
Automata Processing: from Application
Acceleration to Hardware Design

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment

of the requirements for the degree

Doctor of Philosophy

by

Chunkun Bo

December 2019

APPROVAL SHEET

This Dissertation

is submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Author Signature:

This Dissertation has been read and approved by the examining committee:

Advisor: Kevin Skadron

Committee Member: Mircea Stan

Committee Member: Samira Khan

Committee Member: Ashish Venkat

Committee Member: Ashish Sirasao

Committee Member:

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, School of Engineering and Applied Science

December 2019

Abstract

Inexact pattern matching is widely used in many fields, such as machine learning,

network intrusion detection, bioinformatics, and many other applications. Inexact

pattern matching is usually the most time-consuming phase in such applications, be-

cause of the complexity of inexact matching between the input string and a large

number of reference patterns; thus, reducing inexact matching time is key to acceler-

ate such applications. Automata processing is a computational model that is widely

used for matching regular expressions and can be used for inexact pattern matching.

However, because of the memory bottleneck due to the random memory behavior of

automata processing on von-Neumann architectures, the performance is not satisfy-

ing, especially for large-scale applications, and this requires hardware acceleration.

This dissertation studies the potential benefits of spatial architectures, which can

process certain computation using reconfigurable processing elements.

To understand better how automata processing could be used to accelerate inex-

act pattern matching, we use Entity Resolution and searching for potential gRNA

o↵-targets for CRISPR/Cas9 as two case studies. We solve the two problems using

automata-based approaches, and evaluate the performance on both von-Neumann

architectures (CPUs and GPUs) and spatial architectures (Micron’s Automata Pro-

cessor and FPGAs). We find that automata engines on spatial architectures show

a clear advantage over methods on von-Neumann architectures. Therefore, we pro-

vide an automated automata processing framework using FPGAs on cloud-based

platforms, and propose several novel features to further improve the performance.

Finally, to reduce the high compilation overhead on FPGAs, we propose three dif-

ferent methods, including symbol-only reconfiguration, a new workflow using Xilinx

Object file, and modular synthesis and reuse of I/O template.

Acknowledgements

During my Ph.D. study and the writing of this dissertation, I have received an enor-

mous amount of assistance. I would not have been able to finish this dissertation

without their help.

First and foremost, I would like to express the deepest appreciation to my advisor,

Prof. Kevin Skadron, for guiding me through the whole journey. He is a great mentor

and teaches me a lot, not only about being a good researcher, but more importantly,

being a better person. I could not imagine having a better advisor. He motivates

me to explore various ideas, to express myself, to communicate with peer researchers,

and to be an independent researcher. He is always ready to help and discuss all

kinds of problems/concerns I may have. As an international student, I have some

di�cult time, especially in the past few months. His tremendous support helps me

to overcome all those issues.

I wish to thank the members of my Ph.D. committee from UVa: Prof. Mircea

Stan, Prof. Samira Khan, Prof. Ashish Venkat. I would also like to thank Mr. Ashish

Sirasao for guiding me during my internship and being part of the committee. Thank

you all for the valuable comments and suggestions.

I also want to thank all my colleagues inside and outside CS department. It is

a great honor to work and collaborate with you all, Vinh Dang, Ke Wang, Elaheh

Sadredini, Reza Rahimi, Ted Xie, Jack Wadden, Tommy Tracy, Kevin Angstadt,

Deyuan Guo, Lingxi Wu, and Sergui Mosanu.

This work was supported in part by NSF grant no. CCF-1629450, a grant from

Xilinx, and support from Center for Future Architectures Research (C-FAR) and

Center for Research on Intelligent Storage and Processing-in-memory (CRISP) , two

centers of STARnet, a Semiconductor Research Corporation program sponsored by

MARCO and DARPA.

Last but not least, I would like to thank my parents, my older sister, and my family,

for their unconditional love and support. My parents received limited education and

they do not know a single English word, but they always encourage me to explore

the world and learn from the best. My older sister has taken care of me since I was

a kid, and now she is taking care of my parents while I am far away from home. I

dedicate this dissertation to all of them.

Ever tried. Ever failed. No matter. Try Again. Fail again. Fail better.

-Samuel Beckett

Contents

1 Introduction 7

1.1 Contributions . 9

1.1.1 Entity Resolution Acceleration using Automata Processing . . 9

1.1.2 Searching for Potential gRNA O↵-Target sites for

CRISPR/Cas9 using Automata Processing across Di↵erent Plat-

forms . 10

1.1.3 Automata Processing Engine on Cloud-based FPGAs with New

Features and Cross-platform Evaluation 11

1.1.4 Reducing High Compilation Overhead for the Automata Pro-

cessing Engine on FPGAs . 12

1.1.5 Summary . 13

1.2 Organization . 14

2 Background 15

2.1 Automata Processing . 15

2.2 Automata Processing on von Neumann Architectures 16

2.2.1 CPUs . 16

2.2.2 GPUs . 17

2.2.3 Others . 18

2.3 Automata Processing on Spatial Architectures 19

2.3.1 Micron’s Automata Processor 19

2.3.2 FPGAs . 21

3 Entity Resolution Acceleration using Automata Processing 23

3.1 Introduction . 23

3.2 Related Work . 25

3.3 Design Details using the AP . 25

3.3.1 Real-world ER Problems . 25

i

3.3.2 Workflow . 26

3.3.3 Extracting Name Formats . 26

3.3.4 Automata for Family/First Name 28

3.3.5 Hybrid Version . 30

3.3.6 Generalizing to Other String-based ER Problems 31

3.4 Evaluation . 33

3.4.1 Experiment Setup . 33

3.4.2 Performance . 34

3.4.3 Resolution Accuracy . 37

3.4.4 Improved AP Approach . 39

3.4.5 Scalability . 39

3.5 Summary and Future Work . 42

4 Searching for Potential gRNA O↵-Target Sites for CRISPR/Cas9

using Automata Processing across Di↵erent Platforms 43

4.1 Introduction . 44

4.2 Related Work . 46

4.3 Automata Processing on Spatial Architectures 47

4.4 CRISPR/Cas9 System . 47

4.5 gRNA O↵-target Sites Search using

Automata Processing . 49

4.5.1 Hamming Distance Automaton 49

4.5.2 No Consecutive Mismatches Automaton 50

4.5.3 Mismatches in Whole Sequences 51

4.5.4 Mismatches in Di↵erent Regions 52

4.5.5 Multiple PAMs . 53

4.5.6 Workflow . 54

4.5.7 Fast Complementary Genome Processing 54

4.6 Performance Evaluation . 56

4.6.1 CasOFFinder . 57

4.6.2 CasOT . 62

4.7 Further Improvement on Spatial Architectures 65

4.7.1 FPGA . 65

4.7.2 AP . 67

4.8 Conclusions and Future Work . 68

ii

5 Automata Processing Engine on Cloud-based FPGAs with New Fea-

tures and Cross-platform Evaluation 70

5.1 Introduction . 71

5.2 REAPR Design . 73

5.2.1 Automata Processing RTL Generation 73

5.2.2 I/O Circuitry Integration . 76

5.2.3 Reporting Architecture . 78

5.3 New Features . 79

5.3.1 Automated Workflow . 79

5.3.2 Supporting Multiple Streams 81

5.3.3 New reporting architecture . 81

5.3.4 Processing multiple symbols per cycle 82

5.3.5 Simplified I/O integration . 84

5.4 REAPR on Cloud Platforms . 85

5.4.1 Overview of Nimbix and Amazon Web Service 85

5.4.2 Workflow on Cloud . 86

5.5 Evaluation . 88

5.5.1 Benchmarks . 88

5.5.2 Utilization . 88

5.5.3 Power . 91

5.5.4 Performance . 92

5.5.5 Discussion . 98

5.6 Conclusions and Future Work . 99

6 Reducing High Compilation Overhead for Automata Processing En-

gine on FPGAs 100

6.1 Introduction . 100

6.2 Related Work . 102

6.3 Symbol-only Reconfiguration . 103

6.3.1 General Workflow . 103

6.3.2 Case Study: Entity Resolution 105

6.4 New workflow using the Xilinx Object File 107

6.5 Modular Synthesis and Reuse of I/O Templates 107

6.6 Performance Evaluation . 109

6.6.1 Symbol-only Reconfiguration 109

6.6.2 Workflow using the Xilinx Object file 113

iii

6.6.3 Modular synthesis and reuse of I/O templates 114

6.7 Discussion: Hybrid Methods . 118

6.8 Conclusion and Future Work . 120

6.8.1 Conclusion . 120

6.8.2 Automata Overlay . 121

7 Conclusions and Future Work 123

7.0.1 Conclusions . 123

7.0.2 Future Work . 125

1

List of Figures

1.1 Regex and Automaton for singular/plural representation of word “Au-

tomaton/Automata”. 8

2.1 An NFA and its equivalent DFA. 16

2.2 Automata Processor Architecture. Each memory column is one STE. [22] 20

3.1 General workflow of the AP approach. 27

3.2 Exact-matching automata design for family name (exact match for

“Adams Smith Abbe”). 29

3.3 Structure of fuzzy macro calculating Hamming distance. It matches

sequence ABCDEF with Hamming distance = 0, 1. 30

3.4 Fuzzy-matching automata design for first name (fuzzy macros allow

Hamming distance = 0, 1). 31

3.5 Automata design for the whole name in SNAC (‘&’ is the delimiter of

di↵erent names). 32

3.6 Automata design for DBLP (‘$’ is the delimiter of sub names). 33

3.7 Automata design for identifying the same restaurant (‘$’ is the delim-

iter of di↵erent parts inside a restaurant name and ‘&’ is the delimiter

between restaurant names). 34

3.8 Performance vs. conventional methods for small SNAC databases. (X

axis represents the number of names, ranging from 1,000 names to

20,000 names.) . 36

3.9 Performance vs. conventional methods for large SNAC databases. (X

axis represents the number of names, ranging from 14,000 names to

140,000 names. Y axis represents the matching time.) 37

3.10 Performance vs. conventional methods for DBLP. (X axis represents

the database size, ranging from 1 million names to 10 million names.

Y axis represents the matching time.) 38

2

3.11 Performance for improved AP approach. (X axis represents the database

size, ranging from 14,000 names to 140,000 names. Y axis on the

left represents the matching time and Y axis on the right represents

speedup against original algorithm.) 40

3.12 Performance if STE capacity increased. (X axis represents the database

size, ranging from 1 million names to 10 million names. Y axis on the

left represents the matching time and Y axis on the right represents

speedup against original performance.) 41

3.13 Performance if the symbol replacement time is reduced. (X axis repre-

sents the database size, ranging from 28,000 names to 140,000 names.

Y axis on the left represents the matching time and Y axis on the right

represents speedup against original performance.) 42

4.1 gRNA and CAS9 bind to the target sequence [104]. 49

4.2 Hamming Distance Automaton. 50

4.3 Hamming Distance Automaton with no consecutive mismatches. . . . 51

4.4 Allowing mismatches in any position. 52

4.5 Allowing mismatches in di↵erent regions. 53

4.6 Allowing mismatches in any position with multiple PAM sequences. . 53

4.7 Workflow on Micron’s AP. 55

4.8 Process complementary sequence. 56

4.9 Runtimes vs. CasOFFinder for di↵erent numbers of queries. m is

the number of mismatches. Dotted lines are runtimes of HyperScan

and solid lines are runtimes of CasOFFinder. The lines with the same

color refer to the same number of mismatches. Black lines represent

the results of the AP and REAPR. 59

4.10 Runtimes vs. CasOFFinder for di↵erent mismatches (m). Lines with

the same color refer to the same query number. The black line repre-

sents the runtimes for the AP. 60

4.11 Runtimes of iNFAnt2 (NFA & DFA) for di↵erent query numbers. m

is the number of mismatches. Dotted lines are runtimes of the NFA

engine and solid lines are runtimes of the DFA engine. The lines with

the same color refer to the same number of mismatches. 61

3

4.12 Runtimes vs. CasOT for di↵erent numbers of queries, where m is the

number of mismatches. Dotted lines are runtimes of HyperScan and

solid lines are runtimes of CasOT. The lines with the same color refer

to the same number of mismatches. Black lines represent the results of

the AP and REAPR. Many data points of CasOT are missing because

it cannot return the results in 24 hours. 64

4.13 Runtimes vs. CasOT for di↵erent mismatches(m). 65

5.1 Mapping automata states to registers and look-up tables (“logic”). . . 74

5.2 SDAccel-based approach of AXI and PCIe transactions for automata

processing kernel. 76

5.3 I/O kernel with dummy computation. 78

5.4 Automated workflow of REAPR. 80

5.5 New reporting architecture. 82

5.6 Processing multiple symbols per cycle. 83

5.7 Simple I/O. 84

5.8 Workflow on F1. 86

5.9 CLB utilization . 90

5.10 CLB vs. STE numbers. 91

5.11 CLB vs. Routing net numbers. 91

5.12 Power consumption for the kernel execution 92

5.13 Performance for the kernel execution on von Neumann architectures. 93

5.14 Performance for the kernel execution on FPGAs and von Neumann

architectures. 94

5.15 Performance for the kernel execution on spatial architectures. 94

5.16 Performance for the total execution on von Neumann architectures. . 96

5.17 Performance for the total execution on FPGAs and von Neumann ar-

chitectures. 96

5.18 Performance for the total execution on spatial architectures. 97

5.19 Performance on Nimbix and AWS EC2 F1. 98

6.1 Original workflow for large-scale applications. 104

6.2 Symbol-only reconfiguration workflow. 104

6.3 Example of general automata structure for SNAC ER problem. 106

6.4 A new workflow using Xilinx Object files. 108

6.5 Modular synthesis. 110

4

6.6 Compilation overhead. 111

6.7 Compilation reduction using Xilinx Object file. 113

6.8 Compilation time breakdown using Xilinx Object file. 115

6.9 Overhead of I/O compilation and speedups using pre-synthesized I/O

template. 117

6.10 CLB usage comparison between the original I/O circuitry and using

I/O templates. 118

6.11 LUT usage comparison between the original I/O circuitry and using

I/O templates. 119

6.12 Flexible automata overlay structure. 122

5

List of Tables

3.1 Name formats in SNAC. 28

3.2 Average Speedups for small SNAC databases. 35

3.3 Resolution Accuracy Results for SNAC. 37

3.4 Resolution Accuracy Results for DBLP. 39

4.1 Terminology . 48

4.2 Max queries stored on one AP board and possible speedups against

CasOFFinder for di↵erent numbers of mismatches. nq is the number

of queries.“NA” refers to the cases when CasOFFinder does not finish

within 10 hours. 59

4.3 Max number of queries stored on one AP board and possible speedups

for di↵erent numbers of mismatches. nq is the number of queries.“NA”

refers to the cases when CasOT cannot finish within 24 hours. 64

4.4 Runtimes for large datasets when 3 mismatches are allowed. 65

5.1 ANMLZoo details . 89

6.1 Character sets writing overhead . 111

6.2 Full-size application performance. (The performance results on of Hy-

perscan, GPU, and FPGA are in seconds. NA refers the automata is

too large to run with GPU/Hyperscan.) 112

6.3 Compilation reduction using Xilinx Object file. Time is in minutes. . 114

6.4 Compilation breakdown using Xilinx Object file. Time is in minutes.

XO stands for the time consumed by the workflow using Xilinx Object

file. 116

6.5 Compilation overhead for I/O templates. 116

6.6 Kernel compilation overhead . 117

6

Chapter 1

Introduction

Inexact pattern matching is a common computational task that identifies patterns

with variances relative to a reference pattern. It arises in many di↵erent application

domains, such as machine learning [1] [2] [3], cyber security [4] [5], bioinformat-

ics [6] [7], anti-virus scanning [8], natural language processing [9], etc. This process is

often a major performance bottleneck of the whole application, because of the time

complexity to identify the similarity among patterns [10]. Three major factors con-

tribute to the overall complexity: 1). the allowed similarity between patterns, 2).

the length of the input stream, and 3). the number of patterns to identify. As we

are in the era of “big data”, the length of input stream could be hundreds of MB or

even GB, and there could be a large number (millions) of patterns to be compared

against the input. For example, for Next Generation Sequencing problems, the input

is Human Genome (over 3.2GB), and we need to check hundreds of thousand long

(>100) DNA sequences against such a huge input stream [11].

One common way of searching for various patterns is to use regular expres-

sions [12]. Regular expressions can describe complex patterns and can recognize

derivative patterns of a base pattern (Fig. 1.1). Automata processing is an e�cient

model that can recognize regular expressions, by directly translating patterns to a

set of states and a set of transition rules between states stimulated by the input

symbol (Fig. 1.1). An automaton can be represented either as a Deterministic Finite

Automaton (DFA) or as a Non-deterministic Finite Automaton (NFA). Regular ex-

pressions and automata processing are computationally equivalent, but sometimes it

is more convenient and straightforward to represent patterns as automata for many

applications. For example, automata processing is used in [13], [14], and [9] to accel-

erate various applications. However, the performance of existing automata processing

7

Figure 1.1: Regex and Automaton for singular/plural representation of word “Au-
tomaton/Automata”.

approaches on von-Neumann architectures cannot meet modern applications’ require-

ments because of the increase of the time complexity as discussed above [9] [15] [16].

One on hand, von-Neumann architectures need to store all states and transition rules

in memory. Simulating behaviors of automata processing leads to random memory-

access patterns because of the lack of spatial and temporal locality, which makes

memory access the bottleneck in von-Neumann architectures. On the other hand,

the amount of data is increasing extremely fast currently (exponential growth of data

[17]), making the performance issue more severe for modern large-scale applications

on von-Neumann architectures. Many e↵orts have been made to improve the perfor-

mance of automata processing on von-Neumann architectures. Researchers propose

di↵erent methods to mitigate the memory bottleneck on von-Neumann architectures

(CPUs and GPUs), such as Hyperscan, iNFAnt, iNFAnt2 and DFAge [18] [19] [20] [21].

These methods explore di↵erent levels of parallelism to hide the memory access la-

tency. Other researchers propose accelerating automata processing on spatial archi-

tectures (process certain computation using reconfigurable processing elements), such

as Micron’s Automata Processor [22] and FPGAs [23] [24] [25] [26]. Using spatial ar-

chitectures allows users to store a large number of patterns directly on the hardware

and match all these patterns against the input stream simultaneously. This helps to

increase the parallelism drastically, leading to high throughput.

In this thesis, we hypothesize that using FPGAs for automata processing provides

a high-performance, scalable, and user-friendly platform for applications involving

inexact pattern matching. To evaluate the hypothesis, this dissertation conducts four

major research projects. This dissertation first proposes using automata processing

8

for two inexact pattern matching applications. 1). Entity Resolution Acceleration

using Automata Processing in Knowledge Discovery [15], and 2). Searching for poten-

tial gRNA o↵-targets for CRISPR/Cas9 using Automata Processing in bioinformatics

[27]. Automata processing on spatial architectures shows promising results, and we

use FPGAs as our primary research spatial hardware. This dissertation then 3).

provides an automata processing engine on Cloud-based platforms with new features

and improved performance [28], and 4). presents several methods to reduce the high

compilation overhead on FPGAs [28].

1.1 Contributions

1.1.1 Entity Resolution Acceleration using Automata Pro-

cessing

Entity Resolution (ER), also known as Record Linkage, Duplication Reduction or

Purging/Merging problems, refers to finding records that store the same entity within

a single database or across di↵erent databases [29]. ER is an important kernel of

many information integration applications in Knowledge Discovery [30]. Determining

whether two records represent the same entity is computationally expensive. The

time complexity of a naive method is O(N2), where N is the number of records.

Prior work has proposed di↵erent algorithms and computation models to improve the

performance [31] [32] [33] [34]. However, the performance is still unsatisfying [35].

Micron’s Automata Processor (AP) is an e�cient and scalable semiconductor

architecture for parallel automata processing [22] and can process a large number of

complex patterns simultaneously. Therefore, we propose using the AP to accelerate

ER. To illustrate how the AP approach works, we present a framework and several

di↵erent automata designs for various ER applications. We evaluate the suitability of

the prototype using several real-world ER problems in di↵erent applications. Results

show both higher performance and better resolution accuracy using various datasets.

This shows that automata processing can help to accelerate the ER problem and the

spatial architecture (Micron’s AP) can help to further improve the performance.

9

1.1.2 Searching for Potential gRNA O↵-Target sites for

CRISPR/Cas9 using Automata Processing across Dif-

ferent Platforms

CRISPR/Cas is an immune system that defends against foreign genetic elements [36].

CRISPR/Cas9 is one version that attracts researchers’ paticular interest, because of

its ability to edit genomes [37] [38]. Genome editing using CRISPR/Cas9 has been

used to cure genetic-related diseases such as amnesia [39] [40]. However, e�ciently

finding all correct locations to edit the genome, without modifying other locations, is

still the bottleneck of using the CRISPR/Cas9 system, because the gRNA sometimes

binds to locations with slightly di↵erent DNA sequences [41]. This makes the pro-

cess of finding all potential o↵-target sites (genome locations su�ciently similar to

the gRNA targeting sequence) computationally expensive, especially when one allows

more di↵erences from the reference sequence. It could take hours/days to search for

potential o↵-target sites when only allowing a few mismatches even with GPUs [42].

Furthermore, existing CPU and GPU tools are also restricted to the number of mis-

matches or fail to return results due to the computational bottlenecks [42] [43].

To solve the above problem, we propose an automata-based solution to identify

potential o↵-target sites in a reference genome. We present several designs that can

recognize di↵erent variations of a gRNA, and a general workflow of how to use au-

tomata processing to identify potential o↵-target sites. We evaluate the proposed

automata approach across four di↵erent platforms (CPUs, GPUs, FPGAs, and Mi-

cron’s AP), and compare with two state-of-the-art solutions (CasOFFinder [43] and

CasOT [44]). The proposed method leads to over 83⇥ speedups on FPGAs compared

with CasOFFinder (GPU), and additional speedups can be achieved by using the

AP. The automata-based method with iNFAnt2 [45] on GPUs does not confer a clear

advantage because automata processing does not map well to the GPU architecture.

This again shows the ability of using automata to accelerate applications involving

with inexact matching, and shows that spatial architectures are more appropriate for

automata processing.

10

1.1.3 Automata Processing Engine on Cloud-based FPGAs

with New Features and Cross-platform Evaluation

The results of the above two applications show that automata processing engines

on spatial architectures provides promising performance over von-Neumann architec-

tures, by laying out automata graphs directly on hardware and processing a large

number of automata in parallel. Reconfigurable Engine for Automata PRocessing

(REAPR) is thus proposed for general automata processing on FPGAs in [25]. It is a

framework that can generate RTL codes for automata processing kernel and the I/O

circuitry for data transfer between the FPGA and the host CPU.

Though REAPR shows promising results, the performance could be further im-

proved (e.g., the poor performance of the reporting architecture), and there are several

limitations of the framework (such as involving many manual e↵orts for kernel inte-

gration and high reconfiguration overhead). Therefore, in this chapter, we provide a

more e�cient automata processing framework on FPGAs with several new features.

We then conduct a cross-platform performance evaluation, and collect the resource

utilization and power consumption on cloud platforms.

We will briefly introduce the features, and details can be found in Chapter 5.

1. A new automated workflow for the kernel integration

The original workflow uses the Xilinx SDAccel [46] to generate a dummy kernel and

replaces the dummy kernel with actual automata processing kernel. The replacement

and integration phase involves a lot of manual work and is prone to errors. Therefore,

we provide a set of scripts that automate the replacement and integration of the

automata kernel.

2. Processing multiple symbols per cycle

To increase the throughput of REAPR and to compete with other high-throughput

automata processing engines, we modify the spatial stack algorithm for processing

multiple symbols for regular expressions [24] and support it for general automata

processing. We implement the modified algorithm in the original framework and

achieve almost linear speedups when stacking multiple copies.

3. New reporting architecture to improve the performance

Preliminary results of REAPR show that the reporting architecture is the ma-

jor performance bottleneck. This is because, in the original REAPR, we need to

transfer the reporting result back to the CPU even when there are no reports in re-

porting vectors. However, because of the filtering nature automata processing, most

11

automata-based applications do not report every cycle. Only some cycles have actual

reports. Therefore, we propose only transferring the necessary data block back by

adding a checker in the framework to check for actual reports. This helps to reduce

the transfer time from the FPGA to the host CPU.

4. Simplified I/O integration with one DDR bank

The original REAPR utilizes multiple DDR banks for transferring the results

back to the host CPU to maximize the performance. Though this helps to achieve

better performance, it makes the integration more complex, because applications with

di↵erent numbers of reports need di↵erent numbers of DDR banks to transfer results

and may even use the DDR banks multiple times, leading to di�cult integration of

the automata kernel. To solve this problem, we propose using just one DDR bank for

the output and using a FIFO between the kernel and the DDR bank as a bu↵er for

the output to simplify the integration.

5. Cloud-based platforms implementation

As cloud platforms attract more users’ and developers’ interest, we deploy the

framework on two cloud-based platforms (Amazon AWs EC2 and Nimbix) with a

new automated workflow, available on [47].

6. Cross-platform evaluation All the above new features help to provide a better-

performance and user-friendly platform for inexact pattern matching applications. We

compare the platform against other existing platforms (CPUs, GPUs, and Micron’s

AP) using ANMLZoo [45]. Results show that using FPGAs provide great potential

for automata processing.

1.1.4 Reducing High Compilation Overhead for the Automata

Processing Engine on FPGAs

High compilation overhead is a common problem when using FPGAs to accelerate

applications. We encounter similar problems when using FPGAs for automata pro-

cessing. For example, it took almost eighteen hours to finish the compilation for ER.

For some inexact pattern matching applications, the rule/pattern sets may change or

update periodically. It is costly to configure FPGAs for every single new rule/pattern.

Furthermore, for large pattern sets or problem sizes, the automata may not fit on a

single device. This requires a method to partition the automata and support multi-

ple passes with fast reconfiguration for each partition. To reduce the configuration

overhead, we propose three novel methods (symbol-only reconfiguration [28], a new

12

workflow using Xilinx Object file, and modular synthesis to reuse compiled compo-

nents) in the framework.

1. Symbol-only reconfiguration to process large-scale applications

When working with automata processing applications, we find that we can design

a general automaton structure for some applications. This allows us to compile the

structure once, and reuse the complied structure for new datasets by writing new

symbols to be stored in the structure. We name it the symbol-only reconfigure mech-

anism. Writing new symbols (seconds) is much faster than compiling new structures

(hours), thus allowing us to process larger datasets much faster when multiple passes

of the input is needed.

2. New workflow using Xilinx Object file

In the original REAPR workflow, to hide all the details from users, we integrate

all kernels for the compilation step (including FPGA synthesis, logic optimization,

logic placement and routing). We then notice that using the Xilinx Object file can

help to reduce the time spent in the compilation phase. The Xilinx Object file stores

the information about the RTL kernels. Therefore, we propose a new workflow by

using the Xilinx Object(.xo) file in Xilinx SDAccel.

3. Modular synthesis and reuse the I/O communication structure

In the original workflow, we build the I/O communication structure for each ap-

plication and each di↵erent dataset. However, the I/O structure is similar for ap-

plications with a similar number of reporting states even though the applications

are di↵erent, and we can reuse this I/O structure for di↵erent applications/datasets.

Therefore, we modularize the original RTL kernel and isolate the I/O communication

between the CPU and the FPGA from the whole kernel. For new applications, we

can use the pre-synthesized I/O part and only synthesize the actual automata kernel,

which helps to reduce the synthesis time and placement and routing time.

