to determine 

a single protein to target with a therapy.  An example of a complex perturbation is 

infection of a cell by a virus.  Infection modifies numerous intracellular signaling 

pathways.  These pathways work together as networks in host cells, and the resulting 

phenotypes are interdependent, making it difficult to link virus-induced signals and 

responses at a systems level.  In this chapter, we apply data-driven modeling techniques 

to experimental data to collected from a host-cell response to a virus, Coxsackievirus B3 

(CVB3), to identify how it controls the underlying signaling structure to promote its 
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pathogenesis (see Chapter 7.1 for a tutorial on data-driven models for cell-signaling 

datasets).  

 

4.2. CVB3 and viral myocarditis 

CVB3 is among the most common causes of viral myocarditis-associated heart 

failure in infants and young children (175).  A major component of CVB3 pathogenesis is 

cell death of infected cardiomyocytes, which leads to immediate tissue damage and the 

subsequent release of virulent CVB3 progeny that furthers disease progression (176).  

Intervening at the early stages of CVB3 cytotoxicity could potentially reduce the severity 

of the disease and the need for heart transplantation in patients with viral myocarditis.   

 Throughout infection, CVB3 modulates various cell-signaling pathways that 

enable virus propagation (175, 177).  Inhibiting these pathways may provide a therapeutic 

opportunity to restrict CVB3 pathogenesis.  But, an important hurdle is that our 

understanding of how the CVB3 infection cycle intersects with the host network is 

fragmentary.  Viruses such as CVB3 have evolved to modulate cell-signaling networks in 

ways that allow them simultaneously to evade host defenses, promote cell entry, and 

undergo replication in a changing environment (175, 178).  Blocking individual signaling 

pathways in host cells often reduces CVB3 infectivity but does not prevent infection 

entirely (177).  It remains unclear whether such “partly required” pathways converge 

upon a common set of host effectors or instead make independent contributions to 

pathogenesis (134).  The challenge is that CVB3 adaptively perturbs a collection of host 

pathways, which must be examined concurrently with time to understand how they 

interact and give rise to viral functions.  
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4.3. CVB3-Induced Phospho-Protein Dynamics Quantitatively Predict Host-Cell 

Outcomes 

To determine whether known CVB3-induced signaling events were sufficient to 

predict viral propagation and host-cell toxicity, we sought to build a predictive 

mathematical model based entirely on quantitative experiments.  Data-driven modeling 

identifies higher-order statistical covariations that can be used for prediction and analysis 

(179).  Unlike other modeling formalisms (180), data-driven approaches can 

accommodate variegated datasets and make predictions without detailed knowledge of 

the underlying biochemical mechanisms. 

 To build the model, we systematically assembled a host-cell signaling and 

response dataset in virus-infected cardiomyocytes.  At five different CVB3 multiplicities 

of infection (M.O.I.), we profiled eight signaling phospho-proteins by ELISA at six time 

points over 24 hr together with six CVB3-induced host-cell readouts at three time points 

over 24 hr (Figures 4-1A and 4-1B).  Each phospho-protein or host-cell readout was 

selected based on previous studies suggesting that they were critical during CVB3 

pathogenesis (Table 4-1).  Analyzing the information contained in this mechanism-rich 

signature would then allow us to examine how host-cell pathways are coordinately 

perturbed during CVB3 infection. 
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 We found that CVB3-induced host-cell responses showed time and dose 

dependencies that were expected for end-stage readouts (Figure 4-1B).  Activation of the 

initiator caspases, caspase-8 and caspase-9, was accelerated with increasing M.O.I., 

corresponding to more-complete activation of the effector caspase for apoptosis, caspase-

3 (181).  Interestingly, readouts of CVB3 propagation, such as expression of the VP1 

capsid protein and the titers of released viral progeny (RVP), did not accelerate 

appreciably as they increased with CVB3 M.O.I..  This finding suggests intrinsic limits to 

the timing of the CVB3 replication cycle downstream of the M.O.I.-dependent rate 

processes of viral docking and internalization.  The pattern of overall CVB3 cytotoxicity 

fell in between that of caspase and viral readouts, showing some acceleration as host-cell 

viability dropped with increasing CVB3 titers.  Thus, CVB3 infection of cardiomyocytes 

elicits a collection of host-cell and viral phenotypes that are monotonic in time but differ 

in their kinetics and dose-dependent behaviors. 

Table 4-1.  Literature support for the CVB3-induced phospho-proteins and active caspases. 
Phospho-proteins and caspases Contributes to References 
Caspase-2, -3, -6, -7, -8 & -9 Late-stage alterations of cellular homeostatic processes and 

structural integrity 
(2) 

Akt–GSK3β Successful virus replication (3) 
ERK1/2 
 

Effective virus replication and virus-mediated cytotoxicity in 
host cells 

(1, 4) 
 

CREB Gene expression during infection (7) 
p38–Hsp27 Effective viral progeny release, cytotoxicity and virus-induced 

caspase-3 activation 
(8) 
 

ILK (Integrin-linked kinase)-Akt Supporting virus infection (9) 
IκBα–NF-κB Promoting virus-infected host survival (10) 
p38 Underpinning virus replication (1, 11) 
ATF2 Gene expression during infection (12) 
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 By comparison, we found that the dynamic patterns of protein phosphorylation 

stimulated by CVB3 were substantially more complex than the associated phenotypic 

readouts (Figure 4-1A).  As before, we observed accelerated phosphorylation of some 

CVB3-induced pathways with increasing M.O.I., such as p38 and Hsp27, but not others, 

such as ERK (Figure 4-1A).  In addition, biphasic activation patterns were common, and 

	
  
Figure 4-1. A predictive data-driven model of CVB3-induced host-cell responses.  (A) Dynamic phospho-
proteins signatures measured by phospho (p)-ELISA that were used as predictor variables in the data-driven 
model. (B) Host-cell outcomes that were to be predicted in the data-driven model.  Caspase (C)-3, -8 and -9 
activities were measured by activity assays with fluorogenic substrates, VP1 capsid protein expression was 
measured by immunoblotting, released viral progeny (RVP) titer was measured by plaque assay, and cell 
death was measured by MTS assay at the indicated time points.  (C and D) Accurate predictions of host-cell 
responses with a partial least squares model using two principal components.  (C) Percentage of information 
captured with one or two principal components.  Information was measured by the percentage of variance in 
host-cell outcomes that was captured by the model.  Note the small-but-significant increase in information 
capture after inclusion of the second principal component (arrow).  (D) Correlation between cross-validated 
predictions of biological responses by partial least squares regression (x-axis) and observed biological 
responses (y-axis).  Marker color corresponds to the post-infection (p.i.) time point at 8 (white), 16 (gray), and 
24 (black) hours.  HL1 cells were infected with CVB3 at one of five multiplicities of infection and then 
assessed for the indicated phospho-proteins and biological responses at six and three time points, respectively, 
over 24 hr.  For (A) and (B), data are shown as the z-score standardized mean of three independent 
experiments as described in the Experimental Procedures.  For (C), data are shown as median information 
captured (red) after fivefold leave-one-out cross-validation (black).  For (D), data are shown as the median ± 
range of 3–4 biological replicates (vertical) or four model cross-validation runs (horizontal). 
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many individual activation peaks appeared or disappeared above a critical threshold of 

CVB3 M.O.I. (e.g., ATF2, CREB, and IκBα).  Sham infection with 0 M.O.I. did not lead 

to any meaningful changes when compared to 0.5 M.O.I. (Figure 4-2), confirming that 

the measured signaling events were due to CVB3 infection.  The internal consistency of 

our phospho (p)-ELISA measurements was also verified by the strong correlations 

between p-Akt and p-GSK3β (R = 0.6), a direct substrate of Akt (182), and between p-

p38 and p-Hsp27 (R = 0.8), a direct substrate of the MK2 kinase that is a substrate of p38 

(183).  The p-ELISA signatures thus provided a reliable starting point for connecting 

CVB-induced signaling to host-cell outcomes. 
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 One way that the observed CVB3-induced pattern of readouts could be 

coordinated is if each phospho-protein contributed incrementally to the pattern based on 

its extent of phosphorylation.  Host cells would then “integrate” the intracellular state 

established by the level of CVB3 infection and gauge their responses accordingly.  To 

test the feasibility of this network mechanism, we used partial-least-squares modeling to 

link linear combinations of measured phospho-proteins to observed CVB3-induced 

	
  
Figure 4-2.  Sham infection negligibly influences phosphoprotein signatures compared to CVB3 
infection at M.O.I. = 0.5.  HL1 cells were infected with sham or CVB3 at M.O.I. = 0.5 for the indicated 
times.  Samples were analyzed by immunoblotting for the indicated phospho-proteins with tubulin used as 
a loading control.  The phospho-epitopes correspond to the sites measured by phospho-ELISA in Figure 
4-1A. 
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readouts (19, 179).  In a partial-least-squares model, linear combinations take the form of 

principal components, which are latent dimensions in the underlying dataset that are 

derived to be optimally efficient at predicting response outcomes (184). 

 To build the model, we first subdivided the phospho-protein time courses into 

early (0–8 hr) and late (8–24 hr) phases and then time-integrated each early and late 

phospho-protein measurement for every CVB3 M.O.I..  This subdivision allowed us to 

separate biphasic activation profiles into early and late peaks.  Using the phospho-protein 

data as a set of predictor variables, we next sought a partial-least-squares model that 

could predict all of the CVB3-induced readouts accurately and simultaneously.  We 

found that a model with the two leading principal components could capture all of the 

measured readouts to within 97% accuracy (Figure 4-1C).  Importantly, this model also 

accurately predicted readouts for individual M.O.I. conditions that were left out of the 

model training during crossvalidation (Figure 4-1D).  The model thus supported a 

network mechanism in which multiple intracellular pathways work together by 

independently contributing to CVB3-induced readouts. 
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Figure 4-3.  Model principal components identify crosstalk between ERK and p38 pathways.  (A) 
Model projections of early phospho-proteins (0–8 h p.i., circles), late phospho-proteins (8–24 h p.i., 
clubs), and host-cell responses (contours) onto the principal components derived in Figure 1C.  (B) 
Dynamics of phospho (p)-ERK1/2 and p-ERK5 over a 24-hr time course of CVB3 infection.  HL1 cells 
were infected with CVB3 at M.O.I. = 9 and then assessed for p-ERKs at the indicated times p.i. by 
immunoblotting with tubulin used as a loading control.  (C) ERK p-ELISA measurements are a 
convolution of p-ERK1/2 and p-ERK5.  HL1 cells were pretreated with DMSO, PD to inhibit p-
ERK1/2, or U0 to inhibit p-ERK1/2 and p-ERK5 and then infected with sham or CVB3 at M.O.I. = 9.  
The p-ERK signals were assessed by p-ELISA at 0.17 hr p.i.  (D and E) Early- and late-phase activation 
of p-p38, p-ERK1/2, and effector kinases upon pretreatment with SB and infection with CVB3.  (F) 
Densitometry of late-phase p-ERK1/2 in response to SB.  (G) Prolonged SB inhibition leads to ERK1/2 
phosphorylation independently of CVB3 infection.  (H and I) Early- and late-phase phosphorylation of 
ERK5 upon pretreatment with SB and infection with CVB3.  (J) Densitometry of late-phase p-ERK5 in 
response to SB.  For (D–J), HL1 cells were pretreated with SB203580 (SB, 20 µM) for one hour, 
infected with sham or CVB3 at M.O.I. = 9, and then assessed for phospho-proteins at the indicated 
times post-infection by immunoblotting with either tubulin or β-actin used as a loading control.  For (F) 
and (J), densitometry measurements were normalized to CVB3-infected cells without inhibitor and data 
are shown as the mean ± s.e.m. of four biological replicates.  Asterisk indicates p < 0.05 by Welch’s 
one-sided t test. 
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4.4. Intracellular crosstalk between the ERK and p38 pathways 

Principal components can be further analyzed by plotting the weighted linear 

combinations of the original measurements that provided the basis for accurate model 

predictions (Figure 4-3A) (19, 179).  In this mapping, early and late phospho-proteins are 

depicted together with CVB3-induced readouts.  Clusters of phospho-proteins and 

readouts indicate measurements with close association in principal-component space and 

highlight correlations in the data that are most worthy of follow-up experiments (41, 

184). 

 Inspection of this principal-component mapping revealed that all CVB3-induced 

readouts were densely clustered in one region (Figure 4-3A, contours), suggesting that 

they were tightly coupled.  Within the cluster lay the transcription factor ATF2, which is 

critical for CVB3 pathogenesis in vivo (185), and p38, a MAPK that we recently showed 

is the dominant ATF2 kinase during CVB3 infection (177).  We also found p-Hsp27 in 

the cluster, which was expected because of its strong concordance with p-p38 (see 

above).  Conversely, we were surprised to find p-ERK located in the cluster together with 

p-p38, because the ERK1/2 and p38 pathways are generally thought to be activated by 

distinct stimuli and often serve antagonistic functions (186).  Nevertheless, their tight 

association in the model suggested that ERKs and p38 might be functionally interlinked 

during CVB3 infection. 

 An important consideration for this prediction was the high-throughput data upon 

which the model was founded (179).  The commercial p-ELISA used to assemble the p-

ERK dataset is marketed as specific for ERK1/2.  However, ERK1 and ERK2 share 

~50% identity with ERK5, a third MAPK whose regulation is distinct (187).  All three 
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ERKs have a Thr–Glu–Tyr motif that is bis-phosphorylated upon activation, and the 

sequence surrounding this motif is so similar that many p-ERK1/2 antibodies will cross-

react with ERK5 1.  p-ERK5 cross-reactivity is readily distinguished from p-ERK1/2 

during immunoblotting (ERK5 ~ 80–100 kDa vs. ERK1 ~ 44 kDa, ERK2 ~ 42 kDa), but 

the ELISA format cannot resolve proteins by molecular weight.  Because ERK5 signaling 

is important for cardiovascular tissues (188), we decided to investigate the individual 

contributions of ERK1/2 and ERK5 by independent methods. 

 We first monitored the kinetics of ERK1/2 and ERK5 phosphorylation by blotting 

with antibodies that were specific for each pathway (Figure 4-3B).  Both ERK1/2 and 

ERK5 were strongly phosphorylated shortly after CVB3 infection at 0.17 h p.i. and also 

after host cytotoxicity was evident at 24 h p.i.  However, ERK5 showed a more-sustained 

phosphorylation up to 1 h p.i. and p-ERK1/2 exhibited a second peak at 8 h p.i., 

illustrating differences in their regulatory kinetics.  The multiphase activation of ERK1/2 

was further confirmed by measuring phosphorylation of RSK, a specific ERK1/2 

substrate (Figure 4-4A) (189).  Next, we used a pair of MEK inhibitors (PD184352 [PD] 

and U0126 [U0]) to separate the ERK1/2 and ERK5 contributions to the ERK p-ELISA.  