1.1.5 Summary

This dissertation studies how to use automata processing to accelerate inexact pattern

matching applications. We study two applications using automata processing from

Knowledge Discovery and Bioinformatics domains. Accelerating these applications

provides insights that spatial architectures are better fit for automata processing;

therefore we provide a high-performance, scalable, and user-friendly platform on FP-

GAs. Finally, we propose several methods to reduce the high compilation overhead

for the FPGA automata processing engine.

13

1.2 Organization

The remainder of the dissertation is organized as follows:

Chapter 2: Background introduces automata processing in general and existing

platforms for automata processing.

Chapter 3: Entity Resolution using Automata Processing presents a novel method

based on automata processing to accelerate the applications involving ER.

Chapter 4: Searching for gRNA O↵-target Sites in CRISPR/CAS9 System across

Di↵erent Platforms presents how we use automata processing to identify potential

gRNA o↵-targets sites. We also evaluate the proposed method across di↵erent hard-

ware in order to find a proper platform for such problems.

Chapter 5: Deploy REAPR on Cloud-based Platforms with New Features present

the new features we propose and implement on the original REAPR to provide higher

performance and make it more user-friendly.

Chapter 6: Ways to Reduce Compilation Overhead presents three di↵erent meth-

ods to solve the high compilation overhead.

Chapter 7: Conclusion and Future Work summarizes the dissertation and discusses

potential future directions of research.

14

Chapter 2

Background

2.1 Automata Processing

Automata processing can be informally defined as a set of states and a set of transition

arrows that connect these states. Each state stores multiple characters, and an input

stimulus is streamed into the starting states of an automaton [48]. For each cycle, if

a state is activated and the input symbol matches the characters stored in this state,

the state will activate all states that connect to the current state. Once a state that

is set as a reporting state is activated, it finds a match for that pattern.

A traditional automaton can be represented as a Deterministic Finite Automaton

(DFA) or a Non-deterministic Finite Automaton (NFA) [49]. A DFA cannot use

empty string (✏) transition, and can only be in, and transition to, one state at a

time for a given input symbol. However, an NFA can use empty string(✏) transition,

can transition to and be in, multiple states for a given input symbol. DFA and

NFA are computationally equivalent (one example is shown in Fig 2.1), but there

are trade-o↵s between them that a↵ect the performance. For DFA, we only need to

compute one transition per cycle, thus requiring less computational power, but the

number of states in a DFA is usually much larger than that in an equivalent NFA.

This phenomenon is usually referred to as “state explosion” problem. While for NFA,

we usually need more computation to process all transitions per cycle, thus leading to

higher parallelism, and the automaton structure is smaller. Prior work by Becchi [50]

attempted to leverage the best of both types of finite automata (the spatial density of

NFA and temporal density of DFA). By intercepting the subset construction algorithm

and not expanding paths that would result in a state explosion, Becchi achieved 98-

99% reduction in memory capacity requirement and up to 10x reduction in-memory

15

Figure 2.1: An NFA and its equivalent DFA.

transactions. There are also several other work that tries to combine the benefits of

DFA and NFA [51] [52] [53].

Merging the transition logic with the state transforms a traditional NFA into a

homogeneous finite automaton [54], where all incoming transitions to a state have

the same (homogeneous) rule. The major advantage of using homogeneous automata

is that we can compute all transition rules simultaneously for the input symbol and

broadcast the activation signals to successor states. This feature maps naturally to

logic elements in reconfigurable hardware, thus in both Micron’s Automata Processor

and the REAPR framework use homogeneous automata representation.

2.2 Automata Processing on von Neumann Archi-

tectures

2.2.1 CPUs

In an NFA, symbols from the input stream are broadcast to each state simultaneously,

and each state connects to several other states, each of which may or may not activate

depending on whether a given state matches the incoming symbol [28]. For each

16

symbol, an NFA engine must determine the next set of activated states, which involves

a linear-time scan of the adjacency lists of all states in the current activated set.

In the worst case, the adjacency list may contain nearly all of the states in the

automaton; therefore, the runtime on a CPU for simulating an m-state automaton on

n symbols is O(n ·m), and for non-trivial data with non-trivial automata (n = m),

the overall runtime is quadratic. CPU NFA processing is additionally hampered by

the so-called “memory wall” due to the NFA’s pointer-chasing execution model, and

therefore it is desirable to drastically reduce the number of memory accesses per input

item. In order to mask memory latency, state-of-the-art NFA engines perform SIMD

vector operations to execute as many state transitions as possible for a given memory

transaction. Even so, such optimizations can not escape the fact that sequential von

Neumann architectures are fundamentally ill-suited for these types of workloads.

In order to improve the runtime complexity of automata traversals, some regular

expression engines transform the NFA into its equivalent deterministic finite automata

(DFA). A DFA only has one state active for any given symbol cycle and is functionally

equivalent to an NFA as we discussed above; this is achieved through a process known

as subset construction, which involves enumerating all possible paths through an

NFA [55]. Converting an NFA to DFA has the benefit of reducing the runtime to

O(n) for n symbols (note that now the runtime is independent of automaton size)

and only requires one memory access per input symbol, but frequently causes an

exponential increase in the number of states necessary. Subset construction for large

automata incurs a huge memory footprint, which may cause performance degradation

due to memory overhead in von Neumann machines [56].

Many CPU engines for automata processing or regular expression matching were

proposed [57] [58]. In this dissertation, we use Hyperscan as the CPU automata

processing engine. Hyperscan [19] [59] is an open-source, high-performance automata-

based regular expression matching tool on CPUs. It uses hybrid automata techniques

to allow simultaneous matching of large numbers of regular expressions against the

input stream.

2.2.2 GPUs

GPUs provide highly parallel computational capabilities. Many works have been

done to exploit the parallelism on GPUs for various applications and corresponding

programming models [60] [61] [62] [63] [64] [65] [66]. Some of them work on high-

speed parallel pattern matching [67] [68] [69] [70] [71]. In this dissertation, we use

17

DFAGE and iNFAnt2 as our DFA engine and NFA engine on GPUs. Both tools are

open-source, allowing us to modify the tool when needed.

DFAGE is a prototype framework for running DFA-based matching on NVIDIA

CUDA-enabled GPU cards [20]. DFAGE is an optimized version of a DFA engine

running on GPUs, which was inspired by the original work in [67] and [72]. Sev-

eral optimizations are included, such as fast accepting-state recognition by encoding

accepting states with negative IDs, DFA transition tables stored in GPU texture

memory, simultaneously processing multiple DFAs and multiple packets, etc. All

such features enable the execution of large and complex DFAs with high throughput.

iNFAnt2, an optimized version of iNFAnt [18], is a prototype framework for NFA-

based automata processing on NVIDIA CUDA-enabled GPU cards [45]. Several op-

timizations are included, such as processing multiple NFAs simultaneously, utiliz-

ing GPU texture memory for storing NFA transition table, multi-byte input symbol

fetches, etc. With all such optimizations, iNFAnt2 can process large and complex

NFAs with high throughput and low memory consumption [21].

2.2.3 Others

Several past e↵orts have proposed modifications to existing von Neumann architec-

tures to specifically increase performance of automata processing workloads. HARE

(Hardware Accelerator for Regular Expressions) [73] uses an array of parallel mod-

ified RISC processors to emulate the Aho-Corasick DFA representation of regular

expression rulesets. The Unified Automata Processor (UAP) [74] also uses an array

of parallel processors to execute automata transitions and can emulate any automa-

ton, not just Aho-Corasick. As processing in memory (PIM) and processing near

memory attract more interest, several prior works propose using the memory system

directly for automata processing. Subramaniyan et al. propose using last-level cache

for automata processing. They also provide a compiler that can map large NFAs to

the proposed architecture and achieve over 15⇥ speedups compared to the AP [75].

Sadredini et al. propose a compact, low-overhead, yet flexible in-memory intercon-

nect architecture for autoamta processing. They evaluate the proposed method using

SRAM 8T and reduces the interconnect by 7⇥ [76]. The same group then proposes

FlexAmata, a compiler that transforms the automata shapes to support di↵erent

bitwidth processing and map them to in-memory architectures. This provides in-

sights for next-generation automata processing accelerators [77].

Though the above methods help to improve the performance of automata process-

18

ing on von Neumann architectures, the memory bottleneck still limits the achievable

throughput. Researchers start exploring other architectures that may be more e�-

cient for automata processing.

2.3 Automata Processing on Spatial Architectures

Spatial architectures can process certain computation using reconfigurable processing

elements. Such architectures usually provide a large number of hardware resources,

allowing processing the computational task with massive parallelism [27]. When using

spatial architectures for automata processing, we can directly store automata graphs

on hardware and process these automata in parallel, which overcomes the memory

bottleneck on von Neumann architectures. In this dissertation, we use Micron’s Au-

tomata Processor and FPGAs as two examples of spatial architectures.

2.3.1 Micron’s Automata Processor

Micron’s Automata Processor is an e�cient and scalable semiconductor architecture

for parallel automata processing [22]. It uses a non-Von-Neumann reconfigurable

spatial architecture, which directly implements NFA in hardware, to match complex

regular expressions. The AP can also match other types of automata that cannot be

conveniently expressed as regular expressions, by describing the NFA directly. The

ability to e�ciently implement regular expressions or NFA processing makes the AP

well-suited for inexact pattern-matching problems such as ER. Use of NFAs avoids the

exponential growth in automata size that can occur with deterministic FAs (DFAs),

thus achieving high density for the number of automata structures that fit on the AP.

Memory-derived Architecture

The AP is a memory-derived architecture, which exploits the bit-level parallelism

of the memory structure. The architecture is shown in Figure 2.2. In a traditional

RAM, one needs both the row address and the column address to access a memory

cell, while the row address for the AP is the input symbol and each column is one

State Transition Element (STE–a state and associated transition rules). The 8-bit

input symbol is decoded and provided to the memory. The STEs are connected to the

configurable Automata Routing Matrix Structure by some logic. Then the AP invokes

19

Figure 2.2: Automata Processor Architecture. Each memory column is one STE. [22]

automata activation operations using the routing matrix structure. The details of the

AP architecture can be found in [22].

AP Functional Elements

The AP consists of three functional elements: STEs, Counters, and Boolean ele-

ments [22]. Each STE can be configured to match a set of any 8-bit symbols and

up to 256 di↵erent characters can be stored in one STE. The STE activates a set of

successor STEs connected to it when the symbols stored in it match the input symbol.

STEs can be configured as start, all-input or report, so that they can read symbols

from the start of the input sequence, any symbol in the input sequence, or report

when a match is found. Counters and Boolean elements are designed to work with

STEs to increase the space e�ciency of automata implementations and to extend

20

computational capabilities beyond NFAs. The 12-bit counter will trigger an output

event when the accumulated value reaches the pre-defined threshold. The Boolean

elements can perform classic logical functions. The AP allows all STEs on the board

to inspect the next input symbol in parallel, and it is able to process a new input

symbol every clock cycle.

Speed and Capacity

The current generation AP chip (D480) is built on 50nm DRAM technology running at

an input symbol rate of 133MHz. The D480 chip has two half-cores and each half-core

has 96 blocks. Each block has 256 STEs, 4 counters, and 12 Boolean elements. In total,

one D480 chip has 49,152 STEs, 2,304 Boolean elements, and 768 counter elements.

Each AP board can have up to 32 AP chips, providing more than 1.5 million STEs.

Programming and Reconfiguration

Automata Network Markup Language (ANML) is an XML language for describing

the composition of automata networks. The AP workbench is a graphical user in-

terface tool for quick automata design and debugging. A “macro” is a container of

automata for encapsulating a given functionality. The AP SDK also provides C and

Python interfaces to build automata, create input streams, parse the output, and

manage computational tasks. Furthermore, the symbols that an STE matches can be

reconfigured quickly. The replacement time is around 0.24 milliseconds for one block.

This feature is helpful when one needs to modify the symbols stored in the AP board

without changing the automata structure [13], e.g., for multi-pass algorithms.

2.3.2 FPGAs

NFA

Past implementations of NFAs on FPGA [23] [24] [78] [79] [80] focused on synthe-

sizing only regular expression matching circuits for applications such as antivirus file

scanning and network intrusion detection. REAPR extends this prior work by focus-

ing on a more diverse set of finite automata to address the fact that the workload for

automata processing is much richer and more diverse than regular expressions. We

extend the underlying approaches for NFA RTL generation from prior work, adapt it

for other NFA applications, and detail our process in Section IV.

21

DFA

Several e↵orts [81] [82] [83] in accelerating automata processing with FPGAs use

Aho-Corasick DFAs as the underlying data structures. A major motivator behind

this design choice is the ease of translation between a DFA and a simple transition

table, which is easily implemented using BRAM. One benefit to this approach is that

BRAM contents can be hot-swapped easily, whereas a spatial design requires a full

recompilation to realize even a single change. Because DFAs do not exploit the native

bit-level parallelism in digital hardware and are much better suited to memory-bound

CPU architectures, REAPR only focuses on the spatial implementation of NFAs.

Results of using spatial architectures for various inexact pattern matching ap-

plications [9] [13] [14] [27] [84] show the benefits brought by spatial architectures for

automata processing. In this dissertation, we focus on using FPGAs for automata pro-

cessing. We aim to provide a high-performance, scalable, and user-friendly automata

processing engine on FPGAs for inexact pattern matching applications. People can

also use this engine as a research platform to explore novel features (as in Chap-

ter 5 and Chapter 6) that could further improve the performance for future automata

processing hardware.

22

Chapter 3

Entity Resolution Acceleration

using Automata Processing

Entity Resolution (ER), the process of finding identical entities across di↵erent databases,

is critical to many information-integration applications. As sizes of databases explode

in the big-data era, it becomes computationally expensive to recognize identical en-

tities among all records with variations allowed across multiple databases. Profiling

results show that approximate matching is the primary bottleneck. The Automata

Processor (AP), an e�cient and scalable semiconductor architecture for parallel au-

tomata processing, provides a new opportunity for hardware acceleration for ER. We

propose an AP-accelerated ER solution, which accelerates the performance bottle-

neck of fuzzy matching for similar but potentially inexactly-matched names, and use

several di↵erent real-world applications to illustrate its e↵ectiveness. We compared

the proposed method with several conventional methods and achieved both promising

speedups and better accuracy (more correct pairs and less generalized merge distance

cost) for di↵erent datasets.

3.1 Introduction

Entity Resolution (ER), also known as Record Linkage or Purging/Merging prob-

lems, refers to finding records that store the same entity within a single database

or across di↵erent databases [29]. ER is an important kernel of many information-

integration applications. For example, Social Networks and Archival Context (SNAC)

collects records from databases all over the world to provide an integrated platform

for searching historical collections [85]. In such applications, the records of the same

23

person may be stored with slight di↵erences, because documents come from di↵erent

sources, with di↵erent naming conventions, transliteration conventions, etc. SNAC

needs to find the records referring to the same entity despite di↵erent representa-

tions and merge these records. The intuitive method of solving ER is to compare all

possible pair records and check whether a pair represents the same entity.

Determining whether two records represent the same entity is usually compu-

tationally expensive. For example, the time complexity of the intuitive method is

O(N2), where N is the number of records. Prior work has proposed di↵erent algo-

rithms and computation models to improve the performance [31] [32] [33]. However,

the performance is still unsatisfying and the average time used by record comparison

is much longer than the cost of simple string comparison [35].

The Automata Processor (AP) is an e�cient and scalable semiconductor architec-

ture for parallel automata processing [22] [86] introduced by Micron. It is a hardware

implementation of non-deterministic finite automata (NFA) and is capable of match-

ing a large number of complex patterns in parallel. The AP has been used in di↵erent

fields such as association rule mining [13], bioinformatics [84], string kernel testing [2],

natural language processing [14], etc. Such applications need inexact matching and

high throughput, just as does ER. Therefore, we propose a hardware acceleration

solution to ER using the AP and focus on string-based ER. To illustrate how the AP

approach works, we present a framework and evaluate the suitability using several

real-world ER problems in di↵erent applications.

In summary, we make the following contributions:

1. We propose a novel AP-based hardware acceleration framework to solve string-

based Entity Resolution.

2. We present several automata designs for string-based ER, e.g. fuzzy name

matching. We apply the proposed approach in SNAC to illustrate the e↵ectiveness

of the approach, and generalize it with small modifications for other string-based ER

problems.

3. We compare the prototype of the AP approach with several conventional ap-

proaches (Apache Lucene, sorting, hashing, and su�x-tree methods) to evaluate the

suitability of the proposed method. Results show both higher performance and better

resolution accuracy using various datasets from di↵erent applications.

24

3.2 Related Work

Many methods have been proposed to solve ER. One is a domain-independent al-

gorithm [31]. This chapter proposed first computing the minimum edit-distance to

recognize possible duplicate records, and then using a union/find algorithm to keep

track of duplicate records incrementally. This proposed method achieves around 5x

speedup compared with previous methods. Another method sorts the records and

checks whether the neighboring records are the same [29]. For approximate dupli-

cates, these researchers define a window size and a threshold of similarity, so that

they can find similar records to satisfy application requirements. Apache Lucene is a

high-performance search engine and uses a similar method [87]. The di↵erence is that

it calculates the score of a document based on the query, and sorts documents in-

stead of every individual record. As databases become much larger, some researchers

suggested dividing the original database into small blocks based on prior knowledge

and processing smaller blocks, but the method is not always feasible because not all

databases are easily divided [32]. However, we are unaware of any implementations of

these algorithms using accelerators. Furthermore, we hypothesize that the AP’s mas-

sive parallelism can achieve much higher performance than these methods. Therefore,

we propose an AP-based approach for the Hamming distance-based method.

3.3 Design Details using the AP

In this section, we present how to use the AP to solve string-based ER problems,

using the Name Matching problem in SNAC as an example. At the end, we discuss

how to generalize the AP approach to other ER problems.

3.3.1 Real-world ER Problems

In ER, identity attributes distinguish each entity from one another. String-based ER

means that the identity attributes are strings. In this chapter, we focus on solving

real-world string-based ER problems.

When building the SNAC platform, the same person’s name may not always be

consistent from one record to the next because of typos, mis-spellings, di↵erent abbre-

viation, etc. These di↵erences lead to three major problems. 1) One may miss some

correct results when querying a particular record; 2) multiple entries for one entity

waste storage space; 3) the duplicated items slow down the search speed. Therefore,

25

SNAC needs to identify and combine potentially similar records, which is a typical

ER problem. Similar problems also exist in DBLP, a website for browsing Computer

Science bibliographic information [88]. As DBLP adds records to its database, the

contents of the same record may have di↵erent representations.

We also present how to identify restaurant records from Fodor’s and Zagat’s

restaurant guides using the AP.

3.3.2 Workflow

The general workflow of using the AP to solve string-based ER problems is shown

in Figure 3.1. The CPU first reads the database and extracts the fields of interest

from the original database in a pre-processing step, because the database may contain

some other information. For example, for the ER problem in SNAC and DBLP, the

fields of interest pertain to people’s names. We store these fields of interest on the

AP board. The input strings are then streamed into the AP and the AP compares

the stored contents with the input. If the AP finds a match, it reports back to the

CPU. Each record is assigned a number before being streamed into the AP. Based on

the reporting STE ID and the o↵set of the reporting time, the CPU can tell which

record finds a match and proceed to combine these records. A reconfiguration phase

is needed if the record number exceeds the capacity of the AP. Intuitively, to config

the AP for the next batch of names, one can compile new automata structures for

the records which have not been processed yet, but this usually takes a long time due

to the high cost of routing for these new structures. Instead, we develop canonical

matching macros, which new record values can be loaded without reconfiguring the

automata structure; the data are then re-streamed. This approach introduces the

cost of replacing symbols (milliseconds), but it is usually faster than compiling new

structures (minutes). In the following sections, one will see several design choices to

take advantage of the fast symbol replacement.

3.3.3 Extracting Name Formats

Intuitively, one can build an automaton for every single record. However, this only

works well if the database is small and all records can be stored on one AP board.

For large databases, to exploit the fast symbol replacement, we focus on designing a

more general automata structure that can be shared by di↵erent records [13].

Extracting records formats is a preliminary step for most string-based ER solutions

26

Figure 3.1: General workflow of the AP approach.

using symbol replacement. We start by describing the approach for solving the Name

Matching problem in SNAC. One name is usually composed of several sub-names,

like family name, middle name, and first name. We only use family name and first

name for SNAC, because middle names are both less common and important for

correct resolution in SNAC. Family names and first names are su�cient to evaluate

the suitability of the proposed approach.

We choose a subset from the whole database randomly as a basis to extract a

representative set of formats for family name and first name. Table 3.1 shows common

variants of family names and first names. However, not all names can be represented

by these formats (fewer than 1%). In this case, we treat it as a failure (no match

found). Refinement of these rare cases is left for future work.

27

Family Name Formats First Name Formats
Abc (basic) Bcd (basic)
Abc Bcd Bcd X.
Abc Bcd Cde Bcd Cde
Abc II Bcd X. (Bcd Xyz)

B. X.
B. X. (Bcd Xyz)
B. X. (Bcd X.)
Bcd Cde (Xyz)
Bc. Xyz (Bcde Xyz)
Bcd, Cde
Bc
Bcd O. X. (Bcd Opq Xyz)
Bcd (Bcd X.)
Bcd Cde Def Efg

Table 3.1: Name formats in SNAC.

3.3.4 Automata for Family/First Name

After extracting name formats, we show how to design automata for these formats.

The designs are also important for generalizing the AP approach in other ER prob-

lems, because they share similar design ideas and techniques.

Figure 3.2 shows the exact-matching automaton for family names. Though exact-

matching automata cannot recognize the same entities with di↵erent representations,

it is important to understand how the following fuzzy automata work. The three rows

correlate with Abc, Bcd, Cde in Table 3.1. The first few STEs in each row store the

characters in the name to be matched. The subsequent ‘+’ signs are used to pad the

remaining positions, so that family names with di↵erent lengths can share the same

structure. The ‘$’ and the ‘#’ represent spaces and Roman numerals in the database.

The ‘,’ STE is configured as a reporting STE. When this STE is activated, it will

report. The lengths can be modified according to di↵erent dataset characteristics. In

this chapter, all the four family name formats in SNAC share this structure, although

it may consume more STEs than using di↵erent automata for di↵erent names. Again,

this is to utilize the feature of the fast symbol replacement.

This design may lead to some false positives because it aims to support arbitrary

string lengths; all of the STEs after the second STE in a given row are connected to

the reporting STE. For example, if the automaton in Figure 3.2 reads Ada, it reports

a match; but Ada is not the name we want. False positives are typically acceptable,

28

Figure 3.2: Exact-matching automata design for family name (exact match for
“Adams Smith Abbe”).

and we still need to check the first name. The chance that we get a false positive for

both family name and first name is small.

However, the exact-matching cannot fully solve the ER problem and we need to

execute ‘fuzzy’ matching. A fuzzy macro in this chapter refers to an automaton that

can recognize a string with variances. One fuzzy macro example is shown in Figure 3.3.

It matches sequence the ABCDEF and reports when the Hamming distance is  1.

This structure is also used in [84]. Column i corresponds to the ith symbol in the

sequence. The STEs in odd rows activate on symbols in the target name and the

ones in even rows activate when there are mismatches. The Hamming distance can

be extended up to k with more (2k + 1) rows . All macros in this chapter adopt

this structure, but with di↵erent sequence lengths. For example, in Figure 3.4, the

name length of macro fuzzy and fuzzy2 is 11 while the length of macro fuzzy3 is

5. Furthermore, macro structures are not limited to Hamming distance. One can

have macro designs for other distances, like general edit distance in [89].

With these fuzzy macros, we can find the same names with variances (Figure 3.4).

The first three rows are used to match the three corresponding parts in family name

formats, and we use fuzzy macros in each row to recognize variances of names. The

design for the first name (Figure 3.4) is similar to family name, but we need several

extra STEs (last row in red rectangle) to process the ‘.’ and parenthesis, which do

not exist in family name formats.

The design may produce false negatives if the AP stores a shorter form first. For

example, if AP stores ‘J.’ first, it will not report a match when it reads ‘Janet ’, the

29

Figure 3.3: Structure of fuzzy macro calculating Hamming distance. It matches
sequence ABCDEF with Hamming distance = 0, 1.

full form of ‘J.’. This problem causes most of the inaccuracy in our ER outcomes

(Section 3.4.3). In this chapter, we consider ‘.’ symbol as a character within a string.

However, abbreviations such as ‘J.’ often are meant to indicate J followed by 0 or

more of any character. One possible solution is to use an STE accepting any character

when reading ‘.’, but this is left for future work.

3.3.5 Hybrid Version

With these automata designs, we roughly evaluated the approach and found that the

STE capacity is the bottleneck. To reduce STE consumption, we use a hybrid version

(Figure 3.5) of automata for family name and first name in Figure 3.4. We recognize

the names using one single automaton in order to save STEs. The hypothesis is that

if the family name is a match, one can compare fewer characters within the first

name. The hybrid technique also allows us to use two fuzzy macros instead of three

for family name and first name, because it is unlikely that one finds a wrong match

for both sub-names. An STE pointing to itself is used to accept all the remaining

characters, further reducing STEs consumed. This self-pointing technique is also used

when generalizing the AP approach for other ER problems. With all these techniques,

we reduce the STEs consumed from 174 to 99 for one name.

30

Figure 3.4: Fuzzy-matching automata design for first name (fuzzy macros allow Ham-
ming distance = 0, 1).

3.3.6 Generalizing to Other String-based ER Problems

In this section, we discuss how to generalize the AP approach to other string-based

ER problems. As shown in the above discussion, we can build macros that allow

di↵erent degrees of fuzziness. For example, we can extend the macro in Figure 3.3 to

support di↵erent string lengths or di↵erent Hamming distances. We can also build

macro structures for other distances, such as edit distance [89]. Users can generalize

the AP approach with these di↵erent automata designs to solve their specific ER

problems.

First, we show how to generalize the AP approach to solve the ER problem in

DBLP. The workflow is the same as in Section 3.3.2. Figure 3.6 shows the automaton

design for recognizing similar names in DBLP and middle name is used because most

names in DBLP have a middle name. Macro fuzzy and fuzzy1 are used to match first

name and family name. These two macros adopt the structure in Figure 3.3 with

di↵erent lengths (10). The middle part is used to recognize middle name, which is

mostly the abbreviation of the full-length middle name. We use three STEs to store

characters in middle name. If the middle name is longer, we ignore the remaining

part; if the middle name is shorter, similar to what we have discussed in Section 3.3.4,

we use ‘+’ to pad the position. The fourth self-pointing STE is used to accept all

the characters before the ‘space’ character. The automaton is similar to the one in

Figure 3.5 for SNAC, and they share the same macro structures.

31

Figure 3.5: Automata design for the whole name in SNAC (‘&’ is the delimiter of
di↵erent names).

Secondly, we show how to identify the same restaurant from Zagat’s and Fodor’s

restaurant guides. The workflow is still the same and the automata design is shown

in Figure 3.7. We first work on the record formats, finding that most of the variances

come from di↵erent abbreviations of the same word, like ‘deli’ vs. ‘delicatessens’.

This feature makes the automata look more like the exact match design in Figure 3.2

but it can recognize the same word with di↵erent lengths. Most of the restaurants’

names have fewer than three parts, so we only use three rows to represent di↵erent

parts inside one name. If the name has more than three parts, we only consider the

first three; otherwise, we fill the automaton using the latter rows first. For example,

for restaurant ‘Carneigie Deli’, we store ‘Carneigie’ in the second row and ‘Deli’ in

the third row. As for the first row, we use ‘+’ as a placeholder as in Section 3.3.4.