PD at low concentrations selectively blocks MEK1/2 and ERK1/2 phosphorylation, 

whereas U0 inhibits MEK1/2–ERK1/2 and MEK5–ERK5 equally (190) (Figures 4-4B 

and 4-4C).  Thus, the contribution of ERK5 can be inferred from the difference between 

PD (ERK1/2 inhibition) and U0 (ERK1/2 + ERK5 inhibition).  When cells were 

preincubated with U0 and treated with CVB3 for 10 min, we found that the measured p-

ERK ELISA signal was reduced to background levels (Figure 4-3C).  By contrast, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 K.J.J. and K.A.J. unpublished observations. 
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pretreatment with PD reduced the ELISA signal by only ~30%, despite that ERK1/2 

phosphorylation was completely inhibited (Figures 4-3C and 4-4C).  This indicated that 

the p-ERK ELISA data was a convolution of ERK1/2 and ERK5 pathway activities and 

further implied that the predicted ERK–p38 associations (Figure 4-3A) could be between 

ERK1/2 and p38 or ERK5 and p38, or both. 
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Figure 4-4. Viral and pharmacological dependencies of ERK5 phosphorylation.  (A) CVB3 
infection causes multiphasic activation of ERK1/2 as monitored by phospho (p)-RSK.  HL1 cells were 
infected with CVB3 at M.O.I. = 9 and then assessed for the ERK1/2 substrate p-RSK at the indicated 
times p.i. by immunoblotting with tubulin used as a loading control.  p-ERK1/2 is reprinted from Figure 
2B for comparison.  (B) U0 inhibits CVB3-induced ERK1/2 and ERK5 phosphorylation.  Matched 
results with SB are shown for comparison. (C) PD inhibits CVB3-induced ERK1/2 phosphorylation.  
Matched results with SB are shown for comparison.  (D) BIRB inhibits CVB3-induced p38 activity as 
read out by Hsp27 phosphorylation.  (E) SB and BIRB both inhibit CVB3-induced ERK5 
phosphorylation.  (F) Densitometry of CVB3-induced p-ERK5 upon BIRB inhibition.  (G) SB and 
BIRB both inhibit hyperosmolarity-induced ERK5 phosphorylation.  293T cells were pretreated with 
SB203580 (SB, 20 µM) or BIRB796 (BIRB, 20 µM) for one hour, stimulated with 400 mM sorbitol for 
20 min, and then analyzed for the indicated proteins by immunoblotting with tubulin used as a loading 
control.For (B–E), HL1 cells were pretreated with U0126 (U0, 10 µM), PD184352 (PD, 2 µM), SB, or 
BIRB for one hour, infected with sham for CVB3 at (B–D) M.O.I. = 9 or (E) M.O.I. = 18 for (B,E) 0.17 
h or (C,D) 24 h, and then analyzed for the indicated proteins by immunoblotting with tubulin used as a 
loading control.  For (F), densitometry measurements were normalized to CVB3-infected cells without 
inhibitor and data are shown as the mean ± s.e.m of four biological replicates.  Asterisk indicates p < 
0.05 by Welch’s one-sided t test. 
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We tested for crosstalk between p38 and ERKs by using SB203580 (SB), an 

ATP-competitive small-molecule inhibitor of p38 (191).  We monitored p-ERK1/2, p-

ERK5, and p-p38, as well as the major ERK1/2 and p38 effector kinases, RSK and MK2 

(183, 189).  We found that SB potently inhibited p38 activity in cardiomyocytes, as 

expected, blocking phosphorylation of MK2 at early and late times after CVB3 infection 

(Figure 4-3, D and E).  Acute SB treatment was also specific, because we did not observe 

any effect on early CVB3-induced ERK1/2 phosphorylation or activity (Figure 4-3D).  

Upon prolonged SB treatment, however, we observed a modest-but-reproducible increase 

in ERK1/2 phosphorylation (Figure 4-3, E and F).  We attribute this to secondary 

inhibition of PP1 and PP2A phosphatases, which are normally activated by p38 signaling 

and serve to dephosphorylate MEK1/2 upstream of ERK1/2 (192).  Subsequent control 

experiments showed that SB-induced upregulation of ERK1/2 was independent of CVB3 

treatment (Figure 4-3G).  Thus, p38 signaling antagonizes late ERK1/2 signaling, 

prompting a re-evaluation of earlier p38-inhibition experiments involving CVB3 (see 

below) (193). 

 A second finding from these experiments was that SB treatment potently blocked 

both early- and late-phase phosphorylation of ERK5 (Figure 4-3, H and J).  The p38–

ERK5 coupling was consistent with predictions of the model (Figure 4-3A), but such 

crosstalk had not previously been reported.  To exclude the possibility that ERK5 

inhibition was caused by off-target effects of SB, we repeated the experiments with 

BIRB796 (BIRB), a mechanistically distinct inhibitor of p38 (194) (Figure 4-4D).  When 

cardiomyocytes were pretreated with BIRB, we observed the same blockade of CVB3-

induced ERK5 phosphorylation as with SB (Figure 4-4, E and F).  Last, to examine the 
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generality of the p38–ERK5 connection, we treated human embryonic kidney cells with 

sorbitol as an osmotic stress to activate both p38 and ERK5.  SB and BIRB each blocked 

hyperosmolarity-induced ERK5 phosphorylation (Figure 4-4G), suggesting that p38 is 

generally required for proper activation of the MEK5–ERK5 pathway.  Taken together, 

the molecular consequences of SB and BIRB indicate that p38 is functionally 

interconnected with both ERK1/2 and ERK5, as predicted by the model of CVB3 

pathogenesis (Figure 4-3A). 

 

4.5. Deconvolution of the ERK- and p38-dependent apoptotic response 

An important category of host-cell responses in the starting dataset was the 

activity of apoptotic caspases.  ERKs and p38 mapped closely to these readouts in the 

model and could conceivably control CVB3-induced apoptosis directly (Figure 4-3A).  

Both ERK1/2 and p38 have been reported to be important for proper caspase activation 

(193, 195).  However, these earlier studies used a dual MEK1/2–MEK5 inhibitor (U0) 

and were not aware of the antagonism between p38 and ERK1/2 (Figures 4-3, E and G, 

and 4-4C).  We thus pursued follow-up studies using gain- and loss-of-function 

approaches for ERK–p38 together with direct measurements of caspase processing. 

 We began with ERK5, as it inhibits cardiac apoptosis in other contexts (196, 197) 

but had not been previously implicated in CVB3 infection.  To block ERK5 signaling, we 

used the specific ATP-competitive ERK5 inhibitor, XMD8-92 (XMD) (198).  XMD 

treatment potently reduced phosphorylation of an ERK5 substrate (MEF2A) in 

cardiomyocytes and significantly increased caspase-9 and caspase-3 cleavage upon 

CVB3 infection (p < 0.05) (Figure 4-5, A and B).  CVB3-induced apoptosis also 
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increased when endogenous ERK5 was downregulated with shRNA (Figure 4-5, C and 

D).  We performed a reciprocal gain-of-function experiment by establishing stable lines 

expressing a doxycycline (DOX)-inducible mutant of MEK5 that was constitutively 

active (MEK5-DD) (Figure 4-5E).  Upon low-level infection with CVB3 (M.O.I. = 1.5), 

we found that DOX treatment of MEK5-DD-expressing cells caused a significant 

decrease in caspase-3 cleavage (p < 0.05) (Figure 4-5F).  Interestingly, the drop in 

caspase-3 cleavage was associated with changes in caspase-8 activation rather than 

caspase-9 activation as with XMD.  We attribute this difference to the kinetics of ERK5 

activation with MEK5-DD (~8 hours) versus ERK5 inhibition with XMD (< 1 hour).  

The MEK5-DD, XMD, and shRNA results together indicate that CVB3-induced ERK5 

signaling inhibits cardiomyocyte apoptosis.  This link between ERK5 and host-cell 

survival is unique, because virtually all other CVB3-stimulated pathways described thus 

far promote apoptosis rather than inhibit it (Table 4-1). 
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Figure 4-5.  ERK5 inhibits CVB3-induced apoptosis.  (A) XMD inhibits ERK5 activity in cells.  HL1 
cells were pretreated with XMD8-92 (XMD, 5 µM) for one hour, infected with sham or CVB3 at M.O.I. = 
9, and analyzed for phospho-MEF2A at 24 h p.i. by immunoblotting with tubulin as a loading control.  
(B) CVB3-induced caspase-9 and caspase-3 processing is increased by XMD-mediated inhibition of 
ERK5.  (C and D) Knockdown of endogenous ERK5 increases CVB3-induced caspase-3 cleavage.  HL1 
cells were transduced with the indicated shRNAs and analyzed for the indicated proteins by 
immunoblotting with tubulin or full-length caspase-3 used as a loading control.  In (D), quantitative 
densitometry is shown relative to shGFP control cells infected with CVB3 at M.O.I. = 9.  (E) DOX 
induction of MEK5-DD activates endogenous ERK5.  HL1 cells stably expressing doxycycline (DOX)-
inducible MEK5-DD were treated with 1 µg/ml DOX for 24 hr and analyzed for the indicated proteins by 
immunoblotting with tubulin used as a loading control.  (F) CVB3-induced caspase-8 and caspase-3 
processing is decreased upon activation of ERK5 by DOX-inducible MEK5-DD.  For (A) and (B), HL1 
cells were pretreated with XMD8-92 (XMD, 5 µM) for one hour, and infected with sham or CVB3 at 
M.O.I. = 9.  For (E) and (F), HL1 cells stably expressing doxycycline (DOX)-inducible MEK5-DD were 
infected with CVB3 at M.O.I. = 1.5 and treated with 1 µg/ml DOX at 0 h p.i..  Samples were analyzed for 
the indicated active caspase-cleavage products at 24 h p.i. by immunoblotting with tubulin or full-length 
caspases used as a loading control.  For (B) and (F), densitometry measurements were normalized to 
sham-infected cells without inhibitor and data are shown as the mean ± s.e.m of four biological replicates.  
Asterisk indicates p < 0.05 by Welch’s one-sided t test. 
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Next, we examined the p38 pathway by using a similar set of approaches.  

Consistent with an earlier report (193), we found that p38 inhibition via SB profoundly 

reduced caspase-3 cleavage during CVB3 infection (Figure 4-7A).  We reinforced the SB 

result by showing that p38 inhibition with BIRB phenocopied SB in its blockade of these 

experiments is that p38 promotes CVB3-induced apoptosis.  However, when we 

attempted the reciprocal gain-of-function experiment with a DOX-inducible, 

constitutively active mutant of MKK6 (MKK6-EE), there was no detectable change in 

caspase activation (Figure 4-7, B and C).  The apparent contradiction prompted us to re-

evaluate our experiments considering the cross-communication between p38 and ERKs  

(Figure 4-7E–J). 

	
  
	
  
Figure 4-6.  Pharmacologic perturbation of ERK5 and ERK1/2 signaling and their role in 
CVB3-induced caspase activation.  (A and B) Pan-ERK inhibition with XMD+PD increases CVB3-
induced apoptosis similarly to XMD treatment alone.  In (B), cells are infected with sixfold lower 
CVB3 titers compared to (A), and quantitative densitometry is shown relative to sham-infected cells. 
HL1 cells were pretreated with XMD8-92 (XMD, 5 µM), PD184352 (PD, 2 µM), or XMD+PD for 
one hour, infected with sham or CVB3 at (A) M.O.I. = 9 or (B) M.O.I. = 1.5, and analyzed for the 
indicated active caspase-cleavage products at 24 h p.i. by immunoblotting with tubulin or full-length 
caspases used as a loading control.  Densitometry measurements were normalized to sham-infected 
cells without inhibitor.  For (A), data are shown as the mean ± s.e.m of four biological replicates.  
Asterisk indicates p < 0.05 by Welch’s one-sided t test. 
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Figure 4-7.  p38 inhibition blocks CVB3-induced apoptosis indirectly via ERK1/2 hyperactivation.  
(A) CVB3-induced caspase processing is blocked by SB-mediated inhibition of p38.  (B–D) p38 
activation via DOX-inducible MKK6-EE does not affect CVB3-induced apoptosis but suppresses 
ERK1/2 phosphorylation.  For (B) and (D), HL1 cells stably expressing doxycycline (DOX)-inducible 
MKK6-EE were treated with 1 µg/ml DOX for 8 hr and analyzed for the indicated proteins by 
immunoblotting with tubulin used as a loading control. (E) SB-mediated inhibition of caspase 
processing is blocked by co-inhibition of ERK1/2 signaling with PD.  (F) ERK1/2 inhibition with PD 
does not affect CVB3-induced apoptosis.  For (A), (E), and (F), HL1 cells were pretreated with 
SB203580 (SB, 20 µM), PD184352 (PD, 2 µM), or SB+PD for one hour, and infected with sham or 
CVB3 at M.O.I. = 9.  For (C), HL1 cells stably expressing DOX-inducible MKK6-EE were infected 
with CVB3 at M.O.I. = 1.5 and treated with 1 µg/ml DOX at 8 h p.i..  Samples were analyzed for the 
indicated active caspase-cleavage products at 24 h p.i. by immunoblotting with tubulin or full-length 
caspases used as a loading control.  Densitometry measurements were normalized to sham-infected 
cells without inhibitor and data are shown as the mean ± s.e.m of four biological replicates.  Asterisk 
indicates p < 0.05 by Welch’s one-sided t test. 
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We reasoned that secondary inhibition of ERK5 would partially offset the 

observed SB–BIRB phenotype rather than cause it (Figures 4-3H–J and 4-5).  Therefore, 

our attention turned to ERK1/2, which becomes hyperactivated upon prolonged p38 

inhibition (Figure 4-3, F and G).  This negative regulation of ERK1/2 by p38 was further 

strengthened by the reduced p-ERK1/2 observed in DOX-treated MKK6-EE cells (Figure 

4-7D).  To determine whether the consequences of p38 inhibition were mediated through 

ERK1/2, we combined SB with PD to block ERK1/2 hyperactivation and found that 

CVB3-induced apoptosis occurred normally (Figures 4-7E and 4-8C).  Remarkably, 

ERK1/2 inhibition by itself did not substantially affect apoptosis of CVB3-infected cells 

(Figures 4-7F and 4-8C), suggesting that ERK1/2 acted as a pro-survival signal only 

	
  
Figure 4-8.  Pharmacologic perturbation of p38 and ERK1/2 signaling and their role in CVB3-
induced caspase activation.  (A and B) CVB3-induced caspase processing is blocked by BIRB-mediated 
inhibition of p38.  In (B), cells are infected with sixfold lower CVB3 titers compared to (A). 
(C) SB-mediated inhibition of caspase processing is blocked by co-inhibition of ERK1/2 signaling with 
PD.  Cells are infected with sixfold lower CVB3 titers compared to Figure 4E.  HL1 cells were pretreated 
with BIRB796 (BIRB, 20 µM), SB203580 (SB, 20 µM), PD184352 (PD, 2 µM), or SB+PD for one hour, 
infected with sham or CVB3 at (A) M.O.I. = 9 or (B,C) M.O.I. = 1.5, and analyzed for the indicated active 
caspase-cleavage products at 24 h p.i. by immunoblotting with tubulin or full-length caspases used as a 
loading control.  Densitometry measurements were normalized to sham-infected cells without inhibitor.  
For (A), data are shown as the mean ± s.e.m of four biological replicates.  Asterisk indicates p < 0.05 by 
Welch’s one-sided t test. 
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when p38 function was blocked.  The p38-specific role of ERK1/2 was re-emphasized in 

ERK5-inhibited cells, where PD+XMD increased apoptosis as with XMD alone (Figures 

4-5B, and 4-6, A and B).  Upon this re-evaluation of earlier studies using SB (193), we 

conclude that p38 signaling does not directly control CVB3-induced apoptosis. 

 

4.6. p38 signaling contributes to CVB3-induced pathogenesis by stimulating 

necrosis 

Apoptosis is but one facet of the host-cell response to CVB3 infection, raising the 

question of whether other aspects of pathogenesis could require p38 signaling (199, 200).  

In the original dataset, overall CVB3 cytotoxicity was measured via tetrazolium 

reduction.  However, this method was inadequate to read out cytotoxicity in the presence 

of signaling perturbations, which could also affect proliferation and metabolism.  We 

therefore switched to a fluorescent amine-reactive dye that intensely labels cells with 

compromised plasma-membrane integrity irrespective of the mechanism of cell death 

(201). 
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 We found that CVB3 infection caused a dramatic increase in the percentage of 

dye-labeled, non-viable cells as compared to sham infection (Figures 4-9A–D).  The 

actual extent of cytotoxicity was much greater than the flow-cytometry estimate 

(compare Figures 4-9, B and D), because many infected cells were so damaged that they 

were unavoidably lost during the suspension preparation.  As with the earlier apoptosis 

	
  
Figure 4-9. p38 inhibition improves viability of CVB3-infected cells independently of ERK1/2 
signaling.  (A) Representative flow-cytometry profile of CVB3-infected cardiomyocytes labeled with 
amine-reactive dye.  Dye-positive cells (pink) are considered non-viable.  (B) SB and SB+PD inhibit 
CVB3-induced cytotoxicity.  (C–G) Representative images of amine-labeled adherent CVB3-infected 
cardiomyocytes pretreated with SB, PD, or SB+PD.  Cells were pretreated with SB203580 (SB, 20 µM), 
PD184352 (PD, 2 µM), or SB+PD for one hour and infected with sham or CVB3 at M.O.I. = 9.  Cells 
labeled with amine-reactive dye, and monitored by flow cytometry or fluorescence microscopy.  For (B), 
data are shown as the mean ± s.e.m. of four biological replicates.  Asterisk indicates p < 0.05 by Welch’s 
one-sided t test.  For (C–G), scale bar is 20 µm. 
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experiments (Figure 4-7), we found that SB pretreatment strongly decreased the extent of 

CVB3-induced cytotoxicity, whereas PD did not have a significant impact (p > 0.05) 

(Figures 4-9B–F).  Surprisingly, when SB and PD were combined, we observed a clear 

improvement in overall cell viability even though caspase activation was unaffected 

under these conditions (Figures 4-7E and 4-9G).  The pronounced result of dual p38–

ERK1/2 inhibition was also reflected in significantly reduced titers of released viral 

progeny (p < 0.001) (Figure 4-10, A and B).  This raised the possibility that p38 could 

control alternative death pathways that were distinct from apoptosis but critically 

important for CVB3 pathogenesis. 