The second-to-last STE in each row activates itself until it reads the ‘space’ symbol

as discussed in Section 3.3.5.

These two examples show how we generalize the AP approach for SNAC in other

string-based ER problems. They all use the same workflow in Section 3.3.2. Even

though we need to modify the automata designs to solve the specific problem, the

32

Figure 3.6: Automata design for DBLP (‘$’ is the delimiter of sub names).

structures are similar and we can re-use many design ideas and techniques, such as

macro structures, self-pointing STEs, and using ‘+’ as placeholders.

However, this is still not a universal method. There are some applications for

which the proposed method is not suitable. The AP approach did not work well when

we tried to resolve consumer-electronics products from online shopping websites. This

is because the various representations of products are not due to di↵erent spellings;

instead, they usually have semantic meanings of words or abbreviations or di↵erent

descriptions, such as ‘PlayStation4’ vs. ‘PS4’ or ‘black headphone’ vs. ‘headphone

in black’. In such situations, it is di�cult for the AP approach to identify these

records, because too many variations are required, and a dictionary of all possible

relationships is needed.

3.4 Evaluation

3.4.1 Experiment Setup

To evaluate the suitability of the prototype of the AP approach, we compare both

execution time and resolution accuracy of the AP approach with other conventional

methods. The experiments are executed on a server with AMD Opteron 4386 Cores

(3100MHz). We use an AP simulator to derive the execution time for the AP approach

until the real hardware is available. The data used in the following experiments

are sampled from di↵erent databases, including SNAC [85], DBLP [90], Fodor’s and

Zagat[91]. We use a random selector to select records from these databases.

33

Figure 3.7: Automata design for identifying the same restaurant (‘$’ is the delimiter
of di↵erent parts inside a restaurant name and ‘&’ is the delimiter between restaurant
names).

3.4.2 Performance

We first compare the performance of the AP approach with conventional methods,

including Apache Lucene, a sorting-based method as suggested in [29], a su�x-tree-

based method, and a hashing-based method. Apache Lucene is a widely used search-

ing library and supports advanced query types, such as proximity queries, which

enables us to execute fuzzy matching [87]. The sorting-based method first sorts the

names and then compares the Hamming distance of neighboring names. The su�x-

tree-based method builds a su�x tree for the names and searches names against the

su�x tree. The hashing-based method builds a hash table for the names and searches

the exact names inside the table. We only execute exact matching with these two

methods in this chapter. There are some methods which can execute fuzzy matching

using su�x tree and hashing-table, but it takes much more time than exact matching.

The matching time is used as the primary metric to evaluate these methods. Be-

cause using Apache Lucene involves some other overhead like building indexes for

databases, we only collect the time of the search function that executes matching

operations. We evaluate these methods with both small datasets and large datasets

sampled from SNAC. The results for small datasets are shown in Figure 3.8. When

the database is smaller than 10,000, the su�x-tree-based method is the least e↵ec-

tive, yet the matching time increases slower than Apache Lucene as the database

size increases. The sorting-based method works as well as the hashing-based method

34

for these datasets. But the sorting-based method achieves better result quality, and

the details will be discussed in Section 3.4.3. The AP approach runs faster than all

the other four methods for these datasets. The matching time of the AP approach

increases almost linearly as the database increases. The slope of the AP approach

is nearly flat because the AP can process a new input character every clock cycle.

However, the AP can only hold 14,0001 names at a time; if a dataset is larger than

14,000, a symbol replacement operation is needed to load the next 14,000 names.

This shows up in Figure 3.8 as steps in the AP curve. We also compare the AP

approach with Apache Lucene with its multiple search support. Apache Lucene sup-

ports simultaneously searching multiple records (90 at most), but this does not always

work for all datasets, and searching 50 names is the largest number that works for

all datasets. The average speedup is calculated over all samples in a given dataset.

For example, samples of di↵erent numbers of names from SNAC (1,000 to 20,000

names in Figure 3.8) are used to calculate the average speedups against conventional

methods (in Table 3.2). Though searching multiple names helps to reduce the match-

ing time, the AP approach still achieves 20.3x speedup compared with searching 50

names simultaneously and up to 373x speedup compared with the su�x-tree-based

method.

Speedup
Sorting 47.9
Su�x-tree 373
Hashing 45.8
Lucene[1] 248
Lucene[10] 75.7
Lucene[50] 20.3

Table 3.2: Average Speedups for small SNAC databases.

To evaluate how the AP approach works for large databases, we then work on

larger datasets (from 14,000 names to 140,000 names) from SNAC. Figure 3.9 shows

that even when the number of names exceeds the capacity and several reconfigurations

are needed, the AP approach still runs at least 8.5x faster than other methods. On

average, the proposed method achieves 17x, 33.4x, and 16.9x speedup compared with

the sorting-based, su�x-tree-based, and hashing-based methods.

Furthermore, we evaluate the AP approach for DBLP. We can store 45,000 names

1The AP capacity in the number of names or other records is a function of the expected record
size and complexity (e.g. Hamming distance) of matching.

35

Figure 3.8: Performance vs. conventional methods for small SNAC databases. (X
axis represents the number of names, ranging from 1,000 names to 20,000 names.)

with the design in Figure 3.6 on one AP board. We collect the matching time for

1 million to 10 million names, since DBLP has a much larger database. Because

the number is larger than the capacity of the current board, we need to replace

the symbols and re-stream the input. Figure 3.10 shows that even for much larger

datasets, the AP approach still works the best among all the methods. On average, it

achieves 3x, 29.7x, and 15x speedup against the sorting-based, the su�x-tree-based,

and the hashing-based methods. The speedups are not as high as small datasets

when compared with the sorting-based method in SNAC, but we achieve much better

resolution accuracy (Section 3.4.3). To achieve similar accuracy as the AP approach

does, conventional methods need longer time. For example, we can improve the

accuracy of the sorting-based method by increasing neighboring group size. However,

the time consumed increases linearly as the size increases. We will discuss how to

further improve the AP approach performance for large databases in Section 3.4.4.

In general, the prototype of the AP approach achieves promising speedups com-

pared with conventional methods for both small and large datasets, even when many

reconfigurations are needed. The speedups come from the massive parallelism when

comparing the records using the AP. We can store a large number of records (14,000

36

Figure 3.9: Performance vs. conventional methods for large SNAC databases. (X
axis represents the number of names, ranging from 14,000 names to 140,000 names.
Y axis represents the matching time.)

for SNAC and 45,000 for DBLP) on one AP board and compare these records simul-

taneously.

3.4.3 Resolution Accuracy

Results quality is also important to study the suitability of the approach; there-

fore, we use two di↵erent metrics (correct pair numbers and generalized merge dis-

tance(GMD)) to evaluate the accuracy of the AP approach.

Correct # Pct Merge Split Total
Apache Lucene 262 80.6% 51 3 54
Sorting 233 71.7% 63 0 63
Hashing 213 65.6% 72 0 72
Su�x-tree 213 65.6% 72 0 72
AP 292 89.8% 30 1 31
Manual 325 100% 0 0 0

Table 3.3: Resolution Accuracy Results for SNAC.

37

Figure 3.10: Performance vs. conventional methods for DBLP. (X axis represents the
database size, ranging from 1 million names to 10 million names. Y axis represents
the matching time.)

The first metric is the number of correct pairs (Table 3.3). If there are more

than two records in one group, every two records inside the group are counted as

one correct pair. The AP approach finds 9.2%, 18.1%, 24.2%, and 24.2% more cor-

rect pairs than Apache Lucene, sorting-based, hashing-based and su�x-tree-based

methods respectively.

The second metric is GMD [92], which is based on the elementary operations of

merging and splitting the records group to correct results. We use a simple version

of GMD, where the costs of merging and splitting are equivalent (Table 3.3). The

AP approach method only needs 31 operations, while other methods need at least 54.

The AP approach needs 50% fewer operations compared with the best conventional

method. We observe that most GMD of the AP approach comes from merging op-

erations, which implies that the AP approach may miss some names that should be

grouped together instead of recognizing wrong names. To further reduce GMD cost,

we can design more complex fuzzy macros in order to identify more similar names.

But this may consume more STEs.

We then evaluate the AP approach (Table 3.4) using a subset from DBLP provided

38

by [90]. The AP approach finds 17% more correct pairs and uses 66% fewer GMD

operations than the best conventional method.

Correct Pair # Percentage GMD
Correct 675 100 0
AP 615 91.4 62
sorting 502 74.4 183
su�x-tree 484 71.7 212
hashing-table 484 71.7 212

Table 3.4: Resolution Accuracy Results for DBLP.

Lastly, we evaluate the design for identifying the same restaurant from Fodors

and Zagat. The dataset is achieved from [91] and the matching results are provided.

112 matched tuples should be found and the AP approach finds 105 (93.75%) correct

results, while the other three methods only find around 90 (80.36%) correct pairs.

For all three datasets, the AP approach achieves better results quality. This is

because the di↵erences in these datasets are usually caused by typos, mis-spellings or

di↵erent abbreviations, and the fuzzy macros we present in the previous section can

recognize these di↵erences and identify the same entities yet with small di↵erences.

3.4.4 Improved AP Approach

When the name number is larger than the AP capacity, we re-stream the whole

database. However, we do not need to re-stream all records after reconfigurations.

For example, for the ER problem in SNAC, 14,000 names are compared in each round

and these 14,000 names do not need to be streamed in the next round since they have

already been compared. We improve the algorithm by deleting unnecessary processed

names, thus reducing the total number of comparisons on the AP. Figure 3.11 shows

that the speedups using the improved algorithm increase from 1.3x to 1.8x compared

to the simple AP approach. For the ER problem in DBLP, we also implement the

improved algorithm and the results are shown in Figure 3.10 (solid line) and it works

2x faster than the streaming the whole database.

3.4.5 Scalability

For the current generation of the AP, we can compare 14,000 names for SNAC and

45,000 names for DBLP in one pass. The number may not be large enough for some

39

Figure 3.11: Performance for improved AP approach. (X axis represents the database
size, ranging from 14,000 names to 140,000 names. Y axis on the left represents the
matching time and Y axis on the right represents speedup against original algorithm.)

applications, where databases are much larger, like DBLP. There are several possible

ways to address this problem.

The STE capacity is the current bottleneck of the AP approach. Therefore, if we

can increase the STE capacity, we can store more records and reduce the number of

reconfigurations, thus improving the matching time. In Figure 3.12, we estimate how

the matching time varies when STE number increases using the datasets from DBLP.

Results show that the speedup increases almost linearly as STE number increases.

We achieve 1.97x, 4.91x, and 9.56x speedups if we can have 2x, 5x, and 10x more

STEs on one AP board.

The method we use for larger datasets introduces the cost of replacing the symbols

and re-streaming the input. We estimate the performance if we can reduce the symbol

replacement time or increase the input rate. For relatively small datasets, reducing

symbol replacement time helps more to reduce the matching time than reducing

re-streaming time, because symbol replacement time takes most of the matching

time. Figure 3.13 shows how the matching time in SNAC varies when reducing

40

Figure 3.12: Performance if STE capacity increased. (X axis represents the database
size, ranging from 1 million names to 10 million names. Y axis on the left repre-
sents the matching time and Y axis on the right represents speedup against original
performance.)

the symbol replacement time. For the ER problem in SNAC, when the number of

names is fewer than 230,000, the symbol replacement consumes more time than re-

streaming the input. A reduction of 50% in the symbol replacement time leads to

1.42x to 1.67x speedup and a reduction of 90% leads to 2.16x to 3.63x speedup. The

speedup decreases as the number of names increases, which implies that the symbol

replacement time becomes less dominant for larger databases. For larger datasets

like DBLP, the re-streaming time dominates the matching time. When the input size

is 10 million, 94.7% of the matching time is used for re-streaming. In such a case,

increasing input rate helps more to reduce the matching time. The speedup increases

almost linearly as the input rate increases.

In summary, the AP shows advantages on both performance and result quality

compared with di↵erent conventional methods. Note that the AP board we use to

derive the performance is the first generation. Technology scaling projections and

performance estimation suggest that, in the future, we may have a larger capacity

and higher frequency, which could lead to even better performance.

41

Figure 3.13: Performance if the symbol replacement time is reduced. (X axis repre-
sents the database size, ranging from 28,000 names to 140,000 names. Y axis on the
left represents the matching time and Y axis on the right represents speedup against
original performance.)

3.5 Summary and Future Work

In this chapter, we propose a prototype using the AP to accelerate string-based ER

problems. We present the design details of how to solve ER problems in several

datasets. The proposed approach makes full use of the massive parallelism of the AP,

and compares up to 14,000 names for SNAC and 45,000 names for DBLP in each

pass. To evaluate the suitability of the AP approach, we measure both performance

and resolution accuracy using various datasets from SNAC, DBLP, Fodors and Zagat.

The AP approach achieves promising speeds and also enhances resolution accuracy

(more correct pairs with less GMD cost) compared with conventional CPU methods.

In summary, the AP shows great potential for accelerating string-based ER problems.

Future work includes using the AP to process larger datasets, improve accuracy, and

solve other string-based ER problems. This work was published in [93] and [15], and

most of the contents are derived from these two papers.

42

Chapter 4

Searching for Potential gRNA

O↵-Target Sites for CRISPR/Cas9

using Automata Processing across

Di↵erent Platforms

The CRISPR/Cas system is a bacteria immune system protecting cells from foreign

genetic elements. One version that attracted special interest is CRISPR/Cas9, be-

cause it can be modified to edit genomes at targeted locations. However, the risk of

binding and damaging o↵-target locations limits its power. Identifying all these po-

tential o↵-target sites is thus important for users to e↵ectively use the system to edit

genomes. This process is computationally expensive, especially when one allows more

di↵erences in gRNA targeting sequences. In this chapter, we propose using automata

to search for o↵-target sites while allowing di↵erences between the reference genome

and gRNA targeting sequences.

We evaluate the automata-based approach on four di↵erent platforms, including

conventional architectures such as the CPU and the GPU, and spatial architectures

such as the FPGA and Micron’s Automata Processor. We compare the proposed

approach with two o↵-target search tools (CasOFFinder (GPU) and CasOT (CPU)),

and achieve over 83⇥ speedups on the FPGA compared with CasOFFinder and over

600⇥ speedups compared with CasOT. More customized hardware such as the AP

can provide additional speedups (1.5⇥ for the kernel execution) compared with the

FPGA. We also evaluate the automata-based solution using single-thread HyperScan

(a high-performance automata processing library) on the CPU. HyperScan outper-

43

forms CasOT by over 29.7⇥. The automata-based approach on iNFAnt2 (a DFA/NFA

engine on the GPU) does not consistently work better than CasOFFinder, and only

show a slightly better speedup compared with single-thread HyperScan on the CPU

(4.4⇥ for the best case). These results show that the automata-based approach pro-

vides significant algorithmic benefits, and that accelerators such as the FPGA and

the AP can provide substantial additional speedups. However, iNFAnt2 does not

confer a clear advantage because the proposed method does not map well to the GPU

architecture. Furthermore, we propose several methods to further improve the per-

formance on spatial architectures, and some potential architectural modifications for

future automata processing hardware.

4.1 Introduction

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) exist in prokary-

otic DNAs. The CRIS-PR/Cas system is an immune system which defends against

foreign genetic elements [36]. CRISPR/Cas9 is one version of the system that at-

tracts researchers’ interest, because it can be modified to edit genomes [37] [94]. One

can deliver the Cas9 nuclease together with a guide RNA (gRNA) into a cell and

edit the cell’s genome at targeted locations defined by the gRNA. Genome editing

using CRISPR/Cas9 has been a popular technique since it was first introduced. For

example, researchers are trying to use cells edited by CRISPR/Cas9 to fight can-

cers [39]. The CRISPR/Cas9 system is also being used to cure other diseases with

genetic causes, such as amnesia, muscular dystrophy, etc [40].

However, e�ciently finding all correct locations to edit the genome, without mod-

ifying other locations, is still the bottleneck of using the CRISPR/Cas9 system, be-

cause the gRNA also binds to locations with slightly di↵erent DNA sequences [41].

This makes the process of finding all potential o↵-target sites (genome locations su�-

ciently similar to the gRNA targeting sequence) computationally expensive, especially

when one allows more di↵erences from the reference sequence. The time complex-

ity of searching for exact matches is O(n ⇤ l ⇤ L), where n is the number of gRNA

targeting sequences to be searched, l is the length of the query sequence, and L is

the length of the reference genome. The time complexity is even worse when di↵er-

ences are allowed. There are several local o↵-target search tools (running on local

workstations), but the performance is not satisfying, even with the GPUs. It could

take hours/days to search for potential o↵-target sites when only allowing a few mis-

44

matches [42]. The performance of web tools (providing web interfaces for users to

provide gRNA targeting sequences and reference genomes) is even worse.

Existing CPU and GPU tools either are restricted to the number of mismatches

or fail to return results due to the computational bottlenecks. As Moore’s Law slows

down, accelerators have attracted more interest. Spatial architectures such as the

FPGA and Micron’s Automata Processor (AP) provide better performance because

they can process automata in massive parallelism by laying out a huge number of

automata graphs directly in hardware. The FPGA can be flexibly configured by

users to implement a specific algorithm (automata processing in this chapter) with

a large amount of logic blocks. REAPR [25] extended prior work on regular expres-

sions to automata processing, allowing us to implement the automata-based method

to search for gRNA o↵-target sites on the FPGA. The AP is an e�cient architecture

designed for parallel automata processing [22] [95], and has been used in many di↵er-

ent domains such as association rule mining [13] [96], sequential pattern mining [16],

tree mining [97], entity resolution [15], random forest [1], natural language process-

ing [14], string kernel [2], pseudo-random number generator [98],etc. These applica-

tions require inexact matching against many patterns, which is similar to searching

for potential gRNA o↵-targets.

In this chapter, we propose an automata-based solution, to identify potential o↵-

target sites by allowing any Hamming distances in a reference genome. We evaluate

the proposed approach across four di↵erent platforms (CPU, GPU, FPGA and AP)

and compare with two state-of-the-art solutions (CasOFFinder [43] and CasOT [44]).

The proposed method leads to over 83⇥ speedups on the FPGA compared with Ca-

sOFFinder (GPU) and additional speedups can be achieved by the AP. Furthermore,

we evaluate the proposed automata-based method using HyperScan [19], a high-

performance automata processing library for the CPU, as an alternative CPU imple-

mentation for the proposed approach. The results show that even with single-thread

HyperScan, we still achieve promising results (over 29.7⇥) compared with CasOT

(CPU). However, the newly proposed automata-based method with iNFAnt2 [45] on

the GPU does not confer a clear advantage because it does not map well to the GPU

architecture. These results show significant algorithmic benefits of the automata-

based approach, and the potential speedups can be achi-eved by hardware acceleration

for automata processing.

In summary, this chapter makes the following contributions:

1. We propose an automata-based approach to search for potential gRNA o↵-

45

target sites and implement the approach across four various platforms (CPU, GPU,

FPGA, and AP).

2. We present several automata designs for searching for o↵-target sites with

di↵erent requirements, such as di↵erent Hamming distances or mismatches in di↵erent

regions of a potential sequence.

3. We evaluate the proposed automata-based method and compare against two

state-of-the-art tools (CasOF-Finder and CasOT). Promising speedups are achieved

by the FPGA (over 83⇥) compared with CasOFFinder. Additional speedups could

be achieved by more customized hardware such as Micron’s AP.

4. We evaluate the automata-based method on the CPU using HyperScan and

achieve over 29.7⇥ speedups, showing the algorithmic benefit of the automata ap-

proach. However, the proposed method on the GPU does not confer a clear advantage,

because it does not map well to the GPU architecture.

5. We discuss how to further improve the performance and support larger datasets

on spatial architectures (the FPGA and the AP), and propose several potential ar-

chitectural modifications for future automata processing hardware.

4.2 Related Work

Several methods have been proposed to search for potential gRNA o↵-target sites on

local workstations [99] [100]. CasOFFinder is a fast o↵-target search tool [43]. It is

written in OpenCL, making it portable across diverse platforms such as CPU and

GPU. It supports an unlimited number of mismatches and di↵erent PAM sequences.

However, it runs much slower as users allow more mismatches. CasOT is another

popular potential o↵-target search tool [44]. It divides the targeting sequence into

non-seed and seed regions, and allows di↵erent Hamming distances in each region.

There are also no limits on how many mismatches are allowed in each region. Sim-

ilarly, it runs slower as more mismatches are allowed. It could take more than a

day to find a relatively large number of mismatches (e.g., larger than five). Some

researchers use DNA alignment tools, such as PatMaN [101], Bowtie [102] or BWA-

like algorithms [103], to search for potential o↵-target sites. However, these tools are

not designed to solve this specific problem. They cannot recognize PAMs and the

performance is not as good as CasOFFinder and CasOT. Furthermore, tools such as

PatMaN and Bowtie have limitations on the number of allowed mismatches. Unlike

these methods, the proposed method in this chapter solves this search problem using

46

automata processing, which allows any desired edit distance (we focus on Hamming

distances in this chapter) and can benefit from hardware architectures (FPGA and

AP) to accelerate such computation.

4.3 Automata Processing on Spatial Architectures

Automata Processing can be defined as a directed graph where the nodes store the

states of the automata and the edges store the transition rules between states. To be

specific, each node stores the symbols to be matched and reads the symbol from the

input stream. All current active states compare with the next input symbol. When

the node matches with the input symbol, it will activate all the nodes connected to it

by the directed edges. Each automaton has at least one “start” state to initiate the

processing and one or more “accept” states to report when a match is found in the

input.

Spatial architectures can process certain computation using reconfigurable pro-

cessing elements. For example, the FPGAs use logic gates and RAM blocks to im-

plement a specific algorithm. Spatial architectures usually provide a large number

of hardware resources. For example, the AP A480 board can store up to 1.5 million

states. Therefore, the spatial architecture can process automata by placing the au-

tomata graphs directly in hardware instead of storing all states and transition rules

in the memory as conventional architectures do. It reduces the cost of memory access

on each input symbol to search for the next states to be activated. With massive

hardware resources, the spatial architecture can process a large number of automata

simultaneously.

4.4 CRISPR/Cas9 System

The CRISPR/Cas system was originally found in bacteria immune systems as a way

to fight against foreign genetic elements [36]. We list the terminologies used in the

chapter in Table 4.1. When a foreign genetic element enters the cell, a Cas complex

recognizes it and cleaves it into small fragments and adds a new spacer to the end

of the CRISPR. The new array is then transcribed into an RNA, which will direct

the Cas complex to the foreign DNA. The targeted DNA will then be destroyed or

cleaved. This system was later applied in genome editing as shown in Figure 4.1 [37].

The gRNA contains the targeting sequence and works together with the Cas9 complex

47

Term Definition

CRISPR
Clustered Regularly Interspaced Short Palin-
dromic Repeat. A region originally found in bac-
teria to defend foreign intrusions.

Cas
CRISPR Associated protein, the active enzyme in
Type II CRISPR system.

gRNA
Guide RNA, works with Cas9 to target and bind
to the specific location. It is also known as single
guide RNA or sgRNA.

gRNA targeting
sequence

The nucleotides before the PAM sequence, mostly
20 DNA characters.

Target sequence
The genome sequence the gRNA targets at, which
can be incorporated into the gRNA and the PAM.

PAM
Protospacer Adjacent Motif, following the gRNA
targeting sequence. Necessary for Cas9 to bind
target sequence.

O↵-target e↵ects
Cas9 cleavages at unwanted locations because the
gRNA binds to unintended locations with se-
quences similar to the gRNA.

Potential o↵-target sites
Locations in the reference genome that could be
the o↵-target binding sites within a specified edit
distance of the gRNA targeting sequence.

Reference genome The genome the gRNA searches against.
Complementary
reference genome

The reverse order of the reference genome, with
complementary DNA characters.

Table 4.1: Terminology

to bind to the reference genome. They bind to the specific location (complementary

to the gRNA targeting sequence followed by a PAM) and can be further used to edit

the target sequence. One major problem is that the gRNA and Cas9 do not bind

only to the desired position, but also to other locations where some DNA characters

are di↵erent from the sequence but close enough to bind, leading to the o↵-target

e↵ects [41]. In this chapter, we aim to accelerate the process of identifying all these

potential o↵-targets.

48

Figure 4.1: gRNA and CAS9 bind to the target sequence [104].

4.5 gRNA O↵-target Sites Search using

Automata Processing

In this section, we first present several general automata structures recognizing se-

quences with di↵erences and use these structures to build the automata recognizing

potential o↵-target sites. Later, we will show the general workflow of the automata-

based method.

4.5.1 Hamming Distance Automaton

Figure 4.2 shows an automaton design recognizing the sequence “TAATATAG” when

the Hamming distance is shorter than 3. There are five rows and eight columns in

the example. The STEs in the ith column store the ith character in the sequence.

The odd rows store the DNA characters one wants to match. Because there is no

standard for whether uppercase or lowercase letters are used, this design stores both

– both forms can be checked simultaneously, at no extra cost. The even rows match

on any other symbol except for the desired character, thus capturing an increase in

the Hamming distance. The STEs in odd rows connect to the next STE in the same

row and the next STE in the next row. The STEs in even rows connect to the next

STE in the next row and the next STE in the third row below them. This allows

processing to proceed whether or not the current symbol matched. The structure

49

Figure 4.2: Hamming Distance Automaton.

can be extended to recognize sequences with more mismatches, but will consume

more STEs. One needs (2k + 1) rows to recognize k mismatches. The STEs in the

first column is configured as all-input, reading from any position in the input. As

indicated in Figures 4.2, the STEs in the last column are configured as reporting and

they will trigger a report when they are activated. This structure was also used to

search for motifs [84]. However, the structure cannot be directly used to search for

gRNA target o↵-target sites. It does not support specifying the regions of di↵erences

or identifying PAM sequences, but it can be used as a component to build a larger

and more complex automaton to identify gRNA o↵-targets.

4.5.2 No Consecutive Mismatches Automaton

In Figure 4.3, we present another automata structure for Hamming distance, but

it does not allow consecutive mismatches. In this example, we still allow two mis-

matches, but no two mismatches take place consecutively. This is particularly useful

because researchers have discovered that if two mismatches take place consecutively,

it is less likely the location containing the consecutive mismatches is a correct o↵-

50

Figure 4.3: Hamming Distance Automaton with no consecutive mismatches.

target site [105]. This design is similar to Figure 4.2, but as highlighted in the center

of Figure 4.3, we do not connect the STE in the second row, where the mismatch

takes place, to the STE in the fourth row. This assures that one mismatch can only

be followed by a matching character. Two more STEs are eliminated at the bottom

left corner.

The above examples show that the automata structures for recognizing Hamming

Distances are straightforward. With small modifications, we are able to process com-

plex queries. These are just two examples to illustrate how to build these structures.

Users can modify these structures or propose a new structure to solve their specific

problem. The di↵erences are not limited to Hamming distance. For example, automa-

ton for edit distance can be found in [106] and [107]. The rest of the section presents

how we use these structures to build an automaton to identify gRNA o↵-target sites.

4.5.3 Mismatches in Whole Sequences

Depending on where mismatches take place, di↵erent automata designs can be used.

For example, CasOFFin-der allows the mismatch to take place in any position in the

51

Figure 4.4: Allowing mismatches in any position.

gRNA targeting sequence. Figure 4.4 represents the design for this requirement. The

design is straightforward and we use the Hamming distance automata to match the

gRNA targeting sequence with one mismatch allowed. We then connect the STEs in

the last column in the gRNA targeting sequence to the start of the PAM sequence.

No mismatches are allowed in the PAM sequence, so we just connect one STE to

another. The STE storing the last character is the reporting STE. The STE storing

“*” matches with any input symbol so we can match PAM sequences, such as “NGG”

in streptococcus pyogenes, where ”N” refers to any DNA character in {AaTtGgCc}
in this context.

4.5.4 Mismatches in Di↵erent Regions

Some tools propose dividing the sequences into regions and allowing di↵erent Ham-

ming distances in di↵erent regions. For example, CasOT divides the targeting se-

quence into a non-seed region (the first 8 characters) and a seed region (the next

12 characters) [42]. Users can specify di↵erent numbers of mismatches in these two

regions. This may help to improve the quality of potential o↵-target sites, especially

when scoring the potential o↵-targets. We show one example automaton for Ca-

sOT in Figure 4.5. This example allows 2 mismatches in the non-seed region and

1 mismatch in the seed region. Both regions use the Hamming distance automata

structure, but with di↵erent lengths and di↵erent distances. We connect the STEs

in the last column in the non-seed region to the STEs in the first column in the seed

region. We then connect these regions together. This is just one example of more

complex queries. Users can divide the sequence into any number of regions, and apply

di↵erent automata structures in each region.

52

Figure 4.5: Allowing mismatches in di↵erent regions.

Figure 4.6: Allowing mismatches in any position with multiple PAM sequences.

4.5.5 Multiple PAMs

Users sometimes need to identify potential gRNA targeting sequences with di↵erent

PAM sequences. This is straightforward using automata processing. We just connect

the STEs storing the last DNA character in the gRNA targeting sequence, regardless

of which automaton structure is used, to all the starting STEs in the PAM sequences

(highlighted in Figure 4.6). For example, similar to what we described in Figure 4.4,

we add two more PAM sequences (“NGCG” and “NNNNGATT”) in Figure 4.6 and

connect the STEs in the last column of the gRNA targeting sequence to the starting

STEs in the new PAM sequences. The STEs storing the last DNA character in the

PAM sequences are configured as reporting STEs. Because the reporting STEs have

di↵erent IDs, we can di↵erentiate which PAM sequence finds a match. For the current

AP hardware, STEs can have up to 16 output connections, so we can recognize 16

di↵erent PAM sequences simultaneously. If one wants to recognize more than 16 PAM

sequences, they need to duplicate the structure for the gRNA targeting sequence and

connect to the remaining PAM sequences until all PAM sequences are processed.

53

4.5.6 Workflow

With the above automata, we can identify potential o↵-targets using automata pro-

cessing. We will use the AP as an example to illustrate the workflow of the automata-

based approach (Figure 4.7). The CPU first extracts the gRNA targeting sequences

and PAMs from the database in a pre-processing step, because the original database

may contain other information other than gRNA targeting sequences and PAMs. We

then store these queries using the automata presented above on the AP board. The

reference genome is streamed into the AP afterward and the AP compares the stored

queries with the genome. If the AP finds a match, it reports. Based on the reporting

STE ID and the o↵set of the reporting cycle, we can recognize which query finds

a potential o↵-target, and at which position in the genome. Many existing tools

support finding potential o↵-target sites for both strands of the reference genome,

because of the double strand structure of DNA. If this is the case, we also need to

stream the complementary reference genome to the AP. A reconfiguration phase is

needed if the query number exceeds the capacity of the AP. The symbol replace-

ment feature of the AP allows fast replacement of patterns, if the structure of the

automata graphs remains unchanged. This feature makes the reconfiguration phase

negligible (milliseconds), but one needs to stream in the reference genome again after

the reconfiguration.

The workflow of REAPR on the FPGA is similar, but without the fast symbol

replacement. Supporting REAPR with symbol replacement is left for future work.

Users need to recompile for larger datasets, which may take a longer time to process

large datasets. The workflow of iNFAnt2 is also similar, but users need to convert

the input patterns to NFA/DFA files before streaming the reference genome to the

GPU.

4.5.7 Fast Complementary Genome Processing

In Section 4.5.6, we discussed how to process the complementary reference genome

and we used this method for evaluation in Section 4.6. An alternate method can

be used to solve this by storing the complementary sequences “A”!“T”, “T”!“A”,

“G”!“C”, “C”!“G”) of the gRNA targeting sequence in the automaton. This

method works faster if one has a small set of gRNA targeting sequences and can

store all the queries and complementary sequences on one FPGA board or one AP

board, because we do not need to stream the complementary reference genome to

54

Figure 4.7: Workflow on Micron’s AP.

the hardware. The example in Figure 4.8 recognizes the complementary sequence

“TCTAGAGC-TCTAGAGCAGTA-NGG”) in Figure 4.5. This structure connects

the complementary PAM sequence to the complementary seed region and then the

complementary non-seed region. The first STE in the complementary PAM sequence

is the new starting STE and the last two STEs in the complementary non-seed region

are the reporting STEs. All the STEs store the complementary DNA character in

55

Figure 4.8: Process complementary sequence.

the original sequence in reverse order, so the new sequence to be recognized is “CCN-

TACTGCTCTAGA-GCTCTAGA”.

All these automata structures described in the above sections can be used by

HyperScan on the CPU, REAPR on the FPGA, iNFAnt2 on the GPU, and Micron’s

AP.

4.6 Performance Evaluation

To evaluate the performance of the proposed approach, we compare with CasOFFinder

(GPU) and CasOT (CPU). We implement the automata approach to match the tasks

that CasOT and CasOFFinder solve, so they provide the same accuracy. Four di↵er-

ent platforms are evaluated: HyperScan on the CPU, iNFAnt2 on the GPU, REAPR

on the FPGA, and Micron’s AP. The experiments are executed on a server with an

Intel Core i7-5820K CPU (3.3GHZ) with 32GB RAM and an NVIDIA Tesla K40c

GPU with 12GB memory. For FPGA results, we use an Alpha Data ADM-PCIE-

KU3 board equipped with a Xilinx Kintex UltraScale XCKU060 FPGA and two 8GB

DDR3 memory banks, hosted in a system with an Intel Core i7-4820K CPU (3.7GHz)

with 32GB RAM. All results are actual runtimes except for the AP, because the AP

hardware is not yet available. But it is simple to estimate the kernel execution time

on the AP, because the input processing rate is fixed at 133MB/s (one character

per cycle). The number of queries that can be placed on the board, assuming a 32-

chip Micron’s D480 AP board, determines how many passes through the input are

required.

The human genome is used as the reference genome (3.2 billion base pairs). We

develop two di↵erent generators to produce gRNA targeting sequences plus PAM

sequences, because CasOT and CasOFFinder have di↵erent input formats and have

56

various specifications of where to allow mismatches. We use these generators to study

how numbers of queries and mismatches a↵ect the performance. These synthesized

datasets are only used to study the performance projections. One can use real datasets

to study the biological relationship between the reference genome and the gRNA

targeting sequence using the proposed method. More details of the generators will

be presented in the following sections.

In this section, we use the total runtime and the kernel execution time (the time

used for recognizing o↵-target sites) as criteria. We compare the performance with

CasOFFinder and CasOT separately because they use di↵erent input formats and

allow mismatches in di↵erent regions in gRNA targeting sequences.

4.6.1 CasOFFinder

CasOFFinder is a fast o↵-target search tool written in OpenCL, portable across the

CPU and the GPU. We compare with CasOFFinder on the GPU to achieve its best

performance. We use the design in Figure 4.4, because CasOFFinder does not isolate

the position in gRNA targeting sequences. The generator for CasOFFi-nder generates

the input sequences based on the format specifications. The first line stores the

location of the reference genome. The second line is the desired gRNA targeting

sequences along with PAM sequences. The sequences are followed by the Hamming

distance. The first 20 characters of each query are the gRNA targeting sequence and

are selected randomly from DNA character set {AaTtGgCc}, because no real large

datasets are available. Without loss of generality, the synthesized datasets help us

to study the performance of di↵erent approaches on various platforms. The PAM

sequence and the number of mismatches are specified by users. We use “NGG” as an

example of the PAM sequence to illustrate the suitability of the proposed automata-

based method. We presented how to support multiple sequences in Section 4.5.5.

Spatial Architectures

Figure 4.9 and Figure 4.10 show that spatial architectures such as the FPGA, con-

sistently outperform CasOFFind-er by at least 14⇥ for both large number of queries

and long Hamming distances.

In Figure 4.9, we present the total runtime and the kernel execution time for

REAPR. REAPR works much faster than CasOFFinder for all datasets. The run-

time of REAPR depends heavily on the number of queries. Many reports could be

57

generated for each symbol, and these reports need to be preserved for post-processing

on the CPU. This massive data transfer, especially from the reports, has a significant

impact on the overall performance on the FPGA. REAPR shows better kernel exe-

cution performance than the AP for query numbers (e.g. 30 seconds for 100 queries

and 40 seconds for 500 queries). However, for large query numbers (more than 1,000

queries), the AP starts to work faster. We only show the results of queries fewer than

1,000 on the FPGA because of the limitation of the maximum supported memory

bitwidth (i.e. 512 bits) of the FPGA system we use. We will discuss how to process

large datasets on the FPGA in Section 4.7.1. For the AP, as long as we can store all

the queries on one AP board, the kernel execution time stays constant (48 seconds).

Processing the reference genome and the complementary reference genome each takes

24 seconds. Since the AP connects to the host CPU by PCIe interface as the FPGA

board does, if we assume the AP uses the same report architecture as the FPGA does,

we could achieve another 1.9⇥ speedup for the total runtime compared with REAPR.

The runtimes of CasOFFinder and single-thread HyperScan increase linearly as query

numbers increase. CasOFFinder is only 2.1⇥ faster than single-thread HyperScan for

the best case.

In Figure 4.10, we show the runtimes for di↵erent Hamming distances. We choose

two examples (n = 500 and 1, 000); similar results are found for other query numbers.

For REAPR, both the kernel execution time and the total runtime stays constant

as we allow more mismatches for a specific number of queries since it only depends

on the number of queries. However, the runtimes of CasOFFinder and HyperScan

increase as more mismatches are allowed. For a smaller number of mismatches (m

= 1 and m = 2), HyperScan is almost as fast as CasOFFinder. CasOFFinder starts

to run faster as more mismatches are allowed, but only slightly better. As for the

AP, no matter how many mismatches we allow, as long as we can store the queries

on one AP board, the kernel execution time stays constant. In our experiments,

we allow 5 mismatches at most, because when allowing more than 5 mismatches,

CasOFFinder works too slowly for us to obtain runtimes. However, the gRNA also

binds to locations with more than 5 mismatches, in which situation CasOFFinder

cannot serve its intended purpose. Table 4.2 shows the maximum sequence numbers

we can store on one AP board when allowing di↵erent mismatches using Micron’s

AP compiler. The possible speedups are also shown presented assuming the AP use

the same reporting architecture as the FPGA. Compared to the total runtime of

CasOFFinder, the AP could run over 180⇥ faster. “NA” in the table refers to the

58

Figure 4.9: Runtimes vs. CasOFFinder for di↵erent numbers of queries. m is the
number of mismatches. Dotted lines are runtimes of HyperScan and solid lines are
runtimes of CasOFFinder. The lines with the same color refer to the same number
of mismatches. Black lines represent the results of the AP and REAPR.

cases when CasOFFinder works too slowly and does not return results in ten hours,

implying the speedup is even larger. The AP works especially well when comparing

a large number of queries with many mismatches allowed.

Mismatches 1 2 3 4 5 6
Max number (K) 22.0 12.6 7.2 5.0 3.4 2.0
Speedup nq=500 53 65 91 98 110 NA
Speedup nq=1,000 73 89 105 127 157 NA
Speedup nq=2,000 88 102 127 150 186 NA

Table 4.2: Max queries stored on one AP board and possible speedups against Ca-
sOFFinder for di↵erent numbers of mismatches. nq is the number of queries.“NA”
refers to the cases when CasOFFinder does not finish within 10 hours.

59

Figure 4.10: Runtimes vs. CasOFFinder for di↵erent mismatches (m). Lines with the
same color refer to the same query number. The black line represents the runtimes
for the AP.

iNFAnt2 on GPU

As Figure 4.11 shows, the automata-based method on the GPU with iNFAnt2 (both

the NFA engine and the DFA engine) does not confer a clear advantage compared

with CasOFFinder. While the NFA engine does achieve a speedup of 2.4⇥ where n

= 500 and m = 1, it is slower by 1.7⇥ where n = 2,000 and m = 5. For smaller query

numbers or shorter Hamming distances, the DFA engine works faster than the NFA

engine. However, because of the state explosion of the DFA for large automata, the

DFA engine does not work for larger pattern numbers or longer Hamming distances.

For example, the DFA engine stops working when n = 100, m ¿ 4, because the DFA

table size is too large and exceeds the capacity of the GPU memory (12GB).

iNFAnt2 (DFA and NFA) only works faster than single-thread HyperScan on the

CPU for some cases. For the best case, iNFAnt2 (DFA) is 4.4⇥ faster (n = 2,000, m

= 1), and iNFAnt2 (NFA) is 1.7⇥ faster (n = 500, m = 1). This is because both NFA

and DFA engines in iNFAnt2 su↵er from the divergence problem. For NFA engine,

60

Figure 4.11: Runtimes of iNFAnt2 (NFA & DFA) for di↵erent query numbers. m is
the number of mismatches. Dotted lines are runtimes of the NFA engine and solid
lines are runtimes of the DFA engine. The lines with the same color refer to the same
number of mismatches.

for each input symbol, multiple CUDA threads within a thread block are launched

to examine all possible transitions corresponding to that symbol across every state

in the automata. For the automata used to search for gRNA o↵-target sites, we only

use four DNA characters (both upper and lower cases) plus the “*” character, but the

number of transitions on each input character is large, which requires a large number

of sequential thread-block iterations. Despite the large number of transitions for each

symbol, the number of active states is relatively small (approximate 20-30⇥ smaller

than the number of the examined transitions), which potentially causes degraded

performance due to thread divergence. For DFA engine, we assign each independent

automaton (pattern) to its own CUDA thread. Even if there are enough automata to

fill the threads, their memory access for transition lookup and matching behavior are

divergent. Therefore, the automata-based approach does not map well to the GPU

architecture.

The above results clearly show the suitability and advantage of the proposed

61

automata-based method using spatial architectures, such as the FPGA and the AP.

Furthermore, compared with CasOFFinder (GPU), the method using automata pro-

cessing with single-thread HyperScan on the CPU is only slightly slower, implying the

automata-based method provides substantial algorithmic benefit. iNFAnt2 only pro-

vides a limited advantage over CasOFFinder, because the automata-based approach

is not well mapped to the GPU architecture.

4.6.2 CasOT

CasOT is an o↵-target search tool on the CPU. It divides the targeting sequence into

non-seed and seed regions and allows di↵erent Hamming distances in each region.

Therefore, we use the design in Figure 4.5 to compare with CasOT. The generator for

CasOT produces two lines for each query. The first line is the name of the sequence

and the second line is the gRNA targeting sequence followed by the PAM sequence.

We generate the first 20 characters randomly from DNA character set {AaTtGgCc}
of each query and use “NGG” as an example for the PAM sequence.

Spatial Architectures

Figure 4.12 and Figure 4.13 show that the automata-based method on the FPGA

always works faster than CasOT for di↵erent query numbers and Hamming distances

(over 29.7⇥ speedups).

In Figure 4.12, the total runtimes of REAPR increase as the query number in-

creases, and REAPR is at least 7.5⇥ faster than CasOT. Higher speedups are achieved

for larger datasets. Since the bitwidths of the memory interface currently supported

on the FPGA are 32, 64, 128, 256, and 512 bits, the runtime for one particular num-

ber of queries will be governed by the I/O bitwidth closest to it (e.g. 500 queries

to 512 bits). REAPR shows better kernel execution performance than the AP for

small numbers of queries ( 512 queries), while the AP outperforms the REAPR for

larger numbers of queries. For the AP, since we can store all the queries on one AP

board, the kernel execution time stays constant (48 seconds). The total runtimes of

CasOT and HyperScan increase linearly as the query number increases. For a small

number of queries, CasOT runs faster than HyperScan. However, as the query num-

ber increases, the runtime of CasOT increases significantly. Many data points are

missing in this figure for CasOT, because it runs too slowly and cannot return results

in 24 hours. HyperScan beats CasOT for most of the cases and over 29.7⇥ speedup

62

is achieved based on the results we can get from CasOT. Figure 4.12 seems to suggest

that HyperScan has the highest runtimes, but this is because CasOT cannot even

run for larger query numbers. Therefore, speedups of HyperScan are even greater for

such cases. We also evaluate the automata-based method on iNFAnt2, but only get

1.88⇥ speedup for the best case compared with HyperScan (n = 700 and m = 1),

similar to the results in Section 4.6.1.

Figure 4.13 show the performance for di↵erent Hamming distances. We only

compare small query numbers (50 and 100), because CasOT runs extremely slowly

for larger datasets. The total runtime and the kernel execution time of the FPGA

stay constant; while the runtime of CasOT increases almost exponentially as more

mismatches are allowed. Compared to what we can get from CasOT, we achieve

over 600⇥ speedups on the FPGA. The kernel execution time of the AP also stays

constant (48 seconds). Table 4.3 shows the maximum query numbers we can store

on one AP board for di↵erent numbers of mismatches. We also present the possible

speedups assuming the AP shares the same reporting architecture as the FPGA does.

The results prove the great advantage brought by the automata-based method

on the FPGA, and potential speedups can be achieved by the AP. If a hardware

accelerator is not available, HyperScan on the CPU also provides substantial speedups

compared with the existing methods on the CPU. However, iNFAnt2 on the GPU only

provides minimal speedups compared with the single-thread HyperScan on the CPU.

In summary, the automata-based method running on spatial architectures, such

as the FPGA and the AP, work consistently faster than the state-of-the-art tools,

especially when comparing larger numbers of queries or allowing larger numbers of

mismatches. Promising speedups are achieved compared with CasOFFinder on the

GPU (over 83⇥ on the FPGA) and even better speedups are achieved compared with

CasOT on the CPU. The more customized hardware such as the AP could provide

additional speedups compared with the FPGA. High speedups are achieved by the

spatial architectures because they can implement a large number of automata stor-

ing the queries directly in hardware and process these queries simultaneously. Fur-

thermore, the method using single-thread HyperScan also achieves promising results

(over 29.7⇥ speedups compared to CasOT) and only works slightly slower than Ca-

sOFFinder. This shows that the automata approach confers a significant algorithmic

advantage, especially for large numbers of queries and mismatches. The di↵erences in

speedups between HyperScan and the FPGA/AP show the benefits of hardware ac-

celeration for automata processing, e.g., 88⇥ faster when searching 200 queries with 6

63

Figure 4.12: Runtimes vs. CasOT for di↵erent numbers of queries, where m is the
number of mismatches. Dotted lines are runtimes of HyperScan and solid lines are
runtimes of CasOT. The lines with the same color refer to the same number of mis-
matches. Black lines represent the results of the AP and REAPR. Many data points
of CasOT are missing because it cannot return the results in 24 hours.

mismatches allowed in the seed region on the FPGA. However, the current automata-

based method on the GPU only provides a minimal advantage over the CPU, because

the automata processing approach does not map well to the GPU architecture.

Mismatches 1 2 3 4 5 6
Max number (K) 26.2 16.5 11.8 8.3 5.8 3.2
Speedup nq=50 6 7 13 31 101 492
Speedup nq=500 7 12 40 NA NA NA
Speedup nq=1,000 5 11 NA NA NA NA

Table 4.3: Max number of queries stored on one AP board and possible speedups
for di↵erent numbers of mismatches. nq is the number of queries.“NA” refers to the
cases when CasOT cannot finish within 24 hours.

64

Figure 4.13: Runtimes vs. CasOT for di↵erent mismatches(m).

Table 4.4: Runtimes for large datasets when 3 mismatches are allowed.
Query

Number(k)
7.2

7.2-
14.4

14.4-
21.6

21.6-
28.8

28.8-
26.0

26.0-
43.2

43.2-
50.4

Runtime
(seconds)

48 96.045 144.09 192.135 240.18 144.355 168.27

4.7 Further Improvement on Spatial Architectures

4.7.1 FPGA

Support Large Datasets

The computation core of REAPR is the automata processing module where state-

transition elements are map-ped to registers and lookup tables on the FPGA [25].

REAPR takes advantage of Xilinx SDAccel [108] to generate PCIe and AXI circuitry

for the I/O interface to transfer data to and from the automata processing kernel.

The entire design, including the automata processing module and the I/O circuitry,

is laid out on the reconfigurable fabrics. Hence, the main limitations of REAPR

are the FPGA capacity and the memory interface. Because of the maximum memory

bitwidth (512 bits) currently supported by SDAccel, we implement the 1024-bit report

65

architecture using two memory ports, each of which is attached to a DDR bank on

the FPGA KU3 board with two DDR banks. Furthermore, when we search for

1,000 queries and allow 5 mismatches, the design already utilizes around 90% of the

hardware resource. Due to these two reasons, the current REAPR implementation in

this chapter can support up to 1024 queries (i.e. 1024 reporting states in the NFA).

Larger FPGA boards provide more hardware resources, and thus relieve the bot-

tleneck. There are also several other possible solutions. One is using a compressed

report architecture to reduce the reports size so that they fit into maximum bitwidth.

We profiled the results and found there are only a few reports in the same cycle, mak-

ing the report vector fairly sparse and could be compressed by a lot. Assuming we

compress the report to a quarter of its original size, we can process four times more

queries. Another solution is using an on-chip bu↵er to temporarily store the reports.

Instead of transferring the reports back to the CPU immediately, it will not report

until the bu↵er is full. A double-bu↵ering architecture would be useful to improve

the throughput for this solution.

Higher Parallelism

Approaches can be applied to further improve the parallelization. The current au-

tomata processing kernel on REAPR is synthesized on a single compute unit (CU,

the element in the FPGA device on which the kernel is executed). It would be helpful

to exploit the parallelism among the independent automata and among the automata

input streams on multiple CUs to increase throughput. Specifically, distinct automata

can be divided into a number of sub-automata, and the input stream can be divided

into chunks properly. We then synthesize multiple CUs on the FPGA device to process

these sub-automata and chunks simultaneously. This helps to further reduce the total

runtime, as long as there are enough resources on the FPGA device. For the multi-CU

implementation, each CU should be assigned to a separate set of memory banks for

optimum memory access. Multiple CUs sharing the same memory bank may lead to

performance degradation because of memory access contention. This model can be

implemented on a multi-CU, multi-FPGA architecture on a local workstation or even

in cloud-based FPGA platforms such as the Amazon Web Services F1 [109] or Nimbix

Cloud [110]. For instance, we implemented the multi-CU design on a larger board

(Xilinx XILACCEL-RD-KU115 board equipped with a Kintex UltraScale XCKU115

FPGA and four DDR4 banks). We access the KU115 board through Nimbix Cloud.

The XCKU115 FPGA board is 2⇥ larger than the XCKU60 FPGA board used in our

66

experiments and enables synthesizing kernels work at 300MHz (250MHz for the KU3

board). Taking all these factors into account, we can achieve another 2.4⇥ speedup

compared to the results in the previous section.

4.7.2 AP

Support Large Datasets

For larger datasets, the number of STEs is the bottleneck of current AP board. The

number of queries that can be processed increases linearly as the number of STEs

increases. In this section, we discuss how to process large datasets on the existing

AP board, and use the design in Section 4.5.3 as an example. Table 4.4 presents

the kernel execution time when the Hamming distance is 3 and the query number is

larger than 12, 000 (maximum queries on one AP board). The symbols stored in the

STE can be replaced quickly if the automata graphs stay unchanged, and it takes

45 milliseconds to reconfigure the whole AP board. As shown in the workflow (Fig-

ure 4.7), we need to stream in the reference/complementary genome after the symbol

replacement. The kernel execution time in the table includes the time of streaming

the reference/complementary gen-ome and the reconfiguration time. However, com-

pared with the streaming time, the reconfiguration time is almost negligible. The

kernel execution time of the AP increases almost linearly as the query number in-

creases, in steps corresponding to the number of symbol replacement passes. The

time will not increase until another reconfiguration and another pass of the input

are needed (when the query number is larger than 24, 000). The clock speed, and

thus the rate at which the reference genome, is processed is the largest factor in AP

performance. Additional performance improvements can be achieved with hardware

supporting higher clock speed.

Potential Architectural Modifications

Boards with Fewer Chips: The AP D480 board has 32 chips on one board. The

gRNA targeting sequence is usually short (20-30). Therefore, the automata designs

proposed to recognize these sequences do not consume many STEs. As a result, the

AP can process a huge number of queries simultaneously. However, when users only

want to search for a few queries, the AP board is underutilized. It might be more

cost-e↵ective for some markets to have smaller boards with fewer chips for small

problem sizes.

67

Multiple Streams to Di↵erent Chips: Instead of building smaller boards, al-

lowing di↵erent input streams to di↵erent chips also helps to better utilize the existing

board. For example, if we store di↵erent queries on di↵erent chips and stream di↵er-

ent reference genomes to di↵erent chips, we can get the results for di↵erent genomes

simultaneously. We can also apply a similar method as described in Section 4.7.2:

store the same set of queries on di↵erent chips, divide the reference genome properly,

and stream the divided genome chunks to di↵erent chips. This helps to further reduce

the runtime and better utilize the hardware.

Flexible Symbol Set Size: The current AP stores 256 di↵erent symbols in one

STE. However, when searching for gRNA o↵-target sites, we only use 9 of them (four

DNA characters including lowercase and uppercase and ‘*’). This is a common case in

many bioinformatics applications. It is a waste of area and power to operate an STE

storage array supporting a large symbol set without actually using it. Therefore, if one

can reduce the symbol set size and use the saved area for more STEs, the hardware

can store more patterns, thus leading to higher parallelism. This is beneficial for

problems such as Next Generation Sequencing.

4.8 Conclusions and Future Work

In this chapter, we proposed an automata-based approach for identifying potential

gRNA o↵-targets, and presented several automata designs to solve this problem.

To evaluate the suitability of the proposed method, we compared the automata-

based approach on di↵erent platforms (CPU, GPU, FPGA and AP) with the state-

of-the-art solutions (CasOT and CasOFFinder). Promising speedups are achieved

(over 600⇥ on the FPGA) and additional speedups could be achieved by the more

customized hardware (AP). Based on the results of single-thread HyperScan (CPU)

compared with CasOFFinder and CasOT, we conclude the automata-based method

provides significant algorithmic benefits. However, the automata-based approach on

the GPU provides a minimal advantage over CasOFFinder because it is not well

mapped to the GPU architecture. Finally, we discussed how to further improve the

performance (support larger datasets or high parallelism) on spatial architectures

and proposed several potential architectural modifications for the future automata

processing hardware. This work was published in [27], and most of the contents are

derived from that paper.

Future work includes improving the proposed approach on the FPGA, extending to

68

other applications, implementing proposed architectural modifications and enhance-

ments to automata processing architectures.