 We closely examined the morphology of CVB3-infected cells by microscopy and 

noted a mixture of phenotypes indicative of discrete single-cell outcomes (Figure 4-9D).  

Some cells had a rounded appearance with condensed nuclei, suggesting an apoptotic 

fate.  Others, however, remained fully spread and had aberrant lamellipodia-like 

projections (Figure 4-9D, right).  These cells also had an intact nucleus along with 

intracellular vesicles that remained dye impermeant.  Our observations suggested that a 

fraction of CVB3-infected cells undergo a vesiculated form of cell death with certain 

hallmarks of necrosis (200). 

 To determine whether CVB3 infection was associated with biochemical readouts 

of necrosis, we examined the chromatin protein HMGB1, which is released 

extracellularly by necrotic cells (202).  We validated the marker by stimulating 

cardiomyocytes with hydrogen peroxide (a recognized inducer of necrosis) and observing 

pronounced HMGB1 release (Figure 4-11A).  Importantly, we found that HMGB1 was 

clearly detected in supernatants from CVB3-infected cells (Figure 4-10C).  HMGB1 
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release was unaffected by the apoptosis inhibitor DEVD-CHO but was slightly reduced 

by the necrosis inhibitor Necrostatin-1, likely as a result of CVB3-induced autocrine TNF 

signaling (177, 203).  Thus, HMGB1 is a reliable marker of necrosis stimulated by 

CVB3. 

 Upon p38 inhibition with SB or BIRB, we observed near-complete blockade of 

HMGB1 release, suggesting potent inhibition of necrosis (Figures 4-10D and 4-11B).  

Conversely, necrosis was negligibly affected in CVB3-infected cells treated with PD to 

inhibit ERK1/2, consistent with the earlier labeling results (Figures 4-9, B and F, and 4-

10E).  In stark contrast to the apoptotic readouts (Figure 4-7E), we did not observe any 

reversion of necrosis when CVB3-infected cells were pretreated with SB + PD (Figure 4-

10F).  Last, to test whether p38 signaling was sufficient to drive virus-induced necrosis, 

we returned to the inducible MKK6-EE cells and found that DOX treatment substantially 

augmented HMGB1 release during CVB3 infection (Figure 4-10G).  We conclude that 

p38 signaling is a critical component of a necrosis pathway, which promotes CVB3 

propagation independently of ERK-dependent apoptosis. 
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Figure 4-10.  p38 controls CVB3-induced necrosis.  (A and B) SB+PD markedly inhibits 
released viral progeny (RVP) in CVB3-infected cells.  (C) HMGB1 is a reliable marker of 
CVB3-induced necrosis.  (D–F) SB blocks CVB3-induced HMGB1 release independently of 
ERK1/2 pathway inhibition with PD.  Note that PD does not affect the inhibition of HMGB1 
release caused by SB.  (G) p38 activation via DOX-inducible MKK6-EE increases CVB3-
induced HMGB1 release.  For (A–F), cells were pretreated with SB203580 (SB, 20 µM), 
PD184352 (PD, 2 µM), SB+PD, Necrostatin-1 (Nec-1, 50 µM), or DEVD-CHO (DEVD, 0.1 
µM) for one hour and infected with sham or CVB3 at M.O.I. = 9.  For (A and B), RVP titers 
were determined by plaque assay.  For (D–G), culture supernatants were concentrated and 
analyzed for HMGB1 release by immunoblotting.  For (G), HL1 cells stably expressing 
doxycycline (DOX)-inducible MKK6-EE were infected with CVB3 at M.O.I. = 1.5 and treated 
with 1 µg/ml DOX at 8 h p.i..  For (B), data are shown as the median ± range of four biological 
replicates.  Single asterisk indicates p < 0.05 and double asterisk indicates p < 0.001 by Welch’s 
two-sided t test. 
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4.7. Summary  

 Viruses such as CVB3 activate many host-cell signaling pathways and evoke 

many host-cell responses.  Our study began with a holistic, systems approach to monitor 

these events dynamically and as a function of CVB3 titer.  By analyzing the data to make 

quantitative predictions of host-cell outcome, we quickly converged on ERKs and p38 as 

key pathways for CVB3 pathogenesis.  Early-phase ERK1/2 activation stems directly 

from CVB3 docking to host membranes, whereas late-phase activation occurs due to 

cleavage of upstream signaling molecules by viral proteases (195, 204).  Late-phase p38 

and ERK5 signaling probably lies downstream of autocrine proinflammatory cytokines, 

which are induced 

during the final stages 

of the viral life cycle 

(Figure 4-13) (177).  

Despite differences in 	
  
Figure 4-12.  Model for ERK–p38 signaling, apoptosis, and necrosis 
induced by CVB3.  Dashed line indicates context-dependent inhibition of 
apoptosis by ERK1/2. 
	
  

	
  
	
  
Figure 4-11.  Monitoring CVB3-induced necrosis with HMGB1.  (A) Validation of HMGB1 as a 
marker of necrosis caused by H2O2.  HL1 cells were treated with 2 mM H2O2 for 24 h and analyzed for 
HMGB1 release by immunoblotting.  (B) BIRB inhibits CVB3-induced necrosis.  HL1 cells were 
pretreated with BIRB796 (BIRB, 20 µM) for one hour, infected with sham for CVB3 at M.O.I. = 9 for 24 
h, and then analyzed for HMGB1 release by immunoblotting. 
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activation, our work here shows that ERKs and p38 are strongly interconnected (Figure 

4-12).  These dependencies are important for interpreting the results of “single-pathway” 

perturbations that propagate through the network (193, 195). 

 Notably, we were able to uncover a role for ERK5 in CVB3 pathogenesis by 

modeling a dataset that did not measure ERK5 explicitly.  We have shown elsewhere that 

quantitatively accurate signaling measurements are critical for data-driven models to 

reflect underlying biological mechanisms (145, 179).  Our results here using a pan-ERK 

p-ELISA indicate that measurements of specific proteins may not be as important.  This 

is encouraging, because many modern signaling assays increase overall throughput by 

relaxing the specificity constraints of traditional approaches (205). 

 Similarly, our work shows that agglomerated cell-outcome data may be sufficient 

for viral-host modeling and discovering overlooked phenotypes.  The importance of 

CVB3-induced necrosis as a host-cell fate was revealed here without direct necrotic 

	
  
 
Figure 4-13.  Late-phase ERK5 and p38 signaling is inhibited upon blockade of autocrine 
proinflammatory cytokines.  HL1 cells were pretreated with TNF-neutralizing antibody (α-TNF, 1 
mM), the IL-1 receptor antagonist IL-1ra (0.5 mM), or α-TNF + IL-1ra for one hour, infected with 
sham or CVB3 at M.O.I. = 9, and then analyzed for p-p38 and p-ERK5 at 24 h p.i. by immunoblotting 
with tubulin used as a loading control. 
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readouts in the model (Figure 4-12).  This information was presumably embedded in the 

overall cytotoxicity measure, which depends strongly on the level of necrosis (Figures 

5A–D).  Interestingly, the associated RVP titers appear to be influenced by apoptosis and 

necrosis reciprocally.  When both apoptosis and necrosis are blocked upon p38 inhibition 

with SB, there is a slight reduction in RVP.  However, when apoptosis is restored in p38-

inhibited cells by blocking ERK1/2 hyperactivation, RVP is dramatically reduced (Figure 

4-10B).  Thus, necrosis may be the preferred outcome for CVB3, which is counteracted 

by the host-cell drive to die by apoptosis.  To isolate necrosis specifically requires 

targeting an upstream mediator (p38) and resetting the other secondary consequences of 

pathway inhibition (e.g., ERK1/2) (Figure 4-12).  Such combinatorial anti-viral strategies 

would be difficult to predict without the aid of a systems model for the host-cell response 

to CVB3 infection. 
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CHAPTER 5 

Design of a high-throughput multiplex kinase activity assay 

 

5.1 Introduction 

The human cell-signaling network is comprised of numerous signaling pathways 

and subnetworks (Chapters 3-4) that integrate complex input signals from receptors 

(Chapter 2) and other stimuli to execute outputs such as gene expression, cell growth or 

cell death (206).  A complete systems-level understanding of the network as a whole will 

be important in understanding complex disease states and developing therapies to combat 

them.  Methods that can probe the network more generally to understand how the 

subnetworks and pathways function together will be important tools for understanding 

network-level emergent phenomena such as acquired drug resistance and drug synergy. 

 

5.2 Kinases are critical signaling nodes 

Kinases are essential regulators of the cell-signaling network.  The human 

“kinome” consists of 518 kinases that catalyze the phosphorylation of serine, threonine, 

or tyrosine amino acid residues of their protein substrates (22).  Phosphorylation of a 

substrate can alter its stability, activity, or localization within the cell (206).  

Accordingly, the deregulation of kinase signaling has been shown to contribute to a 

multitude of diseases such as cancer and Alzheimer’s disease (13, 14).  Kinases often sit 

at critical nodes in the signaling network where they function as important activity hubs, 

integrating many inputs into numerous outputs.  Importantly, while there are numerous 
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techniques available that can measure the extent of protein phosphorylation (mass 

spectrometry, Western blot, ELISA, etc), these assays are not good readouts of a kinase’s 

enzymatic activity (207).  Phosphorylation is a net measurement of kinase activity and 

the antagonists of kinases, the phosphatases, which dephosphorylate protein substrates 

(208).  Methods that measure kinase activity directly will provide important insights to 

the regulation of these important components of cell-signaling networks. 

 

5.3 Design of a high-throughput multiplex kinase activity assay  

To address these needs, our group developed a high-throughput kinase activity 

assay (209).  This assay design was successful in answering important biological 

questions (19, 41, 134, 210), but it faced several drawbacks.  Due to the radioactive 

readout of the assay, sub-physiological levels of ATP were required (due to radioactivity 

limits), which hurt the sensitivity of the assay.  Additionally, despite increased 

throughput compared to earlier assays, our assay was only capable of measuring kinases 

singly.  To address these drawbacks and improve both the sensitivity and throughput of 

the assay, we are developing a nonradioactive, multiplex kinase assay (Figure 5-1).  

Acquiring multi-kinase measurements from a single sample will increase efficiency, 

making it easier for activities to be measured in high-throughput experiments.  In this 

chapter we present preliminary feasibility experiments towards the design of a multiplex, 

high-throughput kinase activity assay. 
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Multiplexing kinases requires that the kinases are specific. Because kinase 

specificity is determined by the amino acid sequence surrounding the target 

phosphorylation site (211) and docking sites (212), multiple kinase activities can be 

measured in the same reaction, which not only increases the throughput of the assay, but 

also substantially decreases the amount of sample required.  For our assay, we have 

chosen five kinases with distinct sequence recognition motifs and/or docking sites that 

are embedded in five central cell-signaling pathways: extracellular-regulated kinase 

	
  
 
Figure 5-1.  Design of high-throughput multiplex kinase activity assay.  (A) Anti-kinase antibodies 
are precipitated onto a 96-well plate and incubated with cell lysate to immunoprecipitate endogenous 
kinases.  An in vitro kinase reaction is performed in the well with epitope-tagged kinase-specific 
substrates and ATP.  (B)  Differentially phosphorylated substrates from the kinase reaction are 
incubated with Luminex beads with anti-tag antibodies.  The substrates are immunoprecipitated onto 
the beads and labeled with phospho-specific antibodies. 
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(ERK1/2), IκB kinase (IKK), Akt, mitogen-activated protein kinase-associated protein 

kinase 2 (MK2), and c-jun N-terminal kinase (JNK) (Table 5-1).   

Table 5-1.  Published substrate consensus sequences and docking sites for five assay 
kinases.  Phosphorylation site is shown in red and Φ indicates any hydrophobic amino acid. 

Kinase Substrate consensus Substrate docking site Reference 

ERK PX(S/T)P FXFP (213, 214) 

    Akt RXRXX(S/T) 
 

(215) 

    JNK (S/T)P (K/R)XXXLXL (216) 

    IKK (pT/pS)(pT/pS)X(Y/F)XS(L/I)X(D/E) 
 

(217) 

    MK2 (L/I/F)XR(Q/S/T)L(S/T)Φ    (218) 
 

In our proposed design, mixtures of anti-kinase antibodies are coated on 96-well 

plates and used to immunoprecipitate endogenous kinases from a cell lysate.  Then, 

mixtures of independently tagged substrates for the plate-bound kinases are added with 

ATP, and kinase-mediated substrate phosphorylation is allowed to proceed in vitro 

(Figure 5-1A).  Epitope tags fused to the recombinant substrate provide a means to isolate 

individual substrates on fluorescent beads coated with anti-tag antibodies (Figure 5-1B).   

Kinase activity is read out by the extent of substrate phosphorylation, which will be 

marked by antibodies against the phosphorylation site on the substrate (Figure 5-1B).  

The identity of the substrate on the bead is indicated by the bead’s fluorescence and anti-

tag antibody, which can be tracked along with kinase activity on a Luminex instrument.  

By using fluorescence to quantify substrate phosphorylation (instead a traditional 

radioactive 32P label), higher and more-physiological ATP concentrations can be used to 

significantly enhance the sensitivity of the assay.  Using physiological ATP levels has 

been shown to considerably increase measured activity levels of certain kinases (219, 
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220) and should significantly improve the sensitivity of the assay.  By increasing the 

throughput of the assay, using physiological levels of ATP (1 mM or higher), as well as 

obtaining an amplification of signal from the sandwich ELISA (Figure 5-1B), we 

anticipate that we will be able to increase the sensitivity by greater than tenfold compared 

to our previous kinase activity assay (209). 

 

5.4. Reagent development for proposed assay design 

 5.4.1. Antibodies 

We have validated commercially available anti-kinase antibodies for microplate 

immunoprecipitation of our five kinases (209) (Table 5-2).  Anti-phospho antibodies for 

the substrates were also validated for use by Western blot (Table 5-2 and Figure 5-5). 

 

Table 5-2.  Validated antibodies for kinase assay.       

Kinase IP antibody Substrate 
Phospho 
site 

Phospho 
antibody Tag Tag Antibody 

MK2 StressGen KAP-MA015 Hsp27 S82 CST 2401 FLAG Sigma F1804 

IKK BD 559675 IKB S32 CST 2859 HA Roche 11867423001 

ERK Upstate 06-182 RSK T573 CST 9346 AU1 
Covance MMS-
130P 

Akt Upstate 05-591 GSK3 S21 CST 9316 VSVG Roche 11667351001 

JNK Santa Cruz c-17 cjun S73 CST 9164 
Glu-
Glu 

Covance MMS-
115P 

 

5.4.2. DNA constructs 

Due to the requirement for substrates to be separated by the Luminex instrument 

for a multiplex assay (Figure 5-1B), substrates used in the assay need to be differentially 

tagged.  For this purpose, we designed DNA constructs to contain N-terminal epitope 

tags (HA, FLAG, Glu-Glu, VSVG, AU1) in triplicate.  Epitope tagging was chosen 

because there are high affinity antibodies available for these short sequences (221, 222).  
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By using the epitope tag sequence in triplicate, we increased the avidity of the antibody-

tag immunoprecipitation of the recombinant substrate to the Luminex bead (Figure 5-1B).  

Sequences for triple-epitope tags were cloned into the multiple cloning site (MCS) 

pGEX-4T-1 glutathione S-transferase (GST) fusion vectors.  By cloning the epitope tag 

first and separately from the substrate sequence, these vectors can easily accept 

alternative substrate sequences without the need to clone additional epitope-tagged 

vectors.  Subsequently, we cloned kinase-specific substrate sequences into the epitope-tag 

vectors to generate the following tagged substrates: 3XAU1-RSK(386-752) for ERK1/2, 

3XHA-IκBα(1-62) for IKK, 3XVSVG-GSKα(1-97) for Akt, 3XFLAG-Hsp27 for MK2, 

and 3XGluGlu-cjun(1-79) for JNK.  These substrate sequences have been shown to be 

good readouts of kinase activity for the five kinases described (215, 216, 223-225).  