69

Chapter 5

Automata Processing Engine on

Cloud-based FPGAs with New

Features and Cross-platform

Evaluation

REAPR is an FPGA automata processing engine previously developed in the Cen-

ter for Automata Processing (CAP), UVA. It generates an RTL kernel for automata

processing together with an AXI and PCIe based I/O circuitry. In previous chap-

ters, we use REAPR to process di↵erent automata-related applications. We compare

the performance results using REAPR against state-of-the-art methods, and exper-

imental results show that using FPGAs for automata processing provide promising

results. The high performance on FPGAs for automata processing motivates the work

in this chapter to further explore how to use FPGAs for automata processing with

even higher e�ciency. Therefore, we port the framework to cloud platforms (Amazon

AWS and Nimbix) with novel features. Full performance comparison of the pro-

posed framework is conducted against state-of-the-art automata processing engines

on CPUs, GPUs, and Micron’s Automata Processor using the ANMLZoo benchmark

suite and some real-world datasets. Results show that FPGAs enable extremely high-

throughput automata processing compared to von Neumann architectures. We also

collect the resource utilization and power consumption on the two cloud platforms,

and find that the I/O circuitry consumes most of the hardware resources and power.

70

5.1 Introduction

Finite automata have shown their capability in a variety of pattern matching ap-

plications, especially when inexact matching is needed [9] [13] [14] [15] [22]. Prior

work focused on their applicability for regular-expression-specific applications such

as network security and natural language processing. For instance, in the case of

network security, regular expressions used for deep packet inspection are represented

in memory as their equivalent nondeterministic finite automata; RegEx engines such

as Intel’s HyperScan [19] perform automata transformations to maintain excellent

performance in terms of both runtime and memory utilization. Recent research has

demonstrated that many modern applications such as bioinformatics, data mining,

machine learning, etc., which are di�cult or impossible to formulate with regular ex-

pressions, can also benefit from automata-based approaches [2] [9] [13] [14] [27] [95].

In general, the automata-based approach consists of two steps: (i) designing finite

automata, either in deterministic (DFA) form or non-deterministic (NFA) form, to

perform pattern matching, and (ii) matching the automata against input string(s).

However, this could be computationally intensive, especially for large input streams

or complex automata, which requires high memory bandwidth with low-latency ac-

cess to compute e�ciently on von Neumann architectures. Previous research focused

on accelerating automata-based computation on multi-core CPUs, as well as GPUs,

where data-level parallelism can help explore many possible automata transitions si-

multaneously [19] [20] [21]. However, the performance is still bottlenecked by the

random memory access behavior [111].

On the other hand, spatial architectures, such as FPGAs, Micron’s Automata

Processor (AP) [22], and other potential specialized hardware, can be utilized to

e�ciently process a large number of automata transitions in parallel, by laying out

automata graphs directly in hardware, instead of storing states and transition rules in

memory, as in von Neumann architectures. Specifically, prior work [24] and [22] have

shown that digital circuits enable a one-to-one spatial mapping between automata

states and circuit components such as registers, logic gates, and wires. In order to

accommodate a range of automata-based applications, reconfigurable platforms such

as FPGAs and APs are ideal for this purpose. FPGAs provide massive reconfigurable

hardware resources (registers, lookup tables, etc.), which can be exploited for mapping

state-transition elements. The AP is another reconfigurable fabric specially designed

to process NFAs in parallel on DRAM [22].

71

With the fast development of cloud computing and the popularity of FPGAs in

the post Moore’s law era, many cloud service providers started to provide compute

instances with FPGAs. Xilinx has partnered with Nimbix [110] and Amazon [112]

to bring reconfigurable acceleration on FPGAs to the cloud, which allows developers

to build, test, and deploy their codes in the cloud-based environment. Users can

use Vivado, Vivado HLS, and SDAccel in such cloud platforms without configuring

hardware or purchasing licenses. This allows users to “rent” FPGAs (which are often

quite expensive) on an as-needed basis, and avoids the need to pay for expensive

licenses for the development environment.

Therefore, in this chapter, we aim to develop a high-throughput and user-friendly

engine for enabling direct automata processing on FPGAs for cloud platforms, as

opposed to prior work which mainly focused on processing regular expressions. To

achieve this goal, we previously developed REAPR (Reconfigurable Engine for Au-

tomata PRocessing), a flexible, “end-to-end”, and parameterizable framework on local

computational nodes that generates RTL codes to process finite automata on FPGAs,

and tested the feasibility and correctness [25] [113]. It translates automata represen-

tation directly to RTL and adds the appropriate I/O capability to implement the

full, end-to-end applications with limited numbers of reports (the max is 8). A report

in the chapter refers to the event when a pattern finds a match. We believe that

this is the first attempt to create a general direct automata processing framework on

FPGAs, and use AXI and PCIe to enable CPU-FPGA communication.

In this chapter, we extend the previous work to support more reports to accom-

modate real-world applications, automate the workflow, port the framework to cloud

platforms, and further improve the performance. We investigate the“end-to-end”

(including both the kernel execution and the I/O cost) comparison of the computa-

tional throughput between FPGAs and state-of-the-art automata processing engines

on CPUs, GPUs, and Micron’s AP. The performance of REAPR is evaluated in two

cloud-based FPGA environments, Nimbix Cloud and Amazon EC2 F1, using the

ANMLZoo benchmark suite. The ANMLZoo benchmark suite [45] contains a wide

variety of automata-related applications (not constrained to regular expressions). To

the best of our knowledge, this work is the first e↵ort to provide a complete recon-

figurable automata processing engine on FPGAs in the cloud, and to provide a full

analysis of various automata engines on a diverse range of workloads other than sim-

ple regular expressions. Furthermore, we collect the results of the hardware resource

utilization and the power consumption, and find the I/O circuitry consumes the most

72

of the resource and the power, which could be further improved for future automata

processing hardware.

In summary, we make the following contributions.

1. REAPR is an end-to-end framework with I/O circuitry that we previously

developed for automata processing on FPGAs with a limited number of reports [25].

We extend the original framework in this chapter to support a much larger number

of reports (making it feasible and practical for a wider range of real-world applica-

tions), automate the whole workflow on local nodes to make it more user-friendly,

port the framework to cloud platforms to make it more accessible to users, simplify

the I/O integration, and further improve the performance by using a new reporting

architecture and processing multiple symbols per cycle.

2. We evaluate the performance against state-of-the-art automata processing en-

gines on CPUs, GPUs, and Micron’s AP, which is the first full analysis of di↵erent

automata processing engines using a wide variety of applications and computing plat-

forms. Results show that spatial architectures achieve promising results over von Neu-

mann architectures. We also collect resource utilization and the power consumption

results, and find that the I/O circuitry is the component consuming most resources.

This provides insights for future automata processing architectures.

5.2 REAPR Design

5.2.1 Automata Processing RTL Generation

FPGAs o↵er a large number of resources and can be configured to process a variety

of computations. We adopt a similar approach as in prior work that exploited the

reconfigurable nature of FPGAs to lay out regular expressions in reconfigurable logic

fabrics using BRAM storing the characters [24] [114]. However, our work focuses on

the hardware synthesis of nondeterministic finite automata (NFAs). The NFA’s highly

parallel operation of matching one single datum for many states maps well to the

abundant parallelism o↵ered by spatial architectures such as the FPGA. While DFAs

can also be implemented on spatial architectures, the argument is less compelling

because (1) DFAs only need to perform a single symbol match per cycle, and as

previously mentioned are better suited for von Neumann architectures and (2) DFAs

often require a huge area on the FPGA device, due to the potential exponential

increase in the number of states relative to the equivalent NFA.

73

Figure 5.1: Mapping automata states to registers and look-up tables (“logic”).

Merging the transition logic with the state transforms a traditional NFA into a ho-

mogeneous finite automaton [54], which maps more naturally to reconfigurable hard-

ware, while preserving the benefits of NFAs. The combined state-transition structure

is referred to as a state-transition element (STE). The STEs are mapped to FPGA

registers and look-up tables/BRAMs, as shown in Fig 5.1. The register is called the

activation state register and is used to store the status indicating whether a state is

activated. Activation registers of all starting states will always be set as “high” in

order to stimulate the workflow (e.g. the “a” and “b” states in the figure). Each

STE’s transition logic is one-hot encoded as a 1x256 memory column containing the

74

“character set” (a 256-entry column supports 8-bit input symbols) and is AND’ed

with the activation state register. The input symbol is sent to all STEs. Once the

input symbol matches the characters stored in the memory column, it will activate

the top wire of the AND gate. In the figure, if the input symbol is “a”, because

the activation state of the blue state is already set, it will trigger the output of the

blue AND gate. The output of AND gates is called the “enable” signal, which is

then OR’ed with other “enable” signals from other STEs. The “enable” signal will

activate the next STEs in the automaton structure. In this example, because the blue

state is connected to the green state, the “enable” signal from the blue AND gate will

activate the top wire of the OR gate and then set the activation state register of the

green state as “high”. If the next input symbol matches with “c” or “d” stored in

the green state, it will activate the top wire of the green AND gate and will generate

a report. With this design, the AND gate of an STE will only output “1” when its

activation state is driven high by other STEs or set as starting states, and the current

input symbol is accepted in its character set. In such a way, the whole flow will be

triggered by each new input symbol. If an STE is configured as a reporting state,

its output will be stored in the reporting vectors. Hence, for each input symbol, all

reporting states store its output bits in the corresponding reporting vector.

In REAPR, the “character sets” can be represented in hardware using either

lookup tables (LUTs) or BRAMs.

LUT-Based Design: Each state must accept a range of characters corresponding

to outgoing transitions in a canonical finite automaton. LUTs are well-suited for this

task, due to their proximity to the state registers within a CLB; a LUT-based flow

does not need to use as much long-distance wiring to connect to a far-away BRAM.

BRAM-Based Design: The main disadvantage of using LUTs for storing the char-

acter class is the long compilation time; FPGA compilers aggressively minimize logic

for LUT designs, which drastically increases compiler e↵ort. Using BRAMs for transi-

tion logic circumvents the expensive optimization step and therefore decreases compile

time. The AP’s approach to generating NFAs on hardware is similar to the BRAM

design, except that the AP stores the 256-bit columns into DRAM banks instead of

into BRAMs on FPGAs. This leads to a high state density due to the higher density

of DRAM compared to SRAM.

In general, LUTs are better suited for storing “character sets”, because it gen-

erally leads to a higher clock frequency because of the shorter distance to the state

registers. Therefore, we opt to use the LUT-based method to achieve better perfor-

75

Figure 5.2: SDAccel-based approach of AXI and PCIe transactions for automata
processing kernel.

mance when evaluating the original REAPR performance. However, when evaluating

the performance with the symbol-only reconfiguration feature which needs to write

character sets multiple times, we use the BRAM-based design to fully utilize the fast

write speed of BRAM. The details of symbol-only reconfiguration will be discussed

in the next chapter.

The work described in this section is published in the original REAPR paper [25].

5.2.2 I/O Circuitry Integration

A major contribution of this work is the inclusion of I/O circuitry over PCIe and

Advanced Extensible Interface (AXI) Interconnect, making REAPR the first work

76

to o↵er an end-to-end automata processing engine on FPGAs. We adopt a high-

level synthesis-centric approach by designing the I/O interface using Vivado HLS

and modifying the generated Verilog codes to integrate the real automata processing

kernel. We then use Xilinx SDAccel [108] to generate AXI Interconnect and PCIe

circuitry for the kernel. Evaluating automata engines on real hardware with I/O

overhead allows us to obtain true performance results, compared to simulation results

in prior work. This approach takes advantage of the productivity of Vivado HLS,

enabling developers to describe the I/O kernel in high-level languages instead of using

RTL from scratch. The SDAccel-based approach of REAPR with I/O is shown in Fig.

5.2. The execution of REAPR in the SDAccel environment follows a classic o✏oad

model. The host CPU sends an input string to the on-board DDR memory; then the

FPGA runs the desired automata against the input string while recording matching

results (indicating that a pattern of interest has been recognized, i.e. an automata

reporting state) to the on-board DDR memory; and finally, the host CPU retrieves

these reports. The infrastructure IP provided as part of the FPGA device handles the

communication to the host CPU over the PCIe Interconnect and the communication

between the automata processing kernel and the on-board DDR memory over the AXI

Interconnect. The inclusion of the I/O circuitry described in this section is published

in the original REAPR paper [25].

To ease the integration stage, we design an I/O kernel performing a simple, tem-

platized memory-copying operation, which can then be replaced by the automata

processing RTL kernel. A simplified code snippet of the dummy I/O kernel is shown

in Fig. 5.3. The input symbols are copied from the input bu↵er (stored in the on-

board DDR memory) to the output bu↵er (stored in the on-board DDR memory) after

being added to 0xFA. Loop L0, which performs these operations, is fully pipelined.

To maximize the I/O performance, the input bu↵er and output bu↵er are located in

separate DDR banks. Within loop L0, loop L00 is unrolled to account for concur-

rently writing the reports to the output bu↵er. In the corresponding Verilog codes,

we search for the dummy addition and substitute the addition operation with the au-

tomata RTL kernel. Specifically, the inputs of the automata module are connected to

the signals representing the loadAB variable and the outputs of the automata module

are connected to the signals representing the resultAB variable. The newly-integrated

kernel is then compiled using Xilinx SDAccel to generate the hardware binary to be

run on FPGA boards. This new integration work is collaborated with Vinh Dang

and Ted Xie. I implement the automata kernel hookup, which replaces the dummy

77

Figure 5.3: I/O kernel with dummy computation.

kernel with the actual automata processing kernel.

5.2.3 Reporting Architecture

“Report” in this chapter refers to a match found in an automaton. A reporting archi-

tecture is included in REAPR as shown in Fig. 5.1. At each cycle (i.e. for each input

symbol processed by REAPR), outputs from all reporting STEs (0s and 1s) are stored

directly in the output bu↵er in the on-board DDR memory. This requires a reporting

vector of which the length equals to the number of reporting states, and the number

of reporting vectors equals the count of the input symbol. Therefore, the total size of

a result block to be transferred back to the CPU is (length of the input)⇥(number of

reports). For example, if the input is 10MB and there are 1,000 reporting states, the

total size of the data to be transferred will be 10GB. The I/O kernel in the earlier

work [25] only supported an 8-bit output port, thus only supporting eight reporting

STEs. However, in most real-world automata-related applications, the number of

reporting STEs is much larger. For this work, I collaborate with Vinh Dang. We

support much larger report numbers by defining the output port bitwidths according

to the actual number of reporting STEs in the application. We use a “struct” data

78

type, containing an array of groups of 8 bits (because the minimum word width of

SDAccel is 8), for the output port. The bitwidth is rounded to 32, 64, 128, 256, or

512, which corresponds to the memory interface bitwidth supported by SDAccel. If

the number of reporting STEs exceeds 512, more output ports (i.e. output bu↵ers)

will be needed by the I/O kernel. Finally, all reports are o✏oaded to the host CPU for

post-processing after the automata processing kernel completes on the FPGA. This

massive amount of data transfer has a significant overhead on the overall through-

put. The details will be discussed in Section 5.5. One potential solution is presented

in [115] and more discussion will be presented in Sec. 5.5.5.

5.3 New Features

5.3.1 Automated Workflow

When working on the original REAPR framework, we find that the I/O circuitry

integration requires a lot of manual e↵ort and is prone to errors when applying it

to di↵erent applications or di↵erent datasets. This process ranges from designing

the I/O template to accommodating the desired number of reports, to hooking the

automata processing kernel to the I/O body inside the complex Vivado HLS codes.

In order to mitigate this burden and provide a user-friendly tool, we developed a

workflow (as shown in Fig. 5.4) that fully automates the whole framework. The

new workflow is open-source and is available on Github [116]. The entry file of the

automated workflow is “rtl.st”. Users only need to set certain parameters in the

file to use the framework. The automated workflow first takes a file that describes

the automata graphs. The automata description file can be either (a) an ANML

file: an XML-based description language representing automata, developed for the

Micron’s Automata Processor [117]; or (b) a MNRL file: a JSON-based, open-source

description language to describe automata [118]. Compared with ANML, MNRL can

be easily extended to support new features, such as up-down counters. Based on the

automata description file, the corresponding generator will generate the RTL module,

host codes, and the codes for transferring input and output for the dummy kernel

(Step 2, 3 and 4). We then use Vivado hls to generate the I/O template for the

dummy kernel as shown in Fig 5.3. Step 5 and Step 6 modify the I/O template

and hook the real automata kernel generated in Step 2 to the template. In the last

phase, the automated workflow will generate the “Makefile” and compile the newly-

79

Figure 5.4: Automated workflow of REAPR.

integrated design using SDAccel. This will produce the executable and the binary

for the FPGA. With the new automated workflow, all the implementation details are

80

hidden from users, making the framework more user-friendly. Users now can focus

on preparing automata description files for their applications, and only need to set

certain parameters in the entry file (rtl.sh) according to their FPGA platforms to use

the framework.

5.3.2 Supporting Multiple Streams

In this work, we also extend the original REAPR to support multiple input streams.

The input memory bandwidth in previous REAPR’s I/O design is not fully utilized,

since the input pointer is defined as an 8-bit data type. Hence, parallel input streams

can be handled with this I/O design if the FPGA device has su�cient hardware

resources to replicate the automata processing kernel and there are enough memory

bandwidth and enough memory ports for writing output reports from these streams.

Users can either process the di↵erent chunks of the input stream for the same set of

automata, or process di↵erent input streams for di↵erent automata sets. Supporting

multiple streams helps to further increase the throughput of REAPR. Vinh Dang

implemented this feature and I took charge of evaluating the new feature against the

original REAPR. The performance results will be presented in Section 5.5.

5.3.3 New reporting architecture

Preliminary results of REAPR show that the reporting architecture is the major per-

formance bottleneck. This is because, in the original REAPR, we need to store all

reporting states status to the reporting vector every cycle, and transfer the results

back to the CPU even when there are no reports in that cycle. For example, in

figure 5.5, if there are 1,024 reports in the application (we need to store the results

using a vector with 1,024 bits every cycle with 1 indicating a report takes place) and

the input size is 10MB, we need a 10 GB data block to store the results. We need to

transfer the huge data block back to the host CPU and this is time-consuming. How-

ever, because of the nature automata processing, most automata-based applications

do not usually see reports every cycle. Only some of the cycles have actual reports,

shown as the thin black blocks in the figure. Therefore, I propose only transferring

the necessary data block back instead of the whole block by adding a checker in the

workflow. This helps to reduce the transfer time from the FPGA to the host CPU.

81

Figure 5.5: New reporting architecture.

5.3.4 Processing multiple symbols per cycle

Though REAPR shows promising results, the highest frequency supported is 250MHz,

which limits the highest achievable throughput. Yang et al. propose a method for

regular expression matching to increase throughput by processin multiple symbol per

cycle. I adopt a similar idea, but I focus on processing homogeneous automata presen-

tation. The proposed method uses the spatial stacking algorithm in order to achieve

higher throughput. The algorithm makes multiple copies of the original REAPR de-

sign for STE, and use these copies to compose new “super” states. Each “super”

states only contains one activation register. Then we connect all the copies in a way

such that no copies need to wait for other copies’ results and can directly activate

successor states if it matches with the input symbol. Therefore, we do not need to

stream the input multiple times or process the overlapping part between adjacent

82

Figure 5.6: Processing multiple symbols per cycle.

windows. At each cycle, multiple symbols are streams to the corresponding character

sets in the “super” states (the same color as shown in Fig. 5.6). For each cycle, four

symbols are input to the corresponding copy. The input symbol is broadcast to all

states in that copy. If we input “abcd” in the first cycle in Fig. 5.6, the first copy

in the last column will be activate. This only requires one cycle because the copies

are connected by wires and once one is copy is activated the successor copy will be

immediately activated if the successor matches the input symbol.

The modification takes places in the translation phase from ANML to RTL codes.

Four major steps are involved: 1). Prepare the new starting states; 2). Prepare the

new reporting states; 3). Merge multiple copies to new “super” state; 4). Connect

these copies.

83

Figure 5.7: Simple I/O.

5.3.5 Simplified I/O integration

The original REAPR utilizes multiple DDR banks for transferring the results back to

the host CPU to maximize the performance. For example, for a board with four DDR

banks, users use one of them for input and all the remaining three for output. Though

this helps to achieve better performance, it makes the integration more di�cult be-

cause applications with di↵erent numbers of reports need di↵erent numbers of DDR

banks to transfer results and may even use the DDR banks multiple times, leading

to the messy integration of the automata kernel as mentioned in the above section.

For example, if an application has 600 reports, the first 512 reports are transferred

using one bank and the remaining 88 are transferred using another one. To solve

this problem, I propose using just one DDR bank for the output and using a FIFO

84

between the kernel and the DDR bank as a bu↵er for the output. The new method

actually serializes the original output transfer method and may lead to performance

degradation. However, because of the automata processing nature we mentioned in

the above section, for most of the cycles, we do not see reports and the FIFO can

keep transferring reports during these idle cycles. But it needs to be pointed out that

there could be cycles that need to wait for the FIFO to finish to process the next

symbol.

5.4 REAPR on Cloud Platforms

5.4.1 Overview of Nimbix and Amazon Web Service

Nimbix

Nimbix is a cloud service provider powered by JARVICE platform [110]. Recently,

Nimbix partnered with Xilinx to create a new cloud-based environment for FPGA

developing to accelerate various applications. Users can choose di↵erent Xilinx FPGA

boards to develop and test their FPGA implementations.

Amazon Web Service (AWS)

AWS is a popular on-demand cloud service provider. Amazon EC2 F1 is the first AWS

instance with FPGAs (16nm Xilinx UltraScale Plus FPGA) [119]. The F1 instance

is simple to set up and provide free tools for users to develop, simulate, debug and

compile hardware acceleration codes, including an FPGA Developer AMI (Amazon

Machine Image) and a Hardware Developer Kit. There are two di↵erent types of

the F1 instance: one is equipped with one FPGA (f1.2xlarge) and the other one is

equipped with eight FPGAs(f1.16xlarge). Each FPGA has around 2.5 million logic

elements, 6,800 Digital Signal Processing engines, a 64 GB DDR4 memory, and a

PCIe x16 interface.

Both platforms provide the SDAccel environment, allowing users to develop FPGA-

based OpenCL applications in high-level languages without purchasing software li-

censes.

85

Figure 5.8: Workflow on F1.

5.4.2 Workflow on Cloud

The automated workflow of the FPGA automata processing engine on local nodes

is described in Section 5.3.1. In this section, we implement the framework on cloud

platforms, namely the Nimbix Cloud environment and Amazon EC2 F1. For develop-

86

ment, we choose the on-premises development on local workstations to avoid paying

cloud charges for development. By providing proper information of the desired on-

cloud FPGA (e.g. the FPGA board model available on the cloud), one can use the

automated workflow to compile an automata application for the hardware binary and

the host executable.

Workflow on Nimbix

To use REAPR on Nimbix Cloud, users first need to run the workflow on local nodes

as discussed above. They need to modify the entry file (rtl.sh) to set up correct

parameters for the specific FPGA board on Nimbix. The local workflow will generate

the hardware binary and the host executable. Then users can submit the hardware

binary and the host executable to the cloud, and wait in a queue to actually run on

the FPGA board in Nimbix. In general, just one extra submission step is needed for

Nimbix compared with the local workflow.

Workflow on AWS F1

For Amazon EC2 F1, users need several extra steps to run the framework on F1

instances. The whole workflow on F1 is shown in Fig 5.8. A toolkit is available in

[119] for F1 developers to use Xilinx FPGAs. Users need to download the toolkit on

both local nodes and F1 instances, and need to make sure the local environment use

the correct SDAccel version supporting the FPGA board on AWS (step 2). The top

half in Fig 5.8 shows the steps on local nodes. Similar to the automated workflow

described in the above section, we need to modify the entry file (rtl.sh) and set up the

proper platform parameters for the F1 FPGA board. This process will generate the

executable and the hardware binary. After this, users need to upload the hardware

binary and the host executable to the F1 instance. Then on F1 instances, users can

use the tools provided in the toolkit to create the AFI (Amazon FPGA Image). The

AFI contains all the information to run a specific application and can be reused across

instances. Once the AFI is created successfully, users can run the application just as

on local nodes. More details about the new workflow on AWS F1 instances can be

found in [47].

87

5.5 Evaluation

We evaluate the FPGA automata processing engine performance on two cloud-based

FPGA platforms: Xilinx Kintex UltraScale XCKU115 FPGA and Xilinx Virtex Ul-

traScale Plus XCVU9P FPGA. Both FPGA boards are equipped with a single FPGA

and four DDR4 banks. The XCKU115 board enables synthesizing kernels at 300MHz

clock frequency, while the XCVU9P board allows 250MHz clock speed. The XCKU115

board is accessed through Nimbix Cloud and the VXCU9P board is accessed through

Amazon EC2 F1. In this work, we use the instance with one FPGA (f1.2xlarge).

Using multiple FPGAs for larger automata will be targeted in our future work. We

compare the FPGA performance with (i) Intel Hyperscan [19] (a highly optimized

automata processing engine for the CPU) running on an Intel i7-5820K CPU, (ii) two

GPU-based engines, namely DFAGE [20] (for DFAs) and iNFAnt2 [21] (for NFAs), on

a Pascal-based Nvidia Titan X GPU, and (iii) Micron’s AP-based engine. All results

are actual runtimes except for the AP (estimated results), because the AP hardware

is not yet available on the market.

5.5.1 Benchmarks

We utilize the ANMLZoo automata benchmark suite developed by [45] for the cross-

platform comparison. ANMLZoo contains various automata-based applications in

three broad categories: regular expressions, mesh, and structured processing elements

(or “widgets”). The applications in the benchmark, along with total STE numbers

and reporting numbers, are listed in Table 5.1. The detailed description of these

benchmarks can be found in [45]. Each ANMLZoo benchmark is tailored to provide

standardized automata, dubbed “standard candles”, which maxes out the resources

of a single first-generation Micron AP chip. This benchmark suite allows convenient

and relatively fair comparisons among di↵erent spatial architectures (FPGAs, AP)

and von Neumann architectures (CPUs, GPUs). We also use real-world datasets for

some of the applications and present the results in Sec 6.6.1.

5.5.2 Utilization

In this section, we evaluate the CLB utilization on both AWS F1 and Nimbix. There

are 147,780 and 82,920 CLBs available on AWS F1 and Nimbix respectively. The

results are shown in Fig. 5.9, which presents the CLB utilization for both the kernel

88

Benchmark Family STEs Reporting Elements
Snort Regex 69,029 2,585
Dottar Regex 96,438 2,837
ClamAV Regex 49,538 515
PowerEN Regex 40,513 2,857

Brill Tagging Regex 42,658 1,962
Protomata Regex 42,009 2,340

Hamming Distance Mesh 11,346 186
Levenshtein Distance Mesh 2,784 96
Entity Resolution (ER) Widget 95,136 1,000

Sequential Pattern Mining (SPM) Widget 100,500 5,025
Fermi Widget 40,783 2,399

Random Forest (RF) Widget 33,220 1,661

Table 5.1: ANMLZoo details

execution and the whole process including the I/O overhead. For the same applica-

tion, Nimbix and F1 use a similar amount of CLBs for the kernel execution, while

F1 consumes more CLBs for the whole process, implying more CLBs are used for the

I/O. This is interesting because the FPGA board on F1 (Virtex) is more advanced

than the one on Nimbix (Kintex). We tried to isolate the CLB usage for the au-

tomata processing kernel from CLB usage for the I/O, to determine why more CLBs

were used for the Virtex board. However, after synthesizing di↵erent sizes for var-

ious applications and checking resulting design, we still cannot find the meaningful

di↵erences between F1 and Nimbix. We suspect that Xilinx tools may use di↵erent

optimization techniques for the two di↵erent boards, leading to better CLB usage on

Nimbix.

On average, CLBs consumed for the whole process is 2.7⇥ more than the kernel

execution on Nimbix; while on AWS F1, CLBs consumed for the whole process is 5.3⇥
more than the kernel execution. The results show that on both platforms, the I/O

circuitry consumes most of the resources. Further optimization for I/O integration

could help to reduce the CLB usage.