Truncations of substrates excluded kinase domains of the substrates and allowed for 

easier protein purification.  

 

5.4.3. Recombinant protein substrates  

Recombinant substrates were expressed and purified for use in the assay.  Plasmid 

constructs described in Chapter 5.4.2 were transformed into chemically competent low 

copy C41 bacteria for expression.  Sequences cloned into the MCS of pGEX-4T1 vectors 

are under control of the lac operon to control expression.  The pGEX-4T1 vector 

constitutively expresses the LacI repressor protein that prevents activity at the Ptac 

promoter for the MCS.  Addition of Isopropyl β-D-1-thiogalactopyranoside (IPTG) 

relieves the inhibition by LacI and allows expression at the Ptac promoter.  IPTG is a 

molecular imitator of allolactose, a lactose metabolite that drives transcription at the Ptac 
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promoter.  IPTG is preferable for 

use in induction experiments 

because IPTG cannot be 

hydrolyzed by β-galactosidase 

like allolactase.  Since the IPTG 

is not hydrolyzed, its 

concentration is maintained 

during the induction for constant 

expression.  The amount and 

duration of IPTG induction was 

optimized to yield maximal 

protein production (Table 5-3) 

(example shown in Figure 5-2).   

 

 
 

	
  
Figure 5-2.  Example of induction optimization for 3XAU1-
RSK(386-752).  Bacterial lysates were run on SDS-PAGE gel 
after being induced by IPTG (A) 0.4 mM (B) 1 mM (C) 2 mM 
and (D) 5 mM. 
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Table 5-3.  Optimized protein purification conditions. 

Substrate [IPTG](mM) Induction time Thrombin (μl) 
Thrombin 
time 

Hsp27 0.4mM 4 hour 2ul 6 hour 

IκBα 0.4mM 1 hour 2ul 6 hour 
RSK 0.4mM 5 hour 12ul 4 hour 

GSK3α 2mM 6 hour 8ul 2 hour 
c-jun 1mM 1 hour 2ul 6 hour 

 

Addition of the GST moiety to the desired substrate provides an affinity handle to 

purify the substrate from the bacteria culture after induction.  GST is a powerful affinity 

handle because its affinity for its substrate, glutathione, is in the submillimolar range 

(226).  Using the GST handle, the recombinant substrates are purified from the bacterial 

lysate using glutathione agarose beads.  After the purification, the GST can be removed 

from the substrate using thrombin enzyme that specifically recognizes and cleaves the 

sequence between GST and the substrate.  The amount of thrombin enzyme and cleavage 

time were optimized to maximize GST cleavage and simultaneously minimize cleavage 

products of the substrate (Table 5-3).  Following the thrombin digest, thrombin enzyme is 

GST-3XGluGlu-

cjun(1-79)

Released GST

Time (Hr) 0       2      4       6       8               24   Beads 2      4       6       8               24   Beads

1:25 Thrombin 1:50 Thrombin

	
  
Figure 5-3.  Example of thrombin optimization for 3XGlu-Glu-cjun(1-79).  Release of GST and 
3XGluGlu-cjun (not shown) from glutathione agarose beads were monitored over 24 hours for with varying 
concentrations of thrombin enzyme (not all dilutions shown). 
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removed from the purified substrate with p-aminobenzamidine beads to yield purified 

substrate.  Purified substrate was quantified by SDS-PAGE (example shown in Figure 5-

4).  We have shown that the purified recombinant substrates are all phosphorylated in 

vitro by immunoprecipitated cellular kinases in our microplate format (Figure 5-5).   

 

5.4.4. Luminex beads conjugated with anti-epitope tag antibodies 

 Customized Luminex beads are necessary to immunoprecipitate the appropriate 

substrates to differentially labeled beads.  Anti-epitope tag antibodies were chemically 

coupled by EDC and Sulfo-NHS to carboxylated Luminex beads to form a stable amide 

linkage (227).  Each epitope tag antibody was coupled to a different bead identification 

region for discrimination by the Luminex instrument.  Each bead region is defined by 

varying concentrations of two dyes to give each region a unique identity.  The amount of 

anti-epitope tag antibody that could be chemically coupled the Luminex beads was 

BSA standard

3XGluGlu-cjun(1-79)

	
  
Figure 5-4.  Example of recombinant substrate quantification.  BSA standard (10 µg, 5 µg, 2.5 µg, 
1.25 µg, 0.625 µg) was run on a SDS-PAGE protein gel alongside purified recombinant substrate and 
stained with Coomasie blue stain.  Image analysis and densitometry was preformed in ImageJ software 
(5). 
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optimized and customized beads were prepared with each of the five epitope tag 

antibodies. 

 

5.5. Preliminary results with high-throughput multiplex kinase activity assay 

 Multiplexing is 

dependent on kinase 

specificity within the 

assay.  Since many 

kinases have numerous 

substrates in vivo, 

substrates used in the 

assay must only be 

recognized by the 

intended kinase. While 

the five kinases chosen 

for the assay have distinct 

sequence recognition motifs and/or docking sites (Table 5-1), it is important to validate 

that there is no crosstalk in the assay format.  First, it is necessary to check whether a 

kinase is phosphorylating substrates other than its intended target.  To test this directly, 

assays will be performed with mismatched immunoprecipitation antibodies and substrates 

(Figure 5-6).  In our preliminary experiments with MK2 and IKK, immunoprecipitation 

of IKK did not result in Hsp27 phosphorylation (Figure 5-6A).  However, 

immunoprecipitation of MK2 resulted in IκBα phosphorylation (Figure 5-6B), suggesting 

	
  
Figure 5-5.  Recombinant substrates are phosphorylated in vitro 
by immunoprecipitated endogenous kinases.  IKK, MK2, and JNK 
kinases were active in phosphorylating their substrates IκBα, Hsp27, 
and c-jun in TNF-stimulated lysates.  ERK kinase from EGF-
stimulated lysate was active in phosphorylating its substrate RSK.  
Akt kinase from insulin-stimulated lysate was active in 
phosphorylating GSK3α. 
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that MK2 may have activity 

towards IκBα or that IKK 

was being 

immunoprecipitated with 

MK2.  Increasing the 

stringency of the washes 

following the 

immunoprecipitation 

abrogated IκBα 

phosphorylation in the MK2 

assay (Figure 5-6C).  The 

high stringency wash did not 

reduce phosphorylated Hsp27 

in the MK2 assay (Figure 5-

6D).  This suggested that IKK was immunoprecipitating in complex with MK2 and that 

this complex was disrupted by the high salt washes.  It will also be important to validate 

that no kinase is activating another kinase.  In vitro, ERK has been shown to 

phosphorylate MK2 (228).  While this does not happen in cells, this interaction or similar 

interactions among the kinases being assayed will be important to exclude when 

multiplexing.   

In addition to our kinase assay protocol, we have developed a protocol for 

immunoprecipitating differentially-phosphorylated substrates onto custom Luminex 

beads for measurement on the Luminex machine.  In our preliminary experiments, we 

	
  
Figure 5-6.  Apparent crosstalk from MK2 to IκBα is resolved 
by higher stringency washes.  (A) Hsp27 is phosphorylated by 
MK2 in TNF-stimulated lysates, but not by IKK.  (B)  IκBα is 
phosphorylated in both IKK and MK2 assays with TNF-
stimulated lysates.  (C)  Increasing NaCl in the wash buffer 
abolishes apparent MK2 activity against IκBα.  (D)  High 
stringency wash condition does not affect MK2 assay against 
Hsp27.  M denotes marker lane. 
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have shown detection of increased substrate phosphorylation by Luminex for all 

substrates.  We have also observed no significant reduction in measured activity when 

two kinases are multiplexed (Figure 5-7, A and B).  Multiplexing slightly decreased the 

measured levels of Akt activity but the relative increase in signal induced by TNF was 

unchanged (Figure 5-7A).  While several assay parameters remain to be optimized, our 

preliminary results suggest that our proposed format will accommodate the five kinases 

outlined here in a multiplex format. 

 

	
  
Figure 5-7.  Preliminary assay shows no loss of signal when two kinases are multiplexed.  (A)  Akt 
activity in HT29 cells stimulated with TNF and insulin in single and two-plex assay formats.  (B)  MK2 
activity in HT29 cells stimulated with TNF and insulin in single and two-plex assay formats.   
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5.6. Summary 

Kinases are an important class of signaling proteins in human cell-signaling 

networks that are key integrators of signals.  Existing kinase activity assays measure 

kinase function individually (209, 229) or indirectly (230).  Measuring multiple key 

signaling pathways simultaneously will help us understand the complex effect of a 

stimulus or drug.  In order to probe the network more generally, we sought to develop a 

high-throughput experimental method to measure kinase activity.  Our design is also 

more sensitive than previous kinase activity assays (209) due to the physiological ATP 

concentrations allowed by the non-radioactive format and signal amplification by 

sandwich ELISA.  Together, these innovations will substantially increase throughput of 

measuring kinase activity and will require far less sample than previously required. 

Another strength of our assay design is that it is generalizable.  We specifically 

designed our triple epitope-tag plasmids to be amenable to easy interchange of substrate 

protein constructs.  In the future, we believe that our platform will be able to 

accommodate additional five-kinase panels to build larger kinase activity datasets or to 

answer different biological questions by studying a new set of kinases.  This assay will 

allow us to probe multiple signaling subnetworks simultaneously and study signaling at 

the network level.  
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CHAPTER 6 

Conclusions and Future Directions 

 

6.1. Utilizing systems approaches to understand cell-signaling networks and treat 

disease 

Systems approaches continue to make important contributions to our 

understanding of the cell-signaling network (231, 232).  Host-pathogen interactions, 

cancer, and other diseases are increasingly appreciated as complex cellular perturbations 

that will benefit from systems-level analysis (233, 234).  Similarly, the treatment of these 

diseases is moving beyond the study of a single drug’s interaction against its intended 

target to the global effect of a drug or combination of drugs.  The field of systems 

pharmacology is gaining recognition as a promising approach to study the complexity of 

drugs within the network and design better therapies (32).  In this chapter we will discuss 

future directions for the projects presented in this thesis and how they will help answer 

some of these questions about cell-signaling at the network level. 

 

6.2. High-throughput experimental assays for the generation of large datasets 

 6.2.1. Receptome profiling 

 Our receptome profiling assay (Chapter 2) demonstrated the importance of 

receptor presence/absence and the inadequacy of existing platforms to accurately measure 

their expression and definitively conclude true absence.  Advantages of our platform 

include its low cost and that it does not require specialized equipment, making it 
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desirable for high-throughput profiling and accessible for other labs and researchers.  

Further, we provide a framework for the design and validation of additional primer sets to 

expand the platform to include additional receptor families.  Since the assay is compatible 

with any human cells, both established cell lines and primary cells, it will find use in the 

study of diverse human diseases. 

 In our initial application of the receptome assay, we profiled 40 cancer cell lines, 

with a focus on breast, melanocytic, and pancreatic lines (Figure 2-9).  This analysis 

uncovered receptors that were overexpressed or selectively silenced in cancer types that 

were not previously appreciated (Tables 2-2 and 2-3).  The presence or absence of a 

single receptor can change the baseline signaling, gene expression, and response to 

stimuli (as demonstrated with IL10RA in melanoma, Chapter 2-7).  Continued study of 

these receptors in particular cancers could identify receptor expression that may be 

important in disease progression or receptors that could be therapeutically targeted.  

There is precedence for targeting receptor overexpression in several cancers 

demonstrated by the success of anti-EGFR, anti-VEGFR, and anti-HER2 therapies, 

among others (235).  Receptor upregulation has also been shown recently to be an 

important mechanism of acquired or innate drug resistance in certain cancers (236-238).  

Receptome profiling could identify sets of receptors that change expression levels in 

response to drug treatment or when cells become resistant to a drug.  Additionally, our 

receptome profiling has been demonstrated to be compatible with primary tissue samples 

(Figure 2-15).  By profiling primary tumor samples, distinct patient signatures could be 

associated with drug response, which could provide a rapid and inexpensive clinical test.    
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Receptome profiling could also be useful in the characterization of cell lines as 

models for disease.  The ability to grow human cells outside the body in culture and the 

development of stable cell lines has contributed greatly to many facets of medical 

science.  Despite their utility and near universal use, limitations of cell line models are 

becoming more apparent, from misclassification to contamination to lack of 

representation of human disease (239).  The limitations of cell line models are also taking 

blame for the failure to translate findings from models to patients.  In one example of a 

misclassification, a particularly aggressive breast cancer line was actually melanoma 

(MDA-MB-435) (240).  Especially concerning is that research articles continued to 

employ MDA-MB-435s a breast cancer model after it was reclassified (241, 242).  Cell 

origins can be analyzed and compared with genetic analysis.  However, genetic identity 

may not capture heterogeneity in disease presentation or the plasticity of cellular 

phenotypes across varying growth conditions or other variables (Chapter 2.8).  Gene 

expression data can also be used to compare cell lines, but differences in receptor 

expression might not be captured in microarray or RNAseq comparisons due to the 

discrepancies between the methods as described in Chapter 2.4-2.5.  Receptome profiling 

could provide a fast and inexpensive way to compare receptor profiles of cell line model 

systems to patient tumors to identify more representative model systems for experiments. 

 

 6.2.2 High-throughput multiplex kinase activity assay 

 Once complete, our high-throughput multiplex kinase activity assay will provide a 

useful tool for measuring information flow throughout the cell-signaling network by 

simultaneously measuring the activity of five kinases in canonical pathways.  Our assay 
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and associated reagents are designed to be adaptable to alternate panels of five kinases.  

The ability to probe kinase activity at this scale, with improved sensitivity and lower 

sample requirement, will allow for the collection of large datasets that could serve as the 

foundation for data-driven models (Chapter 4).   Interesting cell-signaling questions could 

be asked at the network level, such as why certain drug pairs demonstrate synergy when 

used in combination.  While many screening efforts have been developed to identify 

synergistic drug pairs, the mechanisms of the synergy can be difficult to elucidate (243).   

A second application of interest would be to use the assay to study complex 

perturbations to the cell-signaling network and how they alter the network over time.  

Particularly of interest in our group is the study of CVB3 in chronic infections.  While 

CVB3 can result in acute infection of cardiomyocytes (Chapter 4), chronic myocarditis 

can develop from the mere presence of CVB3 RNA without an active infection (176, 

244).  The molecular mechanism by which CVB3 elicits this damage to the heart remains 

unknown and a challenging signaling problem at the network level.  By monitoring the 

dynamics of multiple pathways simultaneously, our kinase assay will provide important 

insight to these biological questions. 

 

6.3. Computational modeling of signaling networks to interpret and integrate 

datasets  

 6.3.1. Pathway connectivity analysis and target druggability 

 In Chapter 3, we introduced a set of computational models to predict the 

discrepancy between RNAi and small-molecule inhibition due to local network 

connectivity.  Our models predicted a wide range of discrepancies dependent on pathway 
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topologies.  From these results we hypothesize that sensitivity of a signaling enzyme to 

protein levels or catalytic activity would be exploited by evolution and cancer-cell 

evolution.  Specifically, we predict that subnetworks sensitive to changes in activity but 

not protein levels will predominantly be activated by mutation.  There are interesting 

biological examples in the literature to support the conclusions from the models.  For 

example, in the topology of the Raf-MEK1/2-ERK1/2 pathway (Figure 3-4B), MEK1/2 is 

predicted to be more effectively inhibited by perturbations to enzyme activity compared 

to perturbations of enzyme level.  In the literature, there are no reports of MEK1/2 being 

transcriptionally regulated in any context, but an activating mutation in MEK1/2 has 

recently been reported in vemurafenib-resistant melanoma (245).  This evidence is 

consistent with our model predictions that for MEK1/2, catalytic activity is more 

important than enzyme levels for pathway inhibition.  Conversely, we predict that 

subnetworks sensitive to protein levels but not activity will only be upregulated or 

downregulated.  For example, in the caspase-8-caspase-3-caspase-6 pathway (Figure 3-

13B), our modeling predicts that targeting protein level is more effective than catalytic 

activity.  Caspase-3 levels have been shown to be transcriptionally regulated (246), and 

most inactivating caspase-3 mutations in human cancers are missense mutations that 

effectively reduce protein levels (247).  The appreciation for the mechanistic differences 

between RNAi and small-molecule inhibition in different pathway wirings could provide 

important insight in prioritizing RNAi screens and may shed light on susceptible targets 

in cancer cell evolution. 
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 6.3.2. Discovery of signaling subnetworks by data-driven modeling 

 Despite the importance of connectivity in cell-signaling pathways and networks 

(Chapter 3), connectivity is not always readily apparent from experimental data.  

Crosstalk amongst signaling pathways will be important to understand in disease contexts 

because activation of compensatory pathways is thought to be a major contributor to 

acquired drug resistance (248).  Additionally, by identifying pathways that are perturbed 

together in a disease context, we can better identify combinations of drug targets to treat a 

disease (Chapter 4).  Data-driven modeling approaches will continue to be important in 

developing biological hypotheses by integrating disparate types of experimental data, 

especially as technological advances allow us to measure new biological mechanisms. 

 In Chapter 4, we utilized data-driven modeling to understand the complexity of 

cell death during CVB3 infection of cardiomyocytes.  We described a signaling 

subnetwork where the ERK1/2, ERK5, and p38 pathways function together as regulators 

of apoptosis and necrosis in the CVB3-infected cardiomyocytes.  In our experimental 

follow-up experiments we found that by simultaneously inhibiting p38 and ERK1/2 with 

SB203580 and PD184352, cardiomyocyte death and virus progeny release were greatly 

reduced (Figures 4-9 and 4-10, A and B).  These results suggest a possible combination 

treatment for patients with acute infection.  Animal models of CVB3 infection could be 

used to address some of these early considerations in justifying p38 and ERK1/2 

inhibition as a plausible therapy.  Clinically, inhibitors of the p38 pathway have been 

explored for inflammatory conditions (249, 250) and inhibitors targeting the ERK1/2 

pathway have shown promise in several cancers (251).  
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 Testing whether or not this signaling subnetwork is exclusive to CVB3 infection 

also warrants further study.  CVB3 is one of 29 serotypes of coxsackievirus that are 

responsible for a diverse range of medical conditions, from pancreatitis to hand, foot, and 

mouth disease (252, 253).  Interestingly, coxsackieviruses have also been implicated with 

type I diabetes (254, 255).  Elucidating signaling mechanisms of CVB3 may provide 

insight into these other coxsackievirus-induced conditions and contribute to developing 

therapies.   

 

6.4 Summary 

 The human cell-signaling network is a fascinatingly complex system, comprised 

of a staggering number of components that are controlled by numerous mechanisms. This 

complexity introduces both a challenge and an opportunity to identify critical signaling 

nodes in human diseases.  Systems approaches to study this complexity at the network 

level will be important in identifying more effective therapeutics.  By understanding the 

role of individual nodes in the greater network, we can improve our decisions about 

which targets should enter the costly and time-consuming drug development pipeline.  

Increasing the predictability of drug target identification and development will decrease 

the time and cost of finding new therapies that will be more efficacious and less toxic for 

patients suffering from disease.    
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CHAPTER 7 

Appendices 

7.1.  Tutorial: Modeling the latent dimensions of multivariate cell-signaling datasets 
 

7.1.1. Overview of data-driven models for cell-signaling datasets   

Cellular signal transduction is coordinated by modifications of many proteins within 

cells.  Protein modifications are not independent, because some are connected through 

shared signaling cascades and others jointly converge upon common cellular functions.  

This coupling creates a hidden structure within a signaling network that can point to 

higher-level organizing principles of interest to systems biology.  One can identify 

important covariations within large-scale datasets by using mathematical models that 

extract latent dimensions—the key structural elements of a measurement set.  In this 

tutorial, we introduce two principal components-based methods for identifying and 

interpreting latent dimensions.  Principal components analysis provides a starting point 

for unbiased inspection of the major sources of variation within a dataset.  Partial least 

squares regression reorients these dimensions toward a specific hypothesis of interest.  

Both approaches have been used widely in studies of cell signaling, and they should be 

standard analytical tools once highly multivariate datasets become straightforward to 

accumulate. 

 

7.1.2. Introduction 

 Biology is now awash with large-scale measurements of cell signaling (205). 

High-throughput technologies can readily measure signaling-protein levels and 
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modification states such as phosphorylation.  Moreover, we can observe dozens to 

thousands of post-translational modifications and how they change with time under 

different environmental conditions and perturbations (256-260).  These modifications to 

signaling proteins propagate information flow through the cell.  The question is how best 

to use these data to uncover patterns of regulation that may suggest how the underlying 

network operates. 

 If a large-scale dataset revolves around a single perturbation or stimulus, then “hit 

lists” ranking the largest-magnitude changes may suffice for gene or pathway discovery.  

However, when numerous perturbations or stimuli are involved concurrently, it is much 

harder to link stimulus- or perturbation-induced changes within the cell to phenotypic 

outcomes.  For example, a specific small-molecule inhibitor should strongly block the 

activity of the target enzyme, but what happens if multiple inhibitors are combined and 

the cells are also challenged with a microbial pathogen?  To make these types of 

inferences, we need data reflecting complex biological scenarios and a simplified 

representation of the measurements—we need a data-driven model (179). 

 Complex datasets benefit from models that address the fundamental challenge of 

dimensionality (261).  When large spreadsheets of measurements are recast as a vector 

algebra (179), each experimental condition appears as a projection along a set of 

dimensions defined by the measured variables (see below).  If we could inspect the 

condition-specific projections along all measured variables (e.g., post-translational 

modifications), then we could possibly discern patterns within the measurements.  The 

problem is that when interpreting highly multivariate datasets with hundreds or thousands 

of dimensions, we struggle to have intuition beyond the three dimensions that we can see 
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(262, 263).  Data-driven models simplify dimensions according to specific quantitative 

criteria, identifying a small number of “latent variables” that comprise a reduced 

dimensional space for prediction and analysis. 

 Dimensionality reduction of signaling data remains an active area of research 

(264, 265), but here we will review two established methods:  principal components 

analysis (PCA) and partial least squares regression (PLSR).  PCA and PLSR have been 

applied to signal transduction over the past several years, but they have a much longer 

history in data-rich fields such as spectroscopy, econometrics, and food science (266, 

267).  The main distinction between the two methods lies in the overarching goal of the 

resulting model.  PCA is an unsupervised method, meaning that dimensions are reduced 

based on intrinsic features of the data.  Thus, PCA allows the data to “speak for itself”, 

but the corollary is that method is deaf to user input regarding the types of relationships 

that latent dimensions should uncover.  It is here that PLSR excels.  As a supervised 

method, PLSR starts with a hypothetical relationship between variables (dimensions) that 

are independent and those that are dependent.  The algorithm then reduces dimensions to 

retain the hypothesized relationship as much as can be supported by the data by creating a 

linear regression model.  In contrast to PCA, there are countless user-defined hypotheses 

that can be tested with PLSR, and models can even predict dependent variables given 

new input data.  Thus, PCA is most useful as an explanatory tool for unbiased discovery 

of patterns within datasets (268, 269), whereas PLSR acts as a predictive tool for linking 

multivariate inputs to outputs (19, 134, 270-273).  The limitation of both of these 

methods is that the predictions are correlative—they provide a guide for causation that 

must be tested subsequently with mechanistic experiments. 
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 The goal of this tutorial is to provide readers with a working knowledge of PCA–

PLSR and their application to cell-signaling datasets.  We begin by reviewing the basics 

of vector and matrix algebra that are essential for understanding how latent dimensions 

are identified.  Then, we will provide a detailed introduction to PCA and PLSR, focusing 

on the underlying mathematics and the technical considerations important for real 

biological applications.  In parallel, we will walk through an example of dimensionality 

reduction using a primary signaling dataset from a recent publication (177).  We conclude 

with a brief discussion of more advanced approaches and refer interested readers to 

further literature on these topics. 

 

 

7.1.3. Vector and matrix algebra 

 Latent variables align with the important changes in a high-dimensional dataset.  

A model using latent variables must know where these changes “point” and how far each 

data point “moves” with respect to them.  Therefore, it is natural to treat latent variables 

as vectors, which are defined as mathematical entities with a direction and a magnitude.  

Using vectors lends to a geometric interpretation where we can compare the angle and 

distance between the two vectors.  Importantly, vector algebra easily generalizes to 

beyond three dimensions, which is essential for modeling large multivariate datasets.  As 

we expand into higher dimensions, the utility of the vector description and its geometric 

interpretations becomes even more valuable. 

 The magnitude of a vector is often referred to as the vector norm.  For a vector x 

in n dimensions, 
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the Euclidean norm ( x ) is calculated as follows: 

 

x = x1
2 + x2

2 +…+ xn
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The vector norm is useful for normalization, since dividing a vector by its norm yields a 

scaled vector of unit length (or a unit vector). 

 Vectors with the same number of dimensions can be grouped together as a matrix.  

We refer to a matrix X with m rows and n columns as an m × n matrix.  To help 

distinguish between vectors and matrices, we often name matrices with capital letters and 

vectors with lowercase letters.  (Individual matrix elements use lowercase letters with 

two subscripts that refer to the row and column of the matrix.)  X can thus be viewed as a 

collection of m row vectors (r), each with n dimensions, or as a collection of n column 

vectors (c), each with m dimensions: 
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Matrices directly correspond to the data tables of large-scale experiments.  The columns 

indicate the signaling variables measured during the experiments:  phospho-proteins, 

catalytic activities, etc.  The rows indicate the experimental observations where the 

variables were measured:  a particular growth factor stimulation, time point, genetic 
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background, etc.  Each condition can thus be treated as a row vector, whose individual 

elements indicate how strongly that row vector projects upon the dimensions specified by 

the variables. 

 Treating data tables as matrices allows linear algebra to be performed on the 

matrix en route to building a data-driven model.  However, while a matrix may appear 

similar to an array, it is important to recall that algebraic operations on matrices and 

vectors differ from those on arrays.  When a matrix A is multiplied by a vector x (Ax), 

the result is a projection of the matrix onto that vector space.  The vector samples the 

matrix across the shared dimension, combining the products of the individual elements.  

By extension, when two matrices are multiplied, we combine the products of the row 

elements of the first matrix with the corresponding column elements in the second matrix 

across the shared dimension.  Thus, matrix and vector multiplication is defined only 

when the two elements share the inner dimension of the product.  For an m × p matrix A 

and a p × n matrix B, the product AB exists and yields an m × n matrix (with the product 

summed across the shared inner dimension, p).  By contrast, BA does not exist unless m = 

n.  A real number can multiply a vector or matrix of any size by scalar multiplication, 

which simply scales each element of the vector or matrix by the real number. 

 One convenient transformation that we can perform on a matrix or vector without 

loss of information is to take its transpose, denoted by the superscript T.  The transpose of 

a matrix is the same matrix where the rows in the matrix become the columns in the 

transposed matrix and the columns in the original matrix become the rows (for a square 

matrix, this is equivalent to reflecting the matrix across its main diagonal).  So while a 2 

× 3 matrix C cannot be multiplied by itself, C can be multiplied by CT: 
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 If a row or column of a matrix is simply a linear combination of the others, then 

there is no additional information provided by this row or column.  The rank of a matrix 

tells us how many dimensions are truly distinct from one another.  If each row of a matrix 

is an observation, the rank will tell us how many observations provide unique data.  The 

rank also indicates how many variables (columns) are unique.  The rank of the above 

matrix C is two, because one column can always be expressed as a linear combination of 

the other two; for example: 
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 Vectors in a matrix can be linearly independent, but that does not mean that their 

directions are non-overlapping.  For instance, the second and third column vectors of C 

are independent, but their projection onto one another is nonzero (1×3 + 6×5 = 33), 

meaning that they partly point in the same direction.  When vectors have a zero 

projection onto one another, they are said to be orthogonal.  The simplest example of 

orthogonal vectors is the Cartesian pair of unit vectors:  [1 0] and [0 1].  Other two-

dimensional vectors can be orthogonal—such as [2 1] and [1 –2]—and the principle of 

orthogonality extends naturally to higher dimensions.  If we can extract orthogonal 

vectors from a data matrix, these can serve as new axes onto which the data can be 

projected.  The new axes act as latent variables in our experiment and are defined as a 
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weighted combination of the variables that we measured.  We are interested in choosing 

vectors that are orthogonal because the latent variables they define cannot be projected 

onto one another, making them more interpretable.  This analysis can simplify the data by 

projecting it onto a smaller set of orthogonal vectors, which identify groups of variables 

that fluctuate together and describe the data more efficiently. 

 One way to identify orthogonal vectors is by calculating the eigenvectors of a data 

matrix.  The eigenvectors (x) of a square n × n matrix A are special, in that they return a 

scaled version of themselves when multiplied by A: 

 

Ax = !x  

 

where λ is a scalar called an eigenvalue.  The eigenvector can be used as a new axis onto 

which we can project the data, with the eigenvalue indicating how strongly the data is 

projected onto that “axis”.  Eigenvectors by definition are always orthogonal to one 

another; therefore, given a matrix of rank n, there can be up to n eigenvectors with their 

associated eigenvalues. 

 We defined eigenvectors for a square matrix where the number of observations 

equals the number of variables, but what if the data matrix is not square?  Here, one can 

factorize a matrix into the product of three matrices by the process of singular value 

decomposition (SVD): 

 

X =U!VT  

 

U and VT are the left and right matrices of singular vectors, which are mutually 

orthogonal and are conceptually similar to eigenvalues.  ∑ is a diagonal matrix comprised 
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of singular values, which are analogous to eigenvalues and correspond to the weightings 

of the singular vectors.  By convention, the singular values in matrix ∑ are organized in 

decreasing order from top left to bottom right.  Focusing on the singular vectors with the 

largest associated singular values, it is possible to extract systemic patterns from large 

biological datasets (268). 

 

 

7.1.4. Principal components analysis 

 SVD is not the only way to break down a data matrix into digestible pieces.  

Principal components analysis (PCA) decomposes an m × n matrix X into the product of 

two matrices: 
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where T is comprised of row vectors called scores (t) and P is comprised of column 

vectors called loadings (p).  The scores and loadings vectors are ranked by their 

contribution to the overall variance in the dataset, so that models of the data can be built 

from the leading score-loading pairs: 
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The ti pi
T  vector product indicates the variance captured by the ith principal component of 

the data.  Principal components act as the latent variables of a PCA model. 

 Just as with eigenvectors and singular vectors, a defining characteristic of 

principal components is their orthogonality:  each t is orthogonal from all other score 

vectors and each pT is orthogonal from all other loadings vectors.  While orthogonality 

constrains the direction of the vectors with respect to one another, it does not uniquely 

define the direction of any one vector.  This yields an infinite number of possible 

solutions to the principal-component problem.  PCA arrives at a solution by further 

imposing two criteria:  principal components must 1) have loadings vectors of unit length 

(for convenience) and 2) must explain as much of the variance of the original or residual 

data as possible.  Principal components are calculated iteratively, with first principal 

component maximizing the variance captured, and the second principal component 

calculated with the residual information not captured by the first principal component 

( X ! t1p1
T ).  By solving for the principal components that capture the maximum variance, 

new axes are identified that more efficiently represent the information contained in the 

original dataset.  The early principal components are comprised of loadings vectors 

paired with the large-magnitude score vectors, indicating that the data is most strongly 

projected onto these principal component “axes”.  Later principal components carry 

small-magnitude score vectors, such as noise among observations, which can be omitted 

from the PCA model. 

 There are several conceptual and mathematical similarities between PCA and 

SVD.  The major distinction is that SVD is performed directly on X, whereas PCA is 

calculated using the covariance matrix of X.  Loadings vectors (the columns of P) are the 
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eigenvectors of the column covariance matrix (calculated as XTX if X has been 

preprocessed appropriately; see below), and row vectors (of the scores matrix T) are the 

eigenvectors of the row covariance matrix (calculated as XXT).  Indeed, if X is 

preprocessed by column centering (by subtracting the mean of each column from each 

entry in the column), then PT obtained by PCA is equivalent to VT obtained by SVD, with 

T = U∑.  The correspondence breaks down when X is not preprocessed before PCA, 

because XTX then carries with it the mean values of the different variables in X (see 

below). 