Furthermore, we study how di↵erent automata graphs a↵ect the CLB usage and

find that the CLB usage is mainly a function of two variables: the number of STEs

and the number of routing nets. The results are shown in Fig. 5.10 and Fig. 5.11.

As shown in these figures, on both cloud platforms, the CLB utilization increases

roughly linearly as the number of STE increases and the number of routing nets

increases. Therefore, the larger the automaton is and the more complex the structure

89

Figure 5.9: CLB utilization

of the graph is, the more CLBs will be consumed. When designing automata for an

application, users may think about using a smaller and simpler automaton instead

of a large and complex structure in order to save resources on FPGAs. Results for

the kernel execution show a similar trend except for Snort, Fermi, and Brill. This is

because, the automaton for the above applications is pretty simple, mostly just one

symbol connected to another in a stringy way. Therefore, these applications do not

consume as many routing nets as other applications with similar scale, leading to a

lower CLB utilization.

We also collect the usage of LUTs and BRAMs on FPGA. In this section, we

only provide the results for AWS F1 instances. There are around 1.2 million LUTs

on F1. On average, we consume around 29.5% of all LUTs for the applications in

ANMLZoo that are runnable on F1. At most, we consume 38.9% of the LUTs for

Entity Resolution. For BRAM, there are over 2100 BRAMs on F1. On average, we

consume around 26.2% of all BRAMs for all the applications that are runnable on F1.

For di↵erent applications, the consumption of BRAMs is almost the same. In general,

LUTs and BRAMs are not the resource bottleneck on the F1 instance because of the

large amount of these two resources available on the VU9P FPGA.

90

Figure 5.10: CLB vs. STE numbers.

Figure 5.11: CLB vs. Routing net numbers.

5.5.3 Power

Similar to the above section, we present both on-chip power consumption of the kernel

execution and of the whole process on Nimbix and AWS F1 respectively. The results

are shown in Fig. 5.12. The power consumption is estimated using Xilinx Vivado.

For di↵erent applications in ANMLZoo, the power consumption varies for the kernel

execution (from 1.29W to 2.69W on Nimbix, and from 2.50W to 3.86W on AWS F1).

However, when evaluating the overall power consumption, it is close for di↵erent

applications (from 16.62W to 20.82W on Nimbix, and from 40.67W to 43.34W on

91

Figure 5.12: Power consumption for the kernel execution

AWS F1). The power consumption of the kernel only takes a small portion of the

whole process (10% on Nimbix and 7% on F1 on average). This concludes that the

I/O circuitry dominates the power consumption. The I/O circuitry is the component

that needs to be further improved if users want to reduce the power consumption.

5.5.4 Performance

Platforms

We evaluate the performance of each automata processing engine over twelve bench-

marks in ANMLZoo using their accompanied 10MB stimuli. Results of the kernel

execution and the end-to-end execution are shown in Fig. 5.13 to 5.15 and Fig.

5.17 to 5.18, respectively. The kernel execution denotes the operations within the

accelerator boards (i.e. GPU, FPGA, and AP) including the automata processing

kernel itself and the communication between the automata processing kernel and the

on-board memory. The end-to-end execution encompasses the kernel execution and

the overhead associated with the communication between the accelerator board and

the host CPU. It is noted that the kernel performance on CPUs is identical to the

end-to-end executions.

92

Figure 5.13: Performance for the kernel execution on von Neumann architectures.

GPU engines exploit parallelism among automata and among input streams, where

distinct automata are clustered into equal groups, and the input stream is divided

into equal segments. Details of the two GPU implementations are described in [45]

and [118]. For GPU engines, the performance varies for di↵erent configurations, such

as block sizes and grid sizes. The performance of the GPU NFA and DFA engines is

achieved using the optimal block and grid size, and thread and stream configuration

for each application.

In this work, the “ideal” AP performance and the projected AP performance

obtained from the AP simulator [115] are presented, as denoted by the terms “ideal”

and “sim” in Fig. 5.15 and Fig. 5.18, respectively. The “ideal” AP performance

is derived from the nominal operating frequency (i.e. 133MHz), regardless of how

automata reports are exported from the AP chip. This nominal “ideal” performance

is commonly utilized in prior work on the AP, e.g. [13] [14] [16]. The AP kernel

performance accounting for reporting overhead is estimated from the AP simulator.

The AP simulator uses report traces generated by the Virtual Automata Simulator

tool VASim [120] to measure the costs associated with exporting these reports from

the AP chip to the DDR3 on-board memory, and then generates runtime estimates.

Details of the AP simulator can be found in [115]. The end-to-end performance should

also include the communication overhead (both input and output) between the CPU

and the AP board, and we project the communication overhead based on the total

amount of the report events returned from the AP simulator and the theoretical

PCIe gen3 x8 bandwidth (7,880MB/s). The actual end-to-end results should be a

little worse than the projected results because of the di�culty to fully utilize the

theoretical PCIe bandwidth.

93

Figure 5.14: Performance for the kernel execution on FPGAs and von Neumann
architectures.

Figure 5.15: Performance for the kernel execution on spatial architectures.

Cross-Architecture Evaluation

As shown in Fig. 5.13, the GPU NFA engine performs better than the CPU engine

in 8 out of 12 benchmarks. This is also true for the end-to-end execution (Fig. 5.16).

This highlights the ability of GPUs to hide the latency of memory access by exe-

cuting a large number of parallel tasks. However, the CPU engine outperforms the

GPU NFA engine on Dotstar, ClamAV, PowerEN, and Hamming. This is most likely

due to the small active sets in these applications, allowing for better cache behavior

on CPUs, and due to the infrequent or not-at-all reporting behavior in these bench-

marks. Therefore, for applications with larger activate states and more reports, the

GPU NFA engine is a better fit compared with the CPU engine. On the other hand,

the GPU DFA engine traverses exactly one state per input symbol, while the GPU

NFA engine follows a large number of per-symbol state transitions. This makes the

GPU DFA kernel much simpler than the GPU NFA kernel. Specifically, the GPU

DFA kernel consumes much fewer registers and instructions to process the automata

than the GPU NFA kernel does. Unsurprisingly, Fig. 5.13 shows that the GPU DFA

94

engine (when DFAs can be created) outperforms the GPU NFA engine. For example,

the GPU DFA engine achieves the best performance on Levenshtein (950MB/s and

115MB/s for the kernel execution and the end-to-end execution, respectively). The

drop in its end-to-end execution is due to the substantial overhead of the DFA tran-

sition table transfer between the host CPU and the GPU board. This is also true for

the NFA engine which we will discuss in Sec. 6.6.1 (loading the NFA table dominates

the overall runtime). Although Levenshtein has the smallest number of NFA states

in ANMLZoo, its complex 2D-mesh topology leads to an exponential increase in the

number of DFA states and large DFA transition tableS. Overall, if a DFA engine

can be built on GPUs, it will produce the highest throughput among von Neumann

architectures. A potential way to further improve the performance on GPUs is to

minimize the DFA transition table.

For the sake of brevity, we only present the FPGA performance of the XCKU115

board in Fig. 5.14, 5.15, 5.17 and 5.18. A comparison between the performances on

Nimbix and F1 is presented in Fig. 5.19. Note that Dotstar, PowerEN, and SPM

comprise large numbers of STEs, including reporting STEs, which prevents these

benchmarks from being synthesized on the targeted FPGAs with one pass of the

input. In most applications (except for ClamAV), the FPGA operating on a single

input stream (FPGA single) outperforms von Neumann automata engines, because

automata graphs are laid out directly in the hardware so that a large number of

transitions can be processed simultaneously, while CPUs and GPUs are bottlenecked

by the memory latency for transition-rule lookups. For ClamAV, as we discussed

above, it has small active sets and a small number of reports, leading to a better

cache behavior on CPUs. Fig. 5.14 shows that the REAPR throughput varies from

65MB/s (Snort, Protomata, Fermi) to 266MB/s (Hamming, Levenshtein). This is

because the synthesized clock frequency is controlled by the board MAX frequency,

the size of NFAs, the complexity of NFA topology, and the FPGA capacity and the

memory interface (i.e. reporting architecture limited by the max. 512 bitwidth). For

example, though Brill tagging and Protomata contain similar numbers of states, the

structure of Protomata is more complex, leading to a lower throughput. Overall, the

above results prove the advantage of using spatial architecture for automata process-

ing. Furthermore, REAPR can handle multiple input streams in parallel (denoted

as FPGA multi in Fig. 5.14) only for Hamming and Levenshtein, due to the limita-

tion of the FPGA’s capacity, memory bandwidth, and memory ports. Accordingly,

REAPR can handle 6 streams for Hamming and 12 streams for Levenshtein, which

95

Figure 5.16: Performance for the total execution on von Neumann architectures.

Figure 5.17: Performance for the total execution on FPGAs and von Neumann archi-
tectures.

leads to 5.4x (1.4GB/s) and 10.6x (2.8GB/s) better performance in the kernel execu-

tion, respectively, compared to processing a single input stream. This could help to

further improve FPGA performance.

While the “ideal” AP Chip performance remains constant at 133MB/s, using the

AP simulator allows us to obtain a more accurate projection, where the AP perfor-

mance varies as a function of the reporting behavior of each benchmark. For instance,

Snort su↵ers a 22x slowdown (6MB/s) over the “ideal” performance. Because each

ANMLZoo benchmark maximizes the resources of a single AP chip, it is fair to esti-

mate the performance of an AP Board (32 chips) as 32x the performance of a single

AP chip (for both “ideal” and simulated performance). Similarly to REAPR, the AP

shows a much better performance than von Neumann architectures. When compar-

ing with FPGAs, although REAPR excels in per-chip capacity, its per-board capacity

lags far behind the AP (e.g. 2.8GB/s vs. 4.2GB/s on Levenshtein). This is because

an FPGA board, such as the XCKU115, typically contains just one FPGA chip, while

the AP board contains 32 AP chips. In an exceedingly large application, users may

consider using multiple FPGA boards.

96

Figure 5.18: Performance for the total execution on spatial architectures.

When the end-to-end execution is considered, we notice the performance degra-

dation in REAPR due to its reporting architecture. The current REAPR reporting

architecture with massive data transfer of reports (from the on-board DDR memory

to the host CPU memory) has a significant impact on the overall performance. Nev-

ertheless, REAPR still shows promising speedups compared to CPUs and GPUs in

many applications. When compared to the AP, REAPR outperforms the simulated

AP Chip performance in 4 of 12 benchmarks. This is explained by their reporting

architectures. The AP only generates a report vector when a match actually occurs,

while REAPR records the outputs from all reporting STEs per cycle regardless of

whether there is a match. One possible way to improve the current REAPR report-

ing architecture is to check the reporting vector and only transfers the ones with

actual reports.

Fig. 5.19 shows the REAPR performance evaluated on Nimbix Cloud and on

Amazon EC2 F1. Nimbix Cloud outperforms F1 in most benchmarks, due to its

higher clock frequency (300MHz on Nimbix Cloud vs. 250MHz on F1). F1 shows

better performance on Fermi, Protomata, and Snort. In these three benchmarks, the

automata graphs are more complex, the Vivado compiler was unable to e�ciently

place and route for the XCKU115 FPGA (Nimbix) because of the limited hardware

resource compared to the XCVU9P FPGA (F1), leading to a lower frequency.

In summary, automata processing on GPUs only shows minor improvement over

CPUs, and GPU DFA engines usually provide a better performance compared to

GPU NFA engines. However, processing automata on FPGAs achieves much better

performance than using von Neumann architectures and shows nice scalability for

large-scale applications. More specialized hardware accelerators such as Micron’s AP

could provide even better performance by integrating many chips on a single board.

The performance on spatial architectures could be further improved by a more e�cient

97

Figure 5.19: Performance on Nimbix and AWS EC2 F1.

reporting architecture. Furthermore, CLB usage and power consumption show that

I/O circuits dominate hardware utilization on FPGAs. Simplifying I/O circuitry

could help to reduce resource consumption and store more states.

5.5.5 Discussion

I/O Overhead

The end-to-end performance results in the previous section show that the I/O plays

an important role in the overall runtime, which is ignored by prior work. Though

the current reporting architecture in REAPR works for most of the applications in

ANMLZoo, it is not the optimal one and only works for the o↵-load model. The results

are not transferred back to the host CPU until the whole input string is processed.

There are several possible ways to improve the current reporting architecture, for

example, using a double bu↵er to store reports and transfer the results back to CPU

when the bu↵er is full instead of transferring all the data until the kernel finishes. We

also find that compiling the I/O for the whole application consumes the most time

for the overall compilation time, which motivates the work in next chapter that reuse

the I/O circuitry in order to reduce the high compilation speed. The details will be

presented in Chapter 6.5.

98

5.6 Conclusions and Future Work

In this chapter, we presented a framework that generates RTL and I/O circuitry for

automata processing on FPGAs. We implement the framework on both local nodes

and cloud-based platforms. We present a full analysis of various automata engines

(CPU, GPU, FPGA, and AP) on a diverse range of workloads. CPUs and GPUs

for automata processing are generally bottlenecked by the memory latency for rule

lookups. CPUs perform well if the average active sets in the automata are small, or if

the automata application has few reporting activities. GPUs perform well with DFA

representation, hiding the latency of memory access by executing a large number of

parallel tasks. However, DFA-based engines su↵er from the state-explosion problem,

which prevents them from processing very large or complex automata. When evaluat-

ing full-size applications, the GPU NFA engine also degrades when the NFA is large.

Spatial architectures (FPGAs and APs) outperform von Neumann architectures in

the automata processing domain, because the FPGA and AP can process automata

with massive parallelism brought by laying out automata graphs directly in hardware.

However, FPGA and AP performance depends heavily on the reporting activity and

the reporting architecture. We then study the CLB utilization and power consump-

tion and find that the I/O circuitry consumes most of the resource. This work was

published in [xie2018reapr]and [28], and most of the contents are derived from these

two papers.

99

Chapter 6

Reducing High Compilation

Overhead for Automata Processing

Engine on FPGAs

Long compilation time for large design on FPGAs has been a significant concern

since FPGAs were first created. This problem becomes more severe as FPGA den-

sities increase and the scale of FPGA design increases [121]. We encounter similar

problems when we use FPGAs for automata processing. For example, the compila-

tion time of ER could take over 17 hours, which is much longer than processing the

automata kernel (finishes in seconds). The problem is even worse if patterns update

frequently or users need to compile the patterns multiple times because the dataset

is too large. For example, when working with large-scale applications, we need to

partition the pattern set into small groups and process each group separately. Users

need to compile the patterns separately for each group. Therefore, in this chapter,

we aim to reduce the high compilation and reconfiguration overhead for automata

processing on FPGAs. We propose three di↵erent methods to achieve this goal, in-

cluding symbol-only reconfiguration, a new workflow using the Xilinx Object file, and

modular synthesis with the reuse of the I/O architecture.

6.1 Introduction

Using FPGAs has shown advantages in many application domains, but the compi-

lation time, which includes full synthesis, placement, and routing, can take hours

or even days, making the compilation phase the bottleneck of many di↵erent appli-

100

cations [121] [122]. When using FPGAs as platforms for automata processing, we

encounter similar problems. For example, the compilation using original REAPR

takes almost 18 hours for Entity Resolution. Though the compilation is one-time

overhead for some applications, it is still expensive; and this can become a problem

in applications of which the rule sets may change or update frequently, thus requiring

frequent re-compilations.

Furthermore, for large-scale applications (large pattern sizes), a challenge in using

spatial architectures is that the patterns may not fit on a single device. This requires

a method to partition the patterns into groups and support multiple passes with fast

reconfiguration for each group. In this case, we may be able to reuse the compilation

results; but if we reload the full structure each time, the high reconfiguration overhead

will harm the benefits brought by the fast automata kernel execution on FPGAs.

To reduce the high reconfiguration overhead, we propose three di↵erent methods

in this chapter.

1). Symbol-only reconfiguration

To process large-scale applications e�ciently, we propose a symbol-only recon-

figuration method. The proposed method keeps the same automata structure for

the application and only reconfigures the symbols stored in each state, instead of

re-compiling automata graphs for new partitions. The proposed method can process

much larger problem sizes when the automaton structure is regular, and dramatically

reduce the total compilation overhead and loading time.

2). Workflow using the Xilinx Object file

In the original REAPR workflow, to hide implementation details from users, we

integrate all kernels in the compilation step (last step in Fig. 5.4, which includes

FPGA synthesis, logic optimization, logic placement and routing) to generate the

executable and binary container (xclbin file). We then notice that using the Xilinx

Object file can help to reduce the time in the compilation phase. The Xilinx Object

file stores the information about the RTL kernels and can be utilized by SDAccel for

later compilations, which is more e�cient than directly integrating all the kernels.

Therefore, we propose a new workflow using the Xilinx Object(.xo) file in Xilinx

SDAccel to reduce the compilation overhead.

3). Modular synthesis with the reuse of the I/O architecture

In the original workflow, we build the I/O communication structure for every single

application and every single dataset. However, the I/O structure only depends on

the number of input, and we can reuse the structure for applications with the same

101

number of reports. Therefore, we modularize the original RTL kernel and isolate

the I/O circuitry between the CPU and the FPGA, and reuse the I/O circuitry for

di↵erent applications with similar numbers of reports. The compilation time for I/O

takes a large portion of overall compilation time, and reuse I/O circuitry is 2.3⇥ faster

on average across di↵erent applications from ANMLZoo.

The above methods help to reduce the high compilation overhead for the automata

processing engine on FPGAs. In the following sections, we will present the details

of each method and the experimental results. In the last section, we will discuss a

potential future work using an overlay for automata processing on FPGAs.

6.2 Related Work

The FPGA compilation process is a time-consuming task. It includes logic synthesis,

logic optimization, and logic placement and routing. The long compilation overhead

harms the benefit brought by the fast kernel execution. Many applications using

FPGAs encounter this problem [121] [122].

Though the compilation overhead is a big concern when using FPGAs, only a

few previous works try to reduce the compilation overhead. Ajay Jagtiani et al.

propose using parallel compilation in EAD tools [121]. The proposed method aims

to combine the top-down approach (requires users to finish the work serially and

must have the complete design before compilation, and it provides better results)

and the bottom-up approach (allows users to provides smaller portions of the whole

design with incremental compilation). They partition the original design into smaller

blocks with appropriate constraints file and process each partition in parallel. Lavin

et al. accelerate FPGA compilation by using hard macros [123]. Hard macros consist

of previously synthesized, placed and routed circuits. They can re-use these hard

macros for remaining tasks without recompilation. Lysecky et al. propose a dynamic

routing method aiming to reduce the logic routing of the compilation process [124].

They develop a JIT (Just-In-Time) compiler for FPGAs to develop a standard binary

that may port across FPGA architectures, such that users do not need to recompile

binaries for every new FPGA architecture. We hope our proposed methods in this

chapter will provide helpful insights for future research.

Some prior works propose similar ideas to the symbol-only reconfiguration mech-

anism. Teubner et al. propose a method for XML projection that supports fast

reconfiguration [125]. They focus on how to design automata for that specific ap-

102

plication and map that design to FPGAs. Similarly, [53] focuses on regular expres-

sions by representing regex using new representations of finite automata (ODFA and

OD2FA). These works usually target one specific application while our work provides

a general automata processing framework for various applications involving inexact

pattern matching. Micron’s Automata Processor provides a similar method, named

symbol replacement [22]. The AP is a memory-derived architecture and it allows

users to quickly replace the symbols stored in the memory column with new symbols

by writing new symbols to memory cells. The purpose of the symbol replacement

feature is to reduce time spent on compiling automata structures on the AP.

6.3 Symbol-only Reconfiguration

In this section, we will first present how the symbol-only reconfiguration feature works

and later we use Entity Resolution as an example to show how to use the proposed

feature.

Although we have extended original REAPR to support a larger number of pat-

terns in Chapter 5, it still may not be large enough for large-scale applications to fit

all patterns on one FPGA board. This requires a method to partition the automata

and support multiple passes with fast reconfiguration for each partition. For exam-

ple, for the Next Generation Sequencing (NGS) problem [11] [126], there could be

millions of long (over 100 base pairs) sequences to be matched. Many partitions of

such huge pattern sets will be needed and the cost of compiling all these partitions

will be very high because of the placement and routing phase for each compilation,

which jeopardizes the speedups brought by the fast kernel execution. In the original

framework, we need to compile the patterns every time when processing a new par-

tition, as shown in Fig 6.1. To solve this problem, we propose a fast, symbol-only

reconfiguration mechanism for REAPR as shown in Fig. 6.2. Each column in the

figure stands for a partition and there are k patterns in each partition. The proposed

method needs to design a general automata structure (parallelogram in the figure)

that can be shared by all patterns for the specific application.

6.3.1 General Workflow

The symbol-only reconfiguration mechanism can utilize the current REAPR frame-

work. However, the proposed method needs first to design a general automaton

103

Figure 6.1: Original workflow for large-scale applications.

Figure 6.2: Symbol-only reconfiguration workflow.

structure (parallelogram in Fig. 6.2) that can be shared by all patterns in the specific

application. This is helpful when the input is scanned for many patterns that all

have similar length and structure, e.g., strings of length l with edit distance d. One

example of how to design such structures will be discussed in the next subsection.

The general automata structure varies from one application to another. After de-

signing the structure, for each partition, we write the corresponding character set to

the patterns in the partition. Each line in the character set file stands for one STE,

with 256 bits representing 256 di↵erent symbols. When a new partition comes, users

104

only need to reconfigure the symbols (write the new character set for the partition)

stored in the states, instead of compiling new structures for automata graphs in the

new partition. This allows users to re-write new symbols without reloading the entire

structure. Therefore, compared with the original REAPR flow, in addition to the

automata description file and the input file, users also need to provide character set

files. We provide a script that can generate character sets from an automata descrip-

tion file (ANML/MNRL), so users do not need to generate them manually. Writing

new character sets is much faster than placing and routing new automata graphs on

FPGAs, leading to the huge reduction of the compilation time. When implementing

the symbol-only reconfiguration feature, in order to make the writing of new symbols

fast, we choose to use the BRAM-based design of the original REAPR. Using BRAM

to store symbol sets allows us to faster over-write previous stored symbols compared

against the LUT-based design. More comparison between LUT-based design and

BRAM-based design is presented in Chapter 5.2.

However, not all automata-based applications can adopt the proposed method.

The symbol-only reconfiguration only works for the applications in which users can

come up with a universal automata structure that can be shared by all patterns.

For example, Entity Resolution, Fermi, Hamming, Levenshtein, Random Forest from

ANMLZoo [45] and CRISPR o↵-target identification [27] using automata processing

can adopt this method. Furthermore, some of these applications are actually of broad

utility, such as Hamming and Levenshtein. They can be used as building blocks of

other automata-related applications.

6.3.2 Case Study: Entity Resolution

In this section, we present one example showing how to design the general automata

structure. When using automata processing for Entity Resolution, we design a general

automaton structure for recognizing the same person’s names with variances in the

SNAC (Social Network and Archival Context) database in [15] [93]. We first extract

common name formats and then come out a design for these formats instead of

individual names. The design is shown in Fig. 6.3. The bottom half is the automata

structure (with Hamming distance no more than one) for the macros on the top half.

The top half is the final automaton that can recognize the first name and the family

name. All the names in the database can share the same structure on the right.

This is one example of a general automaton structure, and the general automata

structure varies from one application to another. Prior work [125] and [127] propose

105

Figure 6.3: Example of general automata structure for SNAC ER problem.

a similar idea for some database applications, but their ideas are limited to the specific

applications and focus on how to design the automaton structure and map the specific

structure to FPGA resources. The proposed method in this paper has a broader

scope for applications involved with automata processing and can accommodate the

applications discussed in the above papers.

To use the new mechanism, we first need to compile the general automata struc-

ture. This is a one-time overhead compared to Fig. 6.1. When a new partition

comes, users only need to reconfigure the symbols (write new character sets for the

corresponding partition) stored in the states instead of compiling new structures for

automata graphs in the new partition. For each state, there are 256 bits (0s or 1s)

representing 256 di↵erent characters, and the character set file size is very small even

when storing a large number of patterns (in the order of KB for hundreds of thousand

states). Writing a new character set is much faster than placing and routing new au-

tomata graphs. When evaluating the symbol-only reconfiguration feature, we use the

BRAM-based design instead of the LUT-based design because it takes a shorter time

106

to write new character sets in BRAM, and to use the symbol-only reconfiguration,

we need to write characters sets multiple times.

6.4 New workflow using the Xilinx Object File

The Xilinx OpenCL Compiler (XOCC) [128] is a separate command-line utility for

compiling kernel functions and linking these kernel functions with SDAccel envi-

ronment supported platforms. In the previous automated workflow introduced in

Chapter 5, we wait until the last step to compile the whole design to generate the

executable and the binary container (xclbin) file. In this step, we provide the plat-

form information and all kernel files to XOCC. XOCC will then link all kernels into

the platform to create the binary container.

When working with the original workflow, we find that we can further split the

last step into two steps, and this helps reduce the overall compilation overhead. The

new workflow is shown in Fig. 6.4. The first seven steps are similar to the steps in the

original automated workflow, and we can reuse some scripts we develop. However,

when generating the executable and the binary container, we use the Xilinx Object

file instead of directly using RTL kernel files. We first package the RTL IP and the

kernel XML file together to generate a Xilinx Object (.xo) file. This can be achieved

by using the package xo command [129]. All kernel information is stored in the

Xilinx Object file. Then we use XOCC and the previous generated Xilinx Object file

to create the binary container. One or more Xilinx Object files can be used in this

step [128]. Though this step still involves logic synthesis, logic optimization, logic

placement and routing, it is faster than generating directly using RTL kernel files.

Detailed results will be presented in Chapter 6.6.2.

6.5 Modular Synthesis and Reuse of I/O Templates

In the original workflow, we build the I/O communication structure for every single

application and each di↵erent dataset. We use the high-level synthesis-centric ap-

proach by designing the I/O interface using Vivado HLS. We then use Xilinx SDAc-

cel to generate the AXI interconnect and the PCIe circuitry for the automata kernel.

The specific I/O circuitry depends on the number of reports in a particular dataset

(usually equals to the number of patterns/rules). Di↵erent applications can share the

same I/O circuitry as long as they have the same number of reports. When generating

107

Figure 6.4: A new workflow using Xilinx Object files.

the I/O circuitry in original REAPR, we need to know the exact number of reports

so that we can create correct interfaces. For example, when using the automated

108

REAPR workflow, we need to provide the number of reports in the entry file(rtl.sh).

There are four DRAM banks on the AWS F1 FPGA board, and the bidwidth of

each bank is 512. As mentioned above, the I/O circuitry only depends on the number

of reports. Therefore, we can round up the actual number of reports to 512, 1024,

1536, 2048, etc. For example, even if an application has only 439 reports, we still

use the I/O circuitry for 512. In such a way, even if the applications have di↵erent

numbers of reports, we can use the same I/O circuitry template that has already

been pre-compiled. In the new design, we separate the I/O circuitry from the whole

design and pre-compile the I/O circuitry for 512, 1024, 1536, etc. We then choose

the corresponding I/O circuitry for di↵erent applications and datasets. By reusing

the I/O circuitry, for a new application or a new dataset, we only need to synthesize

the automata processing kernel instead of the whole design, which is much faster.

The detailed results will be presented in Section 6.6.3. However, though SDAccel

uses Vivado in the back-end, it does not support using pre-compiled IP, and it has

to redo the synthesis, the optimization, the placement and routing. The results we

present in Section 6.6.3 are simulated by using Vivado directly, but we expect to

achieve similar results when SDAccel supports similar functions.