 To illustrate the application of PCA in practice, we selected a primary signaling 

dataset of phosphoprotein measurements collected by phospho-ELISA (177) (Figure 7-

1A).  HL1 murine cardiomyocytes were pretreated with one of seven signaling inhibitors 

or 15 inhibitor pairs and then infected with the cardiotoxic virus, coxsackievirus B3 

(CVB3).  At six time points over 24 hr after CVB3 infection, cells were analyzed for nine 

phosphoproteins:  Akt, ATF2, CREB, ERK, GSK3β, HSP27, IκBα, JNK, and P38.  In 

parallel, the extent of viral progeny release (VPR) was measured by plaque assay as a 

measure of productive virus infection and propagation within host cells.  The VPR 

measurements will be used later when building a supervised model with PLSR. 

 We first simplify the dynamic nature of the phosphoprotein measurements by 

taking the time integral.  Although not required for PCA, the time integral provides a 

simple metric that captures the magnitude and duration of the signaling event (274).  

Integrated signals have been informative in many data-driven models and are thus used 

here for simplicity (19, 60, 270, 271).  However, we note that many other metrics have 
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been explored and could be useful in specific circumstances, such as for multiphasic 

signaling events (19, 271). 

 Next, we must preprocess the data so that each phosphoprotein has an equal 

opportunity to contribute to the principal components of the model.  As mentioned above, 

data-driven models are built by retaining the largest variations or covariations within a 

dataset (179, 266, 267).  Unprocessed data carries with it the heterogeneous 

characteristics of the original signaling measurements (205), which can bias a model.  In 

the original phospho-ELISA measurements of Figure 7-1A, for example, the mean of the 

AKT time integral (taken across all inhibitor conditions) is 174.2 and its variance is 1360.  

By contrast, the mean of P38 is 1043.5 and its variance is 247,880.  Using these raw data, 

P38 will contribute much more to the model relative to AKT, simply because the mean 

values are larger and they vary more.  The contribution is disproportionate, however, 

because the larger and more-variable P38 measurements may simply reflect a more-

sensitive assay.  Thus, some form of preprocessing is required to place all the data on 

equal footing. 

 The most-common way to preprocess the measurement is to center each variable 

by subtracting its mean and then scale the centered variable by dividing by its standard 

deviation.  This standardization turns each variable column into a nondimensional z-

score, which indicates the number of standard deviations that an observation lies away 

from the mean.  Centering is not appropriate when baseline data are included in the 

model, because the act of centering will move the baseline from zero to a negative value 

(19, 266).  However, in this example, all samples were infected with CVB3 and thus z-

scoring is appropriate without uninfected baseline data. 
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 After preprocessing the phospho-ELISA dataset (X), we must now define scores 

and loadings vectors according to the eigenvalue profile as introduced above.  

Numerically, this can be achieved by the nonlinear iterative partial least squares 

(NIPALS) algorithm (267).  NIPALS starts by selecting a row vector from X and defining 

it as a provisional score vector (t1 for the first principal component).  X is then projected 

onto ti to define a provisional loadings vector (p1): 

 

p1
T =

t1
T X
t1
Tt1

 

 

Next, X is projected onto this loadings vector after normalization (p1,norm) to define a new 

score vector (ti,new): 

 

p1,norm =
p1
p1

t1,new = Xp1,norm

 

 

If t1,new = t1 within a numerical tolerance, then the NIPALS algorithm has converged, and 

t1 and p1,norm represent the scores and loadings vectors for the first principal component.  

The contribution of the first principal component is then subtracted from X, and the 

second principal component is derived from the residual in the same way that the first 

was derived from X.  This iterative procedure can continue up to the rank of X, but often 

the first several principal components (eigenvalues of the covariance matrix) contain the 

bulk of the standardized variation within the data.  For example, the two leading principal 

components of our phospho-ELISA dataset capture 45% of the overall variation, and the 

first five capture 87%. 
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 We can graphically portray the projections of the signaling variables onto the 

PCA principal components via a loadings plot (Figure 7-1B).  Variables that are similarly 

loaded along a principal component share common features.  For example, the phospho-

kinases ERK, GSK3β, and JNK are all loaded strongly along the second principal 

component, suggesting that they are regulated together in the context of the viral 

infection.  We would thus expect to see these proteins show a similar behavior pattern 

under the different treatments.  This is most clearly visible in the first two inhibitor 

combinations (Figure 7-1, A and B, single asterisks) where ERK, GSK3β, and JNK share 

a strong relative activation.  However, the weaker covariation of the three kinases in other 

inhibitor combinations also informs the analysis and helps to determine their final 

projection.  The simplest explanation for the ERK–GSK3β–JNK grouping is that these 

pathways are activated by a common upstream signaling event, possibly via one of the 

initial stages of viral infection.  Identifying this signaling event could be a motivation for 

future experimental studies, which focus on signaling proteins upstream of ERK, GSK3β, 

and JNK. 
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Figure 7-1.  PCA–PLSR modeling of phosphoprotein signaling data and cell outcomes. (A) Time-
integrated phospho-ELISA data and VPR for a pairwise inhibitor screen in HL1 cardiomyocytes infected 
with coxsackievirus B3(1). Color maps show the variable-specific z-score across all inhibitor conditions, 
and asterisks indicate specific observations that illustrate the principal components of the PCA model. 
VPR is regressed as a function of phosphoprotein data in the PLSR model. (B) Loading plot for the first 
two principal components of a PCA model of the phosphoprotein signaling data. Asterisks link principal 
component loadings to specific observations in (A). (C) Loading plot for the first two principal 
components of PLSR model linking phosphoprotein signaling data to VPR. Note how the loadings have 
shifted relative to the PCA loadings in (B). Gray dashed lines indicate a subspace rotation that aligns 
principal components more clearly with the starting measured variables. (D) Defining the optimal number 
of PLSR principal components by leave-one-out cross-validation. Root-mean-squared error of fitted 
observations (calibration, solid) is shown in comparison to the error of observations omitted during model 
training (prediction, hollow). Note that calibration errors decrease monotonically with increasing principal 
components, whereas prediction errors show a minimum with two principal components. (E), ( F ) PLSR 
models with acceptable calibration fitness may have poor prediction fitness. Measured VPR data are 
plotted versus the fitted calibration values or the leave-one-out prediction values of the model. Standard 
errors on the predictions were estimated by jackknifing. 
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 Another example of grouped phospho-proteins is P38, CREB, and HSP27, which 

are loaded along the first principal component in part because they are all strongly 

activated by the eighth and twelfth inhibitor combinations (Figure 7-1, A and B, double 

asterisks).  Note also that ATF2 is positively loaded on the first principal component but 

negatively loaded on the second principal component, because it is strongly activated by 

conditions 8 and 12 but inhibited by conditions 1 and 2.  AKT and IκBα are not strongly 

loaded on either principal component, and inspection of the primary data indicates why—

neither is consistently activated or inhibited by conditions 1+2 or 8+12.  Accordingly, 

these two phospho-proteins are strongly loaded on the third principal component as part 

of the residual information not captured by the first two principal components (not 

shown). 

 Data-driven modeling results should always be followed up in this way with 

respect to the primary dataset.  It provides a reality check for the model and a more 

objective appreciation for patterns in the measurements.  Although conditions 1+2 or 

8+12 could be rationalized as discriminating conditions after PCA, they probably would 

not be the first patterns identified by visual inspection.  Therein lies a major strength of 

data-driven modeling approaches (179). 

 

 

7.1.5. Partial least squares regression 

 

PLSR extends naturally from PCA with a few important additions.  First, rather than 

decomposing a single matrix into scores and loadings, the data is split into two blocks 
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that specify a hypothesized relationship between them.  The independent block (X) 

contains the input variables, and the dependent block (Y) contains the output variables.  

The hypothesis is that the input variables determine the output variables.  In our example, 

we retain the phospho-ELISA measurements as the independent block and further assign 

the VPR measurements of viral propagation as the dependent block (Figure 7-1A).  Thus, 

our working hypothesis is that the phospho-proteins in X quantitatively control the VPR 

outcomes in Y. 

 Both the independent and dependent blocks can now be decomposed into their 

respective scores-loadings vectors: 

 

X = TPT

Y =UQT
 

 

The relationship between the two blocks is specified as a linear regression between the 

scores of the independent block and the dependent block: 

 

U ! TB"Y ! TBQT  

 

(Note that, in our example, Y has a rank of one and therefore Y ≈ TB.)  The regression 

coefficient matrix (B) allows predictions of Y to be made from condition-specific score 

projections of X. 

 We could decompose X and Y separately by PCA and regress the principal 

components afterwards (this approach is termed principal components regression (267)).  

However, PLSR models improve the relationship between the two blocks by 

implementing a key algorithmic change in the NIPALS algorithm.  Rather than have two 
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PCA-type decompositions of X and Y occur independently, the scores vectors t and u are 

exchanged during each iteration to define a principal component.  X is first projected onto 

a provisional score vector selected from Y (u1 for the first principal component) to define 

a provisional loadings vector (p1): 

 

p1
T =

u1
T X
u1
Tu1

 

 

X is projected onto this loadings vector after normalization to define a provisional score 

vector for X (t1), and then Y is projected onto t1 to define a provisional loadings vector for 

Y (q1): 

 

p1,norm =
p1
p1

t1 = Xp1,norm

q1
T =

t1
TY
t1
Tt1

 

 

Last, Y is projected onto the normalized q1 to define a new score vector (u1,new) that will 

be projected on X in the next iteration: 

 

q1,norm =
q1
q1

u1,new =Yq1,norm

 

 

The algorithm stops when score vector (t1) for X has stabilized as described for PCA 

above.  The projection of X onto u1 and Y onto t1 is what biases the decomposition of each 
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block toward the variance of the other.  The result is a principal components-based model 

that is optimized to capture the overall variation in Y by using the variation in X. 

 PLSR typically leads to a dramatic reorganization of the loadings vectors relative 

to those obtained by PCA (179).  For our phospho-ELISA–VPR model, we see many 

new groupings of signaling variables (Figure 7-1C).  P38 now maps with JNK and 

GSK3β in the second quadrant of the loadings plot, because all three phospho-kinases 

have a notable anticorrelation with VPR (Figures 7-1, A and C).  ERK and CREB also 

are slightly anticorrelated with VPR.  However, some of the later inhibitor combinations 

have high ERK–CREB and high VPR, which causes these two proteins to be loaded less 

heavily on the second principal component compared to P38, JNK, and GSK3β.  As with 

PCA, these types of interpretations are critical for getting the most out of a PLSR model.  

The difference is that the PLSR loadings highlight specific groups of correlations 

between the independent and dependent blocks, whereas PCA loadings highlight 

coordinated variation more generally. 

 Interpretability of a data-driven model is often improved by “subspace rotation” 

(268).  Even though PCA and PLSR principal components are uniquely determined, the 

factorization is degenerate (just as the number eight can be factored into 8 × 1, 4 × 2, 

etc.).  We can exploit this property by rotating the scores and loadings vectors so that 

they coincide with specific variables and conditions more directly.  For example, note in 

the loadings plot of the phospho-ELISA–VPR model that most of the phospho-proteins 

are diagonally situated along the first two principal components.  By rotating the axes 

counterclockwise by ~35º (Figure 7-1C, gray), we define a new coordinate system that is 

equally predictive (provided that the scores vectors and regression coefficients are 
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similarly rotated) but cleaner in its loadings.  In the new coordinate system, the first axis 

consists of positive contributions from AKT and negative contributions from ERK–

CREB, whereas the second axis consists of positive contributions from P38–JNK–

GSK3β and negative contributions from IκBα–ATF2.  These types of rotations are 

valuable when seeking to assign biological functions to latent dimensions (19, 134). 

 One question related to interpretability is how many latent variables should be 

retained in the model.  More principal components will obviously capture more of the 

training data, but there is a danger of overfitting.  Fortunately, PLSR has an objective 

strategy that uses crossvalidation to identify the optimal number of latent dimensions.  

Before explaining the crossvalidation procedure, however, we must clarify the distinction 

between model calibration and model prediction.  Model calibration involves the Ycal ≈ 

TBQT
 values associated with observations that were used during the model training.  

Thus, Ycal indicates fitted values, whose root mean-squared error from the measured 

values (Ymeas) will always decrease when more principal components are used (Figure 7-

1D, solid).  Conversely, prediction involves the Ypred ≈ TBQT
 values associated with 

observations that were omitted from the model training.  Ypred indicates true predictions as 

long as the input observations are independent from the training set.  Importantly, Ypred 

error increases beyond a critical number of principal components (Figure 7-1D, hollow), 

which is a red flag for overfitting. 

 During “leave-one-out” crossvalidation, each observation is withheld individually 

and a PLSR model is built on the remaining m – 1 observations.  Then, the trained model 

is asked to predict the one observation withheld from the training, and the withholding-

training-prediction cycle is repeated for all m observations.  This procedure generates a 
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crossvalidated prediction for each observation.  It also allows an estimate of prediction 

uncertainty based on how much the calibration fluctuates when the other observations are 

withheld.  The “jackknifed” standard error of the prediction (SEYpred) (275) is defined as: 

 

SEYpred =
m!1
m

Y !Ycal,i( )2
i=1

m!1

"  

 

where Ycal,i represents the model calibration from the ith crossvalidation run that includes 

Y.  Other error models exist for estimating Ypred uncertainty when Y has not been 

measured explicitly (266). 

 To assess overall model stability and predictive ability, we must check how much 

the TBQT
 values degrade when our observations are used for crossvalidated prediction 

rather than for calibration (Figure 7-1, E and F).  Root mean-squared error is less useful 

here, because it applies to standardized variables and its magnitude is difficult to 

interpret.  The squared Pearson correlation is often used to compare measured data with 

calibrations or predictions (276).  However, we have found that PLSR models often 

retain a good Pearson correlation even when the predictions are no longer quantitatively 

accurate (145).  We thus developed a more-stringent fitness metric (60) that quantifies the 

extent of one-to-one mapping between measurements and calibrations-predictions: 
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When Ypred = Y for all m observations, the fitness is one, with the value falling to below 

zero with increasing deviations from this line (Figure 7-1, E and F, green).  In our 

example, we see a reasonable fitness of the calibration (we consider ≥ ~0.5 to be 

acceptable), but the performance degrades substantially when crossvalidated predictions 

are considered.  Note in Figure 7-1F that the crossvalidated predictions of VPR are still 

strongly correlated with the measured values (R = 0.64), even though the quantitative 

accuracy is poor.  Thus, we conclude from our analysis that this particular PLSR model 

can be used as a descriptive tool for concisely visualizing patterns in the data, but it 

should not be used as a predictive tool for new experiments.  Publication-quality PLSR 

models should be strongly and stably predictive (19, 134, 256, 270, 271, 273). 

 

 

7.1.6. Advanced topics and further reading 

 In this tutorial, we focused on standard approaches for identifying latent 

dimensions, but there are other more-sophisticated ways of organizing the initial dataset 

or defining the optimization criterion.  One challenge with the flat data-table format is 

that it struggles to capture the organization of highly systematic datasets (205).  For 

example, if multiple signaling measurements are collected at various time points per 

condition, how is the temporal information kept separate from the signaling information 

for each condition?  One workaround is to unfold the time component as additional 

variables—either directly or as time-derived metrics (19)—and then perform the 

decomposition.  However, the stability of such decompositions can be problematic, and 
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the resulting latent dimensions do not completely reflect the organization of the original 

dataset. 

 To address this problem, Bro developed a multiway variant of PLSR that 

decomposes data cubes or hypercubes in a way akin to principal components (277).  

Score vectors are retained, but loading vectors are replaced with weight vectors that 

capture the latent dimensions associated with each “way” of the dataset: 

 

X ! ti wi, j
T

j=1

m

"
i=1

n

#  

 

where n is the number of latent dimensions in the model, m is the number of ways in the 

dataset (e.g., m = 2 for datasets organized by signaling variables and time variables), and 

wi,j is the weight vector for the ith latent dimension along the jth way of the dataset.  The 

end result is a more-heavily constrained model that allows a direct mapping to the 

organization of the starting dataset. 

 There are also several common variants of PCA, which differ from the standard 

method in the constraints on the latent dimensions.  For example, independent 

components analysis (ICA) requires latent variables to be minimally statistically 

dependent rather than orthogonal (278).  The ICA constraint leads to independent 

components with minimal overlap, in contrast to orthogonal principal components, which 

are often a weighted blend of the measurement variables.  ICA may be valuable in 

circumstances where collections of measured signaling variables are coordinating distinct 

functions within the cell. 