6.6 Performance Evaluation

In this section, we evaluate the three proposed methods against the original REAPR

for the compilation phase. We use applications from the ANMLZoo benchmark to

show the feasibility of these proposed methods and how much potential benefits can

be achieved. The applications include Entity Resolution, Random Forest, Brill, Cla-

mAV, Hamming Distance, and Levenshtein Distance. We use FPGAs (Xilinx Virtex

UltraScale Plus XCVU9P FPGA devices) from the AWS F1 service. Each FPGA is

equipped with four DDR4 banks, and the max frequency is 250MHz. In this chapter,

we use the instance with one FPGA (f1.2xlarge). Using multiple FPGAs for larger

automata can be interesting future work.

6.6.1 Symbol-only Reconfiguration

In this section, we evaluate the symbol-only reconfiguration method against the origi-

nal REAPR without this feature. As mentioned in Sec. 5.2.1, we use the BRAM-based

design for symbol-only reconfiguration to utilize the faster writing speed of BRAM.

109

Figure 6.5: Modular synthesis.

We first evaluate the compilation overhead of some applications in the ANMLZoo

to show the feasibility of the proposed method and how much potential benefit can

be achieved. The applications include Entity Resolution, Random Forest, ClamAV,

Hamming Distance, and Levenshtein Distance. The results are presented in Fig. 6.6.

110

Figure 6.6: Compilation overhead.

Results show that adopting symbol-only reconfiguration (dark bars) leads to longer

one-time compilation time. But the increase is small compared to the ones with-

out symbol-only reconfiguration feature. On average, it consumes 6.5% longer time

for compilation. Therefore, for smaller pattern sets that can be fit on one device,

users should use the original REAPR (LUT-based). However, for larger pattern sets,

REAPR without symbol-only reconfiguration incurs a large amount of time on the

compilation for every new partition, which is not needed by the symbol-only reconfig-

uration approach. Users only need to compile the automata graph for the symbol-only

reconfiguration once and simply write new character sets to the FPGA for new parti-

tions. The overhead of writing new character sets is shown in Table 6.1. The writing

overhead varies among these applications, because the automata structure is di↵erent

and the number of states to be written also varies for each application. However, all

of the writing overhead is under one second. This is a huge reduction from hours of

re-compilation.

Benchmark Writing overhead (millisecond)
ClamAV 335

Hamming Distance 46.7
Levenshtein Distance 35.7
Entity Resolution (ER) 293
Random Forest (RF) 408

Table 6.1: Character sets writing overhead

111

We use a few example applications from ANMLZoo and evaluate them with real-

world datasets. The real end-to-end performance results of the full-size application

runtime on CPUs, GPUs and FPGAs are presented in Table 6.2. The AP perfor-

mance is not presented here because its performance is estimated. CRISPR is an

application used as an example of Hamming distance, which uses Hamming distance

automata as its major component to identify gRNA o↵-target sites for CRISPR/Cas9

system [130] [131]. For the GPU performance, we run iNFAnt2 with the NFA repre-

sentation. Even with the NFA representation (smaller than the DFA representation),

the loading time of the NFA file takes most of the total time. For example, for Ran-

dom Forest, it takes over 99% percent of the total time; and for Entity Resolution,

after 24 hours it still cannot load the NFA file, so we assume this is too slow and use

”NA” in the table. Every time users run a new dataset, the GPU needs to reload the

NFA file. Therefore, the size and complexity of the NFA file is the major factor for

the performance on GPUs. However, the CPU automata engine (Hyperscan) is more

sensitive to the input size compared with the GPU engine. For example, when run-

ning CRISPR, it is much slower than iNFAnt2 because the input of CRISPR is very

large (Human Genome, 3.2GB); while for other smaller inputs, it is close to the GPU

performance sometimes even better. The performance on FPGA does not include

the compilations time and the one-time compilation time is provided in a separate

column. The compilation can be finished before actually using FPGAs to run these

applications. The FPGA automata engine with symbol-only reconfiguration works

much faster than both Hyperscan and iNFAnt2 especially when the automata size is

very large such as the dataset in RF. It can also process very large-scale applications

when GPU and CPU engines could not serve its intended purpose as in ER.

Apps states # input GPU(total) GPU(loading) CPU FPGA Comp.
CRISPR 346k 3.2GB 1,579 278.7 44,257 481 6h23m

ER 13,314k 3.1MB NA NA NA 51.24 17h50m
SPM 201.5k 0.3MB 183 181.5 34 0.18 4h3m
RF 992k 4.6MB 9,697 9,686.4 216 9.9 5h24m

Table 6.2: Full-size application performance. (The performance results on of Hyper-
scan, GPU, and FPGA are in seconds. NA refers the automata is too large to run
with GPU/Hyperscan.)

Above results show that if an application (especially the ones with large pat-

tern sets) can adopt the symbol-only reconfiguration approach, the feature helps to

drastically reduce the complication overhead and improves the overall performance.

112

Figure 6.7: Compilation reduction using Xilinx Object file.

6.6.2 Workflow using the Xilinx Object file

In this section, we evaluate the newly proposed workflow using Xilinx Object files.

Because we focus on the compilation overhead, we only compare the compilation

time with the original REAPR workflow. The overall results are presented in Fig.

6.7 and Table 6.3. The new workflow reduces the overall compilation time for all

nine applications selected from ANMLZoo. The reduction is from 20% to 30%, and

on average, we achieve 24.8% reduction compared to the original workflow. This

shows the benefits brought by using Xilinx Object files instead of directly compiling

all kernel files.

To further study how using Xilinx Object file helps to reduce the overall compi-

lation time, we present the detailed results in Fig. 6.8 and Table 6.4. For all four

phases (the logic synthesis, the logic optimization, the placement, and the routing),

the new workflow consumes less time than the original flow does. But for logic op-

timization and placement, these two phases only take around 17% of the total time

on average, and thus the reduction is relatively small. Most of the reduction comes

113

Benchmark Original new Reduction
ER 1070.0 762.1 28.77%
Snort 417.0 332.8 20.19%

RandomForest 324.5 243.3 25.02%
ClamAV 285.0 217.0 23.86%
Brill 352.8 264.4 25.06%

Protomata 389.8 285.8 26.68%
Fermi 339.6 238.8 29.68%

Hamming 208.5 165.5 20.62%
leven 194.5 148.5 23.65%

Table 6.3: Compilation reduction using Xilinx Object file. Time is in minutes.

from the synthesis and the routing phase, which take around 73% of the total time on

average. Furthermore, the portion of the synthesis phase and routing phase increases

as the overall time increases. For example, for Entity Resolution, the synthesis phase

and routing phase consume 86.6% of the overall compilation time. Therefore, using

the Xilinx Object file helps to reduce the synthesis time and the routing time, thus

leading to the overall compilation time reduction.

6.6.3 Modular synthesis and reuse of I/O templates

In this section, we evaluate the potential benefits brought the proposed modular syn-

thesis and reuse I/O circuitry method. Since the SDAccel does not support modular

synthesis, we use the Vivado out-of-context(OOC) feature to simulate the proposed

method [132]. As discussed in the previous section, we isolate the I/O template from

the whole design. For each of the benchmark, we modify the top module. The mod-

ified top module now does not run the kernel. It only generates the I/O circuitry

for the application. We collect the compilation overhead of the I/O circuitry in each

application. By reusing pre-defined I/O circuitry, we do not need to re-synthesize

the I/O template and only need to synthesize the kernel of the application. The

results are shown in Fig. 6.9. As shown in the figure, in most of the benchmarks,

compiling the I/O circuitry takes more than 50% of the overall compilation time.

This is the major reason why using I/O templates can help to reduce the compilation

overhead. But for Hamming Distance and Levenshtein Distance, the I/O compilation

only takes a small portion of the overall compilation time. This is because, in these

two benchmarks, there are only small numbers of reports (186 in Hamming and 96

in Levenshtein), and thus the I/O circuitry compilation only takes a small portion

114

Figure 6.8: Compilation time breakdown using Xilinx Object file.

of the overall compilation. Removing the I/O part only conveys a minor speedup

in such applications. However, for most real-world applications, the report number

is much larger, and the I/O circuitry compilation dominates the overall compilation

overhead. The grey line shows the speedups brought by removing the I/O compila-

tion and using pre-defined I/O templates. We achieve up to 4⇥ speedups and 2.3⇥
speedup on average.

In Table 6.5, we present the compilation overhead for the I/O template. This is

a one-time overhead and can be compiled in advance. We then present the kernel

compilation overhead in Table 6.6. From the table, we can see the kernel compilation

is much faster compared to I/O circuitry. Though the OOC is not supported in

SDAccel, SDAccel uses Vivado in the backend. We expect to achieve similar results

when OOC is supported in SDAccel.

The above results show that using I/O circuitry templates helps to reduce the

compilation time. But it may also consume more hardware resources on FPGAs,

because we need to use extra resources for some applications or datasets that do not

115

Benchmark Synthesis Syn(XO) Optimization Opt(XO) Placement
ER 746.5 580.4 10.5 7 76.5
Snort 193.5 163 9.5 6.5 58.5

RandomForest 80.5 72.3 12 5.3 60
ClamAV 98 92 7 6 58.5
Brill 110.1 95.2 9.5 6.3 61.4

Protomata 93.4 92.5 8.6 6.5 58.8
Fermi 98.4 80.7 9.5 6.2 58.6

Hamming 44.5 43.5 8.5 5 51
leven 39.5 35.3 8 5 58.5

Benchmark PLM(XO) Routing RT(XO) Total Total(XO)
ER 60 180 97 1070 762.1
Snort 58.2 117.5 90.5 417 332.8

RandomForest 48.8 136 101.3 324.5 243.3
ClamAV 43.5 82.5 61.7 285 217
Brill 49.8 133.6 91.7 352.8 264.4

Protomata 51.5 177 114.5 398.8 285.8
Fermi 51.6 124.8 83 339.6 238.8

Hamming 43 74.5 60 208.5 165.5
leven 41.5 67 53.3 194.5 148.5

Table 6.4: Compilation breakdown using Xilinx Object file. Time is in minutes. XO
stands for the time consumed by the workflow using Xilinx Object file.

Report Number Time (minutes)
1-512 189

512-1024 242
1024-1536 321
1536-2048 386
2048-2560 437

Table 6.5: Compilation overhead for I/O templates.

need as many reports as the template provides. For example, if an application has

400 reports and the template for 512 reports is used, I/O circuitry for 112 reports

are consumed by the I/O template but not actually used by the application. In this

section, we collect the resource utilization of CLBs and LUTs using Xilinx tools (Vi-

vado and SDAccel), which are the major resources we utilize on FPGAs for automata

processing. The results are presented in Fig. 6.10 and Fig. 6.11. The blue bar repre-

sents the resources used by the original design without I/O templates and the orange

bar represents the resources used by the new design with I/O templates. For both

116

Figure 6.9: Overhead of I/O compilation and speedups using pre-synthesized I/O
template.

Report Number Time (minutes)
ER 17.2
Snort 12.6
RF 14.5

ClamAV 11.4
Brill 10.1

Protomata 12.4
Fermi 10.1

Hamming 9.9
Levenshtein 15.9

Table 6.6: Kernel compilation overhead

CLB and LUT utilization, using I/O templates will consume more resources than

the original design as we expect. The amount of extra resources needed depends on

the specific application and datasets. For the datasets in ANMLZoo, on average, we

117

Figure 6.10: CLB usage comparison between the original I/O circuitry and using I/O
templates.

consume 9.5% and 8.5% more CLB and LUT for the I/O template. However, for the

ClamAV dataset provided in ANMLZoo, it consumes 43% more CLBs and 18% more

LUTs because of the big gap between the actual number of reports (515) and the

number of reports provided by the template (1024). In general, the amount of CLB

and LUT is not the bottleneck of using FPGAs for automata processing. However, if

the application consumes a lot of hardware resources, users should be careful when

using I/O templates.

6.7 Discussion: Hybrid Methods

In previous sections, we present three methods that can help to reduce the high

compilation overhead when using FPGAs for automata processing. We provide the

details and experimental results of each method separately. However, these methods

are not mutually exclusive. We can combine these new methods and further reduce

the overall compilation time. In the following sections, we will present two hybrid

methods.

118

Figure 6.11: LUT usage comparison between the original I/O circuitry and using I/O
templates.

New workflow using Xilinx Object files + Symbol-only reconfiguration

We can use the new workflow using Xilinx Object files for applications that could use

symbol-only reconfiguration. When using the symbol-only reconfiguration feature, we

only need to compile the general structure once, and the hybrid method could further

reduce the one-time compilation overhead by using Xilinx Object files. For example,

if we use the new hybrid method for Entity Resolution, the one-time compilation

time reduces from 17h50m to 11h23m. For CRISPR, the one-time compilation time

reduces from 6h23m to 5h11m. Similar to the requirements of using the symbol-only

reconfiguration method, we need to design a general automaton structure for the

application.

Symbol-only reconfiguration + I/O template reuse

We can use pre-compiled I/O templates for applications that support the symbol-

only reconfiguration feature to reduce the one-time configuration time. By using I/O

templates, we do not need to compile the I/O circuitry for every new application or

dataset. Instead, we directly bind the kernel with the I/O templates. For example,

119

if we use the I/O template with 1,024 reports for Entity Resolution, we could save

around 10 hours that are used for compiling the I/O circuitry for the original datasets.

If we use the I/O template with 2,048 reports for CRISPR, we could save around 3

hours that are used for compiling the I/O circuitry for the original datasets.

Still, we need to design a general automata structure for such applications in

order to use the symbol-only reconfiguration feature. But for most of automata-

based applications except for regex-based applications (e.g., Snort), we are able to

design a general structure. Therefore, the above two hybrid methods are very helpful

for reducing the high compilation overhead for many automata-based applications.

Users have the flexibility to utilize any of the new proposed methods in this

chapter or combine these methods. In this section, we only provide two possible hybrid

examples to show the potential benefits of using hybrid methods. Results indicate that

these hybrid methods can help to further reduce the compilation overhead compared

to the separate method.

6.8 Conclusion and Future Work

6.8.1 Conclusion

In this chapter, we present three di↵erent methods to reduce the high compilation

overhead for automata processing engine on FPGAs. These three methods explore

the possibilities from di↵erent perspectives. Symbol-only reconfiguration is proposed

to solve the challenge when multiple passes of the input stream are needed. We design

a general automata structure for the applications, and compile the structure using

the BRAM-based design. For each new partition, we only need to write symbols to

be stored in the states instead of compiling for the new partition. The symbol-only

reconfiguration work in this chapter was published in [28], and most of the contents

are derived from that paper. Secondly, we propose a new workflow that uses Xilinx

Object files. This new workflow helps to reduce the overall overhead by 25% on

average. At last, we propose a modular synthesis mechanism and reuse the I/O

circuitry. This helps to reduce the overall compilation by 2.3⇥ on average.

These methods provide insights on how to reduce compilation overhead on FPGAs

for other applications or computational kernels, such as reusing the communication

circuitry between the FPGA and the host CPU.

Finally, we will talk about automata processing overlay, which could be a promis-

120

ing future direction to further reduce the compilation overhead with certain tool

support.

6.8.2 Automata Overlay

We propose three methods in this chapter to reduce the compilation overhead for

automata processing on FPGAs and achieve some promising results. Some other

methods could also help to reduce the compilation overhead. One possibility is to

design a generalized automata processing automata overlay (a pre-configured virtual

automata processing architecture that overlays on top of the physical configurable

fabric) on FPGAs, which only requires loading configuration files (e.g. storing status

of logic gates) when launching a new automata application. In such a way, even

for di↵erent applications, users do not need to pay the high cost of compilation.

However, the various topologies of automata graphs make it di�cult to design a

generalized automata overlay for all applications. Karakchi et al. propose an overlay

(by fully connecting states) as an alternative to Micron’s AP, but it does not apply

for most of the applications in ANMLZoo [26]. This is because fully connecting states

requires very large fan-in and fan-out of the states, and there are constraints on max

connections of logic cells on FPGA(such as logic gates).

We propose another potential solution for automata overlay on FPGAs. We can

design a few di↵erent automata overlay templates, and use the one that fits the specific

application best. Fig 6.12 shows one feasible general automata overlay design. CAPB

stands for Configurable Automata Processing Block. Each CAPB can be configured

with di↵erent topology. For example, we present a ring structure, a mesh structure, a

linear structure, and a star structure in the figure. A mesh structure can be used for

Hamming distance or Levenshtein Distance designs. A linear structure can be used

for regular expressions. A star structure can be used for the design with many “hot”

states (which connect to many di↵erent other states). A ring structure can be used

for the design with many back-traces. These structures can be pre-configured; thus

we void paying the compilation cost on these structures. Ideally, each CAPB can

choose any of the pre-configured structures. However, in this project, each CAPB

uses the same pre-configured structure.

Furthermore, the reuse of I/O templates and modular synthesis presented in pre-

vious sections could be another direction of implementing automata overlay. Though

this is not the overlay architecture for the whole automata processing procedure, it

avoids re-compile the I/O circuitry, which is the most time-consuming part of the

121

Figure 6.12: Flexible automata overlay structure.

compilation phase. Results show that it also helps to reduce the overall compilation

time.

Automata overlay could help to reduce the high configuration overhead on FPAGs

and allow fast reconfiguration when multiple passes of the input stream are needed.

However, we do need support in FPGA development tools that allow users to pre-

compile di↵erent CAPB structures and various switch blocks in order to support

general automata processing. For example, Xilinx partial reconfiguration feature

could be helpful for this task [133] [134] [135]. Furthermore, using pre-compiled

structure usually consumes more hardware resources on FPGAs, which could be an

interesting trade-o↵ study. The overlay could be a very promising future work, which

could potentially provide helpful insights for other applications using FPGAs when

high compilation overhead is encountered.

122

Chapter 7

Conclusions and Future Work

7.0.1 Conclusions

This dissertation focuses on using automata processing for inexact pattern matching

applications and providing a high-performance, scalable, and user-friendly automata

processing engine on FPGAs. Inexact pattern matching is a widely-used kernel exist-

ing in many domains, such as machine learning [2] [97], cyber security [136] [137] [138],

bioinformatics [27][84], anti-virus scanning [139], natural language processing [9], etc.

This process is computationally expensive and is usually a bottleneck of the applica-

tion.

This dissertation first proposes accelerating Entity Resolution using automata

processing, which is a new application domain (Knowledge Discovery). ER is an

important kernel of many information integration applications in Knowledge Discov-

ery. Micron’s Automata Processor (AP) is an e�cient and scalable semiconductor

architecture for parallel automata processing [22] and can process a large number of

complex patterns simultaneously. Therefore, we propose using the AP to accelerate

Entity Resolution. To illustrate how the AP approach works, we present a framework

and several di↵erent automata designs for various ER applications. We evaluate the

suitability of the prototype using several real-world ER problems in di↵erent appli-

cations. Results show both higher performance and better resolution accuracy using

several datasets.

This dissertation then proposes searching for gRNA o↵-targets for CRISPR/Cas9

using automata processing across di↵erent platforms. E�ciently finding all correct

locations to edit the genome, without modifying other locations, is the bottleneck

of using the CRISPR/Cas9 system, because the gRNA sometimes binds to locations

with slightly di↵erent DNA sequences [41]. To solve the above problem, we propose

123

an automata-based solution to identify potential o↵-target sites in a reference genome.

We present several designs that can recognize di↵erent variations of a gRNA, and a

general workflow of how to use automata processing to identify potential o↵-target

sites. We evaluate the proposed automata approach across four di↵erent platforms

(CPUs, GPUs, FPGAs, and Micron’s AP) and compare it with two state-of-the-art

solutions (CasOFFinder [43] and CasOT [44]). The proposed method leads to over

83⇥ speedups on the FPGA compared with CasOFFinder (GPU), and additional

speedups can be achieved by using the AP. Results also show that the automata-

based method on the GPU does not confer a clear advantage because it does not

map well to the GPU architecture. The above results indicate the potentials of using

automata to accelerate applications involving inexact pattern matching, and spatial

architectures is more appropriate for automata processing.

This dissertation then presents a new automata processing engine on cloud-based

FPGAs with new features. Reconfigurable Engine for Automata PRocessing (REAPR)

is a framework that can generate RTL codes for automata processing kernel and the

I/O circuitry for data transfer between the FPGA and the host CPU [25]. Though

REAPR shows promising results, the performance could be further improved (e.g.,

poor performance of the reporting architecture), and there are still several limitations

of the framework (such as involving many manual e↵orts and high reconfiguration

overhead). We extend the prior framework with several new features to improve the

performance and make it more user-friendly. New features include 1). new automated

workflow; 2). processing multiple symbols per cycle; 3). new reporting architecture;

4). simplified I/O integration. We implement the framework on Cloud-based plat-

forms and conduct a cross-platform evaluation. Results show that using FPGAs

provide great potential for automata processing.

This dissertation at last aims to reduce the high compilation overhead on FPGAs.

High compilation overhead is a common problem when using FPGAs to accelerate ap-

plications. We encounter similar problems when using FPGAs for automata process-

ing. It is costly to configure FPGAs for every single new rule/pattern. Furthermore,

for large pattern sets or problem sizes, the automata may not fit on a single device.

This requires a method to partition the automata and support multiple passes with

fast reconfiguration for each partition. To reduce the configuration overhead, we pro-

pose three novel methods (symbol-only reconfiguration, a new workflow using Xilinx

Object file, and modular synthesis to reuse compiled components) in the framework.

1. Symbol-only reconfiguration

124

To use the symbol-only reconfiguration mechanism, we need to design a general

automaton structure for the application. This allows us to compile the structure once

and reuse the complied structure. We do not need to compile for new partitions, and

only need to update the symbols stored in the states, which is much faster.

2. New workflow using Xilinx Object file

In the original REAPR workflow, we integrate all kernels in the last step for com-

pilation (including FPGA synthesis, logic optimization, logic placement and routing).

We then notice that using Xilinx Object files can help to reduce the time in the com-

pilation phase. Therefore, we propose a new workflow by using the Xilinx Object(.xo)

file in Xilinx SDAccel.

3. Modular synthesis and reuse the I/O communication structure

We modularize the original RTL kernel and isolate the I/O circuitry between the

CPU and the FPGA from the whole kernel. The I/O structure is similar for those

applications with a similar number of reporting states, and we can pre-synthesize and

reuse the structure for di↵erent applications.Results show that up to 4⇥ speedup can

be achieved for the overall compilation time.

The work in Chapter 3 and Chapter 4 proves that automata processing can help

to accelerate applications in which the inexact pattern matching is the major perfor-

mance bottleneck. The work in Chapter 5 and Chapter 6 proves that using FPGAs

for automata processing provides a high-performance, scalable, and user-friendly plat-

form for inexact pattern matching applications. All the work in the above chapters

confirms the dissertation hypothesis in Chapter 1.

7.0.2 Future Work

Future directions of the dissertation include, but are not limited to:

1. Explore other inexact pattern matching applications that may benefit from

using automata processing. This dissertation uses Entity Resolution in Knowledge

Discovery field and gRNA o↵-targets identification in Bioinformatics as two example

applications to show how to use automata processing to accelerate inexact pattern

matching applications. We present how to design automata for recognizing various

patterns and the general workflow of using automata to accelerate such applications.

Many other inexact pattern matching applications in other application domains may

adopt similar methods.

2. Add new features to the FPGA automata processing engine. We add several

new features to the original REAPR, which makes the FPGA automata processing

125

engine more e�cient, scalable, and user-friendly. Users may add other features for

general automata processing into the platform or implement new customized features

for the specific application they want to accelerate. As we mentioned in the previous

chapter, the FPGA automata processing engine can not only be used for processing

di↵erent automata-based applications, but can also be used as a research platform

for exploring new hardware design for automata processing.

3. Design and implement automata processing overlays. We propose a couple

of possible ideas on how to design and implement an automata overlay. A general

automata processing overlay provides a general architecture that can process various

automata-based applications, without spending a long time on the compilation and

reconfiguration. Future work could explore other automata processing overlay ideas

on FPGAs.

126

Bibliography

[1] Tommy Tracy, Yao Fu, Indranil Roy, Eric Jonas, and Paul Glendenning. “To-

wards machine learning on the automata processor”. In: International Confer-

ence on High Performance Computing. Springer. 2016, pp. 200–218.

[2] Chunkun Bo, Ke Wang, Y Qi, and Kevin Skadron. “String kernel testing ac-

celeration using the Micron Automata Processor”. In: Workshop on Computer

Architecture for Machine Learning. 2015.

[3] Vincent T Lee, Justin Kotalik, Carlo C Del Mundo, Armin Alaghi, Luis Ceze,

and Mark Oskin. “Similarity search on automata processors”. In: 2017 IEEE

International Parallel and Distributed Processing Symposium (IPDPS). IEEE.

2017, pp. 523–534.

[4] Chengcheng Xu, Shuhui Chen, Jinshu Su, Siu-Ming Yiu, and Lucas CK Hui.

“A survey on regular expression matching for deep packet inspection: Ap-

plications, algorithms, and hardware platforms”. In: IEEE Communications

Surveys & Tutorials 18.4 (2016), pp. 2991–3029.

[5] Ioannis Sourdis and Dionisios Pnevmatikatos. “Fast, large-scale string match

for a 10Gbps FPGA-based network intrusion detection system”. In: Interna-

tional Conference on Field Programmable Logic and Applications. Springer.

2003, pp. 880–889.

[6] Jeremy Leipzig. “A review of bioinformatic pipeline frameworks”. In: Briefings

in bioinformatics 18.3 (2017), pp. 530–536.

[7] Khaled Benkrid, Ying Liu, and AbdSamad Benkrid. “A highly parameterized

and e�cient FPGA-based skeleton for pairwise biological sequence alignment”.

In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17.4

(2009), pp. 561–570.

127

[8] Christopher R Clark and David E Schimmel. “Scalable pattern matching for

high speed networks”. In: 12th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines. IEEE. 2004, pp. 249–257.

[9] Elaheh Sadredini, Deyuan Guo, Chunkun Bo, Reza Rahimi, and Kevin Skadron.

“A Scalable Solution for Rule-Based Part-of-Speech Tagging on Novel Hard-

ware Accelerators”. In: Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining (KDD). 2. 2018.

[10] Karl Abrahamson. “Generalized string matching”. In: SIAM journal on Com-

puting 16.6 (1987), pp. 1039–1051.

[11] Stephan C Schuster. “Next-generation sequencing transforms today’s biology”.

In: Nature methods 5.1 (2007), p. 16.

[12] Benjamin Langmead, Kenneth MMacKenzie, Steven K Reinhardt, and Richard

A Lethin. System, Apparatus, And Methods For Pattern Matching. US Patent

App. 11/766,704. 2008.

[13] Ke Wang, Yanjun Qi, Je↵rey J Fox, Mircea R Stan, and Kevin Skadron. “As-

sociation rule mining with the micron automata processor”. In: 2015 IEEE

International Parallel and Distributed Processing Symposium (IPDPS). IEEE.

2015, pp. 689–699.

[14] Keira Zhou, Je↵rey J Fox, Ke Wang, Donald E Brown, and Kevin Skadron.

“Brill tagging on the micron automata processor”. In: Semantic Computing

(ICSC), 2015 IEEE International Conference on. IEEE. 2015, pp. 236–239.

[15] Chunkun Bo, Ke Wang, Je↵rey J Fox, and Kevin Skadron. “Entity resolution

acceleration using the automata processor”. In: Big Data (Big Data), 2016

IEEE International Conference on. IEEE. 2016, pp. 311–318.

[16] Ke Wang, Elaheh Sadredini, and Kevin Skadron. “Sequential pattern mining

with the Micron automata processor”. In: Proceedings of the ACM Interna-

tional Conference on Computing Frontiers. ACM. 2016, pp. 135–144.

[17] InsideBigdata. The Exponential Growth of Data. url: https://insidebigdata.

com/2017/02/16/the-exponential-growth-of-data/.

[18] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto. “iN-

FAnt: NFA pattern matching on GPGPU devices”. In: ACM SIGCOMM Com-

puter Communication Review 40.5 (2010), pp. 20–26.

128

[19] Intel. High-performance regular expression matching library. url: https:

//github.com/intel/hyperscan.

[20] Vinh Dang. A Deterministic Finite Automata GPU-based Engine. url: https:

//github.com/vqd8a/DFAGE.

[21] Vinh Dang. iNFAnt2. url: https://github.com/vqd8a/iNFAnt2.

[22] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold

Noyes. “An e�cient and scalable semiconductor architecture for parallel au-

tomata processing”. In: IEEE Transactions on Parallel and Distributed Sys-

tems 25.12 (2014), pp. 3088–3098.

[23] Reetinder Sidhu and Viktor Prosanna. “Fast regular expression matching us-

ing FPGAs”. In: The 9th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM). 2. 2001.

[24] Yi-Hua Yang and Viktor Prasanna. “High-performance and compact architec-

ture for regular expression matching on FPGA”. In: IEEE Transactions on

Computers. 2. 2012.

[25] Ted Xie, Vinh Dang, JackWadden, Kevin Skadron, and Mircea Stan. “REAPR:

Reconfigurable engine for automata processing”. In: Field Programmable Logic

and Applications (FPL), 2017 27th International Conference on. IEEE. 2017,

pp. 1–8.

[26] Rasha Karakchi, Lothrop O. Richards, and Jason D. Bakos. “A Dynamically

Reconfigurable Automata Processor Overlay”. In: Proceedings of International

Conference on ReConFigurable Computing and FPGAs (ReConFig). 2017.

[27] Chunkun Bo, Dang Vinh, Elaheh Sadredini, and Kevin Skadron. “Searching

for Potential gRNA O↵-Target Sites for CRISPR/Cas9 Using Automata Pro-

cessing Across Di↵erent Platforms”. In: Proceedings of IEEE International

Symposium on High Performance Computer Architecture (HPCA). 2. 2018.

[28] Chunkun Bo, Vinh Dang, Ted Xie, Jack Wadden, Mircea Stan, and Kevin

Skadron. “Automata Processing in Reconfigurable Architectures: In-the-Cloud

Deployment, Cross-Platform Evaluation, and Fast Symbol-Only Reconfigu-

ration”. In: ACM Transactions on Reconfigurable Technology and Systems

(TRETS) 12.2 (2019), p. 9.

[29] Mauricio A Hernández and Salvatore J Stolfo. “The merge/purge problem for

large databases”. In: ACM Sigmod Record. Vol. 24. 2. ACM. 1995, pp. 127–138.

129

[30] Lise Getoor and Ashwin Machanavajjhala. “Entity resolution: theory, practice

& open challenges”. In: Proceedings of the VLDB Endowment 5.12 (2012),

pp. 2018–2019.

[31] Alvaro Monge and Charles Elkan. “An e�cient domain-independent algorithm

for detecting approximately duplicate database records”. In: (1997).

[32] Steven EuijongWhang, David Menestrina, Georgia Koutrika, Martin Theobald,

and Hector Garcia-Molina. “Entity resolution with iterative blocking”. In: Pro-

ceedings of the 2009 ACM SIGMOD International Conference on Management

of data. ACM. 2009, pp. 219–232.

[33] Lars Kolb and Erhard Rahm. “Parallel entity resolution with dedoop”. In:

Datenbank-Spektrum 13.1 (2013), pp. 23–32.

[34] Omar Benjelloun, Hector Garcia-Molina, Hideki Kawai, Tait Eliott Larson,

David Menestrina, Qi Su, Sutthipong Thavisomboon, and Jennifer Widom.

Generic entity resolution in the serf project. Tech. rep. Stanford InfoLab, 2006.

[35] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su, Steven

Euijong Whang, and Jennifer Widom. “Swoosh: a generic approach to entity

resolution”. In: The VLDB JournalThe International Journal on Very Large

Data Bases 18.1 (2009), pp. 255–276.

[36] Philippe Horvath and Rodolphe Barrangou. “CRISPR/Cas, the immune sys-

tem of bacteria and archaea”. In: Science 327.5962 (2010), pp. 167–170.

[37] Feng Zhang, Yan Wen, and Xiong Guo. “CRISPR/Cas9 for genome editing:

progress, implications and challenges”. In: Human molecular genetics 23.R1

(2014), R40–R46.

[38] Woong Y Hwang, Yanfang Fu, Deepak Reyon, Morgan L Maeder, Shengdar

Q Tsai, Je↵ry D Sander, Randall T Peterson, JR Joanna Yeh, and J Keith

Joung. “E�cient genome editing in zebrafish using a CRISPR-Cas system”.

In: Nature biotechnology 31.3 (2013), p. 227.

[39] Randall J Platt, Sidi Chen, Yang Zhou, Michael J Yim, Lukasz Swiech, Hannah

R Kempton, James E Dahlman, Oren Parnas, Thomas M Eisenhaure, Marko

Jovanovic, et al. “CRISPR-Cas9 knockin mice for genome editing and cancer

modeling”. In: Cell 159.2 (2014), pp. 440–455.

130

[40] 11 Crazy Gene-Hacking Things We Can Do with CRISPR. http://www.

popularmechanics.com/science/a19067/11- crazy- things-

we-can-do-with-crispr-cas9/.

[41] Yanfang Fu, Jennifer A Foden, Cyd Khayter, Morgan L Maeder, Deepak

Reyon, J Keith Joung, and Je↵ry D Sander. “High-frequency o↵-target muta-

genesis induced by CRISPR-Cas nucleases in human cells”. In: Nature biotech-

nology 31.9 (2013), p. 822.

[42] CasOT - CRISPR/Cas system (Cas9/gRNA) O↵-Targeter. http://casot.

cbi.pku.edu.cn.

[43] Sangsu Bae, Jeongbin Park, and Jin-Soo Kim. “Cas-OFFinder: a fast and

versatile algorithm that searches for potential o↵-target sites of Cas9 RNA-

guided endonucleases”. In: Bioinformatics 30.10 (2014), pp. 1473–1475.

[44] An Xiao, Zhenchao Cheng, Lei Kong, Zuoyan Zhu, Shuo Lin, Ge Gao, and

Bo Zhang. “CasOT: a genome-wide Cas9/gRNA o↵-target searching tool”. In:

Bioinformatics 30.8 (2014), pp. 1180–1182.

[45] Jack Wadden, Vinh Dang, Nathan Brunelle, Tommy Tracy II, Deyuan Guo,

Elaheh Sadredini, Ke Wang, Chunkun Bo, Gabriel Robins, Mircea Stan, et al.

“ANMLzoo: a benchmark suite for exploring bottlenecks in automata process-

ing engines and architectures”. In: Workload Characterization (IISWC), 2016

IEEE International Symposium on. IEEE. 2016, pp. 1–12.

[46] Loring Wirbel. Xilinx sdaccel whitepaper. 2014.

[47] Chunkun Bo. REAPR on F1. url: https://github.com/chunkunbo/

REARP-on-Amazon-F1.

[48] Pinaki Chakraborty, Prem Chandra Saxena, and Chittaranjan Padmanabha

Katti. “Fifty years of automata simulation: a review”. In: ACM Inroads 2.4

(2011), pp. 59–70.

[49] Harry R Lewis and Christos H Papadimitriou. Elements of the Theory of Com-

putation. Prentice Hall PTR, 1997.

[50] Michela Becci and PatricK Crowley. “A hybrid finite automaton for practical

deep packet inspection”. In: ACM CoNEXT conference. 2. 2007.

131

[51] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan

Turner. “Algorithms to accelerate multiple regular expressions matching for

deep packet inspection”. In: ACM SIGCOMM Computer Communication Re-

view. Vol. 36. 4. ACM. 2006, pp. 339–350.

[52] Randy Smith, Cristian Estan, and Somesh Jha. “XFA: Faster signature match-

ing with extended automata”. In: 2008 IEEE Symposium on Security and Pri-

vacy (sp 2008). IEEE. 2008, pp. 187–201.

[53] Alex X Liu, Eric Torng, Alex X Liu, and Eric Torng. “Overlay automata and

algorithms for fast and scalable regular expression matching”. In: IEEE/ACM

Transactions on Networking (TON) 24.4 (2016), pp. 2400–2415.

[54] Pascal Caron and Djelloul Ziadi. “Characterization of Glushkov automata”.

In: Theoretical Computer Science 233.1-2 (2000), pp. 75–90.

[55] J-M Champarnaud. “Subset construction complexity for homogeneous au-

tomata, position automata and ZPC-structures”. In: Theoretical Computer

Science 267.1-2 (2001), pp. 17–34.

[56] Ted Leslie. “E�cient approaches to subset construction.” In: (1993).

[57] Jian Chen and Xinyu Hu. Regular expression matching method and system.

US Patent 8,756,170. 2014.

[58] Davide Pasetto, Fabrizio Petrini, and Virat Agarwal. “Tools for very fast reg-

ular expression matching”. In: Computer 43.3 (2010), pp. 50–58.

[59] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geo↵ Langdale,

Jiayu Hu, and Heqing Zhu. “Hyperscan: a fast multi-pattern regex matcher

for modern CPUs”. In: 16th {USENIX} Symposium on Networked Systems

Design and Implementation ({NSDI} 19). 2019, pp. 631–648.

[60] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and Xiaodong

Zhang. “SEP-Graph: Finding Shortest Execution Paths for Graph Processing

under a Hybrid Framework on GPU”. In: ACM SIGPLAN Symp. Principles

Practice Parallel Program. (PPoPP). 2019.

[61] Kaixi Hou, Weifeng Liu, Hao Wang, and Wu-chun Feng. “Fast Segmented Sort

on GPUs”. In: Proceedings of the 2017 International Conference on Supercom-

puting. ICS ’17. Chicago, IL, USA: ACM, 2017.

132

[62] Kaixi Hou, Hao Wang, and Wu-chun Feng. “GPU-UniCache: Automatic Code

Generation of Spatial Blocking for Stencils on GPUs”. In: Proceedings of the

ACM Conference on Computing Frontiers. CF ’17. Siena, Italy: ACM, 2017.

[63] K. Hou, H. Wang, W. Feng, J. Vetter, and S. Lee. “Highly Efcient Compensation-

based Parallelism for Wavefront Loops on GPUs”. In: IEEE Int. Parallel and

Distrib. Process. Symp. (IPDPS). 2018.

[64] Wenqiang Li, Guanghao Jin, Xuewen Cui, and Simon See. “An evaluation of

unified memory technology on nvidia gpus”. In: 2015 15th IEEE/ACM In-

ternational Symposium on Cluster, Cloud and Grid Computing. IEEE. 2015,

pp. 1092–1098.

[65] Xuewen Cui, Thomas RW Scogland, Bronis R de Supinski, and Wu-Chun Feng.

“Directive-based pipelining extension for openmp”. In: 2016 IEEE Interna-

tional Conference on Cluster Computing (CLUSTER). IEEE. 2016, pp. 481–

484.

[66] Xuewen Cui, Thomas RW Scogland, Bronis R de Supinski, and Wu-chun Feng.

“Directive-based partitioning and pipelining for graphics processing units”.

In: 2017 IEEE International Parallel and Distributed Processing Symposium

(IPDPS). IEEE. 2017, pp. 575–584.

[67] Xiaodong Yu and Michela Becchi. “GPU acceleration of regular expression

matching for large datasets: exploring the implementation space”. In: Proceed-

ings of the ACM International Conference on Computing Frontiers. ACM.

2013, p. 18.

[68] Ciprian Pungila and Viorel Negru. “A highly-e�cient memory-compression

approach for GPU-accelerated virus signature matching”. In: International

Conference on Information Security. Springer. 2012, pp. 354–369.

[69] Lei Wang, Shuhui Chen, Yong Tang, and Jinshu Su. “Gregex: Gpu based high

speed regular expression matching engine”. In: 2011 Fifth International Con-

ference on Innovative Mobile and Internet Services in Ubiquitous Computing.

IEEE. 2011, pp. 366–370.

[70] K. Hou, H. Wang, and W. c. Feng. “Delivering Parallel Programmability to

the Masses via the Intel MIC Ecosystem: A Case Study”. In: 2014 43rd Inter-

national Conference on Parallel Processing Workshops. 2014, pp. 273–282.

133

[71] Kaixi Hou. “Exploring Performance Portability for Accelerators via High-level

Parallel Patterns”. PhD thesis. Virginia Tech, 2018.

[72] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. “Paralleliza-

tion and characterization of pattern matching using GPUs”. In: 2011 IEEE In-

ternational Symposium on Workload Characterization (IISWC). IEEE. 2011,

pp. 216–225.

[73] Vaibhav Gogte, Aasheesh Kolli, Michael J. Cafarella, Loris D’Antoni, and

Thomas F. Wenisch. “HARE: Hardware accelerator for regular expressions”.

In: 49th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO). 2. 2016.

[74] Yuanwei Fang, Tung T. Hoang, Michela Becci, and Andrew A. Chien. “HARE:

Hardware accelerator for regular expressions”. In: 48th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO). 2. 2015.

[75] Arun Subramaniyan, Jingcheng Wang, Ezhil RM Balasubramanian, David

Blaauw, Dennis Sylvester, and Reetuparna Das. “Cache automaton”. In: Pro-

ceedings of the 50th Annual IEEE/ACM International Symposium on Microar-

chitecture. ACM. 2017, pp. 259–272.

[76] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin

Skadron. “A Scalable and E�cient in-Memory Interconnect Architecture for

Automata Processing”. In: IEEE Computer Architecture Letters (2019).

[77] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin

Skadron. “eAP: A Scalable and E�cient in Memory Accelerator for Automata

Processing”. In: Proceedings of the 52th Annual IEEE/ACM International

Symposium on Microarchitecture (2019).

[78] Yun Qu, Yi-Hua E Yang, and Viktor K Prasanna. “Large-scale multi-flow

regular expression matching on fpga”. In: 2012 IEEE 13th International Con-

ference on High Performance Switching and Routing. IEEE. 2012, pp. 70–75.

[79] Johnny Tsung Lin Ho. “PERG-Rx: an FPGA-based pattern-matching engine

with limited regular expression support for large pattern databases”. PhD

thesis. University of British Columbia, 2009.

[80] Ioannis Sourdis, João Bispo, Joao MP Cardoso, and Stamatis Vassiliadis. “Reg-

ular expression matching in reconfigurable hardware”. In: Journal of Signal

Processing Systems 51.1 (2008), pp. 99–121.

134

[81] Neil Duxbury. Aho-Corasick methodology for string searching. US Patent 7,769,788.

2010.

[82] Tran Trung Hieu and Ngoc Thinh Tran. “A memory e�cient FPGA-based

pattern matching engine for stateful NIDS”. In: The Fifth Annual IEEE Con-

ference Ubiquitous and Future Networks (ICUFN). 2. 2013.

[83] Ciprian Pungila. “Hybrid compression of the Aho-Corasick automaton for

static analysis in intrusion detection systems”. In: International Joint Confer-

ence CISIS12-ICEUTE 12-SOCO 12 Special Sessions. Springer. 2013, pp. 77–

86.

[84] Indranil Roy and Srinivas Aluru. “Finding motifs in biological sequences us-

ing the micron automata processor”. In: Parallel and Distributed Processing

Symposium, 2014 IEEE 28th International. IEEE. 2014, pp. 415–424.

[85] Social Networks and Archival Context. http://socialarchive.iath.

virginia.edu.

[86] H Noyes et al. “Microns automata processor architecture: Reconfigurable and

massively parallel automata processing”. In: Proc. of Fifth International Sym-

posium on Highly-E�cient Accelerators and Reconfigurable Technologies. 2014.

[87] Apache Lucene. http://lucene.apache.org.

[88] Michael Ley. “The DBLP computer science bibliography: Evolution, research

issues, perspectives”. In: International symposium on string processing and

information retrieval. Springer. 2002, pp. 1–10.

[89] II Tommy Tracy, Mircea Stan, Nathan Brunelle, Jack Wadden, Ke Wang,

Kevin Skadron, and Gabe Robins. “Nondeterministic finite automata in hardware-

the case of the Levenshtein automaton”. In: Architectures and Systems for Big

Data (ASBD), in conjunction with ISCA (2015).

[90] Fuzzy document finding in Ruby. https://github.com/brianhempel/

fuzzy_tools.

[91] Duplicate Detection, Record Linkage, and Identity Uncertainty: Datasets. http:

//www.cs.utexas.edu/users/ml/riddle/data.html.

[92] David Menestrina, Steven Euijong Whang, and Hector Garcia-Molina. “Evalu-

ating entity resolution results”. In: Proceedings of the VLDB Endowment 3.1-2

(2010), pp. 208–219.

135

[93] Chunkun Bo, Ke Wang, Je↵rey J Fox, and Kevin Skadron. “Entity resolution

acceleration using Microns Automata Processor”. In: Proceedings of Architec-

tures and Systems for Big Data (ASBD), in conjunction with ISCA (2015).

[94] Zhang Tengyu and Melissa A Me↵ord. “Gene editing in yeast cells using the

CRISPR/Cas9 system”. In: (2019).

[95] Ke Wang, Kevin Angstadt, Chunkun Bo, Nathan Brunelle, Elaheh Sadre-

dini, Tommy Tracy II, Jack Wadden, Mircea Stan, and Kevin Skadron. “An

overview of micron’s automata processor”. In: Proceedings of the Eleventh

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign

and System Synthesis. ACM. 2016, p. 14.

[96] Ke Wang, Kevin Skadron, and Elaheh Sadredini. Disjunctive rule mining with

finite automaton hardware. US Patent App. 15/475,819. 2018.

[97] Elaheh Sadredini, Reza Rahimi, Ke Wang, and Kevin Skadron. “Frequent sub-

tree mining on the automata processor: Challenges and opportunities”. In:

Proceedings of the International Conference on Supercomputing. ACM. 2017,

p. 4.

[98] JackWadden, Nathan Brunelle, KeWang, Mohamed El-Hadedy, Gabriel Robins,

Mircea Stan, and Kevin Skadron. “Generating e�cient and high-quality pseudo-

random behavior on Automata Processors”. In: Computer Design (ICCD),

2016 IEEE 34th International Conference on. IEEE. 2016, pp. 622–629.

[99] Dimitre R Simeonov and Alexander Marson. “CRISPR-based tools in immu-

nity”. In: Annual review of immunology 37 (2019), pp. 571–597.

[100] Adrian Pickar-Oliver and Charles A Gersbach. “The next generation of CRISPR–

Cas technologies and applications”. In: Nature Reviews Molecular Cell Biology

(2019), p. 1.

[101] Kay Prüfer, Udo Stenzel, Michael Dannemann, Richard E Green, Michael

Lachmann, and Janet Kelso. “PatMaN: rapid alignment of short sequences

to large databases”. In: Bioinformatics 24.13 (2008), pp. 1530–1531.

[102] Ben Langmead, Cole Trapnell, M Pop, and SL Salzberg. “Bowtie: An ultrafast

memory-e�cient short read aligner”. In: Genome Biol 10.3 (2009), R25.

[103] Heng Li and Richard Durbin. “Fast and accurate short read alignment with

Burrows–Wheeler transform”. In: bioinformatics 25.14 (2009), pp. 1754–1760.

136

[104] Xiao-Hui Zhang, Louis Y Tee, Xiao-Gang Wang, Qun-Shan Huang, and Shi-

Hua Yang. “O↵-target e↵ects in CRISPR/Cas9-mediated genome engineer-

ing”. In: Molecular Therapy-Nucleic Acids 4 (2015).

[105] Ritambhara Singh, Cem Kuscu, Aaron Quinlan, Yanjun Qi, and Mazhar Adli.

“Cas9-chromatin binding information enables more accurate CRISPR o↵-target

prediction”. In: Nucleic acids research 43.18 (2015), e118–e118.

[106] Levenshtein in ANMLZoo. https://github.com/jackwadden/ANMLZoo/

tree/master/Levenshtein.

[107] Xiaodong Yu, Kaixi Hou, Hao Wang, and Wu-chun Feng. “Robotomata: A

framework for approximate pattern matching of big data on an automata pro-

cessor”. In: Big Data (Big Data), 2017 IEEE International Conference on.

IEEE. 2017, pp. 283–292.

[108] Xilinx Inc. SDAccel development environment. url: https://www.xilinx.

com/products/design-tools/softwarezone/sdaccel.html.

[109] Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/instance-

types/f1/.

[110] Nimbix. Xilinx FPGAs on the Nimbix Cloud. url: https://www.nimbix.

net/xilinx/.

[111] Marziyeh Nourian, Xiang Wang, Xiaodong Yu, Wu chun Feng, and Michela

Becchi. “Demystifying Automata Processing: GPUs, FPGAs or Micron’s AP?”

In: Proceedings of the International Conference on Supercomputing. ACM.

2017, p. 1.

[112] AWS. Amazon EC2 F1 Instances. url: https://aws.amazon.com/ec2/

instance-types/f1/.

[113] Ted Xie, Vinh Dang, Jack Wadden, Mircea Stan, and Kevin Skadron. “An

End-to-End Reconfigurable Engine for Automata Processing”. In: Government

Microcircuit Applications adn Critical Technology (GOMACTech), 2018 50th

Conference on. 2018.

[114] Cheng-Hung Lin, Chih-Tsun Huang, Chang-Ping Jiang, and Shih-Chieh Chang.

“Optimization of regular expression pattern matching circuits on FPGA”. In:

Proceedings of the Design Automation & Test in Europe Conference. Vol. 2.

IEEE. 2006, pp. 1–6.

137

[115] Jack Wadden, Kevin Angstadt, and Kevin Skadron. “Characterizing and Mit-

igating Output Reporting Bottlenecks in Spatial Automata Processing Archi-

tectures”. In: Proceedings of IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA). 2. 2018.

[116] Ted Xie, Vinh Dang, Chunkun Bo, Jack Wadden, Kevin Skadron, and Mircea

Stan. Reconfigurable Engine for Automata Processing. 2018. url: https:

//github.com/ted-xie/REAPR.

[117] Micron. ANML Documentation. 2015. url: http://www.micronautomata.

com/documentation/anml_documentation/c_intro.html.

[118] Kevin Angstadt, Jack Wadden, Vinh Dang, Ted Xie, Dan Kramp, Westley

Weimer, Mircea Stan, and Kevin Skadron. “MNCaRT: An Open-Source, Multi-

Architecture Automata-Processing Research and Execution Ecosystem”. In:

IEEE Computer Architecture Letters 17.1 (2018), pp. 84–87.

[119] AWS-FPGA. O�cial repository of the AWS EC2 FPGA Hardware and Soft-

ware Development Kit. url: https://github.com/aws/aws-fpga.

[120] Jack Wadden and Kevin Skadron. VASim: An open virtual automata simula-

tor for automata processing application and architecture research. Tech. Rep.

CS2016–03, University of Virginia. University of Virginia, 2016.

[121] Ajay Jagtiani. Reducing FPGA Compile Time Using Parallel Compilation

Methodology. url: https://www.eetimes.com/document.asp?doc_

id=1276054.

[122] James Coole and Greg Stitt. “Fast, flexible high-level synthesis from OpenCL

using reconfiguration contexts”. In: IEEE Micro 34.1 (2014), pp. 42–53.

[123] Christopher Lavin, Marc Padilla, Jaren Lamprecht, Philip Lundrigan, Brent

Nelson, and Brad Hutchings. “HMFlow: accelerating FPGA compilation with

hard macros for rapid prototyping”. In: 2011 IEEE 19th Annual International

Symposium on Field-Programmable Custom Computing Machines. IEEE. 2011,

pp. 117–124.

[124] João MP Cardoso and Horácio C Neto. “Compilation for FPGA-based re-

configurable hardware”. In: IEEE Design & Test of Computers 20.2 (2003),

pp. 65–75.

138

[125] Jens Teubner, Louis Woods, and Chongling Nie. “Skeleton automata for FP-

GAs: reconfiguring without reconstructing”. In: Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data. ACM. 2012, pp. 229–

240.

[126] Michael L Metzker. “Sequencing technologiesthe next generation”. In: Nature

reviews genetics 11.1 (2010), p. 31.

[127] Roger Moussalli, Mariam Salloum, Robert Halstead, Walid Najjar, and Vassilis

J. Tsotras. “A Study on Parallelizing XML Path Filtering using Accelerators”.

In: ACM Transactions on Embedded Computing Systems (TECS) 13.4 (2014),

p. 93.

[128] Xilinx. XOCC (Xilinx OpenCL Compiler) Command Line Utility. url: https:

//www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/

wrj1504034328013.html.

[129] Xilinx. Package RTL Kernel into Xilinx Object File. url: https://www.

xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/lfy1504034326094.

html.

[130] Jack Wadden, Tommy Tracy II, Elaheh Sadredini, Lingxi Wu, Chunkun Bo,

Jesse Du, YizhouWei, MatthewWallace, Je↵rey Udall, Mircea Stan, and Kevin

Skadron. “AutomataZoo: A Modern Automata Processing Benchmark Suite”.

In: Proceedings of IEEE International Symposium on Workload Characteriza-

tion (IISWC). 2018.

[131] Chunkun Bo. Identify gRNA o↵-targets for CRISPR/Cas9 using Automata

Processing. 2018. url: https://github.com/chunkunbo/CRISPR.

[132] Xilinx Inc. Vivado Design Suite User Guide. url: https://www.xilinx.

com/support/documentation/sw_manuals/xilinx2017_2/ug901-

vivado-synthesis.pdf.

[133] Kizheppatt Vipin and Suhaib A Fahmy. “FPGA dynamic and partial recon-

figuration: A survey of architectures, methods, and applications”. In: ACM

Computing Surveys (CSUR) 51.4 (2018), p. 72.

[134] Xilinx Inc. Vivado Design Suite User Guide. url: https://www.xilinx.

com/support/documentation/sw_manuals/xilinx2017_1/ug909-

vivado-partial-reconfiguration.pdf.

139

[135] Dongjoon Park, Yuanlong Xiao, Nevo Magnezi, and André DeHon. “Case

for fast fpga compilation using partial reconfiguration”. In: 2018 28th Inter-

national Conference on Field Programmable Logic and Applications (FPL).

IEEE. 2018, pp. 235–2353.

[136] Po-Ching Lin, Ying-Dar Lin, Yuan-Cheng Lai, and Tsern-Huei Lee. “Using

string matching for deep packet inspection”. In: Computer 41.4 (2008), pp. 23–

28.

[137] Brad L Hutchings, Rob Franklin, and Daniel Carver. “Assisting network in-

trusion detection with reconfigurable hardware”. In: Proceedings. 10th An-

nual IEEE Symposium on Field-Programmable Custom Computing Machines.

IEEE. 2002, pp. 111–120.

[138] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. “Compiling pcre to fpga

for accelerating snort ids”. In: Proceedings of the 3rd ACM/IEEE Sympo-

sium on Architecture for networking and communications systems. ACM. 2007,

pp. 127–136.

[139] Martin Roesch. “Snort: Lightweight intrusion detection for networks.” In: Lisa.

Vol. 99. 1. 1999, pp. 229–238.

140