 One simple alteration to PCA is to constrain the elements of the loadings vectors 

to be positive.  This non-negative matrix factorization (279) forces latent dimensions to 
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build upon one another when combined, rather than offset.  The non-negativity constraint 

is useful in fields such as face recognition and linguistics.  However, its utility for signal 

transduction has not been explored, likely because many signaling pathways are known 

to block the activation of others, undermining the system as a purely additive one. 

 Other more-elaborate variants of PCA have been developed that incorporate prior 

biological knowledge.  Network component analysis (NCA) uses connectivity 

information about measured variables to bias the decomposition toward groups of 

variables with direct interconnections (280).  In doing so, NCA identifies latent 

dimensions that are supported by network topology and thus hopefully more mechanistic.  

The drawback is that NCA requires more observations than PCA, and there are particular 

connectivity restrictions that may not hold for all networks.  However, these types of 

approaches may become feasible as large-scale systematic measurements of signal 

transduction become more commonplace (205). 

 Last, we remind that PCA–PLSR models, like all models, are as valuable when 

they fail as when they succeed.  A recent variant of PLSR, called model breakpoint 

analysis, embraces this view and allows additional predictions to be extracted from data-

driven models (145).  As discussed above, PLSR is fundamentally a linear model, which 

is valid when there exists a linear mapping between the independent and dependent 

blocks.  By starting with a valid PLSR model, perturbing the data in the independent 

block with a nonlinear mask applied to each column, and then retraining, one can identify 

critical failures (breakpoints) where the model abruptly stops making accurate 

predictions.  Model breakpoint analysis delves into these failed models to identify 

signaling variables whose loadings change coincidently with the breakpoint.  The 
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analysis highlights a small set of variables that might not otherwise be evident in a 

standard loadings analysis.  Model breakpoints and other engineering-inspired “failure 

analyses” (281) will likely become more important as still-higher dimensional data 

spaces are reduced to their latent variables. 

 

 

7.1.7. Conclusions 

 In classical signal processing, electrical engineers work seamlessly between the 

spatial-time domain and the frequency domain (282).  Although the information is 

equivalent, sometimes there are clear analytical advantages to working in one domain 

compared to the other.  The same could be argued for the latent-variable space provided 

by principal components.  By performing an eigenvalue-type decomposition of the 

original data space, latent dimensions capture the variation and covariation that we most 

often care about and display this information in an intuitive way. 

 Signal transduction is fundamentally a multivariate process.  Now that 

experimental platforms have developed to embrace this complexity, the statistical 

approaches introduced here should become even more important.  Already, most 

signaling experiments are multivariate, be it a mass spectrometry experiment or simply a 

large panel of immunoblots.  Fortunately, signaling biochemists can leverage the tools 

from other data-rich fields (266, 267) that faced the same challenges decades earlier. 
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7.2.  Methods 

 7.2.1. Chapter 2 Methods 

Cell culture 

293T, CCRF-CEM, DLD-1, HCT-8, HCT-15, HT-29, AU-565, HCC1500, MCF-7, 

MDA-MB-231, MDA-MB-361, MDA-MB-468, AsPC-1, BxPC-3, Capan-1, Capan-2, 

CFPAC-1, HPAF-II, L3.6 pl, Mia PaCa-2, Panc-1, PaTu 8902, PL45, SU.86.86.86, 

SW1990, and Yap-C cells were cultured according to ATCC recommendations. MDA-

MB-231, MDA-MB-361, and MDA-MB-468 cells were cultured without CO2.  The 5E 

clone of MCF10A cells was cultured as described (283, 284).  MDA-MB-436 cells were 

cultured in L-15 medium with 10% FBS without CO2.  HPDE cells were cultured as 

described (285).  A375, HT144, SK-MEL-2, and SLM2 cells were cultured in RPMI 

medium with 10% FBS and 5% CO2.  HeLa cells were cultured in DMEM medium with 

10% FBS and 5% CO2.  DM13, DM122, DM331, SK-MEL-24, VMM18, and VMM39 

cells were cultured in RPMI medium with 5% FBS and 5% CO2. 

 

Primary tissues 

Brain and muscle samples were obtained as anonymized, snap-frozen cadaver tissue 

through the Biorepository and Tissue Research Facility at the University of Virginia. 

 

Primer design 

The receptors were selected from the Human Plasma Membrane Receptome (58), and 

receptor RefSeq mRNA sequences were obtained from the National Center for 
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Biotechnology Information (NCBI).  Primers were designed using Primer3 (286) with 

each search constrained to a product size of 150–200 bp, primer sequence lengths of 18–

22 bp, and GC content 40–60%.  The specificity of primer targets was verified by using 

NCBI’s Basic Local Alignment Search Tool (BLAST).  The generality of primers sets 

was confirmed with the NCBI single-nucleotide polymorphism database to ensure that no 

reported polymorphism was located at the 3’ end of any primer. 

 

Quantitative RT-PCR (qRT-PCR) 

RNA from cultured cells was isolated with the RNeasy Plus Mini kit (Qiagen) according 

to the manufacturer’s protocol.  RNA from primary tissues was isolated with RNA 

STAT-60 (Tel-Test) after homogenization on a TissueLyser LT (Qiagen).  First-strand 

cDNA synthesis and qRT-PCR were performed as described (134).  For qRT-PCR 

experiments other than those used to generate receptome profiles, data were normalized 

to the geometric mean of three housekeeping genes, and stability of the normalization 

was qualitatively assessed with a fourth housekeeping gene among the following 

candidates:  GAPDH, HINT1, PPIA, PRDX6, B2M, and GUSB. 

 

Primer validation 

Each primer set was tested on cDNA together with a no reverse-transcription sample to 

control for genomic contamination and a blank sample to control for primer dimers.  The 

size of any amplicon above a melting temperature of 77 °C was verified by gel 

electrophoresis to confirm the expected amplicon size.  Ambiguous amplicons were gel 
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purified and analyzed by conventional DNA sequencing.  Primer concentration was 

initially set at 10 pmol per 15 µl reaction and was empirically adjusted to optimize the 

specificity of amplification. 

 

Receptor profiling assay 

Primers were lyophilized in 96-well low-profile PCR plates (Bio-Rad) for 24 hours at 

0.110 mbar (Labconco).  10 µl of reverse-transcribed cDNA was diluted in 740 µL of 

H2O and mixed on ice with 750 µL of 2× master mix:  2× PCR Buffer II (Applied 

Biosystems), 8 mM MgCl2, 400 µM dNTP’s, 300 µg/ml BSA, 10% glycerol, 0.5× SYBR 

green (Invitrogen), and 0.05 U/ml Taq polymerase (Roche) (134).  15 µL of the master 

mix-cDNA mixture was loaded into each well of the lyophilized plate, and qRT-PCR was 

performed on a CFX96 real-time PCR instrument (Bio-Rad) with the following 

amplification protocol:  denaturation at 95 ºC for 90 s; amplification cycles of 95 ºC for 

10 s, 60 ºC for 10 s, and 72 ºC for 12 s repeated 40 times; a fusion step of 65 ºC to 95 ºC 

increased at a rate of 0.1 ºC s–1 and measured at 0.5 ºC increments.  For each plate, 

GAPDH was used as the loading control and a blank well with no primer served as a 

negative control. 

Raw receptor-profiling data was extracted using CFX Manager 2.0 (Bio-Rad).  The 

baseline for cycle threshold values (CT) was set at 25 RFU and the baseline for the 

melting temperature (Tm) estimate was set at 15 –d(RFU) dT-1.  These data were exported 

and compared against a database of Tm ranges for each receptor amplicon to make 
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present-absent calls based on specificity of the amplification.  Absent calls were made 

only if both duplicate runs were called absent. 

For relative quantification, CT values were normalized to GAPDH from each plate and 

the CT values from duplicate runs of each receptor were averaged.  If only one run was 

called present, we used the CT value from that run.  For clustering, absent genes were 

nominally assigned a CT value that was three cycles higher than the highest CT value 

observed for that gene. 

 

Oligonucleotide microarrays 

HT-29 cells were plated at 50,000 cells cm-2 for 24 hr and stimulated with 200 U ml-1 

IFN-γ (Roche) for 24 hr.  RNA was isolated with the RNeasy Mini Kit (Qiagen), and 

overall RNA integrity was confirmed with a Bioanalyzer (Agilent).  Biotin-labeled cRNA 

was prepared using the T7-based BioArray HighYield RNA Transcript Labeling Kit 

(Enzo), and samples were hybridized to GeneChip Human Genome U133A Arrays 

(Affymetrix) and scanned according to the manufacturer’s recommendations. 

 

Processing and analysis of microarray data 

The scanned images of HT-29 microarrays were analyzed using Expression Console 1.1 

(Affymetrix).  The Microarray Suite (MAS) 5.0 algorithm was used to determine present-

absent calls of the HT-29 data and the raw breast cancer cell line microarray data 

(ArrayExpress #E-TABM-157) (78).  The HT-29 data were then compared to the 

receptome profiling data as follows.  For genes that have multiple probes, a present call 
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was made if at least one probe with an  “_at” or “_a_at” suffix designation was called 

present for at least one biological sample.  An absent call was made if all “_at” and 

“_a_at” probes for a gene for all three biological samples were called absent.  If there 

were no “_at” or “_a_at” probes for a gene, the present-absent calls were made by using 

probes with an “_s_at” suffix designation, and if there were no “_s_at” probes, the calls 

were made by using probes with an “_x_at” suffix. 

 

 

Exon array 

RNA was isolated with the RNeasy Plus Mini Kit (Qiagen), and overall RNA integrity 

was confirmed on a Bioanalyzer (Agilent).  Sense-strand cDNA synthesis was performed 

with the Ambion WT Expression Kit (Applied Biosystems).  Briefly, double-stranded 

cDNA was synthesized with engineered primers containing a T7 promoter sequence.  The 

cDNA was used as a template for antisense cRNA synthesis by in vitro transcription 

using T7 RNA polymerase.  The cRNA was reverse transcribed with random primers to 

synthesize single-stranded, sense-strand cDNA.  The cDNA was then fragmented, labeled, 

and hybridized to a GeneChip Human Exon 1.0 ST array (Affymetrix) according the 

manufacturer’s recommendations.  The chips were scanned on a GeneChip Scanner 3000 

7G (Affymetrix). 
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Processing and analysis of exon array data 

Exon array data were analyzed with the R package JETTA (81).  The gene expression 

index for each transcript cluster was calculated for the core probe set after median-GC 

background correction and normalization by median scaling.  Background correction was 

performed on the exon array data relative to an earlier dataset of 178 human cell lines 

(GSE29682). 

 

RNA-seq 

All RNA sequencing data was generated by the Genomics Services Lab at the 

HudsonAlpha Institute for Biotechnology (Huntsville, AL).  RNA was isolated with the 

RNeasy Plus Mini Kit (Qiagen), and 1 µg of total RNA was enriched for poly(A)+ 

transcripts with oligo(dT)25 Dynabeads (Invitrogen).  Each cDNA library was prepared 

with the NEBNext first-strand synthesis, second-strand synthesis, end repair, dA tailing, 

and quick ligation modules (New England Biolabs).  Libraries were indexed with 

standard Illumina-type adapters and sequenced on an Illumina HiSeq 2000 using version 

3 reagents that generate 180–200M reads per lane.  Samples were 50-bp paired-end 

sequenced in duplicate at 25M and 50M or 100M reads per sample. 

 

Processing and analysis of RNA-seq data 

RNA-seq reads were filtered for signal to noise, assessed for overall quality with FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and then mapped using 

STAR 2.2.0 (287) against the human genome build hg19.  Reads that map to each gene 
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were counted with HTSeq (http://www-huber.embl.de/users/anders/HTSeq/) under the 

union set, whereby reads that do not completely overlap a gene are still counted.  The 

percentage of reads mapping to exons, introns, and untranslated regions was calculated 

by intersecting the data with features from the hg19 assembly by using BEDTools (288).  

RPKM calculations were performed by normalizing to the median transcript length for 

each gene and the total library size of each sample.  Receptor genes with partial intronic 

coverage were counted manually using the Integrative Genomics Viewer (289). 

 

ROC analysis 

ROC curves were generated in R using the ROCR package (290). 

 

Plasmids and viral transduction 

V5-tagged Luciferase and IL10RA vectors were prepared by recombination of donor 

plasmids into the lentiviral destination vector pLX302 (291) by using LR Clonase 

(Invitrogen).  Donor plasmids were verified by sequencing and recombined plasmids 

were verified by restriction digest.  Lentiviruses	
  were	
  packaged	
  as	
  previously	
  

described	
  (292).	
  	
  Stably	
  transduced	
  A375	
  cells	
  were	
  selected	
  with	
  1	
  µg	
  ml-­‐1	
  

puromycin	
  until	
  control	
  plates	
  had	
  cleared. 
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IL-10 ELISA 

A375 cells were plated at 50,000 cells cm-2 for 24 hr and conditioned medium was 

collected.  After centrifuging to remove dead cells, supernatants were analyzed for IL-10 

by ELISA (R&D Systems) according to the manufacturer’s instructions. 

 

Cell stimulation 

HT-29 cells were plated at 50,000 cells cm-2 for 24 hr, pretreated with 200 U ml-1 IFN-γ 

(Roche) for 24 hr, and stimulated with 1 µg ml-1 FAS crosslinking antibody (APO-1-3, 

Axxora) for 24 hr.  MDA-MB-436 cells were plated at 50,000 cells cm-2 for 24 hr and 

treated with 100 ng ml-1 MCSF (Peprotech) or 100 ng ml-1 EGF (Peprotech) for the 

indicated times before lysis.  MCF10A-5E cells were plated at 25,000 cells cm-2 for 24 hr 

and treated with 100 ng ml-1 MCSF (Peprotech) for 15 min.  A375 cells were plated at 

50,000 cells cm-2 for 24 hr and treated with 50 ng ml-1 IL-10 (Peprotech) for 20 min, 1 µg 

ml-1 FAS crosslinking antibody (APO-1-3, Axxora) for 24 hr, or 100 ng ml-1 TNF 

(Peprotech) for the indicated times.  293T cells were plated at 50,000 cells cm-2 and 

MCF7 cells at 25,000 cells cm-2 for 24 hr before stimulation with 100 ng ml-1 EGF 

(Peprotech) for 4 hr, 200 U ml-1 IFN-γ (Roche) for 4 hr, 5 Gy IR (60Co) for 2 hr, or 20 ng 

ml-1 TNF (Peprotech) for 4 hr. 

 

Western blot analysis 

Cells were lysed in RIPA buffer (50 mM Tris [pH 7.5], 150 mM NaCl, 5 mM EDTA, 1% 

Triton X-100, 0.1% SDS, 0.5% sodium deoxycholate).  Equal amounts of clarified 
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lysates (20 µg) were subjected to SDS-polyacrylamide gel electrophoresis and transferred 

onto PVDF membranes (Millipore).  Membranes were blocked for 1 h in 0.5× blocking 

solution (Li-Cor) diluted with PBS.  Membranes were incubated overnight with primary 

antibodies recognizing the following proteins or epitopes:  FAS (Cell Signaling; 1:1000), 

CSF1R (Santa Cruz; 1:1000), phosphorylated ERK1/2 (T202/Y204, Cell Signaling; 1:1000),	
  

ERK1/2 (Millipore; 1:1000), caspase-3 (Cell Signaling; 1:1000), phosphorylated STAT3 

(Y705, Cell Signaling; 1:1000), ERBB3 (Cell Signaling; 1:1000), FGFR1 (Cell Signaling; 

1:1000), IL10RA (Millipore; 1:1000), IL-2Rγ (Santa Cruz; 1:1000), or α-tubulin 

(Abcam; 1:20000 or Cell Signaling; 1:1000).  Subsequently, membranes were incubated 

with secondary IRDye conjugated antibodies (Li-Cor; 1:20,000) or with horseradish 

peroxidase-conjugated secondary antibodies (Jackson Immunoresearch; 1:10,000).  

Protein bands were detected by an Odyssey infrared scanner (Li-Cor) or by enhanced 

chemiluminescence (Pierce) on a ChemiDoc MP camera-based detection system 

(BioRad).  Densitometry of bands was performed in ImageJ. 

 

Hierarchical clustering 

Hierarchical clustering was performed with the clustergram function in MATLAB by the 

unweighted pair group method with a Euclidean distance metric and Ward’s linkage. 

 

Statistical analysis 

Comparison of the receptor present-absent calls for receptome profiling and microarrays 

was performed by the Fisher exact test.  qRT-PCR time courses were compared by two-
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way ANOVA after log transformation to allow for parametric analysis (293), using the 

Sidák correction to account for multiple-hypothesis testing.  Individual cell stimulations 

were compared by unpaired one-sided t test after log transformation.  Lineage enrichment 

within the clustered receptome profiles was determined by the hypergeometric test.  

Receptors with lineage-specific absence must be highly enriched for absence (P < 0.01, 

hypergeometric test), absent in ≥75% of the cell lines comprising that lineage, and 

present in ≥50% of all cell lines tested.  Receptors with lineage-specific presence must be 

highly enriched for presence (P < 0.01, hypergeometric test), present in ≥75% of the cell 

lines representing that lineage, and absent in ≥50% of the cell lines tested. 

 

 

 

 7.2.2.  Chapter 3 Methods 

Computational models of signaling pathways 
 
Differential equation models of three-tiered enzyme cascades were built in MATLAB.  

The models were built under the assumption of Michaelis-Menten kinetics and the 

existence of constitutive enzymes that deactivate pathway components.  Parameters in the 

models were optimized to yield the smallest difference between linear cascades when 

inhibited by RNAi, competitive inhibitor, and a noncompetitive inhibitor.   

 
Cell culture 
 
3T3 and SKW6.4 cells were cultured according to ATCC recommendations. 
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Plasmids and viral transduction 

Hairpins that target both isoforms of MEK were cloned into pSLIK vectors.  Hairpin #1 

targets the sequence ggccttctacagcgacggcga and hairpin #2 targets the sequence 

cggcgagatcagcatctgcat.  Lentiviruses were packaged as previously described (292).  

DOX-inducible caspase-3 was cloned by PCR into the Tet-tight entry vector 

pEN_TTmiRc2 (296).  To generate caspase-3 (C163A) and caspase-6 (C163A), C163 was 

mutated to alanine by site-directed mutagenesis (Quikchange II XL, Stratagene).  Stably 

transduced 3T3 and SKW6.4 cells were selected with 2 µg ml-1 puromycin or 300 µg ml-1  

G418 until control plates had cleared. 

 
Cell Stimulation 
 
3T3 cells were plated at 18,000 cells cm-2 overnight followed by a 24 hr serum starvation.  

Cells were stimulated with the specified amounts of FAS crosslinking antibody (APO-1-3, 

Axxora), PDGF (Peprotech), EGF (Peprotech), U0126 (Calbiochem), FR180204 (Tocris), 

or GSK1120212 (Selleck) for the times indicated.  SKW6.4 cells were suspended at 

4*105 cells/ml and treated with 50 µM pep419 (Millipore) or the indicated amounts of 

FAS crosslinking antibody (APO-1-3, Axxora).   

 
 
Western blot analysis 
 
Cells were lysed in RIPA buffer (50 mM Tris [pH 7.5], 150 mM NaCl, 5 mM EDTA, 1% 

Triton X-100, 0.1% SDS, 0.5% sodium deoxycholate).  Equal amounts of clarified 

lysates (20 µg) were subjected to SDS-polyacrylamide gel electrophoresis and transferred 

onto PVDF membranes (Millipore).  Membranes were blocked for 1 h in 0.5× blocking 

solution (Li-Cor) diluted with PBS.  Membranes were incubated overnight with primary 
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antibodies recognizing the following proteins or epitopes: phosphorylated ERK1/2 

(T202/Y204, Cell Signaling; 1:1000), ERK1/2 (Millipore; 1:1000), caspase-3 (Cell 

Signaling; 1:1000), cleaved Lamin A (Cell Signaling Technology, 1:1000), cleaved 

PARP (BD Biosciences, 1:1000), MEK1/2 (Cell Signaling Technology, 1:000), 

phosphorylated MEK1/2 (Cell Signaling Technology, 1:1000), FLAG (Sigma, 1:1000), 

Raf-1 (Santa Cruz, 1:1000) or α-tubulin (Abcam; 1:20000 or Cell Signaling; 1:1000).  

Subsequently, membranes were incubated with secondary IRDye conjugated antibodies 

(Li-Cor; 1:20,000).  Protein bands were detected by an Odyssey infrared scanner (Li-Cor).  

Densitometry of bands was performed in ImageJ. 

 
Immunofluorescence 

 3T3 cells were allowed to adhere overnight to glass coverslips treated with poly-D-lysine 

(Sigma) followed by a 24 hr serum starvation and stimulation with PDGF (Peprotech) as 

indicated.  Immunofluorescence was performed as previously described with pRB 

antibody (Cell Signaling Technology, 1:1000). 

 

 

 7.2.3.  Chapter 4 Methods 

Plasmids 

DOX-inducible MEK5 (294) and MKK6-EE (295) were cloned by PCR into the Tet-tight 

entry vector pEN_TTmiRc2 (296).  To generate MEK5-DD, S311 and T315 of MEK5 were 

both mutated to aspartate by site-directed mutagenesis (Quikchange II XL, Stratagene).  

All entry vectors were verified by sequencing, and lentiviral vectors were cloned by LR 
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recombination into pSLIK neo (296).  pLKO.1 puro shERK5 lentiviral vectors 

(TRCN0000023234 and TRCN0000023236) were obtained from Open Biosystems. 

 

 

 

Cells and Viruses 

HL1 cells were provided by Dr. William Claycomb (Louisiana State University Health 

Sciences Center, New Orleans, USA) (297).  293T cells were obtained from ATCC.  

CVB3 (Kandolf strain) was propagated in HeLa cells, and virus titers were determined by 

plaque assay.  Retroviruses and lentiviruses were packaged as previously described (292).  

Stably transduced HL1 cells were selected with 4 µg/ml puromycin or 150 µg/ml G418 

until control plates had cleared. 

 

Viral Infection and Perturbations 

HL1 cells were sham-infected with PBS or infected with CVB3 at M.O.I. = 0.5, 1.5, 4.5, 

9, or 18 and cell extracts were prepared at 0, 0.17, 1, 8, 16, and 24 hr.  For perturbation 

experiments, the following chemical inhibitors were added one hour before infection:  

SB203580 (20 µM, Tocris Biosciences), BIRB796 (5 µM, Selleck Chemicals), XMD8-92 

(5 µM, Axon Medchem), U0126 (20 µM, Tocris Biosciences), PD184352 (2 µM, Santa 

Cruz Biotechnology), DEVD-CHO (0.1 µM, EMD), and Necrostatin-1 (50 µM, 

Calbiochem). 
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Plaque Assays 

CVB3 titers from triplicate cell supernatants were determined on monolayers of HeLa 

cells by an agar overlay plaque assay as described elsewhere (177). 

 

 

p-ELISA 

Cell lysates were normalized to protein concentration and analyzed by p-ELISA 

(Biosource) for the phosphorylation levels of Akt (S473), ATF2 (T69/T71), CREB (S133), 

ERK1/2 (T185/Y187), GSK3β (S9), Hsp27 (S82), IκBα (S32), and p38 MAPK (T180/Y182) 

according to the manufacturer’s instruction. 

 

Caspase-3, -8 and -9 Activity Assays 

Caspase activities were measured according to the manufacturer's instruction (R&D 

Systems) as described elsewhere (193).  Fluorescence was measured at excitation and 

emission wavelengths of 485 nm and 535 nm, respectively, using a Tecan GENios 

fluorescent reader. 

 

Western blot analysis 

Western blot analysis was performed as described previously (177) with one of the 

following primary antibodies:  anti-p-ERK1/2 (T202/Y204, Cell Signaling, 1:1000), anti-p-

ERK5 (T218/Y220, Cell Signaling, 1:1000), anti-p-p38 (T180/T182, Cell Signaling, 1:1000), 

anti-p-MAPKAPK2 (T334, Cell Signaling, 1:1000), anti-VP1 (Dako, 1:1000), anti-cleaved 
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caspase-8 (Cell Signaling, 1:1000), anti-caspase-9 (Cell Signaling, 1:1000), anti-caspase-

3 (Cell Signaling, 1:1000), anti-β-actin (Sigma, 1:5000), anti-p-Akt (S473, Cell Signaling, 

1:1000), anti-p-GSK3β (S9, Cell Signaling, 1:1000), anti-p-ATF2 (T69/T71, Cell Signaling, 

1:1000), anti-p-CREB (S133, Cell Signaling, 1:1000), anti-p-IκBα (S32, Cell Signaling, 

1:1000), anti-p-Hsp27 (S82, Cell Signaling, 1:1000), anti-p-RSK (T359/S363, 1:1000), anti-

MEK5 (StressGen, 1:1000), anti-HA (Roche, 1:1000), anti-HMGB-1 (Epitomics, 

1:1000), anti-p-MEF2A (T312, Abcam, 1:1000), anti-cleaved caspase-8 (Cell Signaling, 

1:1000), or anti-tubulin (Cell Signaling, 1:5000 or Abcam, 1:20000) for 1 hr or overnight, 

followed by incubation for 1 hr with horseradish peroxidase-conjugated secondary 

antibodies (Santa Cruz) or infrared dye-conjugated secondary antibodies (Licor).  

Immunoreactive bands were visualized by enhanced chemiluminescence (Pierce, 

Rockford, IL) on ChemiGenius2 or ChemiDoc MP camera-based detection systems or by 

infrared fluorescence on an Odyssey infrared imaging system.  Where indicated, band 

intensities were quantified by densitometry with ImageJ, and all blotting results were 

replicated with at least one additional set of independent biological samples. 

 

Cell Viability Assays 

HL1 cells were grown in 12-well plates and infected with CVB3 (M.O.I. = 9) for 16 and 

24 hr after pretreatment with inhibitors.  The MTS solutions (1:5) were added to wells for 

2.5 hr and then transferred to 96-well plates.  Cell viabilities of infected cells and non-

infected were assessed by MTS assay (CellTiter 96; Promega, Inc., Madison, WI).  

Amine-reactive labeling was performed with the LIVE/DEAD fixable violet dead stain 

(Invitrogen) according to the manufacturer’s recommendations.  For flow cytometry, 
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cells were labeled in suspension, washed with PBS + 0.1% Tween-20, and analyzed on a 

BD FACSCalibur equipped with 407 nm violet laser excitation.  For microscopy, 

adherent cells were labeled, washed with PBS, permeabilized with 0.3% Triton X-100 in 

PBS, and counterstained with DRAQ-5 before imaging by widefield microscopy as 

described previously (292). 

 

Partial Least Squares Regression 

Phospho-proteins (predictor variables) and readouts (response variables) were 

standardized as z-scores, and the phospho-protein time course was time-integrated over 

early (0–8 hr) and late (8–24 hr) phases.  Partial least squares regression was performed 

with the “plsregress” function in MATLAB by standard approaches (19, 179).  The 

stability of the model was assessed by fivefold leave-one-out cross-validation. 

 

Statistical analysis 

All hypothesis testing was performed with Welch’s one- or two-sided t test at a 

significance level of α = 0.05. 

 

 7.2.4.  Chapter 5 Methods 

Cell culture 

HT29 cells were cultured according to ATCC recommendations. 
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Plasmids 

Sequences for triple epitope tags (FLAG, HA, Glu-Glu, AU1, and VSVG) were cloned 

into pGEX-4T1 vector (GE Healthcare).  Sequences for substrates (IκBα(1-62), Hsp27, 

RSK(386-752), c-jun(1-79), GSK3α (1-97)) were subsequently cloned in to the pGEX-

4T1 vectors containing the triple epitope tags by PCR.  All vectors were verified by 

sequencing. 

 

Recombinant protein purification 

pGEX-4T1 vectors were transformed into chemically competent C41 bacteria and 

induced with isopropyl ß-D-1-thiogalactopyranoside (IPTG) (induction conditions are 

detailed in Table 5-3).  Pelleted cells were lysed in 7.5ml TNE lysis buffer (50 mM Tris 

pH 7.4, 150 mM NaCl, 1 mM EDTA, 10 µg/ml leupeptin, 10 µg/ml aprotinin, 1 µg/ml 

pepstatin) per 250 ml culture, and lysed with lysozyme and deoxycholate.  Lysates were 

clarified by centrifugation and incubated at 4*C overnight with glutathione-coated 

agarose beads (Sigma).  The beads were then washed three times with ice-cold PBS with 

0.05% Triton X-100 and twice with PBS.  Proteins were cleaved from the beads by 

thrombin digest (EMD) for the indicated times (Table 5-3) or eluted with 10 mM 

glutathione in 50 mM Tris pH 8.0. 

 

Western blot analysis 

Cells were lysed in RIPA buffer (50 mM Tris [pH 7.5], 150 mM NaCl, 5 mM EDTA, 1% 

Triton X-100, 0.1% SDS, 0.5% sodium deoxycholate).  Equal amounts of clarified 

lysates (20 µg) were subjected to SDS-polyacrylamide gel electrophoresis and transferred 
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onto PVDF membranes (Millipore).  Membranes were incubated overnight with primary 

antibodies recognizing the following proteins or epitopes: anti-p-Hsp27 (Cell Signaling, 

1:1000), anti-p- IκBα (Cell Signaling, 1:1000), anti-p-c-jun (Cell Signaling, 1:1000), 

anti-p-GSK3α (Cell Signaling, 1:1000), anti-pRSK (Cell Signaling, 1:1000), anti-FLAG 

(Sigma, 1:1000), or anti-HA (Roche, 1:1000), followed by incubation for 1 hr with 

horseradish peroxidase-conjugated secondary antibodies (Santa Cruz).  Immunoreactive 

bands were visualized by enhanced chemiluminescence (Pierce, Rockford, IL) on 

ChemiDoc MP camera-based detection system.   

 

Cell stimulation and lysis 

HT29 cells were plated at 50,000 cells cm2 and stimulated with 100 ng ml-1 TNF 

(Peprotech) for 15 minutes, or 100 ng ml-1EGF (Peprotech) or 500 ng ml-1 insulin (Sigma) 

for 5 minutes.  Cells were lysed as previously described (Janes MCP 2003). 

 

In vitro kinase activity assay 

Protein A/G microtiter plates were coated overnight with 10 µg/ml anti-kinase antibodies 

(see Table 5-2) and washed three times with blocking buffer (1% bovine serum albumin 

(Sigma) in 50 mM Tris-HCL (pH 7.5), 150 mM NaCl, 0.05% Triton X-100).  HT29 cell 

lysates (200 µg) were then added overnight then washed two times with wash buffer (50 

mM Tris-HCl (pH 7.5), 15 mM MgCl2, 5 mM ß-glycerophosphate, 1 mM EGTA, 0.2 

mM Na3VO4, 0.2 mM DTT).  The wells were resuspended in 20 µl kinase assay buffer 

(kinase wash buffer plus 1 mM ATP).  Recombinant substrate (1 µg in 20 µl) was then 
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added to the wells to initiate the reaction.  The kinase reactions were allowed to proceed 

for 120 min at 37° C, then terminated by 60 µl 20 mM EDTA. 

 

Readout of kinase activity assay on Luminex  

Filter microplates were prewet (Millipore) with 150 ul blocking buffer (1% bovine serum 

albumin in PBS) and vacuum-filtered.  Conjugated microsphere (2,500 per well per 

kinase) were added in blocking buffer.  Wells were filter-washed 2X with wash buffer 

(0.05% Tween-20 in PBS) and 25 ng kinase assay sample was added per well.  Plates 

were shaken at 1,100 rpm for 30 sec then at 300 rpm for 1 hr in the dark.  Wells were 

vacuum-filtered and washed 2X with wash buffer.  Biotinylated secondary antibody 

(1:10,000) was added to the wells.  Plates were shaken at 1,100 rpm for 30 sec then at 

300 rpm for 1 hr in the dark.  Wells were vacuum-filtered and washed 2X with wash 

buffer.  Streptavidin-PE (1:10,000) was added in blocking buffer.  Plates were shaken at 

1,100 rpm for 30 sec then at 300 rpm for 10 min in the dark.  Wells were vacuum-filtered 

and washed 2X with wash buffer.  Wells were resuspended in blocking buffer and 

incubated overnight.  Microplates were read on a Luminex 100 system on the high PMT 

setting. 

 

Preparation of antibody conjugated Luminex beads 

Anti-tag antibodies (see Table 5-2) were coupled by EDC/Sulfo-NHS to carboxylated 

microspheres (Luminex) according to the manufacturer’s protocol. 
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